Sample records for massive operator matrix

  1. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    NASA Astrophysics Data System (ADS)

    Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian

    2014-08-01

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝aN,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  2. Bit-parallel arithmetic in a massively-parallel associative processor

    NASA Technical Reports Server (NTRS)

    Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.

    1992-01-01

    A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.

  3. Interposition Dermal Matrix Xenografts: A Successful Alternative to Traditional Treatment of Massive Rotator Cuff Tears.

    PubMed

    Neumann, Julie A; Zgonis, Miltiadis H; Rickert, Kathleen D; Bradley, Kendall E; Kremen, Thomas J; Boggess, Blake R; Toth, Alison P

    2017-05-01

    Management of massive rotator cuff tears in shoulders without glenohumeral arthritis remains problematic for surgeons. Repairs of massive rotator cuff tears have failure rates of 20% to 94% at 1 to 2 years postoperatively as demonstrated with arthrography, ultrasound, and magnetic resonance imaging. Additionally, inconsistent outcomes have been reported with debridement alone of massive rotator cuff tears, and limitations have been seen with other current methods of operative intervention, including arthroplasty and tendon transfers. The use of interposition porcine acellular dermal matrix xenograft in patients with massive rotator cuff tears will result in improved subjective outcomes, postoperative pain, function, range of motion, and strength. Case series; Level of evidence, 4. Sixty patients (61 shoulders) were prospectively observed for a mean of 50.3 months (range, 24-63 months) after repair of massive rotator cuff tears with porcine acellular dermal matrix xenograft as an interposition graft. Subjective outcome data were obtained with visual analog scale for pain score (0-10, 0 = no pain) and Modified American Shoulder and Elbow Surgeons (MASES) score. Active range of motion in flexion, external rotation, and internal rotation were recorded. Strength in the supraspinatus and infraspinatus muscles was assessed manually on a 10-point scale and by handheld dynamometer. Ultrasound was used to assess the integrity of the repair during latest follow-up. Mean visual analog scale pain score decreased from 4.0 preoperatively to 1.0 postoperatively ( P < .001). Mean active forward flexion improved from 140.7° to 160.4° ( P < .001), external rotation at 0° of abduction from 55.6° to 70.1° ( P = .001), and internal rotation at 90° of abduction from 52.0° to 76.2° ( P < .001). Supraspinatus manual strength increased from 7.7 to 8.8 ( P < .001) and infraspinatus manual strength from 7.7 to 9.3 ( P < .001). Mean dynamometric strength in forward flexion was 77.7 N in nonoperative shoulders (shoulder that did not undergo surgery) and 67.8 N ( P < .001) in operative shoulders (shoulder that underwent rotator cuff repair with interposition porcine dermal matrix xenograft). Mean dynamometric strength in external rotation was 54.5 N in nonoperative shoulders and 50.1 N in operative shoulders ( P = .04). Average postoperative MASES score was 87.8. Musculoskeletal ultrasound showed that 91.8% (56 of 61) of repairs were fully intact; 3.3% (2 of 61), partially intact; and 4.9% (3 of 61), not intact. Patients who underwent repair of massive rotator cuff tears with interposition porcine acellular dermal matrix graft have good subjective function as assessed by the MASES score. Patients have significant improvement in pain, range of motion, and manual muscle strength. Postoperative ultrasound demonstrated that the repair was completely intact in 91.8% of patients, a vast improvement compared with results previously reported for primary repairs of massive rotator cuff tears.

  4. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  5. Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji

    2016-09-01

    We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.

  6. Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Alazzawi, Sabina; Lechner, Gandalf

    2017-09-01

    We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O( N)-invariant nonlinear {σ}-models.

  7. Supercomputing on massively parallel bit-serial architectures

    NASA Technical Reports Server (NTRS)

    Iobst, Ken

    1985-01-01

    Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.

  8. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  9. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  10. The two-mass contribution to the three-loop gluonic operator matrix element Agg,Q(3)

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Schneider, C.; Schönwald, K.

    2018-07-01

    We calculate the two-mass QCD contributions to the massive operator matrix element Agg,Q at O (αs3) in analytic form in Mellin N- and z-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin N-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to z-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.

  11. Computation of the soft anomalous dimension matrix in coordinate space

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2010-08-01

    We complete the coordinate space calculation of the three-parton correlation in the two-loop massive soft anomalous dimension matrix. The full answer agrees with the result found previously by a different approach. The coordinate space treatment of renormalized two-loop gluon exchange diagrams exhibits their color symmetries in a transparent fashion. We compare coordinate space calculations of the soft anomalous dimension matrix with massive and massless eikonal lines and examine its nonuniform limit at absolute threshold.

