Survey of Mass Storage Systems
1975-09-01
software that Pre- cision Instruments can provide. System Name: IBM 3850 Mass Storage System Manufacturer and Location: International Business Machines...34 Datamation, pp. 52-58, October 1973. 15 17. International Business Machines, IBM 3850 Mass Storage System Facts Folder, White Plains, NY, n.d. 18... International Business Machines, Introduction to the IBM 3850 Mass Storage System (MSS), White Plains, NY, n.d. 19. International Business Machines
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Application. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include the following: magnetic disk and tape technologies; optical disk and tape; software storage and file management systems; and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the National Space Science Data Center (NSSDC) Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990s.
Simulation of mass storage systems operating in a large data processing facility
NASA Technical Reports Server (NTRS)
Holmes, R.
1972-01-01
A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.
ERIC Educational Resources Information Center
Ranade, Sanjay; Schraeder, Jeff
1991-01-01
Presents an overview of the mass storage market and discusses mass storage systems as part of computer networks. Systems for personal computers, workstations, minicomputers, and mainframe computers are described; file servers are explained; system integration issues are raised; and future possibilities are suggested. (LRW)
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
2002-01-01
This document contains copies of those technical papers received in time for publication prior to the Tenth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Nineteenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center April 15-18, 2002. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the ingest, storage, and management of large volumes of data. The Conference encourages all interested organizations to discuss long-term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long-term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, storage networking with emphasis on IP storage, performance, standards, site reports, and vendor solutions. Tutorials will be available on perpendicular magnetic recording, object based storage, storage virtualization and IP storage.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor); Blasso, L. G. (Editor)
1992-01-01
Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
NASA Technical Reports Server (NTRS)
Blackwell, Kim; Blasso, Len (Editor); Lipscomb, Ann (Editor)
1991-01-01
The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's.
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
2000-01-01
This document contains copies of those technical papers received in time for publication prior to the Eighth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Seventeenth IEEE Symposium on Mass Storage Systems at the University of Maryland University College Inn and Conference Center March 27-30, 2000. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, future of current technology, new technology with a special emphasis on holographic storage, performance, standards, site reports, vendor solutions. Tutorials will be available on stability of optical media, disk subsystem performance evaluation, I/O and storage tuning, functionality and performance evaluation of file systems for storage area networks.
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1998-01-01
This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence.
Design and Analysis of a Flexible, Reliable Deep Space Life Support System
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.
Goddard Conference on Mass Storage Systems and Technologies, volume 2
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
1993-01-01
Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.
Goddard Conference on Mass Storage Systems and Technologies, Volume 1
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
1993-01-01
Copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in Sep. 1992 are included. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems (data ingestion rates now approach the order of terabytes per day). Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional topics addressed the evolution of the identifiable unit for processing purposes as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.
Mass Storage System Upgrades at the NASA Center for Computational Sciences
NASA Technical Reports Server (NTRS)
Tarshish, Adina; Salmon, Ellen; Macie, Medora; Saletta, Marty
2000-01-01
The NASA Center for Computational Sciences (NCCS) provides supercomputing and mass storage services to over 1200 Earth and space scientists. During the past two years, the mass storage system at the NCCS went through a great deal of changes both major and minor. Tape drives, silo control software, and the mass storage software itself were upgraded, and the mass storage platform was upgraded twice. Some of these upgrades were aimed at achieving year-2000 compliance, while others were simply upgrades to newer and better technologies. In this paper we will describe these upgrades.
Online mass storage system detailed requirements document
NASA Technical Reports Server (NTRS)
1976-01-01
The requirements for an online high density magnetic tape data storage system that can be implemented in a multipurpose, multihost environment is set forth. The objective of the mass storage system is to provide a facility for the compact storage of large quantities of data and to make this data accessible to computer systems with minimum operator handling. The results of a market survey and analysis of candidate vendor who presently market high density tape data storage systems are included.
NASA Langley Research Center's distributed mass storage system
NASA Technical Reports Server (NTRS)
Pao, Juliet Z.; Humes, D. Creig
1993-01-01
There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.
PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.
Light, Donald L.
1984-01-01
Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.
Trade-off study of data storage technologies
NASA Technical Reports Server (NTRS)
Kadyszewski, R. V.
1977-01-01
The need to store and retrieve large quantities of data at modest cost has generated the need for an economical, compact, archival mass storage system. Very significant improvements in the state-of-the-art of mass storage systems have been accomplished through the development of a number of magnetic, electro-optical, and other related devices. This study was conducted in order to do a trade-off between these data storage devices and the related technologies in order to determine an optimum approach for an archival mass data storage system based upon a comparison of the projected capabilities and characteristics of these devices to yield operational systems in the early 1980's.
Planning for optical disk technology with digital cartography.
Light, D.L.
1986-01-01
A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author
Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drost, Kevin; Jovanovic, Goran; Paul, Brian
2015-09-30
The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).
Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.; Pentakalos, Odysseas I.
1995-01-01
Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.
Cryogenic reactant storage for lunar base regenerative fuel cells
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
1989-01-01
There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.
Building and managing high performance, scalable, commodity mass storage systems
NASA Technical Reports Server (NTRS)
Lekashman, John
1998-01-01
The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.
An ASIC memory buffer controller for a high speed disk system
NASA Technical Reports Server (NTRS)
Hodson, Robert F.; Campbell, Steve
1993-01-01
The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.
NASA Technical Reports Server (NTRS)
Salmon, Ellen
1996-01-01
The data storage and retrieval demands of space and Earth sciences researchers have made the NASA Center for Computational Sciences (NCCS) Mass Data Storage and Delivery System (MDSDS) one of the world's most active Convex UniTree systems. Science researchers formed the NCCS's Computer Environments and Research Requirements Committee (CERRC) to relate their projected supercomputing and mass storage requirements through the year 2000. Using the CERRC guidelines and observations of current usage, some detailed projections of requirements for MDSDS network bandwidth and mass storage capacity and performance are presented.
Conversion of Mass Storage Hierarchy in an IBM Computer Network
1989-03-01
storage devices GUIDE IBM users’ group for DOS operating systems IBM International Business Machines IBM 370/145 CPU introduced in 1970 IBM 370/168 CPU...February 12, 1985, Information Systems Group, International Business Machines Corporation. "IBM 3090 Processor Complex" and Mass Storage System...34 Mainframe Journal, pp. 15-26, 64-65, Dallas, Texas, September-October 1987. 3. International Business Machines Corporation, Introduction to IBM 3S80 Storage
Fourth NASA Goddard Conference on Mass Storage Systems and Technologies
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1994-01-01
This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994.
The Third NASA Goddard Conference on Mass Storage Systems and Technologies
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1993-01-01
This report contains copies of nearly all of the technical papers and viewgraphs presented at the Goddard Conference on Mass Storage Systems and Technologies held in October 1993. The conference served as an informational exchange forum for topics primarily relating to the ingestion and management of massive amounts of data and the attendant problems involved. Discussion topics include the necessary use of computers in the solution of today's infinitely complex problems, the need for greatly increased storage densities in both optical and magnetic recording media, currently popular storage media and magnetic media storage risk factors, data archiving standards including a talk on the current status of the IEEE Storage Systems Reference Model (RM). Additional topics addressed System performance, data storage system concepts, communications technologies, data distribution systems, data compression, and error detection and correction.
The Design and Evolution of Jefferson Lab's Jasmine Mass Storage System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan Hess; M. Andrew Kowalski; Michael Haddox-Schatz
We describe the Jasmine mass storage system, in operation since 2001. Jasmine has scaled to meet the challenges of grid applications, petabyte class storage, and hundreds of MB/sec throughput using commodity hardware, Java technologies, and a small but focused development team. The evolution of the integrated disk cache system, which provides a managed online subset of the tape contents, is examined in detail. We describe how the storage system has grown to meet the special needs of the batch farm, grid clients, and new performance demands.
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, B.; Alhadeff, S.; Beard, S.; Carlile, D.; Cook, D.; Douglas, C.; Garcia, D.; Gillespie, D.; Golingo, R.; Gonzalez, D.
1990-01-01
The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes.
Alaska SAR Facility mass storage, current system
NASA Technical Reports Server (NTRS)
Cuddy, David; Chu, Eugene; Bicknell, Tom
1993-01-01
This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.
Optical mass memory system (AMM-13). AMM-13 system segment specification
NASA Technical Reports Server (NTRS)
Bailey, G. A.
1980-01-01
The performance, design, development, and test requirements for an optical mass data storage and retrieval system prototype (AMM-13) are established. This system interfaces to other system segments of the NASA End-to-End Data System via the Data Base Management System segment and is designed to have a storage capacity of 10 to the 13th power bits (10 to the 12th power bits on line). The major functions of the system include control, input and output, recording of ingested data, fiche processing/replication and storage and retrieval.
Mass Storage and Retrieval at Rome Laboratory
NASA Technical Reports Server (NTRS)
Kann, Joshua L.; Canfield, Brady W.; Jamberdino, Albert A.; Clarke, Bernard J.; Daniszewski, Ed; Sunada, Gary
1996-01-01
As the speed and power of modern digital computers continues to advance, the demands on secondary mass storage systems grow. In many cases, the limitations of existing mass storage reduce the overall effectiveness of the computing system. Image storage and retrieval is one important area where improved storage technologies are required. Three dimensional optical memories offer the advantage of large data density, on the order of 1 Tb/cm(exp 3), and faster transfer rates because of the parallel nature of optical recording. Such a system allows for the storage of multiple-Gbit sized images, which can be recorded and accessed at reasonable rates. Rome Laboratory is currently investigating several techniques to perform three-dimensional optical storage including holographic recording, two-photon recording, persistent spectral-hole burning, multi-wavelength DNA recording, and the use of bacteriorhodopsin as a recording material. In this paper, the current status of each of these on-going efforts is discussed. In particular, the potential payoffs as well as possible limitations are addressed.
Solar heating and cooling diode module
Maloney, Timothy J.
1986-01-01
A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.
[An ultra-low power, wearable, long-term ECG monitoring system with mass storage].
Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai
2012-01-01
In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.
Mass storage system experiences and future needs at the National Center for Atmospheric Research
NASA Technical Reports Server (NTRS)
Olear, Bernard T.
1991-01-01
A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas M., Jr.; Roelofs, Larry H.; Dorfman, Erik
1991-01-01
A methodology for optimizing organization of data obtained by NASA earth and space missions is discussed. The methodology uses a concept based on semantic data modeling techniques implemented in a hierarchical storage model. The modeling is used to organize objects in mass storage devices, relational database systems, and object-oriented databases. The semantic data modeling at the metadata record level is examined, including the simulation of a knowledge base and semantic metadata storage issues. The semantic data model hierarchy and its application for efficient data storage is addressed, as is the mapping of the application structure to the mass storage.
Optimizing tertiary storage organization and access for spatio-temporal datasets
NASA Technical Reports Server (NTRS)
Chen, Ling Tony; Rotem, Doron; Shoshani, Arie; Drach, Bob; Louis, Steve; Keating, Meridith
1994-01-01
We address in this paper data management techniques for efficiently retrieving requested subsets of large datasets stored on mass storage devices. This problem represents a major bottleneck that can negate the benefits of fast networks, because the time to access a subset from a large dataset stored on a mass storage system is much greater that the time to transmit that subset over a network. This paper focuses on very large spatial and temporal datasets generated by simulation programs in the area of climate modeling, but the techniques developed can be applied to other applications that deal with large multidimensional datasets. The main requirement we have addressed is the efficient access of subsets of information contained within much larger datasets, for the purpose of analysis and interactive visualization. We have developed data partitioning techniques that partition datasets into 'clusters' based on analysis of data access patterns and storage device characteristics. The goal is to minimize the number of clusters read from mass storage systems when subsets are requested. We emphasize in this paper proposed enhancements to current storage server protocols to permit control over physical placement of data on storage devices. We also discuss in some detail the aspects of the interface between the application programs and the mass storage system, as well as a workbench to help scientists to design the best reorganization of a dataset for anticipated access patterns.
Chowdhury, Rubel Biswas; Chakraborty, Priyanka
2016-08-01
Based on a systematic review of 17 recent substance flow analyses of phosphorus (P) at the regional and country scales, this study presents an assessment of the magnitude of anthropogenic P storage in the agricultural production and the waste management systems to identify the potential for minimizing unnecessary P storage to reduce the input of P as mineral fertilizer and the loss of P. The assessment indicates that in case of all (6) P flow analyses at the regional scale, the combined mass of annual P storage in the agricultural production and the waste management systems is greater than 50 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while this is close to or more than 100 % in case of half of these analyses. At the country scale, in case of the majority (7 out of 11) of analyses, the combined mass of annual P storage in the agricultural production and the waste management systems has been found to be roughly equivalent or greater than 100 % of the mass of annual P inflow as mineral fertilizer in the agricultural production system, while it ranged from 30 to 60 % in the remaining analyses. A simple scenario analysis has revealed that the annual storage of P in this manner over 100 years could result in the accumulation of a massive amount of P in the agricultural production and the waste management systems at both the regional and country scales. This study suggests that sustainable P management initiatives at the regional and country scales should put more emphasis on minimizing unwanted P storage in the agricultural production and the waste management systems.
Implementation of a Campuswide Distributed Mass Storage Service: the Dream Versus Reality
NASA Technical Reports Server (NTRS)
Prahst, Stephen; Armstead, Betty Jo
1996-01-01
In 1990, a technical team at NASA Lewis Research Center, Cleveland, Ohio, began defining a Mass Storage Service to pro- wide long-term archival storage, short-term storage for very large files, distributed Network File System access, and backup services for critical data dw resides on workstations and personal computers. Because of software availability and budgets, the total service was phased in over dm years. During the process of building the service from the commercial technologies available, our Mass Storage Team refined the original vision and learned from the problems and mistakes that occurred. We also enhanced some technologies to better meet the needs of users and system administrators. This report describes our team's journey from dream to reality, outlines some of the problem areas that still exist, and suggests some solutions.
Data systems and computer science space data systems: Onboard memory and storage
NASA Technical Reports Server (NTRS)
Shull, Tom
1991-01-01
The topics are presented in viewgraph form and include the following: technical objectives; technology challenges; state-of-the-art assessment; mass storage comparison; SODR drive and system concepts; program description; vertical Bloch line (VBL) device concept; relationship to external programs; and backup charts for memory and storage.
Automated clustering-based workload characterization
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Menasce, Daniel A.; Yesha, Yelena
1996-01-01
The demands placed on the mass storage systems at various federal agencies and national laboratories are continuously increasing in intensity. This forces system managers to constantly monitor the system, evaluate the demand placed on it, and tune it appropriately using either heuristics based on experience or analytic models. Performance models require an accurate workload characterization. This can be a laborious and time consuming process. It became evident from our experience that a tool is necessary to automate the workload characterization process. This paper presents the design and discusses the implementation of a tool for workload characterization of mass storage systems. The main features of the tool discussed here are: (1)Automatic support for peak-period determination. Histograms of system activity are generated and presented to the user for peak-period determination; (2) Automatic clustering analysis. The data collected from the mass storage system logs is clustered using clustering algorithms and tightness measures to limit the number of generated clusters; (3) Reporting of varied file statistics. The tool computes several statistics on file sizes such as average, standard deviation, minimum, maximum, frequency, as well as average transfer time. These statistics are given on a per cluster basis; (4) Portability. The tool can easily be used to characterize the workload in mass storage systems of different vendors. The user needs to specify through a simple log description language how the a specific log should be interpreted. The rest of this paper is organized as follows. Section two presents basic concepts in workload characterization as they apply to mass storage systems. Section three describes clustering algorithms and tightness measures. The following section presents the architecture of the tool. Section five presents some results of workload characterization using the tool.Finally, section six presents some concluding remarks.
Grand challenges in mass storage: A system integrator's perspective
NASA Technical Reports Server (NTRS)
Mintz, Dan; Lee, Richard
1993-01-01
The grand challenges are the following: to develop more innovation in approach; to expand the I/O barrier; to achieve increased volumetric efficiency and incremental cost improvements; to reinforce the 'weakest link' software; to implement improved architectures; and to minimize the impact of self-destructing technologies. Mass storage is defined as any type of storage system exceeding 100 GBytes in total size, under the control of a centralized file management scheme. The topics covered are presented in viewgraph form.
Mass storage technology in networks
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Takeda, Toru; Itao, Kiyoshi; Kaneko, Reizo
1990-08-01
Trends and features of mass storage subsystems in network are surveyed and their key technologies spotlighted. Storage subsystems are becoming increasingly important in new network systems in which communications and data processing are systematically combined. These systems require a new class of high-performance mass-information storage in order to effectively utilize their processing power. The requirements of high transfer rates, high transactional rates and large storage capacities, coupled with high functionality, fault tolerance and flexibility in configuration, are major challenges in storage subsystems. Recent progress in optical disk technology has resulted in improved performance of on-line external memories to optical disk drives, which are competing with mid-range magnetic disks. Optical disks are more effective than magnetic disks in using low-traffic random-access file storing multimedia data that requires large capacity, such as in archive use and in information distribution use by ROM disks. Finally, it demonstrates image coded document file servers for local area network use that employ 130mm rewritable magneto-optical disk subsystems.
Metallic phase-change materials for solar dynamic energy storage systems
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C., Jr.
1990-12-01
Solar (thermal) dynamic power systems for satellites require a heat storage system that is capable of operating the engine during eclipse. The conventional approach to this thermal storage problem is to use the latent heat of fluoride salts, which would melt during insolation and freeze during eclipse. Although candidate fluorides have large heats of fusion per unit mass, their poor thermal conductivity limits the rate at which energy can be transferred to and from the storage device. System performance is further limited by the high parasitic mass of the superalloy canisters needed to contain the salt. A new thermal storage system is described in which the phase-change material (PCM) is a metal (typically germanium) contained in modular graphite canisters. These modules exhibit good thermal conductivity and low parasitic mass, and they are physically and chemically stable. Prototype modules have survived over 600 melt/freeze cycles without degradation. Advanced concepts to further improve performance are described. These concepts include the selection of ternary eutectic alloys to provide a wider range of useful melting temperatures and the use of infiltration to control the location of liquid alloy and to compensate for differences in thermal expansion.
NASA Technical Reports Server (NTRS)
Kobler, Ben (Editor); Hariharan, P. C. (Editor)
2004-01-01
MSST2004, the Twelfth NASA Goddard / Twenty-first IEEE Conference on Mass Storage Systems and Technologies has as its focus long-term stewardship of globally-distributed storage. The increasing prevalence of e-anything brought about by widespread use of applications based, among others, on the World Wide Web, has contributed to rapid growth of online data holdings. A study released by the School of Information Management and Systems at the University of California, Berkeley, estimates that over 5 exabytes of data was created in 2002. Almost 99 percent of this information originally appeared on magnetic media. The theme for MSST2004 is therefore both timely and appropriate. There have been many discussions about rapid technological obsolescence, incompatible formats and inadequate attention to the permanent preservation of knowledge committed to digital storage. Tutorial sessions at MSST2004 detail some of these concerns, and steps being taken to alleviate them. Over 30 papers deal with topics as diverse as performance, file systems, and stewardship and preservation. A number of short papers, extemporaneous presentations, and works in progress will detail current and relevant research on the MSST2004 theme.
The mass storage testing laboratory at GSFC
NASA Technical Reports Server (NTRS)
Venkataraman, Ravi; Williams, Joel; Michaud, David; Gu, Heng; Kalluri, Atri; Hariharan, P. C.; Kobler, Ben; Behnke, Jeanne; Peavey, Bernard
1998-01-01
Industry-wide benchmarks exist for measuring the performance of processors (SPECmarks), and of database systems (Transaction Processing Council). Despite storage having become the dominant item in computing and IT (Information Technology) budgets, no such common benchmark is available in the mass storage field. Vendors and consultants provide services and tools for capacity planning and sizing, but these do not account for the complete set of metrics needed in today's archives. The availability of automated tape libraries, high-capacity RAID systems, and high- bandwidth interconnectivity between processor and peripherals has led to demands for services which traditional file systems cannot provide. File Storage and Management Systems (FSMS), which began to be marketed in the late 80's, have helped to some extent with large tape libraries, but their use has introduced additional parameters affecting performance. The aim of the Mass Storage Test Laboratory (MSTL) at Goddard Space Flight Center is to develop a test suite that includes not only a comprehensive check list to document a mass storage environment but also benchmark code. Benchmark code is being tested which will provide measurements for both baseline systems, i.e. applications interacting with peripherals through the operating system services, and for combinations involving an FSMS. The benchmarks are written in C, and are easily portable. They are initially being aimed at the UNIX Open Systems world. Measurements are being made using a Sun Ultra 170 Sparc with 256MB memory running Solaris 2.5.1 with the following configuration: 4mm tape stacker on SCSI 2 Fast/Wide; 4GB disk device on SCSI 2 Fast/Wide; and Sony Petaserve on Fast/Wide differential SCSI 2.
Mass storage: The key to success in high performance computing
NASA Technical Reports Server (NTRS)
Lee, Richard R.
1993-01-01
There are numerous High Performance Computing & Communications Initiatives in the world today. All are determined to help solve some 'Grand Challenges' type of problem, but each appears to be dominated by the pursuit of higher and higher levels of CPU performance and interconnection bandwidth as the approach to success, without any regard to the impact of Mass Storage. My colleagues and I at Data Storage Technologies believe that all will have their performance against their goals ultimately measured by their ability to efficiently store and retrieve the 'deluge of data' created by end-users who will be using these systems to solve Scientific Grand Challenges problems, and that the issue of Mass Storage will become then the determinant of success or failure in achieving each projects goals. In today's world of High Performance Computing and Communications (HPCC), the critical path to success in solving problems can only be traveled by designing and implementing Mass Storage Systems capable of storing and manipulating the truly 'massive' amounts of data associated with solving these challenges. Within my presentation I will explore this critical issue and hypothesize solutions to this problem.
Toward Scalable Benchmarks for Mass Storage Systems
NASA Technical Reports Server (NTRS)
Miller, Ethan L.
1996-01-01
This paper presents guidelines for the design of a mass storage system benchmark suite, along with preliminary suggestions for programs to be included. The benchmarks will measure both peak and sustained performance of the system as well as predicting both short- and long-term behavior. These benchmarks should be both portable and scalable so they may be used on storage systems from tens of gigabytes to petabytes or more. By developing a standard set of benchmarks that reflect real user workload, we hope to encourage system designers and users to publish performance figures that can be compared with those of other systems. This will allow users to choose the system that best meets their needs and give designers a tool with which they can measure the performance effects of improvements to their systems.
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies.. Volume 1
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1996-01-01
This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.
Jefferson Lab Mass Storage and File Replication Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian Bird; Ying Chen; Bryan Hess
Jefferson Lab has implemented a scalable, distributed, high performance mass storage system - JASMine. The system is entirely implemented in Java, provides access to robotic tape storage and includes disk cache and stage manager components. The disk manager subsystem may be used independently to manage stand-alone disk pools. The system includes a scheduler to provide policy-based access to the storage systems. Security is provided by pluggable authentication modules and is implemented at the network socket level. The tape and disk cache systems have well defined interfaces in order to provide integration with grid-based services. The system is in production andmore » being used to archive 1 TB per day from the experiments, and currently moves over 2 TB per day total. This paper will describe the architecture of JASMine; discuss the rationale for building the system, and present a transparent 3rd party file replication service to move data to collaborating institutes using JASMine, XM L, and servlet technology interfacing to grid-based file transfer mechanisms.« less
The architecture of the High Performance Storage System (HPSS)
NASA Technical Reports Server (NTRS)
Teaff, Danny; Watson, Dick; Coyne, Bob
1994-01-01
The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements or large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.
First Experiences with CMS Data Storage on the GEMSS System at the INFN-CNAF Tier-1
NASA Astrophysics Data System (ADS)
Andreotti, D.; Bonacorsi, D.; Cavalli, A.; Pra, S. Dal; Dell'Agnello, L.; Forti, Alberto; Grandi, C.; Gregori, D.; Gioi, L. Li; Martelli, B.; Prosperini, A.; Ricci, P. P.; Ronchieri, Elisabetta; Sapunenko, V.; Sartirana, A.; Vagnoni, V.; Zappi, Riccardo
A brand new Mass Storage System solution called "Grid-Enabled Mass Storage System" (GEMSS) -based on the Storage Resource Manager (StoRM) developed by INFN, on the General Parallel File System by IBM and on the Tivoli Storage Manager by IBM -has been tested and deployed at the INFNCNAF Tier-1 Computing Centre in Italy. After a successful stress test phase, the solution is now being used in production for the data custodiality of the CMS experiment at CNAF. All data previously recorded on the CASTOR system have been transferred to GEMSS. As final validation of the GEMSS system, some of the computing tests done in the context of the WLCG "Scale Test for the Experiment Program" (STEP'09) challenge were repeated in September-October 2009 and compared with the results previously obtained with CASTOR in June 2009. In this paper, the GEMSS system basics, the stress test activity and the deployment phase -as well as the reliability and performance of the system -are overviewed. The experiences in the use of GEMSS at CNAF in preparing for the first months of data taking of the CMS experiment at the Large Hadron Collider are also presented.
ICI optical data storage tape: An archival mass storage media
NASA Technical Reports Server (NTRS)
Ruddick, Andrew J.
1993-01-01
At the 1991 Conference on Mass Storage Systems and Technologies, ICI Imagedata presented a paper which introduced ICI Optical Data Storage Tape. This paper placed specific emphasis on the media characteristics and initial data was presented which illustrated the archival stability of the media. More exhaustive analysis that was carried out on the chemical stability of the media is covered. Equally important, it also addresses archive management issues associated with, for example, the benefits of reduced rewind requirements to accommodate tape relaxation effects that result from careful tribology control in ICI Optical Tape media. ICI Optical Tape media was designed to meet the most demanding requirements of archival mass storage. It is envisaged that the volumetric data capacity, long term stability and low maintenance characteristics demonstrated will have major benefits in increasing reliability and reducing the costs associated with archival storage of large data volumes.
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
Mass storage system experiences and future needs at the National Center for Atmospheric Research
NASA Technical Reports Server (NTRS)
Olear, Bernard T.
1992-01-01
This presentation is designed to relate some of the experiences of the Scientific Computing Division at NCAR dealing with the 'data problem'. A brief history and a development of some basic Mass Storage System (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. There is discussion of future MSS needs for future computing environments.
Open systems storage platforms
NASA Technical Reports Server (NTRS)
Collins, Kirby
1992-01-01
The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.
Multifunctional Structures for High-Energy Lightweight Load-Bearing Storage
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.
2018-01-01
This is a pull-up banner of the Multifunctional Structures for High-Energy Lightweight Load-bearing Storage (M-SHELLS) technology that will be on display at the SciTech Conference in January 2018. Efforts in Multifunctional Structures for High Energy Load-Bearing Storage (M-Shells) are pushing the boundaries of development for hybrid electric propulsion for future commercial aeronautical transport. The M-Shells hybrid material would serve as the power/energy storage of the vehicle and provide structural integrity, freeing up usable volume and mass typically occupied by bulky batteries. The ultimate goal is to demonstrate a system-level mass savings with a multifunctional structure with energy storage.
Towards the Interoperability of Web, Database, and Mass Storage Technologies for Petabyte Archives
NASA Technical Reports Server (NTRS)
Moore, Reagan; Marciano, Richard; Wan, Michael; Sherwin, Tom; Frost, Richard
1996-01-01
At the San Diego Supercomputer Center, a massive data analysis system (MDAS) is being developed to support data-intensive applications that manipulate terabyte sized data sets. The objective is to support scientific application access to data whether it is located at a Web site, stored as an object in a database, and/or storage in an archival storage system. We are developing a suite of demonstration programs which illustrate how Web, database (DBMS), and archival storage (mass storage) technologies can be integrated. An application presentation interface is being designed that integrates data access to all of these sources. We have developed a data movement interface between the Illustra object-relational database and the NSL UniTree archival storage system running in a production mode at the San Diego Supercomputer Center. With this interface, an Illustra client can transparently access data on UniTree under the control of the Illustr DBMS server. The current implementation is based on the creation of a new DBMS storage manager class, and a set of library functions that allow the manipulation and migration of data stored as Illustra 'large objects'. We have extended this interface to allow a Web client application to control data movement between its local disk, the Web server, the DBMS Illustra server, and the UniTree mass storage environment. This paper describes some of the current approaches successfully integrating these technologies. This framework is measured against a representative sample of environmental data extracted from the San Diego Ba Environmental Data Repository. Practical lessons are drawn and critical research areas are highlighted.
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies. Volume 2
NASA Technical Reports Server (NTRS)
Kobler, Benjamin (Editor); Hariharan, P. C. (Editor)
1996-01-01
This document contains copies of those technical papers received in time for publication prior to the Fifth Goddard Conference on Mass Storage Systems and Technologies held September 17 - 19, 1996, at the University of Maryland, University Conference Center in College Park, Maryland. As one of an ongoing series, this conference continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include storage architecture, database management, data distribution, file system performance and modeling, and optical recording technology. There will also be a paper on Application Programming Interfaces (API) for a Physical Volume Repository (PVR) defined in Version 5 of the Institute of Electrical and Electronics Engineers (IEEE) Reference Model (RM). In addition, there are papers on specific archives and storage products.
Limited Investigation into Regenerative Braking and Energy Storage for Mass Transit Systems
DOT National Transportation Integrated Search
1978-03-01
This study examines the technical and economic aspects of a regenerative braking/flywheel energy storage subway system. In order to define the analytical models accurately, it was necessary to gather data on the trains, rail network, schedules, and a...
A mass storage system for supercomputers based on Unix
NASA Technical Reports Server (NTRS)
Richards, J.; Kummell, T.; Zarlengo, D. G.
1988-01-01
The authors present the design, implementation, and utilization of a large mass storage subsystem (MSS) for the numerical aerodynamics simulation. The MSS supports a large networked, multivendor Unix-based supercomputing facility. The MSS at Ames Research Center provides all processors on the numerical aerodynamics system processing network, from workstations to supercomputers, the ability to store large amounts of data in a highly accessible, long-term repository. The MSS uses Unix System V and is capable of storing hundreds of thousands of files ranging from a few bytes to 2 Gb in size.
Applying a cloud computing approach to storage architectures for spacecraft
NASA Astrophysics Data System (ADS)
Baldor, Sue A.; Quiroz, Carlos; Wood, Paul
As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Astrophysics Data System (ADS)
Bents, David J.
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
NASA Technical Reports Server (NTRS)
Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.
2016-01-01
Hot-fire test demonstrations were successfully conducted using a cold helium pressurization system fully integrated into a liquid oxygen (LOX) / liquid methane (LCH4) propulsion system (Figure 1). Cold helium pressurant storage at near liquid nitrogen (LN2) temperatures (-275 F and colder) and used as a heated tank pressurant provides a substantial density advantage compared to ambient temperature storage. The increased storage density reduces helium pressurant tank size and mass, creating payload increases of 35% for small lunar-lander sized applications. This degree of mass reduction also enables pressure-fed propulsion systems for human-rated Mars ascent vehicle designs. Hot-fire test results from the highly-instrumented test bed will be used to demonstrate system performance and validate integrated models of the helium and propulsion systems. A pressurization performance metric will also be developed as a means to compare different active pressurization schemes.
Measurements over distributed high performance computing and storage systems
NASA Technical Reports Server (NTRS)
Williams, Elizabeth; Myers, Tom
1993-01-01
A strawman proposal is given for a framework for presenting a common set of metrics for supercomputers, workstations, file servers, mass storage systems, and the networks that interconnect them. Production control and database systems are also included. Though other applications and third part software systems are not addressed, it is important to measure them as well.
