Sample records for mass spring system

  1. Running springs: speed and animal size.

    PubMed

    Farley, C T; Glasheen, J; McMahon, T A

    1993-12-01

    Trotting and hopping animals use muscles, tendons and ligaments to store and return elastic energy as they bounce along the ground. We examine how the musculoskeletal spring system operates at different speeds and in animals of different sizes. We model trotting and hopping as a simple spring-mass system which consists of a leg spring and a mass. We find that the stiffness of the leg spring (k(leg)) is nearly independent of speed in dogs, goats, horses and red kangaroos. As these animals trot or hop faster, the leg spring sweeps a greater angle during the stance phase, and the vertical excursion of the center of mass during the ground contact phase decreases. The combination of these changes to the spring system causes animals to bounce off the ground more quickly at higher speeds. Analysis of a wide size range of animals (0.1-140 kg) at equivalent speeds reveals that larger animals have stiffer leg springs (k(leg) [symbol: see text] M0.67, where M is body mass), but that the angle swept by the leg spring is nearly independent of body mass. As a result, the resonant period of vertical vibration of the spring-mass system is longer in larger animals. The length of time that the feet are in contact with the ground increases with body mass in nearly the same way as the resonant period of vertical vibration.

  2. Leg stiffness and stride frequency in human running.

    PubMed

    Farley, C T; González, O

    1996-02-01

    When humans and other mammals run, the body's complex system of muscle, tendon and ligament springs behaves like a single linear spring ('leg spring'). A simple spring-mass model, consisting of a single linear leg spring and a mass equivalent to the animal's mass, has been shown to describe the mechanics of running remarkably well. Force platform measurements from running animals, including humans, have shown that the stiffness of the leg spring remains nearly the same at all speeds and that the spring-mass system is adjusted for higher speeds by increasing the angle swept by the leg spring. The goal of the present study is to determine the relative importance of changes to the leg spring stiffness and the angle swept by the leg spring when humans alter their stride frequency at a given running speed. Human subjects ran on treadmill-mounted force platform at 2.5ms-1 while using a range of stride frequencies from 26% below to 36% above the preferred stride frequency. Force platform measurements revealed that the stiffness of the leg spring increased by 2.3-fold from 7.0 to 16.3 kNm-1 between the lowest and highest stride frequencies. The angle swept by the leg spring decreased at higher stride frequencies, partially offsetting the effect of the increased leg spring stiffness on the mechanical behavior of the spring-mass system. We conclude that the most important adjustment to the body's spring system to accommodate higher stride frequencies is that leg spring becomes stiffer.

  3. Velocity feedback control with a flywheel proof mass actuator

    NASA Astrophysics Data System (ADS)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  4. Effect of distributive mass of spring on power flow in engineering test

    NASA Astrophysics Data System (ADS)

    Sheng, Meiping; Wang, Ting; Wang, Minqing; Wang, Xiao; Zhao, Xuan

    2018-06-01

    Mass of spring is always neglected in theoretical and simulative analysis, while it may be a significance in practical engineering. This paper is concerned with the distributive mass of a steel spring which is used as an isolator to simulate isolation performance of a water pipe in a heating system. Theoretical derivation of distributive mass effect of steel spring on vibration is presented, and multiple eigenfrequencies are obtained, which manifest that distributive mass results in extra modes and complex impedance properties. Furthermore, numerical simulation visually shows several anti-resonances of the steel spring corresponding to impedance and power flow curves. When anti-resonances emerge, the spring collects large energy which may cause damage and unexpected consequences in practical engineering and needs to be avoided. Finally, experimental tests are conducted and results show consistency with that of the simulation of the spring with distributive mass.

  5. On the Numerical Solution of the Integral Equation Formulation for Transient Structural Synthesis

    DTIC Science & Technology

    2014-09-01

    stiffness modification. mass ( ) 1 (2.2 ), spring constant ( ) 100 / 6.9 lbm kg lb k N m ft         2) A SDOF mass-spring system with an...externally applied periodic excitation, subjected to a stiffness modification. mass ( ) 1 (2.2 ), spring constant ( ) 100 / 6.9 lbm kg lb k N m ft...spring. mass ( ) 1 (2.2 ), spring constant ( ) 100 / 6.9 lbm kg lb k N m ft         4) A generalized MDOF cantilevered aluminum beam with

  6. Teaching Wave Propagation and the Emergence of Viete's Formula

    ERIC Educational Resources Information Center

    Cullerne, J. P.; Goekjian, M. C. Dunn

    2012-01-01

    The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…

  7. Geometrically induced nonlinear dynamics in one-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Hamilton, Merle D.; de Alcantara Bonfim, O. F.

    2006-03-01

    We present a lattice model consisting of a single one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in a horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other linear springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs, where in the transverse direction the springs are either in the extended or compressed state depending on the position of the masses. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytic solution for these nonlinear waves is found. Numerical integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves.

  8. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  9. Nonlinear energy transport in one-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Vuppuluri, P.; Hamilton, M.; de Alcantara Bonfim, O. F.

    2007-03-01

    We present a simple lattice model consisting of a one-dimensional chain, where the masses are interconnected by linear springs and allowed to move in the horizontal direction only, as in a monorail. In the transverse direction each mass is also attached to two other springs, one on each side of the mass. The ends of these springs are kept at fixed positions. The nonlinearity in the model arises from the geometric constraints imposed on the motion of the masses, as well as from the configuration of the springs. In the transverse directions the springs are either in the extended or compressed state depending on the position of the mass. Under these conditions we show that solitary waves are present in the system. In the long wavelength limit an analytical solution for these nonlinear waves is found. Numeric integrations of the equations of motion in the full system are also performed to analyze the conditions for the existence and stability of the nonlinear waves. Nonlinear supratransmission is examined and shown to exist in the model and an explanation of its mechanism is presented.

  10. Robust stability of second-order systems

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1995-01-01

    It has been shown recently how virtual passive controllers can be designed for second-order dynamic systems to achieve robust stability. The virtual controllers were visualized as systems made up of spring, mass and damping elements. In this paper, a new approach emphasizing on the notion of positive realness to the same second-order dynamic systems is used. Necessary and sufficient conditions for positive realness are presented for scalar spring-mass-dashpot systems. For multi-input multi-output systems, we show how a mass-spring-dashpot system can be made positive real by properly choosing its output variables. In particular, sufficient conditions are shown for the system without output velocity. Furthermore, if velocity cannot be measured then the system parameters must be precise to keep the system positive real. In practice, system parameters are not always constant and cannot be measured precisely. Therefore, in order to be useful positive real systems must be robust to some degrees. This can be achieved with the design presented in this paper.

  11. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model

    NASA Astrophysics Data System (ADS)

    Lee, Chun Woo; Lee, Jihoon; Park, Subong

    2015-06-01

    Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.

  12. Resonance Effects in Magnetically Driven Mass-Spring Oscillations

    ERIC Educational Resources Information Center

    Taylor, Ken

    2011-01-01

    Resonance effects are among the most intriguing phenomena in physics and engineering. The classical case of a mass-spring oscillator driven at its resonant frequency is one of the earliest examples that students encounter. Perhaps the most commonly depicted method of driving the vibrating system is mechanical. An alternative approach presented in…

  13. Vibration of a string against multiple spring-mass-damper stoppers

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Hwan; Talib, Ezdiani; Kwak, Moon K.

    2018-02-01

    When a building sways due to strong wind or an earthquake, the elevator rope can undergo resonance, resulting in collision with the hoist-way wall. In this study, a hard stopper and a soft stopper comprised of a spring-mass-damper system installed along the hoist-way wall were considered to prevent the string from undergoing excessive vibrations. The collision of the string with multiple hard stoppers and multiple spring-mass-damper stoppers was investigated using an analytical method. The result revealed new formulas and computational algorithms that are suitable for simulating the vibration of the string against multiple stoppers. The numerical results show that the spring-mass-damper stopper is more effective in suppressing the vibrations of the string and reducing structural failure. The proposed algorithms were shown to be efficient to simulate the motion of the string against a vibration stopper.

  14. The Influence of Spring Length on the Physical Parameters of Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Triana, C. A.; Fajardo, F.

    2012-01-01

    The aim of this work is to analyse the influence of spring length on the simple harmonic motion of a spring-mass system. In particular, we study the effect of changing the spring length on the elastic constant "[kappa]", the angular frequency "[omega]" and the damping factor "[gamma]" of the oscillations. To characterize the behaviour of these…

  15. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.

    PubMed

    Brown, Jeremy; Sharma, Srikanta; Leadbetter, Jeff; Cochran, Sandy; Adamson, Rob

    2014-11-01

    We have developed a technique of applying multiple matching layers to high-frequency (>30 MHz) imaging transducers, by using carefully controlled vacuum deposition alone. This technique uses a thin mass-spring matching layer approach that was previously described in a low-frequency (1 to 10 MHz) transducer design with epoxied layers. This mass- spring approach is more suitable to vacuum deposition in highfrequency transducers over the conventional quarter-wavelength resonant cavity approach, because thinner layers and more versatile material selection can be used, the difficulty in precisely lapping quarter-wavelength matching layers is avoided, the layers are less attenuating, and the layers can be applied to a curved surface. Two different 3-mm-diameter 45-MHz planar lithium niobate transducers and one geometrically curved 3-mm lithium niobate transducer were designed and fabricated using this matching layer approach with copper as the mass layer and parylene as the spring layer. The first planar lithium niobate transducer used a single mass-spring matching network, and the second planar lithium niobate transducer used a single mass-spring network to approximate the first layer in a dual quarter-wavelength matching layer system in addition to a conventional quarter-wavelength layer as the second matching layer. The curved lithium niobate transducer was press focused and used a similar mass-spring plus quarter-wavelength matching layer network. These transducers were then compared with identical transducers with no matching layers and the performance improvement was quantified. The bandwidth of the lithium niobate transducer with the single mass-spring layer was measured to be 46% and the insertion loss was measured to be -21.9 dB. The bandwidth and insertion loss of the lithium niobate transducer with the mass-spring network plus quarter-wavelength matching were measured to be 59% and -18.2 dB, respectively. These values were compared with the unmatched transducer, which had a bandwidth of 28% and insertion loss of -34.1 dB. The bandwidth and insertion loss of the curved lithium niobate transducer with the mass-spring plus quarter-wavelength matching layer combination were measured to be 68% and -26 dB, respectively; this compared with the measured unmatched bandwidth and insertion loss of 35% and -37 dB. All experimentally measured values were in excellent agreement with theoretical Krimholtz-Leedom-Matthaei (KLM) model predictions.

  16. Hydrodynamic Impact of a System with a Single Elastic Mode II : Comparison of Experimental Force and Response with Theory

    NASA Technical Reports Server (NTRS)

    Miller, Robert W; Merten, Kenneth F

    1952-01-01

    Hydrodynamic impact tests were made on an elastic model approximating a two-mass spring system to determine experimentally the effects of structural flexibility on the hydrodynamic loads encountered during seaplane landing impacts and to correlate the results with theory. A flexible seaplane was represented by a two-mass spring system consisting of a rigid prismatic float connected to a rigid upper mass by an elastic structure. The model had a ratio of sprung mass to hull mass of 0.6 and a natural frequency of 3.0 cycles per second. The tests were conducted in smooth water at fixed trims and included both high and low flight-path angles and a range of velocity. Theoretical and experimental comparisons indicated that the theoretical results agreed well with the experimental results.

  17. Simple Harmonics Motion experiment based on LabVIEW interface for Arduino

    NASA Astrophysics Data System (ADS)

    Tong-on, Anusorn; Saphet, Parinya; Thepnurat, Meechai

    2017-09-01

    In this work, we developed an affordable modern innovative physics lab apparatus. The ultrasonic sensor is used to measure the position of a mass attached on a spring as a function of time. The data acquisition system and control device were developed based on LabVIEW interface for Arduino UNO R3. The experiment was designed to explain wave propagation which is modeled by simple harmonic motion. The simple harmonic system (mass and spring) was observed and the motion can be realized using curve fitting to the wave equation in Mathematica. We found that the spring constants provided by Hooke’s law and the wave equation fit are 9.9402 and 9.1706 N/m, respectively.

  18. Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system

    NASA Astrophysics Data System (ADS)

    Palomares, E.; Nieto, A. J.; Morales, A. L.; Chicharro, J. M.; Pintado, P.

    2018-02-01

    This paper presents a Negative Stiffness System (NSS) based on a set of two double-acting pneumatic linear actuators (PLA). The NSS is added to a system with a single degree of freedom, which consists of a sprung mass and a pneumatic spring. One end of each PLA is jointed to the sprung mass while the other end is jointed to the vibrating frame. In addition, the PLAs are symmetrically arranged so that they remain horizontal while the sprung mass is in static conditions. When the rear chamber is pressurised, the vertical component of the force applied by the PLAs will work against the pneumatic spring reducing the dynamic resonance frequency of the overall system. Experimental tests and simulations showed improvements regarding sprung mass isolation in comparison to the passive system without NSS, decreasing the resonance frequency by up to 58 % and improving the vibration attenuation for different experimental excitations.

  19. Electromagnetic energy harvesting from a dual-mass pendulum oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Tang, Jiong

    2016-04-01

    This paper presents the analysis of a type of vibration energy harvester composed of an electromagnetic pendulum oscillator combined to an elastic main structure. In this study, the elastic main structure connected to the base is considered as a single degree-of-freedom (DOF) spring-mass-damper subsystem. The electromagnetic pendulum oscillator is considered as a dual-mass two-frequency subsystem, which is composed of a hollow bar with a tip winded coil and a magnetic mass with a spring located in the hollow bar. As the pendulum swings, the magnetic mass can move along the axial direction of the bar. Thus, the relative motion between the magnet and the coil induces a wire current. A mathematical model of the coupled system is established. The system dynamics a 1:2:1 internal resonance. Parametric analysis is carried out to demonstrate the effect of the excitation acceleration, excitation frequency, load resistance, and frequency tuning parameters on system performance.

  20. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    NASA Astrophysics Data System (ADS)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  1. Maintenance of equilibrium point control during an unexpectedly loaded rapid limb movement.

    PubMed

    Simmons, R W; Richardson, C

    1984-06-08

    Two experiments investigated whether the equilibrium point hypothesis or the mass-spring model of motor control subserves positioning accuracy during spring loaded, rapid, bi-articulated movement. For intact preparations, the equilibrium point hypothesis predicts response accuracy to be determined by a mixture of afferent and efferent information, whereas the mass-spring model predicts positioning to be under a direct control system. Subjects completed a series of load-resisted training trials to a spatial target. The magnitude of a sustained spring load was unexpectedly increased on selected trials. Results indicated positioning accuracy and applied force varied with increases in load, which suggests that the original efferent commands are modified by afferent information during the movement as predicted by the equilibrium point hypothesis.

  2. Generating Localized Nonlinear Excitations in the Fermi-Pasta-Ulam-Tsingou chains

    NASA Astrophysics Data System (ADS)

    Westley, Alexandra; Sen, Surajit

    Here, we will discuss properties of energy trapping in the decorated Fermi-Pasta-Ulam-Tsingou (FPUT) mass-spring chains with quadratic and quartic coupling terms. It is well-known that the FPUT system admits highly localized nonlinear excitations (LNE) which are stable for long periods of time. We seek to generate these LNEs at will by creating regions in the chain of stiffer or softer springs, or by placing mass impurities throughout. We will show that NLEs tend to coalesce in regions of stiff springs from random perturbations throughout the system. These locations may serve as extremely powerful energy traps or heat sinks in certain materials. Furthermore, we will demonstrate that this process occurs by means of trapping solitary (or anti-solitary) waves into tight spaces.

  3. A spring-mass-damper system dynamics-based driver-vehicle integrated model for representing heterogeneous traffic

    NASA Astrophysics Data System (ADS)

    Munigety, Caleb Ronald

    2018-04-01

    The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.

  4. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  5. Study of the dynamic properties and effects of temperature using a spring model for the bouncing ball

    NASA Astrophysics Data System (ADS)

    Wadhwa, Ajay

    2013-05-01

    We studied the motion of a bouncing ball by representing it through an equivalent mass-spring system executing damped harmonic oscillations. We represented the elasticity of the system through the spring constant ‘k’ and the viscous damping effect, causing loss of energy, through damping constant ‘c’. By including these two factors we formed a differential equation for the equivalent mass-spring system of the bouncing ball. This equation was then solved to study the elastic and dynamic properties of its motion by expressing them in terms of experimentally measurable physical quantities such as contact time, coefficient of restitution, etc. We used our analysis for different types of ball material: rubber (lawn-tennis ball, super ball, soccer ball and squash ball) and plastic (table-tennis ball) at room temperature. Since the effect of temperature on the bounce of a squash ball is significant, we studied the temperature dependence of its elastic properties. The experiments were performed using audio and surface-temperature sensors interfaced with a computer through a USB port. The work presented here is suitable for undergraduate laboratories. It particularly emphasizes the use of computer interfacing for conducting conventional physics experiments.

  6. Hydrodynamic impact of a system with a single elastic mode I : theory and generalized solution with an application to an elastic airframe

    NASA Technical Reports Server (NTRS)

    Mayo, Wilbur L

    1952-01-01

    Solutions of impact of a rigid prismatic float connected by a massless spring to a rigid upper mass are presented. The solutions are based on hydrodynamic theory which has been experimentally confirmed for a rigid structure. Equations are given for defining the spring constant and the ratio of the sprung mass to the lower mass so that the two-mass system provides representation of the fundamental mode of an airplane wing. The forces calculated are more accurate than the forces which would be predicted for a rigid airframe since the effect of the fundamental mode on the hydrodynamic force is taken into account. In a comparison of the theoretical data with data for a severe flight-test landing impact, the effect of the fundamental mode on the hydrodynamic force is considered and response data are compared with experimental data.

  7. Evaluation of nonlinear structural dynamic responses using a fast-running spring-mass formulation

    NASA Astrophysics Data System (ADS)

    Benjamin, A. S.; Altman, B. S.; Gruda, J. D.

    In today's world, accurate finite-element simulations of large nonlinear systems may require meshes composed of hundreds of thousands of degrees of freedom. Even with today's fast computers and the promise of ever-faster ones in the future, central processing unit (CPU) expenditures for such problems could be measured in days. Many contemporary engineering problems, such as those found in risk assessment, probabilistic structural analysis, and structural design optimization, cannot tolerate the cost or turnaround time for such CPU-intensive analyses, because these applications require a large number of cases to be run with different inputs. For many risk assessment applications, analysts would prefer running times to be measurable in minutes. There is therefore a need for approximation methods which can solve such problems far more efficiently than the very detailed methods and yet maintain an acceptable degree of accuracy. For this purpose, we have been working on two methods of approximation: neural networks and spring-mass models. This paper presents our work and results to date for spring-mass modeling and analysis, since we are further along in this area than in the neural network formulation. It describes the physical and numerical models contained in a code we developed called STRESS, which stands for 'Spring-mass Transient Response Evaluation for structural Systems'. The paper also presents results for a demonstration problem, and compares these with results obtained for the same problem using PRONTO3D, a state-of-the-art finite element code which was also developed at Sandia.

  8. Functional analysis of Normalized Difference Vegetation Index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology

    PubMed Central

    Hurley, Mark A.; Hebblewhite, Mark; Gaillard, Jean-Michel; Dray, Stéphane; Taylor, Kyle A.; Smith, W. K.; Zager, Pete; Bonenfant, Christophe

    2014-01-01

    Large herbivore populations respond strongly to remotely sensed measures of primary productivity. Whereas most studies in seasonal environments have focused on the effects of spring plant phenology on juvenile survival, recent studies demonstrated that autumn nutrition also plays a crucial role. We tested for both direct and indirect (through body mass) effects of spring and autumn phenology on winter survival of 2315 mule deer fawns across a wide range of environmental conditions in Idaho, USA. We first performed a functional analysis that identified spring and autumn as the key periods for structuring the among-population and among-year variation of primary production (approximated from 1 km Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (NDVI)) along the growing season. A path analysis showed that early winter precipitation and direct and indirect effects of spring and autumn NDVI functional components accounted for 45% of observed variation in overwinter survival. The effect size of autumn phenology on body mass was about twice that of spring phenology, while direct effects of phenology on survival were similar between spring and autumn. We demonstrate that the effects of plant phenology vary across ecosystems, and that in semi-arid systems, autumn may be more important than spring for overwinter survival. PMID:24733951

  9. Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator.

    PubMed

    Hosain, M A; Sirr, A; Ju, L; Blair, D G

    2012-08-01

    LaCoste linkage vibration isolators have shown excellent performance for ultra-low frequency vertical vibration isolation. However, such isolators depend on the use of conventional pre-stressed coil springs, which suffer from creep. Here, we show that compressional Euler springs can be configured to create a stable tension unit for use in a LaCoste structure. In a proof of concept experiment, we demonstrate a vertical resonance frequency of 0.15 Hz in an Euler-LaCoste configuration with 200 mm height. The system enables the use of very low creep maraging steel as spring elements to eliminate the creep while minimising spring mass and reducing the effect of parasitic resonances. Larger scale systems with optimized Euler spring boundary conditions should achieve performance suitable for applications on third generation gravitational wave detectors such as the proposed Einstein telescope.

  10. Investigations of the effects of particle properties on the wear resistance of the particle reinforced composites using a novel wear model

    NASA Astrophysics Data System (ADS)

    Prabhu, T. Ram

    2016-08-01

    A wear model is developed based on the discrete lattice spring-mass approach to study the effects of particle volume fraction, size, and stiffness on the wear resistance of particle reinforced composites. To study these effects, we have considered three volume fractions (10%, 20% and 30%), two sizes (10 × 10 and 4 × 4 sites), and two different stiffness of particles embedded in the matrix in a regular pattern. In this model, we have discretized the composite system (400 × 100 sites) into the lumped masses connected with interaction spring elements in two dimensions. The interaction elements are assumed as linear elastic and ideal plastic under applied forces. Each mass is connected to its first and second nearest neighbors by springs. The matrix and particles sites are differentiated by choosing the different stiffness values. The counter surface is simulated as a rigid body that moves on the composite material at a constant sliding speed along the horizontal direction. The governing equations are formed by equating the spring force between the pair of sites given by Hooke’s law plus external contact forces and the force due to the motion of the site given by the equation of motion. The equations are solved for the plastic strain accumulated in the springs using an explicit time stepping procedure based on a finite difference form of the above equations. If the total strain accumulated in the spring elements connected to a lump mass site exceeds the failure strain, the springs are considered to be broken, and the mass site is removed or worn away from the lattice and accounts as a wear loss. The model predicts that (i) increasing volume fraction, reducing particle size and increasing particle stiffness enhance the wear resistance of the particle reinforced composites, (ii) the particle stiffness is the most significant factor affecting the wear resistance of the composites, and (iii) the wear resistance reduced above the critical volume fraction (Vc), and Vc increases with increasing particle size. Finally, we have qualitatively compared the model results with our previously published experimental results to prove the effectiveness of the model to analysis the complex wear systems.

  11. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also identified for the onset of spring. Late spring frequencies are similar but with more variability in all moist variety air mass frequencies. These findings indicate that, from a synoptic perspective, springs in the Northeast can be defined by dry air mass conditions through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the Northeast spring season may also be represented by more variable day-to-day air mass conditions in modern times than detected in past decades. 1950 - 1975 (black) and 1976 - 2010 (gray) Philadelphia, PA Spring air mass frequency (%).

  12. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run.

    PubMed

    Morin, Jean-Benoît; Samozino, Pierre; Millet, Guillaume Y

    2011-05-01

    This study investigated the changes in running mechanics and spring-mass behavior over a 24-h treadmill run (24TR). Kinematics, kinetics, and spring-mass characteristics of the running step were assessed in 10 experienced ultralong-distance runners before, every 2 h, and after a 24TR using an instrumented treadmill dynamometer. These measurements were performed at 10 km·h, and mechanical parameters were sampled at 1000 Hz for 10 consecutive steps. Contact and aerial times were determined from ground reaction force (GRF) signals and used to compute step frequency. Maximal GRF, loading rate, downward displacement of the center of mass, and leg length change during the support phase were determined and used to compute both vertical and leg stiffness. Subjects' running pattern and spring-mass behavior significantly changed over the 24TR with a 4.9% higher step frequency on average (because of a significantly 4.5% shorter contact time), a lower maximal GRF (by 4.4% on average), a 13.0% lower leg length change during contact, and an increase in both leg and vertical stiffness (+9.9% and +8.6% on average, respectively). Most of these changes were significant from the early phase of the 24TR (fourth to sixth hour of running) and could be speculated as contributing to an overall limitation of the potentially harmful consequences of such a long-duration run on subjects' musculoskeletal system. During a 24TR, the changes in running mechanics and spring-mass behavior show a clear shift toward a higher oscillating frequency and stiffness, along with lower GRF and leg length change (hence a reduced overall eccentric load) during the support phase of running. © 2011 by the American College of Sports Medicine

  13. Structure of resonances and formation of stationary points in symmetrical chains of bilinear oscillators

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady V.; Pasternak, Elena; Shufrin, Igor

    2014-12-01

    Dynamics of strongly nonlinear systems can in many cases be modelled by bilinear oscillators, which are the oscillators whose springs have different stiffnesses in compression and tension. This underpins the analysis of a wide range of phenomena, from oscillations of fragmented structures, connections and mooring lines to deformation of geological media. Single bilinear oscillators were studied previously and the presence of multiple resonances both super- and sub-harmonic was found. Less attention was paid to systems of multiple bilinear oscillators that describe many natural and engineering processes such as for example the behaviour of fragmented solids. Here we fill this gap concentrating on the simplest case - 1D symmetrical chains of bilinear oscillators. We show that the presence and structure of resonances in a symmetric chain of bilinear oscillators with fixed ends depends upon the number of oscillating masses. Two elementary chains act as the basic ones: a single mass bilinear chain (a mass connected to the fixed points by two bilinear springs) that behaves as a linear oscillator with a single resonance and a two mass chain that is a coupled bilinear oscillator (two masses connected by three bilinear springs). The latter has multiple resonances. We demonstrate that longer chains either do not have resonances or get decomposed, in the resonance, into either the single mass or two mass elementary chains with stationary masses in between. The resonance frequencies are inherited from the basic chains of decomposition. We show that if the number of masses is odd the chain can be decomposed into the single mass bilinear chains separated by stationary masses. It then inherits the resonances of the single mass bilinear chain. The chains with the number of masses minus 2 divisible by 3 can be decomposed into the two mass bilinear chains separated by stationary masses and inherit the resonances of the two mass chains. The chains whose lengths satisfy both criteria (such as chains with 5, 11, 17 … masses) allow both types of resonances.

  14. Scaling of rotational inertia of primate mandibles.

    PubMed

    Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B

    2017-05-01

    The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion systems reinforce the suggestion that displacement and force control are more important in the design of feeding systems than energetics and speed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Changes in running mechanics and spring-mass behavior induced by a mountain ultra-marathon race.

    PubMed

    Morin, J B; Tomazin, K; Edouard, P; Millet, G Y

    2011-04-07

    Changes in running mechanics and spring-mass behavior due to fatigue induced by a mountain ultra-marathon race (MUM, 166km, total positive and negative elevation of 9500m) were studied in 18 ultra-marathon runners. Mechanical measurements were undertaken pre- and 3h post-MUM at 12km h(-1) on a 7m long pressure walkway: contact (t(c)), aerial (t(a)) times, step frequency (f), and running velocity (v) were sampled and averaged over 5-8 steps. From these variables, spring-mass parameters of peak vertical ground reaction force (F(max)), vertical downward displacement of the center of mass (Δz), leg length change (ΔL), vertical (k(vert)) and leg (k(leg)) stiffness were computed. After the MUM, there was a significant increase in f (5.9±5.5%; P<0.001) associated with reduced t(a) (-18.5±17.4%; P<0.001) with no change in t(c), and a significant decrease in both Δz and F(max) (-11.6±10.5 and -6.3±7.3%, respectively; P<0.001). k(vert) increased by 5.6±11.7% (P=0.053), and k(leg) remained unchanged. These results show that 3h post-MUM, subjects ran with a reduced vertical oscillation of their spring-mass system. This is consistent with (i) previous studies concerning muscular structure/function impairment in running and (ii) the hypothesis that these changes in the running pattern could be associated with lower overall impact (especially during the braking phase) supported by the locomotor system at each step, potentially leading to reduced pain during running. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Whispering-gallery-mode-based seismometer

    DOEpatents

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  17. A Tale of Two Masses

    ERIC Educational Resources Information Center

    Bryan, Kurt

    2011-01-01

    This article presents an application of standard undergraduate ODE techniques to a modern engineering problem, that of using a tuned mass damper to control the vibration of a skyscraper. This material can be used in any ODE course in which the students have been familiarized with basic spring-mass models, resonance, and linear systems of ODEs.…

  18. Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power

    DTIC Science & Technology

    2008-12-01

    Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output

  19. Vibration mitigation in partially liquid-filled vessel using passive energy absorbers

    NASA Astrophysics Data System (ADS)

    Farid, M.; Levy, N.; Gendelman, O. V.

    2017-10-01

    We consider possible solutions for vibration mitigation in reduced-order model (ROM) of partially filled liquid tank under impulsive forcing. Such excitations may lead to strong hydraulic impacts applied to the tank inner walls. Finite stiffness of the tank walls is taken into account. In order to mitigate the dangerous internal stresses in the tank walls, we explore both linear (Tuned Mass Damper) and nonlinear (Nonlinear Energy Sink) passive vibration absorbers; mitigation performance in both cases is examined numerically. The liquid sloshing mass is modeled by equivalent mass-spring-dashpot system, which can both perform small-amplitude linear oscillations and hit the vessel walls. We use parameters of the equivalent mass-spring-dashpot system for a well-explored case of cylindrical tanks. The hydraulic impacts are modeled by high-power potential and dissipation functions. Critical location in the tank structure is determined and expression of the corresponding local mechanical stress is derived. We use finite element approach to assess the natural frequencies for specific system parameters. Numerical evaluation criteria are suggested to determine the energy absorption performance.

  20. Dynamic elastic-plastic response of a 2-DOF mass-spring system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corona, Edmundo

    The objective of the work presented here arose from abnormal, drop scenarios and specifically the question of how the accelerations and accumulation of plastic strains of internal components could be a ected by the material properties of the external structure. In some scenarios, the impact loads can induce cyclic motion of the internal components. Therefore, a second objective was to explore di erences that could be expected when simulations are conducted using isotropic hardening vs. kinematic hardening plasticity models. The simplest model that can be used to investigate the objectives above is a two-degree-offreedom mass/spring model where the springs exhibitmore » elastic-plastic behavior. The purpose of this memo is to develop such model and present a few results that address the objectives.« less

  1. Predicting brain acceleration during heading of soccer ball

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Hasnun Arif Hassan, Mohd; Azri Aris, Mohd; Anuar, Zulfika

    2013-12-01

    There has been a long debate whether purposeful heading could cause harm to the brain. Studies have shown that repetitive heading could lead to degeneration of brain cells, which is similarly found in patients with mild traumatic brain injury. A two-degree of freedom linear mathematical model was developed to study the impact of soccer ball to the brain during ball-to-head impact in soccer. From the model, the acceleration of the brain upon impact can be obtained. The model is a mass-spring-damper system, in which the skull is modelled as a mass and the neck is modelled as a spring-damper system. The brain is a mass with suspension characteristics that are also defined by a spring and a damper. The model was validated by experiment, in which a ball was dropped from different heights onto an instrumented dummy skull. The validation shows that the results obtained from the model are in a good agreement with the brain acceleration measured from the experiment. This findings show that a simple linear mathematical model can be useful in giving a preliminary insight on what human brain endures during a ball-to-head impact.

  2. Influence of wind turbine foundation

    NASA Technical Reports Server (NTRS)

    Yee, S. T.

    1978-01-01

    The 200 kW Mod-0A wind turbine was modeled using a 3 lumped mass-spring system for the superstructure and a rotational spring for the foundation and supporting soil. Natural frequencies were calculated using soil elastic moduli varying from 3000 to 22,400 p.s.i. The reduction in natural frequencies from the rigid foundation case ranged up to 20 percent.

  3. Hydrothermal Alkalinity in Central Nepal Rivers

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Derry, L. A.

    2002-12-01

    Numerous hot springs flow along the base of the Himalayan front, at or near the Main Central Thrust, in the Narayani drainage of central Nepal. The springs are found in a narrow zone characterized by rapid uplift and high incision rates. In this zone, hot rocks are brought to the near-surface where they interact with meteoric waters to produce the hydrothermal system. Water-rock interaction produces springs with high solute loads (TDS up to 8000 mg/L.) The springs drive significant chemical anomalies (e.g. Cl, Na, K and Ge) in the rivers that flow through the hydrothermal zone In order to quantify the impact the springs have on the river chemistry, the spring discharge must be estimated. Direct measurement of the spring discharge is difficult, as the springs often flow within the stream bed itself or are inaccessible. We take advantage of the wide disparity in stream vs. hydrothermal [Ge] to calculate spring discharge by chemical mass balance. The hot springs have [Ge] up to 684 nmol/kg and Ge/Si ratios from 200 to 1000 μmol/mol while river waters have [Ge] near 0.15 nmol/kg and Ge/Si ratios near 0.5 μmol/mol, typical of non-polluted rivers. The discharge calculated from the Ge mass balance for individual springs ranges from 0.03 x 106 to 5.6 x 106 m3/yr, and accounts for a small percentage of the total river discharge (0.03% to 1.9%). The hot spring discharge for all of central Nepal is around 1.5x108 m3/yr, 0.5% of the Narayani river discharge. Distinguishing between silicate and carbonate sources is important to assessing the role of weathering on atmospheric CO2 levels and the relative contributions of silicate and carbonate alkalinity in central Nepal rivers are still not well resolved. The hot springs derive up to 100% of their alkalinity from silicate sources. Using the discharge estimates for the springs, we find that the sum of the silicate alkalinity fluxes from all the spring systems is 2.8 x 108 mol/yr. This implies that the hot springs deliver around 18% of the silicate alkalinity in the Narayani river, and ca. 2% of the total alkalinity. Geothermal activity in this active orogenic belt is an important geochemical flux, directly coupling chemical fluxes to tectonic processes.

  4. Scaling of chew cycle duration in primates.

    PubMed

    Ross, Callum F; Reed, David A; Washington, Rhyan L; Eckhardt, Alison; Anapol, Fred; Shahnoor, Nazima

    2009-01-01

    The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass-spring system models of the feeding system. The gravity-driven pendulum model best predicts the observed cycle duration scaling but is rejected as biomechanically unrealistic. The forced mass-spring model predicts larger increases in chew cycle duration with size than observed, but provides reasonable predictions of cycle duration scaling. We hypothesize that intrinsic properties of the muscles predict spring-like behavior of the jaw elevator muscles during opening and fast close phases of the jaw cycle and that modulation of stiffness by the central nervous system leads to spring-like properties during the slow close/power stroke phase. Strepsirrhines show no predictable relationship between chew cycle duration and jaw length. Anthropoids have longer chew cycle durations than nonprimate mammals with similar mandible lengths, possibly due to their enlarged symphyses, which increase the moment of inertia of the mandible. Deviations from general scaling trends suggest that both scaling of the jaw muscles and the inertial properties of the mandible are important in determining the scaling of chew cycle duration in primates.

  5. Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots

    NASA Astrophysics Data System (ADS)

    Průša, Vít; Řehoř, Martin; Tůma, Karel

    2017-02-01

    The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.

  6. Analysis of Rail Vehicle Suspension Spring with Special Emphasis on Curving, Tracking and Tractive Efforts

    NASA Astrophysics Data System (ADS)

    Kumbhalkar, M. A.; Bhope, D. V.; Vanalkar, A. V.

    2016-09-01

    The dynamics of the rail vehicle represents a balance between the forces acting between wheel and rail, the inertia forces and the forces exerted by suspension and articulation. Axial loading on helical spring causes vertical deflection at straight track but failures calls to investigate for lateral and longitudinal loading at horizontal and vertical curves respectively. Goods carrying vehicle has the frequent failures of middle axle inner suspension spring calls for investigation. The springs are analyzed for effect of stress concentration due to centripetal force and due to tractive and breaking effort. This paper also discusses shear failure analysis of spring at curvature and at uphill at various speeds for different loading condition analytically and by finite element analysis. Two mass rail vehicle suspension systems have been analyzed for vibration responses analytically using mathematical tool Matlab Simulink and the same will be evaluated using FFT vibration analyzer to find peak resonance in vertical, lateral and longitudinal direction. The results prove that the suspension acquires high repeated load in vertical and lateral direction due to tracking and curving causes maximum stress concentration on middle axle suspension spring as height of this spring is larger than end axle spring in primary suspension system and responsible for failure of middle axle suspension spring due to high stress acquisition.

  7. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    NASA Astrophysics Data System (ADS)

    Taylor, Richard S.; Wilson, William R.

    2010-12-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration of Lenz's law and to study mechanical oscillators (e.g., mass-spring system and compound pendulum).1-3 Additionally, the optical system in an optical mouse has been used to study a mechanical oscillator (e.g., mass-spring system).4 The argument for using a mouse as a motion sensor has been and continues to be availability and cost. This paper continues this tradition by detailing the use of the scroll wheel on a wireless mouse as a motion sensor.

  8. Experimental Investigation of a Preloaded Spring-tab Flutter Model

    NASA Technical Reports Server (NTRS)

    Smith, N H; Clevenson, S A; Barmby, J G

    1947-01-01

    An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.

  9. Computer simulation of multigrid body dynamics and control

    NASA Technical Reports Server (NTRS)

    Swaminadham, M.; Moon, Young I.; Venkayya, V. B.

    1990-01-01

    The objective is to set up and analyze benchmark problems on multibody dynamics and to verify the predictions of two multibody computer simulation codes. TREETOPS and DISCOS have been used to run three example problems - one degree-of-freedom spring mass dashpot system, an inverted pendulum system, and a triple pendulum. To study the dynamics and control interaction, an inverted planar pendulum with an external body force and a torsional control spring was modeled as a hinge connected two-rigid body system. TREETOPS and DISCOS affected the time history simulation of this problem. System state space variables and their time derivatives from two simulation codes were compared.

  10. Identification of Object Dynamics Using Hand Worn Motion and Force Sensors

    PubMed Central

    Kortier, Henk G.; Schepers, H. Martin; Veltink, Peter H.

