Improvement of Wilson fermions and twisted mass lattice QCD
NASA Astrophysics Data System (ADS)
Wu, Jackson M. S.
2005-11-01
In order for Wilson fermions to be a competitive option to use in lattice QCD (LQCD) simulations, the large inherent discretization errors starting at O(a) (a being the lattice spacing) have to be removed. This can be accomplished through the Symanizk improvement program, where improvement terms have to be added to both the action and the operators of interest with coefficients appropriately chosen so that the rate of convergence to the continuum limit is quadratic in a. For this to be applicable to numerical simulations, improvement coefficients have to be determined non-perturbatively. A program for doing so has been pioneered by the Alpha collaboration. In this work, an extension of that program is made to improve all bilinear operators in QCD with two, three, and four flavours of non-degenerate quarks. With even numbers of quark flavours, an alternative approach is afforded by twisted mass LQCD (tmLQCD), where O(a) improvement in physical quantities can be achieved automatically at maximal twist. In this work, the features and utilities of tmLQCD are studied in detail in the framework of chiral perturbation theory (chiPT). By matching onto an effective chiral theory, the phase structure of tmLQCD and the properties of the mesons (pions) in the theory has been investigated. Pionic quantities easy to calculate in numerical simulations and useful for probing the symmetry breaking effects of tmLQCD have been calculated, and conditions under which automatic O(a) improvement holds at maximal twist has been carefully studied. The resulting twisted mass chiPT has also been extended to study the baryons in this work, which has not been done before. This allows one to probe tmLQCD with more quantities, and in particular, quantities that do not involve quark-disconnected diagrams and so are much easier to calculate in numerical simulations. A major part of this dissertation has already appeared in published form. Chapters 3 through 5 are based on Refs. [1--5].
Phase diagram of dynamical twisted-mass Wilson fermions at finite isospin chemical potential
NASA Astrophysics Data System (ADS)
Janssen, Oliver; Kieburg, Mario; Splittorff, K.; Verbaarschot, Jacobus J. M.; Zafeiropoulos, Savvas
2016-05-01
We consider the phase diagram of twisted-mass Wilson fermions of two-flavor QCD in the parameter space of the quark mass, the isospin chemical potential, the twist angle and the lattice spacing. This work extends earlier studies in the continuum and those at zero chemical potential. We evaluate the phase diagram as well as the spectrum of the (pseudo-)Goldstone bosons using the chiral Lagrangian for twisted-mass Wilson fermions at nonzero isospin chemical potential. The phases are obtained from a mean field analysis. At zero twist angle we find that already an infinitesimal isospin chemical potential destroys the Aoki phase. The reason is that in this phase we have massless Goldstone bosons with a nonzero isospin charge. At finite twist angle, only two different phases are present—one phase which is continuously connected to the Bose condensed phase at nonzero chemical potential, and another phase which is continuously connected to the normal phase. For either zero or maximal twist, the phase diagram is more complicated, as the saddle-point equations allow for more solutions.
Phenomenology with Wilson fermions using smeared sources
Patel, Apoorva; Daniel, D.; Kilcup, Gregory; Gupta, Rajan; Sharpe, Stephen
1992-01-01
We investigate the use of two types of non-local ("smeared") sources for quark propagators in quenched lattice QCD at beta=6.0 using Wilson fermions at k=0.154 and 0.155. We present results for the hadron mass spectrum, meson decay constants, quark masses, the chiral condensate and the quark distribution amplitude of the pion. The use of smeared sources leads to a considerable improvement over previous results. We find a disturbing discrepancy between the baryon spectra obtained using Wuppertal and wall sources. We find good signals in the ratio of correlators used to calculate the quark mass and the chiral condensate and show that the extrapolation to the chiral limit is smooth.
Wilson Fermions and Axion Electrodynamics in Optical Lattices
Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.
2010-11-05
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
[ital I]=2 pion scattering amplitude with Wilson fermions
Gupta, R. ); Patel, A. ); Sharpe, S.R. )
1993-07-01
We present an exploratory calculation of the [ital I]=2 [pi][pi] scattering amplitude at threshold using Wilson fermions in the quenched approximation, including all the required contractions. We find good agreement with the predictions of chiral perturbation theory even for pions of mass 560--700 MeV. Within 10% error, we do not see the onset of the bad chiral behavior expected for Wilson fermions. We also derive rigorous inequalities that apply to two-particle correlators and as a consequence show that the interaction in the antisymmetric state of two pions has to be attractive.
QCD thermodynamics with continuum extrapolated Wilson fermions. II.
NASA Astrophysics Data System (ADS)
Borsanyi, Szabolcs; Hoelbling, Christian; Toth, Balint C.; Durr, Stephan; Krieg, Stefan; Szabo, Kalman K.; Fodor, Zoltan; Katz, Sandor D.; Nogradi, Daniel; Trombitas, Norbert
2015-07-01
We continue our investigation of 2 +1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudocritical temperature as the pion mass is lowered while the pseudocritical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.
QCD at nonzero density and canonical partition functions with Wilson fermions
Alexandru, Andrei; Wenger, Urs
2011-02-01
We present a reduction method for Wilson-Dirac fermions with nonzero chemical potential which generates a dimensionally reduced fermion matrix. The size of the reduced fermion matrix is independent of the temporal lattice extent and the dependence on the chemical potential is factored out. As a consequence the reduced matrix allows a simple evaluation of the Wilson fermion determinant for any value of the chemical potential and hence the exact projection to the canonical partition functions.
Nature of the Roberge-Weiss transition in Nf=2 QCD with Wilson fermions
NASA Astrophysics Data System (ADS)
Philipsen, Owe; Pinke, Christopher
2014-05-01
At imaginary values of the quark chemical potential μ, quantum chromodynamics shows an interesting phase structure due to an exact center, or Roberge-Weiss (RW), symmetry. This can be used to constrain QCD at real μ, where the sign problem prevents Monte Carlo simulations of the lattice theory. In previous studies of this region with staggered fermions it was found that the RW endpoint, where the center transition changes from first order to a crossover, depends nontrivially on the quark mass: for high and low masses, it is a triple point connecting to the deconfinement and chiral transitions, respectively, changing to a second-order endpoint for intermediate mass values. These parameter regions are separated by tricritical points. Here we present a confirmation of these findings using Wilson fermions on Nτ=4 lattices. In addition, our results provide a successful quantitative check for a heavy quark effective lattice theory at finite density.
Nf=2 QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential
NASA Astrophysics Data System (ADS)
Philipsen, Owe; Pinke, Christopher
2016-06-01
The order of the thermal phase transition in the chiral limit of quantum chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical end point at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse Nt=4 lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass mπc≈560 MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavor QCD using improved Wilson fermions and indicate that the systematic error on the two-flavor chiral transition is still of order 100%.
Calculation of K →π π decay amplitudes with improved Wilson fermion action in lattice QCD
NASA Astrophysics Data System (ADS)
Ishizuka, N.; Ishikawa, K.-I.; Ukawa, A.; Yoshié, T.
2015-10-01
We present our result for the K →π π decay amplitudes for both the Δ I =1 /2 and 3 /2 processes with the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al., we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is possible without complications from operators with wrong chirality, as for the case with chirally symmetric lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we consider the decay amplitudes at an unphysical quark mass mK˜2 mπ . Our calculations are carried out with Nf=2 +1 gauge configurations generated with the Iwasaki gauge action and nonperturbatively O (a )-improved Wilson fermion action at a =0.091 fm , mπ=280 MeV , and mK=580 MeV on a 323×64 (L a =2.9 fm ) lattice. For the quark loops in the penguin and disconnected contributions in the I =0 channel, the combined hopping parameter expansion and truncated solver method work very well for variance reduction. We obtain, for the first time with a Wilson-type fermion action, that Re A0=60 (36 )×1 0-8 GeV and Im A0=-67 (56 )×1 0-12 GeV for a matching scale q*=1 /a . The dependence on the matching scale q* for these values is weak.
QCD with two flavors of Wilson fermions: The QCD vacuum, the Aoki vacuum, and other vacua
Azcoiti, V.; Vaquero, A.; Di Carlo, G.
2009-01-01
We discuss the vacuum structure of QCD with two flavors of Wilson fermions. We derive two possible scenarios: (i) If the spectral density {rho}{sub U}({lambda},{kappa}) of the overlap Hamiltonian in a fixed background gauge field is not symmetric in {lambda}, Hermiticity is violated and Hermiticity violation effects could influence numerical determinations of the {eta} meson mass if we are not near enough to the continuum limit, where Hermiticity should be recovered; (ii) otherwise we argue that, under certain assumptions, new phases appear beside the Aoki phase, which can be characterized by a nonvanishing vacuum expectation value of i{psi}{sub u}{gamma}{sub 5}{psi}{sub u}+i{psi}{sub d}{gamma}{sub 5}{psi}{sub d}, and with vacuum states that cannot be connected with the Aoki vacua by parity-flavor symmetry transformations. Quenched numerical simulations suggest that the second scenario is more likely realized.
Vector Meson Mass Corrections at O(a{sup 2}) in PQChPT with Wilson and Ginsparg-Wilson quarks
Hovhannes R. Grigoryan; Anthony W. Thomas
2005-07-01
We derive the mixed as well as unmixed lattice heavy meson chiral Lagrangian up to order O(a{sup 2}), with Wilson and Ginsparg-Wilson fermions. We consider two flavor partially quenched theory and calculate vector meson mass corrections up to order O(a{sup 2}), including the corrections associated with the violation of O(4) rotational symmetry down to hypercubic group. The chiral extrapolation formula is then compared with that used in numerical simulations.
An anisotropic preconditioning for the Wilson fermion matrix on the lattice
Balint Joo, Robert G. Edwards, Michael J. Peardon
2010-01-01
A preconditioning for the Wilson fermion matrix on the lattice is defined which is particularly suited to the case when the temporal lattice spacing is much smaller than the spatial one. Details on the implementation of the scheme are given. The method is tested in numerical studies of QCD on anisotropic lattices.
Goeckeler, M.; Horsley, R.; Pleiter, D.; Rakow, P.E.L.; Schierholz, G.
2005-06-01
Within the framework of quenched lattice QCD and using O(a) improved Wilson fermions and nonperturbative renormalization, a high statistics computation of low moments of the unpolarized nucleon structure functions is given. Particular attention is paid to the chiral and continuum extrapolations.
Roberge-Weiss transition in Nf=2 QCD with Wilson fermions and Nτ =6
NASA Astrophysics Data System (ADS)
Czaban, Christopher; Cuteri, Francesca; Philipsen, Owe; Pinke, Christopher; Sciarra, Alessandro
2016-03-01
QCD with imaginary chemical potential is free of the sign problem and exhibits a rich phase structure constraining the phase diagram at real chemical potential. We simulate the critical end point of the Roberge-Weiss transition at imaginary chemical potential for Nf=2 QCD on Nτ=6 lattices with standard Wilson fermions. As found on coarser lattices, the Roberge-Weiss end point is a triple point connecting the deconfinement/chiral transitions in the heavy/light quark mass region and changes to a second-order end point for intermediate masses. These regimes are separated by two tricritical values of the quark mass, which we determine by extracting the critical exponent ν from a systematic finite size scaling analysis of the Binder cumulant of the imaginary part of the Polyakov loop. We are able to explain a previously observed finite size effect afflicting the scaling of the Binder cumulant in the regime of three-phase coexistence. Compared to Nτ=4 lattices, the tricritical masses are significantly shifted. Exploratory results on Nτ=8 as well as comparison with staggered simulations suggest that much finer lattices are needed before a continuum extrapolation becomes feasible.
Flavor symmetries and fermion masses
Rasin, A.
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V{sub ub}/V{sub cb} = {radical}m{sub u}/m{sub c} and V{sub td}/V{sub ts} = {radical}m{sub d}/m{sub s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay {beta} {yields} s{gamma} constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tan{Beta}, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.
Quantum electrodynamics with complex fermion mass
McKellar, B.J.H. . School of Physics); Wu, D.D. . School of Physics Academia Sinica, Beijing, BJ . Inst. of High Energy Physics Superconducting Super Collider Lab., Dallas, TX )
1991-08-01
The quantum electrodynamics (QED) with a complex fermion mass -- that is, a fermion mass with a chiral phase -- is restudied, together with its chirally rotated version. We show how fake electric dipole moment can be obtained and how to avoid it. 10 refs.
Finite temperature QCD with two flavors of nonperturbatively improved Wilson fermions
Bornyakov, V.G.; Chernodub, M.N.; Ichie, H.; Mori, Y.; Nakamura, Y.; Suzuki, T.; Koma, Y.; Polikarpov, M.I.; Uvarov, P.V.; Veselov, A.I.; Schierholz, G.; Slavnov, A. A.; Stueben, H.
2005-06-01
We study QCD with two flavors of nonperturbatively improved Wilson fermions at finite temperature on the 16{sup 3}8 lattice. We determine the transition temperature at lattice spacing as small as a{approx}0.12 fm, and study string breaking below the finite temperature transition. We find that the static potential can be fitted by a two-state ansatz, including a string state and a two-meson state. We investigate the role of Abelian monopoles at finite temperature.
Mass-induced transition in fermion number
Aragao de Carvalho, C.; Pureza, J. M.
1989-05-15
We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.
NASA Astrophysics Data System (ADS)
Nagata, Keitaro; Nakamura, Atsushi
2011-06-01
The QCD phase diagram is studied in the lattice QCD simulation with the imaginary chemical potential approach. We employ a clover-improved Wilson fermion action of two flavors and a renormalization-group improved gauge action and perform the simulation at an intermediate quark mass on a 83×4 lattice. The QCD phase diagram in the imaginary chemical potential μI region is investigated by performing the simulation for more than 150 points on the (β,μI) plane. We find that the Roberge-Weiss phase transition at μI/T=π/3 is first order and its endpoint is second order, which are identified by the phase of the Polyakov loop. We determine the pseudocritical line from the susceptibility of the Polyakov loop modulus. We find a clear deviation from a linear dependence of the pseudocritical line on μI2.
Holographic Wilson Loops and Fermions in Consistent Truncations of String Theory and M-Theory
NASA Astrophysics Data System (ADS)
Faraggi, Alberto T.
In the holographic framework, a half-BPS Wilson loop in N = 4 supersymmetric Yang-Mills theory in the fundamental, symmetric or antisymmetric representation of
Resonant pairing between fermions with unequal masses
Wu, Shin-Tza; Pao, C.-H.; Yip, S.-K.
2006-12-01
We study via mean-field theory the pairing between fermions of different masses, especially at the unitary limit. At equal populations, the thermodynamic properties are identical with the equal mass case provided an appropriate rescaling is made. At unequal populations, for sufficiently light majority species, the system does not phase separate. For sufficiently heavy majority species, the phase separated normal phase have a density larger than that of the superfluid. For atoms in harmonic traps, the density profiles for unequal mass fermions can be drastically different from their equal-mass counterparts.
Fermion masses from SO(10) Hermitian matrices
Moorhouse, R. G.
2008-03-01
Masses of fermions in the SO(10) 16-plet are constructed using only the 10, 120, and 126 scalar multiplets. The mass matrices are restricted to be Hermitian and the theory is constructed to have certain assumed quark masses, charged lepton masses, and Cabibbo-Kobayashi-Maskawa (CKM) matrix in accord with data. The remaining free parameters are found by fitting to light neutrino masses and Maki-Nakagawa-Sakata (MNS) matrices result as predictions.
Fermion masses from SO(10) Hermitian matrices
NASA Astrophysics Data System (ADS)
Moorhouse, R. G.
2008-03-01
Masses of fermions in the SO(10) 16-plet are constructed using only the 10, 120, and 126¯ scalar multiplets. The mass matrices are restricted to be Hermitian and the theory is constructed to have certain assumed quark masses, charged lepton masses, and Cabibbo-Kobayashi-Maskawa (CKM) matrix in accord with data. The remaining free parameters are found by fitting to light neutrino masses and Maki-Nakagawa-Sakata (MNS) matrices result as predictions.
Negative-Parity Baryon Masses Using O(a)-improved Fermion Action
M. Gockeler; R. Horsley; D. Pleiter; P.E.L. Rakow; G. Schierholz; C.M. Maynard; D.G. Richards
2001-06-01
We present a calculation of the mass of the lowest-lying negative-parity J=1/2{sup {minus}} state in quenched QCD. Results are obtained using a non-perturbatively {Omicron}(a)-improved clover fermion action, and a splitting found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes, and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.
NASA Astrophysics Data System (ADS)
Wu, Liang-Kai; Meng, Xiang-Fei
2014-11-01
The phase structure of QCD with imaginary chemical potential provides information on the phase diagram of QCD with real chemical potential. With imaginary chemical potential i μI=i π T , previous studies show that the Roberge-Weiss (RW) transition endpoints are triple points at both large and small quark masses, and second order transition points at intermediate quark masses. The triple and second order endpoints are separated by two tricritical ones. We present simulations with Nf=2 Wilson fermions to investigate the nature of RW transition endpoints. The simulations are carried out at 8 values of the hopping parameter κ ranging from 0.020 to 0.140 on different lattice volumes. The Binder cumulant, susceptibility, and reweighted distribution of the imaginary part of the Polyakov loop are employed to determine the nature of RW transition endpoints. The simulations show that the two tricritical points are within the ranges 0.070-0.080 and 0.120-0.140, respectively.
Finite-size effects in lattice QCD with dynamical Wilson fermions
Orth, Boris; Lippert, Thomas; Schilling, Klaus
2005-07-01
As computing resources are limited, choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from chiral perturbation theory (ChPT). We analyze data from hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a{approx_equal}0.08 and 0.13 fm. The quark masses considered correspond to approximately 85% and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08 fm). We find that an exponential ansatz fits the volume dependence of the pion masses well, but with a coefficient about an order of magnitude larger than the theoretical leading-order prediction. In the case of the nucleon we observe a remarkably good agreement between our lattice data and a recent formula from relativistic baryon ChPT.
NASA Astrophysics Data System (ADS)
Brambilla, M.; Di Renzo, F.; Hasegawa, M.
2014-07-01
This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme.
Origin of fermion masses without spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Ayyar, Venkitesh; Chandrasekharan, Shailesh
2016-04-01
Using large scale Monte Carlo calculations in a simple three dimensional lattice fermion model, we establish the existence of a second order quantum phase transition between a massless fermion phase and a massive one, both of which have the same symmetries. This shows that fermion masses can arise due to dynamics without the need for spontaneous symmetry breaking. Universality suggests that this alternate origin of the fermion mass should be of fundamental interest.
Dynamical fermion mass generation and exciton spectra in graphene
Zhang Chunxu; Liu Guozhu; Huang Mingqiu
2011-03-15
The Coulomb interaction between massless Dirac fermions may induce dynamical chiral symmetry breaking by forming excitonic pairs in clean graphene, leading to semimetal-insulator transition. If the Dirac fermions have zero bare mass, an exact continuous chiral symmetry is dynamically broken and thus there are massless Goldstone excitons. If the Dirac fermions have a small bare mass, an approximate continuous chiral symmetry is dynamically broken and the resultant Goldstone-type excitons become massive, which is analogous to what happens in QCD. In this paper, after solving the Dyson-Schwinger gap equation in the presence of a small bare fermion mass, we found a remarkable reduction of the critical Coulomb interaction strength for excitonic pair formation and a strong enhancement of dynamical fermion mass. We then calculate the masses of Goldstone-type excitons using the Shifman-Vainshtein-Zakharov sum-rule method and operator product expansion technique developed in QCD and find that the exciton masses are much larger than bare fermion mass but smaller than the width of dynamical fermion mass gap. We also study the spin susceptibilities and estimate the masses of non-Goldstone-type excitons using the same tools.
Chiral lattice fermions with correct vacuum polarization and chiral anomaly
Pryor, C. )
1991-04-15
An action for chiral lattice fermions is proposed, which avoids the Nielsen-Ninomiya theorem by virtue of its nonlocality and nonbilinearity. The action is constructed by eliminating the extra fermion modes with a gauge-violating Majorana-type Wilson mass, which is then rendered invariant by an integration over gauge transformations. The free propagator is calculated, and the one-loop vacuum polarization is shown to be identical to that for Wilson fermions, even at nonzero lattice spacing. Also the chiral anomaly is shown to be the same as for Wilson fermions in the continuum limit.
Fermion Mass Renormalization Using Time-dependent Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Kutnink, Timothy; Santrach, Amelia; Hocket, Sarah; Barcus, Scott; Petridis, Athanasios
2015-10-01
The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with refcecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass, as the self-interacting spinors are no longer mass-eigenfunctions. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Statistical regularization is proposed to remove the grid-size dependence.
Radiative fermion masses in local D-brane models
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Krippendorf, Sven; Maharana, Anshuman; Quevedo, Fernando
2011-05-01
In the context of D-brane model building, we present a realistic framework for generating fermion masses that are forbidden by global symmetries. We show that the string theoretical Large volume scenario circumvents the standard lore that fermion masses generated by loop effects are too small in generic gravity mediated scenarios. We argue that the fact that in toric singularity models, the up quark masses have always a zero eigenvalue, corresponding to the lightest generation, is due to the presence of approximate global symmetries that we explicitly identify in del Pezzo singularities. These symmetries are broken by global effects and therefore proportional to inverse powers of the volume. We estimate the generic size of radiative corrections to fermion masses in different phenomenological manifestations of the Large volume scenario. Concrete realizations in terms of flavor violating soft-terms are estimated and contrasted with current bounds on flavour changing neutral currents. Contributions from generic extra Higgs-like fields set bounds on their masses close to the GUT scale to produce realistic fermion masses.
Fermion Masses from Six Dimensions and Implications for Majorana Neutrinos
NASA Astrophysics Data System (ADS)
Frère, J.-M.; Libanov, M.; Mollet, S.; Troitsky, S.
2015-06-01
In these notes, we review the main results of our approach to fermion masses. The marge mass ratios between fermions, confronted with a unique breaking mechanism leading to vector bosons masses, led us to consider the possibility that they result from the overlap of fermion wave functions. Such overlaps vary indeed very strongly if the observed fermion families in 4 dimensions originate in a single family in 6 dimensions, through localized wave functions. This framework leads in a natural way to large mass ratios and small mixing angles between quarks. What came as a surprise is that if we impose that neutrinos behave as 2- component (“Majorana”) particles in 4D, a completely different situation is obtained for them. Instead of diagonal mass matrices, anti-diagonal ones emerge and lead to a generic prediction of combined inverted hierarchy, large mixing angles in the leptonicsector, and a suppression of neutrinoless-double beta decay placing it at the lower limit of the inverted hierarchy branch, a challenging situation for on-going and planned experiments. Our approach predicted the size of the θ13 mixing angle before its actual measurement. Possible signals at colliders are only briefly evoked.
Fermion masses and mixings from heterotic orbifold models
Park, Jae-hyeon
2005-12-02
We search for a possibility of getting realistic fermion mass ratios and mixing angles from renormalizable couplings on the Z6-I heterotic orbifold with one pair of Higgs doublets. In the quark sector, we find cases with reasonable results if we ignore the first family. In the lepton sector, we can fit the charged lepton mass ratios, the neutrino mass squared difference ratio, and the lepton mixing angles, considering all three families00.
Hadron Masses From Novel Fat-Link Fermion Actions
J. M. Zanotti; S. Bilson-Thompson; F. D. R. Bonnet; P. D. Coddington; D. B. Leinweber; A. G. Williams; J. B. Zhang; W. Melnitchouk; F. X. Lee
2001-11-01
The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators in the fermion action are constructed using smeared links. The simulations are performed on a 16{sup 3} x 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat-Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative 0(a) improvement, including a reduced exceptional configuration problem.
O(a{sup 2}) cutoff effects in lattice Wilson fermion simulations
Dimopoulos, P.; Frezzotti, R.; Rossi, G. C.; Michael, C.; Urbach, C.
2010-02-01
In this paper we propose to interpret the large discretization artifacts affecting the neutral pion mass in maximally twisted lattice QCD simulations as O(a{sup 2}) effects, whose magnitude is roughly proportional to the modulus square of the (continuum) matrix element of the pseudoscalar density operator between vacuum and one-pion state. The numerical size of this quantity is determined by the dynamical mechanism of spontaneous chiral symmetry breaking and turns out to be substantially larger than its natural magnitude set by the value of {Lambda}{sub QCD}.
A Lagrangian for mass dimension one fermionic dark matter
NASA Astrophysics Data System (ADS)
Lee, Cheng-Yang
2016-09-01
The mass dimension one fermionic field associated with Elko satisfies the Klein-Gordon but not the Dirac equation. However, its propagator is not a Green's function of the Klein-Gordon operator. We propose an infinitesimal deformation to the propagator such that it admits an operator in which the deformed propagator is a Green's function. The field is still of mass dimension one, but the resulting Lagrangian is modified in accordance with the operator.
Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass
NASA Astrophysics Data System (ADS)
Das, Ashok K.; Frenkel, J.; Schubert, C.
2013-03-01
We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop.
Fermion masses, flavour mixing and CP violation
Ross, G. G.
2008-11-23
The pattern of neutrino masses and mixings is characteristically different from those observed in the quark sector. I discuss how this can be elegantly explaned through a combination of an underlying family symmetry and the see-saw mechanism.
Fermion flavor mixing in models with dynamical mass generation
Benes, Petr
2010-03-15
We present a model-independent method of dealing with fermion flavor mixing in the case when instead of constant, momentum-independent mass matrices one has rather momentum-dependent self-energies. This situation is typical for strongly coupled models of dynamical fermion mass generation. We demonstrate our approach on the example of quark mixing. We show that quark self-energies with a generic momentum dependence lead to an effective Cabibbo-Kobayashi-Maskawa matrix, which turns out to be in general nonunitary, in accordance with previous claims of other authors, and to nontrivial flavor changing electromagnetic and neutral currents. We also discuss some conceptual consequences of the momentum-dependent self-energies and show that in such a case the interaction basis and the mass basis are not related by a unitary transformation. In fact, we argue that the latter is merely an effective concept, in a specified sense. While focusing mainly on the fermionic self-energies, we also study the effects of momentum-dependent radiative corrections to the gauge bosons and to the proper vertices. Our approach is based on an application of the Lehmann-Symanzik-Zimmermann reduction formula and for the special case of constant self-energies it gives the same results as the standard approach based on the diagonalization of mass matrices.
Texture of fermion mass matrices in partially unified theories
Dutta, B. |; Nandi, S. |
1996-12-31
We investigate the texture of fermion mass matrices in theories with partial unification (for example, SU(2){sub L} {times} SU(2){sub R} {times} SU(4){sub c}) at a scale of {approximately} 10{sup 12} GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with at most four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivation of these textures leads to new interesting relations among the masses and the mixing angles. 13 refs.
Lattice Calculation of Baryon Masses using Clover Fermion Action
D.G. Richards; M. Gockeler; P.E.L. Rakow; D. Pleiter; G. Schierholz; R. Horsley; C.M. Maynard
2002-03-01
We present a calculation of the lowest-lying baryon masses in the quenched approximation to QCD. The calculations are performed using a non-perturbatively improved clover fermion action, and a splitting found between the masses of the nucleon and its parity partner. An analysis of the mass of the first radial excitation of the nucleon finds a value considerably larger than that of the parity partner of the nucleon, and thus little evidence for the Roper resonance as a simple three-quark state.
PQChPT with Staggered Sea and Valence Ginsparg-Wilson Quarks: Vector Meson Masses
Hovhannes R. Grigoryan; Anthony W. Thomas
2005-09-16
We consider partially quenched, mixed chiral perturbation theory with staggered sea and Ginsparg-Wilson valence quarks in order to extract a chiral-continuum extrapolation expression for the vector meson mass up to order O(a{sup 2}), at one-loop level. Based on general principles, we accomplish the task without explicitly constructing a sophisticated, heavy vector meson chiral Lagrangian.
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
Fitting fermion masses and mixings in F-theory GUTs
NASA Astrophysics Data System (ADS)
Carta, Federico; Marchesano, Fernando; Zoccarato, Gianluca
2016-03-01
We analyse the structure of Yukawa couplings in local SU(5) F-theory models with E 7 enhancement. These models are the minimal setting in which the whole flavour structure for the MSSM charged fermions is encoded in a small region of the entire compactification space. In this setup the E 7 symmetry is broken down to SU(5) by means of a 7-brane T-brane background, and further to the MSSM gauge group by means of a hypercharge flux that also implements doublet-triplet splitting. At tree-level only one family of quarks and charged leptons is massive, while the other two obtain hierarchically smaller masses when stringy non-perturbative effects are taken into account. We find that there is a unique E 7 model with such hierarchical flavour structure. The relative simplicity of the model allows to perform the computation of Yukawa couplings for a region of its parameter space wider than previous attempts, obtaining realistic fermion masses and mixings for large parameter regions. Our results are also valid for local models with E 8 enhancement, pointing towards a universal structure to describe realistic fermion masses within this framework.
Neutron electric dipole moment using Nf=2 +1 +1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Koutsou, G.; Ottnad, K.; Petschlies, M.
2016-04-01
We evaluate the neutron electric dipole moment |d→ N| using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using Nf=2 +1 +1 twisted mass fermions at one value of the lattice spacing of a ≃0.082 fm and a light quark mass corresponding to mπ≃373 MeV . Our approach to extract the neutron electric dipole moment is based on the calculation of the C P -odd electromagnetic form factor F3(Q2) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q2. The limit Q2→0 is realized either by adopting a parametrization of the momentum dependence of F3(Q2) and performing a fit or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F3(Q2). The computation in the presence of a C P -violating term requires the evaluation of the topological charge Q . This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of |d→ N|=0.045 (6 )(1 )θ ¯ e .fm for the ensemble with mπ=373 MeV considered.
Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf
2015-01-01
Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content. PMID:25704483
NASA Astrophysics Data System (ADS)
Bulava, John; Della Morte, Michele; Heitger, Jochen; Wittemeier, Christian
2016-06-01
We nonperturbatively determine the renormalization factor of the axial vector current in lattice QCD with Nf=3 flavors of Wilson-clover fermions and the tree-level Symanzik-improved gauge action. The (by now standard) renormalization condition is derived from the massive axial Ward identity, and it is imposed among Schrödinger functional states with large overlap on the lowest lying hadronic state in the pseudoscalar channel, in order to reduce kinematically enhanced cutoff effects. We explore a range of couplings relevant for simulations at lattice spacings of ≈0.09 fm and below. An interpolation formula for ZA(g02) , smoothly connecting the nonperturbative values to the 1-loop expression, is provided together with our final results.
NASA Astrophysics Data System (ADS)
Franco, E.; Maiani, L.; Martinelli, G.; Morelli, A.
1988-10-01
The K-pi and K-pi-pi elements of left-right four fermion operators in quenched lattice QCD at beta=6 are computed. The soft-pion relations derived from the chiral structure of the operators are checked. A large enhancement of matrix elements is observed and interpreted as the effect of a scalar octet pole in the pi-K channel. This observation has implications for the related calculation of weak matrix elements.
Mass anomalous dimension in SU(2) with two adjoint fermions
Bursa, Francis; Del Debbio, Luigi; Keegan, Liam; Pica, Claudio; Pickup, Thomas
2010-01-01
We study SU(2) lattice gauge theory with two flavors of Dirac fermions in the adjoint representation. We measure the running of the coupling in the Schroedinger functional scheme and find it is consistent with existing results. We discuss how systematic errors affect the evidence for an infrared fixed point (IRFP). We present the first measurement of the running of the mass in the Schroedinger functional scheme. The anomalous dimension of the chiral condensate, which is relevant for phenomenological applications, can be easily extracted from the running of the mass, under the assumption that the theory has an IRFP. At the current level of accuracy, we can estimate 0.05<{gamma}<0.56 at the IRFP.
Fermion masses in the economical 3-3-1 model
Dong, P. V.; Huong, Tr. T.; Huong, D. T.; Long, H. N.
2006-09-01
We show that, in frameworks of the economical 3-3-1 model, all fermions get masses. At the tree level, one up-quark and two down-quarks are massless, but the one-loop corrections give all quarks the consistent masses. This conclusion is in contradiction to the previous analysis in which the third scalar triplet has been introduced. This result is based on the key properties of the model: First, there are three quite different scales of vacuum expectation values: {omega}{approx}O(1) TeV, v{approx_equal}246 GeV, and u{approx}O(1) GeV. Second, there exist two types of Yukawa couplings with different strengths: the lepton-number conserving couplings h's and the lepton-number violating ones s's satisfying the condition in which the second are much smaller than the first ones: s<
Structure Group and Fermion-Mass-Term in General Nonlocality
NASA Astrophysics Data System (ADS)
Han, Lei; Wang, Hai-Jun
2016-01-01
In our previous work (Wang J. Math. Phys. 49, 033513 (2008)) two problems remain to be resolved. One is that we lack a minimal group to replace GL(4,C), the other is that the Equation of Motion (EoM) for fermion has no mass term. After careful investigation we find these two problems are linked by conformal group, a subgroup of GL(4,C). The Weyl group, a subgroup of conformal group, can bring about the running of mass, charge etc. while making it responsible for the transformation of interaction vertex. However, once concerning the generation of the mass term in EoM, we have to resort to the whole conformal group, in which the generators K μ play a crucial role in making vacuum vary from space-like (or light-cone-like)to time-like. Physically the starting points are our previous conclusion, ěc E2-ěc B2≠ 0 for massive bosons, and the two-photon process yielding e + e - pair. Finally we get to the conclusion that the mass term of strong interaction is linearly relevant to (chromo-)magnetic flux as well as angular momentum.
Some constraints on dynamical fermion mass generation in simple gauge theories
NASA Astrophysics Data System (ADS)
Hellman, William S.; Srikanth, M. L.
1980-11-01
Consistency conditions concerning dynamical fermion mass generation in simple gauge theories are examined in lowest order using the procedure of Nambu and Joma-Lasinio. The emerging constraints place strong limitations on the number of fermion multiplets and gauge groups allowed.
tmLQCD: A program suite to simulate Wilson twisted mass lattice QCD
NASA Astrophysics Data System (ADS)
Jansen, Karl; Urbach, Carsten
2009-12-01
We discuss a program suite for simulating Quantum Chromodynamics on a 4-dimensional space-time lattice. The basic Hybrid Monte Carlo algorithm is introduced and a number of algorithmic improvements are explained. We then discuss the implementations of these concepts as well as our parallelisation strategy in the actual simulation code. Finally, we provide a user guide to compile and run the program. Program summaryProgram title: tmLQCD Catalogue identifier: AEEH_v1_0 Program summary URL::http://cpc.cs.qub.ac.uk/summaries/AEEH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence (GPL) No. of lines in distributed program, including test data, etc.: 122 768 No. of bytes in distributed program, including test data, etc.: 931 042 Distribution format: tar.gz Programming language: C and MPI Computer: any Operating system: any with a standard C compiler Has the code been vectorised or parallelised?: Yes. One or optionally any even number of processors may be used. Tested with up to 32 768 processors RAM: no typical values available Classification: 11.5 External routines: LAPACK [1] and LIME [2] library Nature of problem: Quantum Chromodynamics Solution method: Markov Chain Monte Carlo using the Hybrid Monte Carlo algorithm with mass preconditioning and multiple time scales [3]. Iterative solver for large systems of linear equations. Restrictions: Restricted to an even number of (not necessarily mass degenerate) quark flavours in the Wilson or Wilson twisted mass formulation of lattice QCD. Running time: Depending on the problem size, the architecture and the input parameters from a few minutes to weeks. References:http://www.netlib.org/lapack/. USQCD, http://usqcd.jlab.org/usqcd-docs/c-lime/. C. Urbach, K. Jansen, A. Shindler, U. Wenger, Comput. Phys. Commun. 174 (2006) 87, hep-lat/0506011.
NASA Astrophysics Data System (ADS)
Farchioni, F.; Jansen, K.; Montvay, I.; Scholz, E.; Scorzato, L.; Shindler, A.; Ukita, N.; Urbach, C.; Wetzorke, I.
2005-07-01
The effect of changing the lattice action for the gluon field on the recently observed [F. Farchioni, R. Frezzotti, K. Jansen, I. Montvay, G.C. Rossi, E. Scholz, A. Shindler, N. Ukita, C. Urbach, I. Wetzorke, Eur. Phys. J. C 39, 421 (2005); hep-lat/0406039] first order phase transition near zero quark mass is investigated by replacing the Wilson plaquette action by the DBW2 action. The lattice action for quarks is unchanged: it is in both cases the original Wilson action. It turns out that Wilson fermions with the DBW2 gauge action have a phase structure where the minimal pion mass and the jump of the average plaquette are decreased, when compared to Wilson fermions with Wilson plaquette action at similar values of the lattice spacing. Taking the DBW2 gauge action is advantageous also from the point of view of the computational costs of numerical simulations.
Ambiguities and subtleties in fermion mass terms in practical quantum field theory
Cheng, Yifan Kong, Otto C.W.
2014-09-15
This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature—specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models. - Highlights: • Structure of fermion mass terms in practical quantum field theory is reviewed. • Important subtleties and ambiguities on the subject are clarified. • A mass eigenstate Dirac fermion and two degenerated Majorana ones are equivalent. • The conventional meaning of such terminology for neutrinos is critically discussed.
Nonperturbative results for the mass dependence of the QED fermion determinant
Fry, M. P.
2010-05-15
The fermion determinant in four-dimensional quantum electrodynamics in the presence of O(2)xO(3) symmetric background gauge fields with a nonvanishing global chiral anomaly is considered. It is shown that the leading mass singularity of the determinant's nonperturbative part is fixed by the anomaly. It is also shown that for a large class of such fields there is at least one value of the fermion mass at which the determinant's nonperturbative part reduces to its noninteracting value.
Fermion mass hierarchy and nonhierarchical mass ratios in SU(5)xU(1){sub F}
Duque, Luis F.; Gutierrez, Diego A.; Nardi, Enrico; Norena, Jorge
2008-08-01
We consider a SU(5)xU(1){sub F} grand unified theory (GUT)-flavor model in which the number of effects that determine the charged fermions Yukawa matrices is much larger than the number of observables, resulting in a hierarchical fermion spectrum with no particular regularities. The GUT-flavor symmetry is broken by flavons in the adjoint of SU(5), realizing a variant of the Froggatt-Nielsen mechanism that gives rise to a large number of effective operators. By assuming a common mass for the heavy fields and universality of the fundamental Yukawa couplings, we reduce the number of free parameters to one. The observed fermion mass spectrum is reproduced thanks to selection rules that discriminate among various contributions. Bottom-tau Yukawa unification is preserved at leading order, but there is no unification for the first two families. Interestingly, U(1){sub F} charges alone do not determine the hierarchy, and can only give upper bounds on the parametric suppression of the Yukawa operators.
Ambiguities and subtleties in fermion mass terms in practical quantum field theory
NASA Astrophysics Data System (ADS)
Cheng, Yifan; Kong, Otto C. W.
2014-09-01
This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature-specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models.
Could fermion masses play a role in the stabilization of the dilaton in cosmology?
Cabo, Alejandro; Brandenberger, Robert E-mail: rhb@hep.physics.mcgill.ca
2009-02-15
We study the possibility that the Dilaton is stabilized by the contribution of fermion masses to its effective potential. We consider the Dilaton gravity action in four dimensions to which we add a mass term for a Dirac fermion. Such an action describes the interaction of the Dilaton with the fermions in the Yang-Mills sector of the coupled supergravity/super-Yang-Mills action which emerges as the low energy effective action of superstring theory after the extra spatial dimensions have been fixed. The Dilaton couples to the Fermion mass term via the usual exponential factor of this field which multiplies the non-kinetic terms of the matter Lagrangian, if we work in the Einstein frame. In the kinetic part of the Fermion action in the Einstein frame the Dilaton does not enter. Such masses can be generated in several ways: they can arise as a consequence of flux about internal spatial dimensions, they may arise as thermal fermion masses in a quasi-static phase in the early universe, and they will arise after the breaking of supersymmetry at late times. The vacuum contribution to the potential for the Dilaton is evaluated up to two loops. The result shows a minimum which could stabilize the Dilaton for reasonable ranges of parameter values.
Fermionic and bosonic mass deformations of mathcal{N} = 4 SYM and their bulk supergravity dual
NASA Astrophysics Data System (ADS)
Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela
2016-05-01
We examine the AdS-CFT dual of arbitrary (non)supersymmetric fermionic mass deformations of mathcal{N} = 4 SYM, and investigate how the backreaction of the RR and NS-NS two-form potentials dual to the fermion masses contribute to Coulomb-branch potential of D3 branes, which we interpret as the bulk boson mass matrix. Using representation theory and supergravity arguments we show that the fermion masses completely determine the trace of this matrix, and that on the other hand its traceless components have to be turned on as non-normalizable modes. Our result resolves the tension between the belief that the AdS bulk dual of the trace of the boson mass matrix (which is not a chiral operator) is a stringy excitation with dimension of order ( g s N )1/4 and the existence of non-stringy supergravity flows describing theories where this trace is nonzero, by showing that the stringy mode does not parameterize the sum of the squares of the boson masses but rather its departure from the trace of the square of the fermion mass matrix. Hence, asymptotically-AdS flows can only describe holographically theories where the sums of the squares of the bosonic and fermionic masses are equal, which is consistent with the weakly-coupled result that only such theories can have a conformal UV fixed point.