  12. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  13. Covariance Matrix Estimation for Massive MIMO

    NASA Astrophysics Data System (ADS)

    Upadhya, Karthik; Vorobyov, Sergiy A.

    2018-04-01

    We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.

  14. Massively parallel sparse matrix function calculations with NTPoly

    NASA Astrophysics Data System (ADS)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  15. Evolution and alteration in situ of a massive iron duricrust in Central Africa

    NASA Astrophysics Data System (ADS)

    Bitom, Dieudonné; Volkoff, Boris; Abossolo-Angue, Monique

    2003-08-01

    A soil sequence with iron duricrust is described in an area covered by tropical rain forest in South Cameroon. The dismantling of the iron duricrust is documented through a close observation of a soft duricrust, which corresponds to a transitional stage in the degradation of a massive iron duricrust into a loose nodular horizon. In the initial massive and hematitic duricrust, nodular shapes are progressively formed. The nodules and the internodular matrix remain hematitic. The internodular matrix undergoes goethitization and a pronounced deferruginisation before loosening; the primary structure of the iron duricrust is maintained, however, due to internodular bridges, relics of internodular matrix which escaped the process of goethitization. The iron is gradually released from these hematitic bridges, which become softer. This leads to the collapse of the initial structures of the iron duricrust and to the formation of a loose nodular material with a clayey matrix containing kaolinite and goethite. Many loose nodular horizons, which are found all over Central Africa, may have been formed by such alteration of a former iron duricrust.

  16. The massive soft anomalous dimension matrix at two loops

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2009-05-01

    We study two-loop anomalous dimension matrices in QCD and related gauge theories for products of Wilson lines coupled at a point. We verify by an analysis in Euclidean space that the contributions to these matrices from diagrams that link three massive Wilson lines do not vanish in general. We show, however, that for two-to-two processes the two-loop anomalous dimension matrix is diagonal in the same color-exchange basis as the one-loop matrix for arbitrary masses at absolute threshold and for scattering at 90 degrees in the center of mass. This result is important for applications of threshold resummation in heavy quark production.

  17. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-05-01

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  18. An efficient three-dimensional Poisson solver for SIMD high-performance-computing architectures

    NASA Technical Reports Server (NTRS)

    Cohl, H.

    1994-01-01

    We present an algorithm that solves the three-dimensional Poisson equation on a cylindrical grid. The technique uses a finite-difference scheme with operator splitting. This splitting maps the banded structure of the operator matrix into a two-dimensional set of tridiagonal matrices, which are then solved in parallel. Our algorithm couples FFT techniques with the well-known ADI (Alternating Direction Implicit) method for solving Elliptic PDE's, and the implementation is extremely well suited for a massively parallel environment like the SIMD architecture of the MasPar MP-1. Due to the highly recursive nature of our problem, we believe that our method is highly efficient, as it avoids excessive interprocessor communication.

  19. Unusual square roots in the ghost-free theory of massive gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Smirnov, Fedor

    2017-06-01

    A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.

  20. Massive quiver matrix models for massive charged particles in AdS

    DOE PAGES

    Asplund, Curtis T.; Denef, Frederik; Dzienkowski, Eric

    2016-01-11

    Here, we present a new class of N = 4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can bemore » obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calixto, M., E-mail: calixto@ugr.es; Pérez-Romero, E.

    We revise the unireps. of U(2, 2) describing conformal particles with continuous mass spectrum from a many-body perspective, which shows massive conformal particles as compounds of two correlated massless particles. The statistics of the compound (boson/fermion) depends on the helicity h of the massless components (integer/half-integer). Coherent states (CS) of particle-hole pairs (“excitons”) are also explicitly constructed as the exponential action of exciton (non-canonical) creation operators on the ground state of unpaired particles. These CS are labeled by points Z (2×2 complex matrices) on the Cartan-Bergman domain D₄=U(2,2)/U(2)², and constitute a generalized (matrix) version of Perelomov U(1, 1) coherent statesmore » labeled by points z on the unit disk D₁=U(1,1)/U(1)². First, we follow a geometric approach to the construction of CS, orthonormal basis, U(2, 2) generators and their matrix elements and symbols in the reproducing kernel Hilbert space H{sub λ}(D₄) of analytic square-integrable holomorphic functions on D₄, which carries a unitary irreducible representation of U(2, 2) with index λϵN (the conformal or scale dimension). Then we introduce a many-body representation of the previous construction through an oscillator realization of the U(2, 2) Lie algebra generators in terms of eight boson operators with constraints. This particle picture allows us for a physical interpretation of our abstract mathematical construction in the many-body jargon. In particular, the index λ is related to the number 2(λ – 2) of unpaired quanta and to the helicity h = (λ – 2)/2 of each massless particle forming the massive compound.« less