    2016-01-01

    Emerging microelectromechanical system (MEMS)-based sensors become much more applicable for on-body measurement purposes lately. Especially, the development of a finger tip-sized tri-axial force sensor gives the opportunity to measure interaction forces between the human hand and environmental objects. We have developed a new prototype device that allows simultaneous 3D force and movement measurements at the finger and thumb tips. The combination of interaction forces and movements makes it possible to identify the dynamical characteristics of the object being handled by the hand. With this device attached to the hand, a subject manipulated mass and spring objects under varying conditions. We were able to identify and estimate the weight of two physical mass objects (0.44 kg: 29.3%±18.9% and 0.28 kg: 19.7%±10.6%) and the spring constant of a physical spring object (16.3%±12.6%). The system is a first attempt to quantify the interactions of the hand with the environment and has many potential applications in rehabilitation, ergonomics and sports. PMID:27898040

  11. A Design Method for Topologically Insulating Metamaterials

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian; Daraio, Chiara

    Topological insulators are a unique class of electronic materials that exhibit protected edge states that are insulating in the bulk, and immune to back-scattering and defects. Discrete models, such as mass-spring systems, provide a means to translate these properties, based on the quantum hall spin effect, to the mechanical domain. This talk will present how to engineer a 2D mechanical metamaterial that supports topologically-protected and defect-immune edge states, directly from the mass-spring model of a topological insulator. The design method uses combinatorial searches plus gradient-based optimizations to determine the configuration of the metamaterials building blocks that leads to the global behavior specified by the target mass-spring model. We use metamaterials with weakly coupled unit cells to isolate the dynamics within our frequency range of interest and to enable a systematic design process. This approach can generally be applied to implement behaviors of a discrete model directly in mechanical, acoustic, or photonic metamaterials within the weak-coupling regime. This work was partially supported by the ETH Postdoctoral Fellowship, and by the Swiss National Science Foundation.

  12. Modeling Spring Mass System with System Dynamics Approach in Middle School Education

    ERIC Educational Resources Information Center

    Nuhoglu, Hasret

    2008-01-01

    System Dynamics is a well formulated methodology for analyzing the components of a system including causeeffect relationships and their underlying mathematics and logic, time delays, and feedback loops. It began in the business and manufacturing world, but is now affecting education and many other disciplines. Having inspired by successful policy…

  13. Modeling Spring Mass System with System Dynamics Approach in Middle School Education

    ERIC Educational Resources Information Center

    Nuhoglu, Hasret

    2008-01-01

    System Dynamics is a well formulated methodology for analyzing the components of a system including cause-effect relationships and their underlying mathematics and logic, time delays, and feedback loops. It began in the business and manufacturing world, but is now affecting education and many other disciplines. Having inspired by successful policy…

  14. Caffeine as an indicator for the quantification of untreated wastewater in karst systems.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-02-01

    Contamination from untreated wastewater leakage and related bacterial contamination poses a threat to drinking water quality. However, a quantification of the magnitude of leakage is difficult. The objective of this work is to provide a highly sensitive methodology for the estimation of the mass of untreated wastewater entering karst aquifers with rapid recharge. For this purpose a balance approach is adapted. It is based on the mass flow of caffeine in spring water, the load of caffeine in untreated wastewater and the daily water consumption per person in a spring catchment area. Caffeine is a source-specific indicator for wastewater, consumed and discharged in quantities allowing detection in a karst spring. The methodology was applied to estimate the amount of leaking and infiltrating wastewater to a well investigated karst aquifer on a daily basis. The calculated mean volume of untreated wastewater entering the aquifer was found to be 2.2 ± 0.5 m(3) d(-1) (undiluted wastewater). It corresponds to approximately 0.4% of the total amount of wastewater within the spring catchment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A study on a wheel-based stair-climbing robot with a hopping mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Koki; Sakaguchi, Keisuke; Sudo, Takayuki; Bushida, Naoki; Chiba, Yasuhiro; Asai, Yuji

    2008-08-01

    In this study, we propose a simple hopping mechanism using the vibration of a two-degree-of-freedom system for a wheel-based stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in the springs and quickly travels using wheels mounted in its lower body. The trajectories of the bodies during hopping change in accordance with the design parameters, such as the reduced mass of the two bodies, the mass ratio between the upper and lower bodies, the spring constant, the control parameters such as the initial contraction of the spring and the wire tension. This property allows the robot to quickly and economically climb up and down stairs, leap over obstacles, and landing softly without complex control. In this paper, the characteristics of hopping motion for the design and control parameters are clarified by both numerical simulations and experiments. Furthermore, using the robot design based on the results the abilities to hop up and down a step, leap over a cable, and land softly are demonstrated.

  16. Classical Mechanics Experiments using Wiimotes

    NASA Astrophysics Data System (ADS)

    Lopez, Alexander; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console, is a very popular device. Although computationally it is not a powerful machine by today's standards, to a physics educator the controllers are its most important components. The Wiimote (or remote) controller contains a three-axis accelerometer, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC or Laptop with Bluetooth capability can detect the information sent out by the Wiimote. We present experiments that use two or three Wiimotes simultaneously to measure the variable accelerations in two mass systems interacting via springs. Normal modes are determined from the data obtained. Masses and spring constants are varied to analyze their impact on the accelerations of the systems. We present the results of our experiments and compare them with those predicted using Lagrangian mechanics. )

  17. A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya

    2010-05-01

    In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.

  18. Proposal for an astronaut mass measurement device for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Beyer, Neil; Lomme, Jon; Mccollough, Holly; Price, Bradford; Weber, Heidi

    1994-01-01

    For medical reasons, astronauts in space need to have their mass measured. Currently, this measurement is performed using a mass-spring system. The current system is large, inaccurate, and uncomfortable for the astronauts. NASA is looking for new, different, and preferably better ways to perform this measurement process. After careful analysis our design team decided on a linear acceleration process. Within the process, four possible concept variants are put forth. Among these four variants, one is suggested over the others. The variant suggested is that of a motor-winch system to linearly accelerate the astronaut. From acceleration and force measurements of the process combined Newton's second law, the mass of an astronaut can be calculated.

  19. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  20. Modelling a Simple Mechanical System.

    ERIC Educational Resources Information Center

    Morland, Tim

    1999-01-01

    Provides an example of the modeling power of Mathematics, demonstrated in a piece of A-Level student coursework which was undertaken as part of the MEI Structured Mathematics scheme. A system of two masses and two springs oscillating in one dimension is found to be accurately modeled by a system of linear differential equations. (Author/ASK)

  1. Quantifying non-linear dynamics of mass-springs in series oscillators via asymptotic approach

    NASA Astrophysics Data System (ADS)

    Starosta, Roman; Sypniewska-Kamińska, Grażyna; Awrejcewicz, Jan

    2017-05-01

    Dynamical regular response of an oscillator with two serially connected springs with nonlinear characteristics of cubic type and governed by a set of differential-algebraic equations (DAEs) is studied. The classical approach of the multiple scales method (MSM) in time domain has been employed and appropriately modified to solve the governing DAEs of two systems, i.e. with one- and two degrees-of-freedom. The approximate analytical solutions have been verified by numerical simulations.

  2. Nonlinear Phononic Periodic Structures and Granular Crystals

    DTIC Science & Technology

    2012-02-10

    nonlinear mass-spring lattices by E. Fermi, J. Pasta , and S. Ulam in 1955 [27], there has been a wealth of interest in the dynamics of nonlinear...lattices. Using one of the first modern computers, Fermi, Pasta , and Ulam (FPU) studied a system where the restoring (spring) force between two adjacent...graphene ribbons. Applied Physics Letters, 2009. 95(3). 27. M. Porter, N.Z., B. Hu, and D. Campell, Fermi, Pasta , Ulam and the birth of experimental

  3. Chemostatic behavior of major ions and contaminants in a semiarid spring and stream system near Los Alamos, NM, USA

    DOE PAGES

    Koger, Jace M.; Newman, Brent D.; Goering, Tim J.

    2018-04-19

    Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behavior). Chemostatic behavior is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of three springs and a stream near Los Alamos, New Mexico, USA, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro-1,3,5- trinitro-1,3,5-triazine) can alsomore » behave chemostatically. The chemostatic behavior of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reductionoxidation) and biogeochemically sensitive analytes (e.g., Fe, SO 4, & NO 3) display a combination of chemostatic and chemodynamic behavior, showing the influence of temporally variable conditions on stream and springs chemistries.« less

  4. Chemostatic behavior of major ions and contaminants in a semiarid spring and stream system near Los Alamos, NM, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, Jace M.; Newman, Brent D.; Goering, Tim J.

    Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behavior). Chemostatic behavior is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of three springs and a stream near Los Alamos, New Mexico, USA, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro-1,3,5- trinitro-1,3,5-triazine) can alsomore » behave chemostatically. The chemostatic behavior of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reductionoxidation) and biogeochemically sensitive analytes (e.g., Fe, SO 4, & NO 3) display a combination of chemostatic and chemodynamic behavior, showing the influence of temporally variable conditions on stream and springs chemistries.« less

  5. Vibration computer programs E13101, E13102, E13104, and E13112 and application to the NERVA program. Project 187: Methodology documentation

    NASA Technical Reports Server (NTRS)

    Mironenko, G.

    1972-01-01

    Programs for the analyses of the free or forced, undamped vibrations of one or two elastically-coupled lumped parameter teams are presented. Bearing nonlinearities, casing and rotor distributed mass and elasticity, rotor imbalance, forcing functions, gyroscopic moments, rotary inertia, and shear and flexural deformations are all included in the system dynamics analysis. All bearings have nonlinear load displacement characteristics, the solution is achieved by iteration. Rotor imbalances allowed by such considerations as pilot tolerances and runouts as well as bearing clearances (allowing concail or cylindrical whirl) determine the forcing function magnitudes. The computer programs first obtain a solution wherein the bearings are treated as linear springs of given spring rates. Then, based upon the computed bearing reactions, new spring rates are predicted and another solution of the modified system is made. The iteration is continued until the changes to bearing spring rates and bearing reactions become negligibly small.

  6. Equivalent Mass of a Coil Spring.

    ERIC Educational Resources Information Center

    Ruby, Lawrence

    2000-01-01

    Finds that first-year college students can understand in detail the origin of the equivalent mass. Provides both a simple calculation derivation of this result as well as a noncalculus derivation. Argues that for every soft spring, the equivalent mass should be somewhere between m0/3 and m0/2. (CCM)

  7. The Center of Mass of a Soft Spring

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    This article uses calculus to find the center of mass of a soft, vertically suspended, cylindrical helical spring, which necessarily is stretched non-uniformly by the action of gravity. A general expression for the vertical position of the center of mass is obtained and compared with other results in the literature.

  8. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    NASA Astrophysics Data System (ADS)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  9. Non-resonant energy harvester with elastic constraints for low rotating frequencies

    NASA Astrophysics Data System (ADS)

    Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.

    2017-11-01

    This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.

  10. Simulation and Characterisation of Planar Spring Based on PCB-FR4 in Electromechanical System for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Fuadah, A. N.; Maulanisa, N. F.; Ismardi, A.; Sugandi, G.

    2017-05-01

    This paper presents comparison study of simulation and fabrication characterized two type planar springs at micro-fabricated electromagnetic power generator for an ambient vibration energy harvesting system. The power generator utilized a LASER-machined FR4-PCB planar spring, a copper coil, and NdFeB magnet. In order to change resonant frequency, we developed a gimbal suspension structure for the fabrication of spring. The NdFeB permanent magnet was applied as inertial mass. The system was specially designed to harvest low ambient vibrations from 20 to several hundred hertz and low acceleration. The dimension of fabricated energy harvester had 2.5 x 2.5 cm2 in size. In this study we present two different design of cantilever, which is has two and four cantilever, respectively. The different designed given different resonance frequency to the system. The result of simulation giving resonance frequency of two cantilever membrane 22.6 Hz and four cantilever membrane 110.3 Hz. The measurements result has generated 0.135 V with resonance frequency 39 Hz of two cantilever membrane appropriate for human motions, four cantilever membrane has generated 0.174 V with resonance frequency106 Hz appropriate for machine industries.

  11. Human hopping on damped surfaces: strategies for adjusting leg mechanics.

    PubMed

    Moritz, Chet T; Farley, Claire T

    2003-08-22

    Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain.

  12. Human hopping on damped surfaces: strategies for adjusting leg mechanics.

    PubMed Central

    Moritz, Chet T; Farley, Claire T

    2003-01-01

    Fast-moving legged animals bounce along the ground with spring-like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring-like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24-fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg-surface combination regardless of surface damping, hoppers also conserved centre-of-mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring-like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring-like mechanics of the leg-surface combination may be an important control strategy for fast-legged locomotion on variable terrain. PMID:12965003

  13. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  14. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  15. Zero and root loci of disturbed spring–mass systems

    PubMed Central

    Lecomte, Christophe

    2014-01-01

    Models consisting of chains of particles that are coupled to their neighbours appear in many applications in physics or engineering, such as in the study of dynamics of mono-atomic and multi-atomic lattices, the resonances of crystals with impurities and the response of damaged bladed discs. Analytical properties of the dynamic responses of such disturbed chains of identical springs and masses are presented, including when damping is present. Several remarkable properties in the location of the resonances (poles) and anti-resonances (zeros) of the displacements in the frequency domain are presented and proved. In particular, it is shown that there exists an elliptical region in the frequency–disturbance magnitude plane from which zeros are excluded and the discrete values of the frequency and disturbance at which double poles occur are identified. A particular focus is on a local disturbance, such as when a spring or damper is modified at or between the first and last masses. It is demonstrated how, notably through normalization, the techniques and results of the paper apply to a broad category of more complex systems in physics, chemistry and engineering. PMID:24711724

  16. Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer

    NASA Astrophysics Data System (ADS)

    Moore, Paul J.; Martin, Jonathan B.; Screaton, Elizabeth J.

    2009-10-01

    SummaryInformation about sources of recharge, distributions of flow paths, and the extent of water-rock reactions in karst aquifers commonly result from monitoring spring chemistry and discharge. To investigate the relationship between spring characteristics and the complexities of karst aquifers, we couple variations in surface- and groundwater chemistry to physical conditions including river stage, precipitation, and evapotranspiration (ET) within a sink-rise system through a 6-km portion of the Upper Floridan aquifer (UFA) in north-central Florida. Principal component analysis (PCA) of time series major-element compositions suggests that at least three sources of water affect spring discharge, including allogenic recharge into a swallet, diffuse recharge through a thin vadose zone, and water upwelling from deep within the aquifer. The deep-water source exerts the strongest influence on water chemistry by providing a majority of Na +, Mg 2+, K +, Cl -, and SO42- to the system. Anomalously high temperature at one of several monitoring wells reflects vertical flow of about 1 m/year. Mass-balance calculations suggest diffuse recharge and deep-water upwelling can provide up to 50% of the spring discharge; however, their contributions depend on head gradients between the conduit and surrounding aquifer matrix, which are influenced by variations in precipitation, ET, and river stage. Our results indicate that upwelling from deep flow paths may provide significant contributions of water to spring discharge, and that monitoring only springs limits interpretations of karst systems by masking critical components of the aquifer, such as water sources and flow paths. These results also suggest the matrix in eogenetic aquifers is a major pathway for flow even in a system dominated by conduits.

  17. Frequency Tuning of Vibration Absorber Using Topology Optimization

    NASA Astrophysics Data System (ADS)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  18. Lipid reserves of Lesser Scaup (Aythya affinis) migrating across a large landscape are consistent with the "Spring Condition" hypothesis

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2009-01-01

    The “spring condition” hypothesis (SCH) states that nutrition during spring migration affects survival, reproductive success, and, ultimately, population size of migratory birds. The North American population of Lesser Scaup (Aythya affinis) has experienced a marked decline, apparently because of poor recruitment. An important prediction of the SCH is that female Lesser Scaup have low lipid reserves during spring migration. We previously reported that lipid reserves and body mass of females collected on migratory stopover areas in northwestern Minnesota in springs 2000–2001 were lower than those on the same areas in the 1980s and markedly lower than those collected at Pool 19 of the Mississippi River in 2000–2001, an important preceding stopover area. However, it was unclear whether these findings represented a site-specific result or a landscape-scale phenomenon. Accordingly, we examined lipid and body mass of 641 female Lesser Scaup migrating across seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during springs 2003–2005. We found that lipids and body mass of females throughout the Upper Midwest were similar to or less than the low values documented in northwestern Minnesota in springs 2000–2001 and markedly lower than those of females at Pool 19 in springs 2000–2001. Accordingly, our results are consistent with a prediction of the SCH, because lipid and body mass of females are low throughout this large landscape, lower than at an important preceding stopover area, and lower than all historical values. Finally, our results suggest the potential for cross-seasonal influences of nutrition on recruitment and that a stronger management focus on spring migration habitats may be necessary for conservation and recovery of declining migratory birds, especially Lesser Scaup.

  19. Noble Gas Signatures in Groundwater and Rainwater on the Island of Maui, Hawaii - Developing a New Noble Gas Application in Fractured, Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Castro, M. C.; Niu, Y.; Warrier, R. B.; Hall, C. M.; Gingerich, S. B.; Scholl, M. A.; Bouvier, L.

    2014-12-01

    Recent work in the Galapagos Islands suggests that noble gas temperatures (NGTs) in fractured groundwater systems reflect the temperature of the ground surface at the time of infiltration rather than the mean annual air temperature (MAAT) value as commonly assumed in sedimentary systems where NGTs are typically used as indicators of past climate. This suggests that noble gases in fractured areas may record seasonality, and thus, provide information about timing of recharge in addition to location. Calculation of NGTs assumes that rain-derived recharge at the water table is in equilibrium with ground air. Lack of noble gas equilibration with respect to surface conditions, however, was observed in high-altitude springs in the Galapagos Islands and in a rainwater pilot study in Michigan, supporting the NGT seasonality hypothesis. Developing this new NGT application will lead to a better understanding of fractured groundwater flow systems and will contribute to improved water resource management plans. This study, carried out on Maui, Hawaii, is meant to test these hypotheses while improving knowledge of this island's groundwater flow system where limited hydrologic data are available. Here, we present the first results of noble gas analyses from samples collected in springs, groundwater wells and rainwater on northeast Maui. Results show that like most Michigan rainwater samples, rainwater from Maui is in disequilibrium with surface conditions and follows a mass-dependent pattern. Spring samples follow a similar pattern to that of rainwater and suggest that spring water originates directly from rainfall. These findings further support the hypothesis of NGT seasonality. However, while the atmospheric composition of noble gases points to direct supply from rainfall to spring aquifer systems, a direct connection between spring water and deeper aquifer levels or the mantle is apparent from He isotopic ratios which display an almost pure He mantle component in some springs.

  20. Application of peer instruction in the laboratory task of measuring the effective mass of a spring

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Ling; Hou, Zhen-Yu; Si, Yu-Chang; Wen, Xiao-Qing; Tang, Lei

    2017-11-01

    Peer instruction (PI) is an effective interactive approach to teaching and learning that has principally been used to modify the experience of learning in traditional physics lecture settings. This article further illustrates how the concept of PI can be effectively applied in the physics student laboratory setting. The setting used is a laboratory task that calls for the measurement of the effective mass of the spring of a Jolly balance. Through PI the students gain a better understanding of what is meant by the construct ‘effective mass of a spring’, and thereby competently work out how the mass, shape, wire diameter, and number of turns of the spring can all affect the effective mass of the spring. Furthermore, using stopwatches the students were also able to appreciate how recorded times at the equilibrium position had greater uncertainty than measurements made at the maximum displacement. This led to their calculations of the effective mass of the spring being impressively close to the theoretical value. Such laboratory tasks are extremely challenging to introductory level students and the success attained by the students in this study indicates that there is much potential in the application of PI in laboratory settings. PI should be used to teach in the laboratory and results should be reported in order for our community to build on these experiences. This article is a contribution to that effort.

  1. Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance

    NASA Astrophysics Data System (ADS)

    Farlin, J.; Drouet, L.; Gallé, T.; Pittois, D.; Bayerle, M.; Braun, C.; Maloszewski, P.; Vanderborght, J.; Elsner, M.; Kies, A.

    2013-06-01

    A simple method to delineate the recharge areas of a series of springs draining a fractured aquifer is presented. Instead of solving the flow and transport equations, the delineation is reformulated as a mass balance problem assigning arable land in proportion to the pesticide mass discharged annually in a spring at minimum total transport cost. The approach was applied to the Luxembourg Sandstone, a fractured-rock aquifer supplying half of the drinking water for Luxembourg, using the herbicide atrazine. Predictions of the recharge areas were most robust in situations of strong competition by neighbouring springs while the catchment boundaries for isolated springs were extremely sensitive to the parameter controlling flow direction. Validation using a different pesticide showed the best agreement with the simplest model used, whereas using historical crop-rotation data and spatially distributed soil-leaching data did not improve predictions. The whole approach presents the advantage of integrating objectively information on land use and pesticide concentration in spring water into the delineation of groundwater recharge zones in a fractured-rock aquifer.

  2. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.

    PubMed

    Li, G; Hu, H; Wu, K; Wang, G; Wang, L J

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  3. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage

    NASA Astrophysics Data System (ADS)

    Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  4. Understanding Resonance Graphs Using Easy Java Simulations (EJS) and Why We Use EJS

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel

    2015-01-01

    This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of…

  5. Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone

    NASA Astrophysics Data System (ADS)

    Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.

    2017-10-01

    The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and natural frequencies of the system are slightly different. The frequency of the beat is just the difference of the natural and driving frequencies. Beats are very familiar in acoustic systems. There are several works in this journal on visualizing the beats in acoustic systems. For instance, the microphone and the speaker of two mobile devices were used in previous work to analyze the acoustic beats produced by two signals of close frequencies. The formation of beats can also be visualized in mechanical systems, such as a mass-spring system or a double-driven string. Here, the mechanical beats in a smartphone-spring system are directly visualized in a simple way. The frequency of the beats is measured by means of the acceleration sensor of a smartphone, which hangs from a spring attached to a mechanical driver. This laboratory experiment is suitable for both high school and first-year university physics courses.

  6. Selected Micropollutants as Indicators in a Karst Catchment

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Schiperski, Ferry; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    High flow dynamics and variations in water quality are typical for karst springs and reflect the complex interaction of different flow and storage components within a karst system. Event-based monitoring of mobile micropollutants in spring water combined with information on their input is used (1) to quantify the impact of certain contamination scenarios on spring water quality and (2) to gain additional information on the intrinsic characteristics of a karst system. We employ the artificial sweeteners acesulfame and cyclamate as source specific indicators for sewage along with the herbicides atrazine and isoproturon for agriculture. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (SDB, combined sewer system) are known to impact water quality. Most of the sewer system is situated in the SW of the catchment. Most agricultural land is found in the NE. Neither atrazine nor significant amounts of isoproturon were detected in wastewater. Concentrations and mass fluxes of acesulfame and cyclamate in wastewater were determined. The combined evaluation of the persistent compound acesulfame with the rather degradable cyclamate allows for the distinction of long and short transit times and thus slow and fast flow components. The same applies for atrazine (persistent) and isoproturon (degradable). In Germany, acesulfame was licensed in 1990, atrazine was banned shortly after, in 1991. During low flow conditions only atrazine (max. 4 ng/L) and acesulfame (max. 20 ng/L) were detected in spring water. After a recharge event without SDB overflow concentrations as well as mass fluxes of both compounds decreased, reflecting an increasing portion of event water in spring discharge. A breakthrough of isoproturon (max. 9 ng/L) indicated the arrival of water from croplands. After a recharge event accompanied by a SDB overflow cyclamate was detected at max. 28 ng/L. Simultaneously, acesulfame concentrations show superposition of background dilution (old component) and a breakthrough (fresh component, max. 22 ng/L). 1-D-transport-modelling of the cyclamate breakthrough revealed results that are in good agreement with the results of other studies. Analyses of micropollutants might become very sensitive tools in karst hydrogeology where natural background concentrations and signal dampening are limiting factors for conventional investigation methods.

  7. Use of videos for students to see the effect of changing gravity on harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Worley, Alan; Davis, Shirley; Smith, Linda; Gell, Amber

    2010-03-01

    In introductory physics classes, students are introduced to harmonic oscillators such as masses on springs and the simple pendulum. In derivation of the equations describing these systems, the term ``g'' for the acceleration due to gravity cancels in the equation for the period of a mass oscillating on a spring, but it remains in the equation for the period of a pendulum. Frequently there is a homework problem asking how the system described would behave on the Moon, Mars, etc. Students have to have faith in the equations. In January, 2009, a team of community college faculty flew an experiment aboard an aircraft in conjunction with NASA's Microgravity University program. The experiment flown was a study in harmonic oscillator and pendulum behavior under various gravity situations. The aircraft simulated zero gravity, Martian, Lunar, and hypergravity conditions. The experiments were video recorded for students to study the behavior of the systems in varying gravity conditions. These videos are now available on the internet for anyone to use in introductory physics classes.

  8. The effect of muscle stiffness and damping on simulated impact force peaks during running.

    PubMed

    Nigg, B M; Liu, W

    1999-08-01

    It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.

  9. Influence of regional-scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan

    NASA Astrophysics Data System (ADS)

    Pochanart, Pakpong; Hirokawa, Jun; Kajii, Yoshizumi; Akimoto, Hajime; Nakao, Makoto

    1999-02-01

    Surface O3 and CO measurements were carried out at Oki, Japan during March 1994 to February 1996 in order to elucidate the processes determining temporal variations of O3 and CO in the northeast Asian Pacific rim region. The isentropic trajectory analysis was applied to sort out the influences of the air mass exchange under the Asian monsoon system and the regional-scale photochemical buildup of O3. The trajectories were categorized into five groups which cover background and regionally polluted air masses. The seasonal cycles of O3 and CO in the background continental air mass revealed spring maximum-summer minimum with averaged concentrations ranging from 32 and 120 ppb to 45 and 208 ppb, respectively. In contrast, O3 concentrations in the regionally polluted continental air mass ranged from 44 to 57 ppb and showed a winter minimum and a spring-summer-autumn broad maximum, which was characterized by photochemical O3 production due to anthropogenic activities in northeast Asia. CO concentrations in the same air mass showed a spring maximum of 271 ppb and a summer-autumn minimum of 180 ppb. The photochemical buildup of O3 resulting from anthropogenic activities in this region was estimated to be 21 ppb in summer, while its production was insignificant, an average 3 ppb, in winter. A comparison between data in northeast Asia and in Europe shows many similarities, supporting the contention that photochemical buildup of O3 from large-scale precursor emissions in both regions is very significant.

  10. Sliding contact on the interface of elastic body and rigid surface using a single block Burridge-Knopoff model

    NASA Astrophysics Data System (ADS)

    Amireghbali, A.; Coker, D.

    2018-01-01

    Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.

  11. Some properties of antivibration mounts used in building isolation

    NASA Astrophysics Data System (ADS)

    Mathers, C. D.; Walker, R.

    Comparative assessments were made of several different types of large antivibration mountings by using them to isolate a compact steel mass whose behavior closely approximates ideal (non-modal) behavior over the frequency range 0 to about 450 Hz. The mounts whose behavior deviated most from that of an ideal compliance were helical steel springs without inter-coil damping. Further laboratory investigations on much smaller springs showed that their modal behavior was not very dependent on loading, and that the performance of large mounts under a small fraction of their working load provided a resonable indication of their probable performance in normal use. The experiments also showed that the placing of a ribbed rubber mat or noise-stop pad under such a spring provided effective damping of only some modes, and that if ideal performance were to be approached, than some more effective form of coil damping would be required. The effects of friction were also demonstrated, indicating that special care was needed in the design and construction of isolation systems for use at low vibration levels. A simple mathematical model was set up which used a finite-element representation of the spring's distributed compliance and mass, but in which no account was taken of its detailed physical behavior. This model was sufficient to reproduce the general form of the measured isolation curves, and therefore to confirm that the behavior of the experimental setup was indeed due to spring modes.

  12. [Long-term dynamic of fecal corticosterone and its ecological and social correlates in males of great gerbil (Rhombomys opimus Licht.). Non-invasive approach in studies of stress in natural populations].

    PubMed

    Rogovin, K A; Tupikin, A A; Randall, J A; Kolosova, I E; Moshkin, M P

    2006-01-01

    The relationship between fecal corticosterone concentrations and characteristics of the environment and population demography were studied in adult male gerbils (Rhombomys opimus Licht.) at the southern border of Kyzylkum desert (Reserve "Ecocentre Dzeiran", Bukhara region, Republic Uzbekistan) in spring and fall seasons from 1999 to 2004. We extracted hormones from air-dried fecal samples and analyzed their concentrations by radioimmunoassay (Gerlinskaya et al., 1993). An analysis for year-specific relationships between hormone concentrations and environmental variables of temperature and precipitation using Pearson's r statistic revealed that corticosterone concentrations correlated positively with total precipitation in January and February and negatively with precipitation during March and April. There was also a significant negative relationship between fecal corticosterone and the number of hot days in March (>20 degrees C). Demographic variables that characterized population densities (percent of burrow systems occupied, mean and maximum number of burrow systems/1 ha, number of females in the burrow system) correlated positively with corticosterone concentrations in feces in the beginning of spring, but these relationships were small compared with mean concentrations of corticosterone for the entire spring season that were strongly and positively correlated with number of gerbils, including all pups emerged, in burrow systems owned by one male (within its home range). In contrast, correlation coefficients of corticosterone concentrations with characteristics of feeding resources in the spring were low and negative. In the long-term perspective (interannual comparison), mortality among adult males was highly negatively correlated with mean corticosterone concentrations in the beginning of spring, which is within the period of maximum reproductive effort and potential stress. Body mass was independent of corticosterone concentrations in males in either the beginning of spring, or during the whole spring. In the fall, mean concentrations of fecal corticosterone in males was positively correlated with the number of days from June to October with mean daily temperatures exceeding 30 degrees C, and with percent of burrow systems where at least one adult, > or = 1 year old gerbil had survived. Mortality from fall to spring of the next year and the fall body mass did not correlate with concentrations of corticosterone in feces collected in the fall. When we analyzed corticosterone concentrations in spring seasons of all years combined using a stepwise regression analysis of a sampling of individual males (we analyzed residuals after withdrawal of year effect) on a set of variables representing habitat resources, distances between nearest neighbor males, and variables representing group demography we found low R2 values not exceeding 0.17. Within the six-year period, concentrations of corticosterone in the spring related negatively with abundance of annual herbs and positively with number of females in a male's social group. When only years of high density were analyzed, fecal corticosterone concentrations in males in the spring were again negatively determined by abundance of herbs, as well as by the nearest neighbor distance, and positively determined by the number of females within a male's home range. At the beginning of spring the only determinants were distance to the nearest neighbor male and number of females. In years of low density none of the variables were found to affect corticosterone levels during the whole spring, while in the beginning of spring only partial regression coefficients of abundance of herbs were negative and significant. Stepwise logistic regression analysis revealed positive dependence (P = 0.05) of disappearance of adult males during summer drought on concentrations of fecal corticosterone in the spring, but only when burrow systems with at least one adult (male or female) surviving after the summer were considered. Our results provide evidence ground for the assumption that in a desert rodent with non-regular population fluctuations such as the great gerbil, density may be more suppressed by external factors and not by density dependent mortality mediated by stress. Density dependent increases of stress caused by intense reproductive effort occurred when feeding and climatic conditions were favorable to compensate for negative effects on survival. However, in individual gerbils mortality mediated by stress can take place because we found higher stress in the beginning of spring in males, which did not occur in the population after the summer drought.

  13. From Newton's Second Law to Huygens's Principle: Visualizing Waves in a Large Array of Masses Joined by Springs

    ERIC Educational Resources Information Center

    Dolinko, A. E.

    2009-01-01

    By simulating the dynamics of a bidimensional array of springs and masses, the propagation of conveniently generated waves is visualized. The simulation is exclusively based on Newton's second law and was made to provide insight into the physics of wave propagation. By controlling parameters such as the magnitude of the mass and the elastic…

  14. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.

    PubMed

    Harne, Ryan L

    2012-07-01

    Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.

  15. Increase in transmission loss of a double panel system by addition of mass inclusions to a poro-elastic layer: A comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Idrisi, Kamal; Johnson, Marty E.; Toso, Alessandro; Carneal, James P.

    2009-06-01

    This paper is concerned with the modeling and optimization of heterogeneous (HG) blankets, which are used in this investigation to reduce the sound transmission through double panel systems. HG blankets consist of poro-elastic media with small embedded masses, which act similarly to a distributed mass-spring-damper-system. HG blankets have shown significant potential to reduce low frequency radiated sound from structures, where traditional poro-elastic materials have little effect. A mathematical model of a double panel system with an acoustic cavity and HG blanket was developed using impedance and mobility methods. The predicted responses of the source and the receiving panel due to a point force are validated with experimental measurements. The presented results indicate that proper tuning of the HG blankets can result in broadband noise reduction below 500 Hz with less than 10% added mass.

  16. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    NASA Astrophysics Data System (ADS)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  17. Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    NASA Astrophysics Data System (ADS)

    Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan

    2017-12-01

    Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.

  18. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  19. Use of dye tracing to determine ground-water movement to Mammoth Crystal Springs, Sylvan Pass area, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Spangler, Lawrence E.; Susong, David D.

    2006-01-01

    At the request of and in cooperation with the Geology Program at Yellowstone National Park, the U.S. Geological Survey conducted a hydrologic investigation of the Sylvan Pass area in June 2005 to determine the relation between surface water and ground-water flow to Mammoth Crystal Springs. Results of a dye-tracing investigation indicate that streamflow lost into talus deposits on Sylvan Pass enters the ground-water system and moves to the southeast to discharge at Mammoth Crystal Springs. Ground-water travel times to the springs from a distance of 1.45 miles and a vertical relief of 500 feet were less than 1 day, indicating apparent rates of movement of at least 8,000 feet per day, values that are similar to those in karst aquifers. Peak dye concentrations were reached about 2 days after dye injection, and transit time of most of the dye mass through the system was about 3 weeks. High permeability and rapid travel times within this aquifer also are indicated by the large variation in springflow in response to snowmelt runoff and precipitation, and by the high concentration of suspended sediment (turbidity) in the water discharging into the spring-fed lake.

  20. Almost-dispersionless pulse transport in long quasiuniform spring-mass chains: A different kind of Newton's cradle

    NASA Astrophysics Data System (ADS)

    Vaia, Ruggero

    2018-04-01

    Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain of arbitrary length can be induced by suitably modifying two masses and their spring's elastic constant at both extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can continue back and forth again for several times before dispersion cleared the effect. The underlying coherence mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing. This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.

  1. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  2. Computational methods for the control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Cliff, E. M.; Powers, R. K.

    1985-01-01

    It is shown that care must be taken to ensure that finite dimensional approximations of distributed parameter systems preserve important system properties (i.e., controllability, observability, stabilizability, detectability, etc.). It is noted that, if the particular scheme used to construct the finite dimensional model does not take into account these system properties, the model may not be suitable for control design and analysis. These ideas are illustrated by a simple example, i.e., a cable-spring-mass system.

  3. Real-time, interactive animation of deformable two- and three-dimensional objects

    DOEpatents

    Desbrun, Mathieu; Schroeder, Peter; Meyer, Mark; Barr, Alan H.

    2003-06-03

    A method of updating in real-time the locations and velocities of mass points of a two- or three-dimensional object represented by a mass-spring system. A modified implicit Euler integration scheme is employed to determine the updated locations and velocities. In an optional post-integration step, the updated locations are corrected to preserve angular momentum. A processor readable medium and a network server each tangibly embodying the method are also provided. A system comprising a processor in combination with the medium, and a system comprising the server in combination with a client for accessing the server over a computer network, are also provided.

  4. Spring-Based Helmet System Support Prototype to Address Aircrew Neck Strain

    DTIC Science & Technology

    2014-06-01

    Helicopter Squadron stationed at CFB Borden ALSE Personnel Flight Engineers Pilots 4.6 Discussion of Verification Results 4.6.1 Reduce the mass on the...the participant in the pilot’s posture. Figure 8. A simulation of Flight Engineers’ postures during landing and low flying maneuvres. Figure 9

  5. Forest disturbance type differentially affects seasonal moose forage

    Treesearch

    R.A. Lautenschlager; Hewlette S. Crawford; Martin R. Stokes; Timothy L. Stone

    1997-01-01

    We examined the effects of forest disturbance on forage availability, moose (Alces alces) seasonal forage selection, and predicted in vivo digestibility in eastern Maine. Wet-mass estimates and dry-mass conversions of species consumed by 3 tamed moose were made throughout the year (late winter, early spring, late spring, summer, fall, early winter)...

  6. The Electrostatic Gavimeter: An Alternative Way of Measuring Gravitational Acceleration

    NASA Astrophysics Data System (ADS)

    Kashinski, David

    2005-03-01

    In the past, Earth’s gravitational acceleration g has been measured in many ways, including the use of a pendulum as well as other models involving the use of a mass and a spring. We have designed a new method incorporating a spring with a capacitor and a voltmeter. This capacitor model still uses a hanging mass on a spring, but alters the method of determining the change in position of the spring due to the gravitational acceleration. We relate the change in position to the potential difference across the capacitor needed to cause a discharge through parallel plates. By relating this voltage directly to the gravitaional acceleration,a new method of measuring g is obtained.

  7. Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Paulsen, Gale; Indyk, Stephen; Zacny, Kris

    2014-01-01

    A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.

  8. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  9. Towards thermal noise free optomechanics

    NASA Astrophysics Data System (ADS)

    Page, Michael A.; Zhao, Chunnong; Blair, David G.; Ju, Li; Ma, Yiqiu; Pan, Huang-Wei; Chao, Shiuh; Mitrofanov, Valery P.; Sadeghian, Hamed

    2016-11-01

    Thermal noise generally greatly exceeds quantum noise in optomechanical devices unless the mechanical frequency is very high or the thermodynamic temperature is very low. This paper addresses the design concept for a novel optomechanical device capable of ultrahigh quality factors in the audio frequency band with negligible thermal noise. The proposed system consists of a minimally supported millimeter scale pendulum mounted in a double end-mirror sloshing cavity that is topologically equivalent to a membrane-in-the-middle cavity. The radiation pressure inside the high-finesse cavity allows for high optical stiffness, cancellation of terms which lead to unwanted negative damping and suppression of quantum radiation pressure noise. We solve the optical spring dynamics of the system using the Hamiltonian, find the noise spectral density and show that stable optical trapping is possible. We also assess various loss mechanisms, one of the most important being the acceleration loss due to the optical spring. We show that practical devices, starting from a centre-of-mass pendulum frequency of 0.1 Hz, could achieve a maximum quality factor of (1014) with optical spring stiffened frequency 1-10 kHz. Small resonators of mass 1 ≤ft(μ \\right) g or less could achieve a Q-factor of (1011) at a frequency of 100 kHz. Applications for such devices include white light cavities for improvement of gravitational wave detectors, or sensors able to operate near the quantum limit.

  10. Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.; Zukovic, M.

    2017-10-01

    In this paper the dynamics of the nonlinear mass-in-mass system as the basic subsystem of the acoustic metamaterial is investigated. The excitation of the system is in the form of the Jacobi elliptic function. The corresponding model to this forcing is the mass-in-mass system with cubic nonlinearity of the Duffing type. Mathematical model of the motion is a system of two coupled strong nonlinear and nonhomogeneous second order differential equations. Particular solution to the system is obtained. The analytical solution of the problem is based on the simple and double integral of the cosine Jacobi function. In the paper the integrals are given in the form of series of trigonometric functions. These results are new one. After some modification the simplified solution in the first approximation is obtained. The result is convenient for discussion. Conditions for elimination of the motion of the mass 1 by connection of the nonlinear dynamic absorber (mass - spring system) are defined. In the consideration the effective mass ratio is introduced in the nonlinear mass-in-mass system. Negative effective mass ratio gives the absorption of vibrations with certain frequencies. The advantage of the nonlinear subunit in comparison to the linear one is that the frequency gap is significantly wider. Nevertheless, it has to be mentioned that the amplitude of vibration differs from zero for a small value. In the paper the analytical results are compared with numerical one and are in agreement.