Model for fermion masses and lepton mixing in SO(10)xA{sub 4}
Morisi, Stefano; Picariello, Marco; Torrente-Lujan, Emilio
2007-04-01
The discrete flavor symmetry A{sub 4} explains very well neutrino data at low energy, but it seems difficult to extend it to grand unified models since, in general, left-handed and right-handed fields belong to different A{sub 4} representations. Recently a model has been proposed where all the fermions equally transform under A{sub 4}. We study here a concrete SO(10) realization of such a model providing small neutrino masses through the see-saw mechanism. We fit the charged fermion masses run up to the unification scale. Some fermion masses properties come from the SO(10) symmetry while lepton mixing angles are a consequence of the A{sub 4} properties. Moreover, our model predicts the absolute value of the neutrino masses; these are in the range m{sub {nu}}{approx_equal}0.005-0.052 eV.
Vectorlike W± -boson coupling at TeV and third family fermion masses
NASA Astrophysics Data System (ADS)
Xue, She-Sheng
2016-04-01
In the third fermion family and gauge symmetry of the Standard Model, we study the quark-quark, lepton-lepton and quark-lepton four-fermion operators in an effective theory at high energies. These operators have nontrivial contributions to the Schwinger-Dyson equations for fermion self-energy functions and the W±-boson coupling vertex. As a result, the top-quark mass is generated via the spontaneous symmetry breaking of ⟨t ¯t ⟩-condensate and the W±-boson coupling becomes approximately vectorlike at TeV scale. The bottom-quark, tau-lepton and tau-neutrino masses are generated via the explicit symmetry breaking of W±-contributions and quark-lepton interactions. Their masses and Yukawa couplings are functions of the top-quark mass and Yukawa coupling. We qualitatively show the hierarchy of fermion masses and Yukawa couplings of the third fermion family. We also discuss the possible collider signatures due to the vectorlike (parity-restoration) feature of W±-boson coupling at high energies.
Origin of families of fermions and their mass matrices
Bracic, A. Borstnik; Borstnik, N. S. Mankoc
2006-10-01
,3)) weak chargeless quarks and leptons and the left handed weak charged quarks and leptons (with the right handed neutrino included). A part of the starting Lagrange density of a Weyl spinor in d=1+13 transforms right handed quarks and leptons into left handed quarks and leptons manifesting as the Yukawa couplings of the standard model. A kind of the Clifford algebra objects generates families of quarks and leptons and contributes to diagonal and off-diagonal Yukawa couplings. The approach predicts an even number of families, treating leptons and quarks equivalently (we do not study a possible appearance of Majorana fermions yet). In this paper we investigate within this approach the appearance of the Yukawa couplings within one family of quarks and leptons as well as among the families (without assuming any Higgs fields like in the standard model). We present the mass matrices for four families and investigate whether our way of generating families might explain the origin of families of quarks and leptons as well as their observed properties--the masses and the mixing matrices. Numerical results are presented in Ref. [M. Breskvar, D. Lukman, and N. S. Mankoc Borstnik, hep-ph/0606159.].
BCS to BEC evolution for mixtures of fermions with unequal masses
NASA Astrophysics Data System (ADS)
de Melo, Carlos A. R. Sa
2009-03-01
I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx
Aspect of Fermion Mass Hierarchy within Flavor Democracy for Yukawa Couplings
NASA Astrophysics Data System (ADS)
Higuchi, Katsuichi; Yamamoto, Katsuji
We discuss the fermion mass hierarchy by including vector-like fermions which are accommodated in E6 GUTs within flavor democracy for Yukawa couplings. In this framework, all Yukawa couplings for the standard Higgs doublet have the same strength, and all Yukawa couplings for the singlet Higgs have the same strength (New ansatz). In addition, singlet Higgs and right-handed neutrinos exist. Under this condition, the mass hierarchy mt ≫ mb ˜ mτ as well as mt ≫ mc, mu can be naturally explained.
Origin of families of fermions and their mass matrices
NASA Astrophysics Data System (ADS)
Bračič, A. Borštnik; Borštnik, N. S. Mankoč
2006-10-01
one family appear in one Weyl representation of a chosen handedness of the Lorentz group, if analyzed with respect to the standard model gauge groups, which are subgroups of the group SO(1,13): the right handed (with respect to SO(1,3)) weak chargeless quarks and leptons and the left handed weak charged quarks and leptons (with the right handed neutrino included). A part of the starting Lagrange density of a Weyl spinor in d=1+13 transforms right handed quarks and leptons into left handed quarks and leptons manifesting as the Yukawa couplings of the standard model. A kind of the Clifford algebra objects generates families of quarks and leptons and contributes to diagonal and off-diagonal Yukawa couplings. The approach predicts an even number of families, treating leptons and quarks equivalently (we do not study a possible appearance of Majorana fermions yet). In this paper we investigate within this approach the appearance of the Yukawa couplings within one family of quarks and leptons as well as among the families (without assuming any Higgs fields like in the standard model). We present the mass matrices for four families and investigate whether our way of generating families might explain the origin of families of quarks and leptons as well as their observed properties—the masses and the mixing matrices. Numerical results are presented in Ref. [M. Breskvar, D. Lukman, and N. S. Mankoč Borštnik, hep-ph/0606159.].
... Wilson disease. Growing knowledge of the copper transporting gene ATP7B, which in its mutated form causes WD, should lead to the design of better therapies for this disorder. NIH Patient Recruitment for Wilson ...
Wilson disease is a rare inherited disorder that prevents your body from getting rid of extra copper. You need ... copper into bile, a digestive fluid. With Wilson disease, the copper builds up in your liver, and ...
... Share External Link Disclaimer Digestive Diseases Wilson Disease Alternate Versions Wilson Disease (444 KB) You can also ... things psychosis—when a person loses contact with reality Other Signs and Symptoms Other signs and symptoms ...
Wilson disease is a rare inherited disorder that prevents your body from getting rid of extra copper. You ... extra copper into bile, a digestive fluid. With Wilson disease, the copper builds up in your liver, and ...
Mixed Meson Mass for Domain-Wall Valence and Staggered Sea Fermions
Konstantinos Orginos; Andre Walker-Loud
2007-05-01
Mixed action lattice calculations allow for an additive lattice spacing dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is the most important lattice artifact to determine for mixed action calculations: because it modifies the pion mass, it plays a central role in the low energy dynamics of all hadronic correlation functions. We determine the leading order and next to leading order additive mass renormalization of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and staggered sea fermions. We find that on the asqtad improved coarse MILC lattices, the leading order additive mass renormalization for the mixed mesons is Δ(am)^2 LO = 0.0409(11) which corresponds to a^2 Δ_Mix = (319 MeV)^2± (53 MeV)^2 for a = 0.125 fm. We also find significant next to leading order contributions which reduce the mass renormalization by a significant amount, such that for 0 < am_π ≤ 0.22 the mixed meson mass renormalization is well approximated by Δ(am)^2 = 0.0340 (23) or a^2δ_Mix = (290 MeV)^2 ± (76 MeV)^2. The full next-to-leading order analysis is presented in the text.
NASA Astrophysics Data System (ADS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
Fermionic q-deformation and its connection to thermal effective mass of a quasiparticle
NASA Astrophysics Data System (ADS)
Algin, Abdullah; Senay, Mustafa
2016-04-01
A fermionic deformation scheme is applied to a study on the low-temperature quantum statistical behavior of a quasifermion gas model with intermediate statistics. Such a model does not satisfy the Pauli exclusion principle, and its quantum statistical properties are based on a formalism of the fermionic q-calculus. For low temperatures, several thermostatistical functions of the model such as the chemical potential, the heat capacity, and the entropy are derived by means of a function of the model deformation parameter q. The effect of fermionic q-deformation on the low-temperature thermostatistical properties of the model are discussed in detail. Our results show that the present deformed (quasi)fermion model provides remarkable connections of the model deformation parameter q, first, with the thermal effective mass of a quasiparticle, and second, with the temperature parameter. Hence, it turns out that the model deformation parameter q has also a role controlling the strength of effective quasiparticle interactions in the model. Finally, we conclude that this work can be useful for understanding the details of interaction mechanism of fermions such as quasiparticle states emergent in the fractional quantum Hall effect.
Connecting Fermion Masses and Mixings to BSM Physics - Quarks
NASA Astrophysics Data System (ADS)
Goldman, Terrence; Stephenson, Gerard J., Jr.
2015-10-01
The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com
Permutation symmetry and the origin of fermion mass hierarchy
Babu, K.S.; Mohapatra, R.N. )
1990-06-04
A realization of the flavor-democracy'' approach to quark and lepton masses is provided in the context of the standard model with a horizontal {ital S}{sub 3} permutation symmetry. In this model, {ital t} and {ital b} quarks pick up mass at the tree level, {ital c}, {ital s}-quark and {tau}-lepton masses arise at the one-loop level, {ital u}, {ital d}, and {mu} masses at the two-loop level, and the electron mass at the three-loop level, thus reproducing the observed hierarchial structure without fine tuning of the Yukawa couplings. The pattern of quark mixing angles also emerges naturally, with {ital V}{sub {ital u}{ital s}},{ital V}{sub {ital c}{ital b}}{approx}{ital O}({epsilon}), {ital V}{sub {ital u}{ital b}}{approx}{ital O}({epsilon}{sup 2}), where {epsilon} is a loop expansion parameter.
Fermion masses and mixing in Δ (27 ) flavor model
NASA Astrophysics Data System (ADS)
Abbas, Mohammed; Khalil, Shaaban
2015-03-01
An extension of the Standard Model (SM) based on the non-Abelian discrete group Δ (27 ) is considered. The Δ (27 ) flavor symmetry is spontaneously broken only by gauge singlet scalar fields, therefore our model is free from any flavor changing neutral current (FCNC). We show that the model accounts simultaneously for the observed quark and lepton masses and their mixing. In the quark sector, we find that the up-quark mass matrix is flavor diagonal and the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix arises from down quarks. In the lepton sector, we show that the charged lepton mass matrix is almost diagonal. We also adopt type-I seesaw mechanism to generate neutrino masses. A deviated mixing matrix from tri-bimaximal Maki-Nakagawa-Sakata (MNS), with a correlation between sin θ13 and sin2θ23 are illustrated.
The First Two Fermion Generations in Twisted Mass Lattice QCD
Jansen, Karl
2011-05-24
An account of the status of simulations from the European Twisted Mass Collaboration is given. We show selected results from computations with two mass degenerate quarks, in particular values for the low energy constants of the chiral Lagrangian, the I = 2 scattering length and the {rho}-meson resonance parameters. We also provide first results from simulations where the strange and the charm quarks are included as dynamical degree of freedom in the simulation.
Explorations of two empirical formulas for fermion masses
NASA Astrophysics Data System (ADS)
Gao, Guan-Hua; Li, Nan
2016-03-01
Two empirical formulas for the lepton and quark masses (i.e. Kartavtsev's extended Koide formulas), K_l=(sum _l m_l)/(sum _lsqrt{m_l})^2=2/3 and K_q=(sum _q m_q)/(sum _qsqrt{m_q})^2=2/3, are explored in this paper. For the lepton sector, we show that K_l=2/3, only if the uncertainty of the tauon mass is relaxed to about 2σ confidence level, and the neutrino masses can consequently be extracted with the current experimental data. For the quark sector, the extended Koide formula should only be applied to the running quark masses, and K_q is found to be rather insensitive to the renormalization effects in a large range of energy scales from GeV to 10^{12} GeV. We find that K_q is always slightly larger than 2/3, but the discrepancy is merely about 5 %.
Switching of Dirac-Fermion Mass at the Interface of Ultrathin Ferromagnet and Rashba Metal.
Honma, K; Sato, T; Souma, S; Sugawara, K; Tanaka, Y; Takahashi, T
2015-12-31
We have performed spin- and angle-resolved photoemission spectroscopy on tungsten (110) interfaced with an ultrathin iron (Fe) layer to study an influence of ferromagnetism on the Dirac-cone-like surface-interface states. We found an unexpectedly large energy gap of 340 meV at the Dirac point, and have succeeded in switching the Dirac-fermion mass by controlling the direction of Fe spins (in plane or out of plane) through tuning the thickness of the Fe overlayer or adsorbing oxygen on it. Such a manipulation of Dirac-fermion mass via the magnetic proximity effect opens a promising platform for realizing new spintronic devices utilizing a combination of exchange and Rashba-spin-orbit interactions. PMID:26765009
Neutrino masses via the Zee mechanism in the 5D split fermion model
Chang, We-Fu; Chen, I-Ting; Liou, Siao-Cing
2011-01-15
We study the original version of the Zee model, where both of the SU(2){sub L} Higgs doublets are allowed to couple to the leptons, in the framework of the split fermion model in M{sub 4}xS{sub 1}/Z{sub 2} space-time. The neutrino masses are generated through 1-loop diagrams without introducing the right-handed neutrinos. By assuming an order one anarchical complex 5D Yukawa couplings, all the effective 4D Yukawa couplings are determined by the wave function overlap between the split fermions and the bulk scalars in the fifth dimension. The predictability of the Yukawa couplings is in sharp contrast to the original Zee model in 4D where the Yukawa couplings are unknown free parameters. This setup exhibits a geometrical alternative to the lepton flavor symmetry. By giving four explicit sets of the split fermion locations, we demonstrate that it is possible to simultaneously fit the lepton masses and neutrino oscillation data by just a handful free parameters without much fine tuning. Moreover, we are able to make definite predictions for the mixing angle {theta}{sub 13}, the absolute neutrino masses, and the lepton flavor violation processes for each configuration.
Gauge U(1) dark symmetry and radiative light fermion masses
NASA Astrophysics Data System (ADS)
Kownacki, Corey; Ma, Ernest
2016-09-01
A gauge U (1) family symmetry is proposed, spanning the quarks and leptons as well as particles of the dark sector. The breaking of U (1) to Z2 divides the two sectors and generates one-loop radiative masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the phenomenological implications of this new connection between family symmetry and dark matter. In particular, a scalar or pseudoscalar particle associated with this U (1) breaking may be identified with the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC).
Baryon Resonances from a Novel Fat-Link Fermion Action
W. Melnitchouk; S. Bilson-Thompson; F. D. R. Bonnet; P. D. Coddington; F. X. Lee; D. B. Leinweber; A. G. Williams; J. M. Zanotti; J. B. Zhang
2001-07-01
We present first results for masses of positive and negative parity excited baryons in lattice QCD using an O(a{sup 2}) improved gluon action and a Fat Link Irrelevant Clover (FLIC) fermion action in which only the irrelevant operators are constructed with fat links. The results are in agreement with earlier calculations of N* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner, even for the Wilson fermion action. The results also indicate a splitting between the lowest J{sup P}=1/2{sup -} states for the standard nucleon interpolating fields.
Axial charges of hyperons and charmed baryons using Nf=2 +1 +1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Hadjiyiannakou, K.; Kallidonis, C.
2016-08-01
The axial couplings of the low lying baryons are evaluated using a total of five ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using the Iwasaki gauge action and two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values at two values of the coupling constant. The lattice spacings, determined using the nucleon mass, are a =0.082 fm and a =0.065 fm , and the simulations cover a pion mass in the range of about 210 MeV to 430 MeV. We study the dependence of the axial couplings on the pion mass in the range of about 210 MeV to 430 MeV as well as the SU(3) breaking effects as we decrease the light quark mass toward its physical value.
Fermion mass hierarchies and flavour mixing from a minimal discrete symmetry
NASA Astrophysics Data System (ADS)
Feruglio, Ferruccio; Lin, Yin
2008-09-01
We construct a simple model of fermion masses based on a spontaneously broken S×Z flavour group. At the leading order, in the neutrino sector S is broken down to a ν-ν parity subgroup that enforces a maximal atmospheric mixing angle and a vanishing θ. In the charged lepton sector the ν-ν parity is maximally broken and the resulting mass matrix is nearly diagonal. The charged lepton mass hierarchy is automatically reproduced by the S symmetry breaking parameter alone. A careful analysis shows that, after the inclusion of all relevant subleading effects, the model predicts θ=π/4+O(λc2) and θ=O(λc2), λ denoting the Cabibbo angle. A simple extension to the quark sector is also illustrated, where the mass spectrum and the mixing angles are naturally reproduced, with the exception of the mixing angle between the first two generations, that requires a small accidental enhancement.
Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices
Galletly, D.; Horsley, R.; Guertler, M.; Perlt, H.; Schiller, A.; Rakow, P. E. L.; Schierholz, G.; Streuer, T.
2007-04-01
We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3}48 and for pion masses down to {approx_equal}250 MeV. Among the quantities we study are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a{approx_equal}0.1 fm and {approx_equal}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well.
... too much copper is poisonous. Normally, the liver filters extra copper and releases it into bile. Bile ... tract. In Wilson disease, the liver does not filter copper correctly and copper builds up in the ...
The entropy-corrected holographic dark energy in Brans-Dicke cosmology with varying mass fermions
NASA Astrophysics Data System (ADS)
Farajollahi, H.; Tayebi, F.
2013-07-01
We aim in this paper to study Brans-Dicke cosmology in the presence of varying mass fermions and a self-interaction potential. Furthermore, we also probe the entropy corrected holographic dark energy (ECHDE) in the model in two non-interacting and interacting scenarios. The model parameters are constrained by using the recent SNe Ia observational data and tested against observational data of Hubble parameter. For a comparison, we also constrained and tested the cosmological parameters in ΛCDM model with the same observational data. We show that in non of the scenarios the model prediction is better than ΛCDM model.
Standard Model fermion masses and mixing angles generated in 3HDM
NASA Astrophysics Data System (ADS)
Ibarra, A.; Solaguren-Beascoa, A.
2016-05-01
We present a framework to generate the mass hierarchies and mixing angles of the fermionic sector of the Standard Model with two extra Higgs doublets and one right-handed neutrino. The masses of the first and second generation are generated by small quantum effects, explaining the hierarchy with the third generation. The model also generates a natural hierarchy between the first and second generation after the assumption that the Yukawa couplings are of rank 1. All the quark and lepton mixing matrices can also be generated by quantum effects, reproducing the hierarchies of the experimental values. The parameters generated radiatively depend logarithmically on the heavy Higgs masses. Therefore this framework can be reconciled with the stringent limits on flavour violation by postulating a sufficiently large new physics scale.
Is the Higgs mechanism of fermion mass generation a fact? A Yukawa-less first-two-generation model
NASA Astrophysics Data System (ADS)
Ghosh, Diptimoy; Gupta, Rick Sandeepan; Perez, Gilad
2016-04-01
It is now established that the major source of electroweak symmetry breaking (EWSB) is due to the observed Higgs particle. However, whether the Higgs mechanism is responsible for the generation of all the fermion masses, in particular, the fermions of the first two generations, is an open question. In this letter we present a construction where the light fermion masses are generated through a secondary, subdominant and sequestered source of EWSB. This fits well with the approximate U(2) global symmetry of the observed structure of the flavor sector. We first realise the above idea using a calculable two Higgs doublet model. We then show that the first two generation masses could come from technicolor dynamics, while the third generation fermions, as well as the electroweak gauge bosons get their masses dominantly from the Higgs mechanism. We also discuss how the small CKM mixing between the first two generations and the third generation, and soft mixing between the sequestered EWSB components arise in this setup. A typical prediction of this scenario is a significant reduction of the couplings of the observed Higgs boson to the first two generation of fermions.
STOUT SMEARING FOR TWISTED FERMIONS.
SCHOLZ,W.; JANSEN, K.; McNEILE, C.; MONTVAY, I.; RICHARDS, C.; URBACH, C.; WENGER, U.
2007-07-30
The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12{sup 3} x 24, 16{sup 3} x 32 and 24{sup 3} x 48 lattices at lattice spacings a {approx_equal} 0.1-0.125 fm. The phase structure of Wilson fermions with twisted mass ({mu}) has been investigated in [1,2]. As it is explained there, the observed first order phase transition limits the minimal pion mass which can be reached in simulations at a given lattice spacing: m{sub k}{sup min} {approx_equal} {theta}(a). The phase structure is schematically depicted in the left panel of Fig. I . The phase transition can be observed in simulations with twisted mass fermions, for instance, as a ''jump'' or even metastabilities in the average plaquette value as a function of the hopping parameter ({kappa}). One possibility to weaken the phase transition and therefore allow for lighter pion masses at a given lattice spacing is to use an improved gauge action like the DBW2, Iwasaki, or tree-level Symanzik (tlSym) improved gauge action instead of the simple Wilson gauge action. This has been successfully demonstrated in [3,4,5]. Here we report on our attempts to use a smeared gauge field in the fermion lattice Dirac operator to further reduce the strength of the phase transition. This is relevant in simulations with N{sub f} = 2 + 1 + 1 (u,d,s,c) quark flavors [6] where the first order phase transition becomes stronger compared to N{sub f} = 2 simulations. The main impact of the above mentioned improved gauge actions on the gauge fields occurring in simulations is to suppress short range fluctuations (''dislocations'') and the associated ''exceptionally small'' eigenvalues of the fermion matrix. The same effect is expected from smearing the gauge field links in the fermion action. The cumulated effect of the improved gauge action and smeared links should allow for a smaller pion mass at a given lattice spacing and volume. Our
Pati, Jogesh C.
2002-05-10
It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea--that is grand unification. These include (i) the observed family-structure, (ii) quantization of electric charge, (iii) the meeting of the three gauge couplings, (iv) neutrino oscillations [in particular the value {Delta}m{sup 2}({nu}{sub {mu}}-{nu}{sub {tau}}), suggested by SuperK], (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V{sub cb} and the largeness of {theta}{sub {nu}{sub {mu}}{nu}{sub {tau}}}{sup osc}, and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on either SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented within a predictive SO(10)/G(224)-framework that successfully describes the masses and mixings of all fermions, including the neutrinos--with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short- and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3-2) x 10{sup 34} years, with {bar {nu}}K{sup +} being the dominant decay mode, and quite possibly {mu}{sup +}K{sup 0} and e{sup +}{pi}{sup 0} being prominent. This in turn strongly suggests that an improvement in the
Fermion actions extracted from lattice super Yang-Mills theories
NASA Astrophysics Data System (ADS)
Misumi, Tatsuhiro
2013-12-01
We revisit 2D = (2, 2) super Yang-Mills lattice formulation (Sugino model) to investigate its fermion action with two (Majorana) fermion flavors and exact chiral-U(1) R symmetry. We show that the reconcilement of chiral symmetry and absence of further species-doubling originates in the 4D clifford algebra structure of the action, where 2D two flavors are spuriously treated as a single 4D four-spinor with four 4D gamma matrices introduced into kinetic and Wilson terms. This fermion construction based on the higher-dimensional clifford algebra is extended to four dimensions in two manners: (1) pseudo-8D sixteen-spinor treatment of 4D four flavors with eight 8D gamma matrices, (2) pseudo-6D eight-spinor treatment of 4D two flavors with five out of six 6D gamma matrices. We obtain 4D four-species and two-species lattice fermions with unbroken subgroup of chiral symmetry and other essential properties. We discuss their relations to staggered and Wilson twisted-mass fermions. We also discuss their potential feedback to 4D super Yang-Mills lattice formulations.
Nucleon scalar and tensor charges from lattice QCD with light Wilson quarks
NASA Astrophysics Data System (ADS)
Green, J. R.; Negele, J. W.; Pochinsky, A. V.; Syritsyn, S. N.; Engelhardt, M.; Krieg, S.
2012-12-01
We present 2+1 flavor lattice QCD calculations of the nucleon scalar and tensor charges. Using the BMW clover-improved Wilson action with pion masses between 149 and 356 MeV and three source-sink separations between 0.9 and 1.4 fm, we achieve good control over excited-state contamination and extrapolation to the physical pion mass. As a consistency check, we also present results from calculations using unitary domain wall fermions with pion masses between 297 and 403 MeV, and using domain wall valence quarks and staggered sea quarks with pion masses between 293 and 597 MeV.
Overlap fermions on a 20{sup 4} lattice
K.-F. Liu; Shao-Jing Dong; Frank X. Lee; Jianbo Zhang
1994-03-01
We report results on hadron masses, fitting of the quenched chiral log, and quark masses from Neuberger's overlap fermion on a quenched 20{sup 4} lattice with lattice spacing a = 0.15 fm. We used the improved gauge action which is shown to lower the density of small eigenvalues for H{sup 2} as compared to the Wilson gauge action. This makes the calculation feasible on 64 nodes of CRAY-T3E. Also presented is the pion mass on a small volume (6{sup 3} x 12 with a Wilson gauge action at beta = 5.7). We find that for configurations that the topological charge Q {ne} 0, the pion mass tends to a constant and for configurations with trivial topology, it approaches zero possibly linearly with the quark mass.
SO(10) SUSY GUT for fermion masses: Lepton flavor and CP violation
Dermisek, R.; Harada, M.; Raby, S.
2006-08-01
We discuss the results of a global {chi}{sup 2} analysis of a simple SO(10) supersymmetric grand unified theory (SUSY GUT) with D{sub 3} family symmetry and low energy R parity. The model describes fermion mass matrices with 14 parameters and gives excellent fits to 20 observable masses and mixing angles in both quark and lepton sectors, giving six predictions. Bi-large neutrino mixing is obtained with hierarchical quark and lepton Yukawa matrices, thus avoiding the possibility of large lepton flavor violation. The model naturally predicts small 1-3 neutrino mixing, with sin{theta}{sub 13}{approx_equal}0.05-0.06. In this paper we evaluate the predictions for the lepton flavor violating processes, {mu}{yields}e{gamma}, {tau}{yields}{mu}{gamma} and {tau}{yields}e{gamma} and also the electric dipole moment of the electron (d{sub e}), the muon, and the tau, assuming universal squark and slepton masses (m{sub 16}) and a universal soft SUSY breaking A parameter (A{sub 0}) at the GUT scale. We find Br({mu}{yields}e{gamma}) is naturally below present bounds, but may be observable by MEG. Similarly, d{sub e} is below present bounds, but it is within the range of future experiments. We also give predictions for the light Higgs mass (using FeynHiggs). We find an upper bound given by m{sub h}{<=}127 GeV, with an estimated {+-}3 GeV theoretical uncertainty. Finally we present predictions for SUSY particle masses in the favored region of parameter space.
Anarchy and hierarchy: An approach to study models of fermion masses and mixings
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Murayama, Hitoshi
2001-03-01
We advocate a new approach to study models of fermion masses and mixings, namely, the anarchy proposed by Hall, Murayama, and Weiner. In this approach, we scan the O(1) coefficients randomly. We argue that this is the correct approach when the fundamental theory is sufficiently complicated. Assuming that there is no physical distinction among three generations of neutrinos, the probability distributions in Maki-Nakagawa-Sakata mixing angles can be predicted independent of the choice of the measure. This is because the mixing angles are distributed according to the Haar measure of the Lie groups whose elements diagonalize the mass matrices. The near-maximal mixings, as observed in the atmospheric neutrino data and as required in the large mixing angle solution to the solar neutrino problem, are highly probable. A small hierarchy between Δm2 for the atmospheric and the solar neutrinos is obtained very easily; the complex seesaw case gives a hierarchy of a factor of 20 as the most probable one, even though this conclusion is more measure dependent. Ue3 has to be just below the current limit from the CHOOZ experiment. The CP-violating parameter sin δ is preferred to be maximal. We present a simple SU(5)-like extension of anarchy to the charged lepton and quark sectors that works well phenomenologically.
NASA Astrophysics Data System (ADS)
Stone, Michael; Lopes, Pedro L. e. S.
2016-05-01
Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.
Anarchy and hierarchy: An approach to study models of fermion masses and mixings
Haba, Naoyuki; Murayama, Hitoshi
2001-03-01
We advocate a new approach to study models of fermion masses and mixings, namely, the anarchy proposed by Hall, Murayama, and Weiner. In this approach, we scan the O(1) coefficients randomly. We argue that this is the correct approach when the fundamental theory is sufficiently complicated. Assuming that there is no physical distinction among three generations of neutrinos, the probability distributions in Maki-Nakagawa-Sakata mixing angles can be predicted independent of the choice of the measure. This is because the mixing angles are distributed according to the Haar measure of the Lie groups whose elements diagonalize the mass matrices. The near-maximal mixings, as observed in the atmospheric neutrino data and as required in the large mixing angle solution to the solar neutrino problem, are highly probable. A small hierarchy between {Delta}m{sup 2} for the atmospheric and the solar neutrinos is obtained very easily; the complex seesaw case gives a hierarchy of a factor of 20 as the most probable one, even though this conclusion is more measure dependent. U{sub e3} has to be just below the current limit from the CHOOZ experiment. The CP-violating parameter sin{delta} is preferred to be maximal. We present a simple SU(5)-like extension of anarchy to the charged lepton and quark sectors that works well phenomenologically.
K →π semileptonic form factors with Nf=2 +1 +1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Carrasco, N.; Lami, P.; Lubicz, V.; Riggio, L.; Simula, S.; Tarantino, C.; ETM Collaboration
2016-06-01
We present a lattice QCD determination of the vector and scalar form factors of the semileptonic K →π ℓν decay which are relevant for the extraction of the Cabibbo-Kobayashi-Maskawa matrix element |Vu s| from experimental data. Our results are based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical fermions, which include in the sea, besides two light mass degenerate quarks, also the strange and the charm quarks. We use data simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. Our final result for the vector form factor at zero momentum transfer is f+(0 )=0.9709 (46 ) , where the uncertainty is both statistical and systematic combined in quadrature. Using the latest experimental value of f+(0 )|Vu s| from Kℓ3 decays, we obtain |Vu s|=0.2230 (11 ) , which allows us to test the unitarity constraint of the Standard Model below the permille level once the determination of |Vu d| from superallowed nuclear β decays is adopted. A slight tension with unitarity at the level of ˜2 standard deviations is observed. Moreover, we present our results for the semileptonic scalar f0(q2) and vector f+(q2) form factors in the whole range of values of the squared four-momentum transfer q2 measured in Kℓ3 decays, obtaining a very good agreement with the momentum dependence of the experimental data. We provide a set of synthetic data points representing our results for the vector and scalar form factors at the physical point for several selected values of q2.
Effective mass of the four-flux composite fermion at {nu}=1/4
Pan, W.; National High Magnetic Field Laboratory, Tallahassee, Florida 32310 ; Stormer, H. L.; Department of Physics and Department of Applied Physics, Columbia University, New York, New York 10027 ; Tsui, D. C.; Pfeiffer, L. N.; Baldwin, K. W.; West, K. W.
2000-02-15
We have measured the effective mass (m{sup *}) of the four flux composite fermion at Landau-level filling factor {nu}=1/4 ({sup 4}CF), using the activation energy gaps at the fractional quantum Hall effect states {nu}=2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de Haas (SdH) oscillations around {nu}=1/4. We find that the energy gaps show a linear dependence on the effective magnetic field B{sub eff} ({identical_to}B-B{sub {nu}}{sub =1/4}), and from this linear dependence we obtain m{sup *}=1.0m{sub e} and a disorder broadening {gamma}{approx}1 K for a sample of density n=0.87x10{sup 11} cm{sup -2}. The m{sup *} deduced from the temperature dependence of the SdH effect shows large differences for {nu}>1/4 and {nu}<1/4. For {nu}>1/4, m{sup *}{approx}1.0m{sub e}. It scales as {radical}(B{sub {nu}}) with the mass derived from the data around {nu}=1/2 and shows an increase in m{sup *} as {nu}{yields}1/4, resembling the findings around {nu}=1/2. For {nu}<1/4, m{sup *} increases rapidly with increasing B{sub eff} and can be described by m{sup *}/m{sub e}=-3.3+5.7B{sub eff}. This anomalous dependence on B{sub eff} is precursory to the formation of the insulating phase at still lower filling. (c) 2000 The American Physical Society.
Quark masses, chiral symmetry, and the U(1) anomaly
Creutz, M.
1996-09-17
The author discusses the mass parameters appearing in the gauge theory of the strong interactions, concentrating on the two flavor case. He shows how the effect of the CP violating parameter {theta} is simply interpreted in terms of the state of the aether via an effective potential for meson fields. For degenerate flavors he shows that a first order phase transition is expected at {theta} = {pi}. The author speculates on the implications of this structure for Wilson`s lattice fermions.
Engelhardt, Michael; Musch, Bernhard; Bhattacharya, Tanmoy; Gupta, Rajan; Hagler, Phillip; Negele, John; Pochinsky, Andrew; Shafer, Andreas; Syritsyn, Sergey; Yoon, Boram
2014-12-01
Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297MeV, on a lattice with spacing 0.084fm, selected TMD observables are accessed and compared to previous explorations at heavier pion masses on coarser lattices.
Engelhardt, M.; Musch, B.; Bhattacharya, T.; Gupta, R.; Hagler, P.; Negele, J.; Pochinsky, A.; Schafer, A.; Syritsyn, S.; Yoon, B.
2014-06-23
Here, lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) in a nucleon are performed based on a definition of TMDs via hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for the lattice calculation. Using a RBC/UKQCD domain wall fermion ensemble corresponding to a pion mass of 297 MeV, on a lattice with spacing 0.084 fm, selected TMD observables are accessed and compared to previous exploration at heavier pion masses on coarser lattices.
NASA Astrophysics Data System (ADS)
Hoelbling, Christian; Zielinski, Christian
2016-07-01
We follow up on a suggestion by Adams and construct explicit domain wall fermion operators with staggered kernels. We compare different domain wall formulations, namely the standard construction as well as Boriçi's modified and Chiu's optimal construction, utilizing both Wilson and staggered kernels. In the process, we generalize the staggered kernels to arbitrary even dimensions and introduce both truncated and optimal staggered domain wall fermions. Some numerical investigations are carried out in the (1 +1 )-dimensional setting of the Schwinger model, where we explore spectral properties of the bulk, effective and overlap Dirac operators in the free-field case, on quenched thermalized gauge configurations and on smooth topological configurations. We compare different formulations using the effective mass, deviations from normality and violations of the Ginsparg-Wilson relation as measures of chirality.
Anderson, G.W.
1992-12-01
The effect of large third generation Yukawa couplings on radiative electroweak symmetry breaking in N = 1 SUSY-GUTS is reported. Limits on tan {beta}, and on the amount of fine tuning necessary for consistent symmetry breaking in the MSSM are derived. Predictions for fermion masses and mixing angles from GUT scale textures are also discussed. The effect of large Yukawa couplings on the running of the DHR texture is used to determine limits on the top quark valid for all values of tan {beta}.
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.
2016-06-01
A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.
Electronic structure and mass enhancement of the heavy fermion superconductor UPt 3
NASA Astrophysics Data System (ADS)
Wang, C. S.; Krakauer, H.; Pickett, W. E.
1985-12-01
The self-consistent general potential linearized augmented plane wave method has been applied to study the enegy bands of the heavy fermion superconductor UPt 3 within the local density approxination. We found 2.5 f-electrons per U atom and a f-band width of ≈1.9 eV pinned at the Fermi energy EF. An enhancement factor of 19 is deduced from the density of states at EF and the experimental linear coefficient of the specific heat. Possible sources of the renormalization are discussed based on available experimental information.
Fermionic-Bosonic Couplings in a Weakly Deformed Odd-Mass Nucleus ^{93}_{41}Nb
Orce, J. N.; Holt, J. D.; Linnemann, A.; McKay, C. J.; Fransen, C.; Jolie, J.; Kuo, T.T.S.; Lesher, S. R.; McEllistrem, M. T.; Pietralla, N.; Warr, N.; Werner, V.; Yates, S. W.
2010-01-01
A comprehensive level scheme of {sup 93}Nb below 2 MeV has been constructed from information obtained with the {sup 93}Nb(n,n{prime}{gamma}) and the {sup 94}Zr(p,2n{gamma}{gamma}){sup 93}Nb reactions. Branching ratios, lifetimes, transition multipolarities, and spin assignments have been determined. From M1 and E2 strengths, fermionic-bosonic excitations of isoscalar and isovector characters have been identified from the weak couplings of the {pi}1g{sub 9/2} {circle_times} {sub 40}{sup 92}Zr and {pi}2p{sub 1/2}{sup -1} {circle_times} {sub 42}{sup 94}Mo configurations. A microscopic interpretation of such excitations is obtained from shell-model calculations, which use low-momentum effective interactions.
NASA Astrophysics Data System (ADS)
Ziino, G.
2016-03-01
The idea of a `Majorana mass' to make a chiral neutrino really neutral is here reconsidered. It is pointed out that such an approach, unlike Majorana's (non-chiral) old one, does not strictly lead, in general, to a true self-conjugate particle. This can be seen on directly using the basic definition (or fundamental representation) of charge conjugation C in Quantum Field Theory, as an operation just acting on annihilation and creation operators and just expressing particle-antiparticle interchange. It is found, indeed, that the `active' and `sterile' whole fields which can be obtained from mixing the chiral components of two mutually charge-conjugate Dirac fields are themselves `charge conjugate' to each other (rather than individually self-conjugate). These fields, taken as mass eigenfields (as in the `Majorana mass' case), are shown to describe particles carrying pseudoscalar-type charges and being neutral relative to scalar-type charges only. For them, ` CP symmetry' would be nothing but pure mirror symmetry, and C violation (already implied in their respective `active' and `sterile' behaviors) should then involve time-reversal violation as well. The new (no longer strictly chargeless) `Majorana mass' neutrino model still proves, however, neither to affect the usual expectation for a neutrinoless double β-decay, nor to prevent `active' and `sterile' neutrino varieties from generally taking different mass values. One has, on the other hand, that any fermion being just a genuine (i.e. really self-conjugate) Majorana particle cannot truly exist in two distinct—`active' and `sterile'—versions, and it can further bear only a unified mass kind which may at once be said to be either a `Majorana-like' or a `Dirac-like' mass kind.
Four-fermion production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV
NASA Astrophysics Data System (ADS)
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Jacobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1996-02-01
Four-fermion events have been selected in a data sample of 5.8 pb -1 collected with the ALEPH detector at centre-of-mass energies of 130 and 136 GeV. The final states ℓ +ℓ -q overlineq, ℓ +ℓ -ℓ +ℓ -, ν overlineνq overlineq, and ν overlineνℓ +ℓ - have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67±0.38 events from four-fermion processes and 0.14 -0.05+0.19 from background processes.
Hadron Properties with FLIC Fermions
James Zanotti; Wolodymyr Melnitchouk; Anthony Williams; J Zhang
2003-07-01
The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behavior associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.
A streamlined method for chiral fermions on the lattice
Bodwin, G.T. . High Energy Physics Div.); Kovacs, E.V. )
1992-11-10
We discussed the use of renormalization counterterms to restore the chiral gauge symmetry in a lattice theory of Wilson fermions. We show that a large class of counterterms can be implemented automatically by making a simple modification to the fermion determinant.
Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe
2016-05-01
A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations. PMID:27049132
Revisiting Wilson's Moral Components.
ERIC Educational Resources Information Center
Straughan, Roger
2000-01-01
Discusses the reasons why educational researchers and teachers never embraced the ideas of John Wilson as they related to his components of morality in moral education. States that through this examination, the strengths and weaknesses of Wilson's approach can be appraised. (CMK)
Human Sociobiology: Wilson's Fallacy.
ERIC Educational Resources Information Center
Lehrman, Nathaniel S.
1981-01-01
Presents an introduction to and a critique of E.O. Wilson's new science of sociobiology, which focuses on explaining the social behavior of species as diverse as ants, apes, and humans. Suggests that Wilson has gone beyond his data in claiming that complex human behaviors such as altruism are caused to any extent by genetic, as opposed to…
Matrix flavor brane and dual Wilson line
NASA Astrophysics Data System (ADS)
Karch, Andreas; Sun, Sichun
2014-03-01
We study a novel non-Abelian matrix configuration of probe D-branes in AdS5. This configuration gives rise to a new D-brane phenomenon related to the known "Myers effect" in the context of holography. It is dual to a deformation of the field theory by a Wilson line threaded fermion bilinear. We study the two-point function of these short Wilson lines from both the non-Abelian Dirac-Born-Infeld action and a classical string world sheet calculation and identify the region where they agree. We also study a related configuration where the non-Abelian nature of the embedding functions is enhanced by a background flux as in the Myers effect.
An explicit SU(12) family and flavor unification model with natural fermion masses and mixings
Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.
2012-07-01
We present an SU(12) unification model with three light chiral families, avoiding any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed in detail and found to be in very good agreement with the observed quark and lepton masses and mixings.
[Samuel Alexander Kinnier Wilson].
Kikuchi, Raita
2014-11-01
Samuel Alexander Kinnier Wilson is considered a pioneer in extrapyramidal system research largely due to his dissertation on progressive lenticular degeneration, later known as "Wilson's Disease". His concept of neurological symptomatology was based on the clinical observations of Pierre Marie, Joseph Babinski and John Hughlings Jackson, who he observed when he was young. To keep focusing on the nature of actual symptoms while performing medical examinations is the essence of neurological symptomatology, which in turn form the spirit of neurology. This paper will discuss major events in Wilson's later life that would explain how his basic idea for neurological symptomatology was eventually formed. PMID:25407062
Universal SU(2/1) and the Higgs and fermion masses
Ne`eman, Y.
1992-12-31
We review the SU(2/1) internal supersymmetry suggested by D. Fairlie and the author in 1979. The initial apparent difficulties were resolved when, with J. Thierry-Mieg, we understood that the gauging of a supergroup implies taking the usual Yang-Mills-like Principal (Double) Fibre Bundle as a ``scaffold`` and using its Grassmann algebra as parameter manifold for the supergauge. SU(2/1) Universality fixes the masses of the Higgs scalar field and the ``top`` quark around 100--200 GeV, in the same region as the W and Z masses. A ``unified``` supergauge, enclosing SU(3)colour x SU(2) x U(l), predicts a fourth lepton generation in which the neutrino mass is of the same order.