  2. Parallel Preconditioning for CFD Problems on the CM-5

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Kremenetsky, Mark D.; Richardson, John; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    Up to today, preconditioning methods on massively parallel systems have faced a major difficulty. The most successful preconditioning methods in terms of accelerating the convergence of the iterative solver such as incomplete LU factorizations are notoriously difficult to implement on parallel machines for two reasons: (1) the actual computation of the preconditioner is not very floating-point intensive, but requires a large amount of unstructured communication, and (2) the application of the preconditioning matrix in the iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive nature of the computation. Here we present a new approach to preconditioning for very large, sparse, unsymmetric, linear systems, which avoids both difficulties. We explicitly compute an approximate inverse to our original matrix. This new preconditioning matrix can be applied most efficiently for iterative methods on massively parallel machines, since the preconditioning phase involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore the actual computation of the preconditioning matrix has natural parallelism. For a problem of size n, the preconditioning matrix can be computed by solving n independent small least squares problems. The algorithm and its implementation on the Connection Machine CM-5 are discussed in detail and supported by extensive timings obtained from real problem data.

  3. Massive data compression for parameter-dependent covariance matrices

    NASA Astrophysics Data System (ADS)

    Heavens, Alan F.; Sellentin, Elena; de Mijolla, Damien; Vianello, Alvise

    2017-12-01

    We show how the massive data compression algorithm MOPED can be used to reduce, by orders of magnitude, the number of simulated data sets which are required to estimate the covariance matrix required for the analysis of Gaussian-distributed data. This is relevant when the covariance matrix cannot be calculated directly. The compression is especially valuable when the covariance matrix varies with the model parameters. In this case, it may be prohibitively expensive to run enough simulations to estimate the full covariance matrix throughout the parameter space. This compression may be particularly valuable for the next generation of weak lensing surveys, such as proposed for Euclid and Large Synoptic Survey Telescope, for which the number of summary data (such as band power or shear correlation estimates) is very large, ∼104, due to the large number of tomographic redshift bins which the data will be divided into. In the pessimistic case where the covariance matrix is estimated separately for all points in an Monte Carlo Markov Chain analysis, this may require an unfeasible 109 simulations. We show here that MOPED can reduce this number by a factor of 1000, or a factor of ∼106 if some regularity in the covariance matrix is assumed, reducing the number of simulations required to a manageable 103, making an otherwise intractable analysis feasible.

  4. Ni, Cu, Au, and platinum-group element contents of sulphides associated with intraplate magmatism: A synthesis

    USGS Publications Warehouse

    Barnes, S.-J.; Zientek, M.L.; Severson, M.J.

    1997-01-01

    The tectonic setting of intraplate magmas, typically a plume intersecting a rift, is ideal for the development of Ni - Cu - platinum-group element-bearing sulphides. The plume transports metal-rich magmas close to the mantle - crust boundary. The interaction of the rift and plume permits rapid transport of the magma into the crust, thus ensuring that no sulphides are lost from the magma en route to the crust. The rift may contain sediments which could provide the sulphur necessary to bring about sulphide saturation in the magmas. The plume provides large volumes of mafic magma; thus any sulphides that form can collect metals from a large volume of magma and consequently the sulphides will be metal rich. The large volume of magma provides sufficient heat to release large quantities of S from the crust, thus providing sufficient S to form a large sulphide deposit. The composition of the sulphides varies on a number of scales: (i) there is a variation between geographic areas, in which sulphides from the Noril'sk - Talnakh area are the richest in metals and those from the Muskox intrusion are poorest in metals; (ii) there is a variation between textural types of sulphides, in which disseminated sulphides are generally richer in metals than the associated massive and matrix sulphides; and (iii) the massive and matrix sulphides show a much wider range of compositions than the disseminated sulphides, and on the basis of their Ni/Cu ratio the massive and matrix sulphides can be divided into Cu rich and Fe rich. The Cu-rich sulphides are also enriched in Pt, Pd, and Au; in contrast, the Fe-rich sulphides are enriched in Fe, Os, Ir, Ru, and Rh. Nickel concentrations are similar in both. Differences in the composition between the sulphides from different areas may be attributed to a combination of differences in composition of the silicate magma from which the sulphides segregated and differences in the ratio of silicate to sulphide liquid (R factors). The higher metal content of the disseminated sulphides relative to the massive and matrix sulphides may be due to the fact that the disseminated sulphides equilibrated with a larger volume of magma than massive and matrix sulphides. The difference in composition between the Cu- and Fe-rich sulphides may be the result of the fractional crystallization of monosulphide solid solution from a sulphide liquid, with the Cu-rich sulphides representing the liquid and the Fe-rich sulphides representing the cumulate.