  11. Transient hydrogeological controls on the chemistry of a seepage lake

    USGS Publications Warehouse

    Krabbenhoft, David P.; Webster, Katherine E.

    1995-01-01

    A solute mass balance method was used to estimate groundwater inflow and outflow rates for Nevins Lake, Michigan, a seepage lake in the upper peninsula that historically has shown extremely variable water chemistry compared with most other seepage lakes. A 4-year study (1989–1992) of the hydrology and geochemistry of Nevins Lake and its contiguous groundwater system revealed that changes in the mass of dissolved solutes are the result of annual hydraulic gradient reversals. A pronounced acidification of Nevins Lake from 1986 to 1988 was likely caused by drought-induced diminished groundwater inflow rates. In this study, dissolved calcium (the major cation in water of Nevins Lake, groundwater, and precipitation) was used for estimating mass flow rates. During the 1989–1992 period, Nevins Lake showed a reproducible annual cycle in calcium mass. Immediately following spring snowmelt and the resulting hydraulic gradient reversal, the mass of dissolved calcium in the lake increases rapidly, and then it decreases steadily throughout the summer and early fall, at which time the lake becomes hydraulically mounded and receives no groundwater inflow. Groundwater flow rates estimated by the solute mass balance method are sensitive to assumed solute concentrations in discharging groundwater. Pore water samples from the lake bed are shown to be more representative of water discharging to the lake than are samples from piezometers near the lake shore, but spatial and temporal variability in pore water chemistry must be considered. Stable isotope analyses (18O and 2H) of lake water, groundwater, and pore water samples show that water discharging to Nevins Lake in the spring is entirely recycled lake water, and no groundwater derived from terrestrial recharge reaches the lake. The conceptual model formulated during this study linking lake chemistry and the contiguous groundwater system and general groundwater flow patterns surrounding highly transient lake systems are likely transferable to other similar systems.

  12. Active vibration and balance system for closed cycle thermodynamic machines

    NASA Technical Reports Server (NTRS)

    Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor); Qiu, Songgang (Inventor)

    2004-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass. A method is also provided.

  13. An improved biomechanical model for simulating the strain of the hand-arm system under vibration stress.

    PubMed

    Fritz, M

    1991-01-01

    In order to define relationships between the vibration stress and the strain of the human hand-arm system a biomechanical model was developed. The four masses of the model representing the hand, the forearm and the upper arm were connected by dampers and springs in two perpendicular directions. Simulating muscle activity, damped torsion springs were included additionally. The motions of the model were described by a differential matrix equation which was solved by using a 'transfer matrix routine' as well as by numerical integration. Thus, functions with harmonic or transient time courses could be selected as an excitation. The simulated vibrations were compared with those of other hand-arm models. The forces and torques transmitted between the masses, and the energy dissipated by the dampers were computed for several combinations of exciter frequencies and accelerations. The dependence of torques upon excitation agreed fairly well with the behaviour of the arm muscles under vibration as described by various investigators. At frequencies above 100 Hz the energy was dissipated mainly by the dampers between the masses near to the exciter. Transferring this result to the hand-arm system it shows that at high frequencies energy is dissipated by the hand and its palmar tissues and this might be one cause for the incidence of vibration-induced white finger disease.

  14. A user's guide to the SUDAN computer program for determining the vibration modes of structural systems. Ph.D. Thesis - Case Western Reserve Univ., Jun. 1963

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Durling, B. J.

    1978-01-01

    The use of the SUDAN computer program for analyzing structural systems for their natural modes and frequencies of vibration is described. SUDAN is intended for structures which can be represented as an equivalent system of beam, spring, and rigid-body substructures. User-written constraint equations are used to analytically join the mass and stiffness matrices of the substructures to form the mass and stiffness matrices of the complete structure from which all the frequencies and modes of the system are determined. The SUDAN program can treat the case in which both the mass and stiffness matrices of the coupled system may be singular simultaneously. A general description of the FORTRAN IV program is given, the computer hardware and software specifications are indicated, and the input required by the program is described.

  15. Spring Defrosting of Mass-Movement Material at South High Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Southern hemisphere spring on Mars will begin this year around May 6, 2003. During the spring, the MOC operations team will be documenting changes as the seasonal carbon dioxide frost cap retreats southward. In preparation for this year's southern spring, the team has been examining images obtained during the last southern spring, which occurred in 2001.

    This pair of images shows gullies and associated scars formed by mass-movement down a slope in the south polar region. The first view, in mid-spring, was acquired in August 2001; it shows a terrain that is largely devoid of the frost that covered everything during winter. However, the aprons of debris from the mass-movements (landslides) are still frosted. By late spring, in the second picture (right), the frost on the aprons had finally sublimed away, and the debris was seen to be not much brighter than their surroundings. The second picture was taken in November 2001, about a week before the first day of summer.

    The fact that the aprons of debris retained frost in mid-spring, whereas the surrounding terrain did not, probably indicates that the debris underlying the frost has different thermal properties than the surroundings. The debris might be more coarse-grained (sand or gravel, perhaps), and remained cooler in the daytime than the surrounding, dust-mantled surfaces.

    The images are both illuminated from the bottom/lower right. North is toward the bottom, and the area imaged is located near 70.9oS, 339.3oW.

  16. A new Hysteretic Nonlinear Energy Sink (HNES)

    NASA Astrophysics Data System (ADS)

    Tsiatas, George C.; Charalampakis, Aristotelis E.

    2018-07-01

    The behavior of a new Hysteretic Nonlinear Energy Sink (HNES) coupled to a linear primary oscillator is investigated in shock mitigation. Apart from a small mass and a nonlinear elastic spring of the Duffing oscillator, the HNES is also comprised of a purely hysteretic and a linear elastic spring of potentially negative stiffness, connected in parallel. The Bouc-Wen model is used to describe the force produced by both the purely hysteretic and linear elastic springs. Coupling the primary oscillator with the HNES, three nonlinear equations of motion are derived in terms of the two displacements and the dimensionless hysteretic variable, which are integrated numerically using the analog equation method. The performance of the HNES is examined by quantifying the percentage of the initially induced energy in the primary system that is passively transferred and dissipated by the HNES. Remarkable results are achieved for a wide range of initial input energies. The great performance of the HNES is mostly evidenced when the linear spring stiffness takes on negative values.

  17. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements.

    PubMed

    Babbs, Charles F

    2015-12-01

    This study explores the hypothesis that the sharper, high frequency Korotkoff sounds come from resonant motion of the arterial wall, which begins after the artery transitions from a buckled state to an expanding state. The motions of one mass, two nonlinear springs, and one damper, driven by transmural pressure under the cuff, are used to model and compute the Korotkoff sounds according to principles of classical Newtonian physics. The natural resonance of this spring-mass-damper system provides a concise, yet rigorous, explanation for the origin of Korotkoff sounds. Fundamentally, wall stretching in expansion requires more force than wall bending in buckling. At cuff pressures between systolic and diastolic arterial pressure, audible vibrations (> 40 Hz) occur during early expansion of the artery wall beyond its zero pressure radius after the outward moving mass of tissue experiences sudden deceleration, caused by the discontinuity in stiffness between bucked and expanded states. The idealized spring-mass-damper model faithfully reproduces the time-domain waveforms of actual Korotkoff sounds in humans. Appearance of arterial sounds occurs at or just above the level of systolic pressure. Disappearance of arterial sounds occurs at or just above the level of diastolic pressure. Muffling of the sounds is explained by increased resistance of the artery to collapse, caused by downstream venous engorgement. A simple analytical model can define the physical origin of Korotkoff sounds, suggesting improved mechanical or electronic filters for their selective detection and confirming the disappearance of the Korotkoff sounds as the optimal diastolic end point. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  18. Considerations for the application of finite element beam modeling to vibration analysis of flight vehicle structures. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.

    1976-01-01

    The manner of representing a flight vehicle structure as an assembly of beam, spring, and rigid-body components for vibration analysis is described. The development is couched in terms of a substructures methodology which is based on the finite-element stiffness method. The particular manner of employing beam, spring, and rigid-body components to model such items as wing structures, external stores, pylons supporting engines or external stores, and sprung masses associated with launch vehicle fuel slosh is described by means of several simple qualitative examples. A detailed numerical example consisting of a tilt-rotor VTOL aircraft is included to provide a unified illustration of the procedure for representing a structure as an equivalent system of beams, springs, and rigid bodies, the manner of forming the substructure mass and stiffness matrices, and the mechanics of writing the equations of constraint which enforce deflection compatibility at the junctions of the substructures. Since many structures, or selected components of structures, can be represented in this manner for vibration analysis, the modeling concepts described and their application in the numerical example shown should prove generally useful to the dynamicist.

  19. Interannual (2009-2013) variability of winter-spring phytoplankton in the open South Adriatic Sea: Effects of deep convection and lateral advection

    NASA Astrophysics Data System (ADS)

    Ljubimir, Stijepo; Jasprica, Nenad; Čalić, Marijeta; Hrustić, Enis; Dupčić Radić, Iris; Car, Ana; Batistić, Mirna

    2017-07-01

    The South Adriatic (SA) is an entry point for water masses originating from the Ionian Sea (IS) and a place of dense water formation for the eastern Mediterranean deep circulation cell. Water masses, entering the SA in larger amount during the winter, show decadal variability explained by different circulating regimes (cyclonic and anticyclonic) in the IS, referred to as "Bimodal Oscillating System" (BiOS). Sampling station was situated in the South Adriatic Pit (SAP) with depth of 1200 m. Micro- and nano-phytoplankton abundances, community structure, chlorophyll a concentrations, physical and chemical properties are presented in the winter and spring months for five consecutive years (2009-2013) during different circulating regimes of BiOS. Vertical convective mixing was regularly observed in winter except in 2011 which had effect on nutrient availability and consequently on biomass of primary producers. Effect of strong vertical mixing in February 2012 resulted with exceptionally high phytoplankton abundance and chlorophyll a concentrations in March of 2012. Strong convective mixing resulted in higher diatom abundances, comparing to winter when mixing did not occur. No such bloom was observed during investigated spring.

  20. Passive vibration suppression using inerters for a multi-storey building structure

    NASA Astrophysics Data System (ADS)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon

    2016-09-01

    This paper investigates the use of inerters for vibration suppression of a multistorey building structure. The inerter was proposed as a two-terminal replacement for the mass element, with the property that the applied force is proportional to the relative acceleration across its terminals. It completes the force-current mechanical-electrical network analogy, providing the mechanical equivalent to a capacitor. Thus allows all passive mechanical impedances to be synthesised. The inerter has been used in Formula 1 racing cars and applications to various systems such as vehicle suspension have been identified. Several devices that incoporate inerter(s), as well as spring(s) and damper(s), have also been identified for vibration suppression of building structures. These include the tuned inerter damper (TID) and the tuned viscous mass damper (TVMD). In this paper, a three-storey building model with an absorber located at the bottom subjected to base excitation is studied. Four simple absorber layouts, in terms of how spring, damper and inerter components should be arranged, have been studied. In order to minimise the maximum relative displacement of the building, the optimum parameter values for each of the layouts have been obtained with respect to the inerter's size.

  1. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

    NASA Astrophysics Data System (ADS)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  2. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

    PubMed

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  3. International Congress NONLINEAR DYNAMICAL ANALYSIS 2007 dedicated to the 150th Anniversary of Academician A. M. Lyapunov

    DTIC Science & Technology

    2010-05-14

    and Coulomb friction. We consider a simple mass spring system submitted to an external force and constrained to remain in a half -space. The contact of... the mass with the boundary of the half -space is assumed to hold with Coulomb friction. The unilateral contact and Coulomb friction laws are strict...Lyapunov frequently discussed this problem with Henry Poincare (1854-1912) and George Darwin (1845 - 1912). They both considered the "pear-form" figure as

  4. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  5. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  6. Spatial and temporal distribution of imidacloprid in eastern hemlock

    Treesearch

    Richard M. Turcotte

    2007-01-01

    Enzyme-linked immunosorbent assay (ELISA) and gas chromatography/mass spectrometry (GC/MS) techniques were used to measure imidacloprid and metabolite concentrations in xylem fluid extracted from eastern hemlock (Tsuga canadensis) trees treated in the spring or fall with soil or trunk applications of the systemic insecticides Merit® 2F and...

  7. Demonstration of Double EIT Using Coupled Harmonic Oscillators and RLC Circuits

    ERIC Educational Resources Information Center

    Harden, Joshua; Joshi, Amitabh; Serna, Juan D.

    2011-01-01

    Single and double electromagnetically induced transparencies (EIT) in a medium, consisting of four-level atoms in the inverted-Y configuration, are discussed using mechanical and electrical analogies. A three-coupled spring-mass system subject to damping and driven by an external force is used to represent the four-level atom mechanically. The…

  8. Simple Examples of the Interpretation of Changes in Kinetic and Potential Energy under Galilean Transformations

    ERIC Educational Resources Information Center

    Ginsberg, Edw S.

    2018-01-01

    The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to…

  9. Experimental study of the oscillation of spheres in an acoustic levitator.

    PubMed

    Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C

    2014-10-01

    The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.

  10. Micromachined force-balance feedback accelerometer with optical displacement detection

    DOEpatents

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  11. River Intrusion in Karst Springs in Eogenetic Aquifers: Implications for Speleogenesis

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Gulley, J.; Screaton, E. J.

    2008-12-01

    Conceptual models of speleogenesis generally assume uni-directional transport in integrated conduit systems from discrete recharge points to discharge at karst springs. Estavelles, however, are karst springs that function intermittently as discrete recharge points when river stage rises more rapidly than local aquifer heads. As river water chemistry changes between baseflow and floods, estavelles should influence mass transport through (e.g. organic carbon, nutrients, and oxygen) and speleogenesis within karst systems. Estavelles are common in our study area in north-central Florida, particularly along the lower reaches of the Santa Fe River, where it flows across the unconfined karstic Floridan aquifer. River stage in this unconfined region can rise much faster than aquifer heads when large amounts of rain fall on the confined regions in its upper reaches. Backflooding into the estavelles during elevated river stage drives river water into the ground, causing some springs to reverse and other springs to recirculate large volumes of river water. Floodwaters originating in the confined region are highly undersaturated with respect to calcite, and thus river water transitions from slightly supersaturated to highly undersaturated with respect to calcite during flood events. As a result, conduits connected to estavelles are continuously enlarged as springs reverse or recirculate calcite-undersaturated river water. It has been suggested that currently flooded caves (i.e. karst conduits) associated with springs in Florida formed entirely underwater because speleothems, which are prevalent in flooded caves in the Yucatan and Bahamas, have not been observed by cave divers. Results of this study indicate that the absence of speleothems does not necessarily provide evidence of a continuous phreatic history for underwater caves. Instead speleothems that formed in caves while dry could have been dissolved by backflooding of estavelles with undersaturated water

  12. Free vibration investigation of nano mass sensor using differential transformation method

    NASA Astrophysics Data System (ADS)

    Zarepour, Misagh; Hosseini, S. Amirhosein; Ghadiri, Majid

    2017-03-01

    In the present study, transverse vibration of nano-cantilever beam with attached mass and two rotational and transverse springs at its end is studied. Resonance frequency of vibrating system is influenced by changing mass particle and stiffness coefficients. Euler-Bernoulli beam theory, nonlocal constitutive equations of Eringen, and Hamilton's principle are used to develop equations of motion. Differential transformation method (DTM) is applied to solve the governing equations of the nanobeam with attached mass particle. Accurate results with minimum mathematical calculation are the advantages of DTM. A detailed parametric study is conducted to investigate the influences of nonlocal parameter. The results can be used in designing of nanoelectromechanical systems. To verify the results, some comparisons are presented between differential transform method results and open literature to show the accuracy of this new approach.

  13. Experimenting with Inexpensive Plastic Springs

    ERIC Educational Resources Information Center

    Perez, Leander; Marques, Adriana; Sánchez, Iván

    2014-01-01

    Acommon undergraduate laboratory experience is the determination of the elastic constant of a spring, whether studying the elongation under a static load or studying the damped harmonic motion of the spring with a suspended mass. An alternative approach to this laboratory experience has been suggested by Menezes et al., aimed at studying the…

  14. Apparatus for Teaching Physics: Linearizing a Nonlinear Spring.

    ERIC Educational Resources Information Center

    Wagner, Glenn

    1995-01-01

    Describes a method to eliminate the nonlinearity from a spring that is used in experimental verification of Hooke's Law where students are asked to determine the force constant and the linear equation that describes the extension of the spring as a function of the mass placed on it. (JRH)

  15. Anharmonic dynamics of a mass O-spring oscillator

    NASA Astrophysics Data System (ADS)

    Filipponi, A.; Cavicchia, D. R.

    2011-07-01

    We investigate the dynamics of a one-dimensional oscillator made of a mass connected to a circular spring under uniaxial extension. The functional dependence of the elastic energy on the strain is obtained by solving the differential equations resulting from a variational formalism common to Euler's elastica problem. The calculated nonlinear force agrees with the experiment, confirming the anharmonic nature of the oscillator.

  16. Development of Computer-Based Experiment Set on Simple Harmonic Motion of Mass on Springs

    ERIC Educational Resources Information Center

    Musik, Panjit

    2017-01-01

    The development of computer-based experiment set has become necessary in teaching physics in schools so that students can learn from their real experiences. The purpose of this study is to create and to develop the computer-based experiment set on simple harmonic motion of mass on springs for teaching and learning physics. The average period of…

  17. Skyhook gravitational-wave detector

    NASA Astrophysics Data System (ADS)

    Braginskii, V. B.; Thorne, K. S.

    1985-08-01

    A new and more sensitive type of earth-orbiting gravitational wave detector, called a 'skyhook', which would operate in the 10-100 mHz band, is proposed. The skyhook would consist of two masses, one on each end of a long thin cable with a spring at its center. As it orbits the earth, the cable wold be stretched radially by the earth's tidal gravitational field. Gravitational waves would pull the masses apart and push them together in an oscillatory fashion. Their motion would be transmitted to the spring by the cable, and a sensor would monitor the spring's resulting motion.

  18. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  19. Parental investment in the chicken turtle (Deirochelys reticularia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.D.; Gibbons, J.W.; Greene, J.L.

    1983-01-01

    Eggs of the chicken turtle (Deirochelys reticularia) were collected in South Carolina from clutches laid in the spring and fall. Clutch size averaged 8.0 eggs (2 SE = 1.6; n = 15) and was weakly correlated with body size of the female. Wet mass of the clutch averaged 72.4 g (2 SE = 11.6, n = 15). There were no significant differences in clutch size or wet mass between spring and fall nesting seasons. Individual eggs laid in the fall (anti x = 10.7 g) were significantly larger than those laid in the spring (anti x = 8.5 g). Fifteenmore » eggs laid in the spring and incubated at 29/sup 0/ +- 2/sup 0/C averaged 152 d to hatching. Hatchling plastron length averaged 24.3 mm, and body wet mass was 6.7 g. Hatchlings (dry mass) contained 27.4% lipid, and the lipids remaining in the neonate at hatching represented 61% of the lipids originally present in the egg. The wet mass of a hatchling is highly correlated with wet mass of the egg. In contrast to clutch size, egg size had a strong positive relationship to body size. A morphological constraint, the width of the pelvic canal, is proposed as having an influence on this relationship. The negative relationship between an optimized egg size and clutch size was not evident, so current optimality models do not appear to be applicable to Deirochelys.« less

  20. Intermittent fasting during winter and spring affects body composition and reproduction of a migratory duck

    USGS Publications Warehouse

    Barboza, P.S.; Jorde, Dennis G.

    2002-01-01

    We compared food intake, body mass and body composition of male and female black ducks (Anas rubripes) during winter (January-March). Birds were fed the same complete diet ad libitum on consecutive days each week without fasting (control; nine male; nine female) or with either short fasts (2 day.week-1; nine male; nine female), or long fasts (4 day.week-1; eleven male; twelve female). We continued treatments through spring (March-May) to measure the effect of intermittent fasts on body mass and egg production. Daily food intake of fasted birds was up to four times that of unfasted birds. Weekly food intake of males was similar among treatments (364 g.kg-1.week-1) but fasted females consumed more than unfasted females in January (363 g.kg-1.week-1 vs. 225 g.kg-1.week-1). Although both sexes lost 10-14% body mass, fasted females lost less mass and lipid than unfasted females during winter. Total body nitrogen was conserved over winter in both sexes even though the heart and spleen lost mass while the reproductive tract and liver gained mass. Intermittent fasting increased liver, intestinal tissue and digesta mass of females but not of males. Fasting delayed egg production in spring but did not affect size, fertility or hatching of the clutch. Females on long fasts were still heavier than controls after laying eggs. Thus black ducks combine flexibility of food intake with plasticity of digestive tract, liver and adipose tissue when food supply is interrupted during winter. Females modulate body mass for survival and defer reproduction when food supply is interrupted in spring.

  1. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode.

    PubMed

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-09-30

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs.

  2. Physical basis of tap test as a quantitative imaging tool for composite structures on aircraft

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Barnard, Daniel J.; Peters, John J.; Dayal, Vinay

    2000-05-01

    Tap test is a simple but effective way for finding flaws in composite and honeycomb sandwich structures; it has been practiced in aircraft inspection for decades. The mechanics of tap test was extensively researched by P. Cawley et al., and several versions of instrumented tap test have emerged in recent years. This paper describes a quantitative study of the impact duration as a function of the mass, radius, velocity, and material property of the impactor. The impact response is compared to the predictions of Hertzian-type contact theory and a simple spring model. The electronically measured impact duration, τ, is used for generating images of the tapped region. Using the spring model, the images are converted into images of a spring constant, k, which is a measure of the local contact stiffness. The images of k, largely independent of tapper mass and impact velocity, reveal the size, shape and severity (cf. Percent stiffness reduction) of defects and damages, as well as the presence of substructures and the associated stiffness increase. The studies are carried out on a variety of real aircraft components and the results serve to guide the development of a fieldable tap test imaging system for aircraft inspection.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  3. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m $-$3) and spring (March–June) low(139.1 ng m $-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m $-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation atmore » both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.« less

  4. Measurement of the Mass of an Object Hanging from a Spring--Revisited

    ERIC Educational Resources Information Center

    Serafin, Kamil; Oracz, Joanna; Grzybowski, Marcin; Koperski, Maciej; Sznajder, Pawel; Zinkiewicz, Lukasz; Wasylczyk, Piotr

    2012-01-01

    In an open competition, students were to determine the mass of a metal cylinder hanging on a spring inside a transparent enclosure. With the time for experiments limited to 24 h due to the unexpectedly large number of participants, a few surprisingly accurate results were submitted, the best of them differing by no more than 0.5% from the true…

  5. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  6. Measurement of "g" Using a Magnetic Pendulum and a Smartphone Magnetometer

    ERIC Educational Resources Information Center

    Pili, Unofre; Violanda, Renante; Ceniza, Claude

    2018-01-01

    The internal sensors in smartphones for their advanced add-in functions have also paved the way for these gadgets becoming multifunctional tools in elementary experimental physics. For instance, the acceleration sensor has been used to analyze free-falling motion and to study the oscillations of a spring-mass system. The ambient light sensor on…

  7. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Gremaud, Vivian; Goldscheider, Nico; Savoy, Ludovic; Favre, Gérald; Masson, Henri

    2009-12-01

    The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system ‘Tsanfleuron-Sanetsch’ in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.

  8. A new device for collecting time-integrated water samples from springs and surface water bodies

    USGS Publications Warehouse

    Panno, S.V.; Krapac, I.G.; Keefer, D.A.

    1998-01-01

    A new device termed the 'seepage sampler' was developed to collect representative water samples from springs, streams, and other surface-water bodies. The sampler collects composite, time-integrated water samples over short (hours) or extended (weeks) periods without causing significant changes to the chemical composition of the samples. The water sample within the sampler remains at the ambient temperature of the water body and does not need to be cooled. Seepage samplers are inexpensive to construct and easy to use. A sampling program of numerous springs and/or streams can be designed at a relatively low cost through the use of these samplers. Transient solutes migrating through such flow systems, potentially unnoticed by periodic sampling, may be detected. In addition, the mass loading of solutes (e.g., agrichemicals) may be determined when seepage samplers are used in conjunction with discharge measurements.

  9. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  10. Experimental verification of a tuned inertial mass electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuta; Sugiura, Keita; Asai, Takehiko

    2018-03-01

    This research reports on the design and experimental verification of a tuned inertial mass electromagnetic trans- ducer (TIMET) for energy harvesting from vibrating large structures and structural vibration control devices. The TIMET consists of a permanent-magnetic synchronous motor (PMSM), a rotational mass, and a tuning spring. The PMSM and the rotational mass are connected to a ball screw mechanism so that the rotation of the PMSM is synchronized with the rotational mass. And the tuning spring interfaced to the shaft of the ball screw mechanism is connected to the vibrating structure. Thus, through this ball screw mechanism, transla- tional vibration motion of the structure is converted to rotational behavior and mechanical energy is absorbed as electrical energy by the PMSM. Moreover, the amplified equivalent inertial mass effect is obtained by rotating relatively small physical masses. Therefore, when the stiffness of the tuning spring is determined so that the inertial mass resonates with the natural frequency of the vibratory structure, the PMSM rotates more effectively. As a result, the generated energy by the PMSM can be increased. The authors design a prototype of the TIMET and carry out experiments using sine and sine seep waves to show the effectiveness of the tuned inertial mass mechanism. Also, an analytical model of the proposed device is developed using a curve fitting technique to simulate the behavior of the TIMET.

  11. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2012-01-01

    The strategies that humans use to control unsteady locomotion are not well understood. A "spring-mass" template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, "spring-mass" systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a "pogo stick" strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a "unicycle" strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.

  12. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    NASA Astrophysics Data System (ADS)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  13. Optical Spring Effect in Micro-Bubble Resonators and Its Application for the Effective Mass Measurement of Optomechanical Resonant Mode

    PubMed Central

    Chen, Zhenmin; Wu, Xiang; Liu, Liying; Xu, Lei

    2017-01-01

    In this work, we present a novel approach for obtaining the effective mass of mechanical vibration mode in micro-bubble resonators (MBRs). To be specific, the effective mass is deduced from the measurement of optical spring effect (OSE) in MBRs. This approach is demonstrated and applied to analyze the effective mass of hollow MBRs and liquid-filled MBRs, respectively. It is found that the liquid-filled MBRs has significantly stronger OSE and a less effective mass than hollow MBRs, both of the extraordinary behaviors can be beneficial for applications such as mass sensing. Larger OSE from higher order harmonics of the mechanical modes is also observed. Our work paves a way towards the developing of OSE-based high sensitive mass sensor in MBRs. PMID:28974004

  14. Design and Development of a Model to Simulate 0-G Treadmill Running Using the European Space Agency's Subject Loading System

    NASA Technical Reports Server (NTRS)

    Caldwell, E. C.; Cowley, M. S.; Scott-Pandorf, M. M.

    2010-01-01

    Develop a model that simulates a human running in 0 G using the European Space Agency s (ESA) Subject Loading System (SLS). The model provides ground reaction forces (GRF) based on speed and pull-down forces (PDF). DESIGN The theoretical basis for the Running Model was based on a simple spring-mass model. The dynamic properties of the spring-mass model express theoretical vertical GRF (GRFv) and shear GRF in the posterior-anterior direction (GRFsh) during running gait. ADAMs VIEW software was used to build the model, which has a pelvis, thigh segment, shank segment, and a spring foot (see Figure 1).the model s movement simulates the joint kinematics of a human running at Earth gravity with the aim of generating GRF data. DEVELOPMENT & VERIFICATION ESA provided parabolic flight data of subjects running while using the SLS, for further characterization of the model s GRF. Peak GRF data were fit to a linear regression line dependent on PDF and speed. Interpolation and extrapolation of the regression equation provided a theoretical data matrix, which is used to drive the model s motion equations. Verification of the model was conducted by running the model at 4 different speeds, with each speed accounting for 3 different PDF. The model s GRF data fell within a 1-standard-deviation boundary derived from the empirical ESA data. CONCLUSION The Running Model aids in conducting various simulations (potential scenarios include a fatigued runner or a powerful runner generating high loads at a fast cadence) to determine limitations for the T2 vibration isolation system (VIS) aboard the International Space Station. This model can predict how running with the ESA SLS affects the T2 VIS and may be used for other exercise analyses in the future.

  15. Recent progress of TAMA300

    NASA Astrophysics Data System (ADS)

    Arai, K.; TAMA Collaboration

    2008-07-01

    Current effort of the TAMA project is focused on establishment of the interferometer operation with a new vibration isolation system, called 'Seismic Attenuation System' (SAS). The SAS employs a multiple stage structure to realize soft spring for all of directions, as well as utilizes active control systems to stabilize mechanical resonances in the low frequency region below 1 Hz. The SASs were installed for four test masses, resulting in improvement of cavity length fluctuation below 150 Hz. We describe the structure of the SAS and its local active control system, and the status of the interferometer.

  16. Fabrication and Characterization of Planar Spring Based on FR4-PCB for Electrodynamics Vibration Energy Harvesting Application

    NASA Astrophysics Data System (ADS)

    Sugandi, Gandi; Mambu, Grace A.; Mulyadi, Dadang; Mulyana, Edi

    2017-07-01

    Planar spring as a mechanical resonator is very important in designing an electrodynamic vibration energy harvesting application (EVEH) to generate output power with high efficiency. Generally, component of the mechanical resonator is a cantilever beam that is designed using one cantilever with an inertial mass placed cantilever tip. In this study, a planar spring which has four arms cantilever beam was designed and fabricated using an extra-thin FR4-PCB material with a total thickness of 130 µm. There are four types of planar spring that were designed and fabricated in this research to produce resonant frequencies at about 30, 40, 50 and 60 Hz with 1 mm width cantilever arm and various length of 13.5, 11.2, 9.8 and 8.7 mm, respectively. FR4 resonator is fabricated using technology LASER-cutting in order to obtain results precisely. The resonant frequency generated by the mechanical resonator is characterized using vibrator system with certain acceleration. The resonant frequency of the planar spring was obtained at a frequency where the maximum induced voltage occurs. The resonant frequency generated by each type of planar spring was obtained at 24.81, 34.24, 40.2, and 46.8 Hz with three conditions of acceleration of 0.02, 0.06, and 0,1g (g=9.8 m/s2).

  17. A new phase of disordered phonons modelled by random matrices

    NASA Astrophysics Data System (ADS)

    Schmittner, Sebastian; Zirnbauer, Martin

    2015-03-01

    Starting from the clean harmonic crystal and not invoking two-level systems, we propose a model for phonons in a disordered solid. In this model the strength of mass and spring constant disorder can be increased separately. Both types of disorder are modelled by random matrices that couple the degrees of freedom locally. Treated in coherent potential approximation (CPA), the speed of sound decreases with increasing disorder until it reaches zero at finite disorder strength. There, a critical transition to a strong disorder phase occurs. In this novel phase, we find the density of states at zero energy in three dimensions to be finite, leading to a linear temperature dependence of the heat capacity, as observed experimentally for vitreous systems. For any disorder strength, our model is stable, i.e. masses and spring constants are positive, and there are no runaway dynamics. This is ensured by using appropriate probability distributions, inspired by Wishart ensembles, for the random matrices. The CPA self-consistency equations are derived in a very accessible way using planar diagrams. The talk focuses on the model and the results. The first author acknowledges financial support by the Deutsche Telekom Stiftung.

  18. Coupled Waves on a Periodically Supported Timoshenko Beam

    NASA Astrophysics Data System (ADS)

    HECKL, MARIA A.

    2002-05-01

    A mathematical model is presented for the propagation of structural waves on an infinitely long, periodically supported Timoshenko beam. The wave types that can exist on the beam are bending waves with displacements in the horizontal and vertical directions, compressional waves and torsional waves. These waves are affected by the periodic supports in two ways: their dispersion relation spectra show passing and stopping bands, and coupling of the different wave types tends to occur. The model in this paper could represent a railway track where the beam represents the rail and an appropriately chosen support type represents the pad/sleeper/ballast system of a railway track. Hamilton's principle is used to calculate the Green function matrix of the free Timoshenko beam without supports. The supports are incorporated into the model by combining the Green function matrix with the superposition principle. Bloch's theorem is applied to describe the periodicity of the supports. This leads to polynomials with several solutions for the Bloch wave number. These solutions are obtained numerically for different combinations of wave types. Two support types are examined in detail: mass supports and spring supports. More complex support types, such as mass/spring systems, can be incorporated easily into the model.

  19. Experimental feedback linearisation of a vibrating system with a non-smooth nonlinearity

    NASA Astrophysics Data System (ADS)

    Lisitano, D.; Jiffri, S.; Bonisoli, E.; Mottershead, J. E.

    2018-03-01

    Input-output partial feedback linearisation is demonstrated experimentally for the first time on a system with non-smooth nonlinearity, a laboratory three degrees of freedom lumped mass system with a piecewise-linear spring. The output degree of freedom is located away from the nonlinearity so that the partial feedback linearisation possesses nonlinear internal dynamics. The dynamic behaviour of the linearised part is specified by eigenvalue assignment and an investigation of the zero dynamics is carried out to confirm stability of the overall system. A tuned numerical model is developed for use in the controller and to produce numerical outputs for comparison with experimental closed-loop results. A new limitation of the feedback linearisation method is discovered in the case of lumped mass systems - that the input and output must share the same degrees of freedom.

  20. Thunderstorm, Texas Gulf Coast, USA

    NASA Image and Video Library

    1990-04-29

    This thunderstorm along the Texas Gulf Coast (29.0N, 95.0W), USA is seen as the trailing edge of a large cloud mass formed along the leading edge of a spring frontal system stretching northwest to southeast across the Texas Gulf Coast. This system brought extensive severe weather and flooding to parts of Texas and surrounding states. Muddy water discharging from coastal streams can be seen in the shallow Gulf of Mexico as far south as Lavaca Bay.

  1. An estimator for the standard deviation of a natural frequency. I.

    NASA Technical Reports Server (NTRS)

    Schiff, A. J.; Bogdanoff, J. L.

    1971-01-01

    A brief review of mean-square approximate systems is given. The case in which the masses are deterministic is considered first in the derivation of an estimator for the upper bound of the standard deviation of a natural frequency. Two examples presented include a two-degree-of-freedom system and a case in which the disorder in the springs is perfectly correlated. For purposes of comparison, a Monte Carlo simulation was done on a digital computer.

  2. 77 FR 49601 - Endangered and Threatened Wildlife and Plants; Endangered Status for Six West Texas Aquatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... very system (four restricted range. springs). Phantom Lake springsnail.... San Solomon Spring very rare in a very system (four restricted range. springs). diminutive amphipod......... San Solomon Spring... Solomon Spring system to include four different existing spring outflows: San Solomon Spring, Giffin...

  3. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    NASA Astrophysics Data System (ADS)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  4. A dynamic-based measurement of a spring constant with a smartphone light sensor

    NASA Astrophysics Data System (ADS)

    Pili, Unofre

    2018-05-01

    An accessible smartphone-based experimental set-up for measuring a spring constant is presented. Using the smartphone ambient light sensor as the motion timer that allows for the measurement of the period of oscillations of a vertical spring-mass oscillator we found the spring constant to be 27.3 +/- 0.2 N m-1. This measurement is in a satisfactory agreement with another experimental value, 26.7 +/- 0.1 N m-1, obtained via the traditional static method.

  5. Soft tissue modelling with conical springs.

    PubMed

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  6. Leg exoskeleton reduces the metabolic cost of human hopping.

    PubMed

    Grabowski, Alena M; Herr, Hugh M

    2009-09-01

    During bouncing gaits such as hopping and running, leg muscles generate force to enable elastic energy storage and return primarily from tendons and, thus, demand metabolic energy. In an effort to reduce metabolic demand, we designed two elastic leg exoskeletons that act in parallel with the wearer's legs; one exoskeleton consisted of a multiple leaf (MLE) and the other of a single leaf (SLE) set of fiberglass springs. We hypothesized that hoppers, hopping on both legs, would adjust their leg stiffness while wearing an exoskeleton so that the combination of the hopper and exoskeleton would behave as a linear spring-mass system with the same total stiffness as during normal hopping. We also hypothesized that decreased leg force generation while wearing an exoskeleton would reduce the metabolic power required for hopping. Nine subjects hopped in place at 2.0, 2.2, 2.4, and 2.6 Hz with and without an exoskeleton while we measured ground reaction forces, exoskeletal compression, and metabolic rates. While wearing an exoskeleton, hoppers adjusted their leg stiffness to maintain linear spring-mass mechanics and a total stiffness similar to normal hopping. Without accounting for the added weight of each exoskeleton, wearing the MLE reduced net metabolic power by an average of 6% and wearing the SLE reduced net metabolic power by an average of 24% compared with hopping normally at frequencies between 2.0 and 2.6 Hz. Thus, when hoppers used external parallel springs, they likely decreased the mechanical work performed by the legs and substantially reduced metabolic demand compared with hopping without wearing an exoskeleton.

  7. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, Edwin L.; Reid, Mark E.; Godt, Jonathan W.; DeGraff, Jerome V.; Gallegos, Alan J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material.

  8. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    PubMed

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. © 2011 IEEE

  9. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking

    PubMed Central

    Zelik, Karl E.; Collins, Steven H.; Adamczyk, Peter G.; Segal, Ava D.; Klute, Glenn K.; Morgenroth, David C.; Hahn, Michael E.; Orendurff, Michael S.; Czerniecki, Joseph M.; Kuo, Arthur D.

    2014-01-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the Controlled Energy Storage and Return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. PMID:21708509

  10. The hybrid mass-spring pendulum model of human leg swinging: stiffness in the control of cycle period.

    PubMed

    Obusek, J P; Holt, K G; Rosenstein, R M

    1995-07-01

    Human leg swinging is modeled as the harmonic motion of a hybrid mass-spring pendulum. The cycle period is determined by a gravitational component and an elastic component, which is provided by the attachment of a soft-tissue/muscular spring of variable stiffness. To confirm that the stiffness of the spring changes with alterations in the inertial properties of the oscillator and that stiffness is relevant for the control of cycle period, we conducted this study in which the simple pendulum equivalent length was experimentally manipulated by adding mass to the ankle of a comfortably swinging leg. Twenty-four young, healthy adults were videotaped as they swung their right leg under four conditions: no added mass and with masses of 2.27, 4.55, and 6.82kg added to the ankle. Strong, linear relationships between the acceleration and displacement of the swinging leg within subjects and conditions were found, confirming the motion's harmonic nature. Cycle period significantly increased with the added mass. However, the observed increases were not as large as would be predicted by the induced changes in the gravitational component alone. These differences were interpreted as being due to increases in the active muscular stiffness. Significant linear increases in the elastic component (and hence stiffness) were demonstrated with increases in the simple pendulum equivalent length in 20 of the individual subjects, with r2 values ranging between 0.89 and 0.99. Significant linear relationships were also demonstrated between the elastic and gravitational components in 22 subjects, with individual r2 values between 0.90 and 0.99.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Contact dynamics math model

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  12. Hysteresis in column systems

    NASA Astrophysics Data System (ADS)

    Ivanyi, P.; Ivanyi, A.