On the Locality and Scaling of Overlap Fermions at Coarse Lattice Spacings
Terrence Draper; Nilmani Mathur; Jianbo Zhang; Andrei Alexandru; Ying Chen; Shao-Jing Dong; Ivan Horvath; Frank X. Lee; Keh-Fei Liu; Sonali Tamhankar
2006-11-07
The overlap fermion offers the considerable advantage of exact chiral symmetry on the lattice, but is numerically intensive. This can be made affordable while still providing large lattice volumes, by using coarse lattice spacing, given that good scaling and localization properties are established. Here, using overlap fermions on quenched Iwasaki gauge configurations, we demonstrate directly that, with appropriate choice of negative Wilson's mass, the overlap Dirac operator's range is comfortably small in lattice units for each of the lattice spacings 0.20 fm, 0.17 fm, and 0.13 fm (and scales to zero in physical units in the continuum limit). In particular, our direct results contradict recent speculation that an inverse lattice spacing of 1 GeV is too low to have satisfactory localization. Furthermore, hadronic masses (available on the two coarser lattices) scale very well.
Boucaud, Ph.; Leroy, J.-P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.
2010-05-01
We study the quark mass function on hypercubic lattices in a large range of physical volumes and cutoffs. To avoid the very large Wilson term artefact, we exploit the relation between the quark mass function and the pseudoscalar vertex in the continuum. We extrapolate to the chiral limit. In function of the physical volume, we observe a striking discontinuity in the properties of chiral extrapolation around a physical volume L{sub c{approx_equal}}6 GeV{sup -1}=1.2 fm. It is present in the quark mass function, which collapses to zero, as well as in the pion mass and the quark condensate as directly calculated from the pseudoscalar correlator. It is strongly reminiscent of the phenomenon of chiral symmetry restoration observed by Neuberger and Narayanan at N{sub C}={infinity} around the same physical length. In the case of spontaneous symmetry breaking, we confirm that the operator product expansion of the quark mass function, involving the quark condensate, is not operative at the available momenta, even taking into account the unusually large high order corrections to the Wilson coefficient calculated by Chetyrkin and Maier; the gap remains large, around a factor 2, even at the largest momenta available to us (p{approx_equal}6 GeV).
Wilson's Disease Association International
... Connect with Wilson Disease Association Send Email Physician Contacts List of Physicians and Institutions in Your Area View Contacts Support Contacts Individuals who can offer Support and Information View ...
Beyond-mean-field boson-fermion model for odd-mass nuclei
NASA Astrophysics Data System (ADS)
Nomura, K.; Nikšić, T.; Vretenar, D.
2016-05-01
A novel method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd number of nucleons is introduced, based on the framework of nuclear energy density functional theory and the particle-core coupling scheme. The deformation energy surface of the even-even core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s), are obtained in a self-consistent mean-field calculation determined by the choice of the energy density functional and pairing interaction. This method uniquely determines the parameters of the Hamiltonian of the boson core, and only the strength of the particle-core coupling is specifically adjusted to selected data for a particular nucleus. The approach is illustrated in a systematic study of low-energy excitation spectra and transition rates of axially deformed odd-mass Eu isotopes.
Aoki phases in the lattice Gross-Neveu model with flavored mass terms
Creutz, Michael; Kimura, Taro; Misumi, Tatsuhiro
2011-05-01
We investigate the parity-broken phase structure for staggered and naive fermions in the Gross-Neveu model as a toy model of QCD. We consider a generalized staggered Gross-Neveu model including two types of four-point interactions. We use generalized mass terms to split the doublers for both staggered and naive fermions. The phase boundaries derived from the gap equations show that the mass splitting of tastes results in an Aoki phase both in the staggered and naive cases. We also discuss the continuum limit of these models and explore taking the chirally symmetric limit by fine-tuning a mass parameter and two-coupling constants. This supports the idea that in lattice QCD we can derive one- or two-flavor staggered fermions by tuning the mass parameter, which are likely to be less expensive than Wilson fermions in QCD simulation.
Blum, Thomas; Doi, Takumi; Hayakawa, Masashi; Izubuchi, Taku; Yamada, Norikazu
2007-12-01
We determine the light quark masses from lattice QCD simulations incorporating the electromagnetic interaction of valence quarks, using the splittings of charged and neutral pseudoscalar meson masses as inputs. The meson masses are calculated on lattice QCD configurations generated by the RBC Collaboration for two flavors of dynamical domain-wall fermions, which are combined with QED configurations generated via quenched noncompact lattice QED. The electromagnetic part of the pion mass splitting is found to be m{sub {pi}{sup +}}-m{sub {pi}{sup 0}}=4.12(21) MeV, where only the statistical error is quoted, and similarly for the kaon, 1.443(55) MeV. Our results for the light quark masses are m{sub u}{sup MS}(2 GeV)=3.02(27)(19) MeV, m{sub d}{sup MS}(2 GeV)=5.49(20)(34) MeV, and m{sub s}{sup MS}(2 GeV)=119.5(56)(74) MeV, where the first error is statistical and the second reflects the uncertainty in our nonperturbative renormalization procedure. By averaging over {+-}e to cancel O(e) noise exactly on each combined gauge field configuration, we are able to work at physical {alpha}=1/137 and obtain very small statistical errors. In our calculation, several sources of systematic error remain, including finite volume, nonzero lattice spacing, chiral extrapolation, quenched QED, and quenched strange quark, which may be more significant than the errors quoted above. We discuss these systematic errors and how to reduce or eliminate them.
Running coupling and fermion mass in strong coupling QED3+1
NASA Astrophysics Data System (ADS)
Sauli, Vladimír
2004-06-01
A simple toy model is used in order to exhibit the technique of extracting the non-perturbative information about Green's functions in Minkowski space. The effective charge and the dynamical electron mass are calculated in strong coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron and photon propagators. The minimal Ball-Chiu vertex was used for simplicity and we impose the Landau gauge fixing on QED action. The solutions obtained separately in Euclidean and Minkowski space were compared. The latter one was extracted with the help of spectral technique.
Stabilities of Superfluid and Density Wave States in Fermionic Mass Imbalanced Optical Lattices
NASA Astrophysics Data System (ADS)
Takemori, Nayuta; Koga, Akihisa
We study the attractive Hubbard model with different masses by means of dynamical mean-field theory with continuous-time quantum Monte Carlo simulation. Calculating the internal energy and density of states, we discuss how the interaction affects the stabilities of superfluid and density wave states at half-filling. It is found that the density wave and superfluid states are almost degenerate in a certain region. On the other hand, the genuine density wave state is stable in a wide parameter space.
Grossman, Yuval; Harnik, Roni; Perez, Gilad; Schwartz, MatthewD.; Surujon, Ze'ev
2004-07-30
The observed flavor structure of the standard model arises naturally in ''split fermion'' models which localize fermions at different places in an extra dimension. It has, until now, been assumed that the bulk masses for such fermions can be chosen to be flavor diagonal simultaneously at every point in the extra dimension, with all the flavor violation coming from the Yukawa couplings to the Higgs. We consider the more natural possibility in which the bulk masses cannot be simultaneously diagonalized, that is, that they are twisted in flavor space. We show that, in general, this does not disturb the natural generation of hierarchies in the flavor parameters. Moreover, it is conceivable that all the flavor mixing and CP-violation in the standard model may come only from twisting, with the five-dimensional Yukawa couplings taken to be universal.
Grossman, Y
2004-07-24
The observed flavor structure of the standard model arises naturally in ''split fermion'' models which localize fermions at different places in an extra dimension. It has, until now, been assumed that the bulk masses for such fermions can be chosen to be flavor diagonal simultaneously at every point in the extra dimension, with all the flavor violation coming from the Yukawa couplings to the Higgs. We consider the more natural possibility in which the bulk masses cannot be simultaneously diagonalized, that is, that they are twisted in flavor space. We show that, in general, this does not disturb the natural generation of hierarchies in the flavor parameters. Moreover, it is conceivable that all the flavor mixing and CP-violation in the standard model may come only from twisting, with the five-dimensional Yukawa couplings taken to be universal.
Kenneth Wilson and Lattice QCD
NASA Astrophysics Data System (ADS)
Ukawa, Akira
2015-09-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.
Wilson loops from supergravity and string theory
NASA Astrophysics Data System (ADS)
Sonnenschein, J.
2000-03-01
We present a theorem that determines the value of the Wilson loop associated with a Nambu-Goto action which generalizes the action of the AdS 5 × S 5 model. In particular, we derive sufficient conditions for confining behaviour. We then apply this theorem to various string models. We go beyond the classical string picture by incorporating quadratic quantum fluctuations. We show that the bosonic determinant of Dp -branes with 16 supersymmetries yields a Lüscher term. We confirm that the free energy associated with a BPS configuration of a single quark is free from divergences. We show that unlike for a string in flat spacetime in the case of AdS 5 × S 5 the fermionic determinant does not cancel the bosonic one. For a set-up that corresponds to a confining gauge theory the correction to the potential is attractive. We determine the form of the Wilson loop for actions that include non-trivial B µicons/Journals/Common/nu" ALT="nu" ALIGN="TOP"/> field. The issue of an exact determination of the value of the stringy Wilson loop is discussed.
NASA Technical Reports Server (NTRS)
Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng
2003-01-01
Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.
Fermionic pentagons and NMHV hexagon
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2015-05-01
We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang-Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.
Effective fermion masses of order gT in high-temperature gauge theories with exact chiral invariance
Weldon, H.A.
1982-11-15
It is shown that, at finite temperature, chiral invariance does not imply that fermion propagators have poles at K/sup 2/ = 0. Instead, a zero-momentum fermion has energy K/sup 0/ = M, where M/sup 2/ = g/sup 2/C(R)T/sup 2//8 and C(R) is the quadratic Casimir of the fermion representation. The dispersion relation for Knot =0 is computed and can be crudely approximated (to within 10%) by K/sup 0/roughly-equal(M/sup 2/+K /sup 2/)/sup 1/2/. Applications to high-temperature QCD, SU(2) x U(1), and grand unified theories are discussed.
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Holman, Richard; Kolb, Edward W.
1987-01-01
Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.
Aryaeinejad, R.; Chou, W.; McHarris, W.C. )
1989-09-01
The interacting-boson-fermion-approximation and triaxial models were used to calculate excitation energies and mixing ratios for the {ital N}=80 nuclei, {sup 139}Pr, {sup 141}Pm, and {sup 143}Eu. For low-lying negative- and positive-parity states both models yield roughly the same numbers, in good agreement with experimental results. For high-lying states we find that the interacting-boson-fermion-approximation model describes the level structure considerably better than the triaxial model. On the other hand, the triaxial model gives more satisfactory results in predicting the mixing ratios.
Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8
1998-11-01
The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U{sub A}(1) symmetry and the {eta}{prime} for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk.
An Interview with John Wilson.
ERIC Educational Resources Information Center
Halstead, J. Mark; McLaughlin, Terence H.
2000-01-01
Presents an interview with John Wilson covering topics such as: addressing the people who influenced him, highlighting Wilson's career and home background, and providing discussions on his opinions related to religion, morality, moral education, and the concept of authority. (CMK)
Wilson Disease: Frequently Asked Questions
... potentially hazardous for Wilson's disease patients? What copper levels in drinking water are potentially hazardous for Wilson's ... liver recovery can I expect with treatment? What level of liver recovery can I expect with treatment? ...
FLIC Fermions and Hadron Phenomenology
D. Leinweber; J.N. Hedditch; W. Melnitchouk; A.W. Thomas; A.G. Williams; R.D. Young; J.M. Zanotti; J.B. Zhang
2002-06-01
A pedagogical overview of the formulation of the Fat Link Irrelevant Clover (FLIC) fermion action and its associated phenomenology is described. The scaling analysis indicates FLIC fermions provide a new form of nonperturbative order (a) improvement where near-continuum results are obtained at finite lattice spacing. Spin-1/2 and spin-3/2, even and odd parity baryon resonances are investigated in quenched QCD, where the nature of the Roper resonance and Lambda (1405) are of particular interest. FLIC fermions allow efficient access to the light quark-mass regime, where evidence of chiral nonanalytic behavior in the Delta mass is observed.
Fermion production during and after axion inflation
Adshead, Peter; Sfakianakis, Evangelos I.
2015-11-11
We study derivatively coupled fermions in axion-driven inflation, specifically m{sub ϕ}{sup 2}ϕ{sup 2} and monodromy inflation, and calculate particle production during the inflationary epoch and the post-inflationary axion oscillations. During inflation, the rolling axion acts as an effective chemical potential for helicity which biases the gravitational production of one fermion helicity over the other. This mechanism allows for efficient gravitational production of heavy fermion states that would otherwise be highly suppressed. Following inflation, the axion oscillates and fermions with both helicities are produced as the effective frequency of the fermion field changes non-adiabatically. For certain values of the fermion mass and axion-fermion coupling strength, the two helicity states are produced asymmetrically, resulting in unequal number-densities of left- and right-helicity fermions.
ERIC Educational Resources Information Center
Gies, Joseph C.
1980-01-01
The aftermath of a Pennsylvania judge's overturning the trustees of Wilson College's decision to close is described. A new board and new president found themselves confronted with a public relations handicap--Judge Keller's decision was almost universally perceived as governmental intrusion. (MLW)
ERIC Educational Resources Information Center
Berlin, Isaiah
2012-01-01
In this 1960 article Isaiah Berlin compares Woodrow Wilson's emphasis on the need to educate university students for life in the real world with the difference between Oxford "realism" and Cambridge "idealism" in the nineteenth century. Oxford favoured a Wilsonian preference for general education over (but not to the exclusion of) pure…
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto
2016-08-01
We study the structure of fermionic networks, i.e. a model of networks based on the behavior of fermionic gases, and we analyze dynamical processes over them. In this model, particle dynamics have been mapped to the domain of networks, hence a parameter representing the temperature controls the evolution of the system. In doing so, it is possible to generate adaptive networks, i.e. networks whose structure varies over time. As shown in previous works, networks generated by quantum statistics can undergo critical phenomena as phase transitions and, moreover, they can be considered as thermodynamic systems. In this study, we analyze fermionic networks and opinion dynamics processes over them, framing this network model as a computational model useful to represent complex and adaptive systems. Results highlight that a strong relation holds between the gas temperature and the structure of the achieved networks. Notably, both the degree distribution and the assortativity vary as the temperature varies, hence we can state that fermionic networks behave as adaptive networks. On the other hand, it is worth to highlight that we did not finding relation between outcomes of opinion dynamics processes and the gas temperature. Therefore, although the latter plays a fundamental role in gas dynamics, on the network domain, its importance is related only to structural properties of fermionic networks.
Hypersomnolence in Wilson Disease
Amann, Valerie C.; Maru, Neal K.; Jain, Vivek
2015-01-01
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism resulting in copper accumulation in a number of organs including the liver, brain, and cornea, predominantly leading to hepatic, neurologic, and psychiatric manifestations. An association between WD and sleep problems is not commonly recognized, and sleep complaints are often overlooked. Daytime hypersomnolence is even more rarely reported in this population. We report a case of WD and hypersomnolence objectively confirmed by a multiple sleep latency test (MSLT). Consequently, we suggest that increased awareness, assessment, and treatment of sleep disorders, including daytime sleepiness, may help improve patients' quality of life. Citation: Amann VC, Maru NK, Jain V. Hypersomnolence in Wilson disease. J Clin Sleep Med 2015;11(11):1341–1343. PMID:25902827
Hypersialorrhea in Wilson's Disease.
Trocello, Jean-Marc; Osmani, Karima; Pernon, Michaela; Chevaillier, Gérard; de Brugière, Claire; Remy, Pascal; Wenisch, Emilie; Cousin, Catherine; Girardot-Tinant, Nadège; Woimant, France
2015-10-01
Hypersialorrhea, corresponding to excessive salivation is a symptom frequently reported in Wilson's disease, especially in its neurological form. The prevalence of this frequent complaint has not been often evaluated. During a 7-month period, 87 consecutive Wilson's disease patients answered to the simple question "do you have the sensation of excess saliva in your mouth?" to evaluate the frequency of this symptom. A sub-sample of 10 consecutive Wilson's disease patients with drooling was recruited to undergo quantitative and qualitative measures to evaluate the mechanism of hypersialorrhea. Excessive drooling or excess saliva was found in 46 % of patients followed at the French Reference Centre. Ninety-eight percent of them presented neurological symptoms and drooling was found in only one patient without neurological symptoms. Our study showed that patients with a complaint of excessive saliva produced significantly higher quantities of saliva at rest than controls. Endoscopic examination was abnormal in six patients. A significant decrease of swallowing frequency, longer swallow latencies, and poor swallowing capacities may partly explain the salivary stasis. Oropharyngeal sensitivity disorders were present in 50 % of our patients. The decrease of the swallowing frequency observed in all patients could be related to cognitive and behavioral abnormalities with initiation difficulties objectified by longer latencies triggered by all the ingested volumes. This study confirmed the hypothesis of a multifactorial origin of hypersialorrhea in patients who have been diagnosed in Wilson's disease. It was essential to evaluate drooling with a multidisciplinary consultation to better identify the underlying mechanisms and to implement strategies for speech therapy and therapeutic adaptation. PMID:26209285
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Mount Wilson Observatory, located in the San Gabriel Mountains near Pasadena, California, was founded in 1904 by George Ellery Hale with financial support from Andrew Carnegie. In the 1920s and 1930s, working at the 2.5 m Hooker telescope, Edwin Hubble made two of the most important discoveries in the history of astronomy: first, that `nebulae' are actually island universes—galaxies—each with bil...
Observing remnants by fermions' tunneling
Chen, D.Y.; Wu, H.W.; Yang, H. E-mail: iverwu@uestc.edu.cn
2014-03-01
The standard Hawking formula predicts the complete evaporation of black holes. In this paper, we introduce effects of quantum gravity into fermions' tunneling from Reissner-Nordstrom and Kerr black holes. The quantum gravity effects slow down the increase of Hawking temperatures. This property naturally leads to a residue mass in black hole evaporation. The corrected temperatures are affected by the quantum numbers of emitted fermions. Meanwhile, the temperature of the Kerr black hole is a function of θ due to the rotation.
Light quark simulations with FLIC fermions
J.M. Zanotti; D.B. Leinweber; W. Melnitchouk; A.G. Williams; J.B. Zhang
2002-06-01
Hadron masses are calculated in quenched lattice QCD in order to probe the scaling behavior of a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using APE-smeared links. Light quark masses corresponding to an m{sub pi}/m{sub p} ratio of 0.35 are considered to assess the exceptional configuration problem of clover-fermion actions. This Fat-Link Irrelevant Clover (FLIC) fermion action provides scaling which is superior to mean-field improvement and offers advantages over nonperturbative improvement, including reduced exceptional configurations.
Wang, Zhijun; Alexandradinata, A; Cava, R J; Bernevig, B Andrei
2016-04-14
Spatial symmetries in crystals may be distinguished by whether they preserve the spatial origin. Here we study spatial symmetries that translate the origin by a fraction of the lattice period, and find that these non-symmorphic symmetries protect an exotic surface fermion whose dispersion relation is shaped like an hourglass; surface bands connect one hourglass to the next in an unbreakable zigzag pattern. These 'hourglass' fermions are formed in the large-gap insulators, KHgX (X = As, Sb, Bi), which we propose as the first material class whose band topology relies on non-symmorphic symmetries. Besides the hourglass fermion, another surface of KHgX manifests a three-dimensional generalization of the quantum spin Hall effect, which has previously been observed only in two-dimensional crystals. To describe the bulk topology of non-symmorphic crystals, we propose a non-Abelian generalization of the geometric theory of polarization. Our non-trivial topology originates from an inversion of the rotational quantum numbers, which we propose as a criterion in the search for topological materials. PMID:27075096
NASA Astrophysics Data System (ADS)
Wang, Zhijun; Alexandradinata, A.; Cava, Robert J.; Bernevig, B. Andrei
Spatial symmetries in crystals are distinguished by whether they preserve the spatial origin. We show how this basic geometric property gives rise to a new topology in band insulators. We study spatial symmetries that translate the origin by a fraction of the lattice period, and find that these nonsymmorphic symmetries protect a novel surface fermion whose dispersion is shaped like an hourglass; surface bands connect one hourglass to the next in an unbreakable zigzag pattern. These exotic fermions are materialized in the large-gap insulators: KHg X (X = As,Sb,Bi), which we propose as the first material class whose topology relies on nonsymmorphic symmetries. Beside the hourglass fermion, a different surface of KHg X manifests a 3D generalization of the quantum spin Hall effect. To describe the bulk topology of nonsymmorphic crystals, we propose a non-Abelian generalization of the geometric theory of polarization. Our nontrivial topology originates not from an inversion of the parity quantum numbers, but rather of the rotational quantum numbers, which we propose as a fruitful in the search for topological materials. Finally, KHg X uniquely exemplifies a cohomological insulator, a concept that we will introduce in a companion work.
Green, Daniel; /SLAC /Stanford U., Dept. Phys.
2008-04-29
Gravitational theories do not admit gauge invariant local operators. We study the limits under which there exists a quasi-local description for a class of non-local gravitational observables where a sum over worldlines plays the role of the Wilson line for gauge theory observables. We study non-local corrections to the local description and circumstances where these corrections become large. We find that these operators are quasi-local in at space and AdS, but fail to be quasi-local in de Sitter space.
The Gaussian entropy of fermionic systems
Prokopec, Tomislav; Schmidt, Michael G.; Weenink, Jan
2012-12-15
We consider the entropy and decoherence in fermionic quantum systems. By making a Gaussian Ansatz for the density operator of a collection of fermions we study statistical 2-point correlators and express the entropy of a system fermion in terms of these correlators. In a simple case when a set of N thermalised environmental fermionic oscillators interacts bi-linearly with the system fermion we can study its time dependent entropy, which also represents a quantitative measure for decoherence and classicalization. We then consider a relativistic fermionic quantum field theory and take a mass mixing term as a simple model for the Yukawa interaction. It turns out that even in this Gaussian approximation, the fermionic system decoheres quite effectively, such that in a large coupling and high temperature regime the system field approaches the temperature of the environmental fields. - Highlights: Black-Right-Pointing-Pointer We construct the Gaussian density operator for relativistic fermionic systems. Black-Right-Pointing-Pointer The Gaussian entropy of relativistic fermionic systems is described in terms of 2-point correlators. Black-Right-Pointing-Pointer We explicitly show the growth of entropy for fermionic fields mixing with a thermal fermionic environment.
Many Masses on One Stroke:. Economic Computation of Quark Propagators
NASA Astrophysics Data System (ADS)
Frommer, Andreas; Nöckel, Bertold; Güsken, Stephan; Lippert, Thomas; Schilling, Klaus
The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ = 1/κ-D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.
Fermionic-bosonic couplings in a weakly deformed odd-mass nucleus, {sub 41}{sup 93}Nb
Orce, J. N.; Holt, J. D.; Linnemann, A.; Fransen, C.; Jolie, J.; Warr, N.; McKay, C. J.; McEllistrem, M. T.; Kuo, T. T. S.; Lesher, S. R.; Pietralla, N.; Werner, V.; Yates, S. W.
2010-10-15
A comprehensive level scheme of {sup 93}Nb below 2 MeV has been constructed from information obtained with the {sup 93}Nb(n,n{sup '{gamma}}) and the {sup 94}Zr(p,2n{gamma}{gamma}){sup 93}Nb reactions. Branching ratios, lifetimes, transition multipolarities, and spin assignments have been determined. From M1 and E2 strengths, fermionic-bosonic excitations of isoscalar and isovector characters have been identified from the weak couplings of the {pi}1g{sub 9/2} x {sub 40}{sup 92}Zr and {pi}2p{sub 1/2}{sup -1} x {sub 42}{sup 94}Mo configurations. A microscopic interpretation of such excitations is obtained from shell-model calculations, which use low-momentum effective interactions.
ee4fγ—A program for e+e-→4f,4f γ with nonzero fermion masses
NASA Astrophysics Data System (ADS)
Kołodziej, Karol; Jegerlehner, Fred
2004-05-01
A computer program ee4fγ for calculating cross-sections of any four fermion final state of e+e--annihilation at high energy and the corresponding bremsstrahlung reaction that is possible in the framework of the Standard Model is presented. As the fermion masses are arbitrary, the cross-sections for channels that do not contain e+ and/or e- in the final state can be computed without any collinear cut, the on-shell top quark production can be studied and the Higgs boson exchange can be incorporated in a consistent way. The program can be used as a Monte Carlo generator of unweighted events as well. Program summaryTitle of program:ee4fγ Version: 1.0 (February 2004) Catalogue identifier: ADTQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: all Operating systems: Unix/Linux Programming language used:FORTRAN 90 CPC Program Library subprograms used:RANLUX, ACPR RANLUX 79 (1994) 111—a random number generator Memory required to execute with typical data: 4.0 Mb No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 364 490 No. of lines in distributed program, including test data, etc.: 45 278 Distribution format: tar gzip file Nature of physical problem: Description of all e+e-→4 fermions and corresponding bremsstrahlung reactions that are possible in the Standard Model (SM) to lowest order and with nonzero fermion masses at center of mass energies typical for next generation linear colliders. Such reactions are relevant, typically, for W-pair or intermediate mass Higgs boson production and decay. Method of solution: Matrix elements are calculated with the helicity amplitude method. The phase space integration is performed numerically utilizing a multi-channel Monte Carlo method. Restrictions on complexity of the problem: No higher order effects are taken into account, except for assuming the fine
Wilson Loop Diagrams and Positroids
NASA Astrophysics Data System (ADS)
Agarwala, Susama; Marin-Amat, Eloi
2016-07-01
In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.
Emergent geometry from field theory: Wilson's renormalization group revisited
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Park, Chanyong
2016-06-01
We find a geometrical description from a field theoretical setup based on Wilson's renormalization group in real space. We show that renormalization group equations of coupling parameters encode the metric structure of an emergent curved space, regarded to be an Einstein equation for the emergent gravity. Self-consistent equations of local order-parameter fields with an emergent metric turn out to describe low-energy dynamics of a strongly coupled field theory, analogous to the Maxwell equation of the Einstein-Maxwell theory in the AdSd +2 /CFTd +1 duality conjecture. We claim that the AdS3 /CFT2 duality may be interpreted as Landau-Ginzburg theory combined with Wilson's renormalization group, which introduces vertex corrections into the Landau-Ginzburg theory in the large-Ns limit, where Ns is the number of fermion flavors.
QCD hadron spectrum and the chiral limit with domain wall fermions
NASA Astrophysics Data System (ADS)
Wu, Lingling
We present the QCD hadron spectrum for the cases of both quenched and dynamical domain wall fermions. Quenched simulations at the lattice spacing a-1 ˜ 1--2 GeV with the Wilson gauge action demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass ( mres) whose size decreases as the separation between the domain walls (Ls) is increased. However, at stronger couplings much larger values of Ls are required to achieve a given physical value of mres. Important effects of topological near-zero modes which should afflict an accurate quenched calculation are easily visible in the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of m2p in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. In support of the thermodynamics studies, zero temperature dynamical simulations with the Wilson gauge action are performed to set the scale. The heavy pion mass obtained indicates the needs for much larger values of Ls to study the order of the transition. Simulations with the renormalization group improved gauge action exhibits an improved chiral behavior in our quenched study, nevertheless, this is not true for the dynamical case.
Scaling of fat-link irrelevant-clover fermions
Zanotti, J.M.; Lasscock, B.; Leinweber, D.B.; Williams, A.G.
2005-02-01
Hadron masses are calculated in quenched lattice QCD on a variety of lattices in order to probe the scaling behavior of the Fat-Link Irrelevant Clover (FLIC) fermion action, a fat-link clover fermion action in which the purely irrelevant operators of the fermion action are constructed using APE-smeared links. The scaling analysis indicates FLIC fermions provide a new form of nonperturbative O(a) improvement where near-continuum results are obtained at finite lattice spacing.
How Is Wilson Disease Diagnosed?
... Connect with Wilson Disease Association Send Email Physician Contacts List of Physicians and Institutions in Your Area View Contacts Support Contacts Individuals who can offer Support and Information View ...
How Is Wilson Disease Inherited?
... Connect with Wilson Disease Association Send Email Physician Contacts List of Physicians and Institutions in Your Area View Contacts Support Contacts Individuals who can offer Support and Information View ...
Aaltonen, T.; Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Adelman, J.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; /Helsinki Inst. of Phys. /Dubna, JINR /Oklahoma U. /Michigan State U. /Tata Inst. /Illinois U., Chicago /Florida State U. /Chicago U., EFI /Simon Fraser U. /York U., Canada /St. Petersburg, INP /Illinois U., Urbana /Sao Paulo, IFT /Munich U. /University Coll. London /Oxford U. /St. Petersburg, INP /Duke U. /Kyungpook Natl. U. /Chonnam Natl. U. /Florida U. /Osaka City U.
2010-05-01
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg {yields} H {yields} W{sup +}W{sup -} in p{bar p} collisions at the Fermilab Tevatron Collider at {radical}s = 1.o6 TeV. With 4.8 fb{sup -1} of itnegrated luminosity analyzed at CDF and 5.4 fb{sup -1} at D0, the 95% Confidence Level upper limit on {sigma}(gg {yields} H) x {Beta}(H {yields} W{sup +}W{sup -}) is 1.75 pb at m{sub H} = 120 GeV, 0.38 pb at m{sub H} = 165 GeV, and 0.83 pb at m{sub H} = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, they exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 Gev.
NASA Technical Reports Server (NTRS)
Burke, Kevin
1987-01-01
The main activity relating to the study during this half year was a three week field trip to study Chinese sedimentary basins (June 10 to July 3, 1986) at no cost to the project. This study, while of a reconnaissance character, permitted progress in understanding how the processes of island arc-collision and micro-continental collision operated during the Paleozoic in far western China (especially the Junggar and Tarim basins and in the intervening Tien Shan Mountains). These effects of the continuing collision of India and Asia on the area were also studied. Most specifically, these result in the elevation of the Tien Shan to more than 4 km above sea level and the depression of Turfan to move 150m below sea level. Both thrusting and large-scale strike-slip motion are important in producing these elevation changes. Some effort during the half year was also devoted to the study of greenstone-belts in terms of the Wilson Cycle.
Ginsparg-Wilson relation on a fuzzy 2-sphere for adjoint matter
Aoki, Hajime
2010-10-15
We formulate a Ginsparg-Wilson relation on a fuzzy 2-sphere for matter in the adjoint representation of the gauge group. Because of the Ginsparg-Wilson relation, an index theorem is satisfied. Our formulation is applicable to topologically nontrivial configurations as monopoles. It gives a solid basis for obtaining chiral fermions, which are an important ingredient of the standard model, from matrix model formulations of the superstring theory, such as the IIB matrix model, by considering topological configurations in the extra dimensions. We finally discuss whether this mechanism really works.
Garavelli, Livia; Mainardi, Paola Cerruti
2007-01-01
Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly syndrome characterized by a distinct facial phenotype (high forehead, frontal bossing, large eyebrows, medially flaring and sparse in the middle part, hypertelorism, deep set but large eyes, large and uplifted ear lobes, with a central depression, saddle nose with prominent rounded nasal tip, prominent columella, open mouth, with M-shaped upper lip, frequent smiling, and a prominent but narrow and triangular pointed chin), moderate-to-severe intellectual deficiency, epilepsy and variable congenital malformations including Hirschsprung disease (HSCR), genitourinary anomalies (in particular hypospadias in males), congenital heart defects, agenesis of the corpus callosum and eye anomalies. The prevalence of MWS is currently unknown, but 171 patients have been reported so far. It seems probable that MWS is under-diagnosed, particularly in patients without HSCR. MWS is caused by heterozygous mutations or deletions in the Zinc finger E-box-binding homeobox 2 gene, ZEB2, previously called ZFHX1B (SIP1). To date, over 100 deletions/mutations have been reported in patients with a typical phenotype; they are frequently whole gene deletions or truncating mutations, suggesting that haploinsufficiency is the main pathological mechanism. Studies of genotype-phenotype analysis show that facial gestalt and delayed psychomotor development are constant clinical features, while the frequent and severe congenital malformations are variable. In a small number of patients, unusual mutations can lead to an atypical phenotype. The facial phenotype is particularly important for the initial clinical diagnosis and provides the hallmark warranting ZEB2 mutational analysis, even in the absence of HSCR. The majority of MWS cases reported so far were sporadic, therefore the recurrence risk is low. Nevertheless, rare cases of sibling recurrence have been observed. Congenital malformations and seizures require precocious clinical
Playing with fermion couplings in Higgsless models
Casalbuoni, R.; De Curtis, S.; Dolce, D.; Dominici, D.
2005-04-01
We discuss the fermion couplings in a four dimensional SU(2) linear moose model by allowing for direct couplings between the left-handed fermions on the boundary and the gauge fields in the internal sites. This is realized by means of a product of nonlinear {sigma}-model scalar fields which, in the continuum limit, is equivalent to a Wilson line. The effect of these new nonlocal couplings is a contribution to the {epsilon}{sub 3} parameter which can be of opposite sign with respect to the one coming from the gauge fields along the string. Therefore, with some fine-tuning, it is possible to satisfy the constraints from the electroweak data.
Fermion masses and neutrino mixing in an SU(5)/sub GUT/ x SU(8)/sub ETC/ model
Aubrecht, G.J. II; Matsuki, T.; Tanaka, K.
1983-01-01
We extend the SU(3) x SU(2) x U(1) model without scalars to SU(5)/sub GUT/ x SU(8)/sub ETC/. In our model, the mixing in the leptons is identical to that for the quarks, so that the Cabibbo angle determines the mixing of nu/sub e/ and nu/sub ..mu../. The quark masses and mixing angles are studied for two and three generations of quarks.
Charmonium Spectrum from Quenched QCD with Overlap Fermions
S. Tamhankar; A. Alexandru; Y. Chen; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; J.B. Zhang
2005-07-20
We present the first study of the charmonium spectrum using overlap fermions, on quenched configurations. Simulations are performed on 16{sup 3} x 72 lattices, with Wilson gauge action at {beta} = 6.3345. We demonstrate that we have discretization errors under control at about 5%. We obtain 88(4) MeV for hyperfine splitting using the {sub 0} scale, and 121(6) MeV using the (1{bar P}-1{bar S}) scale. This paper raises the possibility that the discrepancy between the lattice results and the experimental value for charmonium hyperfine splitting can be resolved using overlap fermions to simulate the charm quark on lattice.
Scaling analysis of fat-link irrelevant clover fermion actions
Kamleh, Waseem; Lasscock, Ben; Leinweber, Derek B.; Williams, Anthony G.
2008-01-01
The fat-link irrelevant clover fermion action is a variant of the O(a)-improved Wilson action where the irrelevant operators are constructed using smeared links. While the use of such smearing allows for the use of highly improved definitions of the field strength tensor F{sub {mu}}{sub {nu}}, we show that the standard 1-loop clover term with a mean field improved coefficient c{sub sw} is sufficient to remove the O(a) errors, avoiding the need for nonperturbative tuning. This result enables efficient dynamical simulations in QCD with the fat-link irrelevant clover fermion action.
NASA Astrophysics Data System (ADS)
Khan, Saki
2016-06-01
We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.
Searches for Fourth Generation Fermions
Ivanov, A.; /Fermilab
2011-09-01
We present the results from searches for fourth generation fermions performed using data samples collected by the CDF II and D0 Detectors at the Fermilab Tevatron p{bar p} collider. Many of these results represent the most stringent 95% C. L. limits on masses of new fermions to-date. A fourth chiral generation of massive fermions with the same quantum numbers as the known fermions is one of the simplest extensions of the SM with three generations. The fourth generation is predicted in a number of theories, and although historically have been considered disfavored, stands in agreement with electroweak precision data. To avoid Z {yields} {nu}{bar {nu}} constraint from LEP I a fourth generation neutrino {nu}{sub 4} must be heavy: m({nu}{sub 4}) > m{sub Z}/2, where m{sub Z} is the mass of Z boson, and to avoid LEP II bounds a fourth generation charged lepton {ell}{sub 4} must have m({ell}{sub 4}) > 101 GeV/c{sup 2}. At the same time due to sizeable radiative corrections masses of fourth generation fermions cannot be much higher the current lower bounds and masses of new heavy quarks t' and b' should be in the range of a few hundred GeV/c{sup 2}. In the four-generation model the present bounds on the Higgs are relaxed: the Higgs mass could be as large as 1 TeV/c{sup 2}. Furthermore, the CP violation is significantly enhanced to the magnitude that might account for the baryon asymmetry in the Universe. Additional chiral fermion families can also be accommodated in supersymmetric two-Higgs-doublet extensions of the SM with equivalent effect on the precision fit to the Higgs mass. Another possibility is heavy exotic quarks with vector couplings to the W boson Contributions to radiative corrections from such quarks with mass M decouple as 1/M{sup 2} and easily evade all experimental constraints. At the Tevatron p{bar p} collider 4-th generation chiral or vector-like quarks can be either produced strongly in pairs or singly via electroweak production, where the latter can be
SUSY SU(5)× S 4 GUT flavor model for fermion masses and mixings with adjoint, large θ 13 PMNS
NASA Astrophysics Data System (ADS)
Zhao, Ya; Zhang, Peng-Fei
2016-06-01
We propose an S 4 flavor model based on supersymmetric (SUSY) SU(5) GUT. The first and third generations of 10 dimensional representations in SU(5) are all assigned to be 11 of S 4. The second generation of 10 is to be 12 of S 4. Right-handed neutrinos of singlet 1 and three generations of overline{mathbf{5}} are all assigned to be 31 of S 4. The VEVs of two sets of flavon fields are allowed a moderate hierarchy, that is <Φ ν > ˜ λ c <Φ e >. Tri-Bimaximal (TBM) mixing can be produced at both leading order (LO) and next to next to leading order (NNLO) in neutrino sector. All the masses of up-type quarks are obtained at LO. We also get the bottom-tau unification m τ = m b and the popular Georgi-Jarlskog relation m μ = 3 m s as well as a new mass relation {m}_e=8/27{m}_d in which the novel Clebsch-Gordan (CG) factor arises from the adjoint field H 24. The GUT relation leads to a sizable mixing angle θ 12 e ˜ θ c and the correct quark mixing matrix V CKM can also be realised in the model. The resulting CKM-like mixing matrix of charged leptons modifies the vanishing θ 13 ν in TBM mixing to a large {θ}_{13}^{PMNS}˜eq {θ}_c/√{2} , in excellent agreement with experimental results. A Dirac CP violation phase ϕ 12 ≃ ±π /2 is required to make the deviation from θ 12 ν small. We also present some phenomenological numerical results predicted by the model.
Fermionic influence on inflationary fluctuations
NASA Astrophysics Data System (ADS)
Boyanovsky, Daniel
2016-04-01
Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.
NASA Astrophysics Data System (ADS)
Jin, Xiao-Yong; Kuramashi, Yoshinobu; Nakamura, Yoshifumi; Takeda, Shinji; Ukawa, Akira
2015-12-01
We investigate the phase structure of three-flavor QCD in the presence of finite quark chemical potential μ /T ≲1.2 by using the nonperturbatively O (a ) improved Wilson fermion action on lattices with a fixed temporal extent Nt=6 and varied spatial linear extents Ns=8 , 10, 12. Especially, we focus on locating the critical end point that characterizes the phase structure, and extracting the curvature of the critical line on the μ -mπ plane. For Wilson-type fermions, the correspondence between bare parameters and physical parameters is indirect. Hence we present a strategy to transfer the bare parameter phase structure to the physical one, in order to obtain the curvature. Our conclusion is that the curvature is positive. This implies that, if one starts from a quark mass in the region of crossover at zero chemical potential, one would encounter a first-order phase transition when one raises the chemical potential.
NLO Hierarchy of Wilson Lines Evolution
Balitsky, Ian
2015-03-01
The high-energy behavior of QCD amplitudes can be described in terms of the rapidity evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines in the next-to-leading order.
John Wilson on Moral Education.
ERIC Educational Resources Information Center
McLaughlin, Terence H.; Halstead, J. Mark
2000-01-01
Describes the approach to moral education utilized by John Wilson focusing on his claims, arguments, and conclusions. Explores eight specific topics, such as his general perspective on moral education and the meaning and nature of moral. Reports on the areas of difficulty and criticism in relation to his approach. (CMK)
Robert Wilson's Invitation to Insanity.
ERIC Educational Resources Information Center
Stephens, Judith L.
The plays of stage director Robert Wilson are devices presenting alternative modes of perception to theatre audiences accustomed to verbal/aural structures of experience. Uniting his interests in the arts and therapy, his plays create a theatrical event promoting empathy with the perceptions of the mentally or physically handicapped and…
ERIC Educational Resources Information Center
Harrison, John L.
1977-01-01
The work of John Wilson, now teaching at Oxford University, as moral educator is summarized and evaluated. His rationalist humanistic approach is based on a componential characterization of the morally educated person. The rationale and conceptual status of the components is discussed. His position is compared to that of Peter McPhail, R. S.…
Fermionization and Hubbard models
NASA Astrophysics Data System (ADS)
Dargis, P.; Maassarani, Z.
1998-12-01
We introduce a transformation which allows the fermionization of operators of any one-dimensional spin-chain. This fermionization procedure is independent of any eventual integrable structure and is compatible with it. We illustrate this method on various integrable and non-integrable chains, and deduce some general results. In particular, we fermionize XXC spin-chains and study their symmetries. Fermionic realizations of certain Lie algebras and superalgebras appear naturally as symmetries of some models. We also fermionize recently obtained Hubbard models, and obtain for the first time multispecies analogues of the Hubbard model, in their fermionic form. We comment on the conflict between symmetry enhancement and integrability of these models. Finally, the fermionic versions of the non-integrable spin-1 and spin- {3}/{2} Heisenberg chains are obtained.