  5. Financial Impact of Dual Vendor, Matrix Pricing, and Sole-Source Contracting on Implant Costs.

    PubMed

    Althausen, Peter L; Lapham, Joan; Mead, Lisa

    2016-12-01

    Implant costs comprise the largest proportion of operating room supply costs for orthopedic trauma care. Over the years, hospitals have devised several methods of controlling these costs with the help of physicians. With increasing economic pressure, these negotiations have a tremendous ability to decrease the cost of trauma care. In the past, physicians have taken no responsibility for implant pricing which has made cost control difficult. The reasons have been multifactorial. However, industry surgeon consulting fees, research support, and surgeon comfort with certain implant systems have played a large role in slowing adoption of cost-control measures. With the advent of physician gainsharing and comanagement agreements, physicians now have impetus to change. At our facility, we have used 3 methods for cost containment since 2009: dual vendor, matrix pricing, and sole-source contracting. Each has been increasingly successful, resulting in massive savings for the institution. This article describes the process and benefits of each model.

  6. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  7. Gauge symmetry and constraints structure for topologically massive AdS gravity: a symplectic viewpoint

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tzompantzi, Omar; Escalante, Alberto

    2018-05-01

    By applying the Faddeev-Jackiw symplectic approach we systematically show that both the local gauge symmetry and the constraint structure of topologically massive gravity with a cosmological constant Λ , elegantly encoded in the zero-modes of the symplectic matrix, can be identified. Thereafter, via a suitable partial gauge-fixing procedure, the time gauge, we calculate the quantization bracket structure (generalized Faddeev-Jackiw brackets) for the dynamic variables and confirm that the number of physical degrees of freedom is one. This approach provides an alternative to explore the dynamical content of massive gravity models.

  8. Efficient, massively parallel eigenvalue computation

    NASA Technical Reports Server (NTRS)

    Huo, Yan; Schreiber, Robert

    1993-01-01

    In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.

  9. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph

    NASA Astrophysics Data System (ADS)

    Primo, Amedeo; Tancredi, Lorenzo

    2017-08-01

    We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.

  10. Performance of hydraulic fracturing and matrix acidizing in horizontal wellbores -- Offshore Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, M.G.R.; Pongratz, R.

    Considerable debate in the Middle East has centered upon what was previously felt to be two separate methods of enhancing revenues and daily production; hydraulic fracturing and horizontal drilling. In an effort to maximize return on investment, these two issues have been successfully combined in other areas of the world. In order to establish the suitability of this technology in this area, two horizontal wells with over 3,050m (10,000ft) of lateral section were drilled into the Cretaceous Kharaib formation, overlying the North Field, Offshore Qatar. A massive stimulation program was performed in order to evaluate the most feasible stimulation methodmore » from both a technical and economical perspective for further field development considerations.Three propped hydraulic fracturing treatments were performed using 183, 500kg (403, 700lb) of 20/40 mesh sand, and seventeen acid matrix treatments placing over 3,217,250l (850,000gals) of HCL into the lateral sections of both wells. This paper describes the performance, operation and logistical support required to complete this offshore operation with join a minimal time frame. The use of a mobile offshore jack-up platform, whereby a land based fracturing spread was placed onto the deck of a converted drilling rig is described.« less

  11. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains

    PubMed Central

    Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz

    2016-01-01

    With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734

  12. Influence of porosity on thermophysical properties of a composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishaeva, N. Yu., E-mail: anohina@mail2000.ru; Ljukshin, B. A., E-mail: lba2008@yandex.ru; Bochkareva, S. A., E-mail: svetlanab7@yandex.ru

    2015-10-27

    In many modern information systems, the heat generated during the operation of electronic devices is usually dissipated by heat-conductive pads between the casing of the respective equipment and a massive base (platform). For newly developed pads, the promising materials are composites on the basis of various types of silicone rubber. At the same time, during the production of the pads without a vacuum setup, the material can contain air bubbles, which causes the porosity potentially negative for the thermal properties of the material. This work studies the thermal conductivity depending on the degree of silicone matrix filling by copper particles,more » introduced to improve thermal conductivity, and by air bubbles that are considered as reinforcing inclusions.« less

  13. Spectral Calculation of ICRF Wave Propagation and Heating in 2-D Using Massively Parallel Computers

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; D'Azevedo, E.; Berry, L. A.; Carter, M. D.; Batchelor, D. B.