Optical mass memory investigation
NASA Technical Reports Server (NTRS)
1980-01-01
The MASTER 1 optical mass storage system advanced working model (AWM) was designed to demonstrate recording and playback of imagery data and to enable quantitative data to be derived as to the statistical distribution of raw errors experienced through the system. The AWM consists of two subsystems, the recorder and storage and retrieval. The recorder subsystem utilizes key technologies such as an acoustic travelling wave lens to achieve recording of digital data on fiche at a rate of 30 Mbits/sec, whereas the storage and retrieval reproducer subsystem utilizes a less complex optical system that employs an acousto-optical beam deflector to achieve data readout at a 5 Mbits/sec rate. The system has the built in capability for detecting and collecting error statistics. The recorder and storage and retrieval subsystems operate independent of one another and are each constructed in modular form with each module performing independent functions. The operation of each module and its interface to other modules is controlled by one controller for both subsystems.
A system approach to archival storage
NASA Technical Reports Server (NTRS)
Corcoran, John W.
1991-01-01
The introduction and viewgraphs of a discussion on a system approach to archival storage presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. The use of D-2 iron particles for archival storage is discussed along with how acceleration factors relating short-term tests to archival life times can be justified. Ampex Recording Systems is transferring D-2 video technology to data storage applications, and encountering concerns about corrosion. To protect the D-2 standard, Battelle tests were done on all four tapes in the Class 2 environment. Error rates were measured before and after the test on both exposed and control groups.
High bit rate mass data storage device
NASA Technical Reports Server (NTRS)
1973-01-01
The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.
Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupta, Ian
2005-01-01
High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.
Upper Atmosphere Research Satellite (UARS) trade analysis
NASA Technical Reports Server (NTRS)
Fox, M. M.; Nebb, J.
1983-01-01
The Upper Atmosphere Research Satellite (UARS) which will collect data pertinent to the Earth's upper atmosphere is described. The collected data will be sent to the central data handling facility (CDHF) via the UARS ground system and the data will be processed and distributed to the remote analysis computer systems (RACS). An overview of the UARS ground system is presented. Three configurations were developed for the CDHF-RACS system. The CDHF configurations are discussed. The IBM CDHF configuration, the UNIVAC CDHF configuration and the vax cluster CDHF configuration are presented. The RACS configurations, the IBM RACS configurations, UNIVAC RACS and VAX RACS are detailed. Due to the large on-line data estimate to approximately 100 GB, a mass storage system is considered essential to the UARS CDHF. Mass storage systems were analyzed and the Braegan ATL, the RCA optical disk, the IBM 3850 and the MASSTOR M860 are discussed. It is determined that the type of mass storage system most suitable to UARS is the automated tape/cartridge device. Two devices of this type, the IBM 3850 and the MASSTOR MSS are analyzed and the applicable tape/cartridge device is incorporated into the three CDHF-RACS configurations.
Sentinel 2 MMFU: The first European Mass Memory System Based on NAND-Flash Storage Technology
NASA Astrophysics Data System (ADS)
Staehle, M.; Cassel, M.; Lonsdorfer, U.; Gliem, F.; Walter, D.; Fichna, T.
2011-08-01
Sentinel-2 is the multispectral optical mission of the EU-ESA GMES (Global Monitoring for Environment and Security) program, currently under development by Astrium-GmbH in Friedrichshafen (Germany) for a launch in 2013. The mission features a 490 Mbit/s optical sensor operating at high duty cycles, requiring in turn a large 2.4 Tbit on-board storage capacity.The required storage capacity motivated the selection of the NAND-Flash technology which was already secured by a lengthy period (2004-2009) of detailed testing, analysis and qualification by Astrium GmbH, IDA and ESTEC. The mass memory system is currently being realized by Astrium GmbH.
The INFN-CNAF Tier-1 GEMSS Mass Storage System and database facility activity
NASA Astrophysics Data System (ADS)
Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Favaro, Matteo; Gregori, Daniele; Prosperini, Andrea; Pezzi, Michele; Sapunenko, Vladimir; Zizzi, Giovanni; Vagnoni, Vincenzo
2015-05-01
The consolidation of Mass Storage services at the INFN-CNAF Tier1 Storage department that has occurred during the last 5 years, resulted in a reliable, high performance and moderately easy-to-manage facility that provides data access, archive, backup and database services to several different use cases. At present, the GEMSS Mass Storage System, developed and installed at CNAF and based upon an integration between the IBM GPFS parallel filesystem and the Tivoli Storage Manager (TSM) tape management software, is one of the largest hierarchical storage sites in Europe. It provides storage resources for about 12% of LHC data, as well as for data of other non-LHC experiments. Files are accessed using standard SRM Grid services provided by the Storage Resource Manager (StoRM), also developed at CNAF. Data access is also provided by XRootD and HTTP/WebDaV endpoints. Besides these services, an Oracle database facility is in production characterized by an effective level of parallelism, redundancy and availability. This facility is running databases for storing and accessing relational data objects and for providing database services to the currently active use cases. It takes advantage of several Oracle technologies, like Real Application Cluster (RAC), Automatic Storage Manager (ASM) and Enterprise Manager centralized management tools, together with other technologies for performance optimization, ease of management and downtime reduction. The aim of the present paper is to illustrate the state-of-the-art of the INFN-CNAF Tier1 Storage department infrastructures and software services, and to give a brief outlook to forthcoming projects. A description of the administrative, monitoring and problem-tracking tools that play a primary role in managing the whole storage framework is also given.
Evaluating the effect of online data compression on the disk cache of a mass storage system
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Yesha, Yelena
1994-01-01
A trace driven simulation of the disk cache of a mass storage system was used to evaluate the effect of an online compression algorithm on various performance measures. Traces from the system at NASA's Center for Computational Sciences were used to run the simulation and disk cache hit ratios, number of files and bytes migrating to tertiary storage were measured. The measurements were performed for both an LRU and a size based migration algorithm. In addition to seeing the effect of online data compression on the disk cache performance measure, the simulation provided insight into the characteristics of the interactive references, suggesting that hint based prefetching algorithms are the only alternative for any future improvements to the disk cache hit ratio.
Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2015-01-01
Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.
Efficient Energy-Storage Concept
NASA Technical Reports Server (NTRS)
Brantley, L. W. J.; Rupp, C.
1982-01-01
Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg
2013-07-01
It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identifymore » the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.« less
Predicting possible effects of H2S impurity on CO2 transportation and geological storage.
Ji, Xiaoyan; Zhu, Chen
2013-01-02
For CO(2) geological storage, permitting impurities, such as H(2)S, in CO(2) streams can lead to a great potential for capital and energy savings for CO(2) capture and separation, but it also increases costs and risk management for transportation and storage. To evaluate the cost-benefits, using a recently developed model (Ji, X.; Zhu, C. Geochim. Cosmochim. Acta 2012, 91, 40-59), this study predicts phase equilibria and thermodynamic properties of the system H(2)S-CO(2)-H(2)O-NaCl under transportation and storage conditions and discusses potential effects of H(2)S on transportation and storage. The prediction shows that inclusion of H(2)S in CO(2) streams may lead to two-phase flow. For H(2)S-CO(2) mixtures, at a given temperature, the bubble and dew pressures decrease with increasing H(2)S content, while the mass density increases at low pressures and decreases at high pressures. For the CO(2)-H(2)S-H(2)O system, the total gas solubility increases while the mass density of the aqueous solution with dissolved gas decreases. For the CO(2)-H(2)S-H(2)O-NaCl system, at a given temperature, pressure and NaCl concentration, the solubility of the gas mixture in aqueous phase increases with increasing H(2)S content and then decreases, while the mass density of aqueous solution decreases and may be lower than the mass density of the solution without gas dissolution.
Chemical hydrogen storage material property guidelines for automotive applications
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.
The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less
The amino acid's backup bone - storage solutions for proteomics facilities.
Meckel, Hagen; Stephan, Christian; Bunse, Christian; Krafzik, Michael; Reher, Christopher; Kohl, Michael; Meyer, Helmut Erich; Eisenacher, Martin
2014-01-01
Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.
Combined Acquisition/Processing For Data Reduction
NASA Astrophysics Data System (ADS)
Kruger, Robert A.
1982-01-01
Digital image processing systems necessarily consist of three components: acquisition, storage/retrieval and processing. The acquisition component requires the greatest data handling rates. By coupling together the acquisition witn some online hardwired processing, data rates and capacities for short term storage can be reduced. Furthermore, long term storage requirements can be reduced further by appropriate processing and editing of image data contained in short term memory. The net result could be reduced performance requirements for mass storage, processing and communication systems. Reduced amounts of data also snouid speed later data analysis and diagnostic decision making.
Solar-powered unmanned aerial vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.
1996-12-31
An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time ofmore » year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.« less
NASA Astrophysics Data System (ADS)
Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech
2017-11-01
We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.
Impact of thermal energy storage properties on solar dynamic space power conversion system mass
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.
1987-01-01
A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).
A Fault-Tolerant Radiation-Robust Mass Storage Concept for Highly Scaled Flash Memory
NASA Astrophysics Data System (ADS)
Fuchs, Cristian M.; Trinitis, Carsten; Appel, Nicolas; Langer, Martin
2015-09-01
Future spacemissions will require vast amounts of data to be stored and processed aboard spacecraft. While satisfying operational mission requirements, storage systems must guarantee data integrity and recover damaged data throughout the mission. NAND-flash memories have become popular for space-borne high performance mass memory scenarios, though future storage concepts will rely upon highly scaled flash or other memory technologies. With modern flash memory, single bit erasure coding and RAID based concepts are insufficient. Thus, a fully run-time configurable, high performance, dependable storage concept, requiring a minimal set of logic or software. The solution is based on composite erasure coding and can be adjusted for altered mission duration or changing environmental conditions.
Long-Term file activity patterns in a UNIX workstation environment
NASA Technical Reports Server (NTRS)
Gibson, Timothy J.; Miller, Ethan L.
1998-01-01
As mass storage technology becomes more affordable for sites smaller than supercomputer centers, understanding their file access patterns becomes crucial for developing systems to store rarely used data on tertiary storage devices such as tapes and optical disks. This paper presents a new way to collect and analyze file system statistics for UNIX-based file systems. The collection system runs in user-space and requires no modification of the operating system kernel. The statistics package provides details about file system operations at the file level: creations, deletions, modifications, etc. The paper analyzes four months of file system activity on a university file system. The results confirm previously published results gathered from supercomputer file systems, but differ in several important areas. Files in this study were considerably smaller than those at supercomputer centers, and they were accessed less frequently. Additionally, the long-term creation rate on workstation file systems is sufficiently low so that all data more than a day old could be cheaply saved on a mass storage device, allowing the integration of time travel into every file system.
Lunar-derived titanium alloys for hydrogen storage
NASA Technical Reports Server (NTRS)
Love, S.; Hertzberg, A.; Woodcock, G.
1992-01-01
Hydrogen gas, which plays an important role in many projected lunar power systems and industrial processes, can be stored in metallic titanium and in certain titanium alloys as an interstitial hydride compound. Storing and retrieving hydrogen with titanium-iron alloy requires substantially less energy investment than storage by liquefaction. Metal hydride storage systems can be designed to operate at a wide range of temperatures and pressures. A few such systems have been developed for terrestrial applications. A drawback of metal hydride storage for lunar applications is the system's large mass per mole of hydrogen stored, which rules out transporting it from earth. The transportation problem can be solved by using native lunar materials, which are rich in titanium and iron.
Using expert systems to implement a semantic data model of a large mass storage system
NASA Technical Reports Server (NTRS)
Roelofs, Larry H.; Campbell, William J.
1990-01-01
The successful development of large volume data storage systems will depend not only on the ability of the designers to store data, but on the ability to manage such data once it is in the system. The hypothesis is that mass storage data management can only be implemented successfully based on highly intelligent meta data management services. There now exists a proposed mass store system standard proposed by the IEEE that addresses many of the issues related to the storage of large volumes of data, however, the model does not consider a major technical issue, namely the high level management of stored data. However, if the model were expanded to include the semantics and pragmatics of the data domain using a Semantic Data Model (SDM) concept, the result would be data that is expressive of the Intelligent Information Fusion (IIF) concept and also organized and classified in context to its use and purpose. The results are presented of a demonstration prototype SDM implemented using the expert system development tool NEXPERT OBJECT. In the prototype, a simple instance of a SDM was created to support a hypothetical application for the Earth Observing System, Data Information System (EOSDIS). The massive amounts of data that EOSDIS will manage requires the definition and design of a powerful information management system in order to support even the most basic needs of the project. The application domain is characterized by a semantic like network that represents the data content and the relationships between the data based on user views and the more generalized domain architectural view of the information world. The data in the domain are represented by objects that define classes, types and instances of the data. In addition, data properties are selectively inherited between parent and daughter relationships in the domain. Based on the SDM a simple information system design is developed from the low level data storage media, through record management and meta data management to the user interface.
EMASS (tm): An expandable solution for NASA space data storage needs
NASA Technical Reports Server (NTRS)
Peterson, Anthony L.; Cardwell, P. Larry
1992-01-01
The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2(10)(exp 12) Bytes). As the scientific community makes use of this data their work product will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. This paper describes the expandable architecture of the E-Systems Modular Automated Storage System (EMASS (TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century.
EMASS (trademark): An expandable solution for NASA space data storage needs
NASA Technical Reports Server (NTRS)
Peterson, Anthony L.; Cardwell, P. Larry
1991-01-01
The data acquisition, distribution, processing, and archiving requirements of NASA and other U.S. Government data centers present significant data management challenges that must be met in the 1990's. The Earth Observing System (EOS) project alone is expected to generate daily data volumes greater than 2 Terabytes (2 x 10(exp 12) Bytes). As the scientific community makes use of this data, their work will result in larger, increasingly complex data sets to be further exploited and managed. The challenge for data storage systems is to satisfy the initial data management requirements with cost effective solutions that provide for planned growth. The expendable architecture of the E-Systems Modular Automated Storage System (EMASS(TM)), a mass storage system which is designed to support NASA's data capture, storage, distribution, and management requirements into the 21st century is described.
Hydrogen Storage for Aircraft Applications Overview
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)
2002-01-01
Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.
Volume serving and media management in a networked, distributed client/server environment
NASA Technical Reports Server (NTRS)
Herring, Ralph H.; Tefend, Linda L.
1993-01-01
The E-Systems Modular Automated Storage System (EMASS) is a family of hierarchical mass storage systems providing complete storage/'file space' management. The EMASS volume server provides the flexibility to work with different clients (file servers), different platforms, and different archives with a 'mix and match' capability. The EMASS design considers all file management programs as clients of the volume server system. System storage capacities are tailored to customer needs ranging from small data centers to large central libraries serving multiple users simultaneously. All EMASS hardware is commercial off the shelf (COTS), selected to provide the performance and reliability needed in current and future mass storage solutions. All interfaces use standard commercial protocols and networks suitable to service multiple hosts. EMASS is designed to efficiently store and retrieve in excess of 10,000 terabytes of data. Current clients include CRAY's YMP Model E based Data Migration Facility (DMF), IBM's RS/6000 based Unitree, and CONVEX based EMASS File Server software. The VolSer software provides the capability to accept client or graphical user interface (GUI) commands from the operator's console and translate them to the commands needed to control any configured archive. The VolSer system offers advanced features to enhance media handling and particularly media mounting such as: automated media migration, preferred media placement, drive load leveling, registered MediaClass groupings, and drive pooling.
Immiscible fluid: Heat of fusion heat storage system
NASA Technical Reports Server (NTRS)
Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.
1980-01-01
Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.
NASA Astrophysics Data System (ADS)
Abdiwe, Ramadan; Haider, Markus
2017-06-01
In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.
Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Schmitz, Paul C.
2003-01-01
There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.
Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.
Chemical hydrogen storage material property guidelines for automotive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semelsberger, Troy; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less
Design and evaluation of a hybrid storage system in HEP environment
NASA Astrophysics Data System (ADS)
Xu, Qi; Cheng, Yaodong; Chen, Gang
2017-10-01
Nowadays, the High Energy Physics experiments produce a large amount of data. These data are stored in mass storage systems which need to balance the cost, performance and manageability. In this paper, a hybrid storage system including SSDs (Solid-state Drive) and HDDs (Hard Disk Drive) is designed to accelerate data analysis and maintain a low cost. The performance of accessing files is a decisive factor for the HEP computing system. A new deployment model of Hybrid Storage System in High Energy Physics is proposed which is proved to have higher I/O performance. The detailed evaluation methods and the evaluations about SSD/HDD ratio, and the size of the logic block are also given. In all evaluations, sequential-read, sequential-write, random-read and random-write are all tested to get the comprehensive results. The results show the Hybrid Storage System has good performance in some fields such as accessing big files in HEP.
NASA Astrophysics Data System (ADS)
Yue, L.; Guan, Z.; He, C.; Luo, D.; Saif, U.
2017-06-01
In recent years, the competitive pressure on manufacturing companies shifted them from mass production to mass customization to produce large variety of products. It is a great challenge for companies nowadays to produce customized mixed flow mode of production to meet customized demand on time. Due to large variety of products, the storage system to deliver variety of products to production lines influences on the timely production of variety of products, as investigated from by simulation study of an inefficient storage system of a real Company, in the current research. Therefore, current research proposed a slotting optimization model with mixed model sequence to assemble in consideration of the final flow lines to optimize whole automated storage and retrieval system (AS/RS) and distribution system in the case company. Current research is aimed to minimize vertical height of centre of gravity of AS/RS and total time spent for taking the materials out from the AS/RS simultaneously. Genetic algorithm is adopted to solve the proposed problem and computational result shows significant improvement in stability and efficiency of AS/RS as compared to the existing method used in the case company.
Satellite thermal storage systems using metallic phase-change materials
NASA Astrophysics Data System (ADS)
Lauf, R. J.; Hamby, C.
Solar (thermal) dynamic power systems for satellites require a heat storage system capable of operating the engine during eclipse. A system is described in which the phase-change material (PCM) is a metal rather than the more conventional fluoride salts. Thermal storage modules consisting of germanium contained in graphite have good thermal conductivity, low parasitic mass, and are physically and chemically stable. The result is described for thermal cycle testing of graphite capsules containing germanium and several germanium- and silicon-based alloys, as well as some initial tests of the compatibility of graphite with Nb-1 percent Zr structural materials.
ERIC Educational Resources Information Center
Wilson, Karl A.; Tan-Wilson, Anna
2013-01-01
Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…
Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...
2018-04-07
The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.
The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less
Systems analysis of Mars solar electric propulsion vehicles
NASA Technical Reports Server (NTRS)
Hickman, J. M.; Curtis, H. B.; Kenny, B. H.; Sefcik, R. J.
1990-01-01
Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented.
NASA Technical Reports Server (NTRS)
Plachta, David; Kittel, Peter
2003-01-01
Previous efforts have shown the analytical benefits of zero boil-off (ZBO) cryogenic propellant storage in launch vehicle upper stages of Mars transfer vehicles for conceptual Mars Missions. However, recent NASA mission investigations have looked at a different and broad array of missions, including a variety of orbit transfer vehicle (OTV) propulsion concepts, some requiring cryogenic storage. For many of the missions, this vehicle will remain for long periods (greater than one week) in low earth orbit (LEO), a relatively warm thermal environment. Under this environment, and with an array of tank sizes and propellants, the performance of a ZBO cryogenic storage system is predicted and compared with a traditional, passive-only storage concept. The results show mass savings over traditional, passive-only cryogenic storage when mission durations are less than one week in LEO for oxygen, two weeks for methane, and roughly 2 months for LH2. Cryogenic xenon saves mass over passive storage almost immediately.
Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems
NASA Astrophysics Data System (ADS)
Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.
2012-06-01
There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.
Key technologies for tritium storage bed development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S.H.; Chang, M.H.; Kang, H.G.
2015-03-15
ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heatmore » loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.« less
A proposed application programming interface for a physical volume repository
NASA Technical Reports Server (NTRS)
Jones, Merritt; Williams, Joel; Wrenn, Richard
1996-01-01
The IEEE Storage System Standards Working Group (SSSWG) has developed the Reference Model for Open Storage Systems Interconnection, Mass Storage System Reference Model Version 5. This document, provides the framework for a series of standards for application and user interfaces to open storage systems. More recently, the SSSWG has been developing Application Programming Interfaces (APIs) for the individual components defined by the model. The API for the Physical Volume Repository is the most fully developed, but work is being done on APIs for the Physical Volume Library and for the Mover also. The SSSWG meets every other month, and meetings are open to all interested parties. The Physical Volume Repository (PVR) is responsible for managing the storage of removable media cartridges and for mounting and dismounting these cartridges onto drives. This document describes a model which defines a Physical Volume Repository, and gives a brief summary of the Application Programming Interface (API) which the IEEE Storage Systems Standards Working Group (SSSWG) is proposing as the standard interface for the PVR.
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Difilipo, Frank
1990-01-01
A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. The specific energy (energy to mass ratio) of the system was estimated to be 155 W-hr/kg. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.
Standardized Testing Program for Solid-State Hydrogen Storage Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael A.; Page, Richard A.
2012-07-30
In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-statemore » hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.« less
Thermal storage requirements for parabolic dish solar power plants
NASA Technical Reports Server (NTRS)
Wen, L.; Steele, H.
1980-01-01
The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.
The NEEDS Data Base Management and Archival Mass Memory System
NASA Technical Reports Server (NTRS)
Bailey, G. A.; Bryant, S. B.; Thomas, D. T.; Wagnon, F. W.
1980-01-01
A Data Base Management System and an Archival Mass Memory System are being developed that will have a 10 to the 12th bit on-line and a 10 to the 13th off-line storage capacity. The integrated system will accept packetized data from the data staging area at 50 Mbps, create a comprehensive directory, provide for file management, record the data, perform error detection and correction, accept user requests, retrieve the requested data files and provide the data to multiple users at a combined rate of 50 Mbps. Stored and replicated data files will have a bit error rate of less than 10 to the -9th even after ten years of storage. The integrated system will be demonstrated to prove the technology late in 1981.
The impact of image storage organization on the effectiveness of PACS.
Hindel, R
1990-11-01
Picture archiving communication system (PACS) requires efficient handling of large amounts of data. Mass storage systems are cost effective but slow, while very fast systems, like frame buffers and parallel transfer disks, are expensive. The image traffic can be divided into inbound traffic generated by diagnostic modalities and outbound traffic into workstations. At the contact points with medical professionals, the responses must be fast. Archiving, on the other hand, can employ slower but less expensive storage systems, provided that the primary activities are not impeded. This article illustrates a segmentation architecture meeting these requirements based on a clearly defined PACS concept.
A study of mass data storage technology for rocket engine data
NASA Technical Reports Server (NTRS)
Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.
1990-01-01
The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.
Partitioning GRACE ice loss for the Juneau Icefield using modeling, airborne and ground observations
NASA Astrophysics Data System (ADS)
Young, J. C.; Arendt, A. A.; Pettit, E. C.
2017-12-01
Glaciers of Alaska and Northwestern Canada are losing mass at one of the highest rates of any mountain glacier system globally. High-precision measurements from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites have revealed changes in the local gravitational field along the Gulf of Alaska due to changes in these ice masses since 2003. In previous studies on Alaska glaciers, mass change estimates derived from GRACE compare well to time series' of Gulf of Alaska runoff from mass balance modeling. However, these studies did not adequately partition glacier and terrestrial snow pack mass change signals due to limited modeling capabilities and lack of sufficient ground observations. Our study focuses on the Juneau Icefield, one of the best-monitored areas in Alaska in terms of glacier mass balance, as a case study for partitioning GRACE glacier mass changes from terrestrial water storage changes both seasonally and in long-term trends. We leverage the modeling tool SnowModel to generate a time series of mass changes using assimilated field observations and airborne laser altimetry, and we compare to an iterated mass concentration GRACE solution from the NASA Goddard Space Flight Center Geodesy Laboratory ( 30-day intervals and 12,390 km2 resolution). The GRACE solution forward-models all mass signals other than those due to terrestrial water storage and the cryosphere, therefore requiring additional analysis to partition glacier mass balance and water storage signals. Our approach is one of the first to analyze GRACE at the sub-mountain range scale, and to examine terrestrial water storage trends at a smaller scale than the full Gulf of Alaska. Ultimately, this study points to refinements in the forward-modeling of terrestrial water storage in the GRACE processing chain, and provides best estimates for the timing and magnitude of subannual and long-term changes of the Juneau Icefield from 2003 to present.
Preliminary System Analysis of In Situ Resource Utilization for Mars Human Exploration
NASA Technical Reports Server (NTRS)
Rapp, Donald; Andringa, Jason; Easter, Robert; Smith, Jeffrey H .; Wilson, Thomas; Clark, D. Larry; Payne, Kevin
2005-01-01
We carried out a system analysis of processes for utilization of Mars resources to support human exploration of Mars by production of propellants from indigenous resources. Seven ISRU processes were analyzed to determine mass. power and propellant storage volume requirements. The major elements of each process include C02 acquisition, chemical conversion, and storage of propellants. Based on a figure of merit (the ratio of the mass of propellants that must be brought from Earth in a non-ISRU mission to the mass of the ISRU system. tanks and feedstocks that must be brought from Earth for a ISRU mission) the most attractive process (by far); is one where indigenous Mars water is accessible and this is processed via Sabatier/Electrolysis to methane and oxygen. These processes are technically relatively mature. Other processes with positive leverage involve reverse water gas shift and solid oxide electrolysis.
Saying goodbye to optical storage technology.
McLendon, Kelly; Babbitt, Cliff
2002-08-01
The days of using optical disk based mass storage devices for high volume applications like health care document imaging are coming to an end. The price/performance curve for redundant magnetic disks, known as RAID, is now more positive than for optical disks. All types of application systems, across many sectors of the marketplace are using these newer magnetic technologies, including insurance, banking, aerospace, as well as health care. The main components of these new storage technologies are RAID and SAN. SAN refers to storage area network, which is a complex mechanism of switches and connections that allow multiple systems to store huge amounts of data securely and safely.
Long-Term Cryogenic Propellant Storage for the Titan Orbiter Polar Surveyor (TOPS) Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; DeLee, Hudson; Purves, Lloyd; Willis, Dewey; Nixon, Conor; Mcguinness, Dan; Riall, Sara; Devine, Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
Long-Term Cryogenic Propellant Storage for the TOPS Mission
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt;
2015-01-01
Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo
A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less
Mars Propellant Liquefaction Modeling in Thermal Desktop
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
Current state of the mass storage system reference model
NASA Technical Reports Server (NTRS)
Coyne, Robert
1993-01-01
IEEE SSSWG was chartered in May 1990 to abstract the hardware and software components of existing and emerging storage systems and to define the software interfaces between these components. The immediate goal is the decomposition of a storage system into interoperable functional modules which vendors can offer as separate commercial products. The ultimate goal is to develop interoperable standards which define the software interfaces, and in the distributed case, the associated protocols to each of the architectural modules in the model. The topics are presented in viewgraph form and include the following: IEEE SSSWG organization; IEEE SSSWG subcommittees & chairs; IEEE standards activity board; layered view of the reference model; layered access to storage services; IEEE SSSWG emphasis; and features for MSSRM version 5.
Grand challenges in mass storage: A systems integrators perspective
NASA Technical Reports Server (NTRS)
Lee, Richard R.; Mintz, Daniel G.
1993-01-01
Within today's much ballyhooed supercomputing environment, with its CFLOPS of CPU power, and Gigabit networks, there exists a major roadblock to computing success; that of Mass Storage. The solution to this mass storage problem is considered to be one of the 'Grand Challenges' facing the computer industry today, as well as long into the future. It has become obvious to us, as well as many others in the industry, that there is no clear single solution in sight. The Systems Integrator today is faced with a myriad of quandaries in approaching this challenge. He must first be innovative in approach, second choose hardware solutions that are volumetric efficient; high in signal bandwidth; available from multiple sources; competitively priced, and have forward growth extendibility. In addition he must also comply with a variety of mandated, and often conflicting software standards (GOSIP, POSIX, IEEE, MSRM 4.0, and others), and finally he must deliver a systems solution with the 'most bang for the buck' in terms of cost vs. performance factors. These quandaries challenge the Systems Integrator to 'push the envelope' in terms of his or her ingenuity and innovation on an almost daily basis. This dynamic is explored further, and an attempt to acquaint the audience with rational approaches to this 'Grand Challenge' is made.
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium...), did not exceed 200 lbs/hr. 2. Each magnesium chloride storage bin scrubber stack a. The average mass flow of hydrochloric acid from the control system applied to the magnesium chloride storage bins...
NASA Technical Reports Server (NTRS)
Green, Robert D.; Kissock, Barbara I.; Bennett, William R.
2010-01-01
This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.
Cost projections for Redox Energy storage systems
NASA Technical Reports Server (NTRS)
Michaels, K.; Hall, G.
1980-01-01
A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.
Farias, Nahuel E; Spivak, Eduardo D; Luppi, Tomas A
2017-07-01
We studied the functional morphology of the female reproductive system of the purple stone crab Danielethus crenulatus. The most remarkable feature is the relative storage capacity and extensibility of the seminal receptacles. These receptacles are a pair of simple sacs that lack internal structures dividing the internal lumen. Differences in seminal receptacle size and contents are accompanied by conspicuous changes in receptacle lining at a tissue level. Full seminal receptacles contain discrete sperm masses formed by hardened fluid and densely packed spermatophores. Different sperm masses are likely from different mates and their stratified disposition within the seminal receptacles is compatible with rival sperm displacement and last sperm precedence. Additionally, the anatomical structure of the vulva and vagina suggest active female control over copula. We discuss our results in the general context of sperm storage in brachyurans and the implications for the mating system of this species. © 2017 Wiley Periodicals, Inc.
Integral Radiator and Storage Tank
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott
2007-01-01
A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0.85. The composite wrap remained tightly bound to the surface of the tank throughout the testing in thermal vacuum conditions.
Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
NASA Astrophysics Data System (ADS)
Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.
2016-03-01
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.
Symmetric Electrodes for Electrochemical Energy-Storage Devices.
Zhang, Lei; Dou, Shi Xue; Liu, Hua Kun; Huang, Yunhui; Hu, Xianluo
2016-12-01
Increasing environmental problems and energy challenges have so far attracted urgent demand for developing green and efficient energy-storage systems. Among various energy-storage technologies, sodium-ion batteries (SIBs), electrochemical capacitors (ECs) and especially the already commercialized lithium-ion batteries (LIBs) are playing very important roles in the portable electronic devices or the next-generation electric vehicles. Therefore, the research for finding new electrode materials with reduced cost, improved safety, and high-energy density in these energy storage systems has been an important way to satisfy the ever-growing demands. Symmetric electrodes have recently become a research focus because they employ the same active materials as both the cathode and anode in the same energy-storage system, leading to the reduced manufacturing cost and simplified fabrication process. Most importantly, this feature also endows the symmetric energy-storage system with improved safety, longer lifetime, and ability of charging in both directions. In this Progress Report, we provide the comprehensive summary and comment on different symmetric electrodes and focus on the research about the applications of symmetric electrodes in different energy-storage systems, such as the above mentioned SIBs, ECs and LIBs. Further considerations on the possibility of mass production have also been presented.