Domain wall fermion quenched spectroscopy
NASA Astrophysics Data System (ADS)
Malureanu, Catalin Ionut
We measure y and the hadron spectrum on quenched ensembles using the domain wall fermion formulation. For the first time a 1/mf behavior of y for small valence masses has been observed. Our measurements of y on two different volumes of 83 x 32 and 163 x 32 at β = 5.85 suggest the behavior goes away on large enough volumes. Extensive spectrum calculations were done on 8 3 x 32 lattices at β = 5.7 and 5.85 corresponding roughly to a box size of 1.6 fm and 1.0 fm respectively. We have investigated five values of the extent of the fifth dimension Ls = 10, 16, 24, 32 and 48 with valence masses in the range 0.02 to 0.2 for the β = 5.7 ensemble and two values of Ls = 10 and 16 with valence masses in the range 0.02 to 0.08 for the β = 5.85 ensemble. Our pion remains massive in the infinite Ls extrapolation. This may be a finite volume effect. The nucleon to rho mass ratio stays constant at 1.4(1). Scaling violations for domain wall fermions are smaller roughly by a factor of four compared to the scaling violations in similar calculations done with staggered fermions.
Dynamical symmetries for fermions
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.
Creutz fermions on an orthogonal lattice
Borici, Artan
2008-10-01
In a recent paper, Creutz has given a new action describing two species of Dirac fermions with exact chiral symmetry on the lattice. This action depends on parameters which may be fixed at certain values in order to get the right continuum limit. In this letter, we elaborate more on this idea and present an action which is free of any other parameter except the fermion mass.
Dual of QCD with one adjoint fermion
Mojaza, Matin; Nardecchia, Marco; Pica, Claudio; Sannino, Francesco
2011-03-15
We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling, and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.
Dephasing time of composite fermions
Lee, P.A.; Mucciolo, E.R.
1996-09-01
We study the dephasing of fermions interacting with a fluctuating transverse-gauge field. The divergence of the imaginary part of the fermion self-energy at finite temperatures is shown to result from a breakdown of Fermi{close_quote}s golden rule due to a faster than exponential decay in time. The strong dephasing affects experiments where phase coherence is probed. This result is used to describe the suppression of Shubnikov{endash}de Haas (SdH) oscillations of composite fermions (oscillations in the conductivity near the half-filled Landau level). We find that it is important to take into account both the effect of dephasing and the mass renormalization. We conclude that while it is possible to use the conventional theory to extract an effective mass from the temperature dependence of the SdH oscillations, the resulting effective mass differs from the {ital m}{sup {asterisk}} of the quasiparticle in Fermi-liquid theory. {copyright} {ital 1996 The American Physical Society.}
Chiral perturbation theory for the Wilson lattice action
Rupak, Gautam; Shoresh, Noam
2002-01-25
The authors extend chiral perturbation theory to include linear dependence on the lattice spacing a for the Wilson action. The perturbation theory is written as a double expansion in the small quark mass m{sub q} and lattice spacing a. They present formulae for the mass and decay constant of a flavor-non-singlet meson in this scheme to order a and m{sub q}{sup 2}. The extension to the partially quenched theory is also described.
Strong Wilson polygons from the lodge of free and bound mesons
NASA Astrophysics Data System (ADS)
Bonini, Alfredo; Fioravanti, Davide; Piscaglia, Simone; Rossi, Marco
2016-04-01
Previously predicted by the S-matrix bootstrap of the excitations over the GKP quantum vacuum, the appearance of a new particle at strong coupling — formed by one fermion and one anti-fermion — is here confirmed: this two-dimensional meson shows up, along with its infinite tower of bound states, while analysing the fermionic contributions to the Operator Product Expansion (collinear regime) of the Wilson null polygon loop. Moreover, its existence, free (This term is used here as opposite to bound, thus as unbound) and bound, turns out to be a powerful idea in re-summing all the contributions (at large coupling) for a general n-gon ( n ≥ 6) to a Thermodynamic Bethe Ansatz, which is proven to be equivalent to the known one and suggests new structures for a special Y-system.
Wilson's disease: An endocrine revelation
Kapoor, Nitin; Shetty, Sahana; Thomas, Nihal; Paul, Thomas Vizhalil
2014-01-01
Wilson's disease is an inherited disorder of copper metabolism. The affected patients, who otherwise have a near normal life span, may often suffer from some potentially treatable and under recognized endocrine disorders that may hinder their quality of life. We explored previously published literature on the various endocrine aspects of this disease with their probable underlying mechanisms, highlighting the universal need of research in this area. PMID:25364683
[Wilson's disease - a case report].
Karwowska, Kornelia; Skrzypek, Julita; Chabik, Grzegorz; Członkowska, Anna; Zaborowska, Marzena; Wawrzyniak, Sławomir
2016-01-01
Wilson's disease (WD) or hepatolenticular degeneration, is a rare autosomal recessive genetic disorder caused by mutations in the Wilson disease protein (ATP7B) gene. It is characterized by impaired copper metabolism leading to its accumulation in various tissues and organs, including the liver and central nervous system, this results in the development of characteristic liver disease and neuropsychiatric symptoms. Liver symptoms usually appear during first three decades of life, while psychiatric symptoms are observed in people who are in their twenties or older. WD is one of few genetic diseases that can be effectively treated with pharmacotherapy. However, some cases, especially diagnosed late in the course of the disease, may not respond well to treatment. Here we present a case of a 22-year-old male with neurological, psychiatric and liver disease symptoms as an example of diagnostic and therapeutic challenges in patients. Wilson's disease (WD) should be considered in all patients presenting with neurological, psychiatric and liver disease symptoms especially those of young age. PMID:26891433
Haplotype studies in Wilson disease
Thomas, G.R.; Bull, P.C.; Roberts, E.A.; Cox, D.W.; Walshe, J.M. )
1994-01-01
In 51 families with Wilson disease, the authors have studied DNA haplotypes of dinucleotide repeat polymorphisms (CA repeats) in the 13q14.3 region, to examine these markers for association with the Wilson disease gene (WND). In addition to a marker (D13S133) described elsewhere, the authors have developed three new highly polymorphic markers (D13S314, D13S315, and D13S316) close to the WND locus. The authors have examined the distribution of marker alleles at the loci studied and have found that D13S314, D13S133, and D13S316 each show nonrandom distribution on chromosomes carrying the WND mutation. The authors have studied haplotypes of these three markers and have found that there are highly significant differences between WND and normal haplotypes in northern European families. These findings have important implications for mutation detection and molecular diagnosis in families with Wilson disease. 25 refs., 2 figs., 5 tabs.
Lifetime of a one-dimensional fermion
NASA Astrophysics Data System (ADS)
Khodas, Maxim; Ussishkin, Iddo; Pustilnik, Michael; Kamenev, Alex; Glazman, Leonid
2007-03-01
Interaction between fermions in one dimension is usually accounted for within the exactly solvable Tomonaga-Luttinger model. The crucial simplification made in this model is the linearization of the fermionic spectrum. That simplification leads to an infinite lifetime of a fermion at the mass shell, i.e., the corresponding Green function G(,k) diverges at ɛ=ξk. We find that inclusion of the curvature of electron spectrum, ξk=vFk+k^2/2m, yields a finite decay rate of a fermion, 1/τ(ξk)θ(k)k^8/m^3; here for definiteness we consider right-moving particles, and k is measured from the Fermi wave vector. The found finite lifetime allows one to assess the limitations of the Luttinger liquid paradigm.
Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Fermion hierarchy from sfermion anarchy
NASA Astrophysics Data System (ADS)
Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni
2014-12-01
We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. We discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.
Fermion hierarchy from sfermion anarchy
Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni
2014-12-31
We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first andmore » second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.« less
Fermion hierarchy from sfermion anarchy
Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni
2014-12-31
We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification.
Plutonium-Based Heavy-Fermion Systems
NASA Astrophysics Data System (ADS)
Bauer, E. D.; Thompson, J. D.
2015-03-01
An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat Î³, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.
Supercycles, Wilson cycles and the future of Earth's oceans
NASA Astrophysics Data System (ADS)
Duarte, Joao; Schellart, Wouter; Rosas, Filipe
2014-05-01
At the dawn of the 20th Century Alfred Wegener proposed the existence of a supercontinent - Pangaea - gathering all the continental masses on Earth. Five decades later, while seeding the theory of plate tectonics, Tuzo Wilson introduced a new concept that would become known as Wilson cycles, which describes the evolution of oceans: 1) opening and spreading, 2) foundering of the passive margins and development of new subduction zones and 3) consumption and closure. Later on, in the 70's evidences for the existence of a number of other supercontinents and ancient oceans on Earth's history started to emerge. Today, concepts like supercycles, supercontinents, superoceans and Wilson cycles are loosely used. However, several important questions remain. How do subduction zones initiate in pristine oceans? Which major ocean on Earth will close to form the next supercontinent? The Atlantic (introversion), the Pacific (extroversion), or both? Are Wilson cycles of lower order than Supercycles? Are we in an abnormally long supercycle? Is there any cyclicity at all? These are some of the questions that we will tentatively address together with the proposal of several future scenarios for the evolution of Earth's oceans and continents.
Entanglement in fermionic systems
Banuls, Mari-Carmen; Cirac, J. Ignacio; Wolf, Michael M.
2007-08-15
The anticommuting properties of fermionic operators, together with the presence of parity conservation, affect the concept of entanglement in a composite fermionic system. Hence different points of view can give rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities and the relationship between the different classes of separable states. The behavior of the various classes when taking multiple copies of a state is also studied, showing that some of the differences vanish in the asymptotic regime. In particular, in the case of only two fermionic modes all the classes become equivalent in this limit. We illustrate the differences and relations by providing a complete characterization of all the sets defined for systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose interaction corresponds to a XY Hamiltonian with transverse magnetic field.
Nucleon Axial Charge in (2+1)-Flavor Dynamical-Lattice QCD with Domain-Wall Fermions
Yamazaki, T.; Aoki, Y.; Blum, T.; Lin, H. W.; Lin, M. F.; Ohta, S.; Sasaki, S.; Tweedie, R. J.; Zanotti, J. M.
2008-05-02
We present results for the nucleon axial charge g{sub A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16{sup 3}x32 and 24{sup 3}x64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m{sub {pi}} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{sub {pi}}=330 MeV. We also find a scaling with the single variable m{sub {pi}}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{sub A}=1.20(6)(4) at the physical pion mass, m{sub {pi}}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V{>=}(2.4 fm){sup 3}. We argue this is a dynamical quark effect.
Fermion-fermion interaction in a dilute gas-mixture Bose condensate
Mogilyuk, T. I.
2011-11-15
A mixture of a one-component Bose gas and two-component Fermi gas is considered at temperatures at which the Bose gas is completely condensed. Two fermions in such a mixture can interact with each other exchanging bosons from the condensate or supercondensate. The interaction potential, a change in the effective mass, the decay, and fermion spectrum are calculated in this quantum Fermi-Bose mixture.
Implementation of the Duality between Wilson Loops and Scattering Amplitudes in QCD
Makeenko, Yuri; Olesen, Poul
2009-02-20
We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large-N (or quenched) QCD. We show that the area-law behavior of asymptotically large Wilson loops is dual to the Regge-Veneziano behavior of scattering amplitudes at high energies and fixed momentum transfer, when the quark mass is small and/or the number of particles is large. We elaborate on this duality for string theory in flat space, identifying the asymptotes of the disk amplitude and the Wilson loop of large-N QCD.
Condensation of gauge interacting massless fermions
Siringo, Fabio
2004-09-15
A single massless fermionic field with an Abelian U(1) gauge interaction (electrodynamics of a massless Dirac fermion) is studied by a variational method. Even without the insertion of any extra interaction the vacuum is shown to be unstable towards a particle-antiparticle condensate. The single particle excitations do acquire a mass and behave as massive Fermi particles. An explicit low-energy gap equation has been derived and numerically solved. Some consequences of condensation and mass generation are discussed in the framework of the standard model.
Quark seesaw, vectorlike fermions and diphoton excess
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao
2016-02-01
We present a possible interpretation of the recent diphoton excess reported by the early √{s}=13 TeV LHC data in quark seesaw left-right models with vectorlike fermions proposed to solve the strong CP problem without the axion. The gauge singlet real scalar field responsible for the mass of the vectorlike fermions has the right production cross section and diphoton branching ratio to be identifiable with the reported excess at around 750 GeV diphoton invariant mass. Various ways to test this hypothesis as more data accumulates at the LHC are proposed.
Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems
NASA Astrophysics Data System (ADS)
Svistunov, Boris
2013-03-01
In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA
Chiral perturbation theory for staggered sea quarks and Ginsparg-Wilson valence quarks
Baer, Oliver; Bernard, Claude; Rupak, Gautam; Shoresh, Noam
2005-09-01
We study lattice QCD with staggered sea and Ginsparg-Wilson valence quarks. The Symanzik effective action for this mixed lattice theory, including the lattice spacing contributions of O(a{sup 2}), is derived. Using this effective theory we construct the leading-order chiral Lagrangian. The masses and decay constants of pseudoscalars containing two Ginsparg-Wilson valence quarks are computed at one-loop order.
A possible connection between massive fermions and dark energy
Goldman, Terrance; Stephenson, G J; Alsing, P M; Mckellar, B H J
2009-01-01
In a dense cloud of massive fermions interacting by exchange of a light scalar field, the effective mass of the fermion can become negligibly small. As the cloud expands, the effective mass and the total energy density eventually increase with decreasing density. In this regime, the pressure-density relation can approximate that required for dark energy. They apply this phenomenon to the expansion of the Universe with a very light scalar field and infer relations between the parameters available and cosmological observations. Majorana neutrinos at a mass that may have been recently determined, and fermions such as the Lightest Supersymmetric Particle (LSP) may both be consistent with current observations of dark energy.
NASA Astrophysics Data System (ADS)
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT ...
GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT IN THE BACKGROUND. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
GENERAL VIEW LOOKING NORTHEAST SHOWING THE SWITCHYARD OF THE WILSON ...
GENERAL VIEW LOOKING NORTHEAST SHOWING THE SWITCHYARD OF THE WILSON DAM HYDROELECTRIC GENERATING PLANT. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL
Power divergences in overlapping Wilson lines
NASA Astrophysics Data System (ADS)
Berwein, Matthias
2016-01-01
We discuss the divergence structure of Wilson line operators with partially overlapping segments on the basis of the cyclic Wilson loop as an explicit example. The generalized exponentiation theorem is used to show the exponentiation and factorization of power divergences for certain linear combinations of associated loop functions.
John Wilson on the Necessity of Punishment.
ERIC Educational Resources Information Center
Marshall, James D.
1984-01-01
According to John Wilson, the punishment of children is logically necessary, or inevitable, and punishment is the necessary concommitant of serious education. It is argued here that Wilson has not successfully established his case for the necessity of the punishment of children. (RM)
Wilson on Kohlberg and Understanding Reasons.
ERIC Educational Resources Information Center
Nesbitt, Winston
1983-01-01
John Wilson recently criticized Kohlberg's view that at certain stages of their development children are unable to understand moral reasoning of certain kinds. It is argued here that Wilson fails to cast doubt on Kohlberg's view, because his account of what it is to understand a reason is inadequate. (Author/RM)
E. O. Wilson: Toward a Humanistic Biology.
ERIC Educational Resources Information Center
Humanist, 1982
1982-01-01
Contains speeches presented at the 1982 American Humanist Association Annual Conference. The author describes E.O. Wilson's contributions to the development of sociobiology. E.O. Wilson discusses the relationship of sociobiology to the biological and social sciences and to humanism. (AM)
STS-120 Astronaut Stephanie D. Wilson
NASA Technical Reports Server (NTRS)
2007-01-01
Attired in a training version of her shuttle launch and entry suit, astronaut Stephanie D. Wilson, STS-120 mission specialist, awaits the start of a training session in the Space Vehicle Mockup Facility at Johnson Space Center. Wilson was preparing for her launch aboard Space Shuttle Discovery which occurred on October 23, 2007.
Reflections on Wilson's "The Quiet Evolution."
ERIC Educational Resources Information Center
Greer, W. Dwaine
1999-01-01
Explores Brent Wilson's report "The Quiet Evolution: Changing the Face of Arts Education," focusing on Wilson's reformulation of discipline-based art education and the methodology of the evaluation. Examines the findings and refers to "The Quiet Evolution Executive Summary." (CMK)
Wilson's disease in an Australian aborigine.
Crawford, D H; Shepherd, R; Cooksley, W G; Patrick, M; Powell, L W
1990-01-01
Wilson's disease is due to a genetically determined defect inherited as an autosomal recessive trait. Most reported cases have been caucasoid. This report describes a case of Wilson's disease in an Australian Aboriginal girl, only the second such case reported. PMID:2129845
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
Fermions from classical statistics
Wetterich, C.
2010-12-15
We describe fermions in terms of a classical statistical ensemble. The states {tau} of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p{sub {tau}} amounts to a rotation of the wave function q{sub {tau}}(t)={+-}{radical}(p{sub {tau}}(t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.
NASA Astrophysics Data System (ADS)
Weiner, Richard M.
2010-05-01
It is conjectured that all known fermions are topological solitons. This could explain the non-observation of bosonic leptons and baryons and provide a physical mechanism for the Pauli exclusion principle.
Ab initio calculation of the neutron-proton mass difference.
Borsanyi, Sz; Durr, S; Fodor, Z; Hoelbling, C; Katz, S D; Krieg, S; Lellouch, L; Lippert, T; Portelli, A; Szabo, K K; Toth, B C
2015-03-27
The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300 kilo-electron volts, which is greater than 0 by 5 standard deviations. We also determine the splittings in the Σ, Ξ, D, and Ξcc isospin multiplets, exceeding in some cases the precision of experimental measurements. PMID:25814578
Canonical gravity with fermions
Bojowald, Martin; Das, Rupam
2008-09-15
Canonical gravity in real Ashtekar-Barbero variables is generalized to allow for fermionic matter. The resulting torsion changes several expressions in Holst's original vacuum analysis, which are summarized here. This in turn requires adaptations to the known loop quantization of gravity coupled to fermions, which is discussed on the basis of the classical analysis. As a result, parity invariance is not manifestly realized in loop quantum gravity.
In Brief: Mount Wilson centennial
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-11-01
The 60-inch reflecting telescope at Mount Wilson Observatory, in southern California, which helped scientists measure the Milky Way and determine our solar system's position within it, celebrates its 100th anniversary in December. ``The 60-inch continued the Copernican Revolution by dethroning the Sun from the center of our galaxy,'' noted observatory director Harold McAlister. The telescope, with its silver-on-glass reflectors, also established the basic design for observatory telescopes on Earth. Capable of operating in several different optical configurations, the telescope was the first one built primarily for photographic and spectrographic use. With its 5-foot-diameter mirror, the telescope was the largest in the world until 1917. The telescope is retired from active science but is made available to groups for viewing astronomical objects. The observatory was founded by astronomer George Ellery Hale under the auspices of the Carnegie Institution of Washington. For more information, visit http://www.mtwilson.edu.
Wilson's disease: An Indian perspective.
Taly, A B; Prashanth, L K; Sinha, S
2009-01-01
Wilson's disease (WD) is an autosomal recessive disease involving a defect of copper transport by the hepatic lysosomes. It leads to excess copper deposition in the liver, the brain, the kidneys and the skeletal system, affecting most commonly children or young adults and running an invariably fatal course if not adequately treated by de-coppering therapy. The last century has witnessed several changes, notable among these are: Increased awareness, improved diagnostic facilities leading to earlier recognition even in the pre-symptomatic phase, clear distinction from its mimics, aggressive therapeutic approaches owing to availability of effective treatment and an overall reduction in the morbidity and mortality. It is widely acknowledged that the disease is not as rare as once believed. Sir SAK Wilson published his landmark article in 1912, but it was only in 1968 that the first patient of WD was reported from our country. Publications from India on WD have focused on phenotypic characterization, documentations of lesser recognized aspects of the disease e.g. seizures, behavior abnormality, speech and cognitive impairment, sub-clinical affection of visual pathway, heart and autonomic function and pre-symptomatic detection. Attempts have been made to understand the clinical heterogeneity of the disease through identification of biochemical and immunological markers, magnetic resonance imaging, neuropathological study and genetic analysis for novel and/or known mutations. Assessment of impairment and severity and effect of various therapeutic interventions namely zinc sulphate on the long-term outcome and quality of life have also been studied. Nevertheless, clinicians often face difficulties in long-term care of these patients. Diagnostic errors leading to delay in diagnosis and initiation of treatment are common, even in patients with positive family history. There is no consensus regarding therapeutic protocols since the use of penicillamine, once a 'gold standard
Heavy fermion behavior explained by bosons
NASA Technical Reports Server (NTRS)
Kallio, A.; Poykko, S.; Apaja, V.
1995-01-01
Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.
Novel Fat-Link Fermion Actions
J. M. Zanotti; S. Bilson-Thompson; F. D. R. Bonnet; P. D. Coddington; D. B. Leinweber; A. G. Williams; J. B. Zhang; W. Melnitchouk; F. X. Lee
2001-07-01
The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators in the fermion action are constructed using smeared links. The simulations are performed on a 16{sup 3} x 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat-Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative 0(a) improvement.
Fermions on one or fewer kinks
Chu Yizen; Vachaspati, Tanmay
2008-01-15
We find the full spectrum of fermion bound states on a Z{sub 2} kink. In addition to the zero mode, there are int[2m{sub f}/m{sub s}] bound states, where m{sub f} is the fermion and m{sub s} the scalar mass. We also study fermion modes on the background of a well-separated kink-antikink pair. Using a variational argument, we prove that there is at least one bound state in this background, and that the energy of this bound state goes to zero with increasing kink-antikink separation, 2L, and faster than e{sup -a2L} where a=min(m{sub s},2m{sub f}). By numerical evaluation, we find some of the low lying bound states explicitly.
The Virtues in John Wilson's Approach to Moral Education.
ERIC Educational Resources Information Center
Tobin, Bernadette
2000-01-01
Explores John Wilson's ideas on moral education, arguing against Wilson's criticism of virtue theory. Evaluates Wilson's account of moral education from the perspective of a neo-Aristotelian sense of morality and moral development. Focuses on a part of Wilson's work, "A New Introduction to Moral Education." (CMK)
Cusped Wilson lines in symmetric representations
NASA Astrophysics Data System (ADS)
Correa, Diego H.; Massolo, Fidel I. Schaposnik; Trancanelli, Diego
2015-08-01
We study the cusped Wilson line operators and Bremsstrahlung functions associated to particles transforming in the rank- k symmetric representation of the gauge group U( N) for super Yang-Mills. We find the holographic D3-brane description for Wilson loops with internal cusps in two different limits: small cusp angle and . This allows for a non-trivial check of a conjectured relation between the Bremsstrahlung function and the expectation value of the 1/2 BPS circular loop in the case of a representation other than the fundamental. Moreover, we observe that in the limit of k ≫ N, the cusped Wilson line expectation value is simply given by the exponential of the 1-loop diagram. Using group theory arguments, this eikonal exponentiation is conjectured to take place for all Wilson loop operators in symmetric representations with large k, independently of the contour on which they are supported.
NASA Planetary Scientist Profile Emily Wilson
NASA scientist Emily Wilson discusses her work developing miniaturized instruments that measure greenhouse gases in the atmosphere. Her latest instrument, the mini-LHR, works in tandem with AERONET...
NASA Astrophysics Data System (ADS)
Marino, Eduardo
The electron, discovered by Thomson by the end of the nineteenth century, was the first experimentally observed particle. The Weyl fermion, though theoretically predicted since a long time, was observed in a condensed matter environment in an experiment reported only a few weeks ago. Is there any linking thread connecting the first and the last observed fermion (quasi)particles? The answer is positive. By generalizing the method known as bosonization, the first time in its full complete form, for a spacetime with 3+1 dimensions, we are able to show that both electrons and Weyl fermions can be expressed in terms of the same boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The bosonized form of the Weyl chiral currents lead to the angle-dependent magneto-conductance behavior observed in these systems.
Bonus symmetry for super Wilson loops
NASA Astrophysics Data System (ADS)
Münkler, Hagen
2016-05-01
The Yangian level-one hypercharge generator for the super Wilson loop in { N }=4 supersymmetric Yang-Mills theory is constructed. Moreover, evidence for the presence of a corresponding symmetry generator at all higher levels is provided. The derivation is restricted to the strong-coupling description of the super Wilson loop and based on the construction of novel conserved charges for type IIB superstrings on {{AdS}}5× {{{S}}}5.
Renormalization constants for 2-twist operators in twisted mass QCD
Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.
Fermion boson metamorphosis in field theory
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered.
Polarization of massive fermions in a vortical fluid
NASA Astrophysics Data System (ADS)
Fang, Ren-hong; Pang, Long-gang; Wang, Qun; Wang, Xin-nian
2016-08-01
Fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization can be calculated from the Wigner function in a quantum kinetic approach. By extending previous results for chiral fermions, we derive the Wigner function for massive fermions up to next-to-leading order in spatial gradient expansion. The polarization density of fermions can be calculated from the axial vector component of the Wigner function and is found to be proportional to the local vorticity ω . The polarizations per particle for fermions and antifermions decrease with the chemical potential and increase with energy (mass). Both quantities approach the asymptotic value ℏ ω /4 in the large energy (mass) limit. The polarization per particle for fermions is always smaller than that for antifermions, whose ratio of fermions to antifermions also decreases with the chemical potential. The polarization per particle on the Cooper-Frye freeze-out hypersurface can also be formulated and is consistent with the previous result of Becattini et al.
Two-dimensional thermofield bosonization II: Massive fermions
Amaral, R.L.P.G.
2008-11-15
We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model.
Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
NASA Astrophysics Data System (ADS)
Coakley, B.
2001-12-01
While the steady state tectonics of subduction are reasonably well understood, the initiation of subduction is not. Theoretical and modeling studies of subduction initiation require large, sustained in-plane stresses to break the continuous oceanic plate and drive the slab into the mantle before a new subduction zone can be self-sustaining. These studies have identified sediment loading and old, dense oceanic lithosphere associated with passive margins as factors favoring the localization of subduction. Old oceanic lithosphere is also quite strong, increasing the stress necessary to break the plate, making passive margins less appealing as a locale for initiation. In contrast to breaking the plate in-plane, a subduction zone could grow laterally, by crack propagation, extending to join a passive margin. "Primed" by the bouyancy flux of the pre-existing subduction zone, progressive failure along a passive continental margin would disrupt the oceanic lithosphere and become self-sustaining as the dense plate sank into the mantle, accelerating the tear. The Caribbean plate provides an example of how a micro-plate might nucleate a subduction zone through stress concentration. As the Caribbean plate advanced, the subduction zone at its leading, eastern edge was progressively channeled to the south as first Cuba and then Hispanola were jammed against the Bahamas platform. The Antilles arc is the current site of active subduction. The Caribbean plate is being over-ridden at the Muertos trough, south of Puerto Rico, and at the northern limit of South America and is over-riding the Pacific plate on the west and the North American plate on the east. The Caribbean plate is pinned between the three surrounding plates, which may provide the necessary stress concentration which could lead to the development of a new active margin on the East coast of North America. Wilson cycle tectonics, as seen in the Phanerozoic history of North Atlantic passive margins, require that passive
Benjamin, Doug; /Tufts U.
2011-08-01
We combine results from searches by the CDF and D0 Collaborations for a standard model Higgs boson (H) in the processes gg {yields} H {yields} W{sup +}W{sup -} and gg {yields} H {yields} ZZ in p{bar p} collisions at the Fermilab Tevatron Collider at {radical}s = 1.96 TeV. With 8.2 fb{sup -1} of integrated luminosity analyzed at CDF and 8.1 fb{sup -1} at D0, the 95% C.L. upper limit on {sigma}(gg {yields} H) x {Beta}(H {yields} W{sup +}W{sup -}) is 1.01 pb at m{sub H} = 120 GeV, 0.40 pb at m{sub H} = 165 GeV, and 0.47 pb at m{sub H} = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 124 and 286 GeV.
Wilson loops in supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Pestun, Vasily
This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.
Fermion tunneling from dynamical horizons
NASA Astrophysics Data System (ADS)
Di Criscienzo, R.; Vanzo, L.
2008-06-01
The instability against emission of fermionic particles by the trapping horizon of an evolving black hole is analyzed and confirmed using the Hamilton-Jacobi tunneling method. This method automatically selects one special expression for the surface gravity of a changing horizon. The results also apply to point masses embedded in an expanding universe. As a bonus of the tunneling method, we gain the insight that the surface gravity still defines a temperature parameter as long as the evolution is sufficiently slow that the black-hole pass through a sequence of quasi-equilibrium states, and that black holes should be semi-classically unstable even in a hypothetical world without bosonic fields.
Observation of Weyl fermions in condensed matter
NASA Astrophysics Data System (ADS)
Ding, Hong
In 1929, a German mathematician and physicist Hermann Weyl proposed that a massless solution of the Dirac equation represents a pair of new type of particles, the so-called Weyl fermions. However, their existence in particle physics remains elusive after more than eight decades, e.g., neutrino has been regarded as a Weyl fermion in the Standard Model until it was found to have mass. Recently, significant advances in topological materials have provided an alternative way to realize Weyl fermions in condensed matter as an emergent phenomenon. Weyl semimetals are predicted as a class of topological materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave exactly as Weyl fermions, which have many exotic properties, such as chiral anomaly, magnetic monopoles in the crystal momentum space, and open Fermi arcs on the surface. In this talk I will report our experimental discovery of a Weyl semimetal in TaAs by observing Fermi arcs with a characteristic spin texture in the surface states and Weyl nodes in the bulk states using angle-resolved photoemission spectroscopy.
Schaefer, Mark; Schellenberg, Mavi; Merle, Uta; Weiss, Karl Heinz; Stremmel, Wolfgang
2008-01-01
Background In Wilson disease, copper is not sufficiently excreted into bile due to the absence or malfunction of the Wilson protein copper ATPase in the excretory pathway of hepatocytes. Copper is found in sweat. It is unknown if the Wilson protein plays a role in copper excretion into sweat. It is the aim of this study to investigate Wilson protein expression in sweat glands and analysing its effects on copper excretion into sweat in controls and patients with Wilson disease. Methods Immunofluorescent analysis of the Wilson protein in skin samples from normal rat, LEC rat and human skin biopsies were performed. Pilocarpin-induced sweat gland stimulation by iontophoretic transfer adapted from the methods used for cystic fibrosis sweat test was used for sweat induction. Sweat volume, sweat copper concentration, serum ceruloplasmin and serum copper were analysed in 28 Wilson patients and 21 controls. Results The Wilson protein is expressed in human and rat sweat gland epithelia. Copper concentration in sweat is not significantly different between controls and Wilson patients. Wilson patients produce significantly smaller volumes of sweat compared to controls. Sweat production is partially reversible in Wilson patients under medical treatment for Wilson disease or after liver transplantation Conclusion Wilson patients show a reduced sweat production with unaltered sweat copper concentration. The Wilson protein might play an important role in physiological sweat production. PMID:18637198
Torus Knot Polynomials and Susy Wilson Loops
NASA Astrophysics Data System (ADS)
Giasemidis, Georgios; Tierz, Miguel
2014-12-01
We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987), a basic hypergeometric representation of the HOMFLY polynomial of ( n, m) torus knots, and present a number of equivalent expressions, all related by Heine's transformations. Using this result, the symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang-Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang-Mills theory, which is known to give averages of Wilson loops in = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones-Rosso representation in terms of q-harmonic oscillators.
Mowat-Wilson syndrome affecting 3 siblings.
Ohtsuka, Motoko; Oguni, Hirokazu; Ito, Yasushi; Nakayama, Tomohiro; Matsuo, Mari; Osawa, Makiko; Saito, Kayoko; Yamada, Yasukazu; Wakamatsu, Nobuaki
2008-03-01
We herein report 3 cases of Mowat-Wilson syndrome, characterized by distinct facial features, severe psychomotor retardation, and epilepsy, recurring in 3 siblings from the same parents. The proband was a 15-month-old boy, the youngest of 3 children (2 elder sisters), who was referred to our hospital for the treatment of severe seizures. The clinical features and course of these 3 siblings were compatible with those of previously reported Mowat-Wilson syndrome patients, and all siblings had the same E87X nonsense mutation in ZFHX1B, whereas their mother did not show the mutation. Because Mowat-Wilson syndrome has been caused by de novo mutation in ZFHX1B, germ-line mosaicism should be considered if recurrence in siblings is observed. PMID:18230842
Wilson surface observables from equivariant cohomology
NASA Astrophysics Data System (ADS)
Alekseev, Anton; Chekeres, Olga; Mnev, Pavel
2015-11-01
Wilson lines in gauge theories admit several path integral descriptions. The first one (due to Alekseev-Faddeev-Shatashvili) uses path integrals over coadjoint orbits. The second one (due to Diakonov-Petrov) replaces a 1-dimensional path integral with a 2-dimensional topological σ-model. We show that this σ-model is defined by the equivariant extension of the Kirillov symplectic form on the coadjoint orbit. This allows to define the corresponding observable on arbitrary 2-dimensional surfaces, including closed surfaces. We give a new path integral presentation of Wilson lines in terms of Poisson σ-models, and we test this presentation in the framework of the 2-dimensional Yang-Mills theory. On a closed surface, our Wilson surface observable turns out to be nontrivial for G non-simply connected (and trivial for G simply connected), in particular we study in detail the cases G=U(1) and G=SO(3).
Xu Feng, Grit Hotzel, Karl Jansen, Marcus Petschlies, Dru B. Renner
2012-12-01
We present the first four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub {mu}}{sup hvp}, and the hadronic running of the QED coupling constant, {Delta}{alpha}{sup hvp}{sub QED}(Q{sup 2}). In the heavy sector a mixed-action setup is employed. The bare quark masses are determined from matching the K- and D-meson masses to their physical values. Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass by utilising a recently proposed improved method. We demonstrate that this method also works in the four-flavour case.
Microscopic Spectrum of the Wilson Dirac Operator
Damgaard, P. H.; Splittorff, K.; Verbaarschot, J. J. M.
2010-10-15
We calculate the leading contribution to the spectral density of the Wilson Dirac operator using chiral perturbation theory where volume and lattice spacing corrections are given by universal scaling functions. We find analytical expressions for the spectral density on the scale of the average level spacing, and introduce a chiral random matrix theory that reproduces these results. Our work opens up a novel approach to the infinite-volume limit of lattice gauge theory at finite lattice spacing and new ways to extract coefficients of Wilson chiral perturbation theory.
Theoretical Foundation for the Index Theorem on the Lattice with Staggered Fermions
Adams, David H.
2010-04-09
A way to identify the would-be zero modes of staggered lattice fermions away from the continuum limit is presented. Our approach also identifies the chiralities of these modes, and their index is seen to be determined by gauge field topology in accordance with the index theorem. The key idea is to consider the spectral flow of a certain Hermitian version of the staggered Dirac operator. The staggered fermion index thus obtained can be used as a new way to assign the topological charge of lattice gauge fields. In a numerical study in U(1) backgrounds in two dimensions it is found to perform as well as the Wilson index while being computationally more efficient. It can also be expressed as the index of an overlap Dirac operator with a new staggered fermion kernel.
FACILITY 859, DETAIL OF SOUTHWEST SIDE (WILSON STREET SIDE), SHOWING ...
FACILITY 859, DETAIL OF SOUTHWEST SIDE (WILSON STREET SIDE), SHOWING CHEVRON DESIGN OVER FORMER PASSAGEWAY, VIEW FACING NORTHEAST. - Schofield Barracks Military Reservation, Quadrangle K Barracks Type, Between Wilson Street & Capron Avenue near Williston Avenue, Wahiawa, Honolulu County, HI
Spectrum of the Wilson Dirac operator at finite lattice spacings
Akemann, G.; Damgaard, P. H.; Splittorff, K.; Verbaarschot, J. J. M.
2011-04-15
We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energy constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.
Non-relativistic metrics from back-reacting fermions
NASA Astrophysics Data System (ADS)
Hung, Ling-Yan; Jatkar, Dileep P.; Sinha, Aninda
2011-01-01
It has recently been pointed out that under certain circumstances the back-reaction of charged, massive Dirac fermions causes important modifications to AdS2 spacetimes arising as the near-horizon geometry of extremal black holes. In a WKB approximation, the modified geometry becomes a non-relativistic Lifshitz spacetime. In three dimensions, it is known that integrating out charged, massive fermions gives rise to gravitational and Maxwell Chern-Simons terms. We show that Schrödinger (warped AdS3) spacetimes exist as solutions to a gravitational and Maxwell Chern-Simons theory with a cosmological constant. Motivated by this, we look for warped AdS3 or Schrödinger metrics as exact solutions to a fully back-reacted theory containing Dirac fermions in three and four dimensions. We work out the dynamical exponent in terms of the fermion mass and generalize this result to arbitrary dimensions.
An Interview with Artist Fred Wilson
ERIC Educational Resources Information Center
Graham, Mark A.
2007-01-01
The medium of artist Fred Wilson is the museum. He delves deep into museum collections to expose unexamined assumptions about power, place, privilege, and history. His installations include wall labels, educational materials, lighting, and non-traditional pairings of objects. His work is not only about the objects on display, but about how the…
H. W. Wilson "Nonbook Materials Core Collection"
ERIC Educational Resources Information Center
Harper, Meghan
2009-01-01
The "Nonbook Materials Core Collection" is one of H. W. Wilson's new subscription-based electronic core collection development databases. It is a new addition to the five-volume core collection series formerly known as the "Standard Catalog Series." Other titles in this series have long been staples of collection development resources for both…
Genetics Home Reference: Mowat-Wilson syndrome
... my area? Other Names for This Condition Hirschsprung disease-mental retardation syndrome microcephaly, mental retardation, and distinct facial ... A. "Mowat-Wilson" syndrome with and without Hirschsprung disease is a distinct, ... anomalies-mental retardation syndrome caused by mutations in the zinc ...
Cora Wilson Stewart: Crusader against Illiteracy.
ERIC Educational Resources Information Center
Nelms, Willie
This book is a biography of Cora Wilson Stewart, a Rowan County, Kentucky, school superintendent who rose to prominence with the establishment of the Moonlight Schools for adults with low literacy levels in 1911. It presents the details of her Kentucky crusade against illiteracy, then examines the personal part of her life as well as her later…
The Cora Wilson Stewart Moonlight Schoolhouse
ERIC Educational Resources Information Center
Rose, Harold; Curtis, Mike
1974-01-01
Describes the establishment of adult education programs on "moonlit nights" by Cora Wilson Stewart, Superintendent of Rowan County Schools in Kentucky (1904-1912). Over 1,200 adults signed up the first year to take such courses as vocal music, reading, writing, spelling, arithmetic, and drills. From this activity the Illiteracy Commission…
Mission Concepts to 4015 Wilson-Harrington
NASA Astrophysics Data System (ADS)
Sollitt, L. S.; Kroening, K.; Malmstrom, R.; Segura, T.; Spittler, C.
2009-03-01
We present a number of different architectures for mission concepts to 4015 Wilson-Harrington, a body which exhibits features of both comets and asteroids. We examine orbiter/lander missions as well as sample return missions, in different size classes.
BEACON: H. W. Wilson's Computerized Information System.
ERIC Educational Resources Information Center
McCarn, Davis B.; McCarn, Grace H.
1983-01-01
Describes ongoing project to automate production of 26 indexes and catalogs produced by H. W. Wilson Company through use of the BEACON system and its online screen-edit program, SCREED. System objectives, system architecture, specifications, components (data entry, validation, release, file generation, retrieval, publication, photocomposition,…
Ten Misconceptions about the Wilson College Case.
ERIC Educational Resources Information Center
Clarkson, Elisabeth Hudnut
1980-01-01
Some misconceptions about the Wilson College Case are discussed, including: the case did not become precedent in law because the degree was superceded by a consent decree; the judge was not a villain; the college was not bankrupt; and the old board did not act wisely. (Author/MLW)
Wilson disease and canine copper toxicosis.