    2015-02-01

    In this paper one column of a telescopic construction of a bell tower is investigated. The hinges at the support of the column and at the connecting joint between the upper and lower columns are modelled with rotational springs. The characteristics of the springs are assumed to be non-linear and the hysteresis property of them is represented with the Preisach hysteresis model. The mass of the columns and the bell with the fly are concentrated to the top of the column. The tolling process is simulated with a cycling load. The elements of the column are considered completely rigid. The time iteration of the non-linear equations of the motion is evaluated by the Crank-Nicolson schema and the implemented non-linear hysteresis is handled by the fix-point technique. The numerical simulation of the dynamic system is carried out under different combination of soft, medium and hard hysteresis properties of hinges.

  13. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes in the magmatic input into the hydrothermal system could modify its degree of vaporization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation at NdR.

  14. A piecewise mass-spring-damper model of the human breast.

    PubMed

    Cai, Yiqing; Chen, Lihua; Yu, Winnie; Zhou, Jie; Wan, Frances; Suh, Minyoung; Chow, Daniel Hung-Kay

    2018-01-23

    Previous models to predict breast movement whilst performing physical activities have, erroneously, assumed uniform elasticity within the breast. Consequently, the predicted displacements have not yet been satisfactorily validated. In this study, real time motion capture of the natural vibrations of a breast that followed, after raising and allowing it to fall freely, revealed an obvious difference in the vibration characteristics above and below the static equilibrium position. This implied that the elastic and viscous damping properties of a breast could vary under extension or compression. Therefore, a new piecewise mass-spring-damper model of a breast was developed with theoretical equations to derive values for its spring constants and damping coefficients from free-falling breast experiments. The effective breast mass was estimated from the breast volume extracted from a 3D body scanned image. The derived spring constant (k a  = 73.5 N m -1 ) above the static equilibrium position was significantly smaller than that below it (k b  = 658 N m -1 ), whereas the respective damping coefficients were similar (c a  = 1.83 N s m -1 , c b  = 2.07 N s m -1 ). These values were used to predict the nipple displacement during bare-breasted running for validation. The predicted and experimental results had a 2.6% or less root-mean-square-error of the theoretical and experimental amplitudes, so the piecewise mass-spring-damper model and equations were considered to have been successfully validated. This provides a theoretical basis for further research into the dynamic, nonlinear viscoelastic properties of different breasts and the prediction of external forces for the necessary breast support during different sports activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A continuous-discrete approach for evaluation of natural frequencies and mode shapes of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman

    2016-09-01

    In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.

  16. Snowmelt hydrograph interpretation: Revealing watershed scale hydrologic characteristics of the Yellowstone volcanic plateau

    USGS Publications Warehouse

    Payton, Gardner W.; Susong, D.D.; Kip, Solomon D.; Heasler, H.

    2010-01-01

    Snowmelt hydrograph analysis and groundwater age dates of cool water springs on the Yellowstone volcanic plateau provide evidence of high volumes of groundwater circulation in watersheds comprised of quaternary Yellowstone volcanics. Ratios of maximum to minimum mean daily discharge and average recession indices are calculated for watersheds within and surrounding the Yellowstone volcanic plateau. A model for snowmelt recession is used to separate groundwater discharge from overland runoff, and compare groundwater systems. Hydrograph signal interpretation is corroborated with chlorofluorocarbon (CFC) and tritium concentrations in cool water springs on the Yellowstone volcanic plateau. Hydrograph parameters show a spatial pattern correlated with watershed geology. Watersheds comprised dominantly of quaternary Yellowstone volcanics are characterized by slow streamflow recession, low maximum to minimum flow ratios. Cool springs sampled within the Park contain CFC's and tritium and have apparent CFC age dates that range from about 50 years to modern. Watersheds comprised of quaternary Yellowstone volcanics have a large volume of active groundwater circulation. A large, advecting groundwater field would be the dominant mechanism for mass and energy transport in the shallow crust of the Yellowstone volcanic plateau, and thus control the Yellowstone hydrothermal system. ?? 2009 Elsevier B.V.

  17. Investigation of the /sup 234/U//sup 238/U disequilibrium in the natural waters of the Santa Fe River basin north-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briel, L.I.

    1976-01-01

    Typical surface water masses in the Santa Fe basin are characterized by a /sup 238/U concentration of 0.224 +- .014 ppB and a /sup 234/U//sup 238/U activity ratio of 1.081 +- .038. The Floridan aquifer in this area is represented by at least two distinct regimes of ground water. The effluent from the Poe Springs group has a nominal uranium concentration of 0.938 +- .014 ppB and an activity ratio of 0.900 +- .012, while the effluent from the Ichetucknee Springs group has a nominal uranium concentration of 0.558 +- .018 ppB and an activity ratio of 0.707 +- .022.more » The effluent from ten additional springs in the Santa Fe system can be represented by hypothetical mixtures of these two ground water regimes and a hypothetical surface water component, which may reflect the extent of local recharge to the aquifer in different parts of the basin.« less

  18. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  19. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.

    1996-04-01

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  20. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings of more than 240 sites. However, we found that many “systems” consisted of little more than a warm or hot well in the central part of a basin. Such “systems” were difficult to evaluate in terms of structural setting in areas lacking in geophysical data. Developed database for structural catalogue in a master spreadsheet. Data components include structural setting, primary fault orientation, presence or absence of Quaternary faulting, reservoir lithology, geothermometry, presence or absence of recent magmatism, and distinguishing blind systems from those that have surface expressions. Reviewed site locations for all 426 geothermal systems– Confirmed and/or relocated spring and geothermal sites based on imagery, maps, and other information for master database. Many systems were mislocated in the original database. In addition, some systems that included several separate springs spread over large areas were divided into two or more distinct systems. Further, all hot wells were assigned names based on their location to facilitate subsequent analyses. We catalogued systems into the following eight major groups, based on the dominant pattern of faulting (Figure 1): - Major normal fault segments (i.e., near displacement maxima). - Fault bends. - Fault terminations or tips. - Step‐overs or relay ramps in normal faults. - Fault intersections. - Accommodation zones (i.e., belts of intermeshing oppositely dipping normal faults), - Displacement transfer zones whereby strike‐slip faults terminate in arrays of normal faults. - Transtensional pull‐aparts. These settings form a hierarchal pattern with respect to fault complexity. - Major normal faults and fault bends are the simplest. - Fault terminations are typically more complex than mid‐segments, as faults commonly break up into multiple strands or horsetail near their ends. - A fault intersection is generally more complex, as it generally contains both multiple fault strands and can include discrete di...

  1. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  2. Vibration reduction of pulse tube cryocooler driven by single piston compressor

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Xu, Nana; Liang, Jingtao; Yang, Luwei

    2012-12-01

    The development of pulse tube coolers has progressed significantly during the past two decades. A single piston linear compressor is used to in order to reduce the size and mass of a high frequency pulse tube cryocooler. The pulse tube achieved a no-load temperature of 61 K and a cooling power of 1 W@80 K with an operating frequency of 80 Hz and an electrical input power of 50 W. By itself, the single piston compressor generates a large vibration, so a set of leaf springs with an additional mass is used to reduce the vibration. The equation relating the mass, the elasticity coefficient of leaf spring and the working frequency is obtained through an empirical fit of the experimental data. The vibration amplitude is reduced from 55 mm/s to lower than 5 mm/s by using a proper leaf spring. This paper demonstrates that a single piston compressor with vibration reduction provides a good choice for a PTC.

  3. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    PubMed

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  4. Inertial sensor and method of use

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The inertial sensor of the present invention utilizes a proof mass suspended from spring structures forming a nearly degenerate resonant structure into which a perturbation is introduced, causing a split in frequency of the two modes so that the mode shape become uniquely defined, and to the first order, remains orthogonal. The resonator is provided with a mass or inertia tensor with off-diagonal elements. These off-diagonal elements are large enough to change the mode shape of the two nearly degenerate modes from the original coordinate frame. The spring tensor is then provided with a compensating off-diagonal element, such that the mode shape is again defined in the original coordinate frame. The compensating off-diagonal element in the spring tensor is provided by a biasing voltage that softens certain elements in the spring tensor. Acceleration disturbs the compensation and the mode shape again changes from the original coordinate frame. By measuring the change in the mode shape, the acceleration is measured.

  5. Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality.

    PubMed

    Côté, Steeve D; Festa-Bianchet, Marco

    2001-04-01

    In temperate environments, early-born ungulates may enjoy a longer growth period before winter, and so attain a higher body mass and an increased probability of survival compared to late-born ones. We assessed the effects of maternal characteristics, forage quality and population density on kid birthdate, mass and survival in a population of marked mountain goats (Oreamnos americanus) in Alberta. The duration and timing of the birth season were similar in all years. Births were highly synchronised: 80% of kids were born within 2 weeks of the first birth. Maternal age, maternal social rank and density did not affect kid birthdate or mass. Previous breeding experience was not related to kid birthdate, but kids born to pluriparous mothers were heavier during summer than kids born to primiparous mothers. Male and female kids had similar mass and accumulated mass linearly during summer. Early-born kids were heavier than late-born kids. Faecal crude protein (FCP) in late spring and maternal mass were positively related to kid mass. Survival to weaning appeared higher for males (90%) than for females (78%), but survival to 1 year was 65% for both sexes. FCP in late spring, density, birthdate and mass did not affect kid survival to weaning in either sex. Survival to 1 year increased with FCP in late spring for females, but not for males. Survival to 1 year was independent of birthdate for both sexes, but heavy females survived better than light ones. Multiple logistic regression revealed a positive effect of mass on survival to 1 year when the sexes were pooled. Our results suggest that mountain goats are constrained to give birth in a short birth season synchronised with forage productivity.

  6. Ferguson rock slide buries California State Highway near Yosemite National Park

    USGS Publications Warehouse

    Harp, E.L.; Reid, M.E.; Godt, J.W.; DeGraff, J.V.; Gallegos, A.J.

    2008-01-01

    During spring 2006, talus from the toe area of a rock-block slide of about 800,000 m3 buried California State Highway 140, one of the main routes into heavily-visited Yosemite National Park, USA. Closure of the highway for 92 days caused business losses of about 4.8 million USD. The rock slide, composed of slate and phyllite, moved slowly downslope from April to June 2006, creating a fresh head scarp with 9-12 m of displacement. Movement of the main rock slide, a re-activation of an older slide, was triggered by an exceptionally wet spring 2006, following a very wet spring 2005. As of autumn 2006, most of the main slide appeared to be at rest, although rocks occasionally continued to fall from steep, fractured rock masses at the toe area of the slide. Future behavior of the slide is difficult to predict, but possible scenarios range from continued scattered rock fall to complete rapid failure of the entire mass. Although unlikely except under very destabilizing circumstances, a worst-case, rapid failure of the entire rock slide could extend across the Merced River, damming the river and creating a reservoir. As a temporary measure, traffic has been rerouted to the opposite side of the Merced River at about the same elevation as the buried section of Highway 140. A state-of-the-art monitoring system has been installed to detect movement in the steep talus slope, movement of the main slide mass, local strong ground motion from regional earthquakes, and sudden changes in stream levels, possibly indicating damming of the river by slide material. ?? 2008 Springer-Verlag.

  7. Geochemistry of spring water, southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Kimball, Briant A.

    1981-01-01

    The chemical quality of water in the southeastern Uinta Basin, Utah and Colorado, is important to the future development of the abundant oil-shale resources of the area. This report examines the observed changes in chemistry as water circulates in both shallow and deep ground-water systems. Mass-balance and mass- transfer calculations are used to define reactions that simulate the observed water chemistry in the mixed sandstone, siltstone, and carbonate lithology of the Green River Formation of Tertiary age.The mass-transfer calculations determine a reaction path particular to this system. The early dominance of calcite dissolution produces a calcium carbonate water. After calcite saturation, deeper circulation and further rock-water interaction cause the reprecipitation of calcite, the dissolution of dolomite and plagioclase, and the oxidation of pyrite; all combining to produce a calcium magnesium sodium bicarbonate sulfate water. The calculations suggest that silica concentrations are controlled by a kaolinite-Ca-montmorillonite phase boundary. Close agreement of mineral-saturation indices calculated by both an aqueous-equilibrium model and the mass-transfer model support the selection of reactions from the mass-transfer calculations.

  8. [Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China.

    PubMed

    Zha, Li; Xie, Meng Lin; Zhu, Min; Dou, Pan; Cheng, Qiu Bo; Wang, Xing Long; Yuan, Ji Chao; Kong, Fan Lei

    2016-03-01

    A field experiment was conducted to study the effects of planting pattern (ridge culture, flatten culture, furrow culture) and film mulching on the distribution of spring maize root system and their influence on the yield of spring maize in the hilly area of central Sichuan basin. The results showed that ridge and film mulching had great influence on root morphology and root distribution of maize. The root length, root surface area and root volume of film mulching was 42.3%, 50.0%, 57.4% higher than those of no film mulching at jointing stage. The film mulching significantly increased the dry mass of root in vertical and horizontal distribution, and increased the root allocation ratio in deeper soil layer (20-40 cm) and the allocation ratio of wide row (0-20 cm) in horizontal direction. The effects of planting pattern on root growth and root distribution differed by film mulching. With film mulching, the ridge culture significantly increased the root dry mass in each soil layer and enlarged the distribution percentage of wide row (20-40 cm) in horizontal direction, as well as the dry mass of root in horizontal distribution and the root allocation ratio of wide row. The root mass under film mulching was in the order of ridge culture>flatten culture>furrow culture. Without film mulching, the furrow culture significantly increased root dry mass of narrow row (0-40 cm), and the root mass under no film mulching was in the order of furrow culture > ridge culture >flatten culture. As for the spike characteristics and maize yield, the filming mulching mea-sures reduced the corn bald length while increased the spike length, grain number, 1000-grain mass and yield. The yield under film mulching was in the order of ridge culture>flatten culture> furrow culture, while it was furrow culture > flatten culture > ridge culture under no film mulching. The reason for yield increase under ridge culture with film mulching was that it increased root weight especially in deep soil, and promoted the root allocation ratio in deeper soil and wide row (20-40 cm) in horizontal direction. The ridge-furrow culture without film mulching was helpful to root growth and increased the maize yield.

  9. Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.

    PubMed

    Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai

    2008-03-15

    A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  10. BATS RECOVERING FROM WHITE-NOSE SYNDROME ELEVATE METABOLIC RATE DURING WING HEALING IN SPRING.

    PubMed

    Meierhofer, Melissa B; Johnson, Joseph S; Field, Kenneth A; Lumadue, Shayne S; Kurta, Allen; Kath, Joseph A; Reeder, DeeAnn M

    2018-04-04

      Host responses to infection with novel pathogens are costly and require trade-offs among physiologic systems. One such pathogen is the fungus Pseudogymnoascus destructans (Pd) that causes white-nose syndrome (WNS) and has led to mass mortality of hibernating bats in eastern North America. Although infection with Pd does not always result in death, we hypothesized that bats that survive infection suffer significant consequences that negatively impact the ability of females to reproduce. To understand the physiologic consequences of surviving infection with Pd, we assessed differences in wing damage, mass-specific resting metabolic rate, and reproductive rate between little brown myotis ( Myotis lucifugus) that survived a winter in captivity after inoculation with Pd (WNS survivors) and comparable, uninfected bats. Survivors of WNS had significantly more damaged wing tissue and displayed elevated mass-specific metabolic rates compared with Pd-uninfected bats after emergence from hibernation. The WNS survivors and Pd-uninfected bats did not significantly differ in their reproductive capacity, at least in captivity. However, our metabolic data demonstrated greater energetic costs during spring in WNS survivors compared with uninfected bats, which may have led to other consequences for postpartum fitness. We suggest that, after surviving the energetic constraints of winter, temperate hibernating bats infected with Pd faced a second energetic bottleneck after emerging from hibernation.

  11. Diet shifts of lesser scaup are consistent with the spring condition hypothesis

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2006-01-01

    We compared diets of lesser scaup (Aythya affinis (Eyton, 1838)) in the springs of 2000 and 2001 to those reported in the 1970s and the 1980s to determine whether forage quality has declined as predicted by the spring condition hypothesis. In Minnesota, we found that the current aggregate percentage of Amphipoda (an important food item) in lesser scaup diets was 94% lower than that reported from the same locations in the 1980s. Current mean individual prey mass of Amphipoda and Bivalvia in Minnesota were 86.6% and 85.1% lower than historical levels, respectively. In Manitoba, current aggregate percentages of Trichoptera and Chaoboridae in lesser scaup diets (1% and 0%, respectively) were lower than those reported from the same location in the 1970s (14% and 2%, respectively), whereas the percentage of Chironomidae (40%) was higher than that of historical levels (19%). Current mean individual prey mass of all insects, seeds, Chironomidae, and Zygoptera in Manitoba were 63.5%, 65.4%, 44.1%, and 44.9% lower than those of historical levels, respectively. The observed dietary shift from Amphipoda to less nutritious prey in Minnesota, coupled with lower mean individual prey mass in both locations, likely constitutes lower forage quality in lesser scaup diets, which is consistent with the spring condition hypothesis. 

  12. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.

    PubMed

    San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan

    2012-02-01

    Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM.

  13. Robust controller designs for second-order dynamic system: A virtual passive approach

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1990-01-01

    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.

  14. Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida

    USGS Publications Warehouse

    Swarzenski, P.W.; Reich, C.D.; Spechler, R.M.; Kindinger, J.L.; Moore, W.S.

    2001-01-01

    A spectacular submarine spring is located about 4 km east of Crescent Beach, FL, in the Atlantic Ocean. The single vent feature of Crescent Beach Spring provides a unique opportunity to examine onshore-offshore hydrogeologic processes, as well as point source submarine ground water discharge. The Floridan aquifer system in northeastern Florida consists of Tertiary interspersed limestone and dolomite strata. Impermeable beds confine the water-bearing zones under artesian pressure. Miocene and younger confining strata have been eroded away at the vent feature, enabling direct hydrologic communication of Eocene ground water with coastal bottom waters. The spring water had a salinity of 6.02, which was immediately diluted by ambient seawater during advection/mixing. The concentration of major solutes in spring water and onshore well waters confirm a generalized easterly flow direction of artesian ground water. Nutrient concentrations were generally low in the reducing vent samples, and the majority of the total nitrogen species existed as NH3. The submarine ground water tracers, Rn-222 (1174 dpm I-1, dpm), methane (232 nM) and barium (294.5 nM) were all highly enriched in the spring water relative to ambient seawater. The concentrations of the reverse redox elements U, V and Mo were expectedly low in the submarine waters. The strontium isotope ratio of the vent water (87Sr/86Sr = 0.70798) suggests that the spring water contain an integrated signature indicative of Floridan aquifer system ground water. Additional Sr isotopic ratios from a series of surficial and Lower Floridan well samples suggest dynamic ground water mixing, and do not provide clear evidence for a single hydrogeologic water source at the spring vent. In this karst-dominated aquifer, such energetic mixing at the vent feature is expected, and would be facilitated by conduit and fractured flow. Radium isotope activities were utilized to estimate flow-path trajectories and to provide information on potential travel times between an onshore well and the spring. Using either 223Ra and 224Ra or 228Ra, and qualifying this approach with several key assumptions, estimates of water mass travel times from an upper Floridan well in Crescent Beach to the submarine vent feature (distance =4050 m) are in the order of ??? 0.01-0.1 m min-1. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, T

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flankmore » of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the State of California, it would be prudent to carefully evaluate this question before proceeding with geothermal energy development on Medicine Lake Volcano.« less

  16. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  17. 78 FR 41227 - Endangered and Threatened Wildlife and Plants; Determination of Endangered Species Status for Six...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... common in a very restricted range. system (four springs). Phantom Lake springsnail....... San Solomon Spring very rare in a very restricted range. system (four springs). diminutive amphipod San Solomon... Solomon Spring System. However, we use this term as a common reference for the four springs, which are...

  18. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    NASA Astrophysics Data System (ADS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  19. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beammore » which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.« less

  20. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, David B.; Williams, Paul M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  1. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    USGS Publications Warehouse

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Lewicki; G. E. Hilley; L. Dobeck

    A set of CO2 flux, geochemical, and hydrologic measurement techniques was used to characterize the source of and quantify gaseous and dissolved CO2 discharges from the area of Soda Springs, southeastern Idaho. An eddy covariance system was deployed for approximately one month near a bubbling spring and measured net CO2 fluxes from - 74 to 1147 g m- 2 d- 1. An inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions mapped the surface CO2 flux distribution within and quantified CO2 emission rate (24.9 t d- 1) from a 0.05 km2 area surrounding the spring. Soilmore » CO2 fluxes (< 1 to 52,178 g m- 2 d- 1) were measured within a 0.05 km2 area of diffuse degassing using the accumulation chamber method. The estimated CO2 emission rate from this area was 49 t d- 1. A carbon mass balance approach was used to estimate dissolved CO2 discharges from contributing sources at nine springs and the Soda Springs geyser. Total dissolved inorganic carbon (as CO2) discharge for all sampled groundwater features was 57.1 t d- 1. Of this quantity, approximately 3% was derived from biogenic carbon dissolved in infiltrating groundwater, 35% was derived from carbonate mineral dissolution within the aquifer(s), and 62% was derived from deep source(s). Isotopic compositions of helium (1.74–2.37 Ra) and deeply derived carbon (d13C approximately 3‰) suggested contribution of volatiles from mantle and carbonate sources. Assuming that the deeply derived CO2 discharge estimated for sampled groundwater features (approximately 35 t d- 1) is representative of springs throughout the study area, the total rate of deeply derived CO2 input into the groundwater system within this area could be ~ 350 t d- 1, similar to CO2 emission rates from a number of quiescent volcanoes.« less

  3. Cargo-Positioning System for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  4. Invited article: Time accurate mass flow measurements of solid-fueled systems.

    PubMed

    Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  5. Invited Article: Time accurate mass flow measurements of solid-fueled systems

    NASA Astrophysics Data System (ADS)

    Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.

    2008-10-01

    A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.

  6. Multitracer test for the determination of transport and in-situ degradation of organic micro-contaminants in karst aquifers on the example of caffeine

    NASA Astrophysics Data System (ADS)

    Hillebrand, O.; Nödler, K.; Licha, T.; Geyer, T.

    2012-04-01

    The application of organic micro-contaminants as indicators for contamination sources in aquifers and surface-water bodies has been increasingly discussed in the literature over the last years. One of the proposed substances was caffeine. It served as indicator for wastewater-leakage to various systems. As well, wastewater volumes could be estimated from caffeine concentrations. Although caffeine is known to be degradable, the degradation rates are normally only determined from mass balances or laboratory experiments. Degradation rates obtained from mass balances are relatively uncertain, as the input-function is difficult to be assessed. Laboratory experiments are hardly capable to consider the full complexity of natural systems and can rarely be transferred to those. To solve this problem, in-situ degradation rates of reactive indicators have to be determined. Especially multitracer tests can be used to access compound-specific transport parameters and degradation rates, relative to conservative tracers. A multitracer test with caffeine and uranine has been performed in a karst system (catchment of the Gallusquelle spring, SW Germany). From the breakthrough curves of the tracers, the transport behavior and the in-situ degradation rate of caffeine could be deduced. The tracers were injected into a sinkhole with a linear distance of 3000 m to the spring. The mean residence time of the tracers was found to be 84 h at a flow velocity of 35 m/h. Throughout the whole experiment, the spring discharge was constant at 187 L/s. Uranine served as conservative reference-tracer for the calibration of a one-dimensional transport model with respect to solute-unspecific parameters. Relative to that, the tracer breakthrough curve of caffeine was interpreted. As solute-specific parameters the retardation coefficient as well as degradation rate of caffeine in the investigated karst aquifer could be determined. The results indicate, that caffeine is slightly retarded in the investigated aquifer (R= 1.031-1.046) and is readily degradable (half-life t1/2= 90-105 h; temperature of the spring water T= 8-9 °C). The degradation rate is surprisingly high. In general, no significant degradation is believed to occur, during the rapid transport in karst systems. The high degradation rates of caffeine illustrate the potential to use this substance as reactive tracer to indicate biological activity within the aquifer. Due to the good degradability of caffeine it does not pose a threat as long-time contamination and can therefore safely be used as reactive tracer in aquifer systems.

  7. Vibration analysis on compact car shock absorber

    NASA Astrophysics Data System (ADS)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.

    2017-10-01

    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  8. Flapping foil power generator performance enhanced with a spring-connected tail

    NASA Astrophysics Data System (ADS)

    Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-12-01

    The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.

  9. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  10. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  11. Herbage intake of dairy cows in mixed sequential grazing with breeding ewes as followers.

    PubMed

    Jiménez-Rosales, Juan Daniel; Améndola-Massiotti, Ricardo Daniel; Burgueño-Ferreira, Juan Andrés; Ramírez-Valverde, Rodolfo; Topete-Pelayo, Pedro; Huerta-Bravo, Maximino

    2018-03-01

    This study aimed to evaluate the hypothesis that mixed sequential grazing of dairy cows and breeding ewes is beneficial. During the seasons of spring-summer 2013 and autumn-winter 2013-2014, 12 (spring-summer) and 16 (autumn-winter) Holstein Friesian cows and 24 gestating (spring-summer) and lactating (autumn-winter) Pelibuey ewes grazed on six (spring-summer) and nine (autumn-winter) paddocks of alfalfa and orchard grass mixed pastures. The treatments "single species cow grazing" (CowG) and "mixed sequential grazing with ewes as followers of cows" (MixG) were evaluated, under a completely randomized design with two replicates per paddock. Herbage mass on offer (HO) and residual herbage mass (RH) were estimated by cutting samples. The estimate of herbage intake (HI) of cows was based on the use of internal and external markers; the apparent HI of ewes was calculated as the difference between HO (RH of cows) and RH. Even though HO was higher in CowG, the HI of cows was higher in MixG during spring-summer and similar in both treatments during autumn-winter, implying that in MixG the effects on the cows HI of higher alfalfa proportion and herbage accumulation rate evolving from lower residual herbage mass in the previous cycle counteracted that of a higher HO in CowG. The HI of ewes was sufficient to enable satisfactory performance as breeding ewes. Thus, the benefits of mixed sequential grazing arose from higher herbage accumulation, positive changes in botanical composition, and the achievement of sheep production without negative effects on the herbage intake of cows.

  12. Stability of Nonlinear Swarms on Flat and Curved Surfaces

    DTIC Science & Technology

    numerical experiments have shown that the system either converges to a rotating circular limit cycle with a fixed center of mass, or the agents clump ...Swarming is a near-universal phenomenon in nature. Many mathematical models of swarms exist , both to model natural processes and to control robotic...agents. We study a swarm of agents with spring-like at-traction and nonlinear self-propulsion. Swarms of this type have been studied numerically, but

  13. Simple Examples of the Interpretation of Changes in Kinetic and Potential Energy Under Galilean Transformations

    NASA Astrophysics Data System (ADS)

    Ginsberg, Edw. S.

    2018-02-01

    The compatibility of the Newtonian formulation of mechanical energy and the transformation equations of Galilean relativity is demonstrated for three simple examples of motion treated in most introductory physics courses (free fall, a frictionless inclined plane, and a mass/spring system). Only elementary concepts and mathematics, accessible to students at that level, are used. Emphasis is on pedagogy and concepts related to the transformation properties of potential energy.

  14. A looped-tube traveling-wave engine with liquid pistons

    NASA Astrophysics Data System (ADS)

    Hyodo, H.; Tamura, S.; Biwa, T.

    2017-09-01

    This report describes the operation of a liquid piston engine that uses thermoacoustic spontaneous oscillations of liquid and gas columns connected in series to form a loop. Analysis of the analogous mass-spring model and the numerical calculation based on hydrodynamic equations shows that the natural mode oscillations of the system allow the working gas to execute a Stirling thermodynamic cycle. Numerical results of the operating temperature difference were confirmed from experimentally obtained results.

  15. Mass Balance of a Maritime Glacier on the Southeast Tibetan Plateau and Its Climatic Sensitivity

    NASA Astrophysics Data System (ADS)

    Yang, W.

    2014-12-01

    Based on glacio-meteorological measurements and mass-balance stake records during the five-year period of 2005-2010 on the southeast Tibetan Plateau, an energy-mass balance model was applied to study the surface mass balance of the Parlung No. 94 Glacier, as well as its response to regional climate conditions. The primary physical parameters involved in the model were locally calibrated by using relevant glacio-meteorological datasets. The good agreement between the snowpack height/mass balance simulations and the in-situ measurements available from a total of 12 monitoring stakes over this glacier confirmed the satisfactory performance of the energy-mass balance model. Results suggested that the recent state of the Parlung No. 94 Glacier was far removed from the 'ideal' climatic regime leading to zero mass balance, with its annual mass balance of approximately -0.9 m w.e. during 2005-2010. Climatic sensitivity experiments were also carried out to interpret the observed mass-balance changes, and the experiments demonstrated that the maritime glaciers concerned herein were theoretically more vulnerable to ongoing climate warming on the Tibetan Plateau than potential changes in the amount of precipitation. A plausible causal explanation for the recent glacier shrinkage in this region was concerned with the increasing air temperature. Moreover, both the mass balance simulations and the field measurements indicated that the mass accumulation over this maritime glacier occurred primarily in the boreal spring. Such "spring-accumulation type" glaciers are presumed to be distributed mainly within a narrow wedge-shaped region along the Brahmaputra River. Climatic sensitivities of the glacier mass balanceare also found to be closely linked to the regional precipitation seasonality that is simultaneously modulated by various atmospheric circulation patterns, such as the southern westerlies, the Bay of Bengal vortex in the spring season and the Indian monsoon in the summer season.

  16. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean

    2014-08-01

    Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.

  17. Dynamics of periodic spring-mass chain coupled with an electric transmission line

    NASA Astrophysics Data System (ADS)

    Belloni, Edoardo; Cenedese, Mattia; Braghin, Francesco

    2017-04-01

    Periodic structures have received large interest due to their peculiar behavior: they have band gaps, that is portions of the frequency response along with any wave incoming in the structure is reflected. Numerous are the applications, like metamaterials and locally resonant structures. Nowadays, new possibilities could come from mechanical periodic structures that are connected to an electrical transmission line, periodic in turn. Starting from this idea, this paper analyses ideal a mono-atomic spring-mass chain, considering the springs connected to a periodic electric network, composed by inductances (and resistors): these simple examples will show how the frequency response is affected. In particular, the mutual influence between the electric and mechanical domain is highlighted, and the contribution of parameters on band gap positioning and design is explored. Details are provided about vibration modes and wave transmission.

  18. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    NASA Astrophysics Data System (ADS)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  19. Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Horta, Lucas G.

    2012-01-01

    Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.

  20. Transverse vibration of Bernoulli Euler beams carrying point masses and taking into account their rotatory inertia: Exact solution

    NASA Astrophysics Data System (ADS)

    Maiz, Santiago; Bambill, Diana V.; Rossit, Carlos A.; Laura, P. A. A.

    2007-06-01

    The situation of structural elements supporting motors or engines attached to them is usual in technological applications. The operation of the machine may introduce severe dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. An exact solution for the title problem is obtained in closed-form fashion, considering general boundary conditions by means of translational and rotatory springs at both ends. The model allows to analyze the influence of the masses and their rotatory inertia on the dynamic behavior of beams with all the classic boundary conditions, and also, as particular cases, to determine the frequencies of continuous beams.

  1. Isolators Including Main Spring Linear Guide Systems

    NASA Technical Reports Server (NTRS)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  2. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    NASA Astrophysics Data System (ADS)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a consequent enrichment in heavy Hg isotopes in the upper crust through time.

  3. Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches

    NASA Astrophysics Data System (ADS)

    Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori

    A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.

  4. Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    PubMed

    Palmer, Luther R; Eaton, Caitrin E

    2014-09-01

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg.

  5. Design and preliminary evaluation of an exoskeleton for upper limb resistance training

    NASA Astrophysics Data System (ADS)

    Wu, Tzong-Ming; Chen, Dar-Zen

    2012-06-01

    Resistance training is a popular form of exercise recommended by national health organizations, such as the American College of Sports Medicine (ACSM) and the American Heart Association (AHA). This form of training is available for most populations. A compact design of upper limb exoskeleton mechanism for homebased resistance training using a spring-loaded upper limb exoskeleton with a three degree-of-freedom shoulder joint and a one degree-of-freedom elbow joint allows a patient or a healthy individual to move the upper limb with multiple joints in different planes. It can continuously increase the resistance by adjusting the spring length to train additional muscle groups and reduce the number of potential injuries to upper limb joints caused by the mass moment of inertia of the training equipment. The aim of this research is to perform a preliminary evaluation of the designed function by adopting an appropriate motion analysis system and experimental design to verify our prototype of the exoskeleton and determine the optimal configuration of the spring-loaded upper limb exoskeleton.

  6. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears

    USGS Publications Warehouse

    Hilderbrand, Grant V.; Jenkins, S.G.; Schwartz, C.C.; Hanley, Thomas A.; Robbins, C.T.

    1999-01-01

    The influence of seasonal dietary meat intake on changes in body mass and composition in wild and captive brown bears (Ursus arctos) was investigated because the importance and availability of meat to brown bear populations is currently an important management consideration in several North American ecosystems. Adult female brown bears on the Kenai Peninsula, Alaska, utilized meat heavily in both spring and fall. Meat accounted for 76.2 ± 26.0% (mean ± 1 SD; primarily moose carrion and calves) of assimilated carbon and nitrogen in the spring and 80.4 ± 22.2% (primarily salmon) in the fall. Mass increases in the spring (71.8 ± 28.2%) were mostly lean body mass, but increases in the fall (81.0 ± 19.5%) were primarily fat. Daily intake by captive brown bears fed meat ad libitum during 12-day trials was positively related to body mass. Mass change was positively related to intake in both seasons, but the composition of the gain varied by season, with spring gains primarily lean body mass (64.2 ± 9.4%), while fall gains were 78.8 ± 19.6% lipid. Absolute rates of gain by wild bears occasionally equaled, but were usually much less than, those of captive bears. This was likely due to a combination of factors, which included the time required to locate and handle meat resources, the limited availability of or access to meat resources, and (or) the duration of meat resource availability. Estimated intake by bears not feeding selectively on high-energy components of moose and salmon were 8.5 ± 1.5 kg/day and 541 ± 156 kg/year and 10.8 ± 4.6 kg/day and 1003 ± 489 kg/year, respectively. Intake would drop by as much as 58% for bears feeding exclusively on salmon roe. Management strategies for areas with brown bears that consume significant amounts of meat should address the perpetuation and availability of these meat resources.

  7. Dynamics of current-use pesticides in the agricultural model basin

    NASA Astrophysics Data System (ADS)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The southeast of the Pampas plains is a zone with intensive agricultural activities; this zone is highly irrigated by wetlands, rivers and many streams. The stream flow dynamics are strongly related to the regional humidity, mainly given by runoff water and phreatic surface level, and can change dramatically during storm events. In this sense, it is important to study the fluctuations in the loads and mass of current-use pesticide (CUPs) to examine the influence of hydrologic and seasonal variability on the response of pesticide levels. The objective of this work was to determine the maximum loads reached of ∑CUPs and mass of CUPs associated with the flow dynamic in surface waters of "El Crespo" stream. "El Crespo" stream is only influenced by farming activities, with intensive crop systems upstream (US) and extensive livestock production downstream (DS). It is an optimal site for pesticide monitoring studies since there are no urban or industrial inputs into the system. Water samples were collected monthly from October 2014 to October 2015 in the UP and DN sites using 1 L polypropylene bottles and stored at -20°C until analysis. The samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The stream flow was measured during the sampling times in both sites, covering low base-flow and high base-flow periods. The most frequently detected residues (>40%) were glyphosate and its metabolite AMPA, atrazine, acetochlor, metolachlor, 2,4-D, metsulfuron methyl, fluorocloridone, imidacloprid, tebuconazole and epoxiconazole. The mean concentrations of ∑CUPs during the sampling period were 1.62µg/L and 1.66µg/L in UP site and DN site, respectively. The highest levels of ∑CUPs were 4.03 µg/L in UP site during spring 2014 and 2.53 µg/L in DN site during winter 2014. The mass of ∑CUPs showed a direct relation between low base flow and high base flow periods. During high base flow during spring 2014, the stream discharge showed peak of 6.16 mt3/s and 6.77 mt3/s, in UP and DN site, respectively; where the total loads of ∑CUPs were 3.7 µg/L and 2.88 µg/L and the associated mass were 22.74 and 19.54 µg/s, in UP and DN site, respectively. During low base flow the discharge were lower than 1 mt3/s and the total loads of ∑CUPs were variable between 1-3 µg/L, but the mass never were higher than 3 µg/s. The intensive rain during the spring 2014, were the mainly factor that influence the stream flow and pesticide dynamics in the model basin

  8. 76 FR 63714 - Big Spring Rail System, Inc.;Operation Exemption;Transport Handling Specialists, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35553] Big Spring Rail System, Inc.;Operation Exemption;Transport Handling Specialists, Inc. Big Spring Rail System, Inc. (BSRS...., owned by the City of Big Spring, Tex. (City). BSRS will be operating the line for Transport Handling...

  9. The dynamics and control of large flexible space structures - 12, supplement 11

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Xu, Jianke

    1989-01-01

    The rapid 2-D slewing and vibrational control of the unsymmetrical flexible SCOLE (Spacecraft Control Laboratory Experiment) with multi-bounded controls is considered. Pontryagin's Maximum Principle is applied to the nonlinear equations of the system to derive the necessary conditions for the optimal control. The resulting two point boundary value problem is then solved by using the quasilinearization technique, and the near minimum time is obtained by sequentially shortening the slewing time until the controls are near the bang-bang type. The tradeoff between the minimum time and the minimum flexible amplitude requirements is discussed. The numerical results show that the responses of the nonlinear system are significantly different from those of the linearized system for rapid slewing. The SCOLE station-keeping closed loop dynamics are re-examined by employing a slightly different method for developing the equations of motion in which higher order terms in the expressions for the mast modal shape functions are now included. A preliminary study on the effect of actuator mass on the closed loop dynamics of large space systems is conducted. A numerical example based on a coupled two-mass two-spring system illustrates the effect of changes caused in the mass and stiffness matrices on the closed loop system eigenvalues. In certain cases the need for redesigning control laws previously synthesized, but not accounting for actuator masses, is indicated.

  10. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wu, D. J.