Mass storage system reference model, Version 4
NASA Technical Reports Server (NTRS)
Coleman, Sam (Editor); Miller, Steve (Editor)
1993-01-01
The high-level abstractions that underlie modern storage systems are identified. The information to generate the model was collected from major practitioners who have built and operated large storage facilities, and represents a distillation of the wisdom they have acquired over the years. The model provides a common terminology and set of concepts to allow existing systems to be examined and new systems to be discussed and built. It is intended that the model and the interfaces identified from it will allow and encourage vendors to develop mutually-compatible storage components that can be combined to form integrated storage systems and services. The reference model presents an abstract view of the concepts and organization of storage systems. From this abstraction will come the identification of the interfaces and modules that will be used in IEEE storage system standards. The model is not yet suitable as a standard; it does not contain implementation decisions, such as how abstract objects should be broken up into software modules or how software modules should be mapped to hosts; it does not give policy specifications, such as when files should be migrated; does not describe how the abstract objects should be used or connected; and does not refer to specific hardware components. In particular, it does not fully specify the interfaces.
New architectural paradigms for multi-petabyte distributed storage systems
NASA Technical Reports Server (NTRS)
Lee, Richard R.
1994-01-01
In the not too distant future, programs such as NASA's Earth Observing System, NSF/ARPA/NASA's Digital Libraries Initiative and Intelligence Community's (NSA, CIA, NRO, etc.) mass storage system upgrades will all require multi-petabyte (petabyte: 1015 bytes of bitfile data) (or larger) distributed storage solutions. None of these requirements, as currently defined, will meet their objectives utilizing either today's architectural paradigms or storage solutions. Radically new approaches will be required to not only store and manage veritable 'mountain ranges of data', but to make the cost of ownership affordable, much less practical in today's (and certainly the future's) austere budget environment! Within this paper we will explore new architectural paradigms and project systems performance benefits and dollars per petabyte of information stored. We will discuss essential 'top down' approaches to achieving an overall systems level performance capability sufficient to meet the challenges of these major programs.
Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage.
Kelly, Stephen T; Van Atta, Sky L; Vajo, John J; Olson, Gregory L; Clemens, B M
2009-05-20
Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction MgH2 + 1/2Mg2Si + H2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.
2010-01-01
NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.
Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations.
Kuisma, Mikael; Lundin, Angelica; Moth-Poulsen, Kasper; Hyldgaard, Per; Erhart, Paul
2016-07-21
Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal, Judith C; Mohan, Gowtham; Venkataraman, Mahesh
A novel ternary eutectic salt mixture for high-temperature sensible heat storage, composed of sodium chloride, potassium chloride and magnesium chloride (NaKMg-Cl) was developed based on a phase diagram generated with FactSage(R). The differential scanning calorimetry (DSC) technique was used to experimentally validate the predicted melting point of the ternary eutectic composition, which was measured as 387 degrees C, in good agreement with the prediction. The ternary eutectic was compared to two binary salts formulated based on prediction of the eutectic composition by FactSage, but unfortunately DSC measurements showed that neither binary salt composition was eutectic. Nonetheless, the measured thermo-physical propertiesmore » of the ternary and the two binary mixtures are compared. Liquid heat capacities of both the ternary and binary salts were determined by using DSC with sapphire as the standard reference. The average heat capacity of the ternary mixture was recorded as 1.18 J g-1 K-1. The mass loss of the molten eutectic salts was studied up to 1000 degrees C using a thermogravimetric analyser in nitrogen, argon and air. The results showed a significant mass loss due to vaporisation in an open system, particularly above 700 degrees C. However, simulation of mass loss in a closed system with an inert cover gas indicates storage temperatures above 700 degrees C may be feasible, and highlights the importance of the design of the storage tank system. In terms of storage material cost, the NaKMg-Cl mixture is approximately 4.5 USD/kWh, which is 60% cheaper than current state-of-the-art nitrate salt mixtures.« less
Reflections on CD-ROM: Bridging the Gap between Technology and Purpose.
ERIC Educational Resources Information Center
Saviers, Shannon Smith
1987-01-01
Provides a technological overview of CD-ROM (Compact Disc-Read Only Memory), an optically-based medium for data storage offering large storage capacity, computer-based delivery system, read-only medium, and economic mass production. CD-ROM database attributes appropriate for information delivery are also reviewed, including large database size,…
Initial guidelines and estimates for a power system with inertial (flywheel) energy storage
NASA Technical Reports Server (NTRS)
Slifer, L. W., Jr.
1980-01-01
The starting point for the assessment of a spacecraft power system utilizing inertial (flywheel) energy storage. Both general and specific guidelines are defined for the assessment of a modular flywheel system, operationally similar to but with significantly greater capability than the multimission modular spacecraft (MMS) power system. Goals for the flywheel system are defined in terms of efficiently train estimates and mass estimates for the system components. The inertial storage power system uses a 5 kw-hr flywheel storage component at 50 percent depth of discharge (DOD). It is capable of supporting an average load of 3 kw, including a peak load of 7.5 kw for 10 percent of the duty cycle, in low earth orbit operation. The specific power goal for the system is 10 w/kg, consisting of a 56w/kg (end of life) solar array, a 21.7 w-hr/kg (at 50 percent DOD) flywheel, and 43 w/kg power processing (conditioning, control and distribution).
Development of Lightweight CubeSat with Multi-Functional Structural Battery Systems
NASA Technical Reports Server (NTRS)
Karkkainen, Ryan L.; Hunter, Roger C.; Baker, Christopher
2017-01-01
This collaborative multi-disciplinary effort aims to develop a lightweight, 1-unit (1U) CubeSat (10x10x10 cm) which utilizes improved and fully integrated structural battery materials for mission life extension, larger payload capability, and significantly reduced mass.The electrolytic carbon fiber material serves the multifunctional capacitive energy system as both a lightweight, load bearing structure and an electrochemical battery system. This implementation will improve traditional multifunctional energy storage concepts with a highly effective energy storage capability.
NASA Astrophysics Data System (ADS)
Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao
2016-10-01
The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2014-01-01
Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.
Optimum process design of packed bed type thermal storage systems and other applications
Bindra, Hitesh; Bueno, Pablo
2016-10-25
Methods and systems for optimizing the process of heat and/or mass transfer operations in packed beds and embodiments of applications of the methods are disclosed herein below. In one instance, the method results in the profile of the quantity representative of the heat and/or mass transfer operation having a propagating substantially sharp front.
Evaluation of on-board hydrogen storage methods f or high-speed aircraft
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, Jale F.
1991-01-01
Hydrogen is the fuel of choice for hypersonic vehicles. Its main disadvantage is its low liquid and solid density. This increases the vehicle volume and hence the drag losses during atmospheric flight. In addition, the dry mass of the vehicle is larger due to larger vehicle structure and fuel tankage. Therefore it is very desirable to find a fuel system with smaller fuel storage requirements without deteriorating the vehicle performance substantially. To evaluate various candidate fuel systems, they were first screened thermodynamically with respect to their energy content and cooling capacities. To evaluate the vehicle performance with different fuel systems, a simple computer model is developed to compute the vehicle parameters such as the vehicle volume, dry mass, effective specific impulse, and payload capacity. The results indicate that if the payload capacity (or the gross lift-off mass) is the most important criterion, only slush hydrogen and liquid hydrogen - liquid methane gel shows better performance than the liquid hydrogen vehicle. If all the advantages of a smaller vehicle are considered and a more accurate mass analysis can be performed, other systems using endothermic fuels such as cyclohexane, and some boranes may prove to be worthy of further consideration.
Flash drive memory apparatus and method
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor)
2010-01-01
A memory apparatus includes a non-volatile computer memory, a USB mass storage controller connected to the non-volatile computer memory, the USB mass storage controller including a daisy chain component, a male USB interface connected to the USB mass storage controller, and at least one other interface for a memory device, other than a USB interface, the at least one other interface being connected to the USB mass storage controller.
Concepts for the design of an antimatter annihilation rocket
NASA Technical Reports Server (NTRS)
Morgan, D. L., Jr.
1982-01-01
Matter-antimatter annihilation is considered for spacecraft propulsion. Annihilation produces considerably more energy per unit mass of propellant than any other known means of energy production. An antimatter annihilation rocket requires several systems and components that are unique to its nature. Among these are an antimatter storage system, a means to extract the antimatter from storage, a system to transport the antimatter to the rocket engine, and the engine wherein annihilation occurs and thrust is produced. Design concepts of these systems and components are presented and discussed.
Mass storage systems for data transport in the early space station era 1992-1998
NASA Technical Reports Server (NTRS)
Carper, Richard (Editor); Dalton, John (Editor); Healey, Mike (Editor); Kempster, Linda (Editor); Martin, John (Editor); Mccaleb, Fred (Editor); Sobieski, Stanley (Editor); Sos, John (Editor)
1987-01-01
NASA's Space Station Program will provide a vehicle to deploy an unprecedented number of data producing experiments and operational devices. Peak down link data rates are expected to be in the 500 megabit per second range and the daily data volume could reach 2.4 terabytes. Such startling requirements inspired an internal NASA study to determine if economically viable data storage solutions are likely to be available to support the Ground Data Transport segment of the NASA data system. To derive the requirements for data storage subsystems, several alternative data transport architectures were identified with different degrees of decentralization. Data storage operations at each subsystem were categorized based on access time and retrieval functions, and reduced to the following types of subsystems: First in First out (FIFO) storage, fast random access storage, and slow access with staging. The study showed that industry funded magnetic and optical storage technology has a reasonable probability of meeting these requirements. There are, however, system level issues that need to be addressed in the near term.
Electrical Systems Analysis at NASA Glenn Research Center: Status and Prospects
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Liang, Anita D.; Berton, Jeffrey J.; Wickenheiser, Timothy J.
2003-01-01
An analysis of an electrical power and propulsion system for a 2-place general aviation aircraft is presented to provide a status of such modeling at NASA Glenn Research Center. The thermodynamic/ electrical model and mass prediction tools are described and the resulting system power and mass are shown. Three technology levels are used to predict the effect of advancements in component technology. Methods of fuel storage are compared by mass and volume. Prospects for future model development and validation at NASA as well as possible applications are also summarized.
Holographic data storage crystals for the LDEF. [long duration exposure facility
NASA Technical Reports Server (NTRS)
Callen, W. Russell; Gaylord, Thomas K.
1992-01-01
Lithium niobate is a significant electro-optic material, with potential applications in ultra high capacity storage and processing systems. Lithium niobate is the material of choice for many integrated optical devices and holographic mass memory systems. For crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of these crystals contained volume holograms. Although the crystals suffered the surface damage characteristics of most of the other optical components on the Georgia Tech tray, the crystals were recovered intact. The holograms were severely degraded because of the lengthy exposure, but the bulk properties are being investigated to determine the spaceworthiness for space data storage and retrieval systems.
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew
1990-01-01
Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.
NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications
NASA Technical Reports Server (NTRS)
Araghi, Koorosh R.
2011-01-01
NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.
Cryogenic Boil-Off Reduction System
NASA Astrophysics Data System (ADS)
Plachta, David W.; Guzik, Monica C.
2014-03-01
A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.
Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.
Biocompatibility of sweetpotato and peanut in a hydroponic system
NASA Technical Reports Server (NTRS)
Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.
1998-01-01
'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.
Complete liquefaction methods and apparatus
Turner, Terry D.; Wilding, Bruce M.
2013-10-15
A method and apparatus are described to provide complete gas utilization in the liquefaction operation from a source of gas without return of natural gas to the source thereof from the process and apparatus. The mass flow rate of gas input into the system and apparatus may be substantially equal to the mass flow rate of liquefied product output from the system, such as for storage or use.
Rimmed and edge thickened Stodola shaped flywheel
Kulkarni, S.V.; Stone, R.G.
1983-10-11
A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.
Rimmed and edge thickened stodola shaped flywheel. [Patent application
Kulkarni, S.V.; Stone, R.G.
1980-09-24
A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.
Engineering of the Magnetized Target Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.; Philips, A.
2002-01-01
Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Structural, thermal and radiation-management design details are presented. Propellant storage and supply options are also discussed and a propulsion system mass estimate is given.
Document Indexing for Image-Based Optical Information Systems.
ERIC Educational Resources Information Center
Thiel, Thomas J.; And Others
1991-01-01
Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…
Reduced Boil-Off System Sizing
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Feller, Jeffrey R.
2015-01-01
NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.
A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System
NASA Technical Reports Server (NTRS)
Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)
2002-01-01
Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).
Building heating and cooling applications thermal energy storage program overview
NASA Technical Reports Server (NTRS)
Eissenberg, D. M.
1980-01-01
Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.
Thermochemical energy storage for a lunar base
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Mckissock, Barbara I.; Difilippo, Frank
1992-01-01
A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.
Buresh, Robert; Berg, Kris; Noble, John
2005-09-01
The purposes of this study were to determine the relationships between: (a) measures of body size/composition and heat production/storage, and (b) heat production/storage and heart rate (HR) drift during running at 95% of the velocity that elicited lactate threshold, which was determined for 20 healthy recreational male runners. Subsequently, changes in skin and tympanic temperatures associated with a vigorous 20-min run, HR, and VO2 data were recorded. It was found that heat production was significantly correlated with body mass (r = .687), lean mass (r = .749), and body surface area (BSA, r = .699). Heat storage was significantly correlated with body mass (r = .519), fat mass (r = .464), and BSA (r = .498). The percentage of produced heat stored was significantly correlated with body mass (r = .427), fat mass (r = .455), and BSA (r = .414). Regression analysis showed that the sum of body mass, percentage of body fat, BSA, lean mass, and fat mass accounted for 30% of the variability in heat storage. It was also found that HR drift was significantly correlated with heat storage (r = .383), percentage of produced heat stored (r = .433), and core temperature change (r = .450). It was concluded that heavier runners experienced greater heat production, heat storage, and core temperature increases than lighter runners during vigorous running.
NASA Astrophysics Data System (ADS)
Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei
2018-05-01
In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.
Rimmed and edge thickened Stodola shaped flywheel
Kulkarni, Satish V.; Stone, Richard G.
1983-01-01
A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.
NCDC mass storage systems and technologies
NASA Technical Reports Server (NTRS)
Davis, Dick
1993-01-01
National Climatic Data Center (NCDC) data management issues are discussed, such as nature of holdings, history of the site, popularity of data sets, media/technology used for storage, volume distributed per month, mode of distribution, most frequently encountered problems, type of media requested/used, and evolution of media. Current holdings at NCDC are 107.8 terabytes of digital data and about 0.3 terabytes of manuscript data. The nexrad radar system is expected to generate approximately 88 terabytes per year by 1996.
Numerical Simulation of Convective Heat and Mass Transfer in a Two-Layer System
NASA Astrophysics Data System (ADS)
Myznikova, B. I.; Kazaryan, V. A.; Tarunin, E. L.; Wertgeim, I. I.
The results are presented of mathematical and computer modeling of natural convection in the “liquid-gas” two-layer system, filling a vertical cylinder surrounded by solid heat conductive tract. The model describes approximately the conjugate heat and mass transfer in the underground oil product storage, filled partially by a hydrocarbon liquid, with natural gas layer above the liquid surface. The geothermal gradient in a rock mass gives rise to the intensive convection in the liquid-gas system. The consideration is worked out for laminar flows, laminar-turbulent transitional regimes, and developed turbulent flows.
Trace Gas Analyzer (TGA) program
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.
Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter
2004-01-01
The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.
Mass-storage management for distributed image/video archives
NASA Astrophysics Data System (ADS)
Franchi, Santina; Guarda, Roberto; Prampolini, Franco
1993-04-01
The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.
Measurement and modeling of CO2 mass transfer in brine at reservoir conditions
NASA Astrophysics Data System (ADS)
Shi, Z.; Wen, B.; Hesse, M. A.; Tsotsis, T. T.; Jessen, K.
2018-03-01
In this work, we combine measurements and modeling to investigate the application of pressure-decay experiments towards delineation and interpretation of CO2 solubility, uptake and mass transfer in water/brine systems at elevated pressures of relevance to CO2 storage operations in saline aquifers. Accurate measurements and modeling of mass transfer in this context are crucial to an improved understanding of the longer-term fate of CO2 that is injected into the subsurface for storage purposes. Pressure-decay experiments are presented for CO2/water and CO2/brine systems with and without the presence of unconsolidated porous media. We demonstrate, via high-resolution numerical calculations in 2-D, that natural convection will complicate the interpretation of the experimental observations if the particle size is not sufficiently small. In such settings, we demonstrate that simple 1-D interpretations can result in an overestimation of the uptake (diffusivity) by two orders of magnitude. Furthermore, we demonstrate that high-resolution numerical calculations agree well with the experimental observations for settings where natural convection contributes substantially to the overall mass transfer process.
Cryogenics and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)
1997-01-01
Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.
High-Pressure Oxygen Generation for Outpost EVA Study
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.
2009-01-01
The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz
Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less
Fast, axis-agnostic, dynamically summarized storage and retrieval for mass spectrometry data.
Handy, Kyle; Rosen, Jebediah; Gillan, André; Smith, Rob
2017-01-01
Mass spectrometry, a popular technique for elucidating the molecular contents of experimental samples, creates data sets comprised of millions of three-dimensional (m/z, retention time, intensity) data points that correspond to the types and quantities of analyzed molecules. Open and commercial MS data formats are arranged by retention time, creating latency when accessing data across multiple m/z. Existing MS storage and retrieval methods have been developed to overcome the limitations of retention time-based data formats, but do not provide certain features such as dynamic summarization and storage and retrieval of point meta-data (such as signal cluster membership), precluding efficient viewing applications and certain data-processing approaches. This manuscript describes MzTree, a spatial database designed to provide real-time storage and retrieval of dynamically summarized standard and augmented MS data with fast performance in both m/z and RT directions. Performance is reported on real data with comparisons against related published retrieval systems.
Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.
Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing
2015-08-04
Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.
Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso
2016-11-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km 2 ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. © 2016, National Ground Water Association.
Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso
2016-01-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.
An R Package for Open, Reproducible Analysis of Urban Water Systems, With Application to Chicago
Urban water systems consist of natural and engineered flows of water interacting in complex ways. System complexity can be understood via mass conservative models that account for the interrelationships among all major flows and storages. We have developed a generic urban water s...
Storage containers for radioactive material
Groh, E.F.; Cassidy, D.A.; Dates, L.R.
1980-07-31
A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.
High-speed data duplication/data distribution: An adjunct to the mass storage equation
NASA Technical Reports Server (NTRS)
Howard, Kevin
1993-01-01
The term 'mass storage' invokes the image of large on-site disk and tape farms which contain huge quantities of low- to medium-access data. Although the cost of such bulk storage is recognized, the cost of the bulk distribution of this data rarely is given much attention. Mass data distribution becomes an even more acute problem if the bulk data is part of a national or international system. If the bulk data distribution is to travel from one large data center to another large data center then fiber-optic cables or the use of satellite channels is feasible. However, if the distribution must be disseminated from a central site to a number of much smaller, and, perhaps varying sites, then cost prohibits the use of fiber-optic cable or satellite communication. Given these cost constraints much of the bulk distribution of data will continue to be disseminated via inexpensive magnetic tape using the various next day postal service options. For non-transmitted bulk data, our working hypotheses are that the desired duplication efficiency of the total bulk data should be established before selecting any particular data duplication system; and, that the data duplication algorithm should be determined before any bulk data duplication method is selected.
Electrical and thermal modeling of a large-format lithium titanate oxide battery system.
DOT National Transportation Integrated Search
2015-04-01
The future of mass transportation is clearly moving towards the increased efficiency of hybrid and electric vehicles. Electrical : energy storage is a key component in most of these advanced vehicles, with the system complexity and vehicle cost shift...
Achievements in optical data storage and retrieval
NASA Technical Reports Server (NTRS)
Nelson, R. H.; Shuman, C. A.
1977-01-01
The present paper deals with the current achievements in two technology efforts, one of which is a wideband holographic recorder which uses multichannel recording of data in the form of holograms on roll film for storage and retrieval of large unit records at hundreds of megabit per second. The second effort involves a system (termed DIGIMEN) which uses binary spot recording on photographic film in the form of microfiche to provide a mass storage capability with automatic computer-controlled random access to stored records. Some potential design improvements are noted.
Set processing in a network environment. [data bases and magnetic disks and tapes
NASA Technical Reports Server (NTRS)
Hardgrave, W. T.
1975-01-01
A combination of a local network, a mass storage system, and an autonomous set processor serving as a data/storage management machine is described. Its characteristics include: content-accessible data bases usable from all connected devices; efficient storage/access of large data bases; simple and direct programming with data manipulation and storage management handled by the set processor; simple data base design and entry from source representation to set processor representation with no predefinition necessary; capability available for user sort/order specification; significant reduction in tape/disk pack storage and mounts; flexible environment that allows upgrading hardware/software configuration without causing major interruptions in service; minimal traffic on data communications network; and improved central memory usage on large processors.
Current developments in electrochemical storage systems for satellites
NASA Technical Reports Server (NTRS)
Gutmann, G.
1986-01-01
The need for batteries with greater power capacity and service life for power satellites is examined. The Ni/Cd and Ni/H batteries now being used must be upgraded to meet advanced space requirements. Improvements in power capacity, service life, and cycle count for various satellites in LEO and GEO orbits are discussed. The Ni/Cd and Ni/H cell reactions are explained, and the solubility and volume changes for various charged and uncharged masses are described. A chart of the energy content and cycle count for various cell systems is presented, and the factors which cause aging and failure in the Ni/Cd and Ni/H cell systems are discussed. The advantages of the Ni/H battery are given and the need for more developed electrochemical storage systems because of an increase in the mass of satellites is explained. The requirements for space batteries and the work currently done by NASA and West Germany on advanced batteries are discussed.
A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic Anolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B; Macia-Agullo, JA; Prendiville, DG
A significant challenge for energy storage technologies is to realize battery-level energy density and capacitor-level durability and power density in one device. By introducing an electrolyte composed of an anionic catholyte and a cationic anolyte into a symmetric carbon-based supercapacitor configuration, a hybrid electrochemical battery-supercapacitor system using soluble redox species delivers significantly improved energy density from 20 to 42 W.h/kg (based on the electrode mass) and stable capacities for > 10(4) cycles. The ionic species formed in the electrolyte are studied by UV-Vis, Raman and mass spectroscopy to probe the energy storage mechanism. The strategy is general and may providemore » a route to critically-needed fast-charging devices with both high energy density and power. (C) 2014 The Electrochemical Society. All rights reserved.« less
Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space
NASA Astrophysics Data System (ADS)
Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.
2014-11-01
NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.
A high-speed, large-capacity, 'jukebox' optical disk system
NASA Technical Reports Server (NTRS)
Ammon, G. J.; Calabria, J. A.; Thomas, D. T.
1985-01-01
Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.
NASA Technical Reports Server (NTRS)
Robinson, Harriss
1992-01-01
The move to visualization and image processing in data systems is increasing the demand for larger and faster mass storage systems. The technology of choice is magnetic tape. This paper briefly reviews the technology past, present, and projected. A case is made for standards and the value of the standards to users.
Proposal for massively parallel data storage system
NASA Technical Reports Server (NTRS)
Mansuripur, M.
1992-01-01
An architecture for integrating large numbers of data storage units (drives) to form a distributed mass storage system is proposed. The network of interconnected units consists of nodes and links. At each node there resides a controller board, a data storage unit and, possibly, a local/remote user-terminal. The links (twisted-pair wires, coax cables, or fiber-optic channels) provide the communications backbone of the network. There is no central controller for the system as a whole; all decisions regarding allocation of resources, routing of messages and data-blocks, creation and distribution of redundant data-blocks throughout the system (for protection against possible failures), frequency of backup operations, etc., are made locally at individual nodes. The system can handle as many user-terminals as there are nodes in the network. Various users compete for resources by sending their requests to the local controller-board and receiving allocations of time and storage space. In principle, each user can have access to the entire system, and all drives can be running in parallel to service the requests for one or more users. The system is expandable up to a maximum number of nodes, determined by the number of routing-buffers built into the controller boards. Additional drives, controller-boards, user-terminals, and links can be simply plugged into an existing system in order to expand its capacity.
NASA Astrophysics Data System (ADS)
Chiang, Chih-Wei; Chiang, Hong-Wei; Chou, Huann-Ming; Sun, Shu-Huang; Lee, Jiann-Shen
2017-06-01
The wind-blown dust emissions frequently occur in the open storage yards of steel-making companies. Tracking the dust source and monitoring their dispersion are rather difficult. This type of open-air storage yards poses many environmental hazards. The 3-D scanning lidar system is effective in environmental monitoring (e.g., dust) with high temporal and spatial resolution, which is lacking in traditional ground-based measurement. The objective of this paper is to make an attempt for the flux estimation of dust concentration by using lidar system. Further, we investigate the dynamical process of dust and their relationship with local air quality monitoring data. The results show that the material storage erosion by wind ( 3.6 m/s) could cause dust to elevate up to 20m height above the material storage, and produces the flux of dust around 674 mg/s. The flux of dust is proportional to the dust mass concentration (PM10) measured by commercial ambient particular monitors.
Experiences From NASA/Langley's DMSS Project
NASA Technical Reports Server (NTRS)
1996-01-01
There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage
Wilson, Karl A; Tan-Wilson, Anna
2013-01-01
Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed, requiring more time and expertise than instructors of large laboratory classes can devote. We have developed an experimental module for our Biochemistry Laboratory course that engages students in MS-based protein identification following protein separation by one-dimensional SDS-PAGE, a technique that is usually taught in this type of course. The module is based on soybean seed storage proteins, a relatively simple mixture of proteins present in high levels in the seed, allowing the identification of the main protein bands by MS/MS and in some cases, even by peptide mass fingerprinting. Students can identify their protein bands using software available on the Internet, and are challenged to deduce post-translational modifications that have occurred upon germination. A collection of mass spectral data and tutorials that can be used as a stand-alone computer-based laboratory module were also assembled. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity
McQuaid, Siobhán E.; Hodson, Leanne; Neville, Matthew J.; Dennis, A. Louise; Cheeseman, Jane; Humphreys, Sandy M.; Ruge, Toralph; Gilbert, Marjorie; Fielding, Barbara A.; Frayn, Keith N.; Karpe, Fredrik
2011-01-01
OBJECTIVE Lipotoxicity and ectopic fat deposition reduce insulin signaling. It is not clear whether excess fat deposition in nonadipose tissue arises from excessive fatty acid delivery from adipose tissue or from impaired adipose tissue storage of ingested fat. RESEARCH DESIGN AND METHODS To investigate this we used a whole-body integrative physiological approach with multiple and simultaneous stable-isotope fatty acid tracers to assess delivery and transport of endogenous and exogenous fatty acid in adipose tissue over a diurnal cycle in lean (n = 9) and abdominally obese men (n = 10). RESULTS Abdominally obese men had substantially (2.5-fold) greater adipose tissue mass than lean control subjects, but the rates of delivery of nonesterified fatty acids (NEFA) were downregulated, resulting in normal systemic NEFA concentrations over a 24-h period. However, adipose tissue fat storage after meals was substantially depressed in the obese men. This was especially so for chylomicron-derived fatty acids, representing the direct storage pathway for dietary fat. Adipose tissue from the obese men showed a transcriptional signature consistent with this impaired fat storage function. CONCLUSIONS Enlargement of adipose tissue mass leads to an appropriate downregulation of systemic NEFA delivery with maintained plasma NEFA concentrations. However the implicit reduction in adipose tissue fatty acid uptake goes beyond this and shows a maladaptive response with a severely impaired pathway for direct dietary fat storage. This adipose tissue response to obesity may provide the pathophysiological basis for ectopic fat deposition and lipotoxicity. PMID:20943748
A synergetic use of hydrogen and fuel cells in human spaceflight power systems
NASA Astrophysics Data System (ADS)
Belz, S.
2016-04-01
Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.
Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid
NASA Astrophysics Data System (ADS)
Nair S, Gayathri; Senroy, Nilanjan
2016-02-01
Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.
SODR Memory Control Buffer Control ASIC
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1994-01-01
The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.
postdoctoral researcher working on geothermal energy and CSP projects. His interests include heat and mass geothermal energy systems modeling, reservoir simulation, and economic analysis, as well as on the design and transfer, energy conversion and storage systems, reservoir modeling, and direct-use applications of thermal
NASA Technical Reports Server (NTRS)
Shields, Michael F.
1993-01-01
The need to manage large amounts of data on robotically controlled devices has been critical to the mission of this Agency for many years. In many respects this Agency has helped pioneer, with their industry counterparts, the development of a number of products long before these systems became commercially available. Numerous attempts have been made to field both robotically controlled tape and optical disk technology and systems to satisfy our tertiary storage needs. Custom developed products were architected, designed, and developed without vendor partners over the past two decades to field workable systems to handle our ever increasing storage requirements. Many of the attendees of this symposium are familiar with some of the older products, such as: the Braegen Automated Tape Libraries (ATL's), the IBM 3850, the Ampex TeraStore, just to name a few. In addition, we embarked on an in-house development of a shared disk input/output support processor to manage our every increasing tape storage needs. For all intents and purposes, this system was a file server by current definitions which used CDC Cyber computers as the control processors. It served us well and was just recently removed from production usage.
Mass study for modular approaches to a solar electric propulsion module
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Cake, J. E.; Oglebay, J. C.; Shaker, F. J.
1977-01-01
The propulsion module comprises six to eight 30-cm thruster and power processing units, a mercury propellant storage and distribution system, a solar array ranging in power from 18 to 25 kW, and the thermal and structure systems required to support the thrust and power subsystems. Launch and on-orbit configurations are presented for both modular approaches. The propulsion module satisfies the thermal design requirements of a multimission set including: Mercury, Saturn, and Jupiter orbiters, a 1-AU solar observatory, and comet and asteroid rendezvous. A detailed mass breakdown and a mass equation relating the total mass to the number of thrusters and solar array power requirement is given for both approaches.
Bulk Diffusion via a ``kick-out'' method for Lithium in the decomposition reaction LiAlH4/Li3AlH6
NASA Astrophysics Data System (ADS)
Rolih, Biljana; Ozolins, Vidvuds; Ozolins Team
2013-03-01
In the pursuit to find a practical system for hydrogen storage, complex metal hydrides have long been considered as viable candidates due to their high hydrogen content. However, some of the challenges faced with these types of systems are poor thermodynamics or kinetics. The underlying mechanisms, and their limiting processes, for the decomposition of these materials need to be understood. From experimental work on the decomposition of hydrogen storage materials, it has been suggested that bulk diffusion of metal species is the bottleneck for hydrogen release. In this work is the dehydrogenation we investigated the system LiAlH4 LiAlH6 with favorable hydrogen release (5.3 wt %), at moderate temperatures. Using first-principles density functional theory we found the defects facilitating mass transport by calculating individual formation energies, highest concentrations, and activation barriers for defect mobility. The mass transport of Lithium is found to be mediated by a ``kick-out'' mechanism. The results are used to further our understanding of the fundamental mechanism of mass transport and evaluate the possibility of kinetics as the limiting process in this reaction.
Using MODIS and GRACE to assess water storage in regional Wetlands: Iraqi and Sudd Marsh systems
NASA Astrophysics Data System (ADS)
Becker, R.