Brewer, G J
1998-05-01
In this article we review the current clinical and research status of Wilson disease and canine copper toxicosis. One of the main clinical challenges in Wilson disease is for clinicians to recognize the possibility of Wilson disease when young patients present with liver disease, psychiatric disease, or a movement-disorder type of neurologic disease. Once the possibility of the disease is recognized, many copper-related tests are available that are quite accurate in making the diagnosis or ruling it out. It is important to remember that this is an inherited disease and that family members at risk should be screened, particularly siblings. The cloning of the Wilson disease gene opened up the possibility that a direct DNA test could be developed, allowing convenient screening of certain patients and family members. However, the large number of mutations already found, with no small set of mutations dominating the picture, have thwarted this approach. Once the diagnosis has been made, a variety of treatments are available. For maintenance therapy, therapy of presymptomatic patients, and therapy of pregnant patients, we use zinc. For initial therapy of patients with liver disease, we use a combination of zinc and trientine. For initial therapy of patients with neurologic disease we use tetrathiomolybdate. Canine copper toxicosis in Bedlington terriers is due to a gene different from the gene for Wilson disease. However, the disease is treatable with the same array of anticopper therapies that work in humans. Recently, we established linkage of the copper toxicosis gene to a microsatellite marker, which has made available a linkage test to breeders of Bedlington terriers. PMID:9587157
NASA Astrophysics Data System (ADS)
Constantinou, Martha; Dimopoulos, Petros; Frezzotti, Roberto; Lubicz, Vittorio; Panagopoulos, Haralambos; Skouroupathis, Apostolos; Fotos Stylianou
2011-04-01
In this work we calculate the corrections to the amputated Green’s functions of four-fermion operators, in 1-loop lattice perturbation theory. One of the novel aspects of our calculations is that they are carried out to second order in the lattice spacing, O(a2). We employ the Wilson/clover action for massless fermions (also applicable for the twisted mass action in the chiral limit) and a family of Symanzik improved actions for gluons. Our calculations have been carried out in a general covariant gauge. Results have been obtained for several popular choices of values for the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). While our Green’s function calculations regard any pointlike four-fermion operators which do not mix with lower dimension ones, we pay particular attention to ΔF=2 operators, both parity conserving and parity violating (F stands for flavor: S, C, B). By appropriately projecting those bare Green’s functions we compute the perturbative renormalization constants for a complete basis of four-fermion operators and we study their mixing pattern. For some of the actions considered here, even O(a0) results did not exist in the literature to date. The correction terms which we calculate (along with our previous O(a2) calculation of ZΨ [M. Constantinou, V. Lubicz, H. Panagopoulos, and F. Stylianou, J. High Energy Phys.JHEPFG1029-8479 10 (2009) 064.10.1088/1126-6708/2009/10/064][M. Constantinou, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, H. Panagopoulos, G. C. Rossi, S. Simula, F. Stylianou, and A. Vladikas, J. High Energy Phys.JHEPFG1029-8479 08 (2010) 068.10.1007/JHEP08(2010)068][C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou (unpublished).]) are essential ingredients for minimizing the lattice artifacts which are present in nonperturbative evaluations of renormalization constants with the RI'-MOM method. Our perturbative results, for the matrix elements of
Constantinou, Martha; Panagopoulos, Haralambos; Skouroupathis, Apostolos; Stylianou, Fotos; Dimopoulos, Petros; Frezzotti, Roberto
2011-04-01
In this work we calculate the corrections to the amputated Green's functions of four-fermion operators, in 1-loop lattice perturbation theory. One of the novel aspects of our calculations is that they are carried out to second order in the lattice spacing, O(a{sup 2}). We employ the Wilson/clover action for massless fermions (also applicable for the twisted mass action in the chiral limit) and a family of Symanzik improved actions for gluons. Our calculations have been carried out in a general covariant gauge. Results have been obtained for several popular choices of values for the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). While our Green's function calculations regard any pointlike four-fermion operators which do not mix with lower dimension ones, we pay particular attention to {Delta}F=2 operators, both parity conserving and parity violating (F stands for flavor: S, C, B). By appropriately projecting those bare Green's functions we compute the perturbative renormalization constants for a complete basis of four-fermion operators and we study their mixing pattern. For some of the actions considered here, even O(a{sup 0}) results did not exist in the literature to date. The correction terms which we calculate (along with our previous O(a{sup 2}) calculation of Z{sub {Psi}}[M. Constantinou, V. Lubicz, H. Panagopoulos, and F. Stylianou, J. High Energy Phys. 10 (2009) 064.][M. Constantinou, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, H. Panagopoulos, G. C. Rossi, S. Simula, F. Stylianou, and A. Vladikas, J. High Energy Phys. 08 (2010) 068.][C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou (unpublished).]) are essential ingredients for minimizing the lattice artifacts which are present in nonperturbative evaluations of renormalization constants with the RI{sup '}-MOM method. Our perturbative results, for the matrix elements of {Delta}F=2 operators and for the corresponding
A closer look at the elementary fermions
Goldhaber, Maurice
2002-01-01
Although there have been many experimental and theoretical efforts to measure and interpret small deviations from the standard model of particle physics, the gap that the model leaves in understanding why there are only three generations of the elementary fermions, with hierarchical masses, has not received the attention it deserves. I present here an attempt to fill this gap. Although our findings are mostly only qualitative, they nevertheless may be of heuristic value. Rules concerning the elementary fermions, some previously known and some new, lead to a number of conclusions and questions that seem worth pursuing. Some clarify the standard model, and others suggest possible modifications, the implications of which are discussed. PMID:11773637
Nature of the Roberge-Weiss transition end points in two-flavor lattice QCD with Wilson quarks
NASA Astrophysics Data System (ADS)
Wu, Liang-Kai; Meng, Xiang-Fei
2013-05-01
We make simulations with 2 flavor Wilson fermions to investigate the nature of the end points of Roberge-Weiss (RW) first order phase transition lines. The simulations are carried out at 9 values of the hopping parameter κ ranging from 0.155 to 0.198 on different lattice spatial volume. The Binder cumulants, susceptibilities, and reweighted distributions of the imaginary part of the Polyakov loop are employed to determine the nature of the end points of RW transition lines. The simulations show that the RW end points are of first order at the values of κ in our simulations.
Nucleon Resonances from FLIC Fermions
Derek Leinweber; J. Hedditch; Wally Melnitchouk; Anthony Williams
2003-01-01
The Fat Link Irrelevant Glover (FL1C) fermion action and its associated phenomenology is described. The scaling analysis indicates FLIC fermions provide a new form of nonperturbative O(a) improvement where near-continuum results are obtained at finite lattice spacing spin-1/2 and spin-3/2 , even and odd parity nucleon resonances are investigated.
Hou Defu; Liu, James T.; Ren Haicang
2009-08-15
We examine the one-loop partition function describing the fluctuations of the superstring in a Schwarzschild-AdS{sub 5}xS{sup 5} background. On the bosonic side, we demonstrate the one-loop equivalence of the Nambu-Goto action and the Polyakov action for a general world sheet, while on the fermionic side, we consider the reduction of the ten-dimensional Green-Schwarz fermion action to a two-dimensional world sheet action. We derive the partition functions of the world sheets corresponding to both straight and parallel Wilson lines. We discuss the cancellation of the UV divergences of the functional determinants in the thermal AdS background.
Gauge covariant fermion propagator in quenched, chirally symmetric quantum electrodynamics
Roberts, C.D.; Dong, Z.; Munczek, H.J.
1995-08-01
The chirally symmetric solution of the massless, quenched, Dyson-Schwinger equation (DSE) for the fermion propagator in three- and four-dimensional quantum electrodynamics was obtained. The DSEs are a valuable nonperturbative tool for studying field theories. In recent years a good deal of progress was made in addressing the limitations of the DSE approach in the study of Abelian gauge theories. Key to this progress is an understanding of the role of the dressed fermion/gauge-boson vertex in ensuring gauge covariance and multiplicative renormalizability of the solution of the fermion DSE. The solutions we obtain are manifestly gauge covariant and a general gauge covariance constraint on the fermion/gauge-boson vertex is presented, which motivates a vertex Ansatz that, for the first time, both satisfies the Ward identity when the fermion self-mass is zero and ensures gauge covariance of the fermion propagator. This research facilitates gauge-invariant, nonperturbative studies of continuum quantum electrodynamics and has already been used by others in studies of the chiral phase transition.
Bloch state tomography using Wilson lines
NASA Astrophysics Data System (ADS)
Li, Tracy; Duca, Lucia; Reitter, Martin; Grusdt, Fabian; Demler, Eugene; Endres, Manuel; Schleier-Smith, Monika; Bloch, Immanuel; Schneider, Ulrich
2016-05-01
Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single- and multiband Chern and Z2 numbers.
Bloch state tomography using Wilson lines.
Li, Tracy; Duca, Lucia; Reitter, Martin; Grusdt, Fabian; Demler, Eugene; Endres, Manuel; Schleier-Smith, Monika; Bloch, Immanuel; Schneider, Ulrich
2016-05-27
Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single- and multiband Chern and Z₂ numbers. PMID:27230376
Revisiting Wilson loops for nonrelativistic backgrounds
NASA Astrophysics Data System (ADS)
Araujo, Thiago R.
2015-12-01
We consider several configurations that describe Wilson loops in nonrelativistic field theories, and for some of them we find systems of coupled nonlinear differential equations. Also, we find a nontrivial drag force at zero temperature, which suggests that the parameter controlling the deviation of the nonrelativistic space from the relativistic space may be related to the chemical potential of these systems. Moreover, we reconsider some known configurations in the literature and we perform further analysis.
Vitesses radiales - catalogue WEB: Wilson Evans Batten.
NASA Astrophysics Data System (ADS)
Duflot, M.; Figon, P.; Meyssonnier, N.
Les auteurs ont réuni, en une seule version, les catalogues de vitesses radiales moyennes de Wilson (1963) et de Evans (1978), qui ont de nombreuses étoiles en commun. Les étoiles doubles spectroscopiques, dont l'orbite est déterminée (catalogue de Batten et al. 1989), ont également été associées à ce travail.
Wilson loops and Riemann theta functions II
NASA Astrophysics Data System (ADS)
Kruczenski, Martin; Ziama, Sannah
2014-05-01
In this paper we extend and simplify previous results regarding the computation of Euclidean Wilson loops in the context of the AdS/CFT correspondence, or, equivalently, the problem of finding minimal area surfaces in hyperbolic space (Euclidean AdS3). If the Wilson loop is given by a boundary curve( s) we define, using the integrable properties of the system, a family of curves ( λ, s) depending on a complex parameter λ known as the spectral parameter. This family has remarkable properties. As a function of λ, ( λ, s) has cuts and therefore is appropriately defined on a hyperelliptic Riemann surface, namely it determines the spectral curve of the problem. Moreover, ( λ, s) has an essential singularity at the origin λ = 0. The coefficients of the expansion of ( λ, s) around λ = 0, when appropriately integrated along the curve give the area of the corresponding minimal area surface. Furthermore we show that the same construction allows the computation of certain surfaces with one or more boundaries corresponding to Wilson loop correlators. We extend the area formula for that case and give some concrete examples. As the main example we consider a surface ending on two concentric circles and show how the boundary circles can be deformed by introducing extra cuts in the spectral curve.
[MRT of the liver in Wilson's disease].
Vogl, T J; Steiner, S; Hammerstingl, R; Schwarz, S; Kraft, E; Weinzierl, M; Felix, R
1994-01-01
To show that Wilson's disease is one likely cause of multiple low-intensity nodules of the liver we obtained MR images in 16 patients with clinically and histopathologically confirmed Wilson's disease. Corresponding to morphological changes MRI enabled the subdivision of the patients into two groups. Using a T2-weighted spin-echo sequence (TR/TE = 2000/45-90) liver parenchyma showed multiple tiny low-intensity-nodules surrounded by high-intensity septa in 10 out of 16 patients. 5 patients had also low-intensity nodules in T1-weighted images (TR/TE = 600/20). In patients of this group histopathology revealed liver cirrhosis (n = 7) and fibrosis (n = 2). Common feature of this patient group was marked inflammatory cell infiltration into fibrous septa, increase of copper concentration in liver parenchyma and distinct pathological changes of laboratory data. In the remaining 6 patients no pathological change of liver morphology was demonstrated by MRI corresponding to slight histopathological changes of parenchyma and normal laboratory data. As low-intensity nodules surrounded by high intensity septa can be demonstrated in patients with marked inflammatory infiltration of liver parenchyma MRI may help to define Wilson patients with poorer prognosis. In patients with low-intensity nodules of the liver and unknown cause of liver cirrhosis laboratory data and histopathology should be checked when searching for disorders of copper metabolism. PMID:8305691
Magnetoelectric effects in heavy-fermion superconductors without inversion symmetry
NASA Astrophysics Data System (ADS)
Fujimoto, Satoshi
2005-07-01
We investigate the effects of strong electron correlation on magnetoelectric transport phenomena in noncentrosymmetric superconductors with particular emphasis on its application to the recently discovered heavy-fermion superconductor CePt3Si . Taking into account electron correlation effects in a formally exact way, we obtain the expression of the magnetoelectric coefficient for the Zeeman-field-induced paramagnetic supercurrent, the existence of which was predicted more than a decade ago. It is found that in contrast to the usual Meissner current, which is much reduced by the mass renormalization factor in the heavy-fermion state, the paramagnetic supercurrent is not affected by the Fermi liquid effect. This result implies that the experimental observation of the magnetoelectric effect is more feasible in heavy-fermion systems than that in conventional metals with moderate effective mass.
Unlocking fermionic mode entanglement
NASA Astrophysics Data System (ADS)
Friis, Nicolai
2016-06-01
Aside from other puzzling features of entanglement, it has been debated whether a physically meaningful notion of entanglement requires two (or more) particles as carriers of the correlated degrees-of-freedom, or if a single particle could be considered to be entangled as well. While the usefulness of single-boson entanglement has been demonstrated some time ago, the restrictions of superselection rules have previously thwarted attempts at similar arguments for single fermions. In Dasenbrook et al (2016 New J. Phys. 18 043036) this obstacle is overcome. The authors propose a scheme for a Bell test on two copies of single-electron states whose entanglement is individually not accessible. The discussed scheme, which makes use of recent progress in electronic quantum optics, provides an experimentally viable and theoretically unambiguous way to assert that certain single-electron states can be considered to be entangled.
Open fermionic quantum systems
Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )
1993-01-15
A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.
Excited Baryons from the FLIC Fermion Action
Melnitchouk, Wally; Hedditch, J N; Leinweber, D B; Williams, A G; Zanoti, J; Zhang, J B
2002-06-01
Masses of positive and negative parity excited nucleons and hyperons are calculated in quenched lattice QCD using an order (a{sup 2}) improved gluon action and a fat-link clover fermion action in which only the irrelevant operators are constructed with fat links. The results are in agreement with earlier N* simulations with improved actions, and exhibit a clear mass splitting between the nucleon and its parity partner, as well as a small mass splitting between the low-lying J{sup P}=1/2{sup -}N* states. Study of different Lambda interpolating fields suggests a similar splitting between the lowest two 1/2{sup -}Lambda* states, although the empirical mass suppression of the Lambda*(1405) is not seen.
Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions
DeGrand, Thomas
2009-12-01
The observed slow running of the gauge coupling in SU(3) lattice gauge theory with two flavors of color sextet fermions naturally suggests it is a theory with one relevant coupling, the fermion mass, and that at zero mass correlation functions decay algebraically. I perform a finite-size scaling study on simulation data at two values of the bare gauge coupling with this assumption and observe a common exponent for the scaling of the correlation length with the fermion mass, y{sub m}{approx}1.5. An analysis of the scaling of valence Dirac eigenvalues at one of these bare couplings produces a similar number.
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. For the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.
Estimating the unquenched strange quark mass from the lattice axial Ward identity
Goeckeler, M.; Horsley, R.; Zanotti, J.M.; Irving, A.C.; Rakow, P.E.L.; Pleiter, D.; Schierholz, G.; Stueben, H.
2006-03-01
We present a determination of the strange quark mass for two flavors (n{sub f}=2) of light dynamical quarks using the axial Ward identity. The calculations are performed on the lattice using O(a) improved Wilson fermions and include a fully nonperturbative determination of the renormalization constant. In the continuum limit we find m{sub s}{sup MS}(2 GeV)=111(6)(4)(6) MeV, using the force scale r{sub 0}=0.467 fm, where the first error is statistical, the second and third are systematic due to the fit and scale uncertainties, respectively. Results are also presented for the light quark mass and the chiral condensate. The corresponding results are also given for r{sub 0}=0.5 fm.
ρ and K* resonances on the lattice at nearly physical quark masses and Nf=2
NASA Astrophysics Data System (ADS)
Bali, Gunnar S.; Collins, Sara; Cox, Antonio; Donald, Gordon; Göckeler, Meinulf; Lang, C. B.; Schäfer, Andreas; RQCD Collaboration
2016-03-01
Working with a pion mass mπ≈150 MeV , we study π π and K π scattering using two flavors of nonperturbatively improved Wilson fermions at a lattice spacing a ≈0.071 fm . Employing two lattice volumes with linear spatial extents of Ns=48 and Ns=64 points and moving frames, we extract the phase shifts for p -wave π π and K π scattering near the ρ and K* resonances. Comparing our results to those of previous lattice studies, that used pion masses ranging from about 200 MeV up to 470 MeV, we find that the coupling gρ π π appears to be remarkably constant as a function of mπ.
Heavy fermion nondecoupling effects in triple gauge boson vertices
NASA Astrophysics Data System (ADS)
Dedes, Athanasios; Suxho, Kristaq
2012-05-01
Within a spontaneously broken gauge group we carefully analyze and calculate triple gauge boson vertices dominated by triangle one-loop Feynman diagrams involving heavy fermions compared to external momenta and gauge boson masses. We perform our calculation strictly in four dimensions and derive a general formula for the off-shell, one-particle irreducible (1PI) effective vertex which satisfies the relevant Ward Identities and the Goldstone boson equivalence theorem. Our goal is to search for nondecoupling heavy fermion effects highlighting their synergy with gauge chiral anomalies. Particularly in the standard model, we find that when the arbitrary anomaly parameters are fixed by gauge invariance and/or Bose symmetry, the heavy fermion contribution cancels its anomaly contribution leaving behind anomaly and mass independent contributions from the light fermions. We apply these results in calculating the corresponding CP-invariant one-loop induced corrections to triple gauge boson vertices in the SM, minimal Z' models as well as their extensions with a fourth fermion generation, and compare with experimental data.
Boson formulation of fermion field theories
Ha, Y.K.
1984-04-15
The nonperturbative connection between a canonical Fermi field and a canonical Bose field in two dimensions is developed and its validity verified according to the tenets of quantum field theory. We advocate the point of view that a boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. Many features of the massless theory, such as dynamical mass generation with asymptotic-freedom behavior, hidden chiral symmetry, and connections with models of apparently different internal symmetries, are readily transparent through such fermion-boson metamorphosis.
Wilson disease in a Nigerian child: a case report
2012-01-01
Introduction Wilson disease is rarely reported among African children. This report describes the second case report of a Nigerian child with Wilson disease in three decades. Case presentation An eight-year-old African boy presented with generalized oedema and ascites and proteinuria. Over the next three weeks he developed conjugated hyperbilirubinaemia, severe coagulopathy and prominent extrapyramidal features consisting of rigidity, tremors at rest and in action, shuffling gait, slurred speech and emotional lability. Slit-lamp examination of his eyes revealed Kayser-Fleischer rings and sunflower cataracts. His serum caeruloplasmin level was 5mg/dL. Using the scoring system proposed by the 8th International Meeting of Wilson Disease and Menkes Disease, a diagnosis of Wilson disease was made. Conclusions Wilson disease does occur in African children, although the diagnosis is rarely made. A diagnosis of Wilson disease should be entertained in the evaluation of African children presenting with liver dysfunction and/or extrapyramidal neurological features. PMID:22800610
Quark matter and fermionic dark matter compact stars
NASA Astrophysics Data System (ADS)
Samanta, Chhanda; Mukhopadhyay, Somenath; Basu, Devasish Narayan
2016-03-01
Compact stars, made of quark matter and fermionic dark matter with arbitrary masses and interaction strengths, are studied by solving the Tolman-Oppenheimer-Volkoff equation of general relativity. The mass-radius relation for quark matter compact stars is obtained from the MIT bag model equation of state (EoS) with thin crust for different bag constants. The EoS of non-self-annihilating dark matter for an interacting Fermi gas with dark matter particle of 1-100 GeV mass is studied. For sufficiently strong interactions, the maximum stable mass of compact stars and its radius are controlled by the parameter of the interaction, both increasing linearly with the interaction strength. The mass-radius relation for compact stars made of strongly interacting fermions shows that the radius remains approximately constant for a wide range of compact stars.
Light-like Wilson line in QCD without path ordering
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2016-07-01
Unlike the Wilson line in QED the Wilson line in QCD contains path ordering. In this paper we get rid of the path ordering in the light-like Wilson line in QCD by simplifying all the infinite number of noncommuting terms in the SU(3) pure gauge. We prove that the light-like Wilson line in QCD naturally emerges when path integral formulation of QCD is used to prove factorization of soft and collinear divergences at all order in coupling constant in QCD processes at high energy colliders.
Magnetic domain walls of relic fermions as Dark Energy
Yajnik, Urjit A.
2005-12-02
We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can successfully simulate Dark Energy over the observable epoch spanning {approx} 10 billion years. We obtain conditions on the anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing to the possibility of a new ultralight sector in Particle Physics.
Scattering of universal fermionic clusters in the resonating group method
NASA Astrophysics Data System (ADS)
Naidon, Pascal; Endo, Shimpei; García-García, Antonio M.
2016-02-01
Mixtures of polarized fermions of two different masses can form weakly bound clusters, such as dimers and trimers, that are universally described by the scattering length between the heavy and light fermions. We use the resonating group method to investigate the low-energy scattering processes involving dimers or trimers. The method reproduces approximately the known particle–dimer and dimer–dimer scattering lengths. We use it to estimate the trimer–trimer scattering length, which is presently unknown, and find it to be positive.
GUP Corrected Fermion Tunnelling from 2 + 1 Dimensional Black String
NASA Astrophysics Data System (ADS)
Tang, Jian; Feng, Zhongwen; Ren, Wei; Chen, Bingbing
2016-01-01
In this paper, using the generalized Dirac equation which is modified by GUP, we study the fermion tunneling from 2 + 1 dimensional black string. Our results show that the Hawking temperature is not only depended on the event horizon of black string but also related to the quantum number of emitted fermion (energy and mass). Meanwhile, we find the GUP can slow down the Hawking temperature increase and lead to the remnants. It implies that the GUP can avoid the evaporation of black holes.
Dark matter massive fermions and Einasto profiles in galactic haloes
NASA Astrophysics Data System (ADS)
Siutsou, I.; Argüelles, C. R.; Ruffini, R.
2015-07-01
On the basis of a fermionic dark matter model we fit rotation curves of The HI Nearby Galaxy Survey (THINGS) sample and compare our 3-parametric model to other models widely used in the literature: 2-parametric Navarro-Frenk-White, pseudoisothermal sphere, Burkhert models, and 3-parametric Einasto model, suggested as the new "standard dark matter profile" model in the paper by Chemin et al., Astron. J. 142 (2011) 109. The results from the fitting procedure provides evidence for an underlying fermionic nature of the dark matter candidate, with rest mass above the keV regime.
Infinite variance in fermion quantum Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Shi, Hao; Zhang, Shiwei
2016-03-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.
Lattice Schwinger model: Confinement, anomalies, chiral fermions, and all that
Melnikov, Kirill; Weinstein, Marvin
2000-11-01
In order to better understand what to expect from numerical CORE computations for two-dimensional massless QED (the Schwinger model) we wish to obtain some analytic control over the approach to the continuum limit for various choices of fermion derivative. To this end we study the Hamiltonian formulation of the lattice Schwinger model (i.e., the theory defined on the spatial lattice with continuous time) in A{sub 0}=0 gauge. We begin with a discussion of the solution of the Hamilton equations of motion in the continuum; we then parallel the derivation of the continuum solution within the lattice framework for a range of fermion derivatives. The equations of motion for the Fourier transform of the lattice charge density operator show explicitly why it is a regulated version of this operator which corresponds to the point-split operator of the continuum theory and the sense in which the regulated lattice operator can be treated as a Bose field. The same formulas explicitly exhibit operators whose matrix elements measure the lack of approach to the continuum physics. We show that both chirality violating Wilson-type and chirality preserving SLAC-type derivatives correctly reproduce the continuum theory and show that there is a clear connection between the strong and weak coupling limits of a theory based upon a generalized SLAC-type derivative.
Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions
Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas
2008-08-01
We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g{sup 2}=2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.
Probing the fermionic Higgs portal at lepton colliders
NASA Astrophysics Data System (ADS)
Fedderke, Michael A.; Lin, Tongyan; Wang, Lian-Tao
2016-04-01
We study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator {H}^{dagger }{H}_{overline{χ}χ } . Measurements of precision electroweak S and T parameters and the e + e - → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables. We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.
Staggered fermions, zero modes, and flavor-singlet mesons
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.
2011-09-12
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less
Two-Species Fermion Mixtures with Population Imbalance
Iskin, M.; Sa de Melo, C. A. R.
2006-09-08
We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.
Staggered fermions, zero modes, and flavor-singlet mesons
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.
2011-09-12
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold on realistic lattice gauge fields. We find that the needed structure does indeed emerge.
AdS{sub 5} black holes with fermionic hair
Burrington, Benjamin A.; Liu, James T.; Sabra, W. A.
2005-05-15
The study of new Bogomol'nyi-Prasad-Sommerfield (BPS) objects in AdS{sub 5} has led to a deeper understanding of AdS/CFT. To help complete this picture, and to fully explore the consequences of the supersymmetry algebra, it is also important to obtain new solutions with bulk fermions turned on. In this paper we construct superpartners of the 1/2 BPS black hole in AdS{sub 5} using a natural set of fermion zero modes. We demonstrate that these superpartners, carrying fermionic hair, have conserved charges differing from the original bosonic counterpart. To do so, we find the R-charge and dipole moment of the new system, as well as the mass and angular momentum, defined through the boundary stress tensor. The complete set of superpartners fits nicely into a chiral representation of AdS{sub 5} supersymmetry, and the spinning solutions have the expected gyromagnetic ratio, g=1.
Holographic fermions in asymptotically scaling geometries with hyperscaling violation
NASA Astrophysics Data System (ADS)
Fan, ZhongYing
2013-07-01
We investigate holographic fermions in general asymptotically scaling geometries with hyperscaling violation exponent θ, which is a natural generalization of fermions in Lifshitz space-time. We prove that the retarded Green functions in this background satisfy the angle-resolved photoemission spectroscopy sum rules by introducing a dynamical source on a UV brane for zero density fermionic systems. The big difference from the Lifshitz case is that the mass of probe fermions decoupled from the UV theory and thus has no longer been restricted by the unitarity bound. We also study finite density fermions at finite temperature, with dynamical exponent z=2. We find that the dispersion relation is linear, but the logarithm of the spectral function is not linearly related to the logarithm of k⊥=k-kF, independent of charge q and θ. Furthermore, we show that, with the increasing of charge, new branches of Fermi surfaces emerge and tend to gather together to form a shell-like structure when the charge reaches some critical value beyond which a wide band pattern appears in the momentum-charge plane. However, all sharp peaks will be smoothed out when θ increases, no matter how much large the charge is.
Effective fermion couplings in warped 5D Higgsless theories
NASA Astrophysics Data System (ADS)
Bechi, J.; Casalbuoni, R.; de Curtis, S.; Dominici, D.
2006-11-01
We consider a 5-dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way, standard model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the γ3 parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However, we can require a global cancellation of the new physics contributions to the γ3 parameter. This fixes relations among the warp factor and the parameters of the fermion and gauge sectors. It turns out that the warping of the metric does not substantially modify the results obtained in the flat case.
Effective fermion couplings in warped 5D Higgsless theories
Bechi, J.; Casalbuoni, R.; De Curtis, S.; Dominici, D.
2006-11-01
We consider a 5-dimensional SU(2) gauge theory with fermions in the bulk and with additional SU(2) and U(1) kinetic terms on the branes. The electroweak breaking is obtained by boundary conditions. After deconstruction, fermions in the bulk are eliminated by using their equations of motion. In this way, standard model fermion mass terms and direct couplings to the internal gauge bosons of the moose are generated. The presence of these new couplings gives a new contribution to the {epsilon}{sub 3} parameter in addition to the gauge boson term. This allows the possibility of a cancellation between the two contributions, which can be local (site by site) or global. Going back to the continuum, we show that the implementation of local cancellation in any generic warped metric leaves massless fermions. This is due to the presence of one horizon on the infrared brane. However, we can require a global cancellation of the new physics contributions to the {epsilon}{sub 3} parameter. This fixes relations among the warp factor and the parameters of the fermion and gauge sectors. It turns out that the warping of the metric does not substantially modify the results obtained in the flat case.
Toward precision holography with supersymmetric Wilson loops
NASA Astrophysics Data System (ADS)
Faraggi, Alberto; Pando Zayas, Leopoldo A.; Silva, Guillermo A.; Trancanelli, Diego
2016-04-01
We consider certain 1/4 BPS Wilson loop operators in SU( N) N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS 5 × S 5. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.
Alterations of lipid metabolism in Wilson disease
2011-01-01
Introduction Wilson disease (WD) is an inherited disorder of human copper metabolism, characterised by accumulation of copper predominantly in the liver and brain, leading to severe hepatic and neurological disease. Interesting findings in animal models of WD (Atp7b-/- and LEC rats) showed altered lipid metabolism with a decrease in the amount of triglycerides and cholesterol in the serum. However, serum lipid profile has not been investigated in large human WD patient cohorts to date. Patients and Methods This cohort study involved 251 patients examined at the Heidelberg and Dresden (Germany) University Hospitals. Patients were analysed on routine follow-up examinations for serum lipid profile, including triglycerides, cholesterol, high density lipoprotein (HDL) and low density lipoprotein (LDL). Data on these parameters at time of diagnosis were retrieved by chart review where available. For statistical testing, patients were subgrouped by sex, manifestation (hepatic, neurological, mixed and asymptomatic) and treatment (D-penicillamine, trientine, zinc or combination). Results A significant difference in total serum cholesterol was found in patients with hepatic symptoms, which diminished under therapy. No alterations were observed for HDL, LDL and triglycerides. Conclusion Contradictory to previous reports using WD animal models (Atp7b-/- and LEC rats), the most obvious alteration in our cohort was a lower serum cholesterol level in hepatic-affected patients, which might be related to liver injury. Our data suggested unimpaired cholesterol metabolism in Wilson disease under therapy, independent of the applied medical treatment. PMID:21595966
Wilson loops in warped resolved deformed conifolds
Bennett, Stephen
2011-11-15
We calculate quark-antiquark potentials using the relationship between the expectation value of the Wilson loop and the action of a probe string in the string dual. We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. In particular, we examine the possibility of there being a minimum separation for probe strings which do not penetrate close to the origin of the bulk space, and derive a condition which determines whether this is the case. We then apply these considerations to the flavoured resolved deformed conifold background of Gaillard et al. (2010) . We suggest that the unusual behaviour that we observe in this solution is likely to be related to the IR singularity which is not present in the unflavoured case. - Highlights: > We calculate quark-antiquark potentials using the Wilson loop and the action of a probe string in the string dual. > We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. > We look in particular at the flavoured resolved deformed conifold. > There appears to be unusual behaviour which seems likely to be related to the IR singularity introduced by flavours.
Phanerozoic black shales and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Trabucho-Alexandre, J.; Hay, W. W.; de Boer, P. L.
2011-09-01
The spatial and temporal distribution of black shales is related to the development of the environments in which they accumulate and to a propitious combination of environmental variables. Whereas much has been done in recent years to improve our understanding of the mechanisms behind the temporal distribution of black shales in the Phanerozoic, the interpretation of the palaeogeographical distribution of black shales is still dominated by an oversimplistic set of three uniformitarian depositional models that do not capture the complexity and dynamics of environments of black shale accumulation. These three models, the restricted circulation, the (open) ocean oxygen minimum and the continental shelf models, are in fact a uniformitarian simplification of the variety of depositional environments that arise and coexist throughout the course of a basin's Wilson Cycle, i.e. the dynamic sequence of events and stages that characterise the evolution of an ocean basin, from the opening continental rift to the closing orogeny. We examine the spatial distribution of black shales in the context of the Wilson Cycle using examples from the Phanerozoic. It is shown that the geographical distribution of black shales, their position in the basin infill sequence and their nature (e.g. type of organic matter, lithology) depend on basin evolution because the latter controls the development of sedimentary environments where black shales may be deposited.
Haplotypes and mutations in Wilson disease
Thomas, G.R.; Roberts, E.A.; Cox, D.W.
1995-06-01
Wilson disease is a disorder of copper transport, resulting in neurological and hepatic damage due to copper toxicity. We have recently identified >20 mutations in the copper-transporting ATPase defective in this disease. Given the difficulties of searching for mutations in a gene spanning >80 kb of genomic DNA, haplotype data are important as a guide to mutation detection. Here we examine the haplotypes associated with specific mutations. We have extended previous studies of DNA haplotypes of dinucleotide-repeat polymorphisms (CA repeats) in the Wilson disease region to include an additional marker, in 58 families. These haplotypes, combining three markers (D13S314, D12S316, and D13S301), are usually specific for each different mutation, even though highly polymorphic CA repeat markers have been used. Haplotypes, as well as their accompanying mutations, differ between populations. In the patients whom we have studied, the haplotype data indicate that as many as 20 mutations may still be unidentified. The use of the haplotypes that we have identified provides an important guide for the identification of known mutations and can facilitate future mutation searches. 15 refs., 1 fig., 2 tabs.
13. Photocopy of c. 1922 photograph of Wilson J. Lepine ...
13. Photocopy of c. 1922 photograph of Wilson J. Lepine family posed in a cane cart with plantation cooks standing in foreground. It was customary for the family to attend a Thanksgiving dinner held in the Boarding House; Wilson Lepine is the man sitting in the cart on the left. - Laurel Valley Sugar Plantation, State Route 308, Thibodaux, Lafourche Parish, LA
The Rhetoric of Expertise: E. O. Wilson and Sociobiology.
ERIC Educational Resources Information Center
Lyne, John; Howe, Henry F.
1990-01-01
Develops a rhetorical account of how experts move fluidly among disciplinary criteria and use paradigms more as strategies than constraints. Analyzes how E. O. Wilson projects his sociobiology into several discourse frames, each presuming a different audience, purpose, and persona for himself as expert. Suggests that Wilson eludes disciplinary…
Response to "An Experiment in Method" (J. L. J. Wilson)
ERIC Educational Resources Information Center
Stehlik, Tom
2010-01-01
This article presents the author's response to "An Experiment in Method" by J.L.J. Wilson. In 1960-61 Wilson was invited to give lectures on "modern techniques in adult education" as part of a training school for those involved in the work of developing "Co-operatives for Aborigines" which were sponsored by the Australian Board of Missions--the…
The Wilson bunion procedure modified for improved clinical results.
Pittman, S R; Burns, D E
1984-01-01
The Wilson procedure for correction of hallux abducto valgus is modified for use in three specific clinical conditions. The modifications are outlined and demonstrated in the preoperative conditions of 1) juvenile hallux abducto valgus, 2) functional hallux limitus, and 3) postoperative metatarsus primus elevatus. The rationale and biomechanical considerations for the modified Wilson bunion procedure are discussed. PMID:6470430
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
NASA Astrophysics Data System (ADS)
de Gouvêa, André; Hernández, Daniel
2015-10-01
We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos — and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as "mediators" between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.
NLO evolution of 3-quark Wilson loop operator
Balitsky, I.; Grabovsky, A. V.
2015-01-07
It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in the next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.
BPS Wilson loops in Minkowski spacetime and Euclidean space
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju
2015-12-01
We give evidence that spacelike BPS Wilson loops do not exist in Minkowski spacetime. We show that spacelike Wilson loops in Minkowski spacetime cannot preserve any supersymmetries, in d = 4 N = 4 super Yang-Mills theory, d = 3 N = 2 super Chern-Simons-matter theory, and d = 3 N = 6 Aharony-Bergman-Jafferis-Maldacena theory. We not only show this using infinite straight lines and circles as examples, but also we give proofs for general curves. We attribute this to the conflicts of the reality conditions of the spinors. However, spacelike Wilson loops do exist in Euclidean space. There are both BPS Wilson loops along infinite straight lines and circular BPS Wilson loops. This is because the reality conditions of the spinors are lost after Wick rotation. The result is reasonable in view of the AdS/CFT correspondence.
NLO evolution of 3-quark Wilson loop operator
Balitsky, I.; Grabovsky, A. V.
2015-01-07
It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in themore » next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. Thus we also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.« less
Neuromuscular Electrical Stimulation Therapy for Dysphagia Caused by Wilson's Disease
Lee, Seon Yeong; Yang, Hee Seung; Lee, Seung Hwa; Jeung, Hae Won; Park, Young Ok
2012-01-01
Wilson's disease is an autosomal recessive disorder of abnormal copper metabolism. Although dysphagia is a common complaint of patients with Wilson's disease and pneumonia is an important cause of death in these patients, management of swallowing function has rarely been reported in the context of Wilson's disease. Hence, we report a case of Wilson's disease presenting with dysphagia. A 33-year-old man visited our hospital with a complaint of difficulty in swallowing, since about last 7 years and which had worsened since the last 2-3 months. He was diagnosed with Wilson's disease about 13 years ago. On the initial VFSS, reduced hyoid bone movement, impaired epiglottic movement and moderate amount of residue in the valleculae during the pharyngeal phase were noted. After 10 sessions of neuromuscular electrical stimulation for 1 hour per day, decreased amount of residue was observed in the valleculae during the pharyngeal phase on the follow-up VFSS. PMID:22837979
Fermion localization on thick branes
Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David
2006-02-15
We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.
Bob Wilson and The Birth of Fermilab
Edwin L. Goldwasser
2010-01-08
In the 1960?s the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a ?budget buster?. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budget?s cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that ?Catch 22? and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.
Wilson Dslash Kernel From Lattice QCD Optimization
Joo, Balint; Smelyanskiy, Mikhail; Kalamkar, Dhiraj D.; Vaidyanathan, Karthikeyan
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.
Neuropsychiatric aspects of treated Wilson's disease.
Svetel, Marina; Potrebić, Aleksandra; Pekmezović, Tanja; Tomić, Aleksandra; Kresojević, Nikola; Jesić, Rada; Dragasević, Natasa; Kostić, Vladimir S
2009-12-01
The objective of the current cross-sectional study was to use standardized psychiatric interviews (the Structured Clinical Interview for DSM-IV Axis I Disorders and the Neuropsychiatric Inventory; NPI) in order to better characterize psychiatric symptoms in 50 consecutive, treated and clinically stable patients with Wilson's disease (WD). Nine patients (18%) had one, 7 patients (14%) had two, and 20 (40%) had >or= 3 neuropsychiatric symptoms present. The most often endosed symptoms were anxiety (62%), depression (36%), irritability (26%), as well as disinhibition and apathy (24% each). Twenty two patients (44%) had a score >or= 4 on at least one of the NPI items: again, most frequently anxiety (17 patients; 34%), depression (13 patients; 26%) and apathy (9 patients; 18%). Therefore, even among stable, long-term treated patients with WD approximately 70% experienced psychiatric symptoms. PMID:19559640
Fermionic composite models from complementarity
NASA Astrophysics Data System (ADS)
Bordi, F.; Casalbuoni, R.; Dominici, D.; Gatto, R.
1982-08-01
Composite models for (in principle massless) quarks and leptons without fundamental scalars are constructed with the aim of providing for fermionic realizations of models which include elementary bosons (by Abbott and Farhi, Casalbuoni and Gatto and Barbieri, Mohapatra and Masiero). The models use one confining unitary (subcolor) group (with left-handed fermions in the fundamental, in its conjugate, and either in the adjoint, or in the symmetric, or in the antisymmetric representation of subcolor) or two confining groups. Families may arise from discrete symmetries.
Wilson-Cowan Equations for Neocortical Dynamics.
Cowan, Jack D; Neuman, Jeremy; van Drongelen, Wim
2016-12-01
In 1972-1973 Wilson and Cowan introduced a mathematical model of the population dynamics of synaptically coupled excitatory and inhibitory neurons in the neocortex. The model dealt only with the mean numbers of activated and quiescent excitatory and inhibitory neurons, and said nothing about fluctuations and correlations of such activity. However, in 1997 Ohira and Cowan, and then in 2007-2009 Buice and Cowan introduced Markov models of such activity that included fluctuation and correlation effects. Here we show how both models can be used to provide a quantitative account of the population dynamics of neocortical activity.We first describe how the Markov models account for many recent measurements of the resting or spontaneous activity of the neocortex. In particular we show that the power spectrum of large-scale neocortical activity has a Brownian motion baseline, and that the statistical structure of the random bursts of spiking activity found near the resting state indicates that such a state can be represented as a percolation process on a random graph, called directed percolation.Other data indicate that resting cortex exhibits pair correlations between neighboring populations of cells, the amplitudes of which decay slowly with distance, whereas stimulated cortex exhibits pair correlations which decay rapidly with distance. Here we show how the Markov model can account for the behavior of the pair correlations.Finally we show how the 1972-1973 Wilson-Cowan equations can account for recent data which indicates that there are at least two distinct modes of cortical responses to stimuli. In mode 1 a low intensity stimulus triggers a wave that propagates at a velocity of about 0.3 m/s, with an amplitude that decays exponentially. In mode 2 a high intensity stimulus triggers a larger response that remains local and does not propagate to neighboring regions. PMID:26728012
Obituary: Peter Robert Wilson, 1929-2007
NASA Astrophysics Data System (ADS)
Snodgrass, Herschel B.
2009-01-01
It is with great sadness that I report the passing of Peter Robert Wilson, a well-known and well-loved figure in the solar physics community. Peter was on the faculty of the Department of Applied Mathematics at the University of Sydney for 39 years, and Chair of the department for 24 of these years. He was the author or co-author of more than 80 scientific research papers and a book, Solar and Stellar Activity Cycles (1994), published by Cambridge University Press. He died suddenly of a heart attack, at his home in Glebe, Australia, in the early morning of 11 November 2007. Peter was an organizer of, and participant in, many international conferences and workshops. He traveled extensively, holding visiting appointments at the University of Colorado (JILA), at Cambridge University, at the College de France (Paris), and at the California Institute of Technology [CalTech]. Most of his work was in the field of solar physics, but he also did some work on the philosophy of science and on tides. Peter came from a line of mathematicians. His father, Robert Wilson, immigrated to Australia from Glasgow in 1911, and became a mathematics teacher at Scotch College, a private school in Melbourne. There his name was changed to 'Bill' because 'Bob' was already taken." Peter's enjoyment of this story as characteristic of Australian academia (as any fan of Monty Python would understand) is indicative of his infectious sense of humor. In a similar vein, he claimed ancestry traced back to the eighteenth-century Scottish mathematician Alexander Wilson, Professor of Astronomy at the University of Glasgow. That Wilson is famous in the solar physics community for his discovery, known as the "Wilson Effect," of the photospheric depressions associated with sunspots. Peter himself could not resist writing a paper on this subject, and was delighted when the bait was taken by some less-informed colleagues who chided him for "naming an effect after himself." "Bill" Wilson married Naomi
Searches for excited fermions in /ep collisions at HERA
NASA Astrophysics Data System (ADS)
ZEUS Collaboration; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Surrow, B.; Whitmore, J. J.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Sztuk, J.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Khakzad, M.; Menary, S.