    2013-09-01

    The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring-dashpot pairs respectively; E and I denote the elastic module and the bending moment of inertia of the infinite rail; and k is the wavenumber of the unsupported infinite rail k=(EI)1/4, where mr is the mass per unit length of the rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same bridge component, then δmnab(ω) can be obtained by applying the mode superposition method δmnab(ω)=∑i=1Nl{(ϕ}/{liaϕlibωli2-ω+2jξωω}, where ω and ξ are the damped natural frequency and damping ratio of the ith mode of the lth bridge component; ϕlia and ϕlib denote the generalised mode shape amplitudes of the the lth bridge component to which the ath and bth nodes of the two spring-dashpot pairs are connected; and Nl is the mode number of interest. It can be observed from Eqs. (2)-(7) that the theorem of reciprocal displacements is met as follows: δ(ω)=δ(ω). An external point excitation can be regarded as a force produced by a spring-dashpot pair with its first node connected to the excitation point and the second node fixed to the ground. Therefore, each element in vector ΔP(ω) can be easily attained using the first and last terms of Eq. (3): Δmp(ω)=δmp11(ω)+δmp21(ω), where the subscript p denotes the fictitious spring-dashpot pair used to simulate the external harmonic force. The dominant frequency of the wheel-rail contact forces and power input to the rail on elastic supports is found to be consistent with the natural frequency of the single wheel adhered to the elastically supported rail. The simple formula derived to predict this dominant frequency matches well with the numerical results. The acceleration response of the bridge is also dominated by the natural frequency of the single wheel adhered to the elastically supported rail. Although the vehicle speed has an insignificant effect on the dominant frequency of the bridge response, it does influence the magnitude of the response. The findings in this paper and the proposed method can be applied to mitigate the vibration and noise from rail bridges once a series of parametric analyses has been carried out.

  11. Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Rodriguez, J. M.; Douglass, A. R.; Crawford, J. H.; Olson, J. R.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; da Silva, A.; Diskin, G. S.; Duncan, B. N.; Huey, L. G.; Knapp, D. J.; Montzka, D. D.; Nielsen, J. E.; Pawson, S.; Riemer, D. D.; Weinheimer, A. J.; Wisthaler, A.

    2011-12-01

    We use aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine the distributions and source attributions of O3 and NOy in the Arctic and sub-Arctic region. Using a number of marker tracers, we distinguish various air masses from the background troposphere and examine their contributions to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has a mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreasing from ~145 ppbv in spring to ~100 ppbv in summer. These observed mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in emissions and stratospheric ozone layer in the past two decades that influence Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses, with mean O3 concentrations of 140-160 ppbv, are significant direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin displays net O3 formation in the Arctic due to its sustainable, high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer). The air masses influenced by the stratosphere sampled during ARCTAS-B also show conversion of HNO3 to PAN. This active production of PAN is the result of increased degradation of ethane in the stratosphere-troposphere mixed air mass to form CH3CHO, followed by subsequent formation of PAN under high NOx conditions. These findings imply that an adequate representation of stratospheric NOy input, in addition to stratospheric O3 influx, is essential to accurately simulate tropospheric Arctic O3, NOx and PAN in chemistry transport models. Plumes influenced by recent anthropogenic and biomass burning emissions observed during ARCTAS show highly elevated levels of hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contain O3 higher than that in the Arctic tropospheric background except some aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.

  12. Realistic soft tissue deformation strategies for real time surgery simulation.

    PubMed

    Shen, Yunhe; Zhou, Xiangmin; Zhang, Nan; Tamma, Kumar; Sweet, Robert

    2008-01-01

    A volume-preserving deformation method (VPDM) is developed in complement with the mass-spring method (MSM) to improve the deformation quality of the MSM to model soft tissue in surgical simulation. This method can also be implemented as a stand-alone model. The proposed VPDM satisfies the Newton's laws of motion by obtaining the resultant vectors form an equilibrium condition. The proposed method has been tested in virtual surgery systems with haptic rendering demands.

  13. Vibration Interaction in a Multiple Flywheel System

    DTIC Science & Technology

    2011-03-01

    IP/IT ) t time x x−axis y y−axis z z−axis κ rotational spring stiffness ρ radial distance between flywheel center of mass and shaft center θ axial...they may be a viable alternative for the satellite designer . One additional benefit of flywheel-based energy storage is its inherent ability to control...rotating wheels it can change the satellite’s attitude by exchanging momentum between flywheels and 2 the spacecraft. Thus an IPACS, if well designed

  14. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  15. Tick-borne encephalitis.

    PubMed

    Dumpis, U; Crook, D; Oksi, J

    1999-04-01

    Tick-borne encephalitis (TBE) is a zoonotic arbovirus infection endemic to Russia and Eastern and Central Europe. Despite being a common and serious life-threatening disease for which a mass vaccination program was implemented in Austria, there is only limited reference to this disease in the English-language literature. TBE is transmitted to humans usually by the bite of a tick (either Ixodes persulcatus or Ixodes ricinus); occasionally, cases occur following consumption of infected unpasteurized milk. Transmission is seasonal and occurs in spring and summer, particularly in rural areas favored by the vector. TBE is a serious cause of acute central nervous system disease, which may result in death or long-term neurological sequelae. Effective vaccines are available in a few countries. The risk for travelers of acquiring TBE is increasing with the recent rise in tourism to areas of endemicity during spring and summer.

  16. Active Vibration Isolation of Microgravity Experiments with Spring Umbilicals Using an Electrodynamic Actuator

    NASA Technical Reports Server (NTRS)

    Banerjee, B. B.; Allaire, P. E.; Grodsinsky, C. M.

    1996-01-01

    Microgravity experiments will require active vibration isolation in the low to mid frequency range of 0.1 Hz to 10 Hz. Approximately two orders of acceleration reduction (40 dB) will be required. Previous works have reported results for accelerations transmitted through the umbilical. This paper describes experimental and theoretical results for vibration isolation in one dimension (horizontal) where the simulated experiment is connected to the spacecraft by a spring umbilical. The experiment consisted of a spacecraft (shaker), experiment (mass), umbilical, accelerometer, control electronics, and Lorentz actuator. The experiment mass was supported in magnetic bearings to avoid any stiction problems. Acceleration feedback control was employed to obtain the vibration isolation. Three different spring umbilicals were employed. Acceleration reductions on the order of 40 dB were obtained over the frequency range of 0.1 Hz to 10 Hz. Good agreement was obtained between theory and experiment.

  17. 20000G shock energy harvesters for gun-fired munition

    NASA Astrophysics Data System (ADS)

    Willemin, J.; Boisseau, S.; Olmos, L.; Gallardo, M.; Despesse, G.; Robert, T.

    2016-11-01

    This paper presents a 20000G shock energy harvester dedicated to gun-fired munitions and based on a mass-spring resonant structure coupled to a coil-magnet electromagnetic converter. The 20000G shock energy is firstly stored in the spring as elastic potential energy, released as mass-spring mechanical oscillations right after the shock and finally converted into electricity thanks to the coil-magnet transducer. The device has been modeled, sized to generate 200mJ in 150ms, manufactured and tested in a gun-fired munition. The prototype sizes 117cm3 and weighs 370g. 210mJ have been generated in a test bench and 140mJ in real conditions; this corresponds to a mean output power of 0.93W (7.9mW/cm3) and a maximum output power of 4.83W (41.3mW/cm3) right after the shock.

  18. Homogenized rigid body and spring-mass (HRBSM) model for the pushover analysis of out-of-plane loaded unreinforced and FRP reinforced walls

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.

  19. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    DOEpatents

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  20. Testing Orions Fairing Separation System

    NASA Technical Reports Server (NTRS)

    Martinez, Henry; Cloutier, Chris; Lemmon, Heber; Rakes, Daniel; Oldham, Joe; Schlagel, Keith

    2014-01-01

    Traditional fairing systems are designed to fully encapsulate and protect their payload from the harsh ascent environment including acoustic vibrations, aerodynamic forces and heating. The Orion fairing separation system performs this function and more by also sharing approximately half of the vehicle structural load during ascent. This load-share condition through launch and during jettison allows for a substantial increase in mass to orbit. A series of component-level development tests were completed to evaluate and characterize each component within Orion's unique fairing separation system. Two full-scale separation tests were performed to verify system-level functionality and provide verification data. This paper summarizes the fairing spring, Pyramidal Separation Mechanism and forward seal system component-level development tests, system-level separation tests, and lessons learned.

  1. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, D.B.; Williams, P.M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures.

  2. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Dhote, Sharvari; Yang, Zhengbao; Zu, Jean

    2018-01-01

    This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.

  3. Elastic Properties of Plasticine, Silly Putty, and Tennis Strings

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    How would a physicist describe the elastic properties of an apple or a banana? Physics students and teachers are familiar with the elastic properties of metal springs, but are likely to be less familiar with the elastic properties of other common materials. The behavior of a metal spring is commonly examined in the laboratory by adding masses to…

  4. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  5. Age, state, environment, and season dependence of senescence in body mass.

    PubMed

    Kroeger, Svenja B; Blumstein, Daniel T; Armitage, Kenneth B; Reid, Jane M; Martin, Julien G A

    2018-02-01

    Senescence is a highly variable process that comprises both age-dependent and state-dependent components and can be greatly affected by environmental conditions. However, few studies have quantified the magnitude of age-dependent and state-dependent senescence in key life-history traits across individuals inhabiting different spatially structured and seasonal environments. We used longitudinal data from wild female yellow-bellied marmots ( Marmota flaviventer ), living in two adjacent environments that differ in elevation and associated phenology, to quantify how age and individual state, measured as "time to death," affect body mass senescence in different environments. Further, we quantified how patterns of senescence differed between two biologically distinct seasons, spring, and late summer. Body mass senescence had an age-dependent component, expressed as a decrease in mass in old age. Overall, estimated age-dependent senescence was greater in females living in the more favorable lower elevation environment, than in the harsher higher elevation environment, and greater in late summer than in spring. Body mass senescence also had a state-dependent component, captured by effects of time to death, but only in the more favorable lower elevation environment. In spring, body mass gradually decreased from 2 years before death, whereas in late summer, state-dependent effects were expressed as a terminal decrease in body mass in the last year of life. Contrary to expectations, we found that senescence was more likely to be observed under more favorable environmental conditions, rather than under harsher conditions. By further demonstrating that senescence patterns differ among seasons, our results imply that within-year temporal environmental variation must be considered alongside spatial environmental variation in order to characterize and understand the pattern and magnitude of senescence in wild populations.

  6. Aircraft interior noise reduction by alternate resonance tuning

    NASA Technical Reports Server (NTRS)

    Gottwald, James A.; Bliss, Donald B.

    1990-01-01

    The focus is on a noise control method which considers aircraft fuselages lined with panels alternately tuned to frequencies above and below the frequency that must be attenuated. An interior noise reduction called alternate resonance tuning (ART) is described both theoretically and experimentally. Problems dealing with tuning single paneled wall structures for optimum noise reduction using the ART methodology are presented, and three theoretical problems are analyzed. The first analysis is a three dimensional, full acoustic solution for tuning a panel wall composed of repeating sections with four different panel tunings within that section, where the panels are modeled as idealized spring-mass-damper systems. The second analysis is a two dimensional, full acoustic solution for a panel geometry influenced by the effect of a propagating external pressure field such as that which might be associated with propeller passage by a fuselage. To reduce the analysis complexity, idealized spring-mass-damper panels are again employed. The final theoretical analysis presents the general four panel problem with real panel sections, where the effect of higher structural modes is discussed. Results from an experimental program highlight real applications of the ART concept and show the effectiveness of the tuning on real structures.

  7. Pressure drop for inertial flows in elastic porous media

    NASA Astrophysics Data System (ADS)

    Pauthenet, Martin; Bottaro, Alessandro; Davit, Yohan; Quintard, Michel; porous media Team

    2017-11-01

    The effect of the porosity and of the elastic properties of anisotropic solid skeletons saturated by a fluid is studied for flows displaying unsteady inertial effects. Insight is achieved by direct numerical simulations of the Navier-Stokes equations for model porous media, with inclusions which can oscillate with respect to their reference positions because of the presence of a restoring elastic force modeled by a spring. The numerical technique is based on the immersed boundary method, to easily allow for the displacement of pores of arbitrary shapes and dimensions. Solid contacts are anelastic. The parameters examined include the local Reynolds number, Red , based on the mean velocity through the reference unit cell and the characteristic size of the inclusions, the direction of the macroscopic forcing pressure gradient, the reduced frequency, f*, ratio of the flow frequency to the natural frequency of the spring-mass system, and the reduced mass, m*, ratio of the solid to the fluid density. Results demonstrate the effect of these parameters, and permit to determine the filtration laws useful for the subsequent macroscopic modeling of these flows through the volume averaged Navier-Stokes equations. IDEX Foundation of the University of Toulouse and HPC resources of the CALMIP supercomputing center.

  8. Are running speeds maximized with simple-spring stance mechanics?

    PubMed

    Clark, Kenneth P; Weyand, Peter G

    2014-09-15

    Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds (n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R(2) statistic (where an R(2) of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds (R(2) <0.85 vs. R(2) ≥ 0.91, respectively), and deviated most at top speed (R(2) = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds. Copyright © 2014 the American Physiological Society.

  9. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    PubMed Central

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  10. System analysis of force feedback microscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio

    2014-02-01

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  11. Counterintuitive Behavior in Mechanical Networks

    ERIC Educational Resources Information Center

    Peters, Sarah; Vondracek, Mark

    2012-01-01

    Almost all introductory physics classes will, at some point, include springs and elastic forces. When studying such topics, it is interesting to consider the spring system shown in Fig. 1. In this system, two identical springs are arranged with the top of one spring anchored to the ceiling and the bottom of the second spring attached to a hanging…

  12. Analysis of an electrohydraulic aircraft control surface servo and comparison with test results

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1972-01-01

    An analysis of an electrohydraulic aircraft control-surface system is made in which the system is modeled as a lumped, two-mass, spring-coupled system controlled by a servo valve. Both linear and nonlinear models are developed, and the effects of hinge-moment loading are included. Transfer functions of the system and approximate literal factors of the transfer functions for several cases are presented. The damping action of dynamic pressure feedback is analyzed. Comparisons of the model responses with results from tests made on a highly resonant rudder control-surface servo indicate the adequacy of the model. The effects of variations in hinge-moment loading are illustrated.

  13. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  14. Formulation of human-structure interaction system models for vertical vibration

    NASA Astrophysics Data System (ADS)

    Caprani, Colin C.; Ahmadi, Ehsan

    2016-09-01

    In this paper, human-structure interaction system models for vibration in the vertical direction are considered. This work assembles various moving load models from the literature and proposes extension of the single pedestrian to a crowd of pedestrians for the FE formulation for crowd-structure interaction systems. The walking pedestrian vertical force is represented as a general time-dependent force, and the pedestrian is in turn modelled as moving force, moving mass, and moving spring-mass-damper. The arbitrary beam structure is modelled using either a formulation in modal coordinates or finite elements. In each case, the human-structure interaction (HSI) system is first formulated for a single walking pedestrian and then extended to consider a crowd of pedestrians. Finally, example applications for single pedestrian and crowd loading scenarios are examined. It is shown how the models can be used to quantify the interaction between the crowd and bridge structure. This work should find use for the evaluation of existing and new footbridges.

  15. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2017-09-01

    A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model computes the spring discharge hydrograph through three parallel linear reservoirs for base-flow, intermediate-flow, and quick-flow. Three antecedent recharge indices are defined and embedded in the model structure to deal with the memory effect of three karst flow systems to antecedent recharge flow. The Sasan Karst aquifer located in the semi-arid region of south-west Iran with a continuous long-term (21-years) daily meteorological and discharge data are considered to describe model calibration and validation procedures. The effects of temporal variations of RA of karst formations during the hydrological year namely invariant RA, two RA (winter and summer), four RA (seasonal), and twelve RA (monthly) are assessed to determine their impact on the model efficiency. Results indicated that the proposed model with monthly-variant RA is able to reproduce acceptable simulation results based on modified Kling-Gupta efficiency (KGE = -0.83). The results of density-based global sensitivity analysis for dry (June to September) and a wet (October to May) period reveal the dominant influence of RA (with sensitivity indices equal to 0.89 and 0.93, respectively) in spring discharge simulation. The sensitivity of simulated spring discharge to memory effect of different karst formations during the dry period is greater than the wet period. In addition, the results reveal the important role of intermediate-flow system in the hydrological modeling of karst systems during the wet period. Precise estimation of groundwater budgets for a better decision making regarding water supplies from complex karst systems with long memory effect can considerably be improved by use of the proposed model.

  16. Delineating the Rattlesnake Springs, New Mexico Watershed Using Precision Gravity Techniques

    NASA Astrophysics Data System (ADS)

    Doser, D. I.; Boykov, N. D.; Baker, M. R.; Kaip, G. M.; Langford, R. P.

    2009-12-01

    Rattlesnake Springs serves as the sole domestic water source for Carlsbad Caverns National Park. The recent development of oil and gas leases and agricultural lands surrounding the springs has led to concern about contamination of the fracture controlled aquifer system. We have conducted a series of precision gravity surveys (station spacing 200 to 300 m in a 4 x 4 km area), combined with other geophysical studies and geologic mapping, to delineate possible fracture systems in the gypsum and carbonate bedrock that feed the spring system. Our combined results suggest several pathways for water to enter the springs. A series of WNW-ESE striking features are apparent in our gravity data that appear to align with relict spring valleys we have mapped to the west of the springs. A self potential survey indicates that water is entering the springs at a shallow level from the northwest direction. However, gravity data also indicate a north-south trending fracture system could be providing a pathway for water to enter from the south. This is consistent with drawdown tests conducted in the 1950’s and 1960’s on irrigation wells located to the south of the springs. The north-south fracture system appears related to a basin bounding fault system observed in the regional gravity data.

  17. Optical spring effect in nanoelectromechanical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Feng; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg; Du, Yu

    2014-08-11

    In this Letter, we report a hybrid system consisting of nano-optical and nano-mechanical springs, in which the optical spring effect works to adjust the mechanical frequency of a nanoelectromechanical systems resonator. Nano-scale folded beams are fabricated as the mechanical springs and double-coupled one-dimensional photonic crystal cavities are used to pump the “optical spring.” The dynamic characteristics of this hybrid system are measured and analyzed at both low and high input optical powers. This study leads the physical phenomenon of optomechanics in complex nano-opto-electro-mechanical systems (NOEMS) and could benefit the future applications of NOEMS in chip-level communication and sensing.

  18. Molecular characterization of dissolved organic matter during the Arctic spring melt period

    NASA Astrophysics Data System (ADS)

    Gueguen, C.; Mangal, V.; Shi, Y. X.

    2016-02-01

    The application of high resolution electrospray ionization mass spectrometry has advanced our understanding of dissolved organic matter (DOM) at molecular level. The arctic spring melt period has been largely undersampled owing to logistical and safety issues, yet this period is extremely important to the overall flux of DOM and related contaminants including metals from high latitude rivers. In this study, we present high resolution molecular composition of 35 DOM samples collected in the Churchill River (Manitoba) during the 2015 spring melt period. As spring melt progresses, a significant change in the two most dominant carbon pools, protein and lignin, was observed. For example, the relative abundance of proteins detected in the river DOM samples increased from 19 to 44% during the spring flush, likely reflecting a change in DOM source. Similar patterns were found using fluorescence spectroscopy.

  19. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners.

    PubMed

    Fourchet, François; Girard, Olivier; Kelly, Luke; Horobeanu, Cosmin; Millet, Grégoire P

    2015-03-01

    This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. Within-participants repeated measures. Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Temporal patterns in Homalodisca spp. (Hemiptera: Cicadellidae) oviposition on southern California citrus and jojoba.

    PubMed

    Al-Wahaibi, Ali K; Morse, Joseph G

    2010-02-01

    A detailed study of the distribution of egg masses of Homalodisca vitripennis (Germar) and H. liturata Ball was done across a 2-yr period (2001-2003) on six host plants in southern California (Marsh grapefruit, Lisbon lemon, Washington navel, Dancy tangerine, rough lemon, and jojoba in Riverside; jojoba in Desert Center). The majority of egg masses in Riverside belonged to H. vitripennis (84-100%), whereas in Desert Center, all Homalodisca egg masses were H. liturata. Oviposition in Riverside occurred in two discrete periods, a late winter and spring period (mid-February to late May), followed by a short interval of very low oviposition during most of June, and then a summer period (late June to late September) followed by a relatively long period of very low oviposition in fall and early winter (October to mid-February). Levels of oviposition during the late winter-spring period were similar to those during the summer despite an observed larger population of adults during the latter period. Moreover, egg clutch size for H. vitripennis was generally greater in spring than during summer and was generally higher than that for H. liturata, especially on Riverside jojoba. Larger egg clutch size was seen on grapefruit than on lemon, navel, and tangerine during summer. There appeared to be temporal host shifts in oviposition; most evident was the shift from relatively high rates of oviposition on lemon and tangerine in late winter-early spring to relatively higher rates of oviposition on grapefruit and navel during summer.

  1. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  2. Intubation simulation with a cross-sectional visual guidance.

    PubMed

    Rhee, Chi-Hyoung; Kang, Chul Won; Lee, Chang Ha

    2013-01-01

    We present an intubation simulation with deformable objects and a cross-sectional visual guidance using a general haptic device. Our method deforms the tube model when it collides with the human model. Mass-Spring model with the Euler integration is used for the tube deformation. For the trainee's more effective understanding of the intubation process, we provide a cross-sectional view of the oral cavity and the tube. Our system also applies a stereoscopic rendering to improve the depth perception and the reality of the simulation.

  3. Investigation of Student Reasoning about Harmonic Motions

    NASA Astrophysics Data System (ADS)

    Tongnopparat, N.; Poonyawatpornkul, J.; Wattanakasiwich, P.

    This study aimed to investigate student reasoning about harmonic oscillations. We conducted a semi-structured interview based on three situations of harmonic motions—(1) a mass attaching to spring and horizontally oscillating without damping, (2) the same situation but vertically oscillating and (3) a mass attaching to spring and oscillating in viscous liquid. Forty-five second-year students taking a vibrations and wave course at Chiang Mai University, Thailand participated in a fifteen-minute interview, which was video-recorded. The videos were transcribed and analyzed by three physics instructors. As results, we found that most students had misconceptions about angular frequency and energy mostly in the second and third situations.

  4. Kineto-dynamic design optimisation for vehicle-specific seat-suspension systems

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Shui, Yijie; Rakheja, Subhash

    2017-11-01

    Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.

  5. The impact of post-exercise hydration with deep-ocean mineral water on rehydration and exercise performance.

    PubMed

    Keen, Douglas A; Constantopoulos, Eleni; Konhilas, John P

    2016-01-01

    Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.

  6. Saltcedar (Tamarix ramosissima) invasion alters organic matter dynamics in a desert stream

    USGS Publications Warehouse

    Kennedy, T.A.; Hobbie, S.E.

    2004-01-01

    1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring-fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance. 2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m-2 year-1, macrophyte production of 15 g AFDM m-2 year-1 and algal production of 400 g AFDM m-2 year-1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7-34 g AFDM m -2 year-1, macrophyte production of 118-425 g AFDM m -2 year-1 and algal production of 640-900 g AFDM m -2 year-1. 3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.

  7. Adding Some Gas Can Completely Change How an Object in a Liquid-Filled Housing Responds to Vibration

    NASA Astrophysics Data System (ADS)

    Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.

    2015-11-01

    Adding a little gas can completely change the motion of an object in a liquid-filled housing during vibration. A common system exhibiting this behavior is a spring-supported piston in a liquid-filled cylinder, where the gaps between them are narrow and depend on the piston position. When gas is absent, the piston's vibrational response is highly overdamped due to forcing viscous liquid through narrow gaps. When a small amount of gas is added, Bjerknes forces cause some of the gas to migrate below the piston. The resulting two gas regions form a pneumatic spring that enables the liquid to move with the piston, with the result that very little liquid is forced through the narrow gaps. This ``Couette mode'' has low damping and thus has a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. At this frequency, the piston response is large, and the nonlinearity from the gap geometry produces a net force on the piston. This ``rectified'' force can be many times the piston's weight and can cause the piston to compress its supporting spring. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    NASA Astrophysics Data System (ADS)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  9. 14 CFR 29.687 - Spring devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spring devices. 29.687 Section 29.687... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  10. 14 CFR 29.687 - Spring devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spring devices. 29.687 Section 29.687... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  11. 14 CFR 29.687 - Spring devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Spring devices. 29.687 Section 29.687... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  12. 14 CFR 27.687 - Spring devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spring devices. 27.687 Section 27.687... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  13. 14 CFR 27.687 - Spring devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spring devices. 27.687 Section 27.687... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  14. 14 CFR 27.687 - Spring devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Spring devices. 27.687 Section 27.687... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  15. 14 CFR 29.687 - Spring devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Spring devices. 29.687 Section 29.687... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  16. 14 CFR 27.687 - Spring devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Spring devices. 27.687 Section 27.687... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  17. Mofettes - Investigation of Natural CO2 Springs - Insights and Methods applied

    NASA Astrophysics Data System (ADS)

    Lübben, A.; Leven, C.

    2014-12-01

    The quantification of carbon dioxide concentrations and fluxes leaking from the subsurface into the atmosphere is highly relevant in several research fields such as climate change, CCS, volcanic activity, or earthquake monitoring. Many of the areas with elevated carbon dioxide degassing pose the problem that under the given situation a systematic investigation of the relevant processes is only possible to a limited extent (e.g. in terms of spatial extent, accessibility, hazardous conditions). The upper Neckar valley in Southwest Germany is a region of enhanced natural subsurface CO2 concentrations and mass fluxes of Tertiary volcanic origin. At the beginning of the twentieth century several companies started industrial mining of CO2. The decreasing productivity of the CO2 springs led to the complete shutdown of the industry in 1995 and the existing boreholes were sealed. However, there are evidences that the reservoir, located in the deposits of the Lower Triassic, started to refill during the last 20 years. The CO2 springs replenished and a variety of different phenomena (e.g. mofettes and perished flora and fauna) indicate the active process of large scale CO2 exhalation. This easy-to-access site serves as a perfect example for a natural analog to a leaky CCS site, including abandoned boreholes and a suitable porous rock reservoir in the subsurface. During extensive field campaigns we applied several monitoring techniques like measurements of soil gas concentrations, mass fluxes, electrical resistivity, as well as soil and atmospheric parameters. The aim was to investigate and quantify mass fluxes and the effect of variations in e.g. temperature, soil moisture on the mass flux intensity. Furthermore, we investigated the effect of the vicinity to a mofette on soil parameters like electrical conductivity and soil CO2 concentrations. In times of a changing climate due to greenhouse gases, regions featuring natural CO2 springs demand to be intensively investigated. Our results serve as a contribution to the development of site-specific monitoring networks at CCS sites, as well as a step forward to unravel the share of natural CO2 springs in the global carbon cycle.

  18. Columnar aerosol optical and radiative properties according to season and air mass transport pattern over East Asia.

    PubMed

    Noh, Young M; Müller, Detlef; Lee, Hanlim; Lee, Kwonho; Kim, Young Joon

    2012-08-01

    The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23° N, 126.84° E) and Anmyeon (36.54° N, 126.33° E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S(N)), (b) from a westerly direction in spring (S(W)), (c) cases with a low Ångström exponent (<0.8) in spring (dust), (d) from a northerly direction in autumn/winter (AW(N)), and (e) from a westerly direction during other seasons (AW(W)). The highest Ångström exponents (α) at Gwangju and Anmyeon were 1.43 ± 0.30 and 1.49 ± 0.20, respectively, observed in summer. The lowest column-mean single-scattering albedo (ω) at 440 nm observed at Gwangju and Anmyeon were 0.89 ± 0.02 and 0.88 ± 0.02, respectively, during a period marked by the advection of dust from the Asian continent. The highest ω values at Gwangju and Anmyeon were 0.95 ± 0.02 and 0.96 ± 0.02, respectively, observed in summer. Variations in the aerosol radiative-forcing efficiency (β) were related to the conditions of the air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.

  19. Anatomy of landslides along the Dead Sea Transform Fault System in NW Jordan

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Hahne, K.; Shaqour, F.

    2012-03-01

    In the mountainous region north of Amman, Jordan, Cenomanian calcareous rocks are being monitored constantly for their mass wasting processes which occasionally cause severe damage to the Amman-Irbid Highway. Satellite remote sensing data (Landsat TM, ASTER, and SRTM) and ground measurements are applied to investigate the anatomy of landslides along the Dead Sea Transform Fault System (DSTFS), a prominent strike-slip fault. The joints and faults pertinent to the DSTFS match the architectural elements identified in landslides of different size. This similarity attests to a close genetic relation between the tectonic setting of one of the most prominent fault zones on the earth and modern geomorphologic processes. Six indicators stand out in particular: 1) The fractures developing in N-S and splay faults represent the N-S lateral movement of the DSTFS. They governed the position of the landslides. 2) Cracks and faults aligned in NE-SW to NNW-SSW were caused by compressional strength. They were subsequently reactivated during extensional processes and used in some cases as slip planes during mass wasting. 3) Minor landslides with NE-SW straight scarps were derived from compressional features which were turned into slip planes during the incipient stages of mass wasting. They occur mainly along the slopes in small wadis or where a wide wadi narrows upstream. 4) Major landslides with curved instead of straight scarps and rotational slides are representative of a more advanced level of mass wasting. These areas have to be marked in the maps and during land management projects as high-risk area mainly and may be encountered in large wadis with steep slopes or longitudinal slopes undercut by road construction works. 5) The spatial relation between minor faults and slope angle is crucial as to the vulnerability of the areas in terms of mass wasting. 6) Springs lined up along faults cause serious problems to engineering geology in that they step up the behavior of marly interbeds to accelerate sliding during mass wasting. The most vulnerable areas prone to slope instabilities are those with compressional tectonics followed by extensional movements, with fault bound springs and smectite-bearing marly layers interbedded with pure massive limestones. The semi-arid to arid climate with periodic rainfalls combined with subsurface water circulation along the joints and faults can trigger mass wasting.

  20. Research instrumentation for tornado electromagnetics emissions detection

    NASA Technical Reports Server (NTRS)

    Jenkins, H. H.; Wilson, C. S.

    1977-01-01

    Instrumentation for receiving, processing, and recording HF/VHF electromagnetic emissions from severe weather activity is described. Both airborne and ground-based instrumentation units are described on system and subsystem levels. Design considerations, design decisions, and the rationale behind the decisions are given. Performance characteristics are summarized and recommendations for improvements are given. The objectives, procedures, and test results of the following are presented: (1) airborne flight test in the Midwest U.S.A. (Spring 1975) and at the Kennedy Space Center, Florida (Summer 1975); (2) ground-based data collected in North Georgia (Summer/Fall 1975); and (3) airborne flight test in the Midwest (late Spring 1976) and at the Kennedy Space Center, Florida (Summer 1976). The Midwest tests concentrated on severe weather with tornadic activity; the Florida and Georgia tests monitored air mass convective thunderstorm characteristics. Supporting ground truth data from weather radars and sferics DF nets are described.

  1. Compression simulations of plant tissue in 3D using a mass-spring system approach and discrete element method.

    PubMed

    Pieczywek, Piotr M; Zdunek, Artur

    2017-10-18

    A hybrid model based on a mass-spring system methodology coupled with the discrete element method (DEM) was implemented to simulate the deformation of cellular structures in 3D. Models of individual cells were constructed using the particles which cover the surfaces of cell walls and are interconnected in a triangle mesh network by viscoelastic springs. The spatial arrangement of the cells required to construct a virtual tissue was obtained using Poisson-disc sampling and Voronoi tessellation in 3D space. Three structural features were included in the model: viscoelastic material of cell walls, linearly elastic interior of the cells (simulating compressible liquid) and a gas phase in the intercellular spaces. The response of the models to an external load was demonstrated during quasi-static compression simulations. The sensitivity of the model was investigated at fixed compression parameters with variable tissue porosity, cell size and cell wall properties, such as thickness and Young's modulus, and a stiffness of the cell interior that simulated turgor pressure. The extent of the agreement between the simulation results and other models published is discussed. The model demonstrated the significant influence of tissue structure on micromechanical properties and allowed for the interpretation of the compression test results with respect to changes occurring in the structure of the virtual tissue. During compression virtual structures composed of smaller cells produced higher reaction forces and therefore they were stiffer than structures with large cells. The increase in the number of intercellular spaces (porosity) resulted in a decrease in reaction forces. The numerical model was capable of simulating the quasi-static compression experiment and reproducing the strain stiffening observed in experiment. Stress accumulation at the edges of the cell walls where three cells meet suggests that cell-to-cell debonding and crack propagation through the contact edge of neighboring cells is one of the most prevalent ways for tissue to rupture.

  2. 14 CFR 29.687 - Spring devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  3. 14 CFR 27.687 - Spring devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.687 Spring devices. (a) Each control system spring device whose failure could cause flutter or other unsafe characteristics...

  4. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....207 Suspension systems. (a) Axles. No axle positioning part shall be cracked, broken, loose or missing... locking pins missing or disengaged. (c) Leaf springs. No leaf spring shall be cracked, broken, or missing nor shifted out of position. (d) Coil springs. No coil spring shall be cracked or broken. (e) Torsion...

  5. Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA

    USDA-ARS?s Scientific Manuscript database

    Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the central Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study 1) characterized physical and chemical properties of the sprin...

  6. Method and apparatus for sensing the natural frequency of a cantilevered body

    DOEpatents

    Duncan, Michael G.

    2000-01-01

    A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.

  7. Reconstruction of equilibrium trajectories during whole-body movements.

    PubMed

    Domen, K; Latash, M L; Zatsiorsky, V M

    1999-03-01

    The framework of the equilibrium-point hypothesis was used to reconstruct equilibrium trajectories (ETs) of the ankle, hip and body center of mass during quick voluntary hip flexions ('Japanese courtesy bow') by standing subjects. Different spring loads applied to the subject's back were used to introduce smooth perturbations that are necessary to reconstruct ETs based on a series of trials at the same task. Time patterns of muscle torques were calculated using inverse dynamics techniques. A second-order linear model was employed to calculate the instantaneous position of the spring-like joint or center of mass characteristic at different times during the movement. ETs of the joints and of the center of mass had significantly different shapes from the actual trajectories. Integral measures of electromyographic bursts of activity in postural muscles demonstrated a relation to muscle length corresponding to the equilibrium-point hypothesis.

  8. Transboundary transport of anthropogenic sulfur in PM2.5 at a coastal site in the Sea of Japan as studied by sulfur isotopic ratio measurement.

    PubMed

    Inomata, Yayoi; Ohizumi, Tsuyoshi; Take, Naoko; Sato, Keiichi; Nishikawa, Masataka

    2016-05-15

    Sulfur isotopic ratios (δ(34)S) in size separated aerosol particles (PM2.5 and coarse particles) were measured at Niigata-Maki facing the Sea of Japan. Non-sea salt δ(34)S (δ(34)Snss) in PM2.5 showed seasonal variations with relatively high values in winter (1.0-3.9‰ in spring, 2.8-4.5‰ in summer, 1.3-4.5‰ in autumn, 3.7-5.7‰ in winter). Taking into consideration air mass transport routes, δ(34)Snss in the air masses which originated in the Asian continent and were transported over the Sea of Japan to the monitoring sites were higher than those values for air masses which were transported over the Japanese islands after leaving the Asian continent for each season. Considering that the δ(34)Snss in sulfuric acid derived from domestic emissions in Japan are lower than those of δ(34)Snss in coal, the lower δ(34)Snss for the air mass transported over the Japanese islands suggest that sulfuric acid in PM2.5 modified the δ(34)Snss due to aerosol mixing with sulfuric acid in Japan. Material balance calculations suggested that the relative contribution of transboundary transport in winter was also higher than for other seasons (40-75% in spring, 51-63% in summer, 45-73% in autumn, and 53-81% in winter). In particular, the contribution to the air masses which were transported directly from the Asian continent was relatively large (75% in spring, 59% in autumn, 78% in winter) in comparison with that for the air masses which were transported over Japan. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.

    1983-01-01

    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.

  11. Attitude stability of spinning flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Barbera, F. J.

    1971-01-01

    The stability of spinning flexible satellites in a force-free environment was analyzed. The satellite was modeled as a rigid core having attached to it a flexible appendage idealized as a collection of particles (point masses) interconnected by springs. Both Liapunov and Routh-Hurwitz stability procedures are used. In the former, the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, is used as a testing function. Equations of motion are written using the hybrid coordinate formulation, which readily accepts a modal coordinate transformation ultimately allowing truncation to a level amenable to literal stability analysis. Closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane containing the system center of mass and orthogonal to the spin axis. The effects of spin on flexible bodies are discussed by considering a very elementary particle model. Control of passively unstable spacecraft is briefly considered.

  12. Effect of interaction on landing-gear behavior and dynamic loads in a flexible airplane structure

    NASA Technical Reports Server (NTRS)

    Cook, Francis E; Milwitzky, Benjamin

    1956-01-01

    The effects of interaction between a landing gear and a flexible airplane structure on the behavior of the landing gear and the loads in the structure have been studied by treating the equations of motion of the airplane and the landing gear as a coupled system. The landing gear is considered to have nonlinear characteristics typical of conventional gears, namely, velocity-squared damping, polytropic air-compression springing, and exponential tire force-deflection characteristics. For the case where only two modes of the structure are considered, an equivalent three-mass system is derived for representing the airplane and landing-gear combination, which may be used to simulate the effects of structural flexibility in jig drop tests of landing gears. As examples to illustrate the effects of interaction, numerical calculations, based on the structural properties of two large airplanes having considerably different mass and flexibility characteristics, are presented.

  13. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be...

  14. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be...

  15. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be...

  16. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be...

  17. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be...

  18. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida

    NASA Astrophysics Data System (ADS)

    Dimova, Natasha T.; Burnett, William C.; Speer, Kevin

    2011-04-01

    This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon ( 222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×10 6 m 3/day. The maximum spring flow was estimated at about 3.0×10 6 m 3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m 3 to about 6600 Bq/m 3. Such a rapid response suggests a direct connection between the deep and the surficial aquifers.

  19. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars

    PubMed Central

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G.; Chan, Marjorie A.; Yaich, Chokri

    2014-01-01

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet (“island”) stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars. The spring mounds further bear diagnostic mineralogic and magnetic properties, in comparison with their immediate surroundings. Consequently, remote sensing techniques can be very useful to identify similar spring mounds on Mars. The mechanisms (tectonic and/or hydraulic) of formation and evolution of spring mounds at the MCSH system are suitable for the proliferation and protection of life respectively. Similarly, life or its resulting biomarkers on Mars may have been protected or preserved under the spring mounds. PMID:25370379

  20. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    PubMed

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-08-28

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars. The spring mounds further bear diagnostic mineralogic and magnetic properties, in comparison with their immediate surroundings. Consequently, remote sensing techniques can be very useful to identify similar spring mounds on Mars. The mechanisms (tectonic and/or hydraulic) of formation and evolution of spring mounds at the MCSH system are suitable for the proliferation and protection of life respectively. Similarly, life or its resulting biomarkers on Mars may have been protected or preserved under the spring mounds.

  1. Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.