2015-12-01
Both The Iraqi (Mesopotamian) Marshes, an extensive wetlands system in Iraq, and the Sudd Marshlands, located in Sudan have been heavily impacted by both human and climate forces over the past decades. The Sudd wetlands are highly variable in size, averaging roughly 30,000 km2, but extending to as large as ~130,000 km2 during the wet seasons, while the Iraqi marshes are smaller, at ~15,000 km2, without the same extent of intra-annual variability. A combination of MODIS and GRACE images from 2003-2015 for the study areas were used to determine the time dependent change in surface water area (SWA) in the marshes, marshland extent and variability in total water storage. Combined open water area and vegetation abundance and cover, as determined by MODIS (NDVI and MNDWI), is highly correlated with total mass variability observed by GRACE (RL05 Tellus land grid). Annual variability in the Iraqi marshes correlates well with combined SWA and vegetation extent. Variability of vegetation in the Sudd marshes is seen to correlate well on an annual basis with water storage variation, and with a 2 month lag (water mass increases and decreases lead vegetation increases and decreases) when examined on a monthly basis. As a result, in both systems, the overall wetlands extent and health is observed to be water limited. Predictions for precipitation variability and human diversions of water through either dam storage or navigation modifications are predicted to lower water availability and lower variability in these systems. These two regional wetlands systems will shrink, with resulting loss in habitat and other ecosystem services.
Numerical modeling of underground storage system for natural gas
NASA Astrophysics Data System (ADS)
Ding, J.; Wang, S.
2017-12-01
Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).
Geodesy - the key for constraining rates of magma supply, storage, and eruption
NASA Astrophysics Data System (ADS)
Poland, Michael; Anderson, Kyle
2016-04-01
Volcanology is an inherently interdisciplinary science that requires joint analysis of diverse physical and chemical datasets to infer subsurface processes from surface observations. Among the diversity of data that can be collected, however, geodetic data are critical for elucidating the main elements of a magmatic plumbing system because of their sensitivity to subsurface changes in volume and mass. In particular, geodesy plays a key role in determining rates of magma supply, storage, and eruption. For example, surface displacements are critical for estimating the volume changes and locations of subsurface magma storage zones, and remotely sensed radar data make it possible to place significant bounds on eruptive volumes. Combining these measurements with geochemical indicators of magma composition and volatile content enables modeling of magma fluxes throughout a volcano's plumbing system, from source to surface. We combined geodetic data (particularly InSAR) with prior geochemical constraints and measured gas emissions from Kīlauea Volcano, Hawai`i, to develop a probabilistic model that relates magma supply, storage, and eruption over time. We found that the magma supply rate to Kīlauea during 2006 was 35-100% greater than during 2000-2001, with coincident increased rates of subsurface magma storage and eruption at the surface. By 2012, this surge in supply had ended, and supply rates were below those of 2000-2001; magma storage and eruption rates were similarly reduced. These results demonstrate the connection between magma supply, storage, and eruption, and the overall importance of magma supply with respect to volcanic hazards at Kīlauea and similar volcanoes. Our model also confirms the importance of geodetic data in modeling these parameters - rates of storage and eruption are, in some cases, almost uniquely constrained by geodesy. Future modeling efforts along these lines should also seek to incorporate gravity data, to better determine magma compressibility and subsurface mass change.
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Miller, Warner H.; Venbrux, Jack; Liu, Norley; Rice, Robert F.
1993-01-01
Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan.
A Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits
NASA Technical Reports Server (NTRS)
Overbeeke, Arend; Hodgson, Edward; Paul, Heather; Geier, Harold; Bradt, Howard
2007-01-01
Future spacesuit systems for the exploration of Mars will need to be much lighter than current designs while at the same time reducing the consumption of water for crew cooling. One of the technology paths NASA has identified to achieve these objectives is the replacement of current high pressure oxygen storage technology in EVA systems with cryogenic technology that can simultaneously reduce the mass of tankage required for oxygen storage and enable the use of the stored oxygen as a means of cooling the EVA astronaut. During the past year NASA has funded Hamilton Sundstrand production of a prototype system demonstrating this capability in a design that will allow the cryogenic oxygen to be used in any attitude and gravity environment. This paper will describe the design and manufacture of the prototype system and present the results of preliminary testing to verify its performance characteristics. The potential significance and application of the system will also be discussed.
NASA Astrophysics Data System (ADS)
Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer
2018-02-01
Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.
Large scale production of densified hydrogen to the triple point and below
NASA Astrophysics Data System (ADS)
Swanger, A. M.; Notardonato, W. U.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage technology at NASA Kennedy Space Center led to the production of large quantities of densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. Overall densification performance of the system is explored, and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing, and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. The phenomenon, observed at two fill levels, is detailed herein. The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.
An ECG ambulatory system with mobile embedded architecture for ST-segment analysis.
Miranda-Cid, Alejandro; Alvarado-Serrano, Carlos
2010-01-01
A prototype of a ECG ambulatory system for long term monitoring of ST segment of 3 leads, low power, portability and data storage in solid state memory cards has been developed. The solution presented is based in a mobile embedded architecture of a portable entertainment device used as a tool for storage and processing of bioelectric signals, and a mid-range RISC microcontroller, PIC 16F877, which performs the digitalization and transmission of ECG. The ECG amplifier stage is a low power, unipolar voltage and presents minimal distortion of the phase response of high pass filter in the ST segment. We developed an algorithm that manages access to files through an implementation for FAT32, and the ECG display on the device screen. The records are stored in TXT format for further processing. After the acquisition, the system implemented works as a standard USB mass storage device.
Large Scale Production of Densified Hydrogen to the Triple Point and Below
NASA Technical Reports Server (NTRS)
Swanger, A. M.; Notardonato, W. U.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-01-01
Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage technology at NASA Kennedy Space Center led to the production of large quantities of densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. Overall densification performance of the system is explored, and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing, and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. The phenomenon, observed at two fill levels, is detailed herein. The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.
Kobe, Richard K; Iyer, Meera; Walters, Michael B
2010-01-01
Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth demands are not synchronized with photosynthesis, flexibility in responding to uncertain and fluctuating abiotic and biotic conditions, and increased access to soil resources by providing an energy source for mycorrhizae, decomposers in the rhizosphere, or root uptake of nutrients.
NASA Technical Reports Server (NTRS)
Pelt, Jennifer Van
2005-01-01
Aeroponics Internationals (AI) innovation is a self-contained, self-supporting, flexible low mass aeroponic crop production unit with integral environmental systems for the control and delivery of a nutrient mist to the roots. This FLEX Aeroponic System model was developed for commercialization as a result of the NASA SBIR Phase I contract for the research and development of a low-mass, Inflatable Aeroponic System (IAS) for producing pesticide-free lettuces, grains, peppers, tomatoes and other vegetables. The innovation addresses the needs of water and nutrient delivery systems technologies for food production in space. The inflatable nature of the innovation makes it lightweight, allowing it to be deflated so it takes up less volume during transportation and storage. It improves upon AI's current aeroponic system design that uses more rigid structures and takes advantage of vertical inclines to increase bio-mass production by over 600%.
High-Performance Computing User Facility | Computational Science | NREL
User Facility High-Performance Computing User Facility The High-Performance Computing User Facility technologies. Photo of the Peregrine supercomputer The High Performance Computing (HPC) User Facility provides Gyrfalcon Mass Storage System. Access Our HPC User Facility Learn more about these systems and how to access
Wicki, Samuel; Hansen, Erik G
2017-09-20
The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First , regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second , we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also derives important implications for energy scholars, flywheel practitioners, and policymakers.
Precise mass determination of single cell with cantilever-based microbiosensor system.
Łabędź, Bogdan; Wańczyk, Aleksandra; Rajfur, Zenon
2017-01-01
Having determined the mass of a single cell of brewer yeast Saccharomyces cerevisiae by means of a microcantilever-based biosensor Cantisens CSR-801 (Concentris, Basel, Switzerland), it was found that its dry mass is 47,65 ± 1,05 pg. Found to be crucial in this mass determination was the cell position along the length of the cantilever. Moreover, calculations including cells positions on the cantilever provide a threefold better degree of accuracy than those which assume uniform mass distribution. We have also examined the influence of storage time on the single cell mass. Our results show that after 6 months there is an increase in the average mass of a single yeast cell.
Enabling Earth Science: The Facilities and People of the NCCS
NASA Technical Reports Server (NTRS)
2002-01-01
The NCCS's mass data storage system allows scientists to store and manage the vast amounts of data generated by these computations, and its high-speed network connections allow the data to be accessed quickly from the NCCS archives. Some NCCS users perform studies that are directly related to their ability to run computationally expensive and data-intensive simulations. Because the number and type of questions scientists research often are limited by computing power, the NCCS continually pursues the latest technologies in computing, mass storage, and networking technologies. Just as important as the processors, tapes, and routers of the NCCS are the personnel who administer this hardware, create and manage accounts, maintain security, and assist the scientists, often working one on one with them.
Fimag: the United Kingdom disaster victim/forensic identification imaging system.
Rutty, Guy N; Robinson, Claire; Morgan, Bruno; Black, Sue; Adams, Catherine; Webster, Philip
2009-11-01
Imaging is an integral diagnostic tool in mass fatality investigations undertaken traditionally by plain X-rays, fluoroscopy, and dental radiography. However, little attention has been given to appropriate image reporting, secure data transfer and storage particularly in relation to the need to meet stringent judicial requirements. Notwithstanding these limitations, it is the risk associated with the safe handling and investigation of contaminated fatalities which is providing new challenges for mass fatality radiological imaging. Mobile multi-slice computed tomography is an alternative to these traditional modalities as it provides a greater diagnostic yield and an opportunity to address the requirements of the criminal justice system. We present a new national disaster victim/forensic identification imaging system--Fimag--which is applicable for both contaminated and non-contaminated mass fatality imaging and addresses the issues of judicial reporting. We suggest this system opens a new era in radiological diagnostics for mass fatalities.
Kubannek, F; Schröder, U; Krewer, U
2018-06-01
In this work we employ differential electrochemical mass spectrometry (DEMS) in combination with static and dynamic electrochemical techniques for the study of metabolic processes of electrochemically active bacteria. CO 2 production during acetate oxidation by electrode respiring bacteria was measured, in-vivo and online with a sensitivity of 6.5 ⋅ 10 -13 mol/s. The correlation of ion current and electrical current provides insight into the interaction of metabolic processes and extra-cellular electron transfer. In low-turnover CVs, two competing potential dependent electron transfer mechanisms were observed and formal potentials of two redox systems that are involved in complete oxidation of acetate to CO 2 were determined. By balancing charge and carbon flows during dynamic measurements, two significant storage mechanisms in electrochemically active bacteria were identified: 1) a charge storage mechanism that allows substrate oxidation to proceed at a constant rate despite of external current flowing in cathodic direction. 2) a carbon storage mechanism that allows the biofilm to take up acetate at an unchanged rate at very low potentials even though the oxidation to CO 2 stops. These storage capabilities allow a limited decoupling of electrical current and CO 2 production rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimization of armored spherical tanks for storage on the lunar surface
NASA Technical Reports Server (NTRS)
Bents, D. J.; Knight, D. A.
1992-01-01
A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of spare tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armoring and redundancy) is investigated. The objective is to find the optimum combination which yields the lowest shielding mass per cubic meter of surviving fuel out of the original ensemble. The investigation found that, for the volumes of fuel associated with multikilowatt class cryo storage RFC's, and the armoring methodology and meteoroid models used, storage should be fragmented into small individual tanks. Larger installations (more fuel) pay less of a shielding penalty than small installations. For the same survival probability over the same time period, larger volumes will require less armoring mass per unit volume protected.
Overview of Energy Storage Technologies for Space Applications
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao
2006-01-01
This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.
NASA Technical Reports Server (NTRS)
Salmon, Ellen; Tarshish, Adina; Palm, Nancy; Patel, Sanjay; Saletta, Marty; Vanderlan, Ed; Rouch, Mike; Burns, Lisa; Duffy, Daniel; Caine, Robert
2004-01-01
This paper presents the data management issues associated with a large center like the NCCS and how these issues are addressed. More specifically, the focus of this paper is on the recent transition from a legacy UniTree (Legato) system to a SAM-QFS (Sun) system. Therefore, this paper will describe the motivations, from both a hardware and software perspective, for migrating from one system to another. Coupled with the migration from UniTree into SAM-QFS, the complete mass storage environment was upgraded to provide high availability, redundancy, and enhanced performance. This paper will describe the resulting solution and lessons learned throughout the migration process.
Large Format Multifunction 2-Terabyte Optical Disk Storage System
NASA Technical Reports Server (NTRS)
Kaiser, David R.; Brucker, Charles F.; Gage, Edward C.; Hatwar, T. K.; Simmons, George O.
1996-01-01
The Kodak Digital Science OD System 2000E automated disk library (ADL) base module and write-once drive are being developed as the next generation commercial product to the currently available System 2000 ADL. Under government sponsorship with the Air Force's Rome Laboratory, Kodak is developing magneto-optic (M-O) subsystems compatible with the Kodak Digital Science ODW25 drive architecture, which will result in a multifunction (MF) drive capable of reading and writing 25 gigabyte (GB) WORM media and 15 GB erasable media. In an OD system 2000 E ADL configuration with 4 MF drives and 100 total disks with a 50% ration of WORM and M-O media, 2.0 terabytes (TB) of versatile near line mass storage is available.
Large Scale Production of Densified Hydrogen Using Integrated Refrigeration and Storage
NASA Technical Reports Server (NTRS)
Notardonato, William U.; Swanger, Adam Michael; Jumper, Kevin M.; Fesmire, James E.; Tomsik, Thomas M.; Johnson, Wesley L.
2017-01-01
Recent demonstration of advanced liquid hydrogen storage techniques using Integrated Refrigeration and Storage (IRAS) technology at NASA Kennedy Space Center led to the production of large quantities of solid densified liquid and slush hydrogen in a 125,000 L tank. Production of densified hydrogen was performed at three different liquid levels and LH2 temperatures were measured by twenty silicon diode temperature sensors. System energy balances and solid mass fractions are calculated. Experimental data reveal hydrogen temperatures dropped well below the triple point during testing (up to 1 K), and were continuing to trend downward prior to system shutdown. Sub-triple point temperatures were seen to evolve in a time dependent manner along the length of the horizontal, cylindrical vessel. Twenty silicon diode temperature sensors were recorded over approximately one month for testing at two different fill levels (33 67). The phenomenon, observed at both two fill levels, is described and presented detailed and explained herein., and The implications of using IRAS for energy storage, propellant densification, and future cryofuel systems are discussed.
Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...
2017-09-06
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Yang; Zhou, Guangmin; Shi, Feifei
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm –3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L –1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less
NASA Astrophysics Data System (ADS)
Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi
2016-11-01
In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.
Hybrid Electric Energy Storages: Their Specific Features and Application (Review)
NASA Astrophysics Data System (ADS)
Popel', O. S.; Tarasenko, A. B.
2018-05-01
The article presents a review of various aspects related to development and practical use of hybrid electric energy storages (i.e., those uniting different energy storage technologies and devices in an integrated system) in transport and conventional and renewable power engineering applications. Such devices, which were initially developed for transport power installations, are increasingly being used by other consumers characterized by pronounced nonuniformities of their load schedule. A range of tasks solved using such energy storages is considered. It is shown that, owing to the advent of new types of energy storages and the extended spectrum of their performance characteristics, new possibilities for combining different types of energy storages and for developing hybrid systems have become available. This, in turn, opens up the possibility of making energy storages with better mass and dimension characteristics and achieving essentially lower operational costs. The possibility to secure more comfortable (base) operating modes of primary sources of energy (heat engines and renewable energy source based power installations) and to achieve a higher capacity utilization factor are unquestionable merits of hybrid energy storages. Development of optimal process circuit solutions, as well as energy conversion and control devices facilitating the fullest utilization of the properties of each individual energy storage included in the hybrid system, is among the important lines of research carried out in this field in Russia and abroad. Our review of existing developments has shown that there are no universal technical solutions in this field (the specific features of a consumer have an essential effect on the process circuit solutions and on the composition of a hybrid energy storage), a circumstance that dictates the need to extend the scope of investigations in this promising field.
Physico-chemical characterization of grain dust in storage air of Bangalore.
Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R
1998-06-01
An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.
A Hadoop-based Molecular Docking System
NASA Astrophysics Data System (ADS)
Dong, Yueli; Guo, Quan; Sun, Bin
2017-10-01
Molecular docking always faces the challenge of managing tens of TB datasets. It is necessary to improve the efficiency of the storage and docking. We proposed the molecular docking platform based on Hadoop for virtual screening, it provides the preprocessing of ligand datasets and the analysis function of the docking results. A molecular cloud database that supports mass data management is constructed. Through this platform, the docking time is reduced, the data storage is efficient, and the management of the ligand datasets is convenient.
Spacecraft optical disk recorder memory buffer control
NASA Technical Reports Server (NTRS)
Hodson, Robert F.
1993-01-01
This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.
Modeling and Performance Simulation of the Mass Storage Network Environment
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Sang, Janche
2000-01-01
This paper describes the application of modeling and simulation in evaluating and predicting the performance of the mass storage network environment. Network traffic is generated to mimic the realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling and simulation. Performance characteristics in throughput and delay demonstrate the important role of modeling and simulation in network engineering and capacity planning.
Lunar South Pole Illumination: Review, Reassessment, and Power System Implications
NASA Technical Reports Server (NTRS)
Fincannon, James
2007-01-01
This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.
Experimental investigation of a packed bed thermal energy storage system
NASA Astrophysics Data System (ADS)
Cascetta, Mario; Cau, Giorgio; Puddu, Pierpaolo; Serra, Fabio
2015-11-01
In this work experimental investigations on a thermal energy storage system with a solid material as storage media and air as heat transfer fluid will be presented. The experimental test rig, installed at the DIMCM of the University of Cagliari, consists of a carbon steel tank filled with freely poured alumina beads that allows investigations of heat transfer phenomena in packed beds. The aim of this work is to show the influence of the operating conditions and physical parameters on thermocline formation and, in particular, the thermal behaviour of the thermal energy storage for repeated charging and discharging cycles. Better charging efficiency is obtained for lower values of mass flow rate and maximum air temperature and for increasing aspect ratio. A decreasing influence of the metal wall with continuous operation is also highlighted. In conclusion, the analysis focuses on the thermal hysteresis phenomenon, which causes degradation of the thermocline and the reduction of the energy that can be stored by the accumulator as the repeated number of cycles increases.
System Modeling of Lunar Oxygen Production: Mass and Power Requirements
NASA Technical Reports Server (NTRS)
Steffen, Christopher J.; Freeh, Joshua E.; Linne, Diane L.; Faykus, Eric W.; Gallo, Christopher A.; Green, Robert D.
2007-01-01
A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements.
Neural network modelling of thermal stratification in a solar DHW storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geczy-Vig, P.; Farkas, I.
2010-05-15
In this study an artificial neural network (ANN) model is introduced for modelling the layer temperatures in a storage tank of a solar thermal system. The model is based on the measured data of a domestic hot water system. The temperatures distribution in the storage tank divided in 8 equal parts in vertical direction were calculated every 5 min using the average 5 min data of solar radiation, ambient temperature, mass flow rate of collector loop, load and the temperature of the layers in previous time steps. The introduced ANN model consists of two parts describing the load periods andmore » the periods between the loads. The identified model gives acceptable results inside the training interval as the average deviation was 0.22 C during the training and 0.24 C during the validation. (author)« less
Long-range, low-cost electric vehicles enabled by robust energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ping; Ross, Russel; Newman, Aron
2015-09-18
ABSTRACT A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries. The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight ofmore » EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.« less
SANs and Large Scale Data Migration at the NASA Center for Computational Sciences
NASA Technical Reports Server (NTRS)
Salmon, Ellen M.
2004-01-01
Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.
How to Use Removable Mass Storage Memory Devices
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2004-01-01
Mass storage refers to the variety of ways to keep large amounts of information that are used on a computer. Over the years, the removable storage devices have grown smaller, increased in capacity, and transferred the information to the computer faster. The 8" floppy disk of the 1960s stored 100 kilobytes, or about 60 typewritten, double-spaced…
Energy storage and alternatives to improve train voltage on a mass transit system
NASA Astrophysics Data System (ADS)
Gordon, S. P.; Rorke, W. S.
1995-04-01
The wide separation of substations in the Bay Area Rapid Transit system's transbay tunnel contributes to voltage sag when power demand is high. In the future, expansions to the system will exacerbate this problem by increasing traffic density. Typically, this situation is remedied through the installation of additional substations to increase the system's power capacity. We have evaluated the efficacy of several alternatives to this approach - specifically, installation of an 8 megajoule energy storage system, modification of the existing substations, or reduction of the resistance of the running rails or the third rail. To support this analysis, we have developed a simple model of the traction power system in the tunnel. We have concluded that the storage system does not have sufficient capacity to deal with the expected voltage sags; in this application, the alternatives present more effective solutions. We have also investigated the potential impact of these system upgrades on expected future capital outlays by BART for traction power infrastructure additions. We have found that rail or substation upgrades may reduce the need for additional substations. These upgrades may also be effective on other parts of the BART system and on other traction power systems.
Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes
Shon, Jeong Kuk; Lee, Hyo Sug; Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Gyeong Su; Kong, Soo Sung; Jin, Mingshi; Choi, Jae-Man; Chang, Hyuk; Doo, Seokgwang; Kim, Ji Man; Yoon, Won-Sub; Pak, Chanho; Kim, Hansu; Stucky, Galen D.
2016-01-01
Developing electrode materials with high-energy densities is important for the development of lithium-ion batteries. Here, we demonstrate a mesoporous molybdenum dioxide material with abnormal lithium-storage sites, which exhibits a discharge capacity of 1,814 mAh g−1 for the first cycle, more than twice its theoretical value, and maintains its initial capacity after 50 cycles. Contrary to previous reports, we find that a mechanism for the high and reversible lithium-storage capacity of the mesoporous molybdenum dioxide electrode is not based on a conversion reaction. Insight into the electrochemical results, obtained by in situ X-ray absorption, scanning transmission electron microscopy analysis combined with electron energy loss spectroscopy and computational modelling indicates that the nanoscale pore engineering of this transition metal oxide enables an unexpected electrochemical mass storage reaction mechanism, and may provide a strategy for the design of cation storage materials for battery systems. PMID:27001935
Developing the Water Supply System for Travel to Mars
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.
2016-01-01
What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.
Systems Analysis of GPS Electrical Power System Redesign
1995-12-01
Table 8 - System Efficiencies & Multipliers for Solar Direct Model (12:102; 15:864) Component Efficiency AMTEC 0.180 Receiver and Thermal Energy Storage...and low temperatures of the working fluid. Extreme high and low temperatures provide a greater efficiency , but require extensive thermal control and...direct conversion category. The Alkali Metal Thermal -to-Electric Converter ( AMTEC ) shows mass and cost savings due to efficiencies significantly higher
Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.
2016-01-01
ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.
Engineering of the Magnetized Target Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.
2003-01-01
Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, G; Benard, P; Klebanoff, L E
2014-07-01
While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifyingmore » the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.« less
NASA Astrophysics Data System (ADS)
AlQaydi, Muna; Delclos, Thomas; AlMheiri, Saif; Calvet, Nicolas
2017-06-01
The concept of CSPonD Demo project is based on a single and open molten salt tank as a thermal solar receiver and storage unit. Therefore, the effect of external environment such as sand and air on the thermophysical properties of nitrate salt (60 wt. % sodium nitrate, 40 wt. % potassium nitrate) has been investigated in this work. Differential Scanning Calorimeter (DSC) was used to determine the melting, solidification temperatures while the thermal stability and mass loss measurements were carried on Thermal Gravimetric Analysis (TGA). Measurements under nitrogen indicate that the adding 2% (w/w) sand has negative impact by increasing the solidification temperature, mass loss percentage and decreasing the stability limit. While the melting temperature was not affected by the sand and by the preparation method. On the other hand, measurement under air showed an increase of the stability limit and decrease of the mass loss percentage. Furthermore, the measurements for the mass loss under air did not reach a stable value, which required further investigation.
Performance and operational analysis of a liquid desiccant open-flow solar collector
NASA Astrophysics Data System (ADS)
Grodzka, P. G.; Rico, S. S.
1982-10-01
Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.
Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M
2012-04-30
When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Sobue, Shin-ichi; Yoshida, Fumiyoshi; Ochiai, Osamu
1996-01-01
NASDA's new Advanced Earth Observing Satellite (ADEOS) is scheduled for launch in August, 1996. ADEOS carries 8 sensors to observe earth environmental phenomena and sends their data to NASDA, NASA, and other foreign ground stations around the world. The downlink data bit rate for ADEOS is 126 MB/s and the total volume of data is about 100 GB per day. To archive and manage such a large quantity of data with high reliability and easy accessibility it was necessary to develop a new mass storage system with a catalogue information database using advanced database management technology. The data will be archived and maintained in the Master Data Storage Subsystem (MDSS) which is one subsystem in NASDA's new Earth Observation data and Information System (EOIS). The MDSS is based on a SONY ID1 digital tape robotics system. This paper provides an overview of the EOIS system, with a focus on the Master Data Storage Subsystem and the NASDA Earth Observation Center (EOC) archive policy for earth observation satellite data.
The Challenges Facing Science Data Archiving on Current Mass Storage Systems
NASA Technical Reports Server (NTRS)
Peavey, Bernard; Behnke, Jeanne (Editor)
1996-01-01
This paper discusses the desired characteristics of a tape-based petabyte science data archive and retrieval system required to store and distribute several terabytes (TB) of data per day over an extended period of time, probably more than 115 years, in support of programs such as the Earth Observing System Data and Information System (EOSDIS). These characteristics take into consideration not only cost effective and affordable storage capacity, but also rapid access to selected files, and reading rates that are needed to satisfy thousands of retrieval transactions per day. It seems that where rapid random access to files is not crucial, the tape medium, magnetic or optical, continues to offer cost effective data storage and retrieval solutions, and is likely to do so for many years to come. However, in environments like EOS these tape based archive solutions provide less than full user satisfaction. Therefore, the objective of this paper is to describe the performance and operational enhancements that need to be made to the current tape based archival systems in order to achieve greater acceptance by the EOS and similar user communities.
Implementing Journaling in a Linux Shared Disk File System
NASA Technical Reports Server (NTRS)
Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew;
2000-01-01
In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.
NASA Astrophysics Data System (ADS)
Leirião, Sílvia; He, Xin; Christiansen, Lars; Andersen, Ole B.; Bauer-Gottwein, Peter
2009-02-01
SummaryTotal water storage change in the subsurface is a key component of the global, regional and local water balances. It is partly responsible for temporal variations of the earth's gravity field in the micro-Gal (1 μGal = 10 -8 m s -2) range. Measurements of temporal gravity variations can thus be used to determine the water storage change in the hydrological system. A numerical method for the calculation of temporal gravity changes from the output of hydrological models is developed. Gravity changes due to incremental prismatic mass storage in the hydrological model cells are determined to give an accurate 3D gravity effect. The method is implemented in MATLAB and can be used jointly with any hydrological simulation tool. The method is composed of three components: the prism formula, the MacMillan formula and the point-mass approximation. With increasing normalized distance between the storage prism and the measurement location the algorithm switches first from the prism equation to the MacMillan formula and finally to the simple point-mass approximation. The method was used to calculate the gravity signal produced by an aquifer pump test. Results are in excellent agreement with the direct numerical integration of the Theis well solution and the semi-analytical results presented in [Damiata, B.N., and Lee, T.-C., 2006. Simulated gravitational response to hydraulic testing of unconfined aquifers. Journal of Hydrology 318, 348-359]. However, the presented method can be used to forward calculate hydrology-induced temporal variations in gravity from any hydrological model, provided earth curvature effects can be neglected. The method allows for the routine assimilation of ground-based gravity data into hydrological models.
The growth of the UniTree mass storage system at the NASA Center for Computational Sciences
NASA Technical Reports Server (NTRS)
Tarshish, Adina; Salmon, Ellen
1993-01-01
In October 1992, the NASA Center for Computational Sciences made its Convex-based UniTree system generally available to users. The ensuing months saw the growth of near-online data from nil to nearly three terabytes, a doubling of the number of CPU's on the facility's Cray YMP (the primary data source for UniTree), and the necessity for an aggressive regimen for repacking sparse tapes and hierarchical 'vaulting' of old files to freestanding tape. Connectivity was enhanced as well with the addition of UltraNet HiPPI. This paper describes the increasing demands placed on the storage system's performance and throughput that resulted from the significant augmentation of compute-server processor power and network speed.
Improved accuracy of solar energy system testing and measurements
NASA Astrophysics Data System (ADS)
Waterman, R. E.
1984-12-01
A real world example is provided of recovery of data on the performance of a solar collector system in the field. Kalman filters were devised to reconstruct data from sensors which had functioned only intermittently over the 3-day trial period designed to quantify phenomena in the collector loop, i.e., hot water delivered to storage. The filter was configured to account for errors in data on the heat exchanger coil differential temperature and mass flow rate. Data were then generated based on a matrix of state equations, taking into account the presence of time delays due to tank stratification and convective flows. Good correlations were obtained with data from other sensors for the flow rate, system temperatures and the energy delivered to storage.
Evaluation of optimal configuration of hybrid Life Support System for Space.
Bartsev, S I; Mezhevikin, V V; Okhonin, V A
2000-01-01
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Craig; Brayton, Daniel; Jorgensen, Scott W.
The objectives of this project were: 1) optimize a hydrogen storage media based on LOC/homogeneous pincer catalyst (carried out at Hawaii Hydrogen Carriers, LLC) and 2) develop space, mass and energy efficient tank and reactor system to house and release hydrogen from the media (carried out at General Motor Research Center).
DOT National Transportation Integrated Search
2016-10-01
The future of mass transportation is clearly moving toward the increased efficiency and greenhouse gas reduction of hybrid and electric vehicles. With the introduction of high-power/high-energy storage devices such as lithium ion battery systems serv...
NASA Technical Reports Server (NTRS)
Le, Diana; Cooper, David M. (Technical Monitor)
1994-01-01
Just imagine a mass storage system that consists of a machine with 2 CPUs, 1 Gigabyte (GB) of memory, 400 GB of disk space, 16800 cartridge tapes in the automated tape silos, 88,000 tapes located in the vault, and the software to manage the system. This system is designed to be a data repository; it will always have disk space to store all the incoming data. Currently 9.14 GB of new data per day enters the system with this rate doubling each year. To assure there is always disk space available for new data, the system. has to move data reside from the expensive disk to a much less expensive medium such as the 3480 cartridge tapes. Once the data is archived to tape, it should be able to move back to disk when someone wants to access it and the data movement should be transparent to the user. Now imagine all the tasks that a system administrator must perform to keep this system running 24 hour a day, 7 days a week. Since the filesystem maintains the illusion of unlimited disk space, data that comes to the system must get moved to tapes in an efficient manner. This paper will describe the mass storage system running at the Numerical Aerodynamic Simulation (NAS) at NASA Ames Research Center in both software and hardware aspects, then it will describe all of the tasks the system administrator has to perform on this system.
NASA Astrophysics Data System (ADS)
Han, Shin-Chan; Razeghi, S. Mahdiyeh
2017-11-01
We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine the surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and/or ocean. We develop an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. The same approach is applied to determine global mass changes from "global" geopotential change data of Gravity Recovery and Climate Experiment (GRACE). We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS-inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and interannual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins than two different GRACE solutions. The submonthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, it is suggested to integrate GPS and GRACE data to draw a comprehensive picture of daily mass changes on different continents.
Energy density and rate limitations in structural composite supercapacitors
NASA Astrophysics Data System (ADS)
Snyder, J. F.; Gienger, E.; Wetzel, E. D.; Xu, K.