2002-11-01
Searches in /ep collisions for heavy excited fermions have been performed with the ZEUS detector at HERA. Excited states of electrons and quarks have been searched for in e+p collisions at a centre-of-mass energy of 300 GeV using an integrated luminosity of 47.7 pb-1. Excited electrons have been sought via the decays e*-->eγ, e*-->eZ and e*-->νW. Excited quarks have been sought via the decays q*-->qγ and q*-->qW. A search for excited neutrinos decaying via ν*-->νγ, ν*-->νZ and ν*-->eW is presented using e-p collisions at 318 GeV centre-of-mass energy, corresponding to an integrated luminosity of 16.7 pb-1. No evidence for any excited fermion is found, and limits on the characteristic couplings are derived for masses /<~250 GeV.
Naturalness and ultraviolet structure of gauge theories with massive fermions
NASA Astrophysics Data System (ADS)
Gellas, G. C.; Karanikas, A. I.; Ktorides, C. N.
1997-04-01
According to the principle of naturalness a small, with respect to the cutoff, mass parameter entering a quantum field system is natural only when it is compatible with some symmetry in the limit where it vanishes. In this paper, advantage is taken of the liberty afforded by the renormalization procedure in order to harmonize the cutoff with the physical mass in a non-Abelian gauge field theory with spin-1/2 matter fields. The ultraviolet structure of the theory, from such a vantage point, is explored at the level of the full fermionic propagator, as well as the vertex function, using the world line approach. An interplay between this ultraviolet structure and the infrared behavior of the same system, but from the customary viewpoint ``cutoff much greater than mass,'' is pointed out. Direct implications for open fermionic lines in the world line path integral casting of field theories are also made.
NASA Astrophysics Data System (ADS)
Colangeli, Matteo; Pezzotti, Federica; Pulvirenti, Mario
2015-05-01
We introduce a stochastic N-particle system and show that, as N → ∞, an effective description ruled by the homogeneous fermionic Uehling-Uhlenbeck equation is recovered. The particle model we consider is the same as the Kac model for the homogeneous Boltzmann equation with an additional exclusion constraint taking into account the Pauli Exclusion Principle.
The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds
NASA Astrophysics Data System (ADS)
Deen, Rehan; Ovrut, Burt A.; Purves, Austin
2016-07-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z_3× Z_3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass < M U >. The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from < M U > to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Supersymmetric Wilson loops in a type-IIB matrix model
Hamada, K.
1997-12-01
We show that the supersymmetric Wilson loops in a type-IIB matrix model give a transition operator from reduced supersymmetric Yang-Mills theory to supersymmetric space-time theory. In comparison with Green-Schwarz superstring we identify the supersymmetric Wilson loops with the asymptotic states of a type-IIB superstring. It is pointed out that the supersymmetry transformation law of the Wilson loops is the inverse of that for the vertex operators of massless modes in the U(N) open superstring with a Dirichlet boundary condition. {copyright} {ital 1997} {ital The American Physical Society}
Flow induced superfluidty and other novel effects in spin orbit coupled fermionic quantum gases
NASA Astrophysics Data System (ADS)
Shenoy, Vijay B.
2013-03-01
Recent experiments on fermions with synthetic gauge fields produce systems with spin-orbit coupling, detuning and Zeeman fields. We show by theoretical considerations that such systems have many interesting features when the fermions experience a contact attraction. In particular, a flow (finite centre of mass momentum) produces a ``stronger'' superfluid. In addition, we show that such systems can be tuned to have very interesting normal states paving way for studying spin-orbit coupled Fermi liquids. Work supported by DST, DAE India
Charged Fermions Tunnel from the Kerr-Newman Black Hole Influenced by Quantum Gravity Effects
NASA Astrophysics Data System (ADS)
Ren, Ruyi; Chen, Deyou; Pu, Jin
2016-03-01
Taking into account quantum gravity effects, we investigate the tunnelling radiation of charged fermions in the Kerr-Newman black hole. The result shows that the corrected Hawking temperature is determined not only by the parameters of the black hole, but also by the energy, angular momentum and mass of the emitted fermion. Meanwhile, an interesting found is that the temperature is affected by the angle 𝜃. The quantum gravity correction slows down the evaporation.
1. Historic American Buildings Survey, Glenn C. Wilson, Photographer March ...
1. Historic American Buildings Survey, Glenn C. Wilson, Photographer March 12, 1934 VIEW OF KOTHE RESIDENCE (NORTHWEST). - Rode-Kothe House, East of U.S. 87 at Cherry Spring, Cherry Spring, Gillespie County, TX
Exact results for Wilson loops in orbifold ABJM theory
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-Ju
2016-08-01
We investigate the exact results for circular 1/4 and 1/2 BPS Wilson loops in the d = 3 mathcal = 4 super Chern-Simons-matter theory that could be obtained by orbifolding Aharony-Bergman-Jafferis-Maldacena (ABJM) theory. The partition function of the mathcal = 4 orbifold ABJM theory has been computed previously in the literature. In this paper, we re-derive it using a slightly different method. We calculate the vacuum expectation values of the circular 1/4 BPS Wilson loops in fundamental representation and of circular 1/2 BPS Wilson loops in arbitrary representations. We use both the saddle point approach and Fermi gas approach. The results for Wilson loops are in accord with the available gravity results. Supported by NSFC (11222549, 11575202), K. C. Wong Education Foundation and Youth Innovation Promotion Association of CAS (2011016)
1. Historic American Buildings Survey Samuel Wilson, Jr., Photographer, November ...
1. Historic American Buildings Survey Samuel Wilson, Jr., Photographer, November 30, 1934 VIEW OF TOWER ACROSS BLIND BAY MARSH - Frank's Island Lighthouse, North East Pass, Mississippi River, Boothville, Plaquemines Parish, LA
3. Photocopy of lithograph by Edward A. Wilson, owned by ...
3. Photocopy of lithograph by Edward A. Wilson, owned by Mrs. Arthur Williams, owner of the house in 1960. JOSHUA DYER HOUSE FROM THE REAR - Joshua Dyer House, North Pamet Road, Truro, Barnstable County, MA
Ten-Year Study of a Wilson's Disease Dysarthric.
ERIC Educational Resources Information Center
Day, Linda Susan; Parnell, Martha M.
1987-01-01
The 10-year longitudinal case study describes the history, speech therapy program, and treatment results for an adult male with Wilson's disease, a genetically based metabolic progressive neurological disorder which includes severe speech problems. (DB)
Pyoderma Gangrenosum-A New Manifestation of Wilson Disease?
Freg, George Naiem Ibrahiem; Shah, Venisha; Nagral, Aabha; Jhaveri, Ajay
2016-03-01
Seventeen year old girl, a known case of Wilson disease presented to us with a non-healing skin ulcer followed by appearance of jaundice, ascites and progressive fatigue of 1 month duration. She was diagnosed to have Wilson disease 5 years back and had been well controlled on d-penicillamine. On enquiry, she was found to be noncompliant with her medication in the preceding 6 months. On examination, she had severe pallor, icterus with moderate ascites and oedema feet. Investigations revealed severe haemolytic anemia and deranged liver function. The lesion was diagnosed to be pyoderma gangrenosum on skin biopsy. The appearance of a cutaneous lesion followed by deterioration in the liver disease and hemolysis suggested uncontrolled Wilson disease as the triggering factor. Chelation therapy improved her haemoglobin and liver function as well as led to healing of the ulcer. We describe pyoderma gangrenosum as a new manifestation of Wilson disease. PMID:27194899
Quadratic Forms for the Fermionic Unitary Gas Model
NASA Astrophysics Data System (ADS)
Finco, Domenico; Teta, Alessandro
2012-04-01
We consider a quantum system in dimension three composed by a group of N identical fermions, with mass 1/2, interacting via zero-range interaction with a group of M identical fermions of a different type, with mass m/2. Exploiting a renormalization procedure, we construct the corresponding quadratic form and define the so-called Skornyakov-Ter-Martirosyan extension Hα, which is the natural candidate as a possible Hamiltonian of the system. It is shown that if the form is unbounded from below then Hα is not a self-adjoint and bounded from below operator, and this in particular suggests that the so-called Thomas effect could occur. In the special case N = 2, M = 1 we prove that this is in fact the case when a suitable condition on the parameter m is satisfied.
Sleep disturbance in Mowat-Wilson syndrome.
Evans, Elizabeth; Mowat, David; Wilson, Meredith; Einfeld, Stewart
2016-03-01
Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly syndrome caused by a heterozygous mutation or deletion of the ZEB2 gene. It is characterized by a distinctive facial appearance in association with intellectual disability (ID) and variable other features including agenesis of the corpus callosum, seizures, congenital heart defects, microcephaly, short stature, hypotonia, and Hirschsprung disease. The current study investigated sleep disturbance in people with MWS. In a series of unstructured interviews focused on development and behaviors in MWS, family members frequently reported sleep disturbance, particularly early-morning waking and frequent night waking. The Sleep Disturbance Scale for Children (SDSC) was therefore administered to a sample of 35 individuals with MWS, along with the Developmental Behaviour Checklist (DBC) to measure behavioral and emotional disturbance. A high level of sleep disturbance was found in the MWS sample, with 53% scoring in the borderline range and 44% in the clinical disorder range for at least one subscale of the SDSC. Scores were highest for the Sleep-wake transition disorders subscale, with 91% of participants reaching at least the borderline disorder range. A significant positive association was found between total scores on the SDSC and the DBC Total Behaviour Problem Score. These results suggest that sleep disorders should be screened for in people with MWS, and where appropriate, referrals to sleep specialists made for management of sleep problems. PMID:26686679
Polymorphic microsatellites and Wilson disease (WD)
Stewart, E. A.; White, A.; Tomfohrde, J.; Osborne-Lawrence, S.; Prestridge, L.; Bonne-Tamir, B.; Scheinberg, I. H.; George-Hyslop, P. St; Giagheddu, M.; Kim, J.-W.; Seo, J. K.; Lo, W. H.-y.; Ivanova-Smolenskaya, I. A.; Limborska, S. A.; Cavalli-Sforza, L. L.; Farrer, L. A.; Bowcock, A. M.
1993-01-01
Wilson disease (WD), an autosomal recessive disorder of copper metabolism, has been previously mapped to chromosome 13q. Highly informative PCR-based polymorphic microsatellites closely linked to the WD locus (WND) at 13q14.3, as well as sequence-tagged sites for closely linked loci, are described. Two polymorphic microsatellite markers at D13S118 and D13S119 lie within 3 cM of WND. Two others (D13S227 and D13S228) were derived from a yeast artificial chromosome containing D13S31. These were placed on a genetic linkage map of chromosome 13 and were typed in 74 multiplex WD families from a variety of geographic origins (166 affected members). Multipoint analysis provides very high odds that the location of WND is between D13S31/D13S227/D13S228 and D13S59. Previous odds with RFLP-based markers were only 7:1 more likely than any other location. Current odds are 5,000:1. Preclinical testing of three cases of WD by using the highly informative polymorphic microsatellite markers is described. The markers described here ensure that 95% of predictive tests using DNA from both parents and from at least one affected sib will have an accuracy >99%. PMID:8213814
Wilson's disease and other neurological copper disorders.
Bandmann, Oliver; Weiss, Karl Heinz; Kaler, Stephen G.
2015-01-01
Summary The classic copper metabolism disorder, Wilson disease (WD), was first defined in 1912. Both early onset presentations in infancy and late onset manifestations in adults > 70 years are now well recognized. Modern biochemical and genetic prevalence studies suggest that WD may be considerably more common than previously appreciated. Early diagnosis of WD is crucial to ensure that patients can be started on adequate treatment but uncertainty remains about the best possible choice of medication. Direct genetic testing for ATP7B mutations is increasingly available to confirm the clinical diagnosis of WD. WD needs to be differentiated from other conditions that present clinically with hepatolenticular degeneration or share biochemical abnormalities with WD, such as reduced serum cerulo plasmin levels. Disordered copper metabolism is also implied in an increasing number of other neurological conditions, including a subtype of axonal neuropathy due to ATP7A mutations, and the common late-onset neurodegenerative disorders Alzheimer’s disease and Parkinson’s disease. PMID:25496901
Wilson lines and symmetry breaking on orbifolds
Hall, Lawrence J.; Murayama, Hitoshi; Nomura, Yasunori
2002-08-16
Gauge symmetry breaking by boundary conditions on a manifold is known to be equivalent to Wilson-line breaking through a background gauge field, and is therefore spontaneous. These equivalent pictures are related by a non-periodic gauge transformation. However, we find that boundary condition gauge symmetry breaking on orbifolds is explicit; there is no gauge where all the breaking can be attributed to a background gauge field. In the case of a five-dimensional SU(5) grand unified theory on S{sup 1} = Z{sub 2}, the vacuum with gauge symmetry broken to SU(3) x SU(2) x U(1) and that with SU(5) preserved are completely disconnected: there is no physical process which causes tunneling between the two. This allows a certain localized explicit breaking of SU(5) on one of the orbifold fixed points in the theory with SU(5) breaking. Split multiplets on this fixed point are shown not to induce violations of unitarity in scattering amplitudes.
Obituary: Peter Robert Wilson, 1929-2007
NASA Astrophysics Data System (ADS)
Snodgrass, Herschel B.
2009-01-01
It is with great sadness that I report the passing of Peter Robert Wilson, a well-known and well-loved figure in the solar physics community. Peter was on the faculty of the Department of Applied Mathematics at the University of Sydney for 39 years, and Chair of the department for 24 of these years. He was the author or co-author of more than 80 scientific research papers and a book, Solar and Stellar Activity Cycles (1994), published by Cambridge University Press. He died suddenly of a heart attack, at his home in Glebe, Australia, in the early morning of 11 November 2007. Peter was an organizer of, and participant in, many international conferences and workshops. He traveled extensively, holding visiting appointments at the University of Colorado (JILA), at Cambridge University, at the College de France (Paris), and at the California Institute of Technology [CalTech]. Most of his work was in the field of solar physics, but he also did some work on the philosophy of science and on tides. Peter came from a line of mathematicians. His father, Robert Wilson, immigrated to Australia from Glasgow in 1911, and became a mathematics teacher at Scotch College, a private school in Melbourne. There his name was changed to 'Bill' because 'Bob' was already taken." Peter's enjoyment of this story as characteristic of Australian academia (as any fan of Monty Python would understand) is indicative of his infectious sense of humor. In a similar vein, he claimed ancestry traced back to the eighteenth-century Scottish mathematician Alexander Wilson, Professor of Astronomy at the University of Glasgow. That Wilson is famous in the solar physics community for his discovery, known as the "Wilson Effect," of the photospheric depressions associated with sunspots. Peter himself could not resist writing a paper on this subject, and was delighted when the bait was taken by some less-informed colleagues who chided him for "naming an effect after himself." "Bill" Wilson married Naomi
Taking Charge: Walter Sydney Adams and the Mount Wilson Observatory
NASA Astrophysics Data System (ADS)
Brashear, R.
2004-12-01
The growing preeminence of American observational astronomy in the first half of the 20th century is a well-known story and much credit is given to George Ellery Hale and his skill as an observatory-building entrepreneur. But a key figure who has yet to be discussed in great detail is Walter Sydney Adams (1876-1956), Hale's Assistant Director at Mount Wilson Observatory. Due to Hale's illnesses, Adams was Acting Director for much of Hale's tenure, and he became the second Director of Mount Wilson from 1923 to 1946. Behind his New England reserve Adams was instrumental in the growth of Mount Wilson and thus American astronomy in general. Adams was hand-picked by Hale to take charge of stellar spectroscopy work at Yerkes and Mount Wilson and the younger astronomer showed tremendous loyalty to Hale and Hale's vision throughout his career. As Adams assumed the leadership role at Mount Wilson he concentrated on making the observatory a place where researchers worked with great freedom but maintain a high level of cooperation. This paper will concentrate on Adams's early years and look at his growing relationship with Hale and how he came to be the central figure in the early history of Mount Wilson as both a solar and stellar observatory. His education, his years at Dartmouth and Yerkes (including his unfortunate encounter with epsilon Leonis), and his formative years on Mount Wilson are all important in learning how he shaped the direction of Mount Wilson and the development of American astronomy in the first half of the 20th century. This latter history cannot be complete until we bring Adams into better focus.
Holographic conformal partial waves as gravitational open Wilson networks
NASA Astrophysics Data System (ADS)
Bhatta, Atanu; Raman, Prashanth; Suryanarayana, Nemani V.
2016-06-01
We propose a method to holographically compute the conformal partial waves in any decomposition of correlation functions of primary operators in conformal field theories using open Wilson network operators in the holographic gravitational dual. The Wilson operators are the gravitational ones where gravity is written as a gauge theory in the first order Hilbert-Palatini formalism. We apply this method to compute the global conformal blocks and partial waves in 2d CFTs reproducing many of the known results.
G. Terence Wilson: Award for Distinguished Scientific Applications of Psychology.
2014-11-01
The APA Award for Distinguished Scientific Applications of Psychology is presented to a person who, in the opinion of the Committee on Scientific Awards, has made distinguished theoretical or empirical advances leading to the understanding or amelioration of important practical problems. The 2014 recipient is G. Terence Wilson, who received the award for "his outstanding contributions to the nature and theory of behavior therapy." Wilson's award citation, biography, and a selected bibliography are presented here. PMID:25486140
One-loop chiral perturbation theory with two fermion representations
NASA Astrophysics Data System (ADS)
DeGrand, Thomas; Golterman, Maarten; Neil, Ethan T.; Shamir, Yigal
2016-07-01
We develop chiral perturbation theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a nonanomalous singlet U (1 )A symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.
Dynamical overlap fermions in the epsilon-regime
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori
2006-12-01
We report on the two-flavor QCD simulation in the ɛ-regime using the overlap fermion formu- lation. Sea quark mass is reduced to ˜ 2 MeV on a 163 × 32 lattice with the lattice spacing a 0.11 fm. Topological charge is fixed at Q = 0. We compare the eigenvalue distribution of the overlap-Dirac operator with the prediction of the chiral random matrix theory. Preliminary results on meson correlators are also reported.
PCB (polychlorinated biphenyls) concentrations in Wilson Reservoir catfish, 1985
Dycus, D.L.; Lowery, D.R.
1986-09-01
TVA conducted a study during autumn 1984 to determine concentrations of a variety of contaminants in biota from Wilson and upper Pickwick Reservoirs. Several contaminants were detected, with polychlorinated biphenyls (PCB) levels in catfish from Wilson Reservoir of greatest interest. PCB concentrations in twenty-two of 45 catfish from Wilson equaled or exceeded the Food and Drug Administration (FDA) tolerance of 2.0 ..mu..g/g and the average of all 45 was 2.6 ..mu..g/g. Contamination was widespread and did not show any geographical relationship to an embayment on Wilson Reservoir (Fleet Hollow) known to have PCBs in the sediments. As a result of these findings, the Northwest Alabama Regional Health Department issued an official notice to retail markets in June 1985 to discontinue selling catfish from Wilson Reservoir. TVA initiated studies to determine if there were other areas on Wilson with PCB contaminated sediments or PCB discharges, and an annual catfish collection was started in autumn 1985 to determine the year-to-year trend in PCB levels. As a follow-up to earlier studies, analyses of catfish collected during autumn 1985 indicated substantial reductions in PCB concentrations. Only 4 of 36 catfish had PCB concentrations which equaled or exceeded 2.0 ..mu..g/g and the overall average was 1.0 ..mu..g/g. Statistical analyses indicated PCB concentrations decreased with increased distance from Fleet Hollow. Further monitoring is recommended for 2 more years.
Cell therapy to remove excess copper in Wilson's disease.
Gupta, Sanjeev
2014-05-01
To achieve permanent correction of Wilson's disease by a cell therapy approach, replacement of diseased hepatocytes with healthy hepatocytes is desirable. There is a physiological requirement for hepatic ATP7B-dependent copper (Cu) transport in bile, which is deficient in Wilson's disease, producing progressive Cu accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raises the possibility of cell therapy in Wilson's disease. Therapeutic principles included reconstitution of bile canalicular network as well as proliferation in transplanted hepatocytes, despite toxic amounts of Cu in the liver. Nonetheless, cell therapy studies in animal models elicited major differences in the mechanisms driving liver repopulation with transplanted hepatocytes in Wilson's disease versus nondiseased settings. Recently, noninvasive imaging was developed to demonstrate Cu removal from the liver, including after cell therapy in Wilson's disease. Such developments will help advance cell/gene therapy approaches, particularly by offering roadmaps for clinical trials in people with Wilson's disease. PMID:24820353
Chris Quigg
2007-12-05
In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.
Conformal versus confining scenario in SU(2) with adjoint fermions
Del Debbio, L.; Pica, C.; Lucini, B.; Patella, A.; Rago, A.
2009-10-01
The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling {beta}=4/g{sub 0}{sup 2}=2.25 for values of the bare fermion mass m{sub 0} that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the mass of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near-)conformal and the confining scenario is outlined.
Superdeformations and fermion dynamical symmetries
Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.
Light scattering of degenerate fermions
NASA Astrophysics Data System (ADS)
Aubin, S.; Leblanc, L. J.; Myrskog, S.; Extavour, M. H. T.; McKay, D.; Stummer, A.; Thywissen, J. H.
2006-05-01
We report on progress in measuring the suppression of resonant light scattering in a gas of degenerate fermions. A gas of trapped degenerate fermions is expected to exhibit narrower optical linewidths and longer excited state lifetimes than single atoms when the Fermi energy is larger than the photon recoil energy [1-3]. In this case, the number of available states into which a scattered atom can recoil is significantly reduced due to the filling of the Fermi sea. We produce a degenerate gas of 4x10^4 ultra-cold fermionic ^40K atoms by sympathetic cooling with bosonic ^87Rb in a micro-magnetic chip trap. The atoms can then be loaded into a tight dipole trap just above the surface of the chip and probed with a near resonance laser pulse. [1] Th. Busch, J. R. Anglin, J. I. Cirac, and P. Zoller, Europhys. Lett. 44, 1 (1998). [2] B. DeMarco and D. S. Jin, Phys. Rev. A 58, R4267 (1998). [3] J. Javanainen and J. Ruostekosky, Phys. Rev. A 52, 3033 (1995). Work supported by NSERC, CFI, OIT, Research Corporation, and PRO.
Solar Radius Measurements at Mount Wilson
NASA Astrophysics Data System (ADS)
Lefebvre, S.; Bertello, L.; Ulrich, R. K.; Boyden, J. E.; Rozelot, J.
2004-12-01
Variations of the solar radius are not only important for solar physics but they also play a fundamental role in the research of terrestrial climate. In fact, changes in the apparent size of the Sun could account for a significant fraction of the total irradiance variations, and solar irradiance is known to be a primary force in driving atmospheric circulation. While the MDI instrument aboard SOHO is likely to provide the most accurate constraint on possible solar radius variations, the radius measurements obtained from ground base observations represent a unique resource due to their long temporal coverage. Since 1970, the Mount Wilson synoptic programme of solar magnetic observations carried out at the 150-foot tower scans the solar disk using the radiation in the neutral iron line at 525.0 nm. For these images, the radius has been determined and results are presented on this paper. We show first the temporal behavior of these measurements. Secondly, if data are gathered by heliolatitude, the shape of the Sun differs from a perfect ellipsoid and shows solar distortions. We compare these results with others obtained with the heliometer at the Pic du Midi observatory in France. The comparison show a similitude in the shape with a bulge near the equator extending on 20-30 degrees followed by a depression at higher latitude near 60-70 degrees. These solar distortions needs to be confirmed by future space measurements (PICARD microsatellite) but it already raises the problem of a better understanding of the physics in the sub-surface layers.
The Wilson disease gene: Haplotypes and mutations
Thomas, G.R.; Roberts, E.A.; Cox, D.W.; Walshe, J.M.
1994-09-01
Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.
NASA Astrophysics Data System (ADS)
Lightman, Matthew
We calculate matrix elements for kaon to two pion decays in the Delta I = 3/2 channel using lattice gauge theory simulations. From these we can extract the decay amplitude A2, for which the real part is related to the decay rate and can be compared to the experimental result Re(A2) = 1.484x10-8 GeV, and for which the imaginary part is related to direct charge-parity violation in the neutral kaon system. We report the results of one simulation with nearly physical particle masses and kinematics, specifically mK = 509.0(9.1) MeV, mpi = 142.8(2.5) MeV, and Epipi = 485.7(8.0) MeV. This simulation was performed on RBC/UKQCD 323 x 64, Ls = 32 lattices, using 2+1 dynamical flavors of domain wall fermions and a Dislocation Suppressing Determinant Ratio plus Iwasaki gauge action, and with an inverse lattice spacing a-1 = 1.373(24) GeV so that the spatial extent of the lattice is 4.60 fm and mpi L = 3.3. We find that Re(A2) = 1.461(87)stat(200)sys x 10 -8 GeV, in good agreement with the experimental value. We also find Im(A2) = .8.67(45)stat(1.95)sys x10-13 GeV, and Im(A2)/Re( A2) = .5.93(27)stat(1.42)sys x10 -5, however the value of Im(A2) depends on a rough hypothesis for some of the renormalization constants which have not yet been calculated, and thus we quote a large systematic error. We also report the results of a simulation involving a variety of kaon and pion masses and momenta, which was conducted in order to study the dependence of the decay amplitude on particle masses and kinematics, and to study the effect of not having exactly physical masses and kinematics in the first simulation. The use of the quenched approximation and smaller spatial volume in this second simulation allowed for multiple masses to be simulated in a reasonable amount of time, but introduced an uncontrolled approximation and forced us to use pion masses a bit larger than the physical mass. The study was conducted on 243 x 64, Ls = 16 lattices, with the quenched Doubly Blocked Wilson 2 gauge
Fermionic thermocoherent state: Efficiency of electron transport
NASA Astrophysics Data System (ADS)
Karmakar, Anirban; Gangopadhyay, Gautam
2016-02-01
On the basis of the fermionic coherent state of Cahill and Glauber [Phys. Rev. A 59, 1538 (1999)], 10.1103/PhysRevA.59.1538, we have introduced here the fermionic thermocoherent state in terms of the quasiprobability distribution which shows the appropriate thermal and coherent limits as in the bosonic case or the Glauber-Lachs state. It is shown that the fermionic thermocoherent state can be realized as a displaced thermal state of fermions. Its relation with the fermionic displaced number state and the fermion-added coherent state are explored in the spirit of the bosonic case. We have investigated the nature of the average current and the suppression of noise due to the thermocoherent character of the source. The theory is applied to the problem of electronic conduction. A modification of the Landauer conductance formula is suggested which reflects the role of nonzero coherence of the source in electron transport.
Cold collisions between boson or fermion molecules
Kajita, Masatoshi
2004-01-01
We theoretically investigate collisions between electrostatically trapped cold polar molecules and compare boson and fermion isotopes. Evaporative cooling seems possible for fermion molecules as the ratio of the collision loss cross section to the elastic collision cross section (R) gets smaller as the molecular temperature T lowers. With boson molecules, R gets larger as T lowers, which makes evaporative cooling difficult. The elastic collision cross section between fermion molecules can be larger than that for boson molecules with certain conditions.
Fermion back reaction and the sphaleron
Roberge, A. )
1994-02-15
Using a simple model, a new sphaleron solution which incorporates finite fermionic density effects is obtained. The main result is that the height of the potential barrier (sphaleron energy) decreases as the fermion density increases. This suggests that the rate of sphaleron-induced transitions increases when the fermionic density increases. However the rate increase is not expected to change significantly the predictions from the standard sphaleron-induced baryogenesis scenarios.
Aharonov-Bohm radiation of fermions
Chu Yizen; Mathur, Harsh; Vachaspati, Tanmay
2010-09-15
We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic strings. We find that the angular pattern of the radiation has features that differ significantly from that for bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale comparable to the string energy scale.
Localization of massive fermions on the baby-Skyrmion branes in 6 dimensions
Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki
2009-03-15
We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appeared in terms of slightly deformed baby Skyrmions with topological charge three.
Wilson loops and QCD/string scattering amplitudes
Makeenko, Yuri; Olesen, Poul
2009-07-15
We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant when the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.
True Unipolar ECG Machine for Wilson Central Terminal Measurements
Gargiulo, Gaetano D.
2015-01-01
Since its invention (more than 80 years ago), modern electrocardiography has employed a supposedly stable voltage reference (with little variation during the cardiac cycle) for half of the signals. This reference, known by the name of “Wilson Central Terminal” in honor of its inventor, is obtained by averaging the three active limb electrode voltages measured with respect to the return ground electrode. However, concerns have been raised by researchers about problems (biasing and misdiagnosis) associated with the ambiguous value and behavior of this reference voltage, which requires perfect and balanced contact of at least four electrodes to work properly. The Wilson Central Terminal has received scant research attention in the last few decades even though consideration of recent widespread medical practice (limb electrodes are repositioned closer to the torso for resting electrocardiography) has also sparkled concerns about the validity and diagnostic fitness of leads not referred to the Wilson Central Terminal. Using a true unipolar electrocardiography device capable of precisely measuring the Wilson Central Terminal, we show its unpredictable variability during the cardiac cycle and confirm that the integrity of cardinal leads is compromised as well as the Wilson Central Terminal when limb electrodes are placed close to the torso. PMID:26495303
NASA Astrophysics Data System (ADS)
Duflot, M.; Figon, P.; Meyssonnier, N.
1995-12-01
We give a common version of the two catalogues of Mean Radial Velocities by Wilson (1963) and Evans (1978) to which we have added the catalogue of spectroscopic binary systems (Batten et al. 1989). For each star, when possible, we give: 1) an acronym to enter SIMBAD (Set of Identifications Measurements and Bibliography for Astronomical Data) of the CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the number HIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number (Catalogue des Composantes des etoiles Doubles et Multiples) by Dommanget & Nys (1994). For the cluster stars, a precise study has been done, on the identificator numbers. Numerous remarks point out the problems we have had to deal with.
Left-right symmetric model with SU(2)-triplet fermions
Gu Peihong
2011-11-01
We consider an SU(3){sub c} x SU(2){sub L} x SU(2){sub R} x U(1){sub B-L} left-right symmetric model with three Higgs scalars including an SU(2){sub L} doublet, an SU(2){sub R} doublet and an SU(2){sub L} x SU(2){sub R} bidoublet. In addition to usual SU(2)-doublet fermions, our model contains SU(2)-triplet fermions with Majorana masses. The neutral components of the left-handed triplets can contribute a canonical seesaw while the neutral components of the right-handed triplets associated with the right-handed neutrinos can contribute a double/inverse-type seesaw. Our model can be embedded into an SO(10) grand unification theory where the triplets belong to the 45=(1,3,1,0)+(1,1,3,0)+... representations.
Paired States of Composite Fermions
NASA Astrophysics Data System (ADS)
Bonesteel, N. E.
2002-03-01
There is compelling theoretical evidence(R. Morf, Phys. Rev. Lett. 80), 1505 (1998). that the ν=5/2 fractional quantum Hall state is a Moore-Read state(G. Moore and N. Read, Nucl. Phys. B 360), 362 (1991). -- a state which can be viewed as a spin-polarized p-wave `superconductor' of composite fermions. The question remains, how can one test this hypothesis experimentally? To address this we have developed a semi-phenomenological description of this state in which the Halperin-Lee-Read(B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B 47), 7312 (1993). theory of the half-filled Landau level is modified by adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting mean-field superconducting state are then calculated and used in an RPA calculation of the physical electronic response. For a clean enough sample, and for q << k_f, the transverse electromagnetic response function for composite fermions is governed by type-II coherence factors and shows a `Hebel-Slichter'-like peak as a function of temperature for low enough frequency. The possibility (and potential difficulties) of observing this peak indirectly in surface-acoustic-wave propagation experiments will be discussed. The observation of such a coherence peak would provide strong evidence of BCS pairing in the 5/2 state. Work supported by US DOE Grant No. DE-FG02-97ER45639. Work done in collaboration with K.C. Foster (FSU) and S.H. Simon (Lucent). note
Fermion dipole moment and holography
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela; Rahman, Rakibur
2015-12-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Fermionic Quantization of Hopf Solitons
NASA Astrophysics Data System (ADS)
Krusch, S.; Speight, J. M.
2006-06-01
In this paper we show how to quantize Hopf solitons using the Finkelstein-Rubinstein approach. Hopf solitons can be quantized as fermions if their Hopf charge is odd. Symmetries of classical minimal energy configurations induce loops in configuration space which give rise to constraints on the wave function. These constraints depend on whether the given loop is contractible. Our method is to exploit the relationship between the configuration spaces of the Faddeev-Hopf and Skyrme models provided by the Hopf fibration. We then use recent results in the Skyrme model to determine whether loops are contractible. We discuss possible quantum ground states up to Hopf charge Q=7.
Coulomb interactions and fermion condensation
Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )
1990-08-15
The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.
Obituary: Andrew Stephen Wilson, 1947-2008
NASA Astrophysics Data System (ADS)
Veilleux, Sylvain
2009-01-01
On 24 May 2008, Andrew Stephen Wilson passed away at the age of 61, in his home in Silver Spring, Maryland, from complications resulting from a painful spinal illness. Andrew was arguably one of the first truly multi-wavelength astronomers of his generation. His scientific work on active galactic nuclei [AGN] spanned the entire electromagnetic spectrum from the radio to the X-rays. Andrew was born in Doncaster, Yorkshire, England, on 26 March 1947. He was the younger of two brothers whose births were separated by the Second World War. His father, Norman, came from a relatively affluent family who were coal merchants. His mother, Mary, came from a less comfortable background, one of seven children, daughter of a skilled cabinet maker/French polisher, who went through a very hard time during the depression. As a teacher, she placed enormous value on hard work and education as a way of gaining advancement in life. When Andrew was four, the family moved to Skipton, a nice market town in the Yorkshire dales. Andrew went to a small village school until age eleven when he entered Ermysted's Grammar School. He was an enthusiastic soccer and cricket player. He never lost his enthusiasm for soccer and supported the local soccer team, Leeds United, for all his life. Andrew also followed the Yorkshire county cricket team. Andrew's interest in astronomy stemmed from the fact that at Ermysted's Grammar School someone donated a four-inch refracting telescope, so he and his friends used to go back in the evenings to investigate the rings of Saturn, the moons of Jupiter, and various nebulae. While an undergraduate at Cambridge, Andrew joined the astronomy club and ground an 8-inch mirror by hand as a part of a telescope that he set up in the backyard of his parents' house. Andrew spent hours observing with this telescope, and it was the wonder of the family. At Cambridge, Andrew obtained his bachelor's degree with first-class honors in 1969. During a short visit in London with his
Misdiagnosis of Wilson's Disease in a Patient with Psychiatric Symptoms.
Nimisha, Doval; Dhruv, Batra; Vikas, Moun; Sneh, Jha K; Rakesh, Shukla
2016-01-01
Therapeutic outcome of Wilson's disease significantly depends upon its early recognition. As Wilson's disease is a rare disorder with protean manifestations, its diagnosis and subsequent treatment are often delayed. We elaborate here the case of a young boy who had initially presented with psychiatrc symptoms suggestive of dissociative fugue followed by withdrawn behaviour and was treated by a psychiatrist with minimal response. This was associated with symptoms of tremors, hypersalivation, and slowness of movements. This case highlights the delay in diagnosing Wilson's disease when faced with the case of a young adult with psychiatric manifestations. It is extremely important for physicians, psychiatrists and health professionals at primary care level to recognize and diagnose this treatable disease at an early stage. PMID:27570350
White matter changes in Wilson's disease: A radiological enigma
Mukherjee, Soumava; Solanki, Bhavesh; Guha, Goutam; Saha, Shankar Prasad
2016-01-01
Wilson's disease is a metabolic disorder which presents with hepatitis or hepatic decompensation commonly. Neurologic manifestations are late and include movement disorders, personality changes, and seizures. Magnetic resonance imaging (MRI) brain shows high signal changes in putamen, lentiform nucleus, thalamus, and brainstem. White matter lesions are rare. We report a child of Wilson's disease who presented to us with dystonia, rigidity, myoclonus and had symmetrical white matter changes in the fronto-parietooccipital region. Diffusion restriction in bilateral frontoparietal areas was also seen which is rare in chronic cases like ours. Atypical MRI characteristics should be considered in patients with clinical signs of neurological involvement in Wilson's disease as it is a devastating but treatable disease. PMID:27365966
Wilson's disease studied with FDG and positron emission tomography
Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.
1987-11-01
Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Fermionic T-Duality a Snapshot Review
NASA Astrophysics Data System (ADS)
Ó Colgáin, Eoin
2012-11-01
Through a self-dual mapping of the geometry AdS5 ×S5, fermionic T-duality provides a beautiful geometric interpretation of hidden symmetries for scattering amplitudes in N = 4 super-Yang-Mills. Starting with Green-Schwarz sigma-models, we consolidate developments in this area into this small review. In particular, we discuss the translation of fermionic T-duality into the supergravity fields via pure spinor formalism and show that a general class of fermionic transformations can be identified directly in the supergravity. In addition to discussing fermionic T-duality for the geometry AdS4 × ℂP3, dual to N = 6 ABJM theory, we review work on other self-dual geometries. Finally, we present a short round-up of studies with a formal interest in fermionic T-duality.
Tunable Dirac Fermion Dynamics in Topological Insulators
NASA Astrophysics Data System (ADS)
Chen, Chaoyu; Xie, Zhuojin; Feng, Ya; Yi, Hemian; Liang, Aiji; He, Shaolong; Mou, Daixiang; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Yu, Li; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.
2013-08-01
Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications.
Robustness of Spann-Wilson segmentation on SAR imagery
NASA Technical Reports Server (NTRS)
Daida, Jason M.; Vesecky, John F.
1992-01-01
The performances of the Spann-Wilson algorithm on simulated synthetic aperture radar (SAR) images with varying degrees of speckle (one to four looks and varying amounts of white noise) is described. One hundred forty-eight test images are considered, of which the algorithm segmented most without any adjustment to the algorithm's parameters. The effect of speckle on fractal boundaries is studied. The effect of varying multiplicative and additive noise distributions for a fixed set of segmentation parameters is examined. The modified Spann-Wilson algorithm on four-look imagery is evaluated.
Finite-temperature mobility of a particle coupled to a fermionic environment
Castella, H.; Zotos, X.
1996-08-01
We study numerically the finite-temperature and frequency mobility of a particle coupled by a local interaction to a system of spinless fermions in one dimension. We find that when the model is integrable (particle mass equal to the mass of fermions) the static mobility diverges. Further, an enhanced mobility is observed over a finite parameter range away from the integrable point. We present an analysis of the finite-temperature static mobility based on a random matrix theory description of the many-body Hamiltonian. {copyright} {ital 1996 The American Physical Society.}
Two-dimensional Confinement of Heavy Fermions in Artificial Superlattices
NASA Astrophysics Data System (ADS)
Shishido, Hiroaki
2011-03-01
Low dimensionality and strong electron-electron Coulomb interactions are both key parameters for novel quantum states of condensed matter. A metallic system with the strongest electron correlations is reported in rare-earth and actinide compounds with f electrons, known as heavy-fermion compounds, where the effective mass of the conduction electrons are strikingly enhanced by the electron correlations up to some hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. We realized experimentally a two-dimensional heavy fermion system, adjusting the dimensionality in a controllable fashion. We grew artificial superlattices of CeIn 3 (m)/ LaIn 3 (n), in which m -layers of heavy-fermion antiferromagnet CeIn 3 and n -layers of a non-magnetic isostructual compound LaIn 3 are stacked alternately, by a molecular beam epitaxy. By reducing the thickness of the CeIn 3 layers, the magnetic order was suppressed and the effective electron mass was further enhanced. The Néel temperature becomes zero at around m = 2 , concomitant with striking deviations from the standard Fermi liquid low-temperature electronic properties. Standard Fermi liquid behaviors are, however, recovered under high magnetic field. These behaviors imply new ``dimensional tuning'' towards a quantum critical point. We also succeeded to fabricate artificial superlattices of a heavy fermion superconductor CeCoIn 5 and non-magnetic divalent Yb-compound YbCoIn 5 . Superconductivity survives even in CeCoIn 5 (3)/ YbCoIn 5 (5) films, while the thickness of CeCoIn 5 layer, 2.3 nm, is comparable to the c -axis coherence length ξc ~ 2 nm. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T. Shibauchi, T. Terashima and Y. Matsuda.superconductivity is realized in the artificial superlattices. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T
33 CFR 165.1131 - Security Zone: Wilson Cove, San Clemente Island, California.
Code of Federal Regulations, 2012 CFR
2012-07-01
... miles (1.73 statute miles, 2.8 kilometers) of the shoreline of San Clemente Island from Wilson Cove... kilometers) southeast of Wilson Cove North End Light, described as follows: Starting at a point on...