    PubMed

    Brant Fernandes, Rodrigo A; Diniz, Bruno; Falabella, Paulo; Ribeiro, Ramiro; Teixeira, Anderson G; Magalhães, Octaviano; Moraes, Nilva; Maia, Andre; Farah, Michel E; Maia, Mauricio; Humayun, Mark S

    2015-01-01

    To compare the water and vitreous flow rates and duty cycle (DC) between two ultrahigh-speed vitrectomy systems: pneumatic with spring return (SR) and dual pneumatic (DP) probes. The flow rate was calculated using a high-sampling precision balance that measured the mass of water and vitreous removed from a vial by a vitreous cutter. Frame-by-frame analysis of a high-speed video of the cutter was used to determine the DC. Three cutters of each gauge (20, 23, and 25 G) were tested with an SR and a DP system using the standard DC setting (biased open) at 0 (water only), 1,000, 2,000, 3,000, 4,000, and 5,000 cuts per minute (CPM) with aspiration levels of 100, 200, 300, 400, 500, and 600 mm Hg. The DC was slightly higher with the SR system using most parameters and gauges although without statistical significance. The water flow rate was somewhat higher with the SR system, except for 25 G with 4,000 and 5,000 CPM. The vitreous flow rate was similar using most parameters, with the SR system showing higher flows at lower cut rates (1,000-3,000 CPM). SR and DP systems produced similar water and vitreous flow rates. Additional studies in human eyes are necessary to confirm these findings. Copyright 2015, SLACK Incorporated.

  2. 20180318 - Curating and sharing structures and spectra for the environmental community (ACS Spring)

    EPA Science Inventory

    The increasing popularity of high mass accuracy non-target mass spectrometry methods has yielded extensive identification efforts based on spectral and chemical compound databases in the environmental community and beyond. Increasingly, new methods are relying on open data resour...

  3. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches.

    PubMed

    Karraker, Nancy E; Gibbs, James P

    2011-03-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Inertia-Controlled Twinning in Ni-Mn-Ga Actuators: A Discrete Twin-Boundary Dynamics Study

    NASA Astrophysics Data System (ADS)

    Faran, Eilon; Riccardi, Leonardo; Shilo, Doron

    2017-09-01

    A discrete twin-boundary modeling approach is applied for simulating the dynamic magnetomechanical response of a Ni-Mn-Ga actuator over a wide frequency range. The model is based on experimentally measured kinetic relation of individual twin boundaries and takes into account inertial forces due to acceleration of the actuator's mass. The calculated results show good agreement with experimental measurements performed on a specially designed Ni-Mn-Ga linear spring-mass actuator. In addition, the simulation reveals several new effects that have not been considered before and can be applied to the design of improved actuators. It is identified that the demagnetization effect plays a role of an "effective spring" and results in a resonance-type response. The effects of the actuator's mass and the twin-boundary density on the resonance response and the actuator performance are explored numerically. In particular, it is shown that mass-inertia poses an inherent upper limit over the actuator's bandwidth, which is approximately constant and equals to about 200 Hz.

  5. Regional climatology of particulate carbonaceous substances in the northern area of the east Asian Pacific rim

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kiyoshi; Minami, Hideki; Hayano, Teruaki; Uyama, Yukiko; Tanimoto, Hiroshi; Uematsu, Mitsuo

    2007-12-01

    A year-round observation of atmospheric aerosols and their associated species was conducted from March 2001 to May 2002 on Rishiri Island in the northern area of the east Asian Pacific rim region. Asian outflows brought continental air masses to this area during the period from the autumn to the spring although marine air masses from the high-latitudinal ocean often broke into this area during the midwinter. In contrast, marine air masses were predominant over this area in the summer. Particulate elemental carbon (EC) would be mainly transported with biomass smoke particles, and seasonal variation in its concentrations was well correlated with the air mass alternation, showing higher concentrations during the period from the autumn to the spring with some decreases in the midwinter. The concentrations of particulate organic carbon (OC) showed a similar seasonal trend with those of the particulate EC, but relatively high concentrations were found in the summer due to photochemical secondary productions. The particulate OC that is vaporized by heating at higher temperatures (OCHT) would be mainly carried with the biomass smoke, and the particulate OC that is vaporized at lower temperatures (OCLT) would be mainly caused by secondary production processes. Summer enhancements of the secondary species, such as OC and nss-SO42-, caused decreases in the ratio of EC/PM2.5, which would contribute to the high single scattering albedo of fine aerosols in the summer. Aerosols in the Asian outflows in this area are relatively "black" in the winter, although the aerosol mass loading increases in the spring.

  6. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Spring switch; selection of signal control... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.13 Spring switch... facing movements over a main track spring switch shall be selected through the contacts of a switch...

  7. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Spring switch; selection of signal control... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.13 Spring switch... facing movements over a main track spring switch shall be selected through the contacts of a switch...

  8. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring switch; selection of signal control... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.13 Spring switch... facing movements over a main track spring switch shall be selected through the contacts of a switch...

  9. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Spring switch; selection of signal control... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.13 Spring switch... facing movements over a main track spring switch shall be selected through the contacts of a switch...

  10. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Spring switch; selection of signal control... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.13 Spring switch... facing movements over a main track spring switch shall be selected through the contacts of a switch...

  11. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  12. Radioactivity of Nevada hot-spring systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenberg, H.A.

    1974-01-01

    Field gamma radiometry and laboratory gamma spectrometry of waters and spring deposits were accomplished for some hot-sprin systems in northern Nevada. Gamma dose rates measured on-site range from 2 to 500 mu rphr, and depend msinly on the amounts of the natural radioelements in the spring deposits. At several locations /sup 222/Rn, emanating from the water, casuses recognizable ganna anomalies. High radioactivities, primarily from /sup 226/Ra, are associated with hot-spring systems dominated by CaCO/sub 3/, while silica-dominated systems sre relatively low in radioactivity. Gamma spectrometry disclosed the enrichment of / sup 226/Ra with respect to its parent U in CaCO/submore » 3/-dominated systems. /sup 226/Ra preferentially associates with Ca; therefore, where tufa and siliceous sinter are present in a deposit, the calcareous material is highest in radioacnvity. Spring deposits at fast-flowing CaCO/sub 3/-dominated systems are generally less radioactive than calcareous deposits at slower flowing springs. (auth)« less

  13. Optimum design of a novel pounding tuned mass damper under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing

    2017-05-01

    In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.

  14. Reducing Floor Impact Vibration and Sound Using a Momentum Exchange Impact Damper

    NASA Astrophysics Data System (ADS)

    Son, Lovely; Kawachi, Makoto; Matsuhisa, Hiroshi; Utsuno, Hideo

    This paper deals with reducing floor impact vibration and sound by using a momentum exchange impact damper. The impact damper consists of a spring and a mass that is contact with the floor. When a falling object collides with the floor, the floor interacts with the damper mass, and the momentum of the falling object is transferred to the damper. In this works a computational model is formulated to simulate dynamic floor vibration induced by impact. The floor vibration is simulated for various sized damper masses. A proof-of-concept experimental apparatus was fabricated to represent a floor with an impact damper. This example system consists of an acrylic plate, a ball for falling object, and an impact damper. A comparison between simulated and experimental results were in good agreement in suggesting that the proposed impact damper is effective at reducing floor impact vibration and sound by 25% and 63%, respectively.

  15. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Jerry M; Baskin, Carol C

    2014-01-01

    Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat.

  16. Market basket analysis visualization on a spherical surface

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Hsu, Meichun; Dayal, Umeshwar; Wei, Shu F.; Sprenger, Thomas; Holenstein, Thomas

    2001-05-01

    This paper discusses the visualization of the relationships in e-commerce transactions. To date, many practical research projects have shown the usefulness of a physics-based mass- spring technique to layout data items with close relationships on a graph. We describe a market basket analysis visualization system using this technique. This system is described as the following: (1) integrates a physics-based engine into a visual data mining platform; (2) use a 3D spherical surface to visualize the cluster of related data items; and (3) for large volumes of transactions, uses hidden structures to unclutter the display. Several examples of market basket analysis are also provided.

  17. Vapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep hydrothermal system and its effects on thermal springs

    NASA Astrophysics Data System (ADS)

    Federico, Cinzia; Inguaggiato, Salvatore; Chacón, Zoraida; Londoño, John Makario; Gil, Edwing; Alzate, Diego

    2017-10-01

    The Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local hydrothermal system has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the hydrothermal system as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, still maintains a moderate alert, as required by the high seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at 2600-5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes. Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl 1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesized to be separated from a high-temperature hydrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a biphasic hydrothermal system characterized by the following parameters: t = 315 °C, P = 15 MPa, NaCl = 10 wt%, CO2 = 5 wt%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, pH would approach the value of 1.5 while fO2 would correspond to the FeO-Fe2O3 buffer. Chlorine content is estimated at 10,300 mg/l. Changes in the magmatic input into the hydrothermal system could modify its degree of vapourization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation.

  18. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  19. 76 FR 39072 - Notice of Availability of a Final Environmental Impact Statement and Final Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... listed and six unlisted species of fish covered by Kent's Clark Springs Water Supply HCP. This notice... applications are for the operation and maintenance of Kent's Clark Springs Water Supply System adjacent to Rock Creek, King County, Washington. The Clark Springs Water Supply System consists of a spring-fed...

  20. Nitrate and herbicide loading in two groundwater basins of Illinois' sinkhole plain

    USGS Publications Warehouse

    Panno, S.V.; Kelly, W.R.

    2004-01-01

    This investigation was designed to estimate the mass loading of nitrate (NO3-) and herbicides in spring water discharging from groundwater basins in an agriculturally dominated, mantled karst terrain. The loading was normalized to land use and NO3- and herbicide losses were compared to estimated losses in other agricultural areas of the Midwestern USA. Our study area consisted of two large karst springs that drain two adjoining groundwater basins (total area of 37.7 km2) in southwestern Illinois' sinkhole plain, USA. The springs and stream that they form were monitored for almost 2 years. Nitrate-nitrogen (NO3-N) concentrations at three monitoring sites were almost always above the background concentration (1.9 mg/l). NO3-N concentrations at the two springs ranged from 1.08 to 6.08 with a median concentration of 3.61 mg/l. Atrazine and alachlor concentrations ranged from <0.01 to 34 ??g/l and <0.01 to 0.98 ??g/l, respectively, with median concentrations of 0.48 and 0.12 ??g/l, respectively. Approximately 100,000 kg/yr of NO3-N, 39 kg/yr of atrazine, and 2.8 kg/yr of alachlor were discharged from the two springs. Slightly more than half of the discharged NO3- came from background sources and most of the remainder probably came from fertilizer. This represents a 21-31% loss of fertilizer N from the groundwater basins. The pesticide losses were 3.8-5.8% of the applied atrazine, and 0.05-0.08% of the applied alachlor. The loss of atrazine adsorbed to the suspended solid fraction was about 2 kg/yr, only about 5% of the total mass of atrazine discharged from the springs. ?? 2004 Elsevier B.V. All rights reserved.

  1. Dissolved gas concentrations of the geothermal fluids in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  2. Torsional vibration measurements on rotating shaft system using laser doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Xiang, Ling; Yang, Shixi; Gan, Chunbiao

    2012-11-01

    In this work, a laser torsional vibrameter was used to measure the torsion vibration of a rotating shaft system under electrical network impact. Based on the principles of laser Doppler velocimetry, the laser torsional vibrometer (LTV) are non-contact measurement of torsional oscillation of rotating shafts, offering significant advantages over conventional techniques. Furthermore, a highly complex shafting system is analyzed by a modified Riccati torsional transfer matrix. The system is modeled as a chain consisting of an elastic spring with concentrated mass points, and the multi-segments lumped mass model is established for this shafting system. By the modified Riccati torsional transfer matrix method, an accumulated calculation is effectively eliminated to obtain the natural frequencies. The electrical network impacts can activize the torsional vibration of shaft system, and the activized torsion vibration frequencies contained the natural frequencies of shaft system. The torsional vibrations of the shaft system were measured under electrical network impacts in laser Doppler torsional vibrometer. By comparisons, the natural frequencies by measurement were consistent with the values by calculation. The results verify the instrument is robust, user friendly and can be calibrated in situ. The laser torsional vibrometer represents a significant step forward in rotating machinery diagnostics.

  3. Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation

    NASA Astrophysics Data System (ADS)

    Egger, Philipp; Caracoglia, Luca

    2015-09-01

    Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.

  4. Reproductive success and failure: the role of winter body mass in reproductive allocation in Norwegian moose.

    PubMed

    Milner, Jos M; van Beest, Floris M; Solberg, Erling J; Storaas, Torstein

    2013-08-01

    A life history strategy that favours somatic growth over reproduction is well known for long-lived iteroparous species, especially in unpredictable environments. Risk-sensitive female reproductive allocation can be achieved by a reduced reproductive effort at conception, or the subsequent adjustment of investment during gestation or lactation in response to unexpected environmental conditions or resource availability. We investigated the relative importance of reduced investment at conception compared with later in the reproductive cycle (i.e. prenatal, perinatal or neonatal mortality) in explaining reproductive failure in two high-density moose (Alces alces) populations in southern Norway. We followed 65 multiparous, global positioning system (GPS)-collared females throughout the reproductive cycle and focused on the role of maternal nutrition during gestation in determining reproductive success using a quasi-experimental approach to manipulate winter forage availability. Pregnancy rates in early winter were normal (≥0.8) in all years while spring calving rates ranged from 0.4 to 0.83, with prenatal mortality accounting for most of the difference. Further losses over summer reduced autumn recruitment rates to 0.23-0.69, despite negligible predation. Over-winter mass loss explained variation in both spring calving and autumn recruitment success better than absolute body mass in early or late winter. Although pregnancy was related to body mass in early winter, overall reproductive success was unrelated to pre-winter body condition. We therefore concluded that reproductive success was limited by winter nutritional conditions. However, we could not determine whether the observed reproductive allocation adjustment was a bet-hedging strategy to maximise reproduction without compromising survival or whether females were simply unable to invest more resources in their offspring.

  5. Silicon micromachined accelerometer/seismometer and method of making the same

    NASA Technical Reports Server (NTRS)

    Martin, Richard D. (Inventor); Pike, W. Thomas (Inventor)

    2001-01-01

    A silicon-based microaccelerometer for seismic application is provided using a low-resonant frequency (10 Hz), large proof mass (1 gram), and high Q suspension to achieve high sensitivity of less than 1 ng with a bandwidth a 0.05 to 50 Hz. The proof mass is cut away from a planar substrate in the form of a disk using abrasive cutting, which disk closely fits but does not touch a surrounding angular frame. The spring of the microaccelerometer between the angular frame and the proof mass is provided from two continuous, 3 microns thick membranes. The fixed capacitive electrodes are provided on separate, subsequently bonded substrates, and movable capacitive plates are provided on the membranes. By fabricating capacitive plates on the separate substrates, the gap between the fixed and movable capacitive plates in the differential capacitive sensor is closely controlled. The use of continuous membranes for the spring produces a shock resistant, robust sensor.

  6. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.

    PubMed

    Sobhani Tehrani, Ehsan; Jalaleddini, Kian; Kearney, Robert E

    2017-09-01

    This paper describes a new small signal parametric model of ankle joint intrinsic mechanics in normal subjects. We found that intrinsic ankle mechanics is a third-order system and the second-order mass-spring-damper model, referred to as IBK, used by many researchers in the literature cannot adequately represent ankle dynamics at all frequencies in a number of important tasks. This was demonstrated using experimental data from five healthy subjects with no voluntary muscle contraction and at seven ankle positions covering the range of motion. We showed that the difference between the new third-order model and the conventional IBK model increased from dorsi to plantarflexed position. The new model was obtained using a multi-step identification procedure applied to experimental input/output data of the ankle joint. The procedure first identifies a non-parametric model of intrinsic joint stiffness where ankle position is the input and torque is the output. Then, in several steps, the model is converted into a continuous-time transfer function of ankle compliance, which is the inverse of stiffness. Finally, we showed that the third-order model is indeed structurally consistent with agonist-antagonist musculoskeletal structure of human ankle, which is not the case for the IBK model.

  7. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

    NASA Astrophysics Data System (ADS)

    Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui

    2012-12-01

    This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.

  8. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  9. 20180318 - Structure identification by Mass Spectrometry Non-Targeted Analysis using the US EPA’s CompTox Chemistry Dashboard (ACS Spring)

    EPA Science Inventory

    Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...

  10. A Smartphone Inertial Balance

    ERIC Educational Resources Information Center

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  11. A low frequency rotational energy harvesting system

    NASA Astrophysics Data System (ADS)

    Febbo, M.; Machado, S. P.; Ramirez, J. M.; Gatti, C. D.

    2016-11-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation.

  12. Equilibration of energy in slow–fast systems

    PubMed Central

    Shah, Kushal; Gelfreich, Vassili; Rom-Kedar, Vered

    2017-01-01

    Ergodicity is a fundamental requirement for a dynamical system to reach a state of statistical equilibrium. However, in systems with several characteristic timescales, the ergodicity of the fast subsystem impedes the equilibration of the whole system because of the presence of an adiabatic invariant. In this paper, we show that violation of ergodicity in the fast dynamics can drive the whole system to equilibrium. To show this principle, we investigate the dynamics of springy billiards, which are mechanical systems composed of a small particle bouncing elastically in a bounded domain, where one of the boundary walls has finite mass and is attached to a linear spring. Numerical simulations show that the springy billiard systems approach equilibrium at an exponential rate. However, in the limit of vanishing particle-to-wall mass ratio, the equilibration rates remain strictly positive only when the fast particle dynamics reveal two or more ergodic components for a range of wall positions. For this case, we show that the slow dynamics of the moving wall can be modeled by a random process. Numerical simulations of the corresponding springy billiards and their random models show equilibration with similar positive rates. PMID:29183966

  13. Parameters influencing the regeneration of a green roof's retention capacity via evapotranspiration

    NASA Astrophysics Data System (ADS)

    Poë, Simon; Stovin, Virginia; Berretta, Christian

    2015-04-01

    The extent to which the finite hydrological capacity of a green roof is available for retention of a storm event largely determines the scale of its contribution as a Sustainable Drainage System (SuDS). Evapotranspiration (ET) regenerates the retention capacity at a rate that is variably influenced by climate, vegetation treatment, soil and residual moisture content. Experimental studies have been undertaken to monitor the drying cycle behaviour of 9 different extensive green roof configurations with 80 mm substrate depth. A climate-controlled chamber at the University of Sheffield replicated typical UK spring and summer diurnal cycles. The mass of each microcosm, initially at field capacity, was continuously recorded, with changes inferred to be moisture loss/gain (or ET/dew). The ranges of cumulative ET following a 28 day dry weather period (ADWP) were 0.6-1.0 mm/day in spring and 0.7-1.25 mm/day in summer. These ranges reflect the influence of configuration on ET. Cumulative ET was highest from substrates with the greatest storage capacity. Significant differences in ET existed between vegetated and non-vegetated configurations. Initially, seasonal mean ET was affected by climate. Losses were 2.0 mm/day in spring and 3.4 mm/day in summer. However, moisture availability constrained ET, which fell to 1.4 mm/day then 1.0 mm/day (with an ADWP of 7 and 14 days) in spring; compared to 1.0 mm/day and 0.5 mm/day in summer. A modelling approach, which factors Potential Evapotranspiration (PET) according to stored moisture content, predicts daily ET with very good accuracy (PBIAS = 2.0% [spring]; -0.8% [summer]).

  14. Seasonal origins of air masses transported to Mount Wrangell, Alaska, and comparison with the past atmospheric dust and tritium variations in its ice core

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2006-12-01

    The North Pacific region is subject to various climatic phenomena such as the Pacific Decadal Oscillation (PDO), the El Niño-Southern Oscillation (ENSO), and the Arctic Oscillation (AO), significantly affecting the ocean and the atmosphere. Additionally, material circulation is also very active in this region such as spring dust storms in the desert and arid regions of East Asia and forest fires in Siberia and Alaska. Understanding the complex connections among the climatic phenomena and the material circulation would help in attempts to predict future climate changes. For this subject, we drilled a 50-m ice core at the summit of Mount Wrangell, which is located near the coast of Alaska (62°162'170"162°171'N, 144°162'170"162;°171'W, and 4100-m). We analyzed dust particle number density, tritium concentration, and 171 171 171 171 170 162 171 D in the core. The ice core spanned the years from 1992 to 2002 and we finally divided the years into five parts (early-spring; late-spring; summer; fall; winter). Dust and tritium amounts varied annually and intra-annually. For further understanding of the factors on those variations, we should know the origins of the seasonal dust and tritium. Hence, we examined their origins by the calculation of everyday 10-days backward trajectory analysis from January 1992 to August 2002 with 3-D wind data of the European Center for Medium-Range Weather Forecast (ECMWF). In early spring, the air mass from East Asia increased and it also explained dust increases in springtime, although the air contribution in winter increased too. In late spring, the air mass from the stratosphere increased, and it also corresponded to the stratospheric tritium increase in the ice core. The air masses from Siberia and the North Pacific in the mid-latitude always significantly contributed to Mount Wrangell, although those maximum contributions were fall and summer, respectively. The air mass originating in the interior of Alaska and North America did not contribute to Mount Wrangell so much. Intra-annual data of ice core is important for the discussion of detailed-seasonal climate variations in the periods when there are no meteorological data. Our preliminary study suggests that we may be able to obtain an important perspective on seasonal climate change in the past by connecting meteorological analysis with ice core data.

  15. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  16. Large springs of east Tennessee

    USGS Publications Warehouse

    Sun, Pao-chang P.; Criner, J.H.; Poole, J.L.

    1963-01-01

    Springs constitute an important source of water in east Tennessee, and many individual springs are capable of supplying the large quantities needed for municipal and industrial supplies. Most of the springs in east Tennessee issue from solution openings and fractured and faulted zones in limestone and dolomite of the Knox Group, Chickamauga Limestone, and Conasauga Group. The ability of these rocks to yield a sustained flow of water to springs is dependent on a system of interconnected openings through which water can infiltrate from the land surface and move to points of natural discharge. Ninety springs were selected for detailed study, and 84 of these are analyzed in terms of magnitude and variability of discharge. Of the 84 springs analyzed, 4 flow at an average rate of 10 to 100 cfs (cubic feet per second), 62 at an average rate of 1 to 10 cfs, and 18 at an average rate of 1 cfs or less. Of the 90 springs, 75 are variable in their discharge; that is, the ratio of their fluctuations to their average discharges exceeds 100 percent. Mathematical analysis of the flow recession curve of Mill Spring near Jefferson City shows that the hydrologic system contributing to the flow of the spring has an effective capacity of about 70 million cubic feet of water. The rate of depletion of this volume of water, in the absence of significant precipitation, averages 0.0056 cfs per day between the time when the hydrologic system is full and the time when the spring ceases to flow. From such a curve it is possible to determine at any time the residual volume of water remaining in the system and the expected rate of decrease in discharge from that time to cessation of flow. Correlation of discharge measurements of 22 springs with those of Mill Spring shows that rough approximations of discharge can be projected for springs for which few measurements are available. Seventeen of the springs analyzed in this manner show good correlation with Mill Spring: that is, their coefficients of correlation were 0.70 or better as compared with a perfect correlation factor of 1.00.

  17. Optical spring stabilization

    NASA Astrophysics Data System (ADS)

    Lough, James D.

    The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.

  18. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  19. MPPhys—A many-particle simulation package for computational physics education

    NASA Astrophysics Data System (ADS)

    Müller, Thomas

    2014-03-01

    In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent

  20. Hydrological evolution and chemical structure of a hyper-acidic spring-lake system on Whakaari/White Island, NZ

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; White, S.; Britten, K.; Scott, B. J.

    2017-10-01

    White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on its main crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. Between 1976 and 1978, the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydraulic gradients in the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with discharge from the main crater declining by a factor > 100 by 1979. Eruptive activity ended shortly after a moderate Strombolian eruption in mid-2000, after which ephemeral lakes started to form in the eruption crater complex. Between 2003 and 2015 there were three complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values temporally ranging from + 1.5 to - 1. Springs appeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and underlying acidic brine fluids. Source components for the spring fluids include magmatic vapour, dissolved andesitic host rocks, seawater and meteoric water. Lake waters, on the other hand, consist predominantly of magmatic vapour, meteoric water and solutes derived from host andesites and their altered derivatives. δ2H and δ18O signatures of the enclosing acid brine fluids, indicate they are predominantly seawater which have been affected by both vapour loss, but also mixing with arc-type vapour. An interesting finding of this study is that crater floor deformation correlates directly to both lake level and volatile emissions, in an apparent poroelastic response to the establishment of a hydrostatic water column in the eruption crater complex, and a net decrease in permeability owing to hydrothermal mineralization in the conduit (predominantly elemental sulfur and sulfate minerals). The hydrostatic pressurization of the vent environment also leads to increased gas pressures and flows through fumarolic channels, and consequent expansion of fumarolic areas on the main crater floor. A period of unrest, which commenced in August 2012 and lasted until October 2013, included the extrusion of a small dome into the eruption crater complex. This activity, and related high heat flow, led once again to evaporation of the lake, and ongoing phreatic eruption activity which has provided interesting insights into the role which elemental sulfur, associated hydrothermal alteration minerals and of course water play in regulating pressures in the magmatic-hydrothermal environment.

  1. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall..., shall be installed on both front springs, both rear springs, or on all four springs. Shock absorber...

  2. 7. GENERAL VIEW OF INTERIOR OF MEETINGHOUSE FROM SOUTHEAST SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. GENERAL VIEW OF INTERIOR OF MEETINGHOUSE FROM SOUTHEAST SHOWING CLERESTORY ARRANGEMENT AND SUPPORT SYSTEM - Sulphur Springs Methodist Campground, Sulphur Springs Road (Sulphur Springs), Sulphur Springs, Washington County, TN

  3. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall..., shall be installed on both front springs, both rear springs, or on all four springs. Shock absorber...

  4. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall..., shall be installed on both front springs, both rear springs, or on all four springs. Shock absorber...

  5. 49 CFR 570.8 - Suspension systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cracked. Structural parts shall not be bent or damaged. Stabilizer bars shall be connected. Springs shall..., shall be installed on both front springs, both rear springs, or on all four springs. Shock absorber...

  6. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    NASA Astrophysics Data System (ADS)

    Smith, Christopher N.; Kesler, Stephen E.; Blum, Joel D.; Rytuba, James J.

    2008-05-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300 m) and silica-carbonate deposits that extend to depths of 1000 m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions ( δ202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ± 0.5‰) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO 2 vapor or reduction and volatilization of Hg (0) in the near-surface environment are likely the most important processes causing the observed Hg isotope fractionation. This should result in the release of mercury with low δ202Hg values into the atmosphere from the top of these hydrothermal systems. Estimates of mass balance suggest that residual Hg reservoirs are not measurably enriched in heavy Hg isotopes as a result of this process because only a small amount of Hg (< 4%) leaves actively ore-forming systems.

  7. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    USGS Publications Warehouse

    Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J.

    2008-01-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300??m) and silica-carbonate deposits that extend to depths of 1000??m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions (??202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although ??202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean ??202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ?? 0.5???) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO2 vapor or reduction and volatilization of Hg(0) in the near-surface environment are likely the most important processes causing the observed Hg isotope fractionation. This should result in the release of mercury with low ??202Hg values into the atmosphere from the top of these hydrothermal systems. Estimates of mass balance suggest that residual Hg reservoirs are not measurably enriched in heavy Hg isotopes as a result of this process because only a small amount of Hg (< 4%) leaves actively ore-forming systems. ?? 2008 Elsevier B.V. All rights reserved.

  8. Spheres of discharge of springs

    NASA Astrophysics Data System (ADS)

    Springer, Abraham E.; Stevens, Lawrence E.

    2009-02-01

    Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.

  9. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... locking pins missing or disengaged. (c) Leaf springs. No leaf spring shall be cracked, broken, or missing nor shifted out of position. (d) Coil springs. No coil spring shall be cracked or broken. (e) Torsion...

  10. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... locking pins missing or disengaged. (c) Leaf springs. No leaf spring shall be cracked, broken, or missing nor shifted out of position. (d) Coil springs. No coil spring shall be cracked or broken. (e) Torsion...

  11. 49 CFR 393.207 - Suspension systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... locking pins missing or disengaged. (c) Leaf springs. No leaf spring shall be cracked, broken, or missing nor shifted out of position. (d) Coil springs. No coil spring shall be cracked or broken. (e) Torsion...

  12. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is more or less in agreement with low resisitivity boundary derived from MT and DC resistivity survey. The area defined as part of geothermal area from this method is also validate with drilling data that give high temperature gradient. It suggests that the method use in this study is applicable and reliable.

  13. 49 CFR 230.111 - Spring rigging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Spring rigging. 230.111 Section 230.111... Tenders Trucks, Frames and Equalizing System § 230.111 Spring rigging. (a) Arrangement of springs and equalizers. Springs and equalizers shall be arranged to ensure the proper distribution of weight to the...

  14. 49 CFR 230.111 - Spring rigging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Spring rigging. 230.111 Section 230.111... Tenders Trucks, Frames and Equalizing System § 230.111 Spring rigging. (a) Arrangement of springs and equalizers. Springs and equalizers shall be arranged to ensure the proper distribution of weight to the...

  15. 49 CFR 230.111 - Spring rigging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring rigging. 230.111 Section 230.111... Tenders Trucks, Frames and Equalizing System § 230.111 Spring rigging. (a) Arrangement of springs and equalizers. Springs and equalizers shall be arranged to ensure the proper distribution of weight to the...

  16. 49 CFR 230.111 - Spring rigging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Spring rigging. 230.111 Section 230.111... Tenders Trucks, Frames and Equalizing System § 230.111 Spring rigging. (a) Arrangement of springs and equalizers. Springs and equalizers shall be arranged to ensure the proper distribution of weight to the...

  17. Skylab

    NASA Image and Video Library

    1972-08-21

    Rockford, Illinois high school student, Vincent Converse, discussed his proposed Skylab experiment with Dr. Robert Head (right) and Gene Greshman of Marshall Space Flight Center (MSFC). His experiment, “Zero Gravity Mass Measurement” used a simple leaf spring with the mass to be weighed attached to the end. The electronic package oscillated the spring at a specific rate and the results were recorded electronically. Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment, such as that of Converse’s experiment.

  18. Simplifications in modelling of dynamical response of coupled electro-mechanical system

    NASA Astrophysics Data System (ADS)

    Darula, Radoslav; Sorokin, Sergey

    2016-12-01

    The choice of a most suitable model of an electro-mechanical system depends on many variables, such as a scale of the system, type and frequency range of its operation, or power requirements. The article focuses on the model of the electromagnetic element used in passive regime (no feedback loops are assumed) and a general lumped parameter model (a conventional mass-spring-damper system coupled to an electric circuit consisting of a resistance, an inductance and a capacitance) is compared with its simplified version, where the full RLC circuit is replaced with its RL simplification, i.e. the capacitance of the electric system is neglected and just its inductance and the resistance are considered. From the comparison of dynamical responses of these systems, the range of applicability of a simplified model is assessed for free as well as forced vibration.

  19. Static Design and Finite Element Analysis of Innovative CFRP Transverse Leaf Spring

    NASA Astrophysics Data System (ADS)

    Carello, M.; Airale, A. G.; Ferraris, A.; Messana, A.; Sisca, L.

    2017-12-01

    This paper describes the design and the numerical modelization of a novel transverse Carbon Fiber Reinforced Plastic (CFRP) leaf-spring prototype for a multilink suspension. The most significant innovation is in the functional integration where the leaf spring has been designed to work as spring, anti-roll bar, lower and longitudinal arms at the same time. In particular, the adopted work flow maintains a very close correlation between virtual simulations and experimental tests. Firstly, several tests have been conducted on the CFRP specimen to characterize the material property. Secondly, a virtual card fitting has been carried out in order to set up the leaf-spring Finite Element (FE) model using CRASURV formulation as material law and RADIOSS as solver. Finally, extensive tests have been done on the manufactured component for validation. The results obtained show a good agreement between virtual simulation and experimental tests. Moreover, this solution enabled the suspension to reduce about 75% of the total mass without losing performance.

  20. Plane stress problems using hysteretic rigid body spring network models

    NASA Astrophysics Data System (ADS)

    Christos, Sofianos D.; Vlasis, Koumousis K.

    2017-10-01

    In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.

  1. A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust

    NASA Astrophysics Data System (ADS)

    Boreddy, S. K. R.; Kawamura, K.

    2015-06-01

    In order to characterize the long-term trend of remote marine aerosols, a 12-year observation was conducted for water-soluble ions in TSP (total suspended particulate) aerosols collected from 2001 to 2012 in the Asian outflow region at Chichijima Island in the western North Pacific. We found a clear difference in chemical composition between the continentally affected and marine background air masses over the observation site. Asian continental air masses are delivered from late autumn to spring, whereas marine air masses were dominated in summer. Concentrations of non-sea salt (nss-) SO42-, NO3-, NH4+, nss-K+ and nss-Ca2+ are high in winter and spring and low in summer. On the other hand, MSA- (methanesulfonate) exhibits higher concentrations during spring and winter, probably due to springtime dust bloom or due to the direct continental transport of MSA- to the observation site. We could not find any clear decadal trend for Na+, Cl-, Mg2+ and nss-Ca2+ in all seasons, although there exists a clear seasonal trend. However, concentrations of nss-SO42- continuously decreased from 2007 to 2012, probably due to the decreased SO2 emissions in East Asia especially in China. In contrast, nss-K+ and MSA- concentrations continuously increased from 2001 to 2012 during winter and spring seasons, demonstrating that biomass burning and/or terrestrial biological emissions in East Asia are being increasingly transported from the Asian continent to the western North Pacific. This study also demonstrates that Asian dusts can act as an important source of nutrients for phytoplankton and thus sea-to-air emission of dimethyl sulfide over the western North Pacific.

  2. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  3. Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion

    NASA Astrophysics Data System (ADS)

    Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen

    2016-03-01

    Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.

  4. Design of a Telescopic Linear Actuator Based on Hollow Shape Memory Springs

    NASA Astrophysics Data System (ADS)

    Spaggiari, Andrea; Spinella, Igor; Dragoni, Eugenio

    2011-07-01

    Shape memory alloys (SMAs) are smart materials exploited in many applications to build actuators with high power to mass ratio. Typical SMA drawbacks are: wires show poor stroke and excessive length, helical springs have limited mechanical bandwidth and high power consumption. This study is focused on the design of a large-scale linear SMA actuator conceived to maximize the stroke while limiting the overall size and the electric consumption. This result is achieved by adopting for the actuator a telescopic multi-stage architecture and using SMA helical springs with hollow cross section to power the stages. The hollow geometry leads to reduced axial size and mass of the actuator and to enhanced working frequency while the telescopic design confers to the actuator an indexable motion, with a number of different displacements being achieved through simple on-off control strategies. An analytical thermo-electro-mechanical model is developed to optimize the device. Output stroke and force are maximized while total size and power consumption are simultaneously minimized. Finally, the optimized actuator, showing good performance from all these points of view, is designed in detail.

  5. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time

    PubMed Central

    Lu, Yuhua; Liu, Qian

    2018-01-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870

  6. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    PubMed

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  7. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides).

    PubMed

    Li, Chen; Hsieh, S Tonia; Goldman, Daniel I

    2012-09-15

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high-speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot and substrate mechanics contribute to its high locomotor performance. Running at ~10 body lengths s(-1) (~1 m s(-1)), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves ~40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  8. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    USGS Publications Warehouse

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  9. A spring-matrix model for pigment translocation in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi (Crustacea, Decapoda).

    PubMed

    Boyle, Robert Tew; McNamara, John Campbell

    2008-04-01

    A model for intracellular transport of pigment granules in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi is proposed on the basis of shifts in the equilibrium of resting forces acting on an elastic pigment matrix. The model describes a pigment-transport mechanism in which mechanochemical protein motors like kinesin and myosin alternately stretch and compress a structurally unified, elastic pigment matrix. Quantifiable properties of the spring-matrix obey Hooke's Law during the rapid phases of pigment aggregation and dispersion. The spring-like response of the pigment mass is estimated from previous kinetic experiments on pigment translocation induced by red pigment concentrating hormone, or by the calcium ionophore A23187. Both translocation effectors trigger an initial phase of rapid pigment aggregation, and their removal or washout after complete aggregation produces a phase of rapid pigment dispersion, followed by slow pigment translocation. The rapid-phase kinetics of pigment transport are in reasonable agreement with Hooke's Law, suggesting that such phases represent the release of kinetic energy, probably produced by the mechanochemical protein motors and stored in the form of matrix deformation during the slow phases of translocation. This semiquantitative model should aid in analyzing intracellular transport systems that incorporate an elastic component.

  10. Transient nature of Arctic spring systems driven by subglacial meltwater

    NASA Astrophysics Data System (ADS)

    Scheidegger, J. M.; Bense, V. F.; Grasby, S. E.

    2012-06-01

    In the High Arctic, supra- and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet-based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps.

  11. Applications of multiple-constraint matrix updates to the optimal control of large structures

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Walcott, B. L.

    1992-01-01

    Low-authority control or vibration suppression in large, flexible space structures can be formulated as a linear feedback control problem requiring computation of displacement and velocity feedback gain matrices. To ensure stability in the uncontrolled modes, these gain matrices must be symmetric and positive definite. In this paper, efficient computation of symmetric, positive-definite feedback gain matrices is accomplished through the use of multiple-constraint matrix update techniques originally developed for structural identification applications. Two systems were used to illustrate the application: a simple spring-mass system and a planar truss. From these demonstrations, use of this multiple-constraint technique is seen to provide a straightforward approach for computing the low-authority gains.

  12. Effect of the mandible on mouthguard measurements of head kinematics.

    PubMed

    Kuo, Calvin; Wu, Lyndia C; Hammoor, Brad T; Luck, Jason F; Cutcliffe, Hattie C; Lynall, Robert C; Kait, Jason R; Campbell, Kody R; Mihalik, Jason P; Bass, Cameron R; Camarillo, David B

    2016-06-14

    Wearable sensors are becoming increasingly popular for measuring head motions and detecting head impacts. Many sensors are worn on the skin or in headgear and can suffer from motion artifacts introduced by the compliance of soft tissue or decoupling of headgear from the skull. The instrumented mouthguard is designed to couple directly to the upper dentition, which is made of hard enamel and anchored in a bony socket by stiff ligaments. This gives the mouthguard superior coupling to the skull compared with other systems. However, multiple validation studies have yielded conflicting results with respect to the mouthguard׳s head kinematics measurement accuracy. Here, we demonstrate that imposing different constraints on the mandible (lower jaw) can alter mouthguard kinematic accuracy in dummy headform testing. In addition, post mortem human surrogate tests utilizing the worst-case unconstrained mandible condition yield 40% and 80% normalized root mean square error in angular velocity and angular acceleration respectively. These errors can be modeled using a simple spring-mass system in which the soft mouthguard material near the sensors acts as a spring and the mandible as a mass. However, the mouthguard can be designed to mitigate these disturbances by isolating sensors from mandible loads, improving accuracy to below 15% normalized root mean square error in all kinematic measures. Thus, while current mouthguards would suffer from measurement errors in the worst-case unconstrained mandible condition, future mouthguards should be designed to account for these disturbances and future validation testing should include unconstrained mandibles to ensure proper accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Braking System for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  14. Prioritizing conservation potential of arid-land montane natural springs and associated riparian areas

    USGS Publications Warehouse

    Thompson, B.C.; Matusik-Rowan, P. L.; Boykin, K.G.