2012-06-01
The weight and volume of conventional energy storage technologies greatly limits their performance in mobile platforms. Traditional research efforts target improvements in energy density to reduce device size and mass. Enabling a device to perform additional functions, such as bearing mechanical load, is an alternative approach as long as the total mass efficiency exceeds that of the individual materials it replaces. Our research focuses on structural composites that function as batteries and supercapacitors. These multifunctional devices could be used to replace conventional structural components, such as vehicle frame elements, to provide significant system-level weight reductions and extend mission times. Our approach is to design structural properties directly into the electrolyte and electrode materials. Solid polymer electrolyte materials bind the system and transfer load to the fibers while conducting ions between the electrodes. Carbon fiber electrodes provide a route towards optimizing both energy storage and load-bearing capabilities, and may also obviate the need for a separate current collector. The components are being integrated using scalable, cost-effective composite processing techniques that are amenable to complex part shapes. Practical considerations of energy density and rate behavior are described here as they relate to materials used. Our results highlight the viability as well as the challenges of this multifunctional approach towards energy storage.
Life Support with Failures and Variable Supply
NASA Technical Reports Server (NTRS)
Jones, Harry
2010-01-01
The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design
Active Costorage of Cryogenic Propellants for Exploration
NASA Technical Reports Server (NTRS)
Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo
2008-01-01
Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.
Mass Storage Performance Information System
NASA Technical Reports Server (NTRS)
Scheuermann, Peter
2000-01-01
The purpose of this task is to develop a data warehouse to enable system administrators and their managers to gather information by querying the data logs of the MDSDS. Currently detailed logs capture the activity of the MDSDS internal to the different systems. The elements to be included in the data warehouse are requirements analysis, data cleansing, database design, database population, hardware/software acquisition, data transformation, query and report generation, and data mining.
NASA Technical Reports Server (NTRS)
1985-01-01
The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.
Data Service: Distributed Data Capture and Replication
NASA Astrophysics Data System (ADS)
Warner, P. B.; Pietrowicz, S. R.
2007-10-01
Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.
Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Jacqmin, David A.
1998-01-01
Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.
Fusible pellet transport and storage of heat
NASA Technical Reports Server (NTRS)
Bahrami, P. A.
1982-01-01
A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.
Fusible pellet transport and storage of heat
NASA Astrophysics Data System (ADS)
Bahrami, P. A.
1982-06-01
A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.
NASA Technical Reports Server (NTRS)
Hull, Gary; Ranade, Sanjay
1993-01-01
With over 5000 units sold, the Storage Tek Automated Cartridge System (ACS) 4400 tape library is currently the most popular large automated tape library. Based on 3480/90 tape technology, the library is used as the migration device ('nearline' storage) in high-performance mass storage systems. In its maximum configuration, one ACS 4400 tape library houses sixteen 3480/3490 tape drives and is capable of holding approximately 6000 cartridge tapes. The maximum storage capacity of one library using 3480 tapes is 1.2 TB and the advertised aggregate I/O rate is about 24 MB/s. This paper reports on an extensive set of tests designed to accurately assess the performance capabilities and operational characteristics of one STK ACS 4400 tape library holding approximately 5200 cartridge tapes and configured with eight 3480 tape drives. A Cray Y-MP EL2-256 was configured as its host machine. More than 40,000 tape jobs were run in a variety of conditions to gather data in the areas of channel speed characteristics, robotics motion, time taped mounts, and timed tape reads and writes.
Digital Holographic Data Storage with Fast Access
NASA Astrophysics Data System (ADS)
Ma, J.; Chang, T.; Choi, S.; Hong, J.
Recent investigations in holographic mass memory systems have produced proof of concept demonstrations that have highlighted their potential for providing unprecedented capacity, data transfer rates and fast random access performance [1-4]. The exploratory nature of most such investigations has been largely confined to benchtop experiments in which the practical constraints of packaging and environmental concerns have been ignored. We have embarked on an effort to demonstrate the holographic mass memory concept by developing a compact prototype system geared for avionics and similar applications, which demand the following features (mostly interdependent factors): (1) solid-state design (no moving parts), (2) fast data-seek time, (3) robustness with respect to environmental factors (temperature, vibration, shock). In this chapter, we report on the development and demonstration of two systems, one with 100 Mbytes and the other with more than 1 Gbyte of storage capacity. Both systems feature solid-state design with the addressing mechanism realized with acousto-optic deflectors that are capable of better than 50 µs data seek time. Since the basic designs for the two systems are similar, we describe only the larger system in detail. The operation of the smaller system has been demonstrated in various environments, including hand-held operation and thermal/mechanical shock, and a photograph of the smaller system is provided as well as actual digital data retrieved from the same system.
Packaged digital holographic data storage with fast access
NASA Astrophysics Data System (ADS)
Ma, Jian; Chang, Tallis Y.; Choi, Sung; Hong, John H.
1998-11-01
Recent investigations in holographic mass memory systems have produced proof of concept demonstrations that have highlighted their potential for providing unprecedented capacity, data transfer rates and fast random access performance. The exploratory nature of most such investigations have been largely confined to benchtop experiments in which the practical constraints of packaging and environmental concerns have been ignored. We have embarked on an effort to demonstrate the holographic mass memory concept by developing a compact prototype system geared for avionics and similar applications which demand the following features (mostly interdependent factors): (1) solid state design (no moving parts), (2) fast data seek time, (3) robust with respect to environmental factors (temperature, vibration, shock). In this paper, we report on the development and demonstration of two systems, one with 100 Mbytes and the other with more than 1 Gbyte of storage capacity. Both systems feature solid state design with the addressing mechanism realized with acousto- optic deflectors that are capable of better than 50 microseconds data seek time. Since the basic designs for the two systems are similar, we describe only the larger system in detail. The operation of the smaller system has been demonstrated in various environments including hand-held operation and thermal/mechanical shock and a photograph of the smaller system is provided as well as actual digital data retrieved from the same system.
Ground-Based and Space-Based Laser Beam Power Applications
NASA Technical Reports Server (NTRS)
Bozek, John M.
1995-01-01
A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.
Under EPA Settlement, Chicopee, Mass. Cold Storage Warehouse Company Improves Public Protections
A Chicopee, Mass., company that operates a cold storage warehouse is spending more than half a million dollars, primarily on public safety enhancements, to resolve claims it violated the federal Clean Air Act's chemical release prevention requirements...
Fair-share scheduling algorithm for a tertiary storage system
NASA Astrophysics Data System (ADS)
Jakl, Pavel; Lauret, Jérôme; Šumbera, Michal
2010-04-01
Any experiment facing Peta bytes scale problems is in need for a highly scalable mass storage system (MSS) to keep a permanent copy of their valuable data. But beyond the permanent storage aspects, the sheer amount of data makes complete data-set availability onto live storage (centralized or aggregated space such as the one provided by Scalla/Xrootd) cost prohibitive implying that a dynamic population from MSS to faster storage is needed. One of the most challenging aspects of dealing with MSS is the robotic tape component. If a robotic system is used as the primary storage solution, the intrinsically long access times (latencies) can dramatically affect the overall performance. To speed the retrieval of such data, one could organize the requests according to criterion with an aim to deliver maximal data throughput. However, such approaches are often orthogonal to fair resource allocation and a trade-off between quality of service, responsiveness and throughput is necessary for achieving an optimal and practical implementation of a truly faire-share oriented file restore policy. Starting from an explanation of the key criterion of such a policy, we will present evaluations and comparisons of three different MSS file restoration algorithms which meet fair-share requirements, and discuss their respective merits. We will quantify their impact on a typical file restoration cycle for the RHIC/STAR experimental setup and this, within a development, analysis and production environment relying on a shared MSS service [1].
Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage
2011-01-01
Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338
Characterization and Evaluation of a Mass Efficient Heat Storage Device.
NASA Technical Reports Server (NTRS)
Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.
2007-01-01
The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a reentry or hypersonic vehicle to reduce thermal protection system requirements. The heat sponge consists of a liquid-vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat storage capacity of the liquid-vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over the temperature range of 660oR to 1160oR. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0 inch diameter hollow stainless steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat storage capacity calculated from measured temperature histories is compared to numerical predictions.
Predictive Caching Using the TDAG Algorithm
NASA Technical Reports Server (NTRS)
Laird, Philip; Saul, Ronald
1992-01-01
We describe how the TDAG algorithm for learning to predict symbol sequences can be used to design a predictive cache store. A model of a two-level mass storage system is developed and used to calculate the performance of the cache under various conditions. Experimental simulations provide good confirmation of the model.
Recent Advances and Issues in Computers. Oryx Frontiers of Science Series.
ERIC Educational Resources Information Center
Gay, Martin K.
Discussing recent issues in computer science, this book contains 11 chapters covering: (1) developments that have the potential for changing the way computers operate, including microprocessors, mass storage systems, and computing environments; (2) the national computational grid for high-bandwidth, high-speed collaboration among scientists, and…
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir
2016-06-01
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Mass transfer apparatus and method for separation of gases
Blount, Gerald C.
2015-10-13
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
NASA Astrophysics Data System (ADS)
Lerner, R. M.
1984-06-01
It is proposed to design and construct energy storage flywheel rotors as statically limp tubes containing liquid mass, and to drive and support this rotating system (at least in part) directly, rather than through separately engineered subsystems. If the liquid is presumed thixotropic or viscous, nominally stiff structures subject to plastic flow are included. At one extreme of the design range, nearly all the mass is in the liquid and the only significant stresses are those in the wall of the containment; at the other extreme, the statically limp structure is nearly dry and is formed into an oblate surface by the centrifugal force of its own mass.
Mass transfer apparatus and method for separation of gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Yang, Ping-Heng; Yuan, Dao-Xian; Ren, You-Rong; Xie, Shi-You; He, Qiu-Fang; Hu, Xiao-Feng
2012-09-01
In order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors. Nitrate was derived from land surface and infiltrated together with soil water, which was mainly stored in fissure, pore and solution crack of karst unsaturated zone, whereas soluble iron, manganese and aluminum were derived from soil erosion and directly recharged the underground river through sinkholes and shafts. Nitrate transport in the karst aquifer system could be ideally divided into three phases, including input storage, fast output and re-inputting storage. Under similar external conditions, the karstification intensity of vadose zone was the key factor to determine the dynamics of nitrate concentrations in the groundwater during storm events. Nitrate stored in the karst vadose zone was easily released, which would impair the aquatic ecosystem and pose seriously threats to the local health. Thus, to strengthen the management of ecological system, changing the land-use patterns and scientifically applying fertilizer could effectively make a contribution to controlling mass nutrient input from the surface.
NASA Technical Reports Server (NTRS)
Bents, David J.; Lu, Cheng Y.
1989-01-01
Solar photovoltaic and thermal dynamic power systems for application to selected low-earth-orbit (LEO) and high-earth-orbit (HEO) missions are characterized in the regime 7 to 35 kWe. Input parameters to the characterization are varied to correspond to anticipated introduction of improved or new technologies. A comparative assessment is made of the two power system types for emerging technologies in cells and arrays, energy storage, optical surfaces, heat engines, thermal energy storage and thermal management. The assessment is made to common ground rules and assumptions. The four missions (Space Station, sun-synchronous, Van Allen belt, and GEO) are representative of the anticipated range of multikilowatt earth-orbit missions. The results give the expected performance, mass and drag of multikilowatt earth-orbiting solar power systems and show how the overall system figure of merit will improve as new component technologies are incorporated.
Storage and retrieval of mass spectral information
NASA Technical Reports Server (NTRS)
Hohn, M. E.; Humberston, M. J.; Eglinton, G.
1977-01-01
Computer handling of mass spectra serves two main purposes: the interpretation of the occasional, problematic mass spectrum, and the identification of the large number of spectra generated in the gas-chromatographic-mass spectrometric (GC-MS) analysis of complex natural and synthetic mixtures. Methods available fall into the three categories of library search, artificial intelligence, and learning machine. Optional procedures for coding, abbreviating and filtering a library of spectra minimize time and storage requirements. Newer techniques make increasing use of probability and information theory in accessing files of mass spectral information.
Study of the Issues of Computational Aerothermodynamics Using a Riemann Solver
2008-07-01
storage is from the translational energy resulting from the translational motion of the center of mass of the molecule. A molecule also has a rotational ...energy storage mode since the molecules can rotate about their center of mass. The third energy storage mode of molecules is from the atoms of...is the sum of the four energy modes mentioned above, namely the translational, rotational , vibrational and electronic energies. For monoatomic
A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring
NASA Astrophysics Data System (ADS)
Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.
2012-11-01
The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.
NASA Growth Space Station missions and candidate nuclear/solar power systems
NASA Technical Reports Server (NTRS)
Heller, Jack A.; Nainiger, Joseph J.
1987-01-01
A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.
Improvements in multimedia data buffering using master/slave architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, S.; Ganesan, R.
1996-12-31
Advances in the networking technology and multimedia technology has necessitated a need for multimedia servers to be robust and reliable. Existing solutions have direct limitations such as I/O bottleneck and reliability of data retrieval. The system can store the stream of incoming data if enough buffer space is available or the mass storage is clearing the buffer data faster than queue input. A single buffer queue is not sufficient to handle the large frames. Queue sizes are normally several megabytes in length and thus in turn will introduce a state of overflow. The system should also keep track of themore » rewind, fast forwarding, and pause requests, otherwise queue management will become intricate. In this paper, we present a master/slave (server that is designated to monitor the workflow of the complete system. This server holds every other information of slaves by maintaining a dynamic table. It also controls the workload on each of the systems by redistributing request to others or handles the request by itself) approach which will overcome the limitations of today`s storage and also satisfy tomorrow`s storage needs. This approach will maintain the system reliability and yield faster response by using more storage units in parallel. A network of master/slave can handle many requests and synchronize them at all times. Using dedicated CPU and a common pool of queues we explain how queues can be controlled and buffer overflow can be avoided. We propose a layered approach to the buffering problem and provide a read-ahead solution to ensure continuous storage and retrieval of multimedia data.« less
Characterization of Lunar Polar Illumination from a Power System Perspective
NASA Technical Reports Server (NTRS)
Fincannon, James
2008-01-01
This paper presents the results of illumination analyses for the lunar south and north pole regions obtained using an independently developed analytical tool and two types of digital elevation models (DEM). One DEM was based on radar height data from Earth observations of the lunar surface and the other was a combination of the radar data with a separate dataset generated using Clementine spacecraft stereo imagery. The analysis tool enables the assessment of illumination at most locations in the lunar polar regions for any time and any year. Maps are presented for both lunar poles for the worst case winter period (the critical power system design and planning bottleneck) and for the more favorable best case summer period. Average illumination maps are presented to help understand general topographic trends over the regions. Energy storage duration maps are presented to assist in power system design. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for favorable lunar north and south pole sites which have the potential for manned or unmanned spacecraft operations. The format of the data is oriented for use by power system designers to develop mass optimized solar and energy storage systems.
Cox, T.J.; Runkel, R.L.
2008-01-01
Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.
NASA Astrophysics Data System (ADS)
Suzuki, Soh Yamagata; Yamauchi, Masanori; Nakao, Mikihiko; Itoh, Ryosuke; Fujii, Hirofumi
2000-10-01
We built a data acquisition system for the BELLE experiment. The system was designed to cope with the average trigger rate up to 500 Hz at the typical event size of 30 kB. This system has five components: (1) the readout sequence controller, (2) the FASTBUS-TDC readout systems using charge-to-time conversion, (3) the barrel shifter event builder, (4) the parallel online computing farm, and (5) the data transfer system to the mass storage. This system has been in operation for physics data taking since June 1999 without serious problems.
The Design of Data Disaster Recovery of National Fundamental Geographic Information System
NASA Astrophysics Data System (ADS)
Zhai, Y.; Chen, J.; Liu, L.; Liu, J.
2014-04-01
With the development of information technology, data security of information system is facing more and more challenges. The geographic information of surveying and mapping is fundamental and strategic resource, which is applied in all areas of national economic, defence and social development. It is especially vital to national and social interests when such classified geographic information is directly concerning Chinese sovereignty. Several urgent problems that needs to be resolved for surveying and mapping are how to do well in mass data storage and backup, establishing and improving the disaster backup system especially after sudden natural calamity accident, and ensuring all sectors rapidly restored on information system will operate correctly. For overcoming various disaster risks, protect the security of data and reduce the impact of the disaster, it's no doubt the effective way is to analysis and research on the features of storage and management and security requirements, as well as to ensure that the design of data disaster recovery system suitable for the surveying and mapping. This article analyses the features of fundamental geographic information data and the requirements of storage management, three site disaster recovery system of DBMS plan based on the popular network, storage and backup, data replication and remote switch of application technologies. In LAN that synchronous replication between database management servers and the local storage of backup management systems, simultaneously, remote asynchronous data replication between local storage backup management systems and remote database management servers. The core of the system is resolving local disaster in the remote site, ensuring data security and business continuity of local site. This article focuses on the following points: background, the necessity of disaster recovery system, the analysis of the data achievements and data disaster recovery plan. Features of this program is to use a hardware-based data hot backup, and remote online disaster recovery support for Oracle database system. The achievement of this paper is in summarizing and analysing the common characteristics of disaster of surveying and mapping business system requirements, while based on the actual situation of the industry, designed the basic GIS disaster recovery solutions, and we also give the conclusions about key technologies of RTO and RPO.
Specific storage volumes: A useful tool for CO2 storage capacity assessment
Brennan, S.T.; Burruss, R.C.
2006-01-01
Subsurface geologic strata have the potential to store billions of tons of anthropogenic CO2; therefore, geologic carbon sequestration can be an effective mitigation tool used to slow the rate at which levels of atmospheric CO2 are increasing. Oil and gas reservoirs, coal beds, and saline reservoirs can be used for CO2 storage; however, it is difficult to assess and compare the relative storage capacities of these different settings. Typically, CO2 emissions are reported in units of mass, which are not directly applicable to comparing the CO2 storage capacities of the various storage targets. However, if the emission values are recalculated to volumes per unit mass (specific volume) then the volumes of geologic reservoirs necessary to store CO2 emissions from large point sources can be estimated. The factors necessary to convert the mass of CO2 emissions to geologic storage volume (referred to here as Specific Storage Volume or 'SSV') can be reported in units of cubic meters, cubic feet, and petroleum barrels. The SSVs can be used to estimate the reservoir volume needed to store CO2 produced over the lifetime of an individual point source, and to identify CO2 storage targets of sufficient size to meet the demand from that given point source. These storage volumes also can then be projected onto the land surface to outline a representative "footprint," which marks the areal extent of storage. This footprint can be compared with the terrestrial carbon sequestration capacity of the same land area. The overall utility of this application is that the total storage capacity of any given parcel of land (from surface to basement) can be determined, and may assist in making land management decisions. ?? Springer Science+Business Media, LLC 2006.
Evaluation of on-board hydrogen storage methods for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, J. F.; Adeyiga, A. A.; Perdue, Samara; Northam, G. B.
1989-01-01
Hydrogen is the foremost candidate as a fuel for use in high speed transport. Since any aircraft moving at hypersonic speeds must have a very slender body, means of decreasing the storage volume requirements below that for liquid hydrogen are needed. The total performance of the hypersonic plane needs to be considered for the evaluation of candidate fuel and storage systems. To accomplish this, a simple model for the performance of a hypersonic plane is presented. To allow for the use of different engines and fuels during different phases of flight, the total trajectory is divided into three phases: subsonic-supersonic, hypersonic and rocket propulsion phase. The fuel fraction for the first phase is found be a simple energy balance using an average thrust to drag ratio for this phase. The hypersonic flight phase is investigated in more detail by taking small altitude increments. This approach allowed the use of flight profiles other than the constant dynamic pressure flight. The effect of fuel volume on drag, structural mass and tankage mass was introduced through simplified equations involving the characteristic dimension of the plane. The propellant requirement for the last phase is found by employing the basic rocket equations. The candidate fuel systems such as the cryogenic fuel combinations and solid and liquid endothermic hydrogen generators are first screened thermodynamically with respect to their energy densities and cooling capacities and then evaluated using the above model.
The role of HiPPI switches in mass storage systems: A five year prospective
NASA Technical Reports Server (NTRS)
Gilbert, T. A.
1992-01-01
New standards are evolving which provide the foundation for novel multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. This paper introduces the HiPPI standards suite and technology products which incorporate the standards. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above.
The role of HiPPI switches in mass storage systems: A five year prospective
NASA Technical Reports Server (NTRS)
Gilbert, T. A.
1991-01-01
New standards are evolving which provide the foundation for multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. The HiPPI Standards suite and technology products which incorporate the standards are introduced. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above.
Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems
NASA Technical Reports Server (NTRS)
Lurio, Charles A.
1992-01-01
MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.
Reference System of DNA and Protein Sequences on CD-ROM
NASA Astrophysics Data System (ADS)
Nasu, Hisanori; Ito, Toshiaki
DNASIS-DBREF31 is a database for DNA and Protein sequences in the form of optical Compact Disk (CD) ROM, developed and commercialized by Hitachi Software Engineering Co., Ltd. Both nucleic acid base sequences and protein amino acid sequences can be retrieved from a single CD-ROM. Existing database is offered in the form of on-line service, floppy disks, or magnetic tape, all of which have some problems or other, such as usability or storage capacity. DNASIS-DBREF31 newly adopt a CD-ROM as a database device to realize a mass storage and personal use of the database.
Effective Use of SMSS: A Simple Strategy and Sample Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensinger, David
1998-09-30
The purpose of this document is to present a strategy for effectively using SMSS (Sea.leable Mass Storage System) and to distribute a simple implementation of this strategy. This work was done as a stopgap memure to ~lOW ~ ~~yst to USe the storage Power of SMSS in the absence of a more user friendly interface. The features and functionality discussed in this document represent a minimum set of capabilities to allow a useful archiving interface functionality. The implementation presented is the most basic possible and would benefit significantly from an organized support and documentation effort.
NASA Technical Reports Server (NTRS)
Sindlinger, R. S.
1977-01-01
Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.
Potential Interrelationships Between Library and Other Mass Media Systems.
ERIC Educational Resources Information Center
Parker, Edwin B.
The function of libraries is to make it easy for the people in their community to obtain information from other people or environments that may be distant is space, time or imagination. To perform this function libraries require communication media. Storage media are essential, but duplication and transmission media can improve the service of…
Performance Analysis of the Unitree Central File
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Flater, David
1994-01-01
This report consists of two parts. The first part briefly comments on the documentation status of two major systems at NASA#s Center for Computational Sciences, specifically the Cray C98 and the Convex C3830. The second part describes the work done on improving the performance of file transfers between the Unitree Mass Storage System running on the Convex file server and the users workstations distributed over a large georgraphic area.
NASA Astrophysics Data System (ADS)
Tseng, K.-H.; Liu, K. T.; Shum, C. K.; Jia, Y.; Shang, K.; Dai, C.
2016-06-01
Glaciers over the Tibetan Plateau have experienced accelerated depletion in the last few decades due primarily to the global warming. The freshwater drained into brackish lakes is also observed by optical remote sensing and altimetry satellites. However, the actual water storage change is difficult to be quantified since the altimetry or remote sensing only provide data in limited dimensions. The altimetry data give an elevation change of surface while the remote sensing images provide an extent variation in horizontal plane. Hence a data set used to describe the volume change is needed to measure the exact mass transition in a time span. In this study, we utilize GRACE gravimetry mission to quantify the total column mass change in the central Tibetan Plateau, especially focused on the lakes near Tanggula Mountains. By removing these factors, the freshwater storage change of glacier system at study area can be potentially isolated.
Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks.
Han, M Y; Mun, J S
2007-01-01
Design of a rainwater storage tank is mostly based on the mass balance of rainwater with respect to the tank, considering aspects such as rainfall runoff, water usage and overflow. So far, however, little information is available on the quality aspects of the stored rainwater, such as the behavior of particles, the effect of retention time of the water in the tank and possible influences of system configuration on water quality in the storage tank. In this study, we showed that the performance of rainwater storage tanks could be maximized by recognizing the importance of water quality improvement by sedimentation and the importance of the system configuration within the tank, as well as the efficient collection of runoff. The efficiency of removal of the particles was increased by there being a considerable distance between the inlet and the outlet in the rainwater storage tank. Furthermore, it is recommended that the effective water depth in a rainwater tank be designed to be more than 3 m and that the rainwater be drawn from as close to the water surface as possible by using a floating suction device. An operation method that increases the retention time by stopping rainwater supply when the turbidity of rainwater runoff is high will ensure low turbidity in the rainwater collected from the tank.
Runkel, Robert L.; Chapra, Steven C.
1993-01-01
Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.
van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix
2013-08-07
Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.
Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.
Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2016-01-26
An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.
Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C
2013-01-01
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Han, S. C.; Tangdamrongsub, N.; Razeghi, S. M.
2017-12-01
We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and ocean. The identical assumption is made when global geopotential change data from Gravity Recovery And Climate Experiment (GRACE) are used to determine surface mass changes. We developed an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS-only inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and inter-annual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins of Australia than two different GRACE solutions. The sub-monthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, we integrate GPS data from different continents with GRACE in the least-square normal equations and solve for the global surface mass changes by jointly inverting GPS and GRACE data. We present the results of surface mass changes from the GPS-only inversion and from the joint GPS-GRACE inversion.
Development of Automotive Liquid Hydrogen Storage Systems
NASA Astrophysics Data System (ADS)
Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.
2004-06-01
Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.
Advanced Integrated Power and Attitude Control System (IPACS) study
NASA Technical Reports Server (NTRS)
Oglevie, R. E.; Eisenhaure, D. B.
1985-01-01
Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.
The performance of residential micro-cogeneration coupled with thermal and electrical storage
NASA Astrophysics Data System (ADS)
Kopf, John
Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the economic performance for both the end user and local distribution company.
Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo; ...
2016-01-15
The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less
Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.
2016-01-01
The In-Situ production of propellants for Martian and Lunar missions has been heavily discussed since the mid 1990's. One portion of the production of the propellants is the liquefaction, storage, and delivery of the propellants to the stage tanks. Two key technology development efforts are required: large refrigeration systems (cryocoolers) to perform the liquefaction and high performance insulation within a soft vacuum environment. Several different concepts of operation may be employed to liquefy the propellants based on how and where these two technologies are implemented. The concepts that were investigated include: using an accumulator tank to store the propellant until it is needed, liquefying in the flow stream going into the tank, and liquefying in the flight propellant tank itself. The different concept of operations were studied to assess the mass and power impacts of each concept. Additionally, the trade between insulation performance and cryocooler mass was performed to give performance targets for soft vacuum insulation development. It was found that liquefying within the flight propellant tank itself adds the least mass and power requirements to the mission.
Data storage technology comparisons
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1990-01-01
The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.
The mass remote sensing image data management based on Oracle InterMedia
NASA Astrophysics Data System (ADS)
Zhao, Xi'an; Shi, Shaowei
2013-07-01
With the development of remote sensing technology, getting the image data more and more, how to apply and manage the mass image data safely and efficiently has become an urgent problem to be solved. According to the methods and characteristics of the mass remote sensing image data management and application, this paper puts forward to a new method that takes Oracle Call Interface and Oracle InterMedia to store the image data, and then takes this component to realize the system function modules. Finally, it successfully takes the VC and Oracle InterMedia component to realize the image data storage and management.
Koltun, G.F.
2001-01-01
This report provides data and methods to aid in the hydrologic design or evaluation of impounding reservoirs and side-channel reservoirs used for water supply in Ohio. Data from 117 streamflow-gaging stations throughout Ohio were analyzed by means of nonsequential-mass-curve-analysis techniques to develop relations between storage requirements, water demand, duration, and frequency. Information also is provided on minimum runoff for selected durations and frequencies. Systematic record lengths for the streamflow-gaging stations ranged from about 10 to 75 years; however, in many cases, additional streamflow record was synthesized. For impounding reservoirs, families of curves are provided to facilitate the estimation of storage requirements as a function of demand and the ratio of the 7-day, 2-year low flow to the mean annual flow. Information is provided with which to evaluate separately the effects of evaporation on storage requirements. Comparisons of storage requirements for impounding reservoirs determined by nonsequential-mass-curve-analysis techniques with storage requirements determined by annual-mass-curve techniques that employ probability routing to account for carryover-storage requirements indicate that large differences in computed required storages can result from the two methods, particularly for conditions where demand cannot be met from within-year storage. For side-channel reservoirs, tables of demand-storage-frequency information are provided for a primary pump relation consisting of one variable-speed pump with a pumping capacity that ranges from 0.1 to 20 times demand. Tables of adjustment ratios are provided to facilitate determination of storage requirements for 19 other pump sets consisting of assorted combinations of fixed-speed pumps or variable-speed pumps with aggregate pumping capacities smaller than or equal to the primary pump relation. The effects of evaporation on side-channel reservoir storage requirements are incorporated into the storage-requirement estimates. The effects of an instream-flow requirement equal to the 80-percent-duration flow are also incorporated into the storage-requirement estimates.
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
Mass Measurements of Proton-rich Nuclides at the Cooler Storage Ring at IMP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. H.; Xu, H. S.; Wang, M.
2011-11-30
Recent results and progress of mass measurements of proton-rich nuclei using isochronous mass spectrometry (IMS) are reported. The nuclei under investigation were produced via fragmentation of relativistic energy heavy ions of {sup 78}Kr and {sup 58}Ni. After in-flight separation by the fragment separator RIBLL-2, the nuclei were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of the revolution times. The impact of these measurements on the stellar nucleosynthesis in the rp-process is discussed.
Near-field optical recording based on solid immersion lens system
NASA Astrophysics Data System (ADS)
Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng
2002-09-01
Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.
Hu, Ding; Xie, Shuqun; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian
2010-04-01
The development of external counterpulsation (ECP) local area network system and extensible markup language (XML)-based remote ECP medical information system conformable to digital imaging and communications in medicine (DICOM) standard has been improving the digital interchangeablity and sharability of ECP data. However, the therapy process of ECP is a continuous and longtime supervision which builds a mass of waveform data. In order to reduce the storage space and improve the transmission efficiency, the waveform data with the normative format of ECP data files have to be compressed. In this article, we introduced the compression arithmetic of template matching and improved quick fitting of linear approximation distance thresholding (LADT) in combimation with the characters of enhanced external counterpulsation (EECP) waveform signal. The DICOM standard is used as the storage and transmission standard to make our system compatible with hospital information system. According to the rules of transfer syntaxes, we defined private transfer syntax for one-dimensional compressed waveform data and stored EECP data into a DICOM file. Testing result indicates that the compressed and normative data can be correctly transmitted and displayed between EECP workstations in our EECP laboratory.
NASA Technical Reports Server (NTRS)
Ball, Natalie; Kagawa, Hiromi; Hindupur, Aditya; Hogan, John
2017-01-01
Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being conducted
Feasibility analysis of a hydrogen backup power system for Russian telecom market
NASA Astrophysics Data System (ADS)
Borzenko, V. I.; Dunikov, D. O.
2017-11-01
We performed feasibility analysis of 10 kW hydrogen backup power system (H2BS) consisting of a water electrolyzer, a metal hydride hydrogen storage and a fuel cell. Capital investments in H2BS are mostly determined by the costs of the PEM electrolyzer, the fuel cell and solid state hydrogen storage materials, for single unit or small series manufacture the cost of AB5-type intermetallic compound can reach 50% of total system cost. Today the capital investments in H2BS are 3 times higher than in conventional lead-acid system of the same capacity. Wide distribution of fuel cell hydrogen vehicles, development of hydrogen infrastructure, and mass production of hydrogen power systems will for sure lower capital investments in fuel cell backup power. Operational expenditures for H2BS is only 15% from the expenditures for lead acid systems, and after 4-5 years of exploitation the total cost of ownership will become lower than for batteries.
NASA Astrophysics Data System (ADS)
Pan, Y.; Shen, W.; Hwang, C.