33 CFR 165.1131 - Security Zone: Wilson Cove, San Clemente Island, California.
Code of Federal Regulations, 2014 CFR
2014-07-01
... miles (1.73 statute miles, 2.8 kilometers) of the shoreline of San Clemente Island from Wilson Cove... kilometers) southeast of Wilson Cove North End Light, described as follows: Starting at a point on...
1996 'STELLAR' and MCP program commencements with special guests Mrs. Gayle Wilson, CA Governor Pete
NASA Technical Reports Server (NTRS)
1996-01-01
1996 'STELLAR' and MCP program commencements with special guests Mrs. Gayle Wilson, CA Governor Pete Wilson's wife (center), Zoe Lofgren, 16th District Congresswoman San Jose, California (right) and Ames scientist Dr Rose Grymes (left)
Electric dipole moments of charged leptons with sterile fermions
NASA Astrophysics Data System (ADS)
Abada, Asmaa; Toma, Takashi
2016-02-01
We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.
Study of Majorana fermionic dark matter
NASA Astrophysics Data System (ADS)
Chua, Chun-Khiang; Wong, Gwo-Guang
2016-08-01
We construct a generic model of Majorana fermionic dark matter (DM). Starting with two Weyl spinor multiplets η1 ,2˜(I ,∓Y ) coupled to the Standard Model Higgs, six additional Weyl spinor multiplets with (I ±1 /2 ,±(Y ±1 /2 )) are needed in general. It has 13 parameters in total, five mass parameters and eight Yukawa couplings. The DM sector of the minimal supersymmetric Standard Model is a special case of the model with (I ,Y )=(1 /2 ,1 /2 ). Therefore, this model can be viewed as an extension of the neutralino DM sector. We consider three typical cases: the neutralinolike, the reduced, and the extended cases. For each case, we survey the DM mass mχ in the range of (1,2500) GeV by random sampling from the model parameter space and study the constraints from the observed DM relic density; the direct search of LUX, XENON100, and PICO experiments; and the indirect search of Fermi-LAT data. We investigate the interplay of these constraints and the differences among these cases. It is found that the direct detection of spin-independent DM scattering off nuclei and the indirect detection of DM annihilation to the W+W- channel will be more sensitive to the DM searches in the near future. The allowed mass for finding H ˜-, B ˜-, W ˜-, and non-neutralino-like DM particles and the predictions on ⟨σ (χ χ →Z Z ,Z H ,t t ¯)v ⟩ in the indirect search are given.
Rapidity evolution of Wilson lines at the next-to-leading order
Balitsky, Ian; Chirilli, Giovanni
2013-12-01
At high energies particles move very fast so the proper degrees of freedom for the fast gluons moving along the straight lines are Wilson-line operators - infinite gauge factors ordered along the line. In the framework of operator expansion in Wilson lines the energy dependence of the amplitudes is determined by the rapidity evolution of Wilson lines. We present the next-to-leading order hierarchy of the evolution equations for Wilson-line operators.
Fermionic T-duality in massive type IIA supergravity on AdS_{10-k} × M_k
NASA Astrophysics Data System (ADS)
Bakhmatov, Ilya
2016-04-01
Fermionic T-duality transformation is studied for supersymmetric solutions of massive type IIA supergravity with the metric AdS_{10-k} × M_k for k=3 and 5. We derive the Killing spinors of these backgrounds and use them as input for the fermionic T-duality transformation. The resulting dual solutions form a large family of supersymmetric deformations of the original solutions by complex valued RR fluxes. We observe that the Romans mass parameter does not change under fermionic T-duaity, and prove its invariance in the k=3 case.
NASA Astrophysics Data System (ADS)
Yamanaka, Nodoka
2012-10-01
We evaluate the Barr-Zee-type two-loop level contribution to the fermion electric and chromo-electric dipole moments with sfermion loop in R-parity violating supersymmetric models. It is found that the Barr-Zee-type fermion dipole moment with sfermion loop acts destructively to the currently known fermion loop contribution, and that it has small effect when the mass of squarks or charged sleptons in the loop is larger than or comparable to that of the sneutrinos, but cannot be neglected if the sneutrinos are much heavier than loop sfermions.
Kizilersue, Ayse; Pennington, Michael R.
2009-06-15
In principle, calculation of a full Green's function in any field theory requires knowledge of the infinite set of multipoint Green's functions, unless one can find some way of truncating the corresponding Schwinger-Dyson equations. For the fermion and boson propagators in QED this requires an ansatz for the full 3-point vertex. Here we illustrate how the properties of gauge invariance, gauge covariance and multiplicative renormalizability impose severe constraints on this fermion-boson interaction, allowing a consistent truncation of the propagator equations. We demonstrate how these conditions imply that the 3-point vertex in the propagator equations is largely determined by the behavior of the fermion propagator itself and not by knowledge of the many higher-point functions. We give an explicit form for the fermion-photon vertex, which in the fermion and photon propagator fulfills these constraints to all orders in leading logarithms for massless QED, and accords with the weak coupling limit in perturbation theory at O({alpha}). This provides the first attempt to deduce nonperturbative Feynman rules for strong physics calculations of propagators in massless QED that ensure a more consistent truncation of the 2-point Schwinger-Dyson equations. The generalization to next-to-leading order and masses will be described in a longer publication.
Municipal Broadband in Wilson, North Carolina: A Study
ERIC Educational Resources Information Center
O'Boyle, Timothy
2012-01-01
Relatively little empirical attention has been paid to the political economy of publicly-retailed fiber-optic broadband internet service. To address this gap in the literature, this dissertation examines the history, dynamics and trends in the municipal broadband movement. In specific, Wilson, North Carolina's Greenlight service is examined…
Education with Heart: An Interview with Teacher Carol Wilson.
ERIC Educational Resources Information Center
Milone, Michael
2002-01-01
Interviews Carol Wilson, a teacher of gifted students at Sandpiper Elementary School in Sunrise, Florida. Explains that in Carol's classroom, technology extends the instruction of literacy to include not only reading, writing, speaking, and listening, but also what might be called emotional literacy. Notes that she involves her students in a…
2. NORTH AND EAST ELEVATIONS, ALEXANDER'S MILL (WILSON'S MILL). THE ...
2. NORTH AND EAST ELEVATIONS, ALEXANDER'S MILL (WILSON'S MILL). THE 2-1/1-STORY MAIN BLOCK, ERECTED IN 1855, HAS OVERTONES OF THE GREEK REVIVAL STYLE. Photographer: louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH
E. O. Wilson: It's All in the Genes.
ERIC Educational Resources Information Center
McKean, Kevin
1982-01-01
Presents a brief biographical sketch of Edward Osborne Wilson, Jr., who argues that societies evolve to fit their environment, just as individuals do, and that as a consequence social behavior is genetically programed. Highlights his views as presented in his publication "Sociobiology: The New Synthesis." (JN)
John Wilson and the Place of Morality in Education.
ERIC Educational Resources Information Center
Haydon, Graham
2000-01-01
Questions whether morality should not be discussed in schools. Considers claims for the importance of morality by drawing on the work of John Wilson. Argues that the best strategy for public school environments would be to focus on morality in the narrow sense. (CMK)
John Wilson's Confused "Perspectives on the Philosophy of Education"
ERIC Educational Resources Information Center
Standish, Paul
2006-01-01
In his "Perspectives on the Philosophy of Education" John Wilson laments the confusion that surrounds the current state of the philosophy of education. Unlike other branches of philosophy, he claims, it is not clear what the philosophy of education is about, and a snapshot of current work in the field reveals its lack of coherence. To remedy this…
A College that Reinvented Itself: The Wilson College Story
ERIC Educational Resources Information Center
Armacost, Mary-Linda Merriam
2011-01-01
This article presents the story of Wilson College, the only college in the United States where a group of alumnae took the trustees to court over the issue of the announced closing and won the case. The court reversed the trustees' decision on the grounds that the college had failed to seek approval from the court before announcing the change in…
19. VIEW OF EAST ELEVATION. THOMAS G. WILSON ADDED THE ...
19. VIEW OF EAST ELEVATION. THOMAS G. WILSON ADDED THE ONE-STORY RETAIL STORE IN 1958. IT REPLACED A SMALLER ONE-STORY OFFICE IN THE SAME LOCATION. Photographer: Louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH
Shape and Surface: An Interview with Lana Wilson.
ERIC Educational Resources Information Center
Gamble, Harriet
2000-01-01
Presents an interview with Lana Wilson, a recognized ceramic artist, educator, and writer. Covers topics such as her educational background and development as an artist, the transitions and evolution of her artwork, what she has learned from her teaching experiences, and her thoughts on art education. (CMK)
Photometric observations of 107P/Wilson-Harrington
NASA Astrophysics Data System (ADS)
Urakawa, Seitaro; Okumura, Shin-ichiro; Nishiyama, Kota; Sakamoto, Tsuyoshi; Takahashi, Noritsugu; Abe, Shinsuke; Ishiguro, Masateru; Kitazato, Kohei; Kuroda, Daisuke; Hasegawa, Sunao; Ohta, Kouji; Kawai, Nobuyuki; Shimizu, Yasuhiro; Nagayama, Shogo; Yanagisawa, Kenshi; Yoshida, Michitoshi; Yoshikawa, Makoto
2011-09-01
We present lightcurve observations and multiband photometry for 107P/Wilson-Harrington using five small- and medium-sized telescopes. The lightcurve has shown a periodicity of 0.2979 day (7.15 h) and 0.0993 day (2.38 h), which has a commensurability of 3:1. The physical properties of the lightcurve indicate two models: (1) 107P/Wilson-Harrington is a tumbling object with a sidereal rotation period of 0.2979 day and a precession period of 0.0993 day. The shape has a long axis mode (LAM) of L1: L2: L3 = 1.0:1.0:1.6. The direction of the total rotational angular momentum is around λ = 310°, β = -10°, or λ = 132°, β = -17°. The nutation angle is approximately constant at 65°. (2) 107P/Wilson-Harrington is not a tumbler. The sidereal rotation period is 0.2979 day. The shape is nearly spherical but slightly hexagonal with a short axis mode (SAM) of L1: L2: L3 = 1.5:1.5:1.0. The pole orientation is around λ = 330°, β = -27°. In addition, the model includes the possibility of binary hosting. For both models, the sense of rotation is retrograde. Furthermore, multiband photometry indicates that the taxonomy class of 107P/Wilson-Harrington is C-type. No clear rotational color variations are confirmed on the surface.
Photometric Observations of 107P/Wilson-Harrington
NASA Astrophysics Data System (ADS)
Urakawa, S.; Okumrua, S.; Nishiyama, K.; Sakamoto, T.; Takahashi, N.; Abe, S.; Ishiguro, M.; Kitazato, K.; Kuroda, D.; Hasegawa, S.; Ohta, K.; Kawai, N.; Shimizu, Y.; Nagayama, S.; Yanagisawa, K.; Yoshida, M.; Yoshikawa, M.
2011-10-01
We present lightcurve observations and multiband photometry for 107P/Wilson-Harrington by using five small- and medium-sized telescopes. The lightcurve has shown a periodicity of 0.2979 day (7.15 hour) and 0.0993 day (2.38 hour), which has a commensurability of 3:1. The physical properties of the lightcurve indicate two models: (1) 107P/Wilson- Harrington is a tumbling object with a sidereal rotation period of 0.2979 day and a precession period of 0.0993 day. The shape has a long axis mode (LAM) of L1:L2:L3 = 1.0:1.0:1.6. The direction of the total rotational angular momentum is around λ = 310°, β = -10°, or λ = 132°, β= -17°. (2) 107P/Wilson- Harrington is not a tumbler. The sidereal rotation period is 0.2979 day. The shape is nearly spherical but slightly hexagonal with a short axis mode (SAM) of L1:L2:L3 = 1.5:1.5:1.0. The pole orientation is around λ = 330°, β = -27°. In addition, the model includes the possibility of binary hosting. For both models, the sense of rotation is retrograde. Furthermore, multiband photometry indicates that the taxonomy class of 107P/Wilson-Harrington is C-type. No clear rotational color variations are confirmed on the surface.
Rodin, Patton, Edison, Wilson, Einstein: Were They Really Learning Disabled?
ERIC Educational Resources Information Center
Adelman, Kimberly A.; Adelman, Howard S.
1987-01-01
The practice of posthumously diagnosing historical figures is discussed. Emphasis is on the unsatisfactory nature of evidence found for those diagnosed as learning-disabled or dyslexic and the possibility of other explanations for identified problems. Posthumous diagnoses of Auguste Rodin, George Patton, Thomas Edison, Woodrow Wilson, and Albert…
The Telescopes in Education Program at Mount Wilson Observatory.
ERIC Educational Resources Information Center
Teare, Scott W.
1998-01-01
Describes the Telescopes in Education Program (TIE), an educational outreach project sponsored by the National Aeronautics and Space Administration (NASA) and developed in collaboration with the Mount Wilson Institute which provides data to professionals who may not have access to telescopes. (DDR)
Wilson lines and gauge invariant off-shell amplitudes
NASA Astrophysics Data System (ADS)
Kotko, Piotr
2014-07-01
We study matrix elements of Fourier-transformed straight infinite Wilson lines as a way to calculate gauge invariant tree-level amplitudes with off-shell gluons. The off-shell gluons are assigned "polarization vectors" which (in the Feynman gauge) are transverse to their off-shell momenta and define the direction of the corresponding Wilson line operators. The infinite Wilson lines are first regularized to prove the correctness of the method. We have implemented the method in a computer FORM program that can calculate gluonic matrix elements of Wilson line operators automatically. In addition we formulate the Feynman rules that are convenient in certain applications, e.g. proving the Ward identities. Using both the program and the Feynman rules we calculate a few examples, in particular the matrix elements corresponding to gauge invariant g * g * g * g and g * g * g * g * g processes. An immediate application of the approach is in the high energy scattering, as in a special kinematic setup our results reduce to the form directly related to Lipatov's vertices. Thus the results we present can be directly transformed into Lipatov's vertices, in particular into RRRP and RRRRP vertices with arbitrary "orientation" of reggeized gluons. Since the formulation itself is not restricted to high-energy scattering, we also apply the method to a decomposition of an ordinary on-shell amplitude into a set of gauge invariant objects.
Obituary: Andrew Stephen Wilson, 1947-2008
NASA Astrophysics Data System (ADS)
Veilleux, Sylvain
2009-01-01
On 24 May 2008, Andrew Stephen Wilson passed away at the age of 61, in his home in Silver Spring, Maryland, from complications resulting from a painful spinal illness. Andrew was arguably one of the first truly multi-wavelength astronomers of his generation. His scientific work on active galactic nuclei [AGN] spanned the entire electromagnetic spectrum from the radio to the X-rays. Andrew was born in Doncaster, Yorkshire, England, on 26 March 1947. He was the younger of two brothers whose births were separated by the Second World War. His father, Norman, came from a relatively affluent family who were coal merchants. His mother, Mary, came from a less comfortable background, one of seven children, daughter of a skilled cabinet maker/French polisher, who went through a very hard time during the depression. As a teacher, she placed enormous value on hard work and education as a way of gaining advancement in life. When Andrew was four, the family moved to Skipton, a nice market town in the Yorkshire dales. Andrew went to a small village school until age eleven when he entered Ermysted's Grammar School. He was an enthusiastic soccer and cricket player. He never lost his enthusiasm for soccer and supported the local soccer team, Leeds United, for all his life. Andrew also followed the Yorkshire county cricket team. Andrew's interest in astronomy stemmed from the fact that at Ermysted's Grammar School someone donated a four-inch refracting telescope, so he and his friends used to go back in the evenings to investigate the rings of Saturn, the moons of Jupiter, and various nebulae. While an undergraduate at Cambridge, Andrew joined the astronomy club and ground an 8-inch mirror by hand as a part of a telescope that he set up in the backyard of his parents' house. Andrew spent hours observing with this telescope, and it was the wonder of the family. At Cambridge, Andrew obtained his bachelor's degree with first-class honors in 1969. During a short visit in London with his
Fermion flavor in the soft-wall AdS model
Gherghetta, Tony; Sword, Daniel
2009-09-15
The formalism for modeling multiple fermion generations in a warped extra dimension with a soft wall is presented. A bulk Higgs condensate is responsible for generating mass for the zero-mode fermions but leads to additional complexity from large mixing between different flavors. We extend existing single-generation analyses by considering new special cases in which analytical solutions can be derived. The general three-generation case is then treated using a simple numerical routine. Assuming anarchic 5D parameters, we find a fermion mass spectrum resembling the standard model quarks and leptons with highly degenerate couplings to Kaluza-Klein gauge bosons. This confirms that the soft-wall model has similar attractive features as that found in hard-wall models, providing a framework to generalize existing phenomenological analyses.
Pereira, E.; Procacci, A.
1997-03-01
Searching for a general and technically simple multiscale formalism to treat interacting fermions, we develop a (Wilson{endash}Kadanoff) block renormalization group mechanism, which, due to the property of {open_quotes}orthogonality between scales,{close_quotes} establishes a trivial link between the correlation functions and the effective potential flow, leading to simple expressions for the generating and correlation functions. Everything is based on the existence of {open_quotes}special configurations{close_quotes} (lattice wavelets) for multiscale problems: using a simple linear change of variables relating the initial fields to these configurations, we establish the formalism. The algebraic formulas show a perfect parallel with those obtained for bosonic problems, considered in previous works. {copyright} 1997 Academic Press, Inc.
Thermodynamic behavior of the heavy-fermion compounds Ce3X (X=Al,In,Sn)
NASA Astrophysics Data System (ADS)
Chen, Y.-Y.; Lawrence, J. M.; Thompson, J. D.; Willis, J. O.
1989-12-01
We have measured the resistivity ρ(T) and susceptibility χ(T) of Ce3Al, Ce3In, and Ce3Sn in the temperature range 1-350 K, the specific heat C(T) for 1-25 K and the pressure dependence of the resistivity ρ(P,T) for 0
fermion systems that show no superconductivity above 0.4 K. In the ground state the linear coefficients of the specific heat γ are 0.70 and 0.26 J/mol Ce K2 for Ce3In and Ce3Sn, respectively. The magnetic specific heat of Ce3In shows two separated maxima: one at 4.3 K due to the heavy fermions and a second Schottky peak at 23 K arising from a Γ7-Γ8 crystal-field splitting of order TCF=65 K. For Ce3Sn the crystal-field splitting is comparable. From χ(0) we obtain values of the Wilson ratio of 11.5 and 7.0 for Ce3In and Ce3Sn. We argue that these large values represent the presence of ferromagnetic correlations in the ground state. For Ce3In the enhancement of the susceptibility and specific-heat coefficient and the rapid decrease of the resistivity all occur below the same temperature (7 K), suggesting that the onset of the heavy mass coincides with the onset of magnetic correlations and coherence. In addition, for Ce3In an inflection point occurs in ρ(T) at Tinf=2.2 K, below which ρ varies as T2, and there may be a peak in C(T)/T at 2 K. Thus, it appears that there are two temperature scales for the onset of interaction effects: One coincides with the single-ion Kondo temperature TK, and the other, a low-temperature scale TL, obeys a rule TL=TK/Ndeg, where Ndeg is the degeneracy of the ground-state multiplet. The ground state of Ce3Al is antiferromagnetic with TN=2.5 K. The specific-heat anomaly makes it impossible to determine γ but for 10
Green's functions for a CPn - 1 model with massless fermions
NASA Astrophysics Data System (ADS)
Schaposnik, F. A.
1983-07-01
We study the CPn - 1 model with massless fermions making a chiral change in the fermionic variables. We construct the generating functional and discuss relevant features of the theory. The factorization of a pure fermionic part shows a power law correction to the free fermion Green's function. The dynamical gauge field becomes massive and a screening phenomenon occurs. Member of CIC, Buenos Aires, Argentina
Do All the Good You Can: A Conversation with Mark Wilson
ERIC Educational Resources Information Center
Riddile, Mel
2009-01-01
This article presents an interview with Mark Wilson, the principal of Morgan County High School and the 2009 MetLife/NASSP National High School Principal of the Year. In the interview, Wilson shares his experiences in taking his school to the next level. When asked how he determined what would take his school to the next level, Wilson states that…
Unruly Desires and a Love Worth Wanting: A Serious Look at Wilson's "Love between Equals."
ERIC Educational Resources Information Center
Houston, Barbara
2000-01-01
Examines John Wilson's ideal of love between equals presented in his work "Love between Equals." Assesses whom Wilson perceives as counting as equals and examines Wilson's ideas further by addressing who in this equal relationship is taking responsibility for whose sexuality. Highlights a moral peril associated with his ideal of intimacy. (CMK)
A Ramanujan-type measure for the Askey-Wilson polynomials
NASA Technical Reports Server (NTRS)
Atakishiyev, Natig M.
1995-01-01
A Ramanujan-type representation for the Askey-Wilson q-beta integral, admitting the transformation q to q(exp -1), is obtained. Orthogonality of the Askey-Wilson polynomials with respect to a measure, entering into this representation, is proved. A simple way of evaluating the Askey-Wilson q-beta integral is also given.
Goldstone bosons and fermions in QCD
Zwanziger, Daniel
2010-06-15
We consider the version of QCD in Euclidean Landau gauge in which the restriction to the Gribov region is implemented by a local, renormalizable action. This action depends on the Gribov parameter {gamma}, with dimensions of (mass){sup 4}, whose value is fixed in terms of {Lambda}{sub QCD}, by the gap equation, known as the horizon condition, ({partial_derivative}{Gamma}/{partial_derivative}{gamma})=0, where {Gamma} is the quantum effective action. The restriction to the Gribov region suppresses gluons in the infrared, which nicely explains why gluons are not in the physical spectrum, but this only makes more mysterious the origin of the long-range force between quarks. In the present article we exhibit the symmetries of {Gamma}, and show that the solution to the gap equation, which defines the classical vacuum, spontaneously breaks some of the symmetries of {Gamma}. This implies the existence of massless Goldstone bosons and fermions that do not appear in the physical spectrum. Some of the Goldstone bosons may be exchanged between quarks, and are candidates for a long-range confining force. As an exact result we also find that in the infrared limit the gluon propagator vanishes like k{sup 2}.
Photometric Observations of 107P/(4015) Wilson-Harrington
NASA Astrophysics Data System (ADS)
Urakawa, Seitaro; Okumura, Shin-Ichiro; Nishiyama, Kota; Sakamoto, Tsuyoshi; Takahashi, Noritsugu; Ishiguro, Masateru; Yoshikawa, Makoto
We present the photometric observations of 107P/(4015) Wilson-Harrington using the Bisei Spaceguard Center (BSGC) 1.0m telescope and the University of Hawaii (UH) 2.2m telescope. Hayabusa explored an S-type asteroid Itokawa. The subsequent mission Hayabusa-2 is planned to explore a C-type asteroid 1999JU3. In addition, a more advanced sample return mission from a D-type asteroid or an asteroid-comet transition object is envisaged. This mission is called "Hayabusa Mk-2". A promising candidate to be explored by Hayabusa Mk-2 is a near-Earth asteroid-comet transition object 107P/(4015) Wilson-Harrington. The physical characteristics of 107P/(4015) Wilson-Harrington such as the rotational period, the pole direction, and the shape are important to design the mission plan. The photometric observations of light variation make clear the physical characteristics. We have conducted the photometric observation of 107P/(4015) Wilson-Harrington with the BSGC 1.0m telescope since October 2009. In order to determine the precise rotational period with the full-phase lightcurve, the collaborating observations were carried out on December 18 with the UH 2.2m telescope. We found that the rotational period is around 6.22 hours, which are more accurate than the known value (6.1 hours). The photometric observations were continued till the end of February 2010. In addition to it, we obtained the multi-band photometry data to investigate the surface color uniformity. In this paper, we summarize the observations of 107P/(4015) Wilson-Harrington and discuss the rotational period, pole direction, the shape and the surface color uniformity.
A Review and Current Perspective on Wilson Disease
Patil, Mallikarjun; Sheth, Keyur A.; Krishnamurthy, Adarsh C.; Devarbhavi, Harshad
2013-01-01
Wilson disease is a rare, inherited autosomal recessive disease of copper metabolism and may be more common where consanguinity is prevalent. Much has been known about the disease after it was first described by Kinnier Wilson as ‘progressive lenticular degeneration in 1912. Over 500 mutations of the ATP7B gene has been identified with no clear genotype to phenotype correlation. Loss of ATP7B function leads various grades of reduced biliary excretion of copper and reduced incorporation of copper into ceruloplasmin; accumulation and toxicity of copper in the liver, brain and other tissues results in liver toxicity and other myriad manifestations of the disease. The clinical features may vary from asymptomatic state to chronic liver disease, acute liver failure, neuropsychiatric manifestations and hemolytic anemia. Diagnosis is based on the combination of clinical sign's, biochemical features, histologic findings and mutation analysis of ATP7B gene. Subtle geographical differences exist with a disproportionate proportion of children presenting with acute liver failure. A high index of suspicion is needed for an early diagnosis. Ratios of biochemical indices for early diagnosis need validation across geographical regions and may not be particularly applicable in children. Better biomarkers or the need for tests for early detection of ALF persists. Drugs used in the treatment of Wilson disease include copper chelating agents such as d-Penicillamine, trientine and zinc salt. Untreated Wilson disease uniformly leads to death from liver disease or severe neurological disability. Early recognition and treatment has excellent prognosis. Liver transplantation is indicated in acute liver failure and end stage liver disease. Family screening in order to detect the disorder in the first-degree relatives is warranted. This review provides an overview of different aspects of Wilson disease including geographical differences in presentations and clinical management and the
Instantons and Massless Fermions in Two Dimensions
DOE R&D Accomplishments Database
Callan, C. G. Jr.; Dashen, R.; Gross, D. J.
1977-05-01
The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.
Fermion localization on a split brane
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
Fermion condensate and the spectrum of massive Schwinger model in Bogoliubov transformed vacuum
Tomachi, T.; Fujita, T. )
1993-05-01
The authors calculate the spectrum of the charge zero sector in two-dimensional quantum electrodynamics (massive Schwinger model). The calculations are first done in the rest frame with the perturbative vacuum within given subspaces. This leads to the infrared instability at small fermion mass. Then, the Bogoliubov transformation of the vacuum is made. There, it is found that the quasi-particle states achieve a remarkably good description of the boson mass spectrum. At small fermion mass (m[sub 0][le]0.1(g/[pi][sup 1/2])), the Bogoliubov transformed state predicts the boson mass which agrees with the analytic estimation and thus is better than that calculated by the discretized light cone quantization methods at the same level of matrix dimensions. The fermion condensate of the vacuum is also estimated as the function of the fermion mass. At the massless limit, the right condensate value is reproduced as obtained analytically in the continuum limit. 16 refs., 6 figs.
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Wang, Lei; Corboz, Philippe; Troyer, Matthias
2014-10-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν =0.80(3) and η =0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states.
NASA Astrophysics Data System (ADS)
Romanovsky, Igor; Yannouleas, Constantine; Landman, Uzi
2013-04-01
Armchair and zigzag edge terminations in planar hexagonal and trigonal graphene nanorings are shown to underlie one-dimensional topological states associated with distinctive energy gaps and patterns (e.g., linear dispersion of the energy of an hexagonal ring with an armchair termination versus parabolic dispersion for a zigzag terminated one) in the bands of the tight-binding spectra as a function of the magnetic field. A relativistic Dirac-Kronig-Penney model analysis of the tight-binding Aharonov-Bohm behavior reveals that the graphene quasiparticle in an armchair hexagonal ring is a condensed-matter realization of an ultrarelativistic fermion with a position-dependent mass term, akin to the zero-energy fermionic solitons with fractional charge familiar from quantum-field theory and from the theory of polyacetylene. The topological origins of the above behavior are highlighted by contrasting it with the case of a trigonal armchair ring, where we find that the quasiparticle excitations behave as familiar Dirac fermions with a constant mass. Furthermore, the spectra of a zigzag hexagonal ring correspond to the low-kinetic-energy nonrelativistic regime of a lepton-like massive fermion. A one-dimensional relativistic Lagrangian formalism coupling a fermionic and a scalar bosonic field via a Yukawa interaction, in conjunction with the breaking of the Z2 reflectional symmetry of the scalar field, is shown to unify the above dissimilar behaviors.
Observations on staggered fermions at nonzero lattice spacing
Bernard, Claude; Golterman, Maarten; Shamir, Yigal
2006-06-01
We show that the use of the fourth-root trick in lattice QCD with staggered fermions corresponds to a nonlocal theory at nonzero lattice spacing, but argue that the nonlocal behavior is likely to go away in the continuum limit. We give examples of this nonlocal behavior in the free theory, and for the case of a fixed topologically nontrivial background gauge field. In both special cases, the nonlocal behavior indeed disappears in the continuum limit. Our results invalidate a recent claim that at nonzero lattice spacing an additive mass renormalization is needed because of taste-symmetry breaking.
Quantum Materials: Weyl fermions go into orbit
NASA Astrophysics Data System (ADS)
Dai, Xi
2016-08-01
Due to their chirality, the massless fermions inside Weyl semimetals can take unusual paths that are governed by chiral dynamics, potentially providing a direct method to explore their topological nature.
Majorana Fermions and Topology in Superconductors
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Fujimoto, Satoshi
2016-07-01
Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.
Quantum-gas microscope for fermionic atoms.
Cheuk, Lawrence W; Nichols, Matthew A; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V; Bakr, Waseem S; Lompe, Thomas; Zwierlein, Martin W
2015-05-15
We realize a quantum-gas microscope for fermionic ^{40}K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. PMID:26024169
Quantum-Gas Microscope for Fermionic Atoms
NASA Astrophysics Data System (ADS)
Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.
2015-05-01
We realize a quantum-gas microscope for fermionic 40K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single-atom level. We combine 3D Raman sideband cooling with high-resolution optics to simultaneously cool and image individual atoms with single-lattice-site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site-resolved imaging of fermions enables the direct observation of magnetic order, time-resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement.
Dwarf spheroidal galaxies as degenerate gas of free fermions
Domcke, Valerie; Urbano, Alfredo E-mail: alfredo.urbano@sissa.it
2015-01-01
In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.
Searches for excited fermions in ep collisions at HERA
NASA Astrophysics Data System (ADS)
Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Brock, I.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Wieber, H.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Jeoung, H. Y.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Ma, K. J.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Crittenden, J.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G. F.; Hebbel, K.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Löhr, B.; Mankel, R.; Martens, J.; Martínez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M. C.; Polini, A.; Schneekloth, U.; Selonke, F.; Stonjek, S.; Surrow, B.; Whitmore, J. J.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Bodmann, B.; Gendner, N.; Holm, U.; Salehi, H.; Wick, K.; Yildirim, A.; Ziegler, A.; Carli, T.; Garfagnini, A.; Gialas, I.; Lohrmann, E.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Ahn, S. H.; Lee, S. B.; Park, S. K.; Lim, H.; Son, D.; Barreiro, F.; García, G.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Große-Knetter, J.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B. Y.; Saull, P. R. B.; Toothacker, W. S.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G. M.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Hayes, M. E.; Heaphy, E. A.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Sztuk, J.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Breitweg, J.; Chapin, D.; Cross, R.; Kçira, D.; Lammers, S.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Frisken, W. R.; Khakzad, M.; Menary, S.; ZEUS Collaboration
2002-11-01
Searches in ep collisions for heavy excited fermions have been performed with the ZEUS detector at HERA. Excited states of electrons and quarks have been searched for in e+p collisions at a centre-of-mass energy of 300 GeV using an integrated luminosity of 47.7 pb-1. Excited electrons have been sought via the decays e∗→eγ, e∗→eZ and e∗→νW. Excited quarks have been sought via the decays q∗→qγ and q∗→qW. A search for excited neutrinos decaying via ν∗→νγ, ν∗→νZ and ν∗→eW is presented using e-p collisions at 318 GeV centre-of-mass energy, corresponding to an integrated luminosity of 16.7 pb-1. No evidence for any excited fermion is found, and limits on the characteristic couplings are derived for masses ≲250 GeV.
Dwarf spheroidal galaxies as degenerate gas of free fermions
NASA Astrophysics Data System (ADS)
Domcke, Valerie; Urbano, Alfredo
2015-01-01
In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass mf. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to mf. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that mfsimeq 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.
Coulomb's law corrections and fermion field localization in a tachyonic de Sitter thick braneworld
NASA Astrophysics Data System (ADS)
Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio
2016-05-01
Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ̅ in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb's law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb's law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb's law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or
Fermionic Subspaces of the Bosonic String
NASA Astrophysics Data System (ADS)
Chattaraputi, A.; Englert, F.; Houart, L.; Taormina, A.
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.
Fermionic subspaces of the bosonic string
NASA Astrophysics Data System (ADS)
Chattaraputi, Auttakit; Englert, François; Houart, Laurent; Taormina, Anne
2003-06-01
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates spacetime fermions out of bosons dynamically within the framework of bosonic string theory.
The physics and chemistry of heavy fermions.
Fisk, Z; Sarrao, J L; Smith, J L; Thompson, J D
1995-01-01
The heavy fermions are a subset of the f-electron intermetallic compounds straddling the magnetic/nonmagnetic boundary. Their low-temperature properties are characterized by an electronic energy scale of order 1-10 K. Among the low-temperature ground states observed in heavy fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems. PMID:11607558
Ground state degeneracy of interacting spinless fermions
NASA Astrophysics Data System (ADS)
Wei, Zhong-Chao; Han, Xing-Jie; Xie, Zhi-Yuan; Xiang, Tao
2015-10-01
We propose an eigenoperator scheme to study the lattice model of interacting spinless fermions at half filling and show that this model possesses a hidden form of reflection positivity in its Majorana fermion representation. Based on this observation, we prove rigourously that the ground state of this model is either unique or doubly degenerate if the lattice size N is even, and is always doubly degenerate if N is odd. This proof holds in all dimensions with arbitrary lattice structures.
Quantum Gas Microscope for Fermionic Atoms
NASA Astrophysics Data System (ADS)
Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin
2016-05-01
Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.
Nucleon Structure with Domain Wall Fermions at a = 0.086 fm
Syritsyn, Sergey; Bratt, Jonathan; Lin, Meifeng; Meyer, Harvey; Negele, John; Pochinsky, Andrew; Procura, M.; Edwards, Robert; Orginos, Konstantinos; Richards, David; Engelhardt, Michael; Fleming, George; Haegler, Philipp; Musch, Bernhard; Renner, Dru; Schroers, Wolfram
2008-12-01
We present initial calculations of nucleon matrix elements of twist-two operators with 2+1 flavors of domain wall fermions at a lattice spacing a = 0.084 fm for pion masses down to 300 MeV. We also compare the results with the domain wall calculations on a coarser lattice.
Finite Volume Study of the Delta Magnetic Moments Using Dynamical Clover Fermions
Aubin, Christopher; Orginos, Konstantinos; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2009-01-01
We calculate the magnetic dipole moment of the $\\Delta$ baryon using a background magnetic field on 2+1-flavors of clover fermions on anisotropic lattices. We focus on the finite volume effects that can be significant in background field studies, and thus we use two different spatial volumes in addition to several quark masses.
BLUM,T.; SONI,A.
2007-03-15
The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkable that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2
NASA Astrophysics Data System (ADS)
Li, Lijun; Wang, Kefeng; Graf, D.; Wang, Limin; Wang, Aifeng; Petrovic, C.
2016-03-01
We report two-dimensional quantum transport and Dirac fermions in BaMnBi2 single crystals. BaMnBi2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.
Phase of the fermion determinant in QED3 using a gauge invariant lattice regularization
NASA Astrophysics Data System (ADS)
Karthik, Nikhil; Narayanan, Rajamani
2015-07-01
We use canonical formalism to study the fermion determinant in different three-dimensional Abelian gauge-field backgrounds that contain nonzero magnetic and electric flux in order to understand the nonperturbative contributions to the parity-odd and parity-even parts of the phase. We show that a certain phase associated with free fermion propagation along a closed path in a momentum torus is responsible for the parity anomaly in a background with nonzero electric flux. We consider perturbations around backgrounds with nonzero magnetic flux to understand the structure of the parity-breaking perturbative term at finite temperature and mass.
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi2
Li, Lijun; Wang, Kefeng; Graf, D.; Wang, Limin; Wang, Aifeng; Petrovic, C.
2016-03-28
Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi2 single crystals. BaMnBi2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.
The Lattice Schwinger Model: Confinement, Anomalies, Chiral Fermions and All That
Melnikov, Kirill
2000-04-24
In order to better understand what to expect from numerical CORE computations for two-dimensional massless QED (the Schwinger model) the authors wish to obtain some analytic control over the approach to the continuum limit for various choices of fermion derivative. To this end they study the Hamiltonian formulation of the lattice Schwinger model (i.e., the theory on the spatial lattice with continuous time) in A{sub 0} = 0 gauge. They begin with a discussion of the solution of the Hamilton equations of motion in the continuum, they then parallel the derivation of the continuum solution within the lattice framework for a range of fermion derivatives. The equations of motion for the Fourier transform of the lattice charge density operator show explicitly why it is a regulated version of this operator which corresponds to the point-split operator of the continuum theory and the sense in which the regulated lattice operator can be treated as a Bose field. The same formulas explicitly exhibit operators whose matrix elements measure the lack of approach to the continuum physics. They show that both chirality violating Wilson-type and chirality preserving SLAC-type derivatives correctly reproduce the continuum theory and show that there is a clear connection between the strong and weak coupling limits of a theory based upon a generalized SLAC-type derivative.
Entanglement entropy of Wilson loops: Holography and matrix models
NASA Astrophysics Data System (ADS)
Gentle, Simon A.; Gutperle, Michael
2014-09-01
A half-Bogomol'nyi-Prasad-Sommerfeld circular Wilson loop in N=4 SU(N) supersymmetric Yang-Mills theory in an arbitrary representation is described by a Gaussian matrix model with a particular insertion. The additional entanglement entropy of a spherical region in the presence of such a loop was recently computed by Lewkowycz and Maldacena using exact matrix model results. In this paper we utilize the supergravity solutions that are dual to such Wilson loops in a representation with order N2 boxes to calculate this entropy holographically. Employing the matrix model results of Gomis, Matsuura, Okuda and Trancanelli we express this holographic entanglement entropy in a form that can be compared with the calculation of Lewkowycz and Maldacena. We find complete agreement between the matrix model and holographic calculations.
Iterants, Fermions and Majorana Operators
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
Beta-integrals and finite orthogonal systems of Wilson polynomials
Neretin, Yu A
2002-08-31
The integral is calculated and the system of orthogonal polynomials with weight equal to the corresponding integrand is constructed. This weight decreases polynomially, therefore only finitely many of its moments converge. As a result the system of orthogonal polynomials is finite. Systems of orthogonal polynomials related to {sub 5}H{sub 5}-Dougall's formula and the Askey integral is also constructed. All the three systems consist of Wilson polynomials outside the domain of positiveness of the usual weight.
Diverse Functional Properties of Wilson Disease ATP7B Variants
Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana
2012-01-01
BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481
Smooth Wilson loops in N=4 non-chiral superspace
NASA Astrophysics Data System (ADS)
Beisert, Niklas; Müller, Dennis; Plefka, Jan; Vergu, Cristian
2015-12-01
We consider a supersymmetric Wilson loop operator for 4d N = 4 super Yang-Mills theory which is the natural object dual to the AdS 5 × S 5 superstring in the AdS/CFT correspondence. It generalizes the traditional bosonic 1 /2 BPS Maldacena-Wilson loop operator and completes recent constructions in the literature to smooth (non-light-like) loops in the full N=4 non-chiral superspace. This Wilson loop operator enjoys global super-conformal and local kappa-symmetry of which a detailed discussion is given. Moreover, the finiteness of its vacuum expectation value is proven at leading order in perturbation theory. We determine the leading vacuum expectation value for general paths both at the component field level up to quartic order in anti-commuting coordinates and in the full non-chiral superspace in suitable gauges. Finally, we discuss loops built from quadric splines joined in such a way that the path derivatives are continuous at the intersection.
Wilson disease: pathogenesis and clinical considerations in diagnosis and treatment.
Rosencrantz, Richard; Schilsky, Michael
2011-08-01
Nearly a century after Dr. Samuel Alexander Kinnier Wilson composed his doctoral thesis on the pathologic findings of "lenticular degeneration" in the brain associated with cirrhosis of the liver we know that the underlying molecular basis for this autosomal recessive inherited disorder that now bears his name is mutation of a copper transporting ATPase, ATP7B, an intracellular copper transporter mainly expressed in hepatocytes. Loss of ATP7B function is the basis for reduced hepatic biliary copper excretion and reduced incorporation of copper into ceruloplasmin. During the intervening years, there was recognition of the clinical signs, histologic, biochemical features, and mutation analysis of ATP7B that characterize and enable diagnosis of this disorder. These include the presence of signs of liver or neurologic disease and detection of Kayser-Fleischer rings, low ceruloplasmin, elevated urine and hepatic copper, and associated histologic changes in the liver. Medical therapies and liver transplantation can effectively treat patients with this once uniformly fatal disorder. The earlier detection of the disease led to the initiation of treatment to prevent disease progression and reverse pathologic findings if present, and family screening to detect the disorder in first-degree relatives is warranted. Gene therapy and hepatocyte cell transplantation for Wilson disease has only been tested in animal models but represent future areas for study. Despite all the advances we still have to consider the diagnosis of Wilson disease to test patients for this disorder and properly establish the diagnosis before committing to life-long treatment. PMID:21901655
Wilson loops in noncompact U(1) gauge theories at criticality
Metlitski, Max A.