    2002-01-01

    Using inventory data and input from natural resource professionals, we developed a classification system that categorizes conservation potential for montane natural springs. This system contains 18 classes based on the presence of a riparian patch, wetland species, surface water, and evidence of human activity. We measured physical and biological components of 276 montane springs in the Oscura Mountains above 1450 m and the San Andres Mountains above 1300 m in southern New Mexico. Two of the 18 classes were not represented during the inventory, indicating the system applies to conditions beyond the montane springs in our study area. The class type observed most often (73 springs) had a riparian patch, perennial surface water, and human evidence. We assessed our system in relation to 13 other wetland and riparian classification systems regarding approach, area of applicability, intended users, validation, ease of use, and examination of system response. Our classification can be used to rapidly assess priority of conservation potential for isolated riparian sites, especially springs, in arid landscapes. We recommend (1) including this classification in conservation planning, (2) removing deleterious structures from high-priority sites, and (3) assessing efficiency and use of this classification scheme elsewhere. ?? 2002 Elsevier Science Ltd.

  15. Hydrogeologic characteristics of four public drinking-water supply springs in northern Arkansas

    USGS Publications Warehouse

    Galloway, Joel M.

    2004-01-01

    In October 2000, a study was undertaken by the U.S. Geological Survey (USGS) in cooperation with the Arkansas Department of Health to determine the hydrogeologic characteristics, including the extent of the recharge areas, for Hughes Spring, Stark Spring, Evening Shade Spring, and Roaring Spring, which are used for public-water supply in northern Arkansas. Information pertaining to each spring can be used to enable development of effective management plans to protect these water resources and public health. An integrated approach to determine the ground-water characteristics and the extent of the local recharge areas of the four springs incorporated tools and methods of hydrology, structural geology, geomorphology, geophysics, and geochemistry. Analyses of discharge, temperature, and water quality were completed to describe ground-water flow characteristics, source-water characteristics, and connectivity of the ground-water system with surface runoff. Water-level contour maps were constructed to determine ground-water flow directions and ground-water tracer tests were conducted to determine the extent of the recharge areas and ground-water flow velocities. Hughes Spring supplies water for the city of Marshall, Arkansas, and the surrounding area. The mean annual discharge for Hughes Spring was 2.9 and 5.2 cubic feet per second for water years 2001 and 2002, respectively. Recharge to the spring occurs mainly from the Boone Formation (Springfield Plateau aquifer). Ground-water tracer tests indicate the recharge area for Hughes Spring generally coincides with the surface drainage area (15.8 square miles) and that Hughes Spring is connected directly to the surface flow in Brush Creek. The geochemistry of Hughes Spring demonstrated variations with flow conditions and the influence of surface-runoff in the recharge area. Calcite saturation indices, total dissolved solids concentrations, and hardness demonstrate noticeable differences with flow conditions reflecting the reduced residence time and interaction of water with the source rock within the ground-water system at higher discharges for Hughes Spring. Concentrations of fecal indicator bacteria also demonstrated a substantial increase during high-flow conditions, suggesting that a non-point source of bacteria possibly from livestock may enter the system. Conversely, nutrient concentrations did not vary with flow and were similar to concentrations reported for undeveloped sites in the Springfield Plateau and Ozark aquifers in northern Arkansas and southern Missouri. Deuterium and oxygen-18 data show that the Hughes Spring discharge is representative of direct precipitation and not influenced by water enriched in oxygen-18 through evaporation. Discharge data show that Hughes Spring is dominated by conduit type ground-water flow, but a considerable component of diffuse flow also exists in the ground-water system. Carbon-13 data indicate a substantial component of the recharge water interacts with the surface material (soil and regolith) in the recharge area before entering the ground-water system for Hughes Spring. Tritium data for Hughes Spring indicate that the discharge water is a mixture of recent recharge and sub-modern water (recharged prior to 1952). Stark Spring supplies water for the city of Cushman, Arkansas, and the surrounding area. 2 Hydrogeologic Characteristics of Four Public Drinking-Water Supply Springs in Northern Arkansas The mean annual discharge for Stark Spring was 0.5 and 1.5 cubic feet per second for water years 2001 and 2002, respectively. The discharge and water-quality data show the ground-water system for Stark Spring is dominated by rapid recharge from surface runoff and mainly consists of a conduit- type flow system with little diffuse-type flow. Analyses of discharge data show that the estimated recharge area (0.79 square mile) is larger than the surface drainage area (0.34 square mile). Ground-water tracer tests and the outcrop of the

  16. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  17. 77 FR 11796 - Proposed Amendment of Class E Airspace; Rock Springs, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ...-0131; Airspace Docket No. 12-ANM-2 Proposed Amendment of Class E Airspace; Rock Springs, WY AGENCY... action proposes to amend Class E airspace at Rock Springs-Sweetwater County Airport, Rock Springs, WY. Decommissioning of the Rock Springs Tactical Air Navigation System (TACAN) has made this action necessary for the...

  18. Studying Springs in Series Using a Single Spring

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    Springs are used for a wide range of applications in physics and engineering. Possibly, one of their most common uses is to study the nature of restoring forces in oscillatory systems. While experiments that verify Hooke's law using springs are abundant in the physics literature, those that explore the combination of several springs together are…

  19. Remote sensing of ocean color in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.

    1988-01-01

    The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.

  20. Non-iterative distance constraints enforcement for cloth drapes simulation

    NASA Astrophysics Data System (ADS)

    Hidajat, R. L. L. G.; Wibowo, Arifin, Z.; Suyitno

    2016-03-01

    A cloth simulation represents the behavior of cloth objects such as flag, tablecloth, or even garments has application in clothing animation for games and virtual shops. Elastically deformable models have widely used to provide realistic and efficient simulation, however problem of overstretching is encountered. We introduce a new cloth simulation algorithm that replaces iterative distance constraint enforcement steps with non-iterative ones for preventing over stretching in a spring-mass system for cloth modeling. Our method is based on a simple position correction procedure applied at one end of a spring. In our experiments, we developed a rectangle cloth model which is initially at a horizontal position with one point is fixed, and it is allowed to drape by its own weight. Our simulation is able to achieve a plausible cloth drapes as in reality. This paper aims to demonstrate the reliability of our approach to overcome overstretches while decreasing the computational cost of the constraint enforcement process due to an iterative procedure that is eliminated.

  1. Permanent magnets as biasing mechanism for improving the performance of circular dielectric elastomer out-of-plane actuators

    NASA Astrophysics Data System (ADS)

    Loew, P.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomers (DE) represent an attractive technology for the realization of mechatronic actuators, due to their lightweight, high energy density, high energy efficiency, scalability, and low noise features. In order to produce a stroke, a DE membrane needs to be pre-loaded with a mechanical biasing mechanism. In our previous works, we compared the stroke achieved with different biasing mechanisms for a circular out-of-plane DE Actuator (DEA), i.e., hanging masses, linear and bi-stable springs. The novel contribution of this paper is the investigation of a biasing design approach based on permanent magnets. The resulting magnet-based actuators are usually more compact than the spring-based ones, allowing to obtain more compact systems. Two design solutions are proposed and compared, namely a first one characterized by a stable actuation, and a second one which permits to achieve a higher stroke, but it is intrinsically unstable. The effectiveness of the novel design solution is assessed by means of several experiments.

  2. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE PAGES

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; ...

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regional sourcesmore » are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  3. Impacts of emerging contaminants on surrounding aquatic environment from a youth festival.

    PubMed

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der; Tu, Bo-Wen; Liang, Yu-Jen

    2015-01-20

    The youth festival as we refer to Spring Scream, a large-scale pop music festival, is notorious for the problems of drug abuse and addiction. The origin, temporal magnitudes, potential risks and mass inputs of emerging contaminants (ECs) were investigated. Thirty targeted ECs were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Sampling strategy was designed to characterize EC behavior in different stages (before and after the youth festival), based on multivariate data analysis to explore the contributions of contaminants from normal condition to the youth festival. Wastewater influents and effluents were collected during the youth festival (approximately 600 000 pop music fans and youth participated). Surrounding river waters are also sampled to illustrate the touristic impacts during peak season and off-season. Seasonal variations were observed, with the highest concentrations in April (Spring Scream) and the lowest in October (off-season). Acetaminophen, diclofenac, codeine, ampicillin, tetracycline, erythromycin-H2O, and gemfibrozil have significant pollution risk quotients (RQs > 1), indicating ecotoxicological concerns. Principal component analysis (PCA) and weekly patterns provide a perspective in assessing the touristic impacts and address the dramatic changes in visitor population and drug consumption. The highest mass loads discharged into the aquatic ecosystem corresponded to illicit drugs/controlled substances such as ketamine and MDMA, indicating the high consumption of ecstasy during Spring Scream.

  4. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  5. Measurements of Atmospheric Mercury at a High Elevation Site (Lulin Atmospheric Background Station, LABS) in Taiwan

    NASA Astrophysics Data System (ADS)

    Sheu, G.; Lee, C.; Lin, N.

    2007-12-01

    Taiwan is located on the edge of the west Pacific Ocean and to the downwind side of East Asia, which is the largest anthropogenic mercury (Hg) emitting region globally. It has been demonstrated that the environmental quality of Taiwan can be influenced by regional Asian atmospheric pollution events, such as acid deposition, dust storm, and biomass burning. Therefore, Taiwan could also be under the influence of the East Asian Hg emissions. As a result, continuous atmospheric Hg measurements have been conducted at Lulin Atmospheric Background Station (LABS, 2862 m a.s.l.) since April 13, 2006 to study the long-range transport and transformation of atmospheric Hg. Three types of atmospheric Hg, including gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Hg (PHg), are measured using the Tekran 2537A/1130/1135 speciation system. Here we report the atmospheric Hg data collected between April, 2006 and April, 2007. The average GEM, RGM, and PHg concentrations were 1.83(±0.65) ng m-3, 17.85(±18.70) pg m- 3, and 6.12(±7.36) pg m-3, respectively. Seasonal variability in GEM concentration was evident with higher GEM concentrations between fall and spring. The highest monthly GEM average of 2.43 ng m-3 was observed in October, 2006. GEM concentrations were usually low in summer months with the lowest monthly average of 1.10 ng m-3 in July, 2006. Backward trajectory analysis indicated change in air mass origins among seasons. In summer (May ~ July), air masses were mainly from the Pacific Ocean with minimal land influence. On the other hand, between fall and spring, air masses were more or less under the influence of East Asia continent. These results suggested that Taiwan could be impacted by East Asia Hg emissions between fall and spring. Also, spikes of RGM were frequently detected between midnight and early morning with concurrent decreases in GEM and relative humidity and increases in ozone concentrations, suggesting the oxidation of GEM and formation of RGM in free troposphere.

  6. Manipulation of Dirac Cones in Mechanical Graphene

    PubMed Central

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2015-01-01

    Recently, quantum Hall state analogs in classical mechanics attract much attention from topological points of view. Topology is not only for mathematicians but also quite useful in a quantum world. Further it even governs the Newton’s law of motion. One of the advantages of classical systems over solid state materials is its clear controllability. Here we investigate mechanical graphene, which is a spring-mass model with the honeycomb structure as a typical mechanical model with nontrivial topological phenomena. The vibration spectrum of mechanical graphene is characterized by Dirac cones serving as sources of topological nontriviality. We find that the spectrum has dramatic dependence on the spring tension at equilibrium as a natural control parameter, i.e., creation and annihilation of the Dirac particles are realized as the tension increases. Just by rotating the system, the manipulated Dirac particles lead to topological transition, i.e., a jump of the “Chern number” occurs associated with flipping of propagating direction of chiral edge modes. This is a bulk-edge correspondence governed by the Newton’s law. A simple observation that in-gap edge modes exist only at the fixed boundary, but not at the free one, is attributed to the symmetry protection of topological phases. PMID:26667580

  7. Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer

    NASA Astrophysics Data System (ADS)

    Filippini, Maria; Squarzoni, Gabriela; De Waele, Jo; Fiorucci, Adriano; Vigna, Bartolomeo; Grillo, Barbara; Riva, Alberto; Rossetti, Stefano; Zini, Luca; Casagrande, Giacomo; Stumpp, Christine; Gargini, Alessandro

    2018-01-01

    Limestone massifs with a high density of dolines form important karst aquifers in most of the Alps, often with groundwater circulating through deep karst conduits and water coming out of closely spaced springs with flow rates of over some cubic meters per second. Although several hydrogeological studies and tracing experiments were carried out in many of these carbonate mountains in the past, the hydrogeology of most of these karst aquifers is still poorly known. Geological, hydrodynamic and hydrochemical investigations have been carried out in one of the most representative of these areas (Cansiglio-Monte Cavallo, NE Italy) since spring 2015, in order to enhance the knowledge on this important type of aquifer system. Additionally, a cave-to-spring multitracer test was carried out in late spring 2016 by using three different fluorescent tracers. This hydrogeological study allowed: 1) gathering new detailed information on the geological and tectonic structure of such alpine karst plateau; 2) defining discharge rates of the three main springs (Gorgazzo, Santissima, and Molinetto) by constructing rating curves; 3) understanding the discharging behavior of the system with respect to different recharge conditions; 4) better defining the recharge areas of the three springs. The three nearby springs (the spring front stretches over 5 km), that drain the investigated karst aquifer system, show different behaviors with respect to changing discharge conditions, demonstrating this aquifer to be divided in partially independent drainage systems under low-flow conditions, when their chemistry is clearly differentiated. Under high-flow conditions, waters discharging at all springs show more similar geochemical characteristics. The combination of geochemistry, hydrodynamic monitoring and dye tracing tests has shown that the three springs have different recharge areas. The study points out that even closely spaced karst springs, that apparently drain the same karst mountain, can have different behaviors, and thus distinctive reactions toward polluting events, a characteristic to be taken into account for their management.

  8. Effects of well discharges on hydraulic heads in and spring discharges from the Geothermal Aquifer System in the Bruneau area, Owyhee County, southwestern Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    1993-01-01

    substantially less in late summer than in the spring. A hydraulic head/spring discharge relation was developed for two sites at Indian Bathtub Spring and a nearby test hole. The relation for Indian Bathtub Spring indicated that a spring discharge of 2,400 gallons per minute would relate to a hydraulic head of about 2,708 feet at the spring, which is about 34 feet higher than the head at zero spring discharge.

  9. Design and modeling of new suspension system using direct drive servo-valve system actuated by piezostack actuator

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Kim, Wan Ho; Choi, Seung-Bok

    2016-04-01

    This paper proposes a new type of a direct-drive valve (DDV) suspension system for vehicle controlled by the piezostack actuator associated with displacement amplifier. In order to achieve this goal, a new type of controllable piezostack DDV damper is designed and its performance evaluation of damping force is undertaken. Next, a full vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the governing equations of the motion for the proposed the piezostack DDV suspension system, the skyhook controller is implemented for the realization of the full vehicle. Analytical model of the whole suspension system is then derived and performance characteristics are analyzed through numerical simulation. Finally, vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and sine road conditions.

  10. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Deming; Cai Zhonghou; Lai, Barry

    2007-01-19

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  11. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Cai, Zhonghou; Lai, Barry

    2007-01-01

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  12. Quality of sediment discharging from the Barton Springs system, Austin, Texas, 2000-2002

    USGS Publications Warehouse

    Mahler, Barbara J.

    2003-01-01

    Four spring outlets of the Barton Springs system provide the only known habitat for the Barton Springs salamander (Eurycea sosorum), a federally listed endangered species. After heavy rainfall, sediment is flushed through the Barton Springs segment of the Edwards aquifer and springflow often becomes turbid (cloudy). Sediment in urban areas often has high concentrations of hydrophobic contaminants, such as DDT, polycyclic aromatic hydrocarbons (PAHs), and lead. In response to concerns that sediment discharging from the Barton Springs outlets could contain contaminants at levels that pose a threat to the health of the salamander or its prey, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service, collected samples of suspended sediment discharging from each of the four spring outlets after two rainstorms and analyzed them for a suite of hydrophobic contaminants.

  13. Land Combat Systems Industry. Industry Study, Spring 2009

    DTIC Science & Technology

    2009-01-01

    Spring 2009 Industry Study Final Report Land Combat Systems Industry The Industrial College of the Armed Forces...AND SUBTITLE Spring 2009. Industry Study. Land Combat Systems Industry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S...Industrial College of the Armed Forces,Washington,DC,20319 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS

  14. Structural analysis of compression helical spring used in suspension system

    NASA Astrophysics Data System (ADS)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  15. Implied dynamics biases the visual perception of velocity.

    PubMed

    La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo

    2014-01-01

    We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform.

  16. Task-Level Strategies for Human Sagittal-Plane Running Maneuvers Are Consistent with Robotic Control Policies

    PubMed Central

    Qiao, Mu; Jindrich, Devin L.

    2012-01-01

    The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion. PMID:23284804

  17. Spatial and Temporal Distribution of Imidacloprid Within the Crown of Eastern Hemlock

    PubMed Central

    Turcotte, Richard M.; Lagalante, Anthony; Jones, Jonathan; Cook, Frank; Elliott, Thomas; Billings, Anthony A.

    2017-01-01

    Systemic imidacloprid is the most widely used insecticide to control the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), an exotic pest of eastern hemlock, Tsuga canadensis (L.) Carriére in the United States. This study was conducted to 1) determine the effect of treatment timing (spring vs. fall) and application method (trunk injection vs. soil injection) on the spatial and temporal distribution of imidacloprid within the crown of A. tsugae-free eastern hemlock using a competitive enzyme-linked immunosorbent assay (ELISA), 2) compare ELISA to gas chromatography-mass spectrometry (GC/MS) for the detection of imidacloprid in xylem fluid, and 3) determine the concentration of imidacloprid in leaf tissue using high performance liquid chromatography with tandem mass spectrometric (LC/MS/MS) detection methods. Xylem fluid concentrations of imidacloprid were found to be significantly higher for spring applications than for fall applications and for trunk injections than soil injections in the first year posttreatment. A total of 69% of samples analyzed by ELISA gave 1.8 times higher concentrations of imidacloprid than those found by GC/MS, leading to evidence of a matrix effect and overestimation of imidacloprid in xylem fluid by ELISA. A comparison of the presence of imidacloprid with xylem fluid and in leaf tissue on the same branch showed significant differences, suggesting that imidacloprid moved intermittently within the crown of eastern hemlock. PMID:28130463

  18. Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism

    NASA Astrophysics Data System (ADS)

    Cohen, T.; Givli, S.

    2014-03-01

    A biomimetic shock absorbing mechanism, inspired by the bi-stable elongation behavior of the giant protein titin, is examined. A bi-stable element, composed of three mass particles with monotonous interaction forces, is suggested to facilitate an internal degree of freedom of finite mass which contributes significantly to dissipation upon unlocking of an internal link. An essential feature of the suggested element is that it undergoes reversible rapture and therefore retrieves its initial configuration once unloaded. The quasistatic and dynamic behaviors are investigated showing similarity to the common tri-linear bi-stable response, with two steady phases separated by a spinodal region. The dynamic behavior of a chain of elements is also examined, for several loading scenarios, showing that the suggested mechanism serves as an efficient shock absorber in a sub-critical dampening environment, as compared with a simple mass on spring system. Propagation of shock waves and refraction waves in an element chain is observed and the effect of natural imperfections is considered.

  19. Practical Considerations for Using Constant Force Springs in Space-Based Mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Fisher, Charles D.; Gallon, John C.

    2013-01-01

    Mechanical springs are a common element in mechanism from all walks of life; cars, watches, appliances, and many others. These springs generally exhibit a linear relationship between force and deflection. In small mechanisms, deflections are small so the variation in spring force between one position and another are generally small and do not influence the design or functionality of the device. However, as the spacecraft industry drives towards larger, deployable satellites, the distances a spring or springs must function over can become considerable so much so that the structural integrity of the device may be impacted. As such, an increasingly common mechanism element is the constant force spring- one that provides a constant force regardless of deflection. These elements are commonly in the conceptual design phase to deal with system-level large deflections, but in the detailed design or integration test phase they can pose significant implementation issues. This article addresses some of the detailed issues in order for these constant force springs to be properly designed into space systems.

  20. Fabrication and experimentation of FRP helical spring

    NASA Astrophysics Data System (ADS)

    Ekanthappa, J.; Shiva Shankar, G. S.; Amith, B. M.; Gagan, M.

    2016-09-01

    In present scenario, the automobile industry sector is showing increased interest in reducing the unsprung weight of the automobile & hence increasing the fuel Efficiency. One of the feasible sub systems of a vehicle where weight reduction may be attempted is vehicle- suspension system. Usage of composite material is a proven way to lower the component weight without any compromise in strength. The composite materials are having high specific strength, more elastic strain energy storage capacity in comparison with those of steel. Therefore, helical coil spring made of steel is replaceable by composite cylindrical helical coil spring. This research aims at preparing a re-usable mandrel (mould) of Mild steel, developing a setup for fabrication, fabrication of FRP helical spring using continuous glass fibers and Epoxy Resin (Polymer). Experimentation has been conducted on fabricated FRP helical spring to determine its strength parameters & for failure analysis. It is found that spring stiffness (K) of Glass/Epoxy helical-spring is greater than steel-coil spring with reduced weight.

  1. Performance investigation and comparison of different turbulator shapes in solar water heating collector system

    NASA Astrophysics Data System (ADS)

    Khargotra, Rohit; Dhingra, Sunil; Chauhan, Ranchan; Singh, Tej

    2018-05-01

    The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. In the present paper, the performance of different turbulator shapes in solar water heating collector system has been studied experimentally and comparison on the output performance has been carried out. Effects of insertion of coil-spring turbulator on heat transfer rate, mass flow rate, heat gain by the fluid etc. is studied by disturbing the flow inside the absorber tubes in a solar flat plate collector. The coil-spring used as a turbulator is placed inside the absorber tube which creates a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance to about 70% over the plain water heater under same operating conditions. The coil-spring used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared with the available results. Solar water heater having inserts in the flow tubes perform better than the conventional plain ones.

  2. A Novel Method to Determine the Hydrodynamic Coefficients of an Eyeball ROV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yh, Eng; Ws, Lau; Low, E.

    2009-01-12

    A good dynamics model is essential and critical for the successful design of navigation and control system of an underwater vehicle. However, it is difficult to determine from the hydrodynamic forces, the inertial added mass terms and the drag coefficients. In this paper, a new experimental method has been used to find the hydrodynamic forces for the ROV II, a remotely operated underwater vehicle. The proposed method is based on the classical free decay test, but with the spring oscillation replaced by a pendulum motion. The experiment results determined from the free decay test of a scaled model compared wellmore » with the simulation results obtained from well‐established computational fluid dynamics (CFD) program. Thus, the proposed approach can be used to find the added mass and drag coefficients for other underwater vehicles.« less

  3. Spatial and temporal characteristics of PM2.5 and source apportionment in Wuhan

    NASA Astrophysics Data System (ADS)

    Hao, Hanzhou; Guo, Qianqian

    2018-02-01

    In order to study the pollution characteristics and sources of PM2.5, the PM2.5 in Wuhan atmosphere was sampled continuously. Inductively coupled plasma mass spectrometry (ICP-MS) were employed to measure Na, K, Mg, Ca, Al, Mn, Cu, Zn, As, Pb, Cr, Ni, Co, Cd, Fe, V, Ti, Hg, Si, while water soluble ions (Cl-, NO3-, SO4 2-) as well as carbonaceous mass (EC and OC) were analyzed using ion chromatograph(IC) and carbon analyzer, respectively. The results show: (1) In 2014 and 2015, Wuhan PM2.5 values were 81.4μg/m3and 69.2μg/m3 respectively far exceed the national standard level 2, i.e. annual average 35 μg/m3 in China, annual average limit 10 μg/m3 by the World Health Organization, the annual limit of 15 μg/m3 in the United States. (2) Taking Huaqiao and Qihao as research points, the Spring Festival effect of PM2.5 in Wuhan city is analyzed. It shows that the concentration of PM2.5 in 2014 and 2015 is before Spring Festival> during Spring Festival> after Spring Festival. As a backdrop, during the Spring Festival, Qihao PM2.5 concentration than Huaqiao average low 20 μg/m3. (3) The results of positive factor matrix factorization (PMF) analysis show that PM2.5 in Summer in Wuhan mainly comes from the automobile source, soil dust source, biomass combustion, industrial source, secondary aerosol source, combustion coal source, the contribution rate is 37.7%. 25%, 16.4%, 8.1%, 6.5%,6.4%, respectively.

  4. The Model of Educational Reconstruction--A Powerful Strategy to Teach for Conceptual Development in Physical Geography: The Case of Water Springs

    ERIC Educational Resources Information Center

    Reinfried, Sibylle; Aeschbacher, Urs; Kienzler, Peter M.; Tempelmann, Sebastian

    2015-01-01

    Springs are an important hydrological concept because springs form an interface between underground and surface sub-systems of the hydrological cycle. Furthermore, springs are important suppliers of drinking water but are at risk today due to numerous anthropogenic interferences. The general knowledge of springs and their formation is usually…

  5. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    USGS Publications Warehouse

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized source of NO3− to karst groundwater or other oxic groundwater systems.

  6. Project WISH: The Emerald City

    NASA Technical Reports Server (NTRS)

    Oz, Hayrani; Slonksnes, Linda (Editor); Rogers, James W. (Editor); Sherer, Scott E. (Editor); Strosky, Michelle A. (Editor); Szmerekovsky, Andrew G. (Editor); Klupar, G. Joseph (Editor)

    1990-01-01

    The preliminary design of a permanently manned autonomous space oasis (PEMASO), including its pertinent subsystems, was performed during the 1990 Winter and Spring quarters. The purpose for the space oasis was defined and the preliminary design work was started with emphasis placed on the study of orbital mechanics, power systems and propulsion systems. A rotating torus was selected as the preliminary configuration, and overall size, mass and location of some subsystems within the station were addressed. Computer software packages were utilized to determine station transfer parameters and thus the preliminary propulsion requirements. Power and propulsion systems were researched to determine feasible configurations and many conventional schemes were ruled out. Vehicle dynamics and control, mechanical and life support systems were also studied. For each subsystem studied, the next step in the design process to be performed during the continuation of the project was also addressed.

  7. Periodic motion planning and control for underactuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Wang, Zeguo; Freidovich, Leonid B.; Zhang, Honghua

    2018-06-01

    We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.

  8. Reproducing sterile neutrinos and the behavior of flavor oscillations with superconducting-magnetic proximity effects

    NASA Astrophysics Data System (ADS)

    Baker, Thomas E.

    2016-03-01

    The physics of a superconductor subjected to a magnetic field is known to be equivalent to neutrino oscillations. Examining the properties of singlet-triplet oscillations in the magnetic field, a sterile neutrino is suggested to be represented by singlet Cooper pairs and moderates flavor oscillations between three flavor neutrinos (triplet Cooper pairs). A superconductor-exchange spring system's rotating magnetization profile is used to simulate the mass-flavor oscillations in the neutrino case and the physics of neutrino oscillations are discussed. Connecting the condensed matter system and the particle physics system with this analogy may allow for the properties of the condensed matter system to inform neutrino experiments. Support is graciously acknowledged from the Pat Beckman Memorial Scholarship from the Orange County Chapter of the Achievement Rewards for College Scientists Foundation.

  9. Origin and characteristics of discharge at San Marcos Springs, south-central Texas

    USGS Publications Warehouse

    Musgrove, MaryLynn; Crow, Cassi L.

    2013-01-01

    The Edwards aquifer in south-central Texas is one of the most productive aquifers in the Nation and is the primary source of water for the rapidly growing San Antonio area. Springs issuing from the Edwards aquifer provide habitat for several threatened and endangered species, serve as locations for recreational activities, and supply downstream users. Comal Springs and San Marcos Springs are major discharge points for the Edwards aquifer, and their discharges are used as thresholds in groundwater management strategies. Regional flow paths originating in the western part of the aquifer are generally understood to supply discharge at Comal Springs. In contrast, the hydrologic connection of San Marcos Springs with the regional Edwards aquifer flow system is less understood. During November 2008–December 2010, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed hydrologic and geochemical data from springs, groundwater wells, and streams to gain a better understanding of the origin and characteristics of discharge at San Marcos Springs. During the study, climatic and hydrologic conditions transitioned from exceptional drought to wetter than normal. The wide range of hydrologic conditions that occurred during this study—and corresponding changes in surface-water, groundwater and spring discharge, and in physicochemical properties and geochemistry—provides insight into the origin of the water discharging from San Marcos Springs. Three orifices at San Marcos Springs (Deep, Diversion, and Weissmuller Springs) were selected to be representative of larger springs at the spring complex. Key findings include that discharge at San Marcos Springs was dominated by regional recharge sources and groundwater flow paths and that different orifices of San Marcos Springs respond differently to changes in hydrologic conditions; Deep Spring was less responsive to changes in hydrologic conditions than were Diversion Spring and Weissmuller Spring. Also, San Marcos Springs discharge is influenced by mixing with a component of saline groundwater.

  10. 49 CFR 236.12 - Spring switch signal protection; where required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Spring switch signal protection; where required... Rules and Instructions: All Systems General § 236.12 Spring switch signal protection; where required. Signal protection shall be provided for facing and trailing movements through spring switch within...

  11. 49 CFR 236.12 - Spring switch signal protection; where required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Spring switch signal protection; where required... Rules and Instructions: All Systems General § 236.12 Spring switch signal protection; where required. Signal protection shall be provided for facing and trailing movements through spring switch within...

  12. 49 CFR 236.12 - Spring switch signal protection; where required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Spring switch signal protection; where required... Rules and Instructions: All Systems General § 236.12 Spring switch signal protection; where required. Signal protection shall be provided for facing and trailing movements through spring switch within...

  13. 49 CFR 236.12 - Spring switch signal protection; where required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring switch signal protection; where required... Rules and Instructions: All Systems General § 236.12 Spring switch signal protection; where required. Signal protection shall be provided for facing and trailing movements through spring switch within...

  14. 49 CFR 236.12 - Spring switch signal protection; where required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Spring switch signal protection; where required... Rules and Instructions: All Systems General § 236.12 Spring switch signal protection; where required. Signal protection shall be provided for facing and trailing movements through spring switch within...

  15. Long-term systematic profiling of dust aerosol optical properties using the EOLE NTUA lidar system over Athens, Greece (2000-2016)

    NASA Astrophysics Data System (ADS)

    Soupiona, O.; Papayannis, A.; Kokkalis, P.; Mylonaki, M.; Tsaknakis, G.; Argyrouli, A.; Vratolis, S.

    2018-06-01

    We present a comprehensive analysis of the seasonal variability of the vertical profiles of the optical and geometrical properties of Saharan dust aerosols, observed in the height region between 1000 and 6000 m, over the city of Athens, Greece, from February 2000 to December 2016. These observations were performed by a multi-wavelength (355-387-532-1064 nm) Raman lidar system under cloud-free conditions. The statistical analysis (using aerosol monthly mean values) is based on nighttime vertical Raman measurements of range-resolved aerosol optical properties (backscatter and extinction coefficients, lidar ratio, Ångström exponent) at 355 nm (57 dust events during more than 80 measurement hours). We found that the number of dust events was highest in spring, summer, and early autumn periods and that during spring the dust layers were moved at higher altitudes (∼4500 m) than in other seasons. The number of the forecasted dusty days (on monthly basis) by the BSC-DREAM8b model compared to those of the performed lidar measurements were found to have a quite strong correlation (R2 = 0.81), with a maximum occurrence predicted for the spring season. In the worst case scenario, at least 50% of the model-forecasted dust events can be observed by lidar under cloudless skies over Athens. For the sampled dust plumes we found mean lidar ratios of 52 ± 13 sr at 355 nm in the height range 2000-4000 m a.s.l. Moreover, the dust layers had a mean thickness of 2497 ± 1026 m and a center of mass of 2699 ± 1017 m. An analysis performed regarding the air mass back-trajectories arriving over Athens revealed two main clusters: one pathway from south-west to north-east, with dust emission areas in Tunisia, Algeria and Libya and a second one from south, across the Mediterranean Sea with emission areas over Libya and the remaining part of Algeria and Tunisia. This clustering enabled us to differentiate between the aerosol optical properties between the two clusters, based on their residence time over the Saharan region, the European continent and the Mediterranean Sea. We finally concluded that even if the dust source regions are about the same, the aging and mixing processes of these air masses, passing over different areas, might have an impact on the aerosol optical properties.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, L.; Zaslawsky, M.

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.

  17. Southwest Alaska Regional Geothermal Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clearmore » Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.« less

  18. Theoretical and experimental analysis of an equivalent circuit model for the investigation of shallow landmines with acoustic methods

    NASA Astrophysics Data System (ADS)

    Borgioli, G.; Bulletti, A.; Calzolai, M.; Capineri, L.; Falorni, P.; Masotti, L.; Valentini, S.; Windsor, C.

    2007-10-01

    Acoustic methods have been recently investigated for the detection of shallow landmines. Some plastic landmines have a flexible case which can made to vibrate by an airborne excitation like a loudspeaker. The soil-mine system shows a resonant behavior which is used as a signature to discriminate from other rigid objects. The mechanical resonance can be detected at the soil surface by a remote sensing systems like a laser interferometer. An equivalent physical model of the mine-soil system has been investigated having the known physical characteristics of mine simulants. The authors designed and built a test-object with known mechanical characteristics (mass, elasticity, damping factor). The model has been characterized in laboratory and the results compared with the classic mass-spring loss oscillator described by Voigt. The vibrations at the soil surface have been measured in various positions with a micro machined accelerometer. The results of the simulations for the acceleration of the soil-mine system agree well with the experiment. The calibrated mine model is useful to investigate the variation of the resonance frequency for various buried depths and to compare the results for different soils in different environmental conditions.

  19. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy for the multipurpose uses of spring water is proposed according to the integration of the land use and spring water temperatures. The study results indicate that OK, SGS, and GIS are capable of characterizing spring water temperatures and the suitability of multipurpose uses of spring water. SGS realizations are more robust than OK estimates for characterizing spring water temperatures. Furthermore, current land use is almost ideal in the Jiaosi Hot Spring Region according to the estimated spatial pattern of spring water temperatures. Keywords: Hot spring; Temperature; Land use; Ordinary kriging; Sequential Gaussian simulation; Geographical information system

  20. 49 CFR 236.14 - Spring switch signal protection; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Spring switch signal protection; requirements. 236... Rules and Instructions: All Systems General § 236.14 Spring switch signal protection; requirements. (a... track signaled for movements in only one direction through a spring switch in automatic block signal...

  1. 49 CFR 236.14 - Spring switch signal protection; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Spring switch signal protection; requirements. 236... Rules and Instructions: All Systems General § 236.14 Spring switch signal protection; requirements. (a... track signaled for movements in only one direction through a spring switch in automatic block signal...

  2. 49 CFR 236.14 - Spring switch signal protection; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Spring switch signal protection; requirements. 236... Rules and Instructions: All Systems General § 236.14 Spring switch signal protection; requirements. (a... track signaled for movements in only one direction through a spring switch in automatic block signal...

  3. 76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ...-1191; Airspace Docket No. 11-ANM-21] Proposed Amendment of Class E Airspace; Colorado Springs, CO...: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has made this...

  4. 49 CFR 236.14 - Spring switch signal protection; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring switch signal protection; requirements. 236... Rules and Instructions: All Systems General § 236.14 Spring switch signal protection; requirements. (a... track signaled for movements in only one direction through a spring switch in automatic block signal...

  5. 49 CFR 236.14 - Spring switch signal protection; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Spring switch signal protection; requirements. 236... Rules and Instructions: All Systems General § 236.14 Spring switch signal protection; requirements. (a... track signaled for movements in only one direction through a spring switch in automatic block signal...

  6. Spatial and monthly trends in speciated fine particle concentration in the United States

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Schichtel, Bret A.; Pitchford, Marc L.; Ashbaugh, Lowell L.; Eldred, Robert A.

    2004-02-01

    In the spring of 1985 an interagency consortium of federal land management agencies and the Environmental Protection Agency established the Interagency Monitoring of Protected Visual Environments (IMPROVE) network to assess visibility and aerosol monitoring for the purpose of tracking spatial and temporal trends of visibility and visibility-impairing particles in rural areas. The program was initiated with 20 monitoring sites and was expanded to 165 sites between 2000 and 2003. This paper reports on fine aerosol data collected in the year 2001 at 143 sites. The major fine (dp < 2.5 μm) particle aerosol species, sulfates, nitrates, organics, light-absorbing carbon, and wind-blown dust, and coarse gravimetric mass are monitored, and at some sites, light scattering and/or extinction are measured. Sulfates, carbon, and crustal material are responsible for most of the fine mass at the majority of locations throughout the United States, while at sites in southern California and the midwestern United States, nitrates can contribute significantly. In the eastern United States, sulfates contribute between 50 and 60% of the fine mass. Sulfate concentrations tend to be highest in the summer months while organic concentrations can be high in the spring, summer, or fall seasons, depending upon fire-related emissions. However, at the two urban sites, Phoenix, Arizona, and Puget Sound, Washington, organics peak during the winter months. Nitrate concentrations also tend to be highest during the winter months. During the spring months in many areas of the western United States, fine soil can contribute as much as 40% of fine mass. The temporal changes in soil concentration that occur simultaneously over much of the western United States including the Rocky Mountain region suggest a large source region, possibly long-range transport of Asian dust.

  7. Principal locations of major-ion, trace-element, nitrate, and Escherichia coli loading to Emigration Creek, Salt Lake County, Utah, October 2005

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2008-01-01

    Housing development and recreational activity in Emigration Canyon have increased substantially since 1980, perhaps causing an observed decrease in water quality of this northern Utah stream located near Salt Lake City. To identify reaches of the stream that contribute to water-quality degradation, a tracer-injection and synoptic-sampling study was done to quantify mass loading of major ions, trace elements, nitrate, and Escherichia coli (E. coli) to the stream. The resulting mass-loading profiles for major ions and trace elements indicate both geologic and anthropogenic inputs to the stream, principally from tributary and spring inflows to the stream at Brigham Fork, Burr Fork, Wagner Spring, Emigration Tunnel Spring, Blacksmith Hollow, and Killyon Canyon. The pattern of nitrate loading does not correspond to the major-ion and trace-element loading patterns. Nitrate levels in the stream did not exceed water-quality standards at the time of synoptic sampling. The majority of nitrate mass loading can be considered related to anthropogenic input, based on the field settings and trends in stable isotope ratios of nitrogen. The pattern of E. coli loading does not correspond to the major-ion, trace-element, or nitrate loading patterns. The majority of E. coli loading was related to anthropogenic sources based on field setting, but a considerable part of the loading also comes from possible animal sources in Killyon Canyon, in Perkins Flat, and in Rotary Park. In this late summer sampling, E. coli concentrations only exceeded water-quality standards in limited sections of the study reach. The mass-loading approach used in this study provides a means to design future studies and to evaluate the loading on a catchment scale.

  8. Segmented Mirror Telescope Model and Simulation

    DTIC Science & Technology

    2011-06-01

    mirror surface is treated as a grid of masses and springs. The actuators have surface normal forces applied to individual masses. The equation to...are not widely treated in the literature. The required modifications for the wavefront reconstruction algorithm of a circular aperture to correctly...Zernike polynomials, which are particularly suitable to describe the common optical character- izations of astigmatism , coma, defocus and others [9

  9. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    EPA Science Inventory

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  10. Parametric study of the mode coupling instability for a simple system with planar or rectilinear friction

    NASA Astrophysics Data System (ADS)

    Charroyer, L.; Chiello, O.; Sinou, J.-J.