2015-12-01
As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less
Greenland meltwater storage in firn limited by near-surface ice formation
NASA Astrophysics Data System (ADS)
Machguth, Horst; Macferrin, Mike; van As, Dirk; Box, Jason E.; Charalampidis, Charalampos; Colgan, William; Fausto, Robert S.; Meijer, Harro A. J.; Mosley-Thompson, Ellen; van de Wal, Roderik S. W.
2016-04-01
Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs ,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ~1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.
Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi
2017-09-06
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm -3 , 2 g sulfur in a single cell), high volumetric energy density (135 Wh L -1 ), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.
Space Station Freedom power management and distribution design status
NASA Technical Reports Server (NTRS)
Javidi, S.; Gholdston, E.; Stroh, P.
1989-01-01
The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.
Antimatter applied for Earth protection from asteroid collision
NASA Technical Reports Server (NTRS)
Satori, Shin; Kuninaka, Hitoshi; Kuriki, Kyoichi
1990-01-01
An Earth protection system against asteroids and meteorites in colliding orbit is proposed. The system consists of detection and deorbiting systems. Analyses are given for the resolution of microwave optics, the detectability of radar, the orbital plan of intercepting operation, and the antimatter mass require for totally or partially blasting the asteroid. Antimatter of 1 kg is required for deorbiting an asteroid 200 m in diameter. An experimental simulation of antimatter cooling and storage is planned. The facility under construction is discussed.
Energy Storage Flywheels on Spacecraft
NASA Technical Reports Server (NTRS)
Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)
2002-01-01
With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.
NASA Astrophysics Data System (ADS)
Deng, Baoqing; Si, Yinbing; Wang, Jia
2017-12-01
Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.
Molnár, Péter K; Klanjscek, Tin; Derocher, Andrew E; Obbard, Martyn E; Lewis, Mark A
2009-08-01
Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.
International Space Station (ISS) Water Transfer Hardware Logistics
NASA Technical Reports Server (NTRS)
Shkedi, Brienne D.
2006-01-01
Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.
Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric
most portable consumer electronics such as cell phones and laptops because of their high energy per unit mass relative to other electrical energy storage systems. They also have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, and low self-discharge. Most
File Transfers from Peregrine to the Mass Storage System - Gyrfalcon |
login node or data-transfer queue node. Below is an example to access data-tranfer queue Interactively number of container files using the tar command. For example, $ cd /scratch/
MARC and the Library Service Center: Automation at Bargain Rates.
ERIC Educational Resources Information Center
Pearson, Karl M.
Despite recent research and development in the field of library automation, libraries have been unable to reap the benefits promised by technology due to the high cost of building and maintaining their own computer-based systems. Time-sharing and disc mass storage devices will bring automation costs, if spread over a number of users, within the…
Enabling Object Storage via shims for Grid Middleware
NASA Astrophysics Data System (ADS)
Cadellin Skipsey, Samuel; De Witt, Shaun; Dewhurst, Alastair; Britton, David; Roy, Gareth; Crooks, David
2015-12-01
The Object Store model has quickly become the basis of most commercially successful mass storage infrastructure, backing so-called ”Cloud” storage such as Amazon S3, but also underlying the implementation of most parallel distributed storage systems. Many of the assumptions in Object Store design are similar, but not identical, to concepts in the design of Grid Storage Elements, although the requirement for ”POSIX-like” filesystem structures on top of SEs makes the disjunction seem larger. As modern Object Stores provide many features that most Grid SEs do not (block level striping, parallel access, automatic file repair, etc.), it is of interest to see how easily we can provide interfaces to typical Object Stores via plugins and shims for Grid tools, and how well experiments can adapt their data models to them. We present evaluation of, and first-deployment experiences with, (for example) Xrootd-Ceph interfaces for direct object-store access, as part of an initiative within GridPP[1] hosted at RAL. Additionally, we discuss the tradeoffs and experience of developing plugins for the currently-popular Ceph parallel distributed filesystem for the GFAL2 access layer, at Glasgow.
An Overview of NASA Efforts on Zero Boiloff Storage of Cryogenic Propellants
NASA Technical Reports Server (NTRS)
Hastings, Leon J.; Plachta, D. W.; Salerno, L.; Kittel, P.; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA has increasingly motivated consideration of cryogenic propellant storage durations on the order of years as opposed to a few weeks or months. Furthermore, the advancement of cryocooler and passive insulation technologies in recent years has substantially improved the prospects for zero boiloff storage of cryogenics. Accordingly, a cooperative effort by NASA's Ames Research Center (ARC), Glenn Research Center (GRC), and Marshall Space Flight Center (MSFC) has been implemented to develop and demonstrate "zero boiloff" concepts for in-space storage of cryogenic propellants, particularly liquid hydrogen and oxygen. ARC is leading the development of flight-type cryocoolers, GRC the subsystem development and small scale testing, and MSFC the large scale and integrated system level testing. Thermal and fluid modeling involves a combined effort by the three Centers. Recent accomplishments include: 1) development of "zero boiloff" analytical modeling techniques for sizing the storage tankage, passive insulation, cryocooler, power source mass, and radiators; 2) an early subscale demonstration with liquid hydrogen 3) procurement of a flight-type 10 watt, 95 K pulse tube cryocooler for liquid oxygen storage and 4) assembly of a large-scale test article for an early demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Near term plans include the large-scale integrated system demonstration testing this summer, subsystem testing of the flight-type pulse-tube cryocooler with liquid nitrogen (oxygen simulant), and continued development of a flight-type liquid hydrogen pulse tube cryocooler.
Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lurio, C.A.
1992-10-01
MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollarymore » tests showed that the MgF2 supercooled by 10-30 K and 50-90 K. 24 refs.« less
Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach
NASA Technical Reports Server (NTRS)
Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.
2015-01-01
We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.
Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle
Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.
2016-01-01
Here, the dynamic behavior of a concentrated solar power (CSP) supercritical CO 2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. Energy models for each component of the system are developed in order to optimize operating and design parameters such as mass flow rate, intermediate pressures and the effective area of the recuperator to lead to maximum efficiency. Our results show that the parametric optimization leads themore » system to a process efficiency of about 21 % and a maximum power output close to 1.5 MW. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines and compressors inlets. Our results indicate that concentrated solar systems using supercritical CO 2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEM, M.J.
2000-05-11
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.
Final test results for the ground operations demonstration unit for liquid hydrogen
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig; Kurup, Parthiv; Akar, Sertac
This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for themore » parabolic trough system.« less
A Note on Interfacing Object Warehouses and Mass Storage Systems for Data Mining Applications
NASA Technical Reports Server (NTRS)
Grossman, Robert L.; Northcutt, Dave
1996-01-01
Data mining is the automatic discovery of patterns, associations, and anomalies in data sets. Data mining requires numerically and statistically intensive queries. Our assumption is that data mining requires a specialized data management infrastructure to support the aforementioned intensive queries, but because of the sizes of data involved, this infrastructure is layered over a hierarchical storage system. In this paper, we discuss the architecture of a system which is layered for modularity, but exploits specialized lightweight services to maintain efficiency. Rather than use a full functioned database for example, we use light weight object services specialized for data mining. We propose using information repositories between layers so that components on either side of the layer can access information in the repositories to assist in making decisions about data layout, the caching and migration of data, the scheduling of queries, and related matters.
Recovery of Lunar Surface Access Module Residual and Reserve Propellants
NASA Technical Reports Server (NTRS)
Notardonato, William U.
2007-01-01
The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.
Performance of the engineering analysis and data system 2 common file system
NASA Technical Reports Server (NTRS)
Debrunner, Linda S.
1993-01-01
The Engineering Analysis and Data System (EADS) was used from April 1986 to July 1993 to support large scale scientific and engineering computation (e.g. computational fluid dynamics) at Marshall Space Flight Center. The need for an updated system resulted in a RFP in June 1991, after which a contract was awarded to Cray Grumman. EADS II was installed in February 1993, and by July 1993 most users were migrated. EADS II is a network of heterogeneous computer systems supporting scientific and engineering applications. The Common File System (CFS) is a key component of this system. The CFS provides a seamless, integrated environment to the users of EADS II including both disk and tape storage. UniTree software is used to implement this hierarchical storage management system. The performance of the CFS suffered during the early months of the production system. Several of the performance problems were traced to software bugs which have been corrected. Other problems were associated with hardware. However, the use of NFS in UniTree UCFM software limits the performance of the system. The performance issues related to the CFS have led to a need to develop a greater understanding of the CFS organization. This paper will first describe the EADS II with emphasis on the CFS. Then, a discussion of mass storage systems will be presented, and methods of measuring the performance of the Common File System will be outlined. Finally, areas for further study will be identified and conclusions will be drawn.
Wheel configurations for combined energy storage and attitude control systems
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1985-01-01
Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.
Giannini, M; Di Francescantonio, M; Pacheco, R R; Cidreira Boaro, L C; Braga, R R
2014-01-01
The objective of this study was to evaluate the surface roughness (SR), water sorption (WS), and solubility (SO) of four composite resins after finishing/polishing and after one year of water storage. Two low-shrinkage composites (Filtek Silorane [3M ESPE] and Aelite LS [Bisco Inc]) and two composites of conventional formulations (Heliomolar and Tetric N-Ceram [Ivoclar Vivadent]) were tested. Their respective finishing and polishing systems (Sof-Lex Discs, 3M ESPE; Finishing Discs Kit, Bisco Inc; and Astropol F, P, HP, Ivoclar Vivadent) were used according to the manufacturers' instructions. Ten disc-shaped specimens of each composite resin were made for each evaluation. Polished surfaces were analyzed using a profilometer after 24 hours and one year. For the WS and SO, the discs were stored in desiccators until constant mass was achieved. Specimens were then stored in water for seven days or one year, at which time the mass of each specimen was measured. The specimens were dried again and dried specimen mass determined. The WS and SO were calculated from these measurements. Data were analyzed by two-way analysis of variance and Tukey post hoc test (α=0.05). Filtek Silorane showed the lowest SR, WS, and SO means. Water storage for one year increased the WS means for all composite resins tested. The silorane-based composite resin results were better than those obtained for methacrylate-based resins. One-year water storage did not change the SR and SO properties in any of the composite resins.
Analysis of Life-Cycle Costs and Market Applications of Flywheel Energy-Storage Transit Vehicles
DOT National Transportation Integrated Search
1979-07-01
The Urban Mass Transportation Administration (UMTA) has recently completed the Phase I activities of its Flywheel Energy Storage Program involving an analysis of the operational requirements and the conceptual design of flywheel energy storage vehicl...
Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants
NASA Technical Reports Server (NTRS)
Steele, H. L.; Wen, L.
1981-01-01
The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.
Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.
Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin
2008-02-15
In this work, the hydrogen storage behaviors of porous graphite nanofibers (GNFs) decorated by Pt nanoparticles were investigated. The Pt nanoparticles were introduced onto the GNF surfaces using a well-known chemical reduction method. We investigated the hydrogen storage capacity of the Pt-doped GNFs for the platinum content range of 1.3-7.5 mass%. The microstructure of the Pt/porous GNFs was characterized by X-ray diffraction and transmission electron microscopy. The hydrogen storage behaviors of the Pt/GNFs were studied using a PCT apparatus at 298 K and 10 MPa. It was found that amount of hydrogen stored increased with increasing Pt content to 3.4 mass%, and then decreased. This result indicates that the hydrogen storage capacity of porous carbons is based on both their metal content and dispersion rate.
System and Method for an Integrated Satellite Platform
NASA Technical Reports Server (NTRS)
Starin, Scott R. (Inventor); Sheikh, Salman I. (Inventor); Hesse, Michael (Inventor); Clagett, Charles E. (Inventor); Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Paschalidis, Nikolaos (Inventor); Ericsson, Aprille J. (Inventor); Johnson, Michael A. (Inventor)
2018-01-01
A system, method, and computer-readable storage devices for a 6U CubeSat with a magnetometer boom. The example 6U CubeSat can include an on-board computing device connected to an electrical power system, wherein the electrical power system receives power from at least one of a battery and at least one solar panel, a first fluxgate sensor attached to an extendable boom, a release mechanism for extending the extendable boom, at least one second fluxgate sensor fixed within the satellite, an ion neutral mass spectrometer, and a relativistic electron/proton telescope. The on-board computing device can receive data from the first fluxgate sensor, the at least one second fluxgate sensor, the ion neutral mass spectrometer, and the relativistic electron/proton telescope via the bus, and can then process the data via an algorithm to deduce a geophysical signal.
Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology
NASA Astrophysics Data System (ADS)
Kao, S. C.; Naz, B. S.; Gangrade, S.
2015-12-01
Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.
Modeling the Use of Mine Waste Rock as a Porous Medium Reservoir for Compressed Air Energy Storage
NASA Astrophysics Data System (ADS)
Donelick, R. A.; Donelick, M. B.
2016-12-01
We are studying the engineering and economic feasibilities of constructing Big Mass Battery (BiMBy) compressed air energy storage devices using some of the giga-tonnes of annually generated and historically produced mine waste rock/overburden/tailings (waste rock). This beneficial use of waste rock is based on the large mass (Big Mass), large pore volume, and wide range of waste rock permeabilities available at some large open pit metal mines and coal strip mines. Porous Big Mass is encapsulated and overlain by additional Big Mass; compressed air is pumped into the encapsulated pore space when renewable energy is abundant; compressed air is released from the encapsulated pore space to run turbines to generate electricity at the grid scale when consumers demand electricity. Energy storage capacity modeling: 1) Yerington Pit, Anaconda Copper Mine, Yerington, NV (inactive metal mine): 340 Mt Big Mass, energy storage capacity equivalent to 390k-710k home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 2) Berkeley Pit, Butte Copper Mine, Butte, MT (inactive metal mine): 870 Mt Big Mass, energy storage capacity equivalent to 1.4M-2.9M home batteries of size 10 kW•h/charge, assumed 20% porosity, 50% overall efficiency. 3) Rosebud Mine, Colstrip, MT (active coal strip mine): 87 Mt over 2 years, energy storage capacity equivalent to 45k-67k home batteries of size 10 kW•h/charge, assumed 30% porosity, 50% overall efficiency. Encapsulating impermeable layer modeling: Inactive mine pits like Yerington Pit and Berkeley Pit, and similar active pits, have associated with them low permeability earthen material (silt and clay in Big Mass) at sufficient quantities to manufacture an encapsulating structure with minimal loss of efficiency due to leakage, a lifetime of decades or even centuries, and minimal need for the use of geomembranes. Active coal strip mines like Rosebud mine have associated with them low permeability earthen material such as coal combustion products (fly ash, bottom ash, boiler slag, other) that may be put to beneficial use as part of the encapsulating structure; however, coal strip mines have lower volume to surface ratios than mine pits increasing the potential need to use geomembranes.
DIGIMEN, optical mass memory investigations, volume 2
NASA Technical Reports Server (NTRS)
1977-01-01
The DIGIMEM phase of the Optical Mass Memory Investigation Program addressed problems related to the analysis, design, and implementation of a direct digital optical recorder/reproducer. Effort was placed on developing an operational archival mass storage system to support one or more key NASA missions. The primary activity of the DIGIMEM program phase was the design, fabrication, and test and evaluation of a breadboard digital optical recorder/reproducer. Starting with technology and subsystem perfected during the HOLOMEM program phase, a fully operational optical spot recording breadboard that met or exceeded all program goals was evaluated. A thorough evaluation of several high resolution electrophotographic recording films was performed and a preliminary data base management/end user requirements survey was completed.
Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power
2008-12-01
Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output
Robotic tape library system level testing at NSA: Present and planned
NASA Technical Reports Server (NTRS)
Shields, Michael F.
1994-01-01
In the present of declining Defense budgets, increased pressure has been placed on the DOD to utilize Commercial Off the Shelf (COTS) solutions to incrementally solve a wide variety of our computer processing requirements. With the rapid growth in processing power, significant expansion of high performance networking, and the increased complexity of applications data sets, the requirement for high performance, large capacity, reliable and secure, and most of all affordable robotic tape storage libraries has greatly increased. Additionally, the migration to a heterogeneous, distributed computing environment has further complicated the problem. With today's open system compute servers approaching yesterday's supercomputer capabilities, the need for affordable, reliable secure Mass Storage Systems (MSS) has taken on an ever increasing importance to our processing center's ability to satisfy operational mission requirements. To that end, NSA has established an in-house capability to acquire, test, and evaluate COTS products. Its goal is to qualify a set of COTS MSS libraries, thereby achieving a modicum of standardization for robotic tape libraries which can satisfy our low, medium, and high performance file and volume serving requirements. In addition, NSA has established relations with other Government Agencies to complete this in-house effort and to maximize our research, testing, and evaluation work. While the preponderance of the effort is focused at the high end of the storage ladder, considerable effort will be extended this year and next at the server class or mid range storage systems.
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jung-Wook; Rutqvist, Jonny; Ryu, Dongwoo
The present study is aimed at numerically examining the thermal-hydrological-mechanical (THM) processes within the rock mass surrounding a cavern used for thermal energy storage (TES). We considered a cylindrical rock cavern with a height of 50 m and a radius of 10 m storing thermal energy of 350ºC as a conceptual TES model and simulated its operation for 30 years using THM coupled numerical modeling. At first, the insulator performance was not considered for the purpose of investigating the possible coupled THM behavior of the surrounding rock mass; then, the effects of an insulator were examined for different insulator thicknesses.more » The key concerns were focused on the hydro-thermal multiphase flow and heat transport in the rock mass around the thermal storage cavern, the effect of evaporation of rock mass, thermal impact on near the ground surface and the mechanical behavior of the surrounding rock mass. It is shown that the rock temperature around the cavern rapidly increased in the early stage and, consequently, evaporation of groundwater occurred, raising the fluid pressure. However, evaporation and multiphase flow did not have a significant effect on the heat transfer and mechanical behavior in spite of the high-temperature (350ºC) heat source. The simulations showed that large-scale heat flow around a cavern was expected to be conductiondominated for a reasonable value of rock mass permeability. Thermal expansion as a result of the heating of the rock mass from the storage cavern led to a ground surface uplift on the order of a few centimeters and to the development of tensile stress above the storage cavern, increasing the potentials for shear and tensile failures after a few years of the operation. Finally, the analysis showed that high tangential stress in proximity of the storage cavern can some shear failure and local damage, although large rock wall failure could likely be controlled with appropriate insulators and reinforcement.« less
Leak checker data logging system
Gannon, J.C.; Payne, J.J.
1996-09-03
A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time. 18 figs.
Leak checker data logging system
Gannon, Jeffrey C.; Payne, John J.
1996-01-01
A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time.
A novel photovoltaic power system which uses a large area concentrator mirror
NASA Technical Reports Server (NTRS)
Arrison, Anne; Fatemi, Navid
1987-01-01
A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.
Doetzer, A K; Foerster, L A
2013-10-01
The eggs of pentatomid species were evaluated to parasitism by Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead after storage in liquid nitrogen. Adults which emerged from stored eggs were kept at 18°C for 120 and 180 days to investigate whether adult dormancy could be associated with host egg storage in liquid nitrogen as a method of mass production of these egg parasitoids. Eggs of Nezara viridula (L.) and Acrosternum pengue (Rolston) were successfully parasitized by T. basalis, as well as Piezodorus guildinii (Westwood) and Dichelops furcatus (F.) by T. podisi. The eggs of Edessa meditabunda (F.) were not parasitized by T. basalis. The emergence of T. podisi from eggs of Euschistus heros (F.) and Podisus nigrispinus (Dallas) stored for 6 months was lower than the control. Females of T. basalis and T. podisi that emerged from stored eggs were kept in dormancy at 18°C. Longevity of T. basalis was influenced by the storage time and sex, but not by the interaction of sex and storage time. For T. podisi, longevity was influenced by the storage time, sex, and by the interaction of sex and storage time. For T. basalis, storage in liquid nitrogen did not affect the fecundity of quiescent females, while the number of parasitized eggs by T. podisi decreased after storage. By the joint use of these techniques, it is possible to optimize mass production of T. basalis so that its life cycle can be monitored and synchronized with the life cycle and availability of hosts.
The effect that energy storage and return feet have on the propulsion of the body: a pilot study.
Crimin, Anthony; McGarry, Anthony; Harris, Elena Jane; Solomonidis, Stephan Emanuel
2014-09-01
A variety of energy storage and return prosthetic feet are currently available for use within lower limb prostheses. Designs claim to provide a beneficial energy return during push-off, but the extent to which this occurs remains disputed. Techniques currently used to measure energy storage, dissipation and return within the structure of the prosthetic foot are debatable, with limited evidence to support substantial elastic energy storage and return from existing designs. The aim of this study was to evaluate the performance of energy storage and return foot designs through considering the ankle power during push-off and the effect on body centre of mass propulsion. To achieve this aim, the gait patterns of six trans-tibial prosthetic users wearing different designs of energy storage and return feet were analysed while ascending a ramp. Three examples of energy storage and return feet (suitable for moderate activity) were selected and randomly evaluated: the Blatchford's Epirus, Össur Assure and College Park Tribute feet. The power at the anatomical and mechanical ankle joints was integrated to evaluate the work done over the gait cycle. The direction of the inertial force, and therefore propulsion of the body centre of mass, was used to indicate the effect of the energy return by the energy storage and return feet. Results indicate that although energy storage and return feet may provide energy return, the work done around the prosthetic ankle indicates net power absorption. Therefore, the prosthetic limb is unable to contribute to the body centre of mass propulsion to the same extent as the biological limb. © IMechE 2014.
Grid data access on widely distributed worker nodes using scalla and SRM
NASA Astrophysics Data System (ADS)
Jakl, P.; Lauret, J.; Hanushevsky, A.; Shoshani, A.; Sim, A.; Gu, J.
2008-07-01
Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.
A Facilitative Role for Corticosterone in the Acquisition of a Spatial Task under Moderate Stress
ERIC Educational Resources Information Center
Akirav, Irit; Kozenicky, Maya; Tal, Dadi; Sandi, Carmen; Venero, Cesar; Richter-Levin, Gal
2004-01-01
Emotionally charged experiences alter memory storage via the activation of hormonal systems. Previously, we have shown that compared with rats trained for a massed spatial learning task in the water maze in warm water (25 degrees C), animals that were trained in cold water (19 degrees C) performed better and showed higher levels of the stress…
Mass Storage System - Gyrfalcon | High-Performance Computing | NREL
. At the command line of one of Peregrine's login nodes, enter one of the following commands to copy directory.tgz /mss/
Overview of NASA Ultracapacitor Technology
NASA Technical Reports Server (NTRS)
Hill, Curtis W.
2017-01-01
NASA needed a lower mass, reliable, and safe medium for energy storage for ground-based and space applications. Existing industry electrochemical systems are limited in weight, charge rate, energy density, reliability, and safety. We chose a ceramic perovskite material for development, due to its high inherent dielectric properties, long history of use in the capacitor industry, and the safety of a solid state material.
NASA Astrophysics Data System (ADS)
Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.
2015-12-01
One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.
Long term orbital storage of cryogenic propellants for advanced space transportation missions
NASA Technical Reports Server (NTRS)
Schuster, John R.; Brown, Norman S.
1987-01-01
A comprehensive study has developed the major features of a large capacity orbital propellant depot for the space-based, cryogenic OTV. The study has treated both the Dual-Keel Space Station and co-orbiting platforms as the accommodations base for the propellant storage facilities, and trades have examined both tethered and hard-docked options. Five tank set concepts were developed for storing the propellants, and along with layout options for the station and platform, were evaluated from the standpoints of servicing, propellant delivery, boiloff, micrometeoroid/debris shielding, development requirements, and cost. These trades led to the recommendation that an all-passive storage concept be considered for the platform and an actively refrigerated concept providing for reliquefaction of all boiloff be considered for the Space Station. The tank sets are modular, each storing up to 45,400 kg of LO2/LH2, and employ many advanced features to provide for microgravity fluid management and to limit boiloff. The features include such technologies as zero-gravity mass gauging, total communication capillary liquid acquisition devices, autogenous pressurization, thermodynamic vent systems, thick multilayer insulation, vapor-cooled shields, solar-selective coatings, advanced micrometeoroid/debris protection systems, and long-lived cryogenic refrigeration systems.
Laser Card For Compact Optical Data Storage Systems
NASA Astrophysics Data System (ADS)
Drexler, Jerome
1982-05-01
The principal thrust of the optical data storage industry to date has been the 10 billion bit optical disc system. Mass memory has been the primary objective. Another objective that is beginning to demand recognition is compact memory of 1 million to 40 million bits--on a wallet-size, laser recordable card. Drexler Technology has addressed this opportunity and has succeeded in demonstrating laser writing and readback using a 16 mm by 85 mm recording stripe mounted on a card. The write/read apparatus was developed by SRI International. With this unit, 5 micron holes have been recorded using a 10 milliwatt, 830 nanometer semiconductor-diode laser. Data is entered on an Apple II keyboard using the ASCII code. The recorded reflective surface is scanned with the same laser at lower power to generate a reflected bit stream which is converted into alphanumerics and which appear on the monitor. We are pleased to report that the combination of the DREXONTM laser recordable card ("Laser Card"), the semiconductor-diode laser, arrays of large recorded holes, and human interactive data rates are all mutually compatible and point the way forward to economically feasible, compact, data-storage systems.
NASA Astrophysics Data System (ADS)
Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin
2016-08-01
Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.
Modeling and optimization of a concentrated solar supercritical CO2 power plant
NASA Astrophysics Data System (ADS)
Osorio, Julian D.
Renewable energy sources are fundamental alternatives to supply the rising energy demand in the world and to reduce or replace fossil fuel technologies. In order to make renewable-based technologies suitable for commercial and industrial applications, two main challenges need to be solved: the design and manufacture of highly efficient devices and reliable systems to operate under intermittent energy supply conditions. In particular, power generation technologies based on solar energy are one of the most promising alternatives to supply the world energy demand and reduce the dependence on fossil fuel technologies. In this dissertation, the dynamic behavior of a Concentrated Solar Power (CSP) supercritical CO2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. The effects of operating and design parameters on the system performance are analyzed. Some of these parameters are the mass flow rate, intermediate pressures, number of compression-expansion stages, heat exchangers' effectiveness, multi-tank thermal energy storage, overall heat transfer coefficient between the solar receiver and the environment and the effective area of the recuperator. Energy and exergy models for each component of the system are developed to optimize operating parameters in order to lead to maximum efficiency. From the exergy analysis, the components with high contribution to exergy destruction were identified. These components, which represent an important potential of improvement, are the recuperator, the hot thermal energy storage tank and the solar receiver. Two complementary alternatives to improve the efficiency of concentrated solar thermal systems are proposed in this dissertation: the optimization of the system's operating parameters and optimization of less efficient components. The parametric optimization is developed for a 1MW reference CSP system with CO2 as the working fluid. The component optimization, focused on the less efficient components, comprises some design modifications to the traditional component configuration for the recuperator, the hot thermal energy storage tank and the solar receiver. The proposed optimization alternatives include the heat exchanger's effectiveness enhancement by optimizing fins shapes, multi-tank thermal energy storage configurations for the hot thermal energy storage tank and the incorporation of a transparent insulation material into the solar receiver. Some of the optimizations are conducted in a generalized way, using dimensionless models to be applicable no only to the CSP but also to other thermal systems. This project is therefore an effort to improve the efficiency of power generation systems based on solar energy in order to make them competitive with conventional fossil fuel power generation devices. The results show that the parametric optimization leads the system to an efficiency of about 21% and a maximum power output close to 1.5 MW. The process efficiencies obtained in this work, of more than 21%, are relatively good for a solar-thermal conversion system and are also comparable with efficiencies of conversion of high performance PV panels. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines' and compressors' inlets. Additional improvements in the overall system efficiency are possible by optimizing the less efficient components. In particular, the fin's effectiveness can be improved in more than 5% after its shape is optimized, increments in the efficiency of the thermal energy storage of about 5.7% are possible when the mass is divided into four tanks, and solar receiver efficiencies up to 70% can be maintained for high operating temperatures (~ 1200°C) when a transparent insulation material is incorporated to the receiver. The results obtained in this dissertation indicate that concentrated solar systems using supercritical CO2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.
Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.
Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang
2008-01-01
Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
Rechargeable metal hydrides for spacecraft application
NASA Technical Reports Server (NTRS)
Perry, J. L.
1988-01-01
Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
Optical Storage System For Small Software Package Distribution
NASA Astrophysics Data System (ADS)
Wehrenberg, Paul J.
1985-04-01
This paper describes an optical mass storage system being developed for extremely low cost distribution of small software packages. The structure of the media, design of the optical playback system, and some aspects of mastering and media production are discussed. This read only system is designed solely for the purpose of down loading code in a spooling fashion from the media to the host machine. The media is configured as a plastic card with dimensions 85 mm x 12 mm x 2mm. Each data region on a card is a rectangle 1.33 mm x 59.4 mm which carries up to 64 KB of user data. Cost estimates for production are 0.06 per card for the media and 38.00 for the playback device. The mastering process for the production tooling uses photolithography techniques and can provide production tooling within a few hours of software release. The playback mechanism is rugged and small, and does not require the use of any electromechanical servos.
Phase change thermal energy storage methods for combat vehicles, phase 1
NASA Astrophysics Data System (ADS)
Lynch, F. E.
1986-06-01
Three alternative cooling methods, based on latent heat absorption during phase changes, were studied for potential use in combat vehicle microclimate temperature control. Metal hydrides absorb heat as they release hydrogen gas. Plastic crystals change from one solid phase to another, absorbing heat in the process. Liquid air boils at cryogenic temperature and absorbs additional sensible heat as the cold gas mixes with the microclimate air flow. System designs were prepared for each of the three microclimate cooling concepts. These designs provide details about the three phase change materials, their containers and the auxiliary equipment needed to implement each option onboard a combat vehicle. The three concepts were compared on the basis of system mass, system volume and the energy required to regenerate them after use. Metal hydrides were found to be the lightest and smallest option by a large margin. The energy needed to regenerate a hydride thermal storage system can be extracted from the vehicle's exhaust gases.
NASA Technical Reports Server (NTRS)
Lincoln, K. A.; Bechtel, R. D.
1986-01-01
Recent advances in commercially available data acquisition electronics embodying high speed A/D conversion coupled to increased memory storage have now made practical (at least within time intervals of a third of a millisecond or more) the capturing of all of the data generated by a high repetition rate time-of-flight mass spectrometer producing complete spectra every 25 to 35 microseconds. Such a system was assembled and interfaced with a personal computer for control and management of data. The applications are described for recording time-resolved spectra of individual vapor plumes induced from the pulsed-laser heating of material. Each laser pulse triggers the system to generate automatically a 3-dimensional (3-D) presentation of the time-resolved spectra with m/z labeling of the major mass peaks, plus an intensity versus time display of both the laser pulse and the resulting vapor pulse. The software also permits storing of data and its presentation in various additional forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
AFP no. 28 (General Electric Lynn Manufacturing dept). is located in the City of Everett, Mass. The facility is composed of 10 buildings having 344,342 square feet of floor space on a 43-acre tract. The plant is engaged in the manufacture of large jet engine components and sub-assemblies. AFT 29 (General Electric River Works Facility) is located in the City of Lynn, Mass. AFT No. 29 is part of the General Electric Aircraft Engine Business Group and the facilities are used for testing and assembly of jet engines. The following conclusions have been developed based on the results of themore » project team's field inspection, review of plant records and files, and interviews with plant personnel. Each of the sites listed below was ranked using the HARM system and was determined to have a sufficient potential for environmental contamination to warrant some degree of follow-on investigation. AFB no. 28: Waste sump and chip storage area; and AFT no. 29: Underground fuel line leaks and underground fuel storage tank leak.« less
Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning
NASA Astrophysics Data System (ADS)
Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.