2008-04-15
We study the properties of Wilson loops in three-dimensional noncompact U(1) gauge theories with global Abelian symmetries. We use duality in the continuum and on the lattice to argue that, close to the critical point between the Higgs and Coulomb phases, all correlators of the Wilson loops are periodic functions of the Wilson loop charge, Q. The period depends on the global symmetry of the theory, which determines the magnetic flux carried by the dual particles. For single flavor scalar electrodynamics, the emergent period is Q=1. In the general case of N complex scalars with a U(1){sup N-1} global symmetry, the period is Q=N. We also give some arguments why this phenomenon does not generalize to theories with a full non-Abelian SU(N) symmetry, where no periodicity in Q is expected. Implications for lattice simulations, as well as for physical systems, such as easy-plane antiferromagnets and disordered superfluids, are noted.
PRELIMINARY RESULTS FROM A SIMULATION OF QUENCHED QCD WITH OVERL AP FERMIONS ON A LARGE LATTICE.
BERRUTO,F.GARRON,N.HOELBLING,D.LELLOUCH,L.REBBI,C.SHORESH,N.
2003-07-15
We simulate quenched QCD with the overlap Dirac operator. We work with the Wilson gauge action at {beta} = 6 on an 18{sup 3} x 64 lattice. We calculate quark propagators for a single source point and quark mass ranging from am{sub 4} = 0.03 to 0.75. We present here preliminary results based on the propagators for 60 gauge field configurations.
On the chirality of the SM and the fermion content of GUTs
NASA Astrophysics Data System (ADS)
Fonseca, Renato M.
2015-08-01
The Standard Model (SM) is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (˜ 100 GeV). Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs). It is known for example that three copies of the representations 5 bar + 10 of SU (5) or three copies of the 16 of SO (10) can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups - for example, the 171 representation of SU (19) may decompose as 3 (16) + 120 + 3 (1) under SO (10).
Universal spin-1/2 fermion field localization on a 5D braneworld
NASA Astrophysics Data System (ADS)
Barbosa-Cendejas, Nandinii; Malagón-Morejón, Dagoberto; Mora-Luna, Refugio Rigel
2015-07-01
In this work we present a refined method for the localization of spin- fermions on the 5D braneworld paradigm. We begin by proposing a more natural ansatz for the Yukawa coupling in the 5D bulk fermionic action, that guarantees the localization of the ground states for the 4D fermions with right- or left-chirality. In earlier works the existing freedom on the form of the Yukawa coupling was used in a rather speculative way depending on the type of model, the ansatz proposed in this work is suitable for thin and thick braneworld models and can be applied to branes made of a scalar field or not and in this sense it is the more natural choice. Furthermore, we show that the fermion ground states localization allow us to show the absence of tachyonic modes in the left- and right-chiral Kaluza-Klein mass spectrum. More precisely, we show that localization of gravity in the 5D braneworld implies the localization of the spin- fermions.
Warm and cold fermionic dark matter via freeze-in
Klasen, Michael; Yaguna, Carlos E. E-mail: carlos.yaguna@uni-muenster.de
2013-11-01
The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z{sub 2} symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of the model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs.
Fundamental fermion interactions via vector bosons of unified SU(2) x SU(4) gauge fields
NASA Astrophysics Data System (ADS)
Marsch, Eckart; Narita, Yasuhito
2016-02-01
Employing the fermion unification model based on the intrinsic SU(8) symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8)=SU(2)⊗SU(4) symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino), and the coloured up and down quarks of the first generation in the standard model (SM) by a complex SU(8) octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4) and SU(2) vector gauge boson fields, which include the photon, the gluons, and the bosons Z and W as well known from the SM, but also comprise new ones, namely three coloured X bosons carrying a fractional hypercharge of ±4/3 and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the Z and W bosons, but also permits one to derive the mass of the coloured X boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.
Archetypal Dreams: the Quantum Theater of Robert Wilson
NASA Astrophysics Data System (ADS)
Dietrich, Dawn Yvette
1992-01-01
My topic is situated within the larger framework of interdisciplinary study currently exploring the impact of new physics on various "soft" disciplines and sciences. Aligning myself with thinkers like Fritjof Capra and N. Katherine Hayles, who argue that quantum mechanics has brought about a new paradigm for the conceptualization of the physical world and our relation to it, I demonstrate that there is a connection, a kind of cultural translation, which relates contemporary physics to some avant-garde theater. Specifically, I center my research on American theater designer, Robert Wilson, who, recognized for his manipulation of the formal elements of stagecraft, owes much to the reconstruction of principles governing space and time. Taken further, I maintain that it is through the paradigm established from relativity theory and quantum mechanics that Wilson experiments with the elementary "forces" of the theater itself. This "restructuring" occurs through the dramatist's conceptions of space and time and the relation of those properties to both performers and spectators. Unlike most conventional theater, but as in many contemporary visual arts, time is manipulated through spatial metaphors and events take place in an amplified space--effecting a kind of dramatic space/time. Through manipulation of scale, the exploration of discontinuous time, and segregated stage zones, Wilson demonstrates that theater time is fluid and that it is not necessary for dramatic action to take place within the unified stage space delineated by the proscenium itself. Unlike conventional theater, where the stage is constructed with one perspective in mind, Wilson's theatrical mise-en-scene--a kind of new "perceptual field"--requires "imaginative watching"; that is, more perceptual discrimination from the audience who must sort and organize the visual material, highlighting the essential while reconfiguring the incidental. And this is where the myth is born, where archetypal dreams stir
NASA Astrophysics Data System (ADS)
Osterbrock, D. E.
2004-12-01
George Ellery Hale, who founded Mount Wilson Solar Observatory, first visited Lick Observatory in 1890, soon after his graduation from MIT. After his parents' deaths, when he began openly planning a Yerkes Observatory ``expedition" to California, Hale's friend James E. Keeler, then Lick Observatory Director, invited him (in 1899) to locate it on Mt.Hamilton. Hale thanked him, but replied that sites further south would have more clear weather. He had probably already decided on Mount Wilson. There were many close connections between the University of California and Mount Wilson Observatory from that time right up to the present. W.J. Hussey was the Lick astronomer who carried out the official site survey that confirmed Mount Wilson as the best site. Harold Palmer (UC Astronomy PhD 1903) was the first new staff member Hale hired, but he only lasted a few months. The two main reasons for the continuing connection were the geographical proximity of Pasadena and the Bay Area, and the fact that for many years UC was the outstanding graduate astronomy department in the country, producing numerous well trained observational research astronomers. However in the early years the reasons were more complicated. After Palmer, the next three hired at MWO were Arthur King, the first UC Physics PhD (1903); Harold Babcock, (UC Engineering BS 1907); and F.H. Seares (UC Astronomy BS 1895). Harold Babcock trained his son in astronomy almost from birth, and Horace (UC Astronomy PhD 1938) joined the MWO staff after World War II and became its Director in 1964. Palmer and Edward Fath (UC PhD 1909) were less successful at MWO and soon departed. These and numerous other MWO astronomers with UC backgrounds will be mentioned, and their careers discussed.
Fermionic entanglement that survives a black hole
Martin-Martinez, Eduardo; Leon, Juan
2009-10-15
We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.
Instabilities in fermions and BEC mixtures
NASA Astrophysics Data System (ADS)
Tsai, Shan-Wen; Kalas, Ryan M.; Timmermans, Eddy
2010-03-01
We study instabilities in a mixture of interacting fermionic and bosonic ultra-cold atoms. We focus on BCS transitions of the fermions that can be generated from attractive interactions mediated by bosons that are in a BEC phase. We study the p-wave instability [1] for indistinguishable (single spin) fermions in detail, taking into account the dynamical part of the mediated interaction. We employ a functional renormalization-group approach that takes retardation effects into account [2], calculate the renormalized interaction vertices and self-energies for this system, and obtain the phase diagram, sub-dominant instabilities, and transition temperatures, giving estimates for realistic parameters. We also investigate what happens in this system close to the phase-separation transition [3], and explore other possible fermionic phases, including fermion BCS pairings with other pairing symmetries. [4pt] [1] D. V. Efremov and L. Viverit, Phys. Rev. B 65, 134519 (2002)[0pt] [2] S.-W. Tsai et al., Phys. Rev. B 72, 054531 (2005)[0pt] [3] D. H. Santamore and E. Timmermans, Phys. Rev. A 78, 013619 (2008)
Fermionic entanglement that survives a black hole
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; León, Juan
2009-10-01
We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.
Pion Decay Constant, Z{sub A} and Chiral Log from Overlap Fermions
Shao-Jing Dong; Terrence Draper; Ivan Horvath; Frank X. Lee; Jianbo Zhang
2002-03-01
We report our calculation of the pion decay constant f{sub {pi}}, the axial renormalization constant Z{sub A}, and the quenched chiral logarithms from the overlap fermions. The calculation is done on a quenched 20{sup 4} lattice at a=0.148 fm using tree level tadpole improved gauge action. The smallest pion mass we reach is about 280 MeV. The lattice size is about 4 times the Compton wavelength of the lowest mass pion.
Higgs portal to inflation and fermionic dark matter
NASA Astrophysics Data System (ADS)
Aravind, Aditya; Xiao, Minglei; Yu, Jiang-Hao
2016-06-01
We investigate an inflationary model involving a gauge singlet scalar and fermionic dark matter. The mixing between the singlet scalar and the Higgs boson provides a portal to dark matter. The inflaton could either be the Higgs boson or the singlet scalar, and slow roll inflation is realized via its nonminimal coupling to gravity. In this setup, the effective scalar potential is stabilized by the mixing between two scalars and coupling with dark matter. We study constraints from collider searches, relic density and direct detection, and find that dark matter mass should be around half the mass of either the Higgs boson or singlet scalar. Using the renormalization group equation improved scalar potential and putting all the constraints together, we show that the inflationary observables ns-r are consistent with current Planck data.
QCD with chiral 4-fermion interactions ({chi}QCD)
Kogut, J.B.; Sinclair, D.K.
1996-10-01
Lattice QCD with staggered quarks is augmented by the addition of a chiral 4-fermion interaction. The Dirac operator is now non-singular at m{sub q}=0, decreasing the computing requirements for light quark simulations by at least an order of magnitude. We present preliminary results from simulations at finite and zero temperatures for m{sub q}=0, with and without gauge fields. Chiral QCD enables simulations at physical u and d quark masses with at least an order of magnitude saving in CPU time. It also enables simulations with zero quark masses which is important for determining the equation of state. A renormalization group analysis will be needed to continue to the continuum limit. 7 refs., 2 figs.
Contraction of fermionic operator circuits and the simulation of strongly correlated fermions
NASA Astrophysics Data System (ADS)
Barthel, Thomas; Pineda, Carlos; Eisert, Jens
2009-10-01
A fermionic operator circuit is a product of fermionic operators of usually different and partially overlapping support. Further elements of fermionic operator circuits (FOCs) are partial traces and partial projections. The presented framework allows for the introduction of fermionic versions of known qudit operator circuits (QUOC), important for the simulation of strongly correlated d -dimensional systems: the multiscale entanglement renormalization ansätze (MERA), tree tensor networks (TTN), projected entangled pair states (PEPS), or their infinite-size versions (iPEPS etc.). After the definition of a FOC, we present a method to contract it with the same computation and memory requirements as a corresponding QUOC, for which all fermionic operators are replaced by qudit operators of identical dimension. A given scheme for contracting the QUOC relates to an analogous scheme for the corresponding fermionic circuit, where additional marginal computational costs arise only from reordering of modes for operators occurring in intermediate stages of the contraction. Our result hence generalizes efficient schemes for the simulation of d -dimensional spin systems, as MERA, TTN, or PEPS to the fermionic case.
Apparatus for Ultra-Cold Fermion Interferometry
NASA Astrophysics Data System (ADS)
Aubin, Seth; Garcia, Aiyana; Desalvo, Brian
2008-05-01
We present progress on the construction of an apparatus for ultra-cold fermion interferometry experiments. The apparatus consists of two connected glass vacuum cells: Fermionic potassium (^40K) and bosonic rubidium (^87Rb) atoms are cooled and collected in a dual-species magneto-optical trap (MOT) in the first cell and are then transported magnetically to the second cell, where they are loaded into a micro-magnetic chip trap. We use radio-frequency (RF) evaporation to cool the rubidium atoms, which in turn sympathetically cool the potassium atoms. The apparatus takes advantage of the rapid cooling inherent to micro-magnetic traps, while also benefiting from the ultra high vacuum achievable with a two chamber vacuum system. In describing our experimental approach, we address the experimental challenges and possible force-sensing applications of fermion interferometers on chips.
QCD with many fermions and QCD topology
NASA Astrophysics Data System (ADS)
Shuryak, Edward
2013-04-01
Major nonperturbative phenomena in QCD - confinement and chiral symmetry breaking - are known to be related with certain topological objects. Recent lattice advances into the domain of many Nf = O(10) fermion flavors have shown that both phase transitions had shifted in this case to much stronger coupling. We discuss confinement in terms of monopole Bose condensation, and discuss how it is affected by fermions "riding" on the monopoles, ending with the Nf dependence of the critical line. Chiral symmetry breaking is discussed in terms of the (anti)selfdual dyons, the instanton constituents. The fermionic zero modes of those have a different meaning and lead to strong interaction between dyons and antidyons. We report some qualitative consequences of this theory and also some information about our first direct numerical study of the dyonic ensemble, in respect to both chiral symmetry breaking and confinement (via back reaction to the holonomy potential).
Fermionic semi-annihilating dark matter
NASA Astrophysics Data System (ADS)
Cai, Yi; Spray, Andrew
2016-01-01
Semi-annihilation is a generic feature of dark matter theories with symmetries larger than Z_2 . We investigate two examples with multi-component dark sectors comprised of an SU(2) L singlet or triplet fermion besides a scalar singlet. These are respectively the minimal fermionic semi-annihilating model, and the minimal case for a gauge-charged fermion. We study the relevant dark matter phenomenology, including the interplay of semi-annihilation and the Sommerfeld effect. We demonstrate that semi-annihilation in the singlet model can explain the gamma ray excess from the galactic center. For the triplet model we scan the parameter space, and explore how signals and constraints are modified by semi-annihilation. We find that the entire region where the model comprises all the observed dark matter is accessible to current and planned direct and indirect searches.
Search for Majorana Fermions in Superconductors
NASA Astrophysics Data System (ADS)
Beenakker, C. W. J.
2013-04-01
Majorana fermions (particles that are their own antiparticle) may or may not exist in nature as elementary building blocks, but in condensed matter they can be constructed out of electron and hole excitations. What is needed is a superconductor to hide the charge difference and a topological (Berry) phase to eliminate the energy difference from zero-point motion. A pair of widely separated Majorana fermions, bound to magnetic or electrostatic defects, has non-Abelian exchange statistics. A qubit encoded in this Majorana pair is expected to have an unusually long coherence time. I discuss strategies to detect Majorana fermions in a topological superconductor, as well as possible applications in a quantum computer. The status of the experimental search is reviewed.
Dark Energy from Interacting Dark Fermions
NASA Astrophysics Data System (ADS)
Goldman, Terrence; McKellar, Bruce; Alsing, Paul; Stephenson, Gerard
2010-11-01
Physics is rife with interacting systems that exhibit negative pressure: atomic nuclei are very well known examples. We examine the range of parameters, for neutral fermions interacting only by exchange of an extraordinarily light scalar particle, that produce a negative pressure on the scale of the Universe over time periods where Dark Energy is or may be relevant. Of known or expected neutral Majorana fermions, active neutrinos can be ruled out but sterile neutrinos would work, as well as the LSP, to describe the recent observations of Dark Energy effects. After a phase change required by the instability responsible for the negative pressure, the resulting clouds of neutral fermions will contribute to Dark Matter. Nothing requires that this can only happen once.
Supersymmetric Wilson loops in N=4 super Chern-Simons-matter theory
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Wu, Jun-Bao; Zhang, Jia-ju
2015-11-01
We investigate the supersymmetric Wilson loops in d = 3 N=4 super Chern-Simons-matter theory obtained from non-chiral orbifold of ABJM theory. We work in both Minkowski spacetime and Euclidean space, and we construct 1/4 and 1/2 BPS Wilson loops. We also provide a complete proof that the difference between 1/4 and 1/2 Wilson loops is Q-exact with Q being some supercharge that is preserved by both the 1/4 and 1/2 Wilson loops. This plays an important role in applying the localization techniques to compute the vacuum expectation values of Wilson loops. We also study the M-theory dual of the 1/2 BPS circular Wilson loop.
Coffman-Kundu-Wootters inequality for fermions
NASA Astrophysics Data System (ADS)
Sárosi, Gábor; Lévay, Péter
2014-11-01
We derive an inequality for three fermions with six single-particle states which reduces to the sum of the famous Coffman-Kundu-Wootters inequalities when an embedded three-qubit system is considered. We identify the quantities which are playing the role of the concurrence, the three-tangle and the invariant detρA+detρB+detρC for this tripartite system. We show that this latter one is almost interchangeable with the von Neumann entropy and conjecture that it measures the entanglement of one fermion with the rest of the system. We prove that the vanishing of the fermionic "concurrence" implies that the two-particle reduced-density matrix is a mixture of separable states. Also, the vanishing of this quantity is only possible in the Greenberger-Horne-Zeilinger class, where some genuine tripartite entanglement is present and in the separable class. Based on this, we conjecture that this "concurrence" measures the amount of entanglement between pairs of fermions. We identify the well-known "spin-flipped" density matrix in the fermionic context as the reduced-density matrix of a special particle-hole dual state. We show that, in general, this dual state is always canonically defined by the Hermitian inner product of the fermionic Fock space and that it can be used to calculate covariants under stochastic local operations and classical communication (SLOCC). We show that Fierz identities known from the theory of spinors relate SLOCC covariants with reduced-density-matrix elements of the state and its spin-flipped dual.
The photometric solution of CC COM by use of the Wilson and Devinney card
NASA Astrophysics Data System (ADS)
Zhou, Hong-Nan
1988-02-01
The data of Rucinski et al. (1977) on the photometric observations of CC Comae system (conducted in February 1975 with a 91-cm telescope at the Kitt Peak National Observatory) and the synthetic light curve technique of Wilson and Devinney (1971, 1973) were used to calculate the photometric orbit of the system. The results indicate that the CC Com belongs to the late-type eclipsing binary system with the spectral type of components K5V and K6V. The component masses M1 and M2 equal to 0.62 and 0.36 solar mass, respectively; and the radii R1 and R2 equal to 0.70 and 0.52 solar radii. The mass ratio of the CC Com is 0.58732 + or - 0.0021, and the orbital inclination equals to 87.714 + or - 1.44 deg. The temperatures of the two components are T1 = 4300 K and T2 = 4265 K. These parameters indicate that the system cannot be explained by Lucy's (1968) theoretical model for late W-type systems, since the two CC Com components have low mass, temperature, and size, and hence are more similar to each other than the model specifies.
Fermion-fermion scattering in quantum field theory with superconducting circuits.
García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E
2015-02-20
We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations. PMID:25763944
Wilson coefficients and four-quark condensates in QCD sum rules for medium modifications of D mesons
NASA Astrophysics Data System (ADS)
Buchheim, T.; Hilger, T.; Kämpfer, B.
2015-01-01
Wilson coefficients of light four-quark condensates in QCD sum rules are evaluated for pseudoscalar D mesons, thus pushing the sum rules toward mass dimension 6. In contrast to the situation for q ¯q mesons, the impact of the four-quark condensates for vacuum as well as in-medium situations is found to be rather small within the Borel window used in previous analyses. The complete four-quark condensate contributions enable us to identify candidates for an order parameter of spontaneous chiral symmetry breaking and/or restoration as well as to evaluate stability criteria of operator product expansions.
Massless rotating fermions inside a cylinder
Ambruş, Victor E.; Winstanley, Elizabeth
2015-12-07
We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, while the spectral boundary condition is nonlocal.
Global analysis of fermion mixing with exotics
NASA Technical Reports Server (NTRS)
Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele
1991-01-01
The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.
Fermion path integrals and topological phases
NASA Astrophysics Data System (ADS)
Witten, Edward
2016-07-01
Symmetry-protected topological (SPT) phases of matter have been interpreted in terms of anomalies, and it has been expected that a similar picture should hold for SPT phases with fermions. Here a description is given in detail of what this picture means for phases of quantum matter that can be understood via band theory and free fermions. The main examples considered are time-reversal invariant topological insulators and superconductors in two or three space dimensions. Along the way, the precise meaning of the statement that in the bulk of a 3D topological insulator, the electromagnetic θ angle is equal to π , is clarified.
A geometrical formulation of fermionic integrable systems
Das, A.; Huang, W.; Roy, S. )
1991-10-01
A fermionic Hamiltonian system is formulated on a supermanifold. It is shown that if the system possesses a bi-Hamiltonian structure, one can naturally define a Lax equation associated with a (1,1) tensor on this supermanifold and this allows one to construct a set of conserved quantities. Furthermore, if the corresponding Nijenhuis tensor vanishes, it is shown that all these conserved quantities would be in involution which is a sufficient condition for integrability of the system. The fermionic extension of the KdV equation with a bi-Hamiltonian structure within this geometrical approach is studied.
Non-Markovian dynamics with fermions
NASA Astrophysics Data System (ADS)
Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.
2014-08-01
Employing the quadratic fermionic Hamiltonians for the collective and internal subsystems with a linear coupling, we studied the role of fermionic statistics on the dynamics of the collective motion. The transport coefficients are discussed as well as the associated fluctuation-dissipation relation. Due to different nature of the particles, the path to equilibrium is slightly affected. However, in the weak-coupling regime, the time scale for approaching equilibrium is found to be globally unchanged. The Pauli-blocking effect can modify the usual picture in open quantum system. In some limits, contrary to boson, this effect can strongly hinder the influence of the bath by blocking the interacting channels.
The bosonic mother of fermionic D-branes
NASA Astrophysics Data System (ADS)
Chattaraputi, Auttakit; Englert, François; Houart, Laurent; Taormina, Anne
2002-09-01
We extend the search for fermionic subspaces of the bosonic string compactified on E8 × SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bosonic theory.
Zero-energy modes, charge conjugation, and fermion number
Sudarshan, E.C.G.; Yajnik, U.A.
1986-03-15
States with a half-integer fermion number occur when a fermionic field coupled to a soliton possesses a zero mode. This paper spells out the circumstances under which one can retain an integer fermion number as also a charge-conjugation-invariant ground state. It is necessary to make the representation reducible but it is kept irreducible by introducing an additional operator.
On some 1/4 BPS Wilson-'t Hooft loops
NASA Astrophysics Data System (ADS)
Liu, Chang-Yong; Qin, Li
2015-10-01
In this paper, we investigate the 1/4 BPS Wilson-'t Hooft loops in N=4 supersymmetric Yang-Mills theory. We use the bulk D3-brane solutions with both electric and magnetic charges on its world-volume to describe some of 1/4 BPS Wilson-'t Hooft loops. The D3-brane supersymmetric solutions are derived form requiring κ-symmetry. We find the two consistent constraints for Killing spinors and calculate the conserved charges of straight 1/4 BPS Wilson-'t Hooft loops and expectation values of circular 1/4 BPS Wilson-'t Hooft loops separately.
Chiral extrapolations in 2+1 flavor domain wall fermion simulations
NASA Astrophysics Data System (ADS)
Lin, Meifeng
2006-12-01
Simulations with 2+1 flavors of domain wall fermions provide us with the opportunity to compare the lattice data directly to the predictions of continuum chiral perturbation theory, up to correc- tions from the residual chiral symmetry breaking, mres , and O(a) lattice artefacts, which are rela- tively small for domain wall fermions. We present preliminary results for the pseudoscalar meson masses and decay constants from partially quenched simulations and examine the next-to-leading order chiral extrapolations at small quark masses. The simulations were carried out on two lattice volumes : 163 × 32 and 243 × 64, with the lattice spacing fixed at about 0.1 fm. The subtleties of the chiral fits are discussed. We also explore the roles of mres and O(a) terms in the NLO chiral expansions and their effects on the chiral extrapolations for the pseudoscalar masses and decay constants.
Designer Dirac fermions and topological phases in molecular graphene.
Gomes, Kenjiro K; Mar, Warren; Ko, Wonhee; Guinea, Francisco; Manoharan, Hari C
2012-03-15
The observation of massless Dirac fermions in monolayer graphene has generated a new area of science and technology seeking to harness charge carriers that behave relativistically within solid-state materials. Both massless and massive Dirac fermions have been studied and proposed in a growing class of Dirac materials that includes bilayer graphene, surface states of topological insulators and iron-based high-temperature superconductors. Because the accessibility of this physics is predicated on the synthesis of new materials, the quest for Dirac quasi-particles has expanded to artificial systems such as lattices comprising ultracold atoms. Here we report the emergence of Dirac fermions in a fully tunable condensed-matter system-molecular graphene-assembled by atomic manipulation of carbon monoxide molecules over a conventional two-dimensional electron system at a copper surface. Using low-temperature scanning tunnelling microscopy and spectroscopy, we embed the symmetries underlying the two-dimensional Dirac equation into electron lattices, and then visualize and shape the resulting ground states. These experiments show the existence within the system of linearly dispersing, massless quasi-particles accompanied by a density of states characteristic of graphene. We then tune the quantum tunnelling between lattice sites locally to adjust the phase accrual of propagating electrons. Spatial texturing of lattice distortions produces atomically sharp p-n and p-n-p junction devices with two-dimensional control of Dirac fermion density and the power to endow Dirac particles with mass. Moreover, we apply scalar and vector potentials locally and globally to engender topologically distinct ground states and, ultimately, embedded gauge fields, wherein Dirac electrons react to 'pseudo' electric and magnetic fields present in their reference frame but absent from the laboratory frame. We demonstrate that Landau levels created by these gauge fields can be taken to the
Open Wilson lines and chiral condensates in thermal holographic QCD
Argyres, Philip C.; Edalati, Mohammad; Leigh, Robert G.; Vazquez-Poritz, Justin F.
2009-02-15
We investigate various aspects of a proposal by Aharony and Kutasov [O. Aharony and D. Kutasov, Phys. Rev. D 78, 026005 (2008).] for the gravity dual of an open Wilson line in the Sakai-Sugimoto model or its noncompact version. In particular, we use their proposal to determine the effect of finite temperature, as well as background electric and magnetic fields, on the chiral symmetry breaking order parameter. We also generalize their prescription to more complicated worldsheets and identify the operators dual to such worldsheets.
Personal Reflections on Kenneth Wilson at Princeton and Edinburgh
NASA Astrophysics Data System (ADS)
Bowler, Ken; Kenway, Richard; Pawley, Stuart; Wallace, David
2014-07-01
This article contains recollections of the authors when they interacted with Ken Wilson at Princeton in 1971, when he gave his lectures on the renormalization group and the \\varepsilon -expansion, and at Edinburgh in the early 1980s, working on Monte Carlo renormalization group calculations of critical behaviour in the three-dimensional Ising model. Edouard Brézin was a collaborator in the former work, and Robert Swendsen in the latter. Ken's vision for scientific computing impacted formatively on the development of Edinburgh Parallel Computing Centre. Reference is also made to an earlier visit to Scotland by Ken, to lecture at the Scottish Universities Summer School in Physics in 1973.
Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator
Babich, R.; Brower, R. C.; Rebbi, C.; Brannick, J.; Clark, M. A.; Manteuffel, T. A.; McCormick, S. F.; Osborn, J. C.
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called {gamma}{sub 5}-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume.
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator.
Babich, R; Brannick, J; Brower, R C; Clark, M A; Manteuffel, T A; McCormick, S F; Osborn, J C; Rebbi, C
2010-11-12
We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called γ5-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. PMID:21231217
Wilson disease and other neurodegenerations with metal accumulations.
Dusek, Petr; Litwin, Tomasz; Czlonkowska, Anna
2015-02-01
Trace elements, such as iron, copper, manganese, and calcium, which are essential constituents necessary for cellular homeostasis, become toxic when present in excess quantities. In this article, we describe disorders arising from endogenous dysregulation of metal homeostasis leading to their tissue accumulation. Although subgroups of these diseases lead to regional brain metal accumulation, mostly in globus pallidus, which is susceptible to accumulate divalent metal ions, other subgroups cause systemic metal accumulation affecting the whole brain, liver, and other parenchymal organs. The latter group comprises Wilson disease, manganese transporter deficiency, and aceruloplasminemia and responds favorably to chelation treatment. PMID:25432729
More uses for Wilson loops: Perturbation theory without Feynman diagrams
Celmaster, W.; Kovacs, E.
1984-04-15
For many arbitrary lattices with arbitrary SU(N) actions, it is easy to estimate the perturbative value of ..lambda../sub latt//..lambda../sub MOM/ without calculating any Feynman diagrams. This observation, first made by Creutz, is based on the fact that perturbative expansions of Wilson loop ratios can be trivially extracted from Monte Carlo data at large ..beta... Here, we extend Creutz's results to general loop ratios including those of polygons and parallelograms encountered on nonstandard lattices. In particular, we analytically compute the lowest-order quantum corrections to these loop ratios, discuss which ratios are free from divergences, and give specific Monte Carlo examples.
Quantum Transport of Spin-helical Dirac Fermion Topological Surface States in Topological Insulators
NASA Astrophysics Data System (ADS)
Chen, Yong P.
Three-dimensional (3D) topological insulators (TI) are a novel class of electronic materials with topologically-nontrivial band structure such that the bulk is gapped and insulating yet the surface has topologically protected gapless conducting states. Such ``topological surface states'' (TSS) give helically spin polarized Dirac fermions, and offer a promising platform to realize various other novel physics such as topological magnetoelectric effects and Majorana fermions. However, it is often challenging to unambiguously access and study the transport properties of TSS in many practical TI materials due to non-negligible bulk conducting states. I will discuss our recent experiments on high-quality ``intrinsic'' TIs with insulating bulk and surface-dominated conduction that allow us to reveal a number of characteristic transport properties of spin-helical Dirac fermion topological surface states. We have observed, for example, a thickness-independent and surface-dominated conductance (even at room temperature) in exfoliated TI thin films and well-developed ``half-integer'' Dirac fermion quantum Hall effect (QHE) arising from TSS (observed up to 40K); fully-tunable ``two-species'' Dirac fermion QHE and other intriguing states in dual gated devices where both top and bottom surfaces can be independently controlled; current-induced helical spin-polarization detected by spin sensitive transport measurements using magnetic electrodes; and in TI nanoribbons, Shubnikov-de Hass (SdH) oscillations showing gate-tunable Berry phase and ultra-relativistic Dirac mass; and a ``half-integer'' Aharonov-Bohm effect (ABE) unique to the circumferentially quantized spin helical Dirac fermion surface state modes (sub-bands), with a gate-tunable conductance oscillation and alternation between the ``half-integer'' ABE and regular ABE periodic in fermi momentum. Such TIs and related devices may enable promising future applications in spintronics, thermoelectrics and various topological
The Talbot Effect for two-dimensional massless Dirac fermions
Walls, Jamie D.; Hadad, Daniel
2016-01-01
A monochromatic beam of wavelength λ transmitted through a periodic one-dimensional diffraction grating with lattice constant d will be spatially refocused at distances from the grating that are integer multiples of . This self-refocusing phenomena, commonly referred to as the Talbot effect, has been experimentally demonstrated in a variety of systems ranging from optical to matter waves. Theoretical predictions suggest that the Talbot effect should exist in the case of relativistic Dirac fermions with nonzero mass. However, the Talbot effect for massless Dirac fermions (mDfs), such as those found in monolayer graphene or in topological insulator surfaces, has not been previously investigated. In this work, the theory of the Talbot effect for two-dimensional mDfs is presented. It is shown that the Talbot effect for mDfs exists and that the probability density of the transmitted mDfs waves through a periodic one-dimensional array of localized scatterers is also refocused at integer multiples of zT. However, due to the spinor nature of the mDfs, there are additional phase-shifts and amplitude modulations in the probability density that are most pronounced for waves at non-normal incidence to the scattering array. PMID:27221604
Short-range Coulomb correlations render massive Dirac fermions massless
NASA Astrophysics Data System (ADS)
Ebrahimkhas, M.; Jafari, S. A.
2012-04-01
Tight-binding electrons on a honeycomb lattice are described by an effective Dirac theory at low energies. Lowering symmetry by an alternate ionic potential (Δ) generates a single-particle gap in the spectrum. We employ the dynamical mean-field theory (DMFT) technique to study the effect of on-site electron correlation (U) on massive Dirac fermions. For a fixed mass parameter Δ, we find that beyond a critical value Uc1(Δ) massive Dirac fermions become massless. Further increasing U beyond Uc2(Δ), there will be another phase transition to the Mott insulating state. Therefore, the competition between the single-particle gap parameter, Δ, and the Hubbard U restores the semi-metallic nature of the parent Hamiltonian. The width of the intermediate semi-metallic regime shrinks by increasing the ionic potential. However, at small values of Δ, there is a wide interval of U values for which the system remains semi-metal. The implication of this result for graphene is that in contrast to a single-particle picture, the on-site Coulomb repulsion makes the Dirac cone spectrum robust against small values of the symmetry breaking parameter Δ.
The Talbot Effect for two-dimensional massless Dirac fermions
NASA Astrophysics Data System (ADS)
Walls, Jamie D.; Hadad, Daniel
2016-05-01
A monochromatic beam of wavelength λ transmitted through a periodic one-dimensional diffraction grating with lattice constant d will be spatially refocused at distances from the grating that are integer multiples of . This self-refocusing phenomena, commonly referred to as the Talbot effect, has been experimentally demonstrated in a variety of systems ranging from optical to matter waves. Theoretical predictions suggest that the Talbot effect should exist in the case of relativistic Dirac fermions with nonzero mass. However, the Talbot effect for massless Dirac fermions (mDfs), such as those found in monolayer graphene or in topological insulator surfaces, has not been previously investigated. In this work, the theory of the Talbot effect for two-dimensional mDfs is presented. It is shown that the Talbot effect for mDfs exists and that the probability density of the transmitted mDfs waves through a periodic one-dimensional array of localized scatterers is also refocused at integer multiples of zT. However, due to the spinor nature of the mDfs, there are additional phase-shifts and amplitude modulations in the probability density that are most pronounced for waves at non-normal incidence to the scattering array.
Equation of state of a dense and magnetized fermion system
Ferrer, Efrain J.; Incera, Vivian de la; Keith, Jason P.; Portillo, Israel; Springsteen, Paul L.
2010-12-15
The equation of state of a system of fermions in a uniform magnetic field is obtained in terms of the thermodynamic quantities of the theory by using functional methods. It is shown that the breaking of the O(3) rotational symmetry by the magnetic field results in a pressure anisotropy, which leads to the distinction between longitudinal- and transverse-to-the-field pressures. A criterion to find the threshold field at which the asymmetric regime becomes significant is discussed. This threshold magnetic field is shown to be the same as the one required for the pure field contribution to the energy and pressures to be of the same order as the matter contribution. A graphical representation of the field-dependent anisotropic equation of state of the fermion system is given. Estimates of the upper limit for the inner magnetic field in self-bound stars, as well as in gravitationally bound stars with inhomogeneous distributions of mass and magnetic fields, are also found.
The Talbot Effect for two-dimensional massless Dirac fermions.
Walls, Jamie D; Hadad, Daniel
2016-01-01
A monochromatic beam of wavelength λ transmitted through a periodic one-dimensional diffraction grating with lattice constant d will be spatially refocused at distances from the grating that are integer multiples of . This self-refocusing phenomena, commonly referred to as the Talbot effect, has been experimentally demonstrated in a variety of systems ranging from optical to matter waves. Theoretical predictions suggest that the Talbot effect should exist in the case of relativistic Dirac fermions with nonzero mass. However, the Talbot effect for massless Dirac fermions (mDfs), such as those found in monolayer graphene or in topological insulator surfaces, has not been previously investigated. In this work, the theory of the Talbot effect for two-dimensional mDfs is presented. It is shown that the Talbot effect for mDfs exists and that the probability density of the transmitted mDfs waves through a periodic one-dimensional array of localized scatterers is also refocused at integer multiples of zT. However, due to the spinor nature of the mDfs, there are additional phase-shifts and amplitude modulations in the probability density that are most pronounced for waves at non-normal incidence to the scattering array. PMID:27221604
NASA Astrophysics Data System (ADS)
Goldman, Terrence; Stephenson, Gerard J., Jr.
2016-03-01
We apply our successful modest revision of the quark mass sector of the Standard Model to leptons. We include the effects of the possibility of dark matter fermions, which appear as a number of sterile neutrinos. Email: tjgoldman@post.harvard.edu.
Yu, Yang; Guerrero, Candace R; Liu, Shuo; Amato, Nicholas J; Sharma, Yogeshwar; Gupta, Sanjeev; Wang, Yinsheng
2016-03-01
Defective copper excretion from hepatocytes in Wilson's disease causes accumulation of copper ions with increased generation of reactive oxygen species via the Fenton-type reaction. Here we developed a nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry coupled with the isotope-dilution method for the simultaneous quantification of oxidatively induced DNA modifications. This method enabled measurement, in microgram quantities of DNA, of four oxidative stress-induced lesions, including direct ROS-induced purine cyclonucleosides (cPus) and two exocyclic adducts induced by byproducts of lipid peroxidation, i.e. 1,N(6)-etheno-2'-deoxyadenosine (εdA) and 1,N(2)-etheno-2'-deoxyguanosine (εdG). Analysis of liver tissues of Long-Evans Cinnamon rats, which constitute an animal model of human Wilson's disease, and their healthy counterparts [i.e. Long-Evans Agouti rats] showed significantly higher levels of all four DNA lesions in Long-Evans Cinnamon than Long-Evans Agouti rats. Moreover, cPus were present at much higher levels than εdA and εdG lesions. In contrast, the level of 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), an oxidation product of 5-methyl-2'-deoxycytidine (5-mdC), was markedly lower in the liver tissues of Long-Evans Cinnamon than Long-Evans Agouti rats, though no differences were observed for the levels of 5-mdC. In vitro biochemical assay showed that Cu(2+) ions could directly inhibit the activity of Tet enzymes. Together, these results suggest that aberrant copper accumulation may perturb genomic stability by elevating oxidatively induced DNA lesions, and by altering epigenetic pathways of gene regulation. PMID:26362317
Finite volume renormalization scheme for fermionic operators
Monahan, Christopher; Orginos, Kostas
2013-11-01
We propose a new finite volume renormalization scheme. Our scheme is based on the Gradient Flow applied to both fermion and gauge fields and, much like the Schr\\"odinger functional method, allows for a nonperturbative determination of the scale dependence of operators using a step-scaling approach. We give some preliminary results for the pseudo-scalar density in the quenched approximation.
Ideal fermion delocalization in Higgsless models
Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu
2005-07-01
In this note we examine the properties of deconstructed Higgsless models for the case of a fermion whose SU(2) properties arise from delocalization over many sites of the deconstructed lattice. We derive expressions for the correlation functions and use these to establish a generalized consistency relation among correlation functions. We discuss the form of the W boson wavefunction and show that if the probability distribution of the delocalized fermions is appropriately related to the W wavefunction, then deviations in precision electroweak parameters are minimized. In particular, we show that this ''ideal fermion delocalization'' results in the vanishing of three of the four leading zero-momentum electroweak parameters defined by Barbieri et al. We then discuss ideal fermion delocalization in the context of two continuum Higgsless models, one in Anti-deSitter space and one in flat space. Our results may be applied to any Higgsless linear moose model with multiple SU(2) groups, including those with only a few extra vector bosons.
Unpaired Floquet Majorana fermions without magnetic fields
NASA Astrophysics Data System (ADS)
Reynoso, Andres A.; Frustaglia, Diego
2013-03-01
Quantum wires subject to the combined action of spin-orbit and Zeeman coupling in the presence of s-wave pairing potentials (superconducting proximity effect in semiconductors or superfluidity in cold atoms) are one of the most promising systems for the developing of topological phases hosting Majorana fermions. The breaking of time-reversal symmetry is essential for the appearance of unpaired Majorana fermions. By implementing a time-dependent spin rotation, we show that the standard magnetostatic model maps into a nonmagnetic one where the breaking of time-reversal symmetry is guaranteed by a periodical change of the spin-orbit coupling axis as a function of time. This suggests the possibility of developing the topological superconducting state of matter driven by external forces in the absence of magnetic fields and magnetic elements. From a practical viewpoint, the scheme avoids the disadvantages of conjugating magnetism and superconductivity, even though the need of a high-frequency driving of spin-orbit coupling may represent a technological challenge. We describe the basic properties of this Floquet system by showing that finite samples host unpaired Majorana fermions at their edges despite the fact that the bulk Floquet quasienergies are gapless and that the Hamiltonian at each instant of time preserves time-reversal symmetry. Remarkably, we identify the mean energy of the Floquet states as a topological indicator. We additionally show that the localized Floquet Majorana fermions are robust under local perturbations. Our results are supported by complementary numerical Floquet simulations.
Odd frequency pairing of interacting Majorana fermions
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Woelfle, Peter; Balatsky, Alexandar
Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing. Work supported by USDOE DE-AC52-06NA25396 E304, Knut and Alice Wallenberg Foundation, and ERC DM-321031.
Fermions Living in a Flat World
Jesus Anguiano-Galicia, Ma. de; Bashir, A.
2006-09-25
In a plane, parity transformation, which changes the sign of only one spatial coordinate, swaps the fermion fields living in two inequivalent representations. A parity invariant Lagrangian thus contains fields corresponding to both the representations. For such a Lagrangian, we show that we can also define a chiral symmetry.