    2016-12-01

    In this paper, the study of a damped mass-spring system of three degrees of freedom with friction is proposed in order to highlight the differences in mode coupling instabilities between planar and rectilinear friction assumptions. Well-known results on the effect of structural damping in the field of friction-induced vibration are extended to the specific case of a damped mechanical system with planar friction. It is emphasised that the lowering and smoothing effects are not so intuitive in this latter case. The stability analysis is performed by calculating the complex eigenvalues of the linearised system and by using the Routh-Hurwitz criterion. Parametric studies are carried out in order to evaluate the effects of various system parameters on stability. Special attention is paid to the understanding of the role of damping and the associated destabilisation paradox in mode-coupling instabilities with planar and rectilinear friction assumptions.

  11. NASA JSC EV2 Intern Spring 2016 - Jennie Chung

    NASA Technical Reports Server (NTRS)

    Chung, Jennie

    2016-01-01

    Exploration Mission 2 (EM-2) is a mission to resume the manned exploration of the Solar System. This mission is the first crewed mission of NASA’s Orion on the Space Launch System. The target for EM-2 is to perform a flyby of a captured asteroid in lunar orbit, which NASA plans to launch in 2023. As an intern working with EV-2 – Avionics Systems Division in Johnson Space Center, we are developing flight instrumentation systems for EM-2 (MISL & RFID). The Modular Integrated Stackable Layer (MISL) is a compact space-related computer system that is modular, scalable and reconfigurable. The RFID (radio frequency identification) sensors are used to take lower frequency (TC) type measurements and be able to stream data real-time to an RF (radio frequency) interrogator upon demand. Our job, in EV-2, is to certify, test, manufacture/assemble and deliver flight EM-2 DFI System (MISL & RFID). Our goal is to propose a development effort to design low-mass wire and wireless data acquisition and sensor solutions for EM-2 DFI (Development Flight Instrumentation). The team is tasked to provide the most effective use of 75 pounds to acquire DFI data and to collect sensor data for 100-200 high priority DFI channels (mass driven).

  12. Winter-spring anomalies in the stratospheric content of NO2 from ground-based measurement results

    NASA Astrophysics Data System (ADS)

    Ageyeva, V. Yu.; Gruzdev, A. N.; Elokhov, A. S.; Grishaev, M. V.

    2015-07-01

    According to the results of ground-based spectrometric measurements, significant negative anomalies in the stratospheric content of NO2 were observed at a number of stations in the Northern Hemisphere during winter and spring 2011. These anomalies were accompanied by those in total ozone content (TOC) and stratospheric temperature and were caused by the transport of air masses from the region of the arctic ozone hole. The results of analysis of vertical NO2 profiles obtained at the Zvenigorod Scientific Station showed that a certain contribution to the 2011 negative anomalies of NO2 was made due to a denitrification of the polar stratosphere in the ozone-hole region. The relation between variations in the total content of NO2 and those in the TOC and temperature was analyzed for both the Northern and Southern hemispheres during winter-spring periods. It was found that this relation depends on the phase of the quasi-biennial oscillation in the stratospheric equatorial wind. Such a correlation usually intensifies if only the episodes of negative anomalies caused by the transport of stratospheric air masses from the ozone-hole region are taken into consideration.

  13. Determination of in vivo mechanical properties of long bones from their impedance response curves

    NASA Technical Reports Server (NTRS)

    Borders, S. G.

    1981-01-01

    A mathematical model consisting of a uniform, linear, visco-elastic, Euler-Bernoulli beam to represent the ulna or tibia of the vibrating forearm or leg system is developed. The skin and tissue compressed between the probe and bone is represented by a spring in series with the beam. The remaining skin and tissue surrounding the bone is represented by a visco-elastic foundation with mass. An extensive parametric study is carried out to determine the effect of each parameter of the mathematical model on its impedance response. A system identification algorithm is developed and programmed on a digital computer to determine the parametric values of the model which best simulate the data obtained from an impedance test.

  14. A study of frequency band structure in two-dimensional homogeneous anisotropic phononic K3-metamaterials

    NASA Astrophysics Data System (ADS)

    Gorshkov, V. N.; Navadeh, N.; Fallah, A. S.

    2017-09-01

    Phononic metamaterials are synthesised materials in which locally resonant units are arranged in a particular geometry of a substratum lattice and connected in a predefined topology. This study investigates dispersion surfaces in two-dimensional anisotropic acoustic metamaterials involving mass-in-mass units connected by massless springs in K3 topology. The reasons behind the particular choice of this topology are explained. Two sets of solutions for the eigenvalue problem | {\\boldsymbol{D}}({ω }2,{\\boldsymbol{k}})| =0 are obtained and the existence of absolutely different mechanisms of gap formation between acoustic and optical surface frequencies is shown as a bright display of quantum effects like strong coupling, energy splitting, and level crossings in classical mechanical systems. It has been concluded that a single dimensionless parameter i.e. relative mass controls the order of formation of gaps between different frequency surfaces. If the internal mass of the locally resonant mass-in-mass unit, m, increases relative to its external mass, M, then the coupling between the internal and external vibrations in the whole system rises sharply, and a threshold {μ }* is reached so that for m/M> {μ }* the optical vibrations break the continuous spectrum of ‘acoustic phonons’ creating the gap between them for any value of other system parameters. The methods to control gap parameters and polarisation properties of the optical vibrations created over these gaps were investigated. Dependencies of morphology and width of gaps for several anisotropic cases have been expounded and the physical meaning of singularity at the point of tangential contact between two adjacent frequency surfaces has been provided. Repulsion between different frequency band curves, as planar projections of surfaces, has been explained. The limiting case of isotropy has been discussed and it has been shown that, in the isotropic case, the lower gap always forms, irrespective of the value of relative mass.

  15. BLOWER MOTOR & DRIVE WHEEL. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOWER MOTOR & DRIVE WHEEL. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  16. Modeling and parameter identification of impulse response matrix of mechanical systems

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni V.

    1998-12-01

    A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.

  17. Numerical Study of Groundwater Flow and Salinity Distribution Cycling Controlled by Seawater/Freshwater Interaction in Karst Aquifer Using SEAWAT

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Hu, B.

    2017-12-01

    The interest to predict seawater intrusion and salinity distribution in Woodville Karst Plain (WKP) has increased due to the huge challenge on quality of drinkable water and serious environmental problems. Seawater intrudes into the conduit system from submarine karst caves at Spring Creek Spring due to density difference and sea level rising, nowadays the low salinity has been detected at Wakulla Spring which is 18 km from coastal line. The groundwater discharge at two major springs and salinity distribution in this area is controlled by the seawater/freshwater interaction under different rainfall conditions: during low rainfall periods, seawater flow into the submarine spring through karst windows, then the salinity rising at the submarine spring leads to seawater further intrudes into conduit system; during high rainfall periods, seawater is pushed out by fresh water discharge at submarine spring. The previous numerical studies of WKP mainly focused on the density independent transport modeling and seawater/freshwater discharge at major karst springs, in this study, a SEAWAT model has been developed to fully investigate the salinity distribution in the WKP under repeating phases of low rainfall and high rainfall periods, the conduit system was simulated as porous media with high conductivity and porosity. The precipitation, salinity and discharge at springs were used to calibrate the model. The results showed that the salinity distribution in porous media and conduit system is controlled by the rainfall change, in general, the salinity distribution inland under low rainfall conditions is much higher and wider than the high rainfall conditions. The results propose a prediction on the environmental problem caused by seawater intrusion in karst coastal aquifer, in addition, provide a visual and scientific basis for future groundwater remediation.

  18. Intraosseous vascular access in the treatment of chemical warfare casualties assessed by advanced simulation: proposed alteration of treatment protocol.

    PubMed

    Vardi, Amir; Berkenstadt, Haim; Levin, Inbal; Bentencur, Ariel; Ziv, Amitai

    2004-06-01

    Current treatment protocols for chemical warfare casualties assume no IV access during the early treatment stages. Time constraints in mass casualty scenarios, impaired manual dexterity of medical personnel wearing protective gear, and victims' complex clinical presentations render standard IV access techniques impractical. A newly developed spring-driven, trigger-operated intraosseous infusion device may offer an effective solution. Sophisticated simulators were developed and used to mimic scenarios of chemical warfare casualties for assessing the feasibility of intraosseous infusion delivery. We evaluated the clinical performance of medical teams in full protective gear. The success rate in intraosseous insertion, time to completion of treatment goals, and outcome were measured in a simulated setting. Medical teams from major hospitals in Israel, designated for emergency response in a real chemical warfare mass casualty scenario, were trained in a simulated setting. All 94 participating physicians were supplied with conventional treatment modalities: only the 64 study group physicians received intraosseous devices. The simulated survival rate was 73.4% for the study group and 3.3% for the controls (P < 0.001). Treatment goals were achieved within 3.5 min (range, 1-9 min) in the study group and within >10 min for controls (P < 0.001), and the complication rate for intraosseous use was 13.8%. Personnel satisfaction with the intraosseous device was unanimous and high. New-generation intraosseous infusions have great potential value in the early treatment stages of chemical warfare casualties. In a chemical warfare mass casualty scenario, the protective gear worn by medical personnel, the time constraints, and the casualties' medical condition impose limitations on the establishment of IV access during early treatment of the victims. A spring-driven, trigger-operated intraosseous infusion delivery system may offer an effective solution.

  19. Factors Controlling the Distribution of Atmospheric Mercury in the East Asian Free Troposphere

    NASA Astrophysics Data System (ADS)

    Sheu, G.; Lee, C.; Lin, N.; Wang, J.; Ouyang, C.

    2008-12-01

    Taiwan is located to the downwind side of both East and Southeast Asia, which are the major anthropogenic mercury (Hg) source region worldwide. Also, it has been suggested that mountain-top monitoring sites, which are frequently in the free troposphere, are essential to the understanding of the global Hg transport. Accordingly, continuous measurements of atmospheric Hg have been conducting at Lulin Atmospheric Background Station (LABS, 2862 m a.s.l.) in Taiwan since April 13, 2006 to study the trans-boundary transport and transformation of Hg in the free troposphere. Three types of atmospheric Hg, including gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Hg (PHg), are measured using the Tekran 2537A/1130/1135 speciation system. Diurnal variations in the concentrations of GEM, RGM, ozone, and water vapor (WV) mixing ratio indicated the influence of boundary layer air in daytime and the subsidence of free tropospheric air masses from higher altitudes at night. Seasonal variation in GEM concentrations was evident with elevated concentrations usually observed between fall and spring when air masses were more or less under the influence of Asian continent. Low summer GEM values were associated with marine air masses. Spikes of RGM were frequently detected between midnight and early morning with concurrent decreases in GEM and WV mixing ratio and increases in ozone concentrations, suggesting the oxidation of GEM and formation of RGM in free troposphere. Concentrations of PHg were usually low; however, elevated concentrations were detected in spring when the Southeast Asian biomass burning plumes affected the LABS. Analysis of the collected data indicate that at LABS the distribution of atmospheric Hg is dynamically controlled by background atmosphere, exchange and mixing of free troposphere/boundary layer air, chemical transformation, and long-range transport from East and Southeast Asia.

  20. Sulfate and nitrate collected by filter sampling near the tropopause

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Lezberg, E. A.; Otterson, D. A.

    1980-01-01

    Filter samples collected near the tropopause with an F-106 aircraft and two Boeing 747 aircraft were analyzed for sulfate and nitrate ion content. Within the range of routine commercial flight altitudes (at or below 12.5 km), stratospheric mass mixing ratios for the winter-spring group averaged 0.26 ppbm for sulfate and 0.35 ppbm for nitrate. For the summer-fall group, stratosphere mixing ratios averaged 0.13 ppbm and 0.25 ppbm for sulfate and nitrate, respectively. Winter-spring group tropospheric mass mixing ratios averaged 0.08 ppbm for sulfate and 0.10 ppbm for nitrate, while summer-fall group tropospheric mixing ratios averaged 0.05 ppbm for sulfate and 0.08 ppbm for nitrate. Correlations of the filter data with available ozone data suggest that the sulfate and nitrate are transported from the stratosphere to the troposphere.

  1. Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado

    DOE Data Explorer

    Richard Zehner

    2012-11-01

    This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  2. Determination of Rare Earth Elements in multi-year high-resolution Arctic aerosol record by double focusing Inductively Coupled Plasma Mass Spectrometry with desolvation nebulizer inlet system.

    PubMed

    Giardi, Fabio; Traversi, Rita; Becagli, Silvia; Severi, Mirko; Caiazzo, Laura; Ancillotti, Claudia; Udisti, Roberto

    2018-02-01

    An inductively coupled plasma sector field mass spectrometer (ICP-SFMS) was used to develop an analytical method for the fast determination of Na, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb in Arctic size-segregated aerosol samples (PM 10 ), after microwave acidic digestion. The ICP-SFMS was coupled with a microflow nebulizer and a desolvation system for the sample introduction, which reduced the isobaric interferences due to oxides and the required volume of sample solutions, compared to the usual nebulization chamber methods. With its very low limit of detection, and taking into account the level of blanks, this method allowed the quantification of many metals in very low concentration. Particular attention was given to Rare Earth Elements (REEs - La to Lu). The efficiency in the extraction of REEs was proved to be acceptable, with recoveries over 83% obtained with a Certified Reference Material (AMiS 0356). The analytical method was then applied to particulate matter samples, collected at ground level in Ny Ålesund (Svalbard Islands, Norway), during spring and summer, from 2010 to 2015, with daily resolution and using a low-volume device. Thus, for the first time, a large atmospheric concentrations dataset of metals in Arctic particulate matter at high temporal resolution is presented. On the basis of differences in LREE/HREE ratio and Ce and Eu anomalies in spring and summer samples, basic information to distinguish local and long-range transported dust were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 12. ELEVATOR DOORS AND CAB. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ELEVATOR DOORS AND CAB. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. 1. INDUSTRIAL IRON (WORKING SIDE). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INDUSTRIAL IRON (WORKING SIDE). - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Hale Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. 11. INTERIOR OF THERMOSTAT. Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR OF THERMOSTAT. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. 7. COOLING TOWER FROM ROOF. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. COOLING TOWER FROM ROOF. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  8. 5. DISCONNECTED COMPRESSOR MOTOR. Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DISCONNECTED COMPRESSOR MOTOR. - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  9. THERMALWATER FLOW METER. Hot Springs National Park, Bathhouse Row, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. 1. BLOWER (EXTERIOR CONFIGURATION). Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BLOWER (EXTERIOR CONFIGURATION). - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. Alteration of the size distributions and mixing states of black carbon through transport in the boundary layer in east Asia

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takuma; Oshima, Naga; Taketani, Fumikazu; Komazaki, Yuichi; Yoshino, Ayako; Takami, Akinori; Kondo, Yutaka; Kanaya, Yugo

    2017-05-01

    Ground-based measurements of black carbon (BC) were performed near an industrial source region in the early summer of 2014 and at a remote island in Japan in the spring of 2015. Here, we report the temporal variations in the transport, size distributions, and mixing states of the BC-containing particles. These particles were characterized using a continuous soot monitoring system, a single particle soot photometer, and an aerosol chemical speciation monitor. The effects of aging on the growth of BC-containing particles were examined by comparing the ground-based observations between the near-source and remote island sites. Secondary formation of sulfate and organic aerosols strongly affected the increases in BC coating (i.e., enhancement of cloud condensation nuclei activity) with air mass aging from the source to the outflow regions. The effects of wet removal on BC microphysics were elucidated by classifying the continental outflow air masses depending on the enhancement ratios of BC to CO (ΔBC / ΔCO), which were used as an indicator of the transport efficiency of BC. It was found that ΔBC / ΔCO ratios were controlled mainly by the wet removal during transport in the planetary boundary layer (PBL) on the timescale of 1-2 days. The meteorological conditions and backward trajectory analyses suggested that air masses strongly affected by wet removal originated mainly from a region in southern China (20-35° N) in the spring of 2015. Removal of large and thickly coated BC-containing particles was detected in the air masses that were substantially affected by the wet removal in the PBL, as predicted by Köhler theory. The size and water solubility of BC-containing particles in the PBL can be altered by the wet removal as well as the condensation of non-BC materials.

  12. Influence of oceanographic features on the spatial and seasonal patterns of mesozooplankton in the southern Patagonian shelf (Argentina, SW Atlantic)

    NASA Astrophysics Data System (ADS)

    Sabatini, M. E.; Reta, R.; Lutz, V. A.; Segura, V.; Daponte, C.

    2016-05-01

    Surveys conducted during spring, summer and late winter in 2005-2006 over the southern Patagonian shelf have allowed the seasonal distribution of mesozooplankton communities in relation to water masses and circulation to be investigated. In this system, most of the shelf is dominated by a distinct low salinity plume that is related to the runoff from the Magellan Strait (MSW), while the outer shelf is highly influenced by the cold and salty Subantarctic water (SAW) of the boundary Malvinas Current. Separating these two, the Subantarctic Shelf water mass (SASW) extends over the middle shelf. Correspondingly, the structure of the MSW and SAW mesozooplankton communities was found to be clearly different, while the former and the SASW assemblages were barely separable. This relatively fresh water mass is actually a variant of Subantarctic water that enters into the region from the south and the shelf-break, and hence its mesozooplankton community was not significantly different from that of the SAW water mass. Dissimilar species abundance, in turn associated with different life histories and population development, was more important than species composition in defining the assemblages. Total mesozooplankton abundance increased about 2.5-fold from the beginning of spring to late summer, and then decreased at least two orders of magnitude in winter. Across all seasons copepods represented > 70-80% of total mesozooplankton over most of the shelf. Copepod species best represented through all seasons, in terms of both relative abundance and occurrence, were Drepanopus forcipatus and Oithona helgolandica. Although seasonal differences in abundance were striking, the spatial distribution of mesozooplankton was largely similar across seasons, with relatively higher concentrations occurring mainly in Grande Bay and surroundings. The well defined spatial patterns of mesozooplankton that appear from our results in conjunction with the southward wide extension of the shelf and the predicted current path and speed suggest that plankton production is locally enhanced in the Grande Bay area and has the potential to be exported downstream.

  13. Factors affecting temporal and spatial variations of Arsenic (III) and (V) in the geothermally impacted Jemez river, NM.

    NASA Astrophysics Data System (ADS)

    Hansson, L.

    2015-12-01

    Arsenic (As) in surface waters and groundwater is of global concern due to its potential negative impact on human health and eco systems. Due to the high leaching capacity of hot waters, geothermal waters in areas with As-rich bedrock, often contain high concentrations of As. This water can reach the surface through fractures and cracks that manifest through diffuse seeps and hot springs. The Soda Dam area in the Jemez Mountains of northwestern NM, with frequent hot springs and seeps, has long been of interest due to the hot spring's high discharge (1500L/s) of geothermal waters into the Jemez River. Although the species of As highly controls its mobility and toxicity, previous studies have focused exclusively on the total amounts of As in the waters, while little is known about the species occurring along the river. We collected water and "sediment" from 14 sites along the Jemez river to study factors governing spatial and temporal variations of As in hot springs and river water; the interrelationship between As(III) and As(V) and to calculate mass flows during the summer monsoon months of 2015. We found that As(V) is the dominant species along the river stretch of interest except for in the hot springs. As(III) occurs at all sites, and the fraction of total As(III) varies both on a spatial and temporal scale, ranging between 1-7 % upstream of Soda Dam, and 12 - 21 % below it. We also found that hot spring water in the beginning of the southwest monsoon season only contains As(III), but further into the season explicitly As(V), possibly due to a heavy rainfall occurring two days before sampling. The fraction of As(III) correlates well with alkalinity (R2 =0.98-0.59) and temperature (R2 = 0.86-0.46) although differently at different sampling occasions. Since As(III) is generally more toxic and mobile in water than As(V), our results emphasizes that risks associated with As may change over the season due to season-related changes in As speciation.

  14. Water Quality Assessment of the Comal Springs Riverine System, New Braunfels, Texas, 1993-94

    USGS Publications Warehouse

    Fahlquist, Lynne; Slattery, R.N.

    1997-01-01

    Comal Springs of Central Texas are the largest springs in the southwestern United States. The long-term average flow of the Comal River, which essentially is the flow from Comal Springs, is 284 cubic feet per second (ft3/s). The artesian springs emerge at the base of an escarpment formed by the Comal Springs fault. The Comal River (fig. 1) is approximately 2 miles (mi) long and is a tributary of the Guadalupe River. Most of the Comal River follows the path of an old mill race, here referred to as New Channel, then flows through a channel carved by a tributary stream (Dry Comal Creek), eventually rejoining its original watercourse. The original watercourse, here referred to as Old Channel, has been reduced to a small stream, the source of which is water diverted from Landa Lake and several springs in the channel. In addition to being an important economic resource of the region, the springs and associated river system are home to unique aquatic species such as the endangered fountain darter (Etheostoma fonticola). The Comal Springs riffle beetle (Heterelmis comalensis), which exists in the springflow channel upstream of Landa Lake, has been proposed for listing as endangered. The Comal Springs dryopid beetle (Stygoparmus comalensis) and the Peck’s cave amphipod (Stygobromus pecki) are two subterranean species associated with Comal Springs also proposed for endangered listing.

  15. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  16. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  17. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  18. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  19. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  20. Preload Torque Limiting Shaft Coupling

    NASA Technical Reports Server (NTRS)

    Harmening, W. A. (Inventor)

    1975-01-01

    A torque limiting spring for a rotating shaft system which acts bidirectionally and is preloaded is examined. The spring is a split circular ring compressed into cavities on facing surfaces of matching shafts. The spring is preloaded by varying the width of a tang in the shaft cavity relative to the split in the spring.

  1. Reactive Nitrogen, Ozone and Ozone Production in the Arctic Troposphere and the Impact of Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; hide

    2011-01-01

    We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3 and NOx photochemistry as well as the atmospheric budget of PAN in tropospheric chemistry transport models of the Arctic. Anthropogenic and biomass burning pollution plumes observed during ARCTAS show highly elevated hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contribute significantly to O3 in the Arctic troposphere except in some of the aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.

  2. Feeding Ecology of Northeast Atlantic Mackerel, Norwegian Spring-Spawning Herring and Blue Whiting in the Norwegian Sea.

    PubMed

    Bachiller, Eneko; Skaret, Georg; Nøttestad, Leif; Slotte, Aril

    2016-01-01

    The Norwegian spring-spawning (NSS) herring (Clupea harengus), blue whiting (Micromesistius poutassou) and Northeast Atlantic (NEA) mackerel (Scomber scombrus) are extremely abundant pelagic planktivores that feed in the Norwegian Sea (NS) during spring and summer. This study investigated the feeding ecology and diet composition of these commercially important fish stocks on the basis of biological data, including an extensive set of stomach samples in combination with hydrographical data, zooplankton samples and acoustic abundance data from 12 stock monitoring surveys carried out in 2005-2010. Mackerel were absent during the spring, but had generally high feeding overlap with herring in the summer, with a diet mainly based on calanoid copepods, especially Calanus finmarchicus, as well as a similar diet width. Stomach fullness in herring diminished from spring to summer and feeding incidence was lower than that of mackerel in summer. However, stomach fullness did not differ between the two species, indicating that herring maintain an equally efficient pattern of feeding as mackerel in summer, but on a diet that is less dominated by copepods and is more reliant on larger prey. Blue whiting tended to have a low dietary overlap with mackerel and herring, with larger prey such as euphausiids and amphipods dominating, and stomach fullness and feeding incidence increasing with length. For all the species, feeding incidence increased with decreasing temperature, and for mackerel so did stomach fullness, indicating that feeding activity is highest in areas associated with colder water masses. Significant annual effects on diet composition and feeding-related variables suggested that the three species are able to adapt to different food and environmental conditions. These annual effects are likely to have an important impact on the predation pressure on different plankton groups and the carrying capacity of individual systems, and emphasise the importance of regular monitoring of pelagic fish diets.

  3. Muscle-spring dynamics in time-limited, elastic movements.

    PubMed

    Rosario, M V; Sutton, G P; Patek, S N; Sawicki, G S

    2016-09-14

    Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle-spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle-spring systems. © 2016 The Author(s).

  4. The plumbing system of the Pagosa thermal Springs, Colorado: Application of geologically constrained geophysical inversion and data fusion

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cuttler, S.; Karaoulis, M.; Zhou, J.; Raynolds, B.; Batzle, M.

    2015-06-01

    Fault and fracture networks usually provide the plumbing for movement of hydrothermal fluids in geothermal fields. The Big Springs of Pagosa Springs in Colorado is known as the deepest geothermal hot springs in the world. However, little is known about the plumbing system of this hot spring, especially regarding the position of the reservoir (if any) or the position of the major tectonic faults controlling the flow of the thermal water in this area. The Mancos shale, a Cretaceous shale, dominates many of the surface expressions around the springs and impede an easy recognition of the fault network. We use three geophysical methods (DC resistivity, self-potential, and seismic) to image the faults in this area, most of which are not recognized in the geologic fault map of the region. Results from these surveys indicate that the hot Springs (the Big Spring and a warm spring located 1.8 km further south) are located at the intersection of the Victoire Fault, a major normal crustal fault, and two north-northeast trending faults (Fault A and B). Self-potential and DC resistivity tomographies can be combined and a set of joint attributes defined to determine the localization of the flow of hot water associated with the Eight Miles Mesa Fault, a second major tectonic feature responsible for the occurrence of warm springs further West and South from the Big Springs of Pagosa Springs.

  5. Stirling engines for low-temperature solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.

  6. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    PubMed

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Morphological and metabolic adjustments in the small intestine to energy demands of growth, storage, and fasting in the first annual cycle of a hibernating lizard (Tupinambis merianae).

    PubMed

    do Nascimento, Lucas Francisco R; da Silveira, Lilian Cristina; Nisembaum, Laura Gabriela; Colquhoun, Alison; Abe, Agusto S; Mandarim-de-Lacerda, Carlos Alberto; de Souza, Silvia Cristina R

    2016-05-01

    Seasonal plasticity in the small intestine of neonatal tegu lizards was investigated using morphometry and analysis of enzymes involved in supplying energy to the intestinal tissue. In the autumn, the intestinal mass (Mi) was 1.0% of body mass and the scaling exponent b=0.92 indicated that Mi was larger in smaller neonates. During arousal from dormancy Mi was 23% smaller; later in spring, Mi increased 60% in relation to the autumn and the exponent b=0.14 indicated that the recovery was disproportionate in smaller tegus. During the autumn, the intestinal villi were greatly elongated; by midwinter, the Hv, SvEp, and VvEp were smaller than during the autumn (59%, 54%, 29%) and were restored to autumn levels during spring. In the active tegus, the maximum activity (Vmax) of enzymes indicated that the enterocytes can obtain energy from different sources, and possess gluconeogenic capacity. During winter, the Vmax of CS, HOAD, GDH, PEPCK was 40-50% lower in relation to the autumn and spring, while the Vmax of HK, PK, LDH, AST was unchanged. The hypoglycemia and the mucosal atrophy/ischemia during winter would prevent the enterocytes from using glucose, whereas they could slowly oxidize fatty acids released from body stores and amino acids from the tissue proteolysis to satisfy their needs of energy. Contrastingly, starvation during spring caused severe mass loss (50%); the tissue protein and the VvEp and VvLP did not change while the thickness of the muscular layer increased 51%, which suggested different effects along the length of the organ. In addition, the Vmax of the glycolytic enzymes was lower, indicating that a regulatory mechanism would spare blood glucose for vital organs during unanticipated food restriction. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Assessment of potable water quality including organic, inorganic, and trace metal concentrations.

    PubMed

    Nahar, Mst Shamsun; Zhang, Jing

    2012-02-01

    The quality of drinking water (tap, ground, and spring) in Toyama Prefecture, Japan was assessed by studying quality indicators including major ions, total carbon, and trace metal levels. The physicochemical properties of the water tested were different depending on the water source. Major ion concentrations (Ca(2+), K(+), Si(4+), Mg(2+), Na(+), SO(4)(2-), HCO(3)(-), NO(3)(-), and Cl(-)) were determined by ion chromatography, and the results were used to generate Stiff diagrams in order to visually identify different water masses. Major ion concentrations were higher in ground water than in spring and tap water. The relationship between alkaline metals (Na(+) and K(+)), alkaline-earth metals (Ca(2+) and Mg(2+)), and HCO(3)(-) showed little difference between deep and shallow ground water. Toyama ground, spring, and tap water were all the same type of water mass, called Ca-HCO(3). The calculated total dissolved solid values were below 300 mg/L for all water sources and met World Health Organization (WHO) water quality guidelines. Trace levels of As, Cd, Cr, Co, Cu, Fe, Pb, Mn, Mo, Ni, V, Zn, Sr, and Hg were detected in ground, spring, and tap water sources using inductively coupled plasma atomic emission spectrometry, and their levels were below WHO and Japanese water quality standard limits. Volatile organic carbon compounds were quantified by headspace gas chromatography-mass spectrometry, and the measured concentrations met WHO and Japanese water quality guidelines. Total trihalomethanes (THMs) were the major contaminant detected in all natural drinking water sources, but the concentration was highest in tap water (37.27 ± 0.05 μg/L). Notably, THMs concentrations reached up to 1.1 ± 0.05 μg/L in deep ground water. The proposed model gives an accurate description of the organic, inorganic, and trace heavy metal indicators studied here and may be used in natural clean water quality management. © Springer Science+Business Media B.V. 2011

  9. 9. THERMOSTAT IN LADIES MASSAGE ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. THERMOSTAT IN LADIES MASSAGE ROOM. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. 2. INDUSTRIAL IRON (LAUNDRY AREA IN BACKGROUND). Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INDUSTRIAL IRON (LAUNDRY AREA IN BACKGROUND). - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. 10. NEEDLE SHOWER IN COOLING ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. NEEDLE SHOWER IN COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  12. 2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. 9. NEEDLE SHOWER IN MEN'S PACK ROOM. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NEEDLE SHOWER IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  14. DETAIL OF THERMALWATER FLOW METER. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  15. 4. DETAIL OF ELEVATOR DRUM AND DRIVE. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ELEVATOR DRUM AND DRIVE. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  16. 11. GENERAL VIEW OF MEN'S BATH HALL. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GENERAL VIEW OF MEN'S BATH HALL. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  17. 5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  18. 6. UNIT VENTILATOR, WOMEN'S COOLING ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. UNIT VENTILATOR, WOMEN'S COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  19. 13. DETAIL OF INTERIOR OF ELEVATOR SHAFT. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF INTERIOR OF ELEVATOR SHAFT. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  20. 2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  1. 5. FLOW METER AND PIPING SHOWING CONNECTIONS. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLOW METER AND PIPING SHOWING CONNECTIONS. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  2. 2. PADDLE FAN IN PLENUM INTERIOR. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PADDLE FAN IN PLENUM INTERIOR. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  3. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. Modeling the effects of pumping wells in spring management: The case of Scirca spring (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Dragoni, W.; Mottola, A.; Cambi, C.

    2013-06-01

    One of the techniques used to increase the water yield of springs during dry seasons and droughts is drilling wells close to them. Where there is a low-hydraulic conductivity boundary close to a spring (the case considered here), this technique implies low well efficiency, high drawdown, and high cost of withdrawals. In addition, a set of pumping wells close to a spring can cause both it and the stream originating from it to dry up - a situation which is not always acceptable from an environmental point of view. In order to study better management strategies, this paper presents a finite difference model of the Scirca spring (Umbria - Marche Apennines, Italy), which originates from a limestone massif in which some formations are karstified. The model, built with Modflow using the equivalent porous media (EPM) approach, simulated the effects of pumping wells at various distances from the spring. Hydraulic Conductivity and Storativity were calibrated and validated on discharge data during recession, when recharge is nil. "Inverse modeling" was then used to estimate the daily recharge of the hydro-geological system of the Scirca spring for a period of several years. Lastly, the efficiency of various management schemes was evaluated by simulating the reaction of the spring, in terms of discharge, to a series of pumping scenarios, all guaranteeing a certain imposed withdrawal during summer, much larger than the natural spring discharge, given by spring discharge and well drawdown. The wells were located between 2850 and 100 m from the spring, the pumping time-span was set at 90 days, and pumping rates of 60, 90 and 120 l/s were applied. Results show that the maximum discharge at which spring drainage is avoided and that minimum vital flow is guaranteed is 90 l/s. The higher water volumes extracted during summer (dry season) are balanced by a lowering of the maximum natural discharges in winter and spring (recharge seasons). Simulations indicate that, by drilling pumping wells far from the spring, the efficiency of the whole system can be optimized in terms of total withdrawal, drilling and management costs, with reduced environmental impact. The mathematical model also shows how long the system takes to regain its "undisturbed" state, with a tolerance of 0.5 l/s. The model highlights the possibility of forcing the system to supply a smaller amount of water in winter, in order to increase the summer yield. Such a management scheme, which can be applied to other springs, may be useful in better meeting the demand for water during dry seasons.

  5. Relation between flow and temporal variations of nitrate and pesticides in two karst springs in northern Alabama

    USGS Publications Warehouse

    Kingsbury, J.A.

    2008-01-01

    Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground-water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground-water residence time than McGeehee Spring. Although water-quality data indicate differing short-term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season. ?? 2008 American Water Resources Association.

  6. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.

    2010-02-01

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35more » instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.« less

  7. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the contact between quartzite and granite where the alluvial and glacial deposits are thin. Consequently, the potential for depletion of discharge at Cave Springs from ground-water pumping in Snake Valley east of the park is less than if the source of water was from alluvial and glacial deposits or carbonate rocks, which would be more directly connected to downstream pumping sites in Snake Valley.

  8. Remote access and automation of SPring-8 MX beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  9. Site-based data curation based on hot spring geobiology

    PubMed Central

    Palmer, Carole L.; Thomer, Andrea K.; Baker, Karen S.; Wickett, Karen M.; Hendrix, Christie L.; Rodman, Ann; Sigler, Stacey; Fouke, Bruce W.

    2017-01-01

    Site-Based Data Curation (SBDC) is an approach to managing research data that prioritizes sharing and reuse of data collected at scientifically significant sites. The SBDC framework is based on geobiology research at natural hot spring sites in Yellowstone National Park as an exemplar case of high value field data in contemporary, cross-disciplinary earth systems science. Through stakeholder analysis and investigation of data artifacts, we determined that meaningful and valid reuse of digital hot spring data requires systematic documentation of sampling processes and particular contextual information about the site of data collection. We propose a Minimum Information Framework for recording the necessary metadata on sampling locations, with anchor measurements and description of the hot spring vent distinct from the outflow system, and multi-scale field photography to capture vital information about hot spring structures. The SBDC framework can serve as a global model for the collection and description of hot spring systems field data that can be readily adapted for application to the curation of data from other kinds scientifically significant sites. PMID:28253269

  10. Process-based monitoring and modeling of Karst springs - Linking intrinsic to specific vulnerability.

    PubMed

    Epting, Jannis; Page, Rebecca M; Auckenthaler, Adrian; Huggenberger, Peter

    2018-06-01

    The presented work illustrates to what extent field investigations as well as monitoring and modeling approaches are necessary to understand the high discharge dynamics and vulnerability of Karst springs. In complex settings the application of 3D geological models is essential for evaluating the vulnerability of Karst systems. They allow deriving information on catchment characteristics, as the geometry of aquifers and aquitards as well as their displacements along faults. A series of Karst springs in northwestern Switzerland were compared and Karst system dynamics with respect to qualitative and quantitative issues were evaluated. The main objective of the studies was to combine information of catchment characteristics and data from novel monitoring systems (physicochemical and microbiological parameters) to assess the intrinsic vulnerability of Karst springs to microbiological contamination with simulated spring discharges derived from numerical modeling (linear storage models). The numerically derived relation of fast and slow groundwater flow components enabled us to relate different sources of groundwater recharge and to characterize the dynamics of the Karst springs. Our study illustrates that comparably simple model-setups were able to reproduce the overall dynamic intrinsic vulnerability of several Karst systems and that one of the most important processes involved was the temporal variation of groundwater recharge (precipitation, evapotranspiration and snow melt). Furthermore, we make a first attempt on how to link intrinsic to specific vulnerability of Karst springs, which involves activities within the catchment area as human impacts from agriculture and settlements. Likewise, by a more detailed representation of system dynamics the influence of surface water, which is impacted by release events from storm sewers, infiltrating into the Karst system, could be considered. Overall, we demonstrate that our approach can be the basis for a more flexible and differentiated management and monitoring of raw-water quality of Karst springs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  12. Mechanical discrete simulator of the electro-mechanical lift with n:1 roping

    NASA Astrophysics Data System (ADS)

    Alonso, F. J.; Herrera, I.

    2016-05-01

    The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.

  13. Digital synthetic impedance for application in vibration damping.

    PubMed

    Nečásek, J; Václavík, J; Marton, P

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  14. Digital synthetic impedance for application in vibration damping

    NASA Astrophysics Data System (ADS)

    Nečásek, J.; Václavík, J.; Marton, P.

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  15. Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Qian; Cai, Yun; Zhang, Jianlin; Ma, Qingguo

    2013-05-01

    The Spring Festival is the most important festival in China. How can passengers go home smoothly and quickly during the Spring Festival travel rush, especially when emergencies of terrible winter weather happen? By modifying the social force model, we simulated the pedestrian flow in a station hall. The simulation revealed casualties happened when passengers escaped from panic induced by crowd turbulence. The results suggest that passenger numbers, ticket checking patterns, baggage volumes, and anxiety can affect the speed of passing through the waiting corridor. Our approach is meaningful in understanding the feature of a crowd moving and can be served to reproduce mass events. Therefore, it not only develops a realistic modeling of pedestrian flow but also is important for a better preparation of emergency management.

  16. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  17. Engineering science and mechanics; Proceedings of the International Symposium, Tainan, Republic of China, December 29-31, 1981. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.

    1983-07-01

    The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061

  18. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    PubMed

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  19. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  20. [Seasonal Variation Characteristics and Potential Source Contribution of Sulfate, Nitrate and Ammonium in Beijing by Using Single Particle Aerosol Mass Spectrometry].

    PubMed

    Liu, Lang; Zhang, Wen-jie; Du, Shi-yong; Hou, Lu-jian; Han, Bin; Yang, Wen; Chen, Min-dong; Bai, Zhi-peng

    2016-05-15

    Single particle aerosol mass spectrometry (SPAMS) was deployed to continuously observe the aerosol particles of Beijing urban area from 2013-12 to 2014-11, and the hourly average data of sulfate, nitrate and ammonium (SNA) were obtained using the characteristic ion tracer method. The mixing state and size distribution of SNA were analyzed. In addition, based on Hysplit 48 h back air mass trajectory results in combination with Concentration Weighted Trajectory method (CWT), we obtained the seasonal potential source contribution area of SNA. The results showed that the mixture of sulfate, nitrate and ammonium in spring and summer was more stable than that in autumn and winter. The size distribution of sulfate and nitrate was very similar. The size distribution characteristics of SNA followed the order of autumn > summer > spring > winter. The potential source region of SNA had similar spatial distribution characteristics, and the potential source region of SNA was mainly located in Beijing and south areas, especially at Tianjin, Langfang, Hengshui, Baoding and Shijiazhuang.

Top