2017-07-01
As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, Kevin G.
2018-05-01
The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.
Development of a COTS Mass Storage Unit for the Space Readiness Coherent Lidar Experiment
NASA Technical Reports Server (NTRS)
Liggin, Karl; Clark, Porter
1999-01-01
The technology to develop a Mass Storage Unit (MSU) using commercial-off-the-shelf (COTS) hard drives is an on-going challenge to meet the Space Readiness Coherent Lidar Experiment (SPARCLE) program requirements. A conceptual view of SPARCLE's laser collecting atmospheric data from the shuttle is shown in Figure 1. The determination to develop this technology required several in depth studies before an actual COTS hard drive was selected to continue this effort. Continuing the development of the MSU can, and will, serve future NASA programs that require larger data storage and more on-board processing.
Energy Storage Technology Development for Space Exploration
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.
CSUNSat-1 CubeSat – ELaNa XVII
2017-04-04
The primary mission of CSUNSat1 is to space test an innovative low temperature capable energy storage system developed by the Jet Propulsion Laboratory, raising its TRL level to 7 from 4 to 5. The success of this energy storage system will enable future missions, especially those in deep space to do more science while requiring less energy, mass and volume. This CubeSat was designed, built, programmed, and tested by a team of over 70 engineering and computer science students at CSUN. The primary source of funding for CSUNSat1 comes from NASA’s Smallest Technology Partnership program. Launched by NASA’s CubeSat Launch Initiative on the NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.
Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Saha, Pritam; Sandilya, Pavitra
2017-12-01
Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.
An electomagnetic lunar launcher utilizing superconductivity technology
NASA Technical Reports Server (NTRS)
Bilby, Curt; Nozette, Stewart; Kolm, Henry
1989-01-01
The application of superconductivity technology to the lunar launcher problem was considered, and a quenchgun concept was formulated to reduce the mass of the launcher system by incorporating the energy storage in the launcher itself and using the efficiency of the quenchgun to reduce the power requirements. A conceptual design for the quenchgun launcher is presented, and the integration of the system into a lunar base logistics model for evaluation is addressed. The results of these evaluations under the NASA Office of Exploration lunar base scenarios are reported.
Irdis: A Digital Scene Storage And Processing System For Hardware-In-The-Loop Missile Testing
NASA Astrophysics Data System (ADS)
Sedlar, Michael F.; Griffith, Jerry A.
1988-07-01
This paper describes the implementation of a Seeker Evaluation and Test Simulation (SETS) Facility at Eglin Air Force Base. This facility will be used to evaluate imaging infrared (IIR) guided weapon systems by performing various types of laboratory tests. One such test is termed Hardware-in-the-Loop (HIL) simulation (Figure 1) in which the actual flight of a weapon system is simulated as closely as possible in the laboratory. As shown in the figure, there are four major elements in the HIL test environment; the weapon/sensor combination, an aerodynamic simulator, an imagery controller, and an infrared imagery system. The paper concentrates on the approaches and methodologies used in the imagery controller and infrared imaging system elements for generating scene information. For procurement purposes, these two elements have been combined into an Infrared Digital Injection System (IRDIS) which provides scene storage, processing, and output interface to drive a radiometric display device or to directly inject digital video into the weapon system (bypassing the sensor). The paper describes in detail how standard and custom image processing functions have been combined with off-the-shelf mass storage and computing devices to produce a system which provides high sample rates (greater than 90 Hz), a large terrain database, high weapon rates of change, and multiple independent targets. A photo based approach has been used to maximize terrain and target fidelity, thus providing a rich and complex scene for weapon/tracker evaluation.
Designing domestic rainwater harvesting systems under different climatic regimes in Italy.
Campisano, A; Gnecco, I; Modica, C; Palla, A
2013-01-01
Nowadays domestic rainwater harvesting practices are recognized as effective tools to improve the sustainability of drainage systems within the urban environment, by contributing to limiting the demand for potable water and, at the same time, by mitigating the generation of storm water runoff at the source. The final objective of this paper is to define regression curves to size domestic rainwater harvesting (DRWH) systems in the main Italian climatic regions. For this purpose, the Köppen-Geiger climatic classification is used and, furthermore, suitable precipitation sites are selected for each climatic region. A behavioural model is implemented to assess inflow, outflow and change in storage volume of a rainwater harvesting system according to daily mass balance simulations based on historical rainfall observations. The performance of the DRWH system under various climate and operational conditions is examined as a function of two non-dimensional parameters, namely the demand fraction (d) and the modified storage fraction (sm). This last parameter allowed the evaluation of the effects of the rainfall intra-annual variability on the system performance.
Orthos, an alarm system for the ALICE DAQ operations
NASA Astrophysics Data System (ADS)
Chapeland, Sylvain; Carena, Franco; Carena, Wisla; Chibante Barroso, Vasco; Costa, Filippo; Denes, Ervin; Divia, Roberto; Fuchs, Ulrich; Grigore, Alexandru; Simonetti, Giuseppe; Soos, Csaba; Telesca, Adriana; Vande Vyvre, Pierre; von Haller, Barthelemy
2012-12-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The DAQ (Data Acquisition System) facilities handle the data flow from the detectors electronics up to the mass storage. The DAQ system is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches), and controls hundreds of distributed hardware and software components interacting together. This paper presents Orthos, the alarm system used to detect, log, report, and follow-up abnormal situations on the DAQ machines at the experimental area. The main objective of this package is to integrate alarm detection and notification mechanisms with a full-featured issues tracker, in order to prioritize, assign, and fix system failures optimally. This tool relies on a database repository with a logic engine, SQL interfaces to inject or query metrics, and dynamic web pages for user interaction. We describe the system architecture, the technologies used for the implementation, and the integration with existing monitoring tools.
Fourier Transform Mass Spectrometry.
ERIC Educational Resources Information Center
Gross, Michael L.; Rempel, Don L.
1984-01-01
Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)
Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR
NASA Astrophysics Data System (ADS)
Scher, C.; Saah, D.
2017-12-01
Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.
Terfve, Camille; Sabidó, Eduard; Wu, Yibo; Gonçalves, Emanuel; Choi, Meena; Vaga, Stefania; Vitek, Olga; Saez-Rodriguez, Julio; Aebersold, Ruedi
2017-02-03
Advances in mass spectrometry have made the quantitative measurement of proteins across multiple samples a reality, allowing for the study of complex biological systems such as the metabolic syndrome. Although the deregulation of lipid metabolism and increased hepatic storage of triacylglycerides are known to play a part in the onset of the metabolic syndrome, its molecular basis and dependency on dietary and genotypic factors are poorly characterized. Here, we used an experimental design with two different mouse strains and dietary and metabolic perturbations to generate a compendium of quantitative proteome data using three mass spectrometric techniques. The data reproduce known properties of the metabolic system and indicate differential molecular adaptation of the two mouse strains to perturbations, contributing to a better understanding of the metabolic syndrome. We show that high-quality, high-throughput proteomic data sets provide an unbiased broad overview of the behavior of complex systems after perturbation.
Hydrogen storage properties of nano-structural carbon and metal hydrides composites
NASA Astrophysics Data System (ADS)
Miyaoka, Hiroki; Ichikawa, Takayuki; Isobe, Shigehito; Fujii, Hironobu
2006-08-01
Thermodynamic and structural properties of some ball-milled mixtures composed of the hydrogenated nanostructural carbon (C nanoH x) and metal hydride (MH; M=Li, Na, Mg and Ca) were examined from thermal desoroption mass spectroscopy and powder X-ray diffraction, respectively. The results showed that the hydrogen desorption temperatures are significantly lowered from those of each hydride (C nanoH x, MH) in the composites. This indicates that a new type of interaction exists between C nanoH x and MH, which destabilizes C-H and/or M-H bonding as well. Therefore, the above Metal-C-H system would be recognized as a new family of hydrogen storage materials.
Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer.J.; Lundstrom, B.; Simpson, M.
2014-06-01
The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distributionmore » feeder simulation.« less
Crumsey, Jasmine M; Le Moine, James M; Capowiez, Yvan; Goodsitt, Mitchell M; Larson, Sandra C; Kling, George W; Nadelhoffer, Knute J
2013-12-01
Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.
Carbon storage in China's forest ecosystems: estimation by different integrative methods.
Peng, Shunlei; Wen, Ding; He, Nianpeng; Yu, Guirui; Ma, Anna; Wang, Qiufeng
2016-05-01
Carbon (C) storage for all the components, especially dead mass and soil organic carbon, was rarely reported and remained uncertainty in China's forest ecosystems. This study used field-measured data published between 2004 and 2014 to estimate C storage by three forest type classifications and three spatial interpolations and assessed the uncertainty in C storage resulting from different integrative methods in China's forest ecosystems. The results showed that C storage in China's forest ecosystems ranged from 30.99 to 34.96 Pg C by the six integrative methods. We detected 5.0% variation (coefficient of variation, CV, %) among the six methods, which was influenced mainly by soil C estimates. Soil C density and storage in the 0-100 cm soil layer were estimated to be 136.11-153.16 Mg C·ha(-1) and 20.63-23.21 Pg C, respectively. Dead mass C density and storage were estimated to be 3.66-5.41 Mg C·ha(-1) and 0.68-0.82 Pg C, respectively. Mean C storage in China's forest ecosystems estimated by the six integrative methods was 8.557 Pg C (25.8%) for aboveground biomass, 1.950 Pg C (5.9%) for belowground biomass, 0.697 Pg C (2.1%) for dead mass, and 21.958 Pg C (66.2%) for soil organic C in the 0-100 cm soil layer. The R:S ratio was 0.23, and C storage in the soil was 2.1 times greater than in the vegetation. Carbon storage estimates with respect to forest type classification (38 forest subtypes) were closer to the average value than those calculated using the spatial interpolation methods. Variance among different methods and data sources may partially explain the high uncertainty of C storage detected by different studies. This study demonstrates the importance of using multimethodological approaches to estimate C storage accurately in the large-scale forest ecosystems.
Active Co-Storage of Cryogenic Propellants for Lunar Explortation
NASA Technical Reports Server (NTRS)
Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.
2008-01-01
Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used dual cryogens with different temperatures to cool instruments. This technology utilizes a higher temperature cryogen to provide a stage that efficiently intercepts a large fraction of the heat that would otherwise be incident on the lower temperature cryogen. This interception reduces the boil-off of the lower temperature cryogen and increasing the overall life-time of the mission. The Active Co-Storage concept is implemented similarly; the 101 K liquid oxygen thermally shields the 24 K liquid hydrogen. A thermal radiation shield that is linked to the liquid oxygen tank shrouds the liquid hydrogen tank, thereby preventing the liquid hydrogen tank from being directly exposed to the 300 K external environment. Modern cryocooler technology can eliminate the liquid oxygen boil-off and also cool the thermal radiation shield thereby reducing the liquid hydrogen boil-off to a small fraction of the unshielded rate. The thermal radiation shield can be a simple conductive shroud or a more sophisticated but lighter Broad Area Cooling (BAC) shroud. The paper describes the design impact of an active co-storage system for the Altair Descent Vehicle. This paper also compares the spacecraft-level impacts of the conductive shroud and the BAC shroud active co-storage concepts with a passive storage option in the context of the different scales of spacecraft that will be used for the lunar exploration effort - the Altair Ascent and Descent Vehicles, the Orion, and the Ares V Earth Departure Stage. The paper also reports on a subscale test of this active co-storage configuration. The test tank is 0.7 m in diameter, approximately one-third the dimension of tanks that would be needed in a lunar ascent module. A thin-walled fiberglass skirt supports and isolates the tank from a 100 K stage. A similar thin-walled skirt supports the lOOK stage from the ambient temperature structure. An aluminum shield with a heavy MLI blanket surrounds the tank and is attached at the 100 K stage. In this initial phase of the project, there is no tank on the 100 K stage, but it is actively cooled by a single-stage cryocooler similar in design to the one used on the RHESSI mission. The test configuration includes a number of innovative elements, including a helical support heat exchanger and an external thermodynamic vent/heat interception system. To avoid the complexity of an explosive gas handling system, testing will be done with liquid helium and liquid neon as simulant fluids. The properties of these fluids bracket the properties of liquid hydrogen. Instrumentation allows tank temperature and shield temperature profiles, tank liquid levels, and pressure drops through the flow lines, to be measured.
High-Density, High-Bandwidth, Multilevel Holographic Memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2008-01-01
A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing and reading of multilevel holograms. The DMDSLM would also enable transfer of data at a rate of 7.6 Gb/s or perhaps somewhat higher.
Thermal performance of phase change wallboard for residential cooling application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.; Stetiu, C.
1997-04-01
Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two importantmore » advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.« less
Subcooling for Long Duration In-Space Cryogenic Propellant Storage
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff
2010-01-01
Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.
On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage
Runkel, Robert L.
2015-01-01
Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.
Grid Data Access on Widely Distributed Worker Nodes Using Scalla and SRM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakl, Pavel; /Prague, Inst. Phys.; Lauret, Jerome
2011-11-10
Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of themore » largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.
2007-08-01
Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowingmore » for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.« less
Effect of water storage on ultimate tensile strength and mass changes of universal adhesives.
Bahrololumi, Nazanin; Beglou, Amirreza; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir
2017-01-01
The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. MC was significantly lower for SCU and ABU than SB2 ( P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day ( P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals ( P < 0.05). After 28 days, µTS increased significantly for universal adhesives ( P < 0.05). MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words: Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength.
Simplified numerical description of latent storage characteristics for phase change wallboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1995-05-01
Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand. Thermal mass can be utilized to reduce the peak-power demand, down-size the cooling systems and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the short-comings of alternative cooling sources or to avoid high demand charges. With the advent of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, thermal storage can be part of the building structure even for light-weight buildings. PCMs have two important advantages as storage media: they can offer anmore » order-of-magnitude increase in thermal storage capacity and their discharge is almost isothermal. This allows to store large amounts of energy without significantly changing the temperature of the sheathing. As heat storage takes place in the building part where the loads occur, rather than externally (e.g., ice or chilled water storage), additional transport energy is not needed. To numerically evaluate the latent storage performance of treated wallboard, RADCOOL, a thermal building simulation model based on the finite difference approach, will be used. RADCOOL has been developed in the SPARK environment in order to be compatible with the new family of simulation tools being developed at Lawrence Berkeley Laboratory. As logical statements are difficult to use in SPARK, a continuous function for the specific heat and the enthalpy had to be found. This report covers the development of a simplified description of latent storage characteristics for wallboard treated with phase change material.« less
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Hintze, Paul; Miles, John D.
2014-01-01
NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Hintze, Paul E.; Miles, John D.
2014-01-01
NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.
Electrical characterization of non‐Fickian transport in groundwater and hyporheic systems
Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.
2008-01-01
Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot‐scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile‐immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field‐scale transport in aquifer and fluvial systems subject to rate‐limited mass transfer.
Zheng, Min-Lin; Zhang, Dong-Jing; Damiens, David D; Lees, Rosemary Susan; Gilles, Jeremie R L
2015-06-26
Management of large quantities of eggs will be a crucial aspect of the efficient and sustainable mass production of mosquitoes for programmes with a Sterile Insect Technique component. The efficiency of different hatching media and effectiveness of long term storage methods are presented here. The effect on hatch rate of storage duration and three hatching media was analysed: deionized water, boiled deionized water and a bacterial broth, using Two-way ANOVA and Post hoc Tukey tests, and the Pearson correlation coefficient was used to find the effect on the proportion of collapsed eggs. Two long term storage methods were also tested: conventional storage (egg paper strips stored in zip lock bags within a sealed plastic box), and water storage (egg papers in a covered plastic cup with deionized water). Regression analyses were used to find the effect of water storage and storage duration on hatch rate. Both species hatched most efficiently in bacterial broth. Few eggs hatched in deionized water, and pre-boiling the water increased the hatch rate of Ae. aegypti, but not Ae. albopictus. A hatch rate greater than 80% was obtained after 10 weeks of conventional storage in Ae. aegypti and 11 weeks in Ae. albopictus. After this period, hatching decreased dramatically; no eggs hatched after 24 weeks. Storing eggs in water produced an 85% hatch rate after 5 months in both species. A small but significant proportion of eggs hatched in the water, probably due to combined effects of natural deoxygenation of the water over time and the natural instalment hatching typical of the species. The demonstrated efficiency of the bacterial broth hatching medium for both Ae. albopictus and Ae. aegypti facilitates mass production of these two important vector species in the same facility, with use of a common hatching medium reducing cost and operational complexity. Similarly the increased hatch rate of eggs stored in water would allow greater flexibility of egg management in a large programme over the medium term, particularly if oxygenation of the water by bubbling oxygen through the storage tray could be applied to prevent hatching during storage.
Tape SCSI monitoring and encryption at CERN
NASA Astrophysics Data System (ADS)
Laskaridis, Stefanos; Bahyl, V.; Cano, E.; Leduc, J.; Murray, S.; Cancio, G.; Kruse, D.
2017-10-01
CERN currently manages the largest data archive in the HEP domain; over 180PB of custodial data is archived across 7 enterprise tape libraries containing more than 25,000 tapes and using over 100 tape drives. Archival storage at this scale requires a leading edge monitoring infrastructure that acquires live and lifelong metrics from the hardware in order to assess and proactively identify potential drive and media level issues. In addition, protecting the privacy of sensitive archival data is becoming increasingly important and with it the need for a scalable, compute-efficient and cost-effective solution for data encryption. In this paper, we first describe the implementation of acquiring tape medium and drive related metrics reported by the SCSI interface and its integration with our monitoring system. We then address the incorporation of tape drive real-time encryption with dedicated drive hardware into the CASTOR [1] hierarchical mass storage system.
Phase Change Energy Storage Material Suitable for Solar Heating System
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa
2018-01-01
Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.
Small Portable PEM Fuel Cell Systems for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
2005-01-01
Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges
Advanced heat receiver conceptual design study
NASA Technical Reports Server (NTRS)
Kesseli, James; Saunders, Roger; Batchelder, Gary
1988-01-01
Solar Dynamic space power systems are candidate electrical power generating systems for future NASA missions. One of the key components of the solar dynamic power system is the solar receiver/thermal energy storage (TES) subsystem. Receiver development was conducted by NASA in the late 1960's and since then a very limited amount of work has been done in this area. Consequently the state of the art (SOA) receivers designed for the IOC space station are large and massive. The objective of the Advanced Heat Receiver Conceptual Design Study is to conceive and analyze advanced high temperature solar dynamic Brayton and Stirling receivers. The goal is to generate innovative receiver concepts that are half of the mass, smaller, and more efficient than the SOA. It is also necessary that these innovative receivers offer ease of manufacturing, less structural complexity and fewer thermal stress problems. Advanced Brayton and Stirling receiver storage units are proposed and analyzed in this study which can potentially meet these goals.
Heat Sponge: A Concept for Mass-Efficient Heat Storage
NASA Technical Reports Server (NTRS)
Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.
2008-01-01
The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a re-entry vehicle to reduce thermal- protection-system requirements. The heat sponge consists of a liquid/vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat-storage capacity of the liquid/vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over a temperature range of 200 F to 700 F. The use of pure ammonia as the working fluid provides a range of application between 432 deg R and 730 deg R, or the use of the more practical water-ammonia solution provides a range of application between 432 deg R and 1160 deg R or in between that of water and pure ammonia. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0-inch-diameter, hollow, stainless-steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water and a water-ammonia solution. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat-storage capacity calculated from measured temperature histories is compared to numerical predictions.
Advances in fuel cell vehicle design
NASA Astrophysics Data System (ADS)
Bauman, Jennifer
Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad A.; Riaz, Amir
2017-09-01
Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.
Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian
2016-06-01
Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system. Copyright © 2016 Elsevier B.V. All rights reserved.
An overview of the education and training component of RICIS
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1987-01-01
Research in education and training according to RICIS (Research Institute for Computing and Information Systems) program focuses on means to disseminate knowledge, skills, and technological advances rapidly, accurately, and effectively. A range of areas for study include: artificial intelligence, hypermedia and full-text retrieval strategies, use of mass storage and retrieval options such as CD-ROM and laser disks, and interactive video and interactive media presentations.
Parametric design studies of toroidal magnetic energy storage units
NASA Astrophysics Data System (ADS)
Herring, J. Stephen
Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.
Study on Hydrological Functions of Litter Layers in North China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2013-01-01
Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188
NASA Astrophysics Data System (ADS)
Borsa, A. A.; Adusumilli, S.; Agnew, D. C.; Silverii, F.; Small, E. E.
2017-12-01
Modern geodetic observations of Earth surface deformation, initially targeted at processes such as tectonics and volcanism, also record the subtle signature of mass movements within Earth's atmosphere and hydrosphere. These observations, which track the elastic response of the solid earth to changing surface mass loads, are clearly evident in position time series from permanent Global Navigation Satellite System (GNSS) stations, which recent work has used to recover changes in terrestrial water storage (TWS) over seasonal and multi-annual time scales. Earth's elastic reponse is nearly instantaneous, which suggests the possibility of observing TWS changes at much shorter periods, limited only by the 24 hour resolution of standard GNSS data products and noise in the GNSS position estimates. We present results showing that TWS increases from individual storms can be recovered using the GNSS network in the United States, and that the water mass changes are similar to gridded precipitation estimates from the National Centers for Environmental Prediction (NCEP). The gradual decline we observe in TWS following each storm is diagnostic of runoff and local evapotranspiration, and varies by location. By greatly increasing the temporal resolution of GNSS-derived estimates of TWS, we hope to provide constraints on integrated water fluxes from hydrological models on all relevant timescales.
Evaluation of an Interferometric Sensor for In-Space Detection of Gas Leaks
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Korman, Valentin; Sinko, John; Hendrickson, Adam
2009-01-01
Space mission planning often involves long-term storage of volatile liquids or high-pressure gases. These may include cryogenic fuels and oxidizers, high-pressure gases, and life-support-critical consumables. The risk associated with the storage of fluids and gases in space systems has long been an issue and the ability to retain these fluids is often tied to mission success. A leak in the storage or distribution system can cause many different problems, including a simple, but mission endangering, loss of inventory or, in severe cases, unbalanced thrust loads on a flight vehicle. Cryogenic propellants are especially difficult to store, especially over a long duration. The propellant can boil off and be lost through the insulating walls of the tank or simple thermal cycling of the fittings, valves, and propellant feed lines may unseat seals allowing the fluid to escape. Current NASA missions call for long-duration in-space storage of propellants, oxidizers, and life support supplies. Leaks of a scale detectable through a pressure drop in the storage tank are often catastrophic and have long been the focus of ground-based mitigation efforts where redundant systems are often employed. However, there is presently no technology available for detecting and monitoring low-level, but still mission-endangering, gas leaks in space. Standard in-space gas detection methods either have a very limited pressure range over which they operate effectively or are limited to certain gases. Mass spectrometer systems are able to perform the detection tasks, but their size, mass and use of high voltage, which could potentially lead to an arc that ignites a combustible propellent, severely limit their usefulness in a space system. In this paper, we present results from testing of the light-based interferometric gas monitoring and leak detection sensor shown in Fig. 1. The output of the sensor is an interference fringe pattern that is a function of the gas density, and commensurate index of refraction, in the sample region. Changes in the density of gas cause the interference fringes to move across a photodiode detector, providing a temporal history of the leak. The sensor is fiber coupled and constructed from solid optics, allowing for placement almost anywhere on the spacecraft. It is also advantageous in that it consumes very little power and does not introduce an ignition source. Data are presented demonstrating the capability of the sensor to measure density variations in different gas species. In addition, the transient response of the sensor in vacuum is demonstrated. These data extend and improve upon the results previously presented by the authors in Ref. [1].
Investigation of a pulsed electrothermal thruster system
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hilko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M
2014-09-01
Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source-sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional-structural L-PEACH model. The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink-source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. The sink-source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional-structural plant model.
Da Silva, David; Qin, Liangchun; DeBuse, Carolyn; DeJong, Theodore M.
2014-01-01
Background and Aims Developing a conceptual and functional framework for simulating annual long-term carbohydrate storage and mobilization in trees has been a weak point for virtually all tree models. This paper provides a novel approach for solving this problem using empirical field data and details of structural components of simulated trees to estimate the total carbohydrate stored over a dormant season and available for mobilization during spring budbreak. Methods The seasonal patterns of mobilization and storage of non-structural carbohydrates in bark and wood of the scion and rootstock crowns of the trunks of peach (Prunus persica) trees were analysed subsequent to treatments designed to maximize differences in source–sink behaviour during the growing season. Mature peach trees received one of three treatments (defruited and no pruning, severe pruning to 1·0 m, and unthinned with no pruning) in late winter, just prior to budbreak. Selected trees of each treatment were harvested at four times (March, June, August and November) and slices of trunk and root crown tissue above and below the graft union were removed for carbohydrate analysis. Inner bark and xylem tissues from the first to fifth rings were separated and analysed for non-structural carbohydrates. Data from these experiments were then used to estimate the amount of non-structural carbohydrates available for mobilization and to parameterize a carbohydrate storage sub-model in the functional–structural L-PEACH model. Key Results The mass fraction of carbohydrates in all sample tissues decreased from March to June, but the decrease was greatest in the severely pruned and unthinned treatments. November carbohydrate mass fractions in all tissues recovered to values similar to those in the previous March, except in the older xylem rings of the severely pruned and unthinned treatment. Carbohydrate storage sink capacity in trunks was empirically estimated from the mean maximum measured trunk non-structural carbohydrate mass fractions. The carbohydrate storage source available for mobilization was estimated from these maximum mass fractions and the early summer minimum mass fractions remaining in these tissues in the severe treatments that maximized mobilization of stored carbohydrates. The L-PEACH sink–source carbohydrate distribution framework was then used along with simulated tree structure to successfully simulate annual carbohydrate storage sink and source behaviour over years. Conclusions The sink–source concept of carbohydrate distribution within a tree was extended to include winter carbohydrate storage and spring mobilization by considering the storage sink and source as a function of the collective capacity of active xylem and phloem tissue of the tree, and its annual behaviour was effectively simulated using the L-PEACH functional–structural plant model. PMID:24674986
Utilization of dairy byproduct proteins, surfactants, and enzymes in frozen dough.
Asghar, Ali; Anjum, Faqir Muhammad; Allen, Jonathan C
2011-04-01
Use of natural additives is gaining popularity among the masses as they are becoming more conscious about their diet and health. Frozen dough products are one of the recent examples of value-added cereal products which face stability problems during extended storage periods of times. Dairy whey proteins, surfactants, and certain enzymes are considered important natural additives which could be used to control the water redistribution problem in the dough structure during the storage condition. They interact with the starch and gluten network in a dough system and thus behave as dough improvers and strengtheners. These natural additives not only help to bind extra moisture but also to improve texture and sensory attributes in frozen dough bakery products. © Taylor and Francis Group, LLC
TankSIM: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.
2015-01-01
Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.
A Queue Simulation Tool for a High Performance Scientific Computing Center
NASA Technical Reports Server (NTRS)
Spear, Carrie; McGalliard, James
2007-01-01
The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.
Seasonal Solar Thermal Absorption Energy Storage Development.
Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy
2015-01-01
This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.
NASA Astrophysics Data System (ADS)
Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung
2018-04-01
Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.
Nanoencapsulation of phase change materials for advanced thermal energy storage systems
Shchukina, E. M.; Graham, M.; Zheng, Z.
2018-01-01
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, “on demand” energy release/uptake. PMID:29658558
Nanoencapsulation of phase change materials for advanced thermal energy storage systems.
Shchukina, E M; Graham, M; Zheng, Z; Shchukin, D G
2018-06-05
Phase change materials (PCMs) allow the storage of large amounts of latent heat during phase transition. They have the potential to both increase the efficiency of renewable energies such as solar power through storage of excess energy, which can be used at times of peak demand; and to reduce overall energy demand through passive thermal regulation. 198.3 million tons of oil equivalent were used in the EU in 2013 for heating. However, bulk PCMs are not suitable for use without prior encapsulation. Encapsulation in a shell material provides benefits such as protection of the PCM from the external environment and increased specific surface area to improve heat transfer. This review highlights techniques for the encapsulation of both organic and inorganic PCMs, paying particular attention to nanoencapsulation (capsules with sizes <1 μm). We also provide insight on future research, which should focus on (i) the development of multifunctional shell materials to improve lifespan and thermal properties and (ii) advanced mass manufacturing techniques for the economically viable production of PCM capsules, making it possible to utilize waste heat in intelligent passive thermal regulation systems, employing controlled, "on demand" energy release/uptake.
Modelling of CO2 pipelines in dynamic CCS systems
NASA Astrophysics Data System (ADS)
Nimtz, M.; Klatt, M.; Krautz, H. J.
2012-04-01
The growing rate of renewable energies contributing to the power supply in Germany is starting to influence conventional thermal power plants. As a particular example, the state of Brandenburg in the eastern part of Germany has an installed capacity of 4.4 GW wind power [DEWI 2011] and 6.1 GW fossil fueled large-scale power plants (including the site in Boxberg, north-east saxony) [Vattenfall 2011] respectively. This ratio is disadvantageous, as the local thermal power plants have to provide all the balancing power to control the load of the power grid in the region. As long as there are bottlenecks in the grid, preventing the extra load from wind energy to be transported as well as a lack of technologies to store electrical energy, almost all load changes have to be balanced by the large fossil fueled power plants. The ability to provide balancing power will also be an essential criterion for new large-scale CCS (carbon dioxide capture and storage) power plants to be permitted. But this of course will influence the overall performance of the power plant and the connected peripheral systems. It is obvious that the additional equipment to capture, transport and store the CO2 and all related extra process steps will lower the flexibility and the speed of load changes that can be applied to the CCS system if no special measures are applied. All changes in load that are demanded from the power grid will be transferred to the capture and transport system, finally resulting in changes in mass flow and pressure of the CO2. These changes will also influence the performance of the storage reservoir. The presentation at the GeoEn session at the EGU 2012 will cover a look at a CCS system consisting of a coal fired Oxyfuel power plant, a pipeline to transport the CO2 and a saline aquifer as a storage reservoir. It is obvious that all parts of this system will influence each other due to the direct connection via pipeline and the physical limitations in mass flow and pressure deviations from design values. To track the effects of load changes on the system, the software program OLGA® [SPT 2011] is used. The software will give as simulation results detailed information about the dynamic changes of pressure, temperature and mass flow within the pipeline from the power plant down to the injection well and even is able to account for influences from the reservoir. The example which will be presented includes a power grid situation wherein high load changes due to fluctuating wind power induce changes in the CCS power plant load and all associated systems, especially the CO2 mass flow in the pipeline itself. Results will be discussed with regard to the design criterions of such CCS systems and the safe operation of a pipeline under high load changes to prevent critical situations that would force a stop of power plant and injection operation or other measures like a blow down of the pipeline.
The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models
NASA Astrophysics Data System (ADS)
Yang, Z.
2011-12-01
I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.
NASA Astrophysics Data System (ADS)
Erwin; Wahifiyah, E.; Hairani, R.; Panggabean, A. S.
2018-04-01
The purpose of this study was to determine the effect of the crude extract of tea leaves (Camellia sinensis L.) and storage time on the content of free fatty acid in palm oil. The dried tea leaves were macerated and concentrated by rotary evaporator. The extract obtained was added to crude palm oil with various added mass of the extract and various storage times. Phytochemical tests indicated the presence of secondary metabolites including alkaloids, triterpenoids, steroids, phenolics and flavonoids. The ANOVA test showed a decrease in free fatty acid content in crude palm oil with the addition of tea leaves extract. The LSD (Least Significant Difference) test showed the best influence on ALB of palm oil is on the total extract mass of 2 grams and the storage time of 20 days.
Effect of water storage on ultimate tensile strength and mass changes of universal adhesives
Bahrololumi, Nazanin; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir
2017-01-01
Background The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. Material and Methods 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. Results MC was significantly lower for SCU and ABU than SB2 (P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day (P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals (P < 0.05). After 28 days, µTS increased significantly for universal adhesives (P < 0.05). Conclusions MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words:Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength. PMID:28149468
Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration
O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.
2010-01-01
This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.
Multiplexed Holographic Data Storage in Bacteriorhodopsin
NASA Technical Reports Server (NTRS)
Mehrl, David J.; Krile, Thomas F.
1997-01-01
High density optical data storage, driven by the information revolution, remains at the forefront of current research areas. Much of the current research has focused on photorefractive materials (SBN and LiNbO3) and polymers, despite various problems with expense, durability, response time and retention periods. Photon echo techniques, though promising, are questionable due to the need for cryogenic conditions. Bacteriorhodopsin (BR) films are an attractive alternative recording medium. Great strides have been made in refining BR, and materials with storage lifetimes as long as 100 days have recently become available. The ability to deposit this robust polycrystalline material as high quality optical films suggests the use of BR as a recording medium for commercial optical disks. Our own recent research has demonstrated the suitability of BR films for real time spatial filtering and holography. We propose to fully investigate the feasibility of performing holographic mass data storage in BR. Important aspects of the problem to be investigated include various data multiplexing techniques (e.g. angle- amplitude- and phase-encoded multiplexing, and in particular shift-multiplexing), multilayer recording techniques, SLM selection and data readout using crossed polarizers for noise rejection. Systems evaluations of storage parameters, including access times, memory refresh constraints, erasure, signal-to-noise ratios and bit error rates, will be included in our investigations.
Peng, Lele; Zhu, Yue; Peng, Xu; Fang, Zhiwei; Chu, Wangsheng; Wang, Yu; Xie, Yujun; Li, Yafei; Cha, Judy J; Yu, Guihua
2017-10-11
Two-dimensional (2D) energy materials have shown the promising electrochemical characteristics for lithium ion storage. However, the decreased active surfaces and the sluggish charge/mass transport for beyond-lithium ion storage that has potential for large-scale energy storage systems, such as sodium or potassium ion storage, caused by the irreversible restacking of 2D materials during electrode processing remain a major challenge. Here we develop a general interlayer engineering strategy to address the above-mentioned challenges by using 2D ultrathin vanadyl phosphate (VOPO 4 ) nanosheets as a model material for challenging sodium ion storage. Via controlled intercalation of organic molecules, such as triethylene glycol and tetrahydrofuran, the sodium ion transport in VOPO 4 nanosheets has been significantly improved. In addition to advanced characterization including X-ray diffraction, high-resolution transmission electron microscopy, and X-ray absorption fine structure to characterize the interlayer and the chemical bonding/configuration between the organic intercalants and the VOPO 4 host layers, density functional theory calculations are also performed to understand the diffusion behavior of sodium ions in the pure and TEG intercalated VOPO 4 nanosheets. Because of the expanded interlayer spacing in combination with the decreased energy barriers for sodium ion diffusion, intercalated VOPO 4 nanosheets show much improved sodium ion transport kinetics and greatly enhanced rate capability and cycling stability for sodium ion storage. Our results afford deeper understanding of the interlayer-engineering strategy to improve the sodium ion storage performance of the VOPO 4 nanosheets. Our results may also shed light on possible multivalent-ion based energy storage such as Mg 2+ and Al 3+ .
Mashabela, Madonna N; Selahle, Kamogelo M; Soundy, Puffy; Crosby, Kevin M; Sivakumar, Dharini
2015-11-01
In this study, influence of 3 types of photo-selective nets (pearl, red and yellow) and a standard black net on marketable yield, fruit quality and bioactive compounds after postharvest storage was investigated. Percentage marketable fruits were higher in green sweet peppers produced under the pearl nets. Fruits produced under the pearl nets showed higher fruit mass, firmness, chlorophyll content, ascorbic acid content, antioxidant scavenging activity after postharvest storage. Red/far red photon ratio under the pearl net could have improved the ascorbic acid content and the antioxidant scavenging activity in green peppers. Green sweet peppers grown under the pearl nets had higher hue values and maintained green color longer. Our results showed the impact of modified light quality on the bioactive compounds of green sweet pepper during postharvest storage. Green sweet peppers are rich in phytochemicals. Marketability of green sweet peppers is affected partially due to ripening after postharvest storage and decay. Maintenance of green color, fruit mass, firmness, and nutritional composition are important parameters that attract consumers. This research shows the influence of light quality during production on the fruit quality parameters and bioactive compounds after postharvest storage. © 2015 Institute of Food Technologists®
Optimizing the Use of Storage Systems Provided by Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Gallagher, J. H.; Potter, N.; Byrne, D. A.; Ogata, J.; Relph, J.
2013-12-01
Cloud computing systems present a set of features that include familiar computing resources (albeit augmented to support dynamic scaling of processing power) bundled with a mix of conventional and unconventional storage systems. The linux base on which many Cloud environments (e.g., Amazon) are based make it tempting to assume that any Unix software will run efficiently in this environment efficiently without change. OPeNDAP and NODC collaborated on a short project to explore how the S3 and Glacier storage systems provided by the Amazon Cloud Computing infrastructure could be used with a data server developed primarily to access data stored in a traditional Unix file system. Our work used the Amazon cloud system, but we strived for designs that could be adapted easily to other systems like OpenStack. Lastly, we evaluated different architectures from a computer security perspective. We found that there are considerable issues associated with treating S3 as if it is a traditional file system, even though doing so is conceptually simple. These issues include performance penalties because using a software tool that emulates a traditional file system to store data in S3 performs poorly when compared to a storing data directly in S3. We also found there are important benefits beyond performance to ensuring that data written to S3 can directly accessed without relying on a specific software tool. To provide a hierarchical organization to the data stored in S3, we wrote 'catalog' files, using XML. These catalog files map discrete files to S3 access keys. Like a traditional file system's directories, the catalogs can also contain references to other catalogs, providing a simple but effective hierarchy overlaid on top of S3's flat storage space. An added benefit to these catalogs is that they can be viewed in a web browser; our storage scheme provides both efficient access for the data server and access via a web browser. We also looked at the Glacier storage system and found that the system's response characteristics are very different from a traditional file system or database; it behaves like a near-line storage system. To be used by a traditional data server, the underlying access protocol must support asynchronous accesses. This is because the Glacier system takes a minimum of four hours to deliver any data object, so systems built with the expectation of instant access (i.e., most web systems) must be fundamentally changed to use Glacier. Part of a related project has been to develop an asynchronous access mode for OPeNDAP, and we have developed a design using that new addition to the DAP protocol with Glacier as a near-line mass store. In summary, we found that both S3 and Glacier require special treatment to be effectively used by a data server. It is important to add (new) interfaces to data servers that enable them to use these storage devices through their native interfaces. We also found that our designs could easily map to a cloud environment based on OpenStack. Lastly, we noted that while these designs invited more liberal use of remote references for data objects, that can expose software to new security risks.
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P. C. D.; Cazenave, A.; Gennero, C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277
Dehydrating and Sterilizing Wastes Using Supercritical CO2
NASA Technical Reports Server (NTRS)
Brown, Ian J.
2006-01-01
A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C
A GC-MS-based metabolomics study on the tubers of commercial potato cultivars upon storage.
Uri, Csilla; Juhász, Zsófia; Polgár, Zsolt; Bánfalvi, Zsófia
2014-09-15
Using gas chromatography-mass spectrometry (GC-MS) as a system for the detection of amino acids, organic acids, sugars, sugar alcohols, and fatty acids, we characterised six commercial potato cultivars (Hópehely, Katica, Lorett, Somogyi kifli, Vénusz Gold, and White Lady) with different pedigrees, starch contents, cooking types, and dormancy periods, in five developmental stages from harvest to sprouting. The tubers were stored at 20-22°C in the dark. The metabolite data were subjected to principal component analysis. No correlation between metabolite contents of freshly harvested tubers and starch content or cooking type of the cultivars was detected. The storage decreased the fructose and sucrose and increased the proline concentrations of tubers. Irrespective of the length of dormancy a substantial difference in metabolite composition at each time point upon storage was detected in each cultivar except Somogyi kifli, the only cultivar amongst those tested with a pure Solanum tuberosum origin and A cooking type. Copyright © 2014 Elsevier Ltd. All rights reserved.
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P.C.D.; Cazenave, A.; Gennero, M.C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993-1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system.
Optimization of armored spherical tanks for storage on the lunar surface
NASA Technical Reports Server (NTRS)
Bents, D. J.; Knight, D. A.
1992-01-01
A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission so that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level or add extra capacity in the form of space tanks that results in survival of a given number out of the ensemble at the desired level. A combination of these strategies (armor and redundancy) is investigated.
Study of multiple hologram recording in lithium niobate
NASA Technical Reports Server (NTRS)
Gaylord, T. K.; Callen, W. R.
1976-01-01
The results of a number of theoretical and experimental studies relating to multiple hologram recording in lithium niobate are reported. The analysis of holographic gratings stored in lithium niobate has been extended to cover a more realistic range of physical situations. A new successful dynamic (feedback) theory for describing recording, nondestructive reading, erasure, enhancement, and angular sensitivity has been developed. In addition, the possible architectures of mass data storage systems have been studied.
Mass Memory Storage Devices for AN/SLQ-32(V).
1985-06-01
tactical programs and libraries into the AN/UYK-19 computer , the RP-16 microprocessor, and other peripheral processors (e.g., ADLS and Band 1) will be...software must be loaded into computer memory from the 4-track magnetic tape cartridges (MTCs) on which the programs are stored. Program load begins...software. Future computer programs , which will reside in peripheral processors, include the Automated Decoy Launching System (ADLS) and Band 1. As
NAVO MSRC Navigator. Fall 2008
2008-01-01
arrival of our two new HPC systems, DAVINCI (IBM P6) and EINSTEIN (Cray XT5), and our new mass storage server, NEWTON (Sun M5000). “The most...will run on both DAVINCI and EINSTEIN, providing researchers with the capability of running jobs of up to 4,256 and 12,736 cores in size...are expected to double as EINSTEIN and DAVINCI are brought online. We have also strengthened the backbone of our Disaster Recovery infrastructure, as
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Cryogenic Transport of High-Pressure-System Recharge Gas
NASA Technical Reports Server (NTRS)
Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl
2010-01-01
A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near-ambient pressure far below the recharge pressure. As leakage of heat into the tank caused vaporization of the cryogenic fluid, the resulting gas would be vented through the relief valve, which would be set to maintain the pressure in the tank at the transport value. Inasmuch as the density of a cryogenic fluid at atmospheric pressure greatly exceeds that of the corresponding gas in a practical high-pressure tank at room temperature, a tank for transporting a given mass of gas according to the proposed method could be smaller (and, hence, less massive) than is a tank needed for transporting the same mass of gas according to the conventional method.
Wen, Wei; Wu, Jin-Ming; Cao, Min-Hua
2014-11-07
A facile strategy is developed for mass fabrication of porous Co3O4 networks via the thermal decomposition of an amorphous cobalt-based complex. At a low mass loading, the achieved porous Co3O4 network exhibits excellent performance for lithium storage, which has a high capacity of 587 mA h g(-1) after 500 cycles at a current density of 1000 mA g(-1).
Software Engineering Principles 3-14 August 1981,
1981-08-01
small disk used (but rot that of the extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the...extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the disk was 1/10000 for access); and...programed and tested - must be correct and fast D. Choice of right synchronization operations: Design problem 1. Several mentioned in literature 9-22
Method of manufacturing lead electrodes for storage cells
Jonville, P.; Stoehr, H.; Beccu, K.D.
1975-09-23
A method of manufacturing electrodes for lead storage batteries is described. Molten lead or lead alloy is deposited on a felt of glass fibers by spraying in a molten state to fill the space between the fibers of the felt to form an electrically conductive zone defining electrode contacts. A mass of powdered lead-based material is introduced into the felt by filtration for subsequently producing an active electrode mass by at least one electrochemical transformation. The felt is then cut into individual electrodes. (auth)
EOSDIS: Archive and Distribution Systems in the Year 2000
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Lake, Alla
2000-01-01
Earth Science Enterprise (ESE) is a long-term NASA research mission to study the processes leading to global climate change. The Earth Observing System (EOS) is a NASA campaign of satellite observatories that are a major component of ESE. The EOS Data and Information System (EOSDIS) is another component of ESE that will provide the Earth science community with easy, affordable, and reliable access to Earth science data. EOSDIS is a distributed system, with major facilities at seven Distributed Active Archive Centers (DAACs) located throughout the United States. The EOSDIS software architecture is being designed to receive, process, and archive several terabytes of science data on a daily basis. Thousands of science users and perhaps several hundred thousands of non-science users are expected to access the system. The first major set of data to be archived in the EOSDIS is from Landsat-7. Another EOS satellite, Terra, was launched on December 18, 1999. With the Terra launch, the EOSDIS will be required to support approximately one terabyte of data into and out of the archives per day. Since EOS is a multi-mission program, including the launch of more satellites and many other missions, the role of the archive systems becomes larger and more critical. In 1995, at the fourth convening of NASA Mass Storage Systems and Technologies Conference, the development plans for the EOSDIS information system and archive were described. Five years later, many changes have occurred in the effort to field an operational system. It is interesting to reflect on some of the changes driving the archive technology and system development for EOSDIS. This paper principally describes the Data Server subsystem including how the other subsystems access the archive, the nature of the data repository, and the mass-storage I/O management. The paper reviews the system architecture (both hardware and software) of the basic components of the archive. It discusses the operations concept, code development, and testing phase of the system. Finally, it describes the future plans for the archive.
Implicit method for the computation of unsteady flows on unstructured grids
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1995-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.
NASA Astrophysics Data System (ADS)
Schramm, D. U.; Sthel, M. S.; da Silva, M. G.; Carneiro, L. O.; Silva, H. R. F.; Martins, M. L. L.; Resende, E. D.; Vitorazi, L.; Vargas, H.
2005-06-01
The monitoring of trace gas emitted by papaya fruits and assessments of its mass loss can contribute to improve the conditions for their storage and transport. The C02 emission rate by the papaya fruits, monitored by a commercial infrared-based gas analyzer, was influenced by the temperature and storage time. The fruits stored at temperature of 13 °C accumulated more CO2 inside the PEBD bags than those fruits stored at 6 °C. The loss of mass of the fruits progressively increased with storage time for both temperatures until the saturation of the moisture inside the PEBD bag, been more pronounced at 13 ºC.
Storage and growth of denitrifiers in aerobic granules: part I. model development.
Ni, Bing-Jie; Yu, Han-Qing
2008-02-01
A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established. (c) 2007 Wiley Periodicals, Inc.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Osery, I.A.
1983-12-01
Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less
NASA Astrophysics Data System (ADS)
Misenheimer, Corey Thomas
The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is used to offset cooling loads in an adjacent facility. The coupled TES systems operating in conjunction with an SMR comprise the foundation of a tightly coupled NHES.
mz5: space- and time-efficient storage of mass spectrometry data sets.
Wilhelm, Mathias; Kirchner, Marc; Steen, Judith A J; Steen, Hanno
2012-01-01
Across a host of MS-driven-omics fields, researchers witness the acquisition of ever increasing amounts of high throughput MS data and face the need for their compact yet efficiently accessible storage. Addressing the need for an open data exchange format, the Proteomics Standards Initiative and the Seattle Proteome Center at the Institute for Systems Biology independently developed the mzData and mzXML formats, respectively. In a subsequent joint effort, they defined an ontology and associated controlled vocabulary that specifies the contents of MS data files, implemented as the newer mzML format. All three formats are based on XML and are thus not particularly efficient in either storage space requirements or read/write speed. This contribution introduces mz5, a complete reimplementation of the mzML ontology that is based on the efficient, industrial strength storage backend HDF5. Compared with the current mzML standard, this strategy yields an average file size reduction to ∼54% and increases linear read and write speeds ∼3-4-fold. The format is implemented as part of the ProteoWizard project and is available under a permissive Apache license. Additional information and download links are available from http://software.steenlab.org/mz5.
Model of Anoxic-Aerobic Wastewater Treatment at Phoenix 91st Avenue Plant
1993-01-01
46 6. Storage Model; PCOD Profile 47.................... Accesion For NTS CRAMl 7. Storage Model; Oxygen Consumption Rate...69 iv 27. Compare 4 November and 17 November 1992 Data Sets; PCOD Concentrations; Storage Model .... 70 28. 4 November 1992...demand (SCOD), particulate chemical oxygen demand ( PCOD ), and the oxygen consumption rate in each stage. Mass balance equations were written for ammonia
NREL Testing Erigo's and EaglePicher's Microgrid Energy Storage System |
EaglePicher's Microgrid Energy Storage System NREL researchers are testing an energy storage system for a contains three independently controllable energy storage technologies. Photo of energy storage system hardware in a laboratory Photo by Dennis Schroeder Microgrids-and effective storage systems supporting them
Identifying the Dynamic Catchment Storage That Does Not Drive Runoff
NASA Astrophysics Data System (ADS)
Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.
2017-12-01
The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.
The Mass of a Solar Quiescent Prominence
NASA Technical Reports Server (NTRS)
Low, B. C.; Fong, B.; Fan, Y.
2003-01-01
This paper follows up on our recent paper on the role of prominence mass in the storage of magnetic energy for driving a coronal mass ejection (CME). The previous paper erroneously rejected a set of sheet- prominence solutions, the recovery of which allows for a simple theoretical estimate of the mass of a quiescent prominence. For coronal fields of 5-10 G, these hydromagnetic solutions suggest that a prominence mass of (1-26) x 10(exp 6) g is needed to hold detached magnetic fields of intensity comparable to the coronal fields in an unbounded atmosphere such that the global magnetic field is energetically able to spontaneously open up and still have enough energy to account for the kinetic and gravitational potential energies carried away in a CME. This simple result is discussed in relation to observed prominence magnetic field intensities, densities, and masses, pointing to the relevance of such observations to the question of magnetic energy storage in the solar corona.
Permanent-File-Validation Utility Computer Program
NASA Technical Reports Server (NTRS)
Derry, Stephen D.
1988-01-01
Errors in files detected and corrected during operation. Permanent File Validation (PFVAL) utility computer program provides CDC CYBER NOS sites with mechanism to verify integrity of permanent file base. Locates and identifies permanent file errors in Mass Storage Table (MST) and Track Reservation Table (TRT), in permanent file catalog entries (PFC's) in permit sectors, and in disk sector linkage. All detected errors written to listing file and system and job day files. Program operates by reading system tables , catalog track, permit sectors, and disk linkage bytes to vaidate expected and actual file linkages. Used extensively to identify and locate errors in permanent files and enable online correction, reducing computer-system downtime.
Brayton advanced heat receiver development program
NASA Technical Reports Server (NTRS)
Heidenreich, G. R.; Downing, R. S.; Lacey, Dovie E.
1989-01-01
NASA Lewis Research Center is managing an advanced solar dynamic (ASD) space power program. The objective of the ASD program is to develop small and lightweight solar dynamic systems which show significant improvement in efficiency and specific mass over the baseline design derived from the Space Station Freedom technology. The advanced heat receiver development program is a phased program to design, fabricate and test elements of a 7-kWe heat-receiver/thermal-energy-storage subsystem. Receivers for both Brayton and Stirling heat engines are being developed under separate contracts. Phase I, described here, is the current eighteen month effort to design and perform critical technology experiments on innovative concepts designed to reduce mass without compromising thermal efficiency and reliability.
Regolith thermal energy storage for lunar nighttime power
NASA Technical Reports Server (NTRS)
Tillotson, Brian
1992-01-01
A scheme for providing nighttime electric power to a lunar base is described. This scheme stores thermal energy in a pile of regolith. Any such scheme must somehow improve on the poor thermal conductivity of lunar regolith in vacuum. Two previous schemes accomplish this by casting or melting the regolith. The scheme described here wraps the regolith in a gas-tight bag and introduces a light gas to enhance thermal conductivity. This allows the system to be assembled with less energy and equipment than schemes which require melting of regolith. A point design based on the new scheme is presented. Its mass from Earth compares favorably with the mass of a regenerative fuel cell of equal capacity.
Gravity assisted recovery of liquid xenon at large mass flow rates
NASA Astrophysics Data System (ADS)
Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.
2018-06-01
We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.
Data storage and retrieval system abstract
NASA Technical Reports Server (NTRS)
Matheson, Barbara
1992-01-01
The STX mass storage system design is intended for environments requiring high speed access to large volumes of data (terabyte and greater). Prior to commitment to a product design plan, STX conducted an exhaustive study of the commercially available off-the-shelf hardware and software. STX also conducted research into the area of emerging technologies in networks and storage media so that the design could easily accommodate new interfaces and peripherals as they came on the market. All the selected system elements were brought together in a demo suite sponsored jointly by STX and ALLIANT where the system elements were evaluated based on actual operation using a client-server mirror image configuration. Testing was conducted to assess the various component overheads and results were compared against vendor data claims. The resultant system, while adequate to meet our capacity requirements, fell short of transfer speed expectations. A product team lead by STX was assembled and chartered with solving the bottleneck issues. Optimization efforts yielded a 60 percent improvement in throughput performance. The ALLIANT computer platform provided the I/O flexibility needed to accommodate a multitude of peripheral interfaces including the following: up to twelve 25MB/s VME I/O channels; up to five HiPPI I/O full duplex channels; IPI-s, SCSI, SMD, and RAID disk array support; standard networking software support for TCP/IP, NFS, and FTP; open architecture based on standard RISC processors; and V.4/POSIX-based operating system (Concentrix). All components including the software are modular in design and can be reconfigured as needs and system uses change. Users can begin with a small system and add modules as needed in the field. Most add-ons can be accomplished seamlessly without revision, recompilation or re-linking of software.
Data storage and retrieval system abstract
NASA Astrophysics Data System (ADS)
Matheson, Barbara
1992-09-01
The STX mass storage system design is intended for environments requiring high speed access to large volumes of data (terabyte and greater). Prior to commitment to a product design plan, STX conducted an exhaustive study of the commercially available off-the-shelf hardware and software. STX also conducted research into the area of emerging technologies in networks and storage media so that the design could easily accommodate new interfaces and peripherals as they came on the market. All the selected system elements were brought together in a demo suite sponsored jointly by STX and ALLIANT where the system elements were evaluated based on actual operation using a client-server mirror image configuration. Testing was conducted to assess the various component overheads and results were compared against vendor data claims. The resultant system, while adequate to meet our capacity requirements, fell short of transfer speed expectations. A product team lead by STX was assembled and chartered with solving the bottleneck issues. Optimization efforts yielded a 60 percent improvement in throughput performance. The ALLIANT computer platform provided the I/O flexibility needed to accommodate a multitude of peripheral interfaces including the following: up to twelve 25MB/s VME I/O channels; up to five HiPPI I/O full duplex channels; IPI-s, SCSI, SMD, and RAID disk array support; standard networking software support for TCP/IP, NFS, and FTP; open architecture based on standard RISC processors; and V.4/POSIX-based operating system (Concentrix). All components including the software are modular in design and can be reconfigured as needs and system uses change. Users can begin with a small system and add modules as needed in the field. Most add-ons can be accomplished seamlessly without revision, recompilation or re-linking of software.
Petabyte mass memory system using the Newell Opticel(TM)
NASA Technical Reports Server (NTRS)
Newell, Chester W.
1994-01-01
A random access system is proposed for digital storage and retrieval of up to a Petabyte of user data. The system is comprised of stacked memory modules using laser heads writing to an optical medium, in a new shirt-pocket-sized optical storage device called the Opticel. The Opticel described is a completely sealed 'black box' in which an optical medium is accelerated and driven at very high rates to accommodate the desired transfer rates, yet in such a manner that wear is virtually eliminated. It essentially emulates a disk, but with storage area up to several orders of magnitude higher. Access time to the first bit can range from a few milliseconds to a fraction of a second, with time to the last bit within a fraction of a second to a few seconds. The actual times are dependent on the capacity of each Opticel, which ranges from 72 Gigabytes to 1.25 Terabytes. Data transfer rate is limited strictly by the head and electronics, and is 15 Megabits per second in the first version. Independent parallel write/read access to each Opticel is provided using dedicated drives and heads. A Petabyte based on the present Opticel and drive design would occupy 120 cubic feet on a footprint of 45 square feet; with further development, it could occupy as little as 9 cubic feet.
Mass balance computation in SAGUARO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, B.L.; Eaton, R.R.
1986-12-01
This report describes the development of the mass balance subroutines used with the finite-element code, SAGUARO, which models fluid flow in partially saturated porous media. Derivation of the basic mass storage and mass flux equations is included. The results of the SAGUARO mass-balance subroutine, MASS, are shown to compare favorably with the linked results of FEMTRAN. Implementation of the MASS option in SAGUARO is described. Instructions for use of the MASS option are demonstrated with the three sample cases.
The fundamentals and futures of removable mass storage alternatives
NASA Technical Reports Server (NTRS)
Kempster, Linda
1993-01-01
This article reflects my view of how the storage products have been introduced into the marketplace, where they came from, and where others will continue to come from in the future. My corporate goal is to be a resource for those searching for removable solutions to mass storage problems. My introduction to optical storage occurred a few months before signing a non-disclosure agreement with FileNet on 8 Aug. 1983. By 87 or 88, as the optical craze was getting more popular, I started looking for similar or complementary storage technologies. I am still looking and my research is constantly turning up new entrants into this field. Due to the scope of the coverage in this field, this article does not dwell on any single technology. The goal is to provide information that is not compiled in any other single source and focus on facts that are not commonly known. I have provided a few baseline assumptions to ensure the mathematical calculations remain consistent: (1) hard-copy 8.5 in x 11 in documents which are scanned at 200 dots per inch (dpi) and compressed at a ratio of 10:1 result in a document image which requires an average of 50 Kilobytes (KB) of storage; (2) an average ASCII page requires 2 KB of storage; (3) an average flle cabinet drawer can hold 2500 pieces of paper; (4) one GB of storage can hold an average of 20,000 document images (a reel of 6250 tape holds 180 Megabytes (MB)).
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
NASA Astrophysics Data System (ADS)
Simon, T.; Baird, R. S.; Trevathan, J.; Clark, L.
2002-01-01
The ability to produce the necessary consumables, rather than relying solely on what is brought from Earth decreases the launch mass, cost, and risk associated with a Mars mission while providing capabilities that enable the commercial development of space. The idea of using natural resources, or "living off the land", is termed In-Situ Resource Utilization (ISRU). Trade studies have shown that producing and utilizing consumables such as water, breathing oxygen, and propellant can reduce the launch mass for a human or robotic mission to Mars by 20-45%. The Johnson Space Center and Lockheed Martin Astronautics are currently designing and planning assembly of a complete collection-to-storage production plant design for producing methane (fuel), oxygen, and water from carbon dioxide (Martian atmosphere) and hydrogen (electrolyzed Martian water or Earth-originated), based on lessons learned and design enhancements from a 1st generation testbed. The design and testing of the major subsystems incorporated in the 2nd generation system, including a carbon dioxide freezer, Sabatier reactor, water electrolysis unit, and vacuum-jacketed, cryogenic, common-bulkhead storage tank, will be presented in detail with the goal of increasing the awareness of the readiness level of these technologies. These technologies are mass and power efficient as well as fundamentally simple and reliable. These technologies also have potential uses in Environmental Control and Life Support System (ECLSS) applications for removing and recycling crew-exhaled carbon dioxide. Each subsystem is sized for an ISRU-assisted sample return mission, producing in an 8-hour period 0.56 kg water and 0.26 kg methane from the Sabatier reactor and 0.50 kg oxygen from electrolyzed water. The testing of these technologies to date will be discussed as well as plans for integrating the subsystems for a complete end-to-end demonstration at Mars conditions. This paper will also address the history of these subsystem technologies, the issues involved with the interfaces between these subsystems, the storage of the products, and the benefits for the contined study of ISRU related technologies.
Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)
The effects of frozen tissue storage conditions on the integrity of RNA and protein.
Auer, H; Mobley, J A; Ayers, L W; Bowen, J; Chuaqui, R F; Johnson, L A; Livolsi, V A; Lubensky, I A; McGarvey, D; Monovich, L C; Moskaluk, C A; Rumpel, C A; Sexton, K C; Washington, M K; Wiles, K R; Grizzle, W E; Ramirez, N C
2014-10-01
Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.
Spacecraft cryogenic gas storage systems
NASA Technical Reports Server (NTRS)
Rysavy, G.
1971-01-01
Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.
doctoral student since 2007. Jason's area of expertise is heat and mass transfer, including the design , analysis, and testing of heat and mass transfer devices and processes. Research Interests Membrane Thermal energy storage Heat and mass transfer enhancements Combined cooling, heat, and power (CCHP
NASA Astrophysics Data System (ADS)
Karasu, İ. G.; Yilmaz, K. K.; Yilmaz, M. T.
2017-12-01
Estimation of the groundwater storage change and its interannual variability is critical over Konya Closed Basin which has excessive agricultural production. The annual total precipitation falling over the region is not sufficient to compensate the agricultural irrigation needs of the region. This leds many to use groundwater as the primary water resource, which resulted in significant drop in the groundwater levels. Accordingly, monitoring of the groundwater change is critical for sustainable water resources management. Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLDAS) have been succesfully used over many locations to monitor the change in the groundwater storages. In this study, GRACE-derived terrestrial water storage estimates and GLDAS model soil moisture, canopy water, snow water equivalent and surface runoff simulations are used to retrieve the change in the groundwater storage over Konya Closed Basin streching over 50,000 km2 area. Initial comparisons show the declining trend in GRACE and GLDAS combined groundwater storage change estimates between 2002 and 2016 are consistent with the actual groundwater level change observed at ground stations. Even though many studies recommend GRACE observations to be used over regions larger than 100,000 km2 - 200,000 km2 area, results show GRACE remote sensing and GLDAS modeled groundwater change information are skillful to monitor the large mass changes occured as a result of the excessive groundwater exploitation over Konya Closed Basin with 50,000 km2 area.
System and Mass Storage Study for Defense Mapping Agency Topographic Center (DMATC/HC)
1977-04-01
34•»-—•—■»■—- view. The assessment should be based on carefully designed control condi- tions—data volume, resolution, function, etc...egories: hardware control and library management support. This software is designed to interface with IBM 360/370 OS and OS/VS. No interface with a...laser re- cording unit includes a programmable recorder control subsystem which can be designed to provide a hardware and software interface compatible
SNS programming environment user's guide
NASA Technical Reports Server (NTRS)
Tennille, Geoffrey M.; Howser, Lona M.; Humes, D. Creig; Cronin, Catherine K.; Bowen, John T.; Drozdowski, Joseph M.; Utley, Judith A.; Flynn, Theresa M.; Austin, Brenda A.
1992-01-01
The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services.
Vibration Interaction in a Multiple Flywheel System
2011-03-01
IP/IT ) t time x x−axis y y−axis z z−axis κ rotational spring stiffness ρ radial distance between flywheel center of mass and shaft center θ axial...they may be a viable alternative for the satellite designer . One additional benefit of flywheel-based energy storage is its inherent ability to control...rotating wheels it can change the satellite’s attitude by exchanging momentum between flywheels and 2 the spacecraft. Thus an IPACS, if well designed
Fluid management in the optimization of space construction
NASA Technical Reports Server (NTRS)
Snyder, Howard
1990-01-01
Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.