    2000-10-01

    Spectral calculations of ICRF wave propagation in plasmas have the natural advantage that they require no assumption regarding the smallness of the ion Larmor radius ρ relative to wavelength λ. Results are therefore applicable to all orders in k_bot ρ where k_bot = 2π/λ. But because all modes in the spectral representation are coupled, the solution requires inversion of a large dense matrix. In contrast, finite difference algorithms involve only matrices that are sparse and banded. Thus, spectral calculations of wave propagation and heating in tokamak plasmas have so far been limited to 1-D. In this paper, we extend the spectral method to 2-D by taking advantage of new matrix inversion techniques that utilize massively parallel computers. By spreading the dense matrix over 576 processors on the ORNL IBM RS/6000 SP supercomputer, we are able to solve up to 120,000 coupled complex equations requiring 230 GBytes of memory and achieving over 500 Gflops/sec. Initial results for ASDEX and NSTX will be presented using up to 200 modes in both the radial and vertical dimensions.

  14. Randomized Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan

    2017-11-01

    The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.

  15. Identification of tectonically controlled serpentinite intrusion: Examples from Franciscan serpentinites, Gorda, California

    NASA Astrophysics Data System (ADS)

    Hirauchi, K.

    2006-12-01

    Serpentinite bodies, zonally occurring as a component of fault zones, without any association with ophiolitic rocks might be a mantle in origin tectonically intruded from a considerable depth. Typical occurrences of serpentinites that experienced a unique emplacement process different from surrounding rocks are found in the Sand Dollar Beach, Gorda, California. The serpentinite bodies are widely outcropped in the Franciscan Complex. All the serpentinites exhibit a block-in-matrix fabric, the blocks of which are classified into either massive or schistose types. The former retains relict minerals such as olivine, orthopyroxene and clinopyroxene and chromian spinel, and has serpentine minerals (lizardite and chrysotile) of mesh texture and bastite. The latter is characterized by ribbon textures as ductilely deformed mesh textures. The matrix is composed of aligned tabular lizardite, penetrating into the interior core of the blocks. The schistosities in the blocks and the attitude of the foliated matrix are both consistent with the elongate direction of the larger serpentinite bodies. The massive mesh textures is converted by the schistose ribbon textures with ductile deformation, further penetrated by tabular lizardite of the matrix. These series of the continuous deformation and recrystallization may occur along a regional deep fault zone, after undergoing partial serpentinization at lower crust and upper mantle.

  16. Improved search for heavy neutrinos in the decay π → e ν

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Arevalo, A.; Aoki, M.; Blecher, M.

    In this study, a search for massive neutrinos has been made in the decay π + → e +ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π → e +ν h). Upper limits (90 % C.L.) on the neutrino mixing matrix element |U ei| 2 in the neutrino mass region 60–135 MeV/c 2 were set, which are an order of magnitude improvement over previous results.

  17. Improved search for heavy neutrinos in the decay π →e ν

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Aoki, M.; Blecher, M.; Britton, D. I.; Vom Bruch, D.; Bryman, D. A.; Chen, S.; Comfort, J.; Cuen-Rochin, S.; Doria, L.; Gumplinger, P.; Hussein, A.; Igarashi, Y.; Ito, S.; Kettell, S.; Kurchaninov, L.; Littenberg, L. S.; Malbrunot, C.; Mischke, R. E.; Numao, T.; Protopopescu, D.; Sher, A.; Sullivan, T.; Vavilov, D.; Pienu Collaboration

    2018-04-01

    A search for massive neutrinos has been made in the decay π+→e+ν . No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π →e+νh ). Upper limits (90% C.L.) on the neutrino mixing matrix element |Ue i|2 in the neutrino mass region 60 - 135 MeV /c2 were set and are an order of magnitude improvement over previous results.

  18. Improved search for heavy neutrinos in the decay π → e ν

    DOE PAGES

    Aguilar-Arevalo, A.; Aoki, M.; Blecher, M.; ...

    2018-04-17

    In this study, a search for massive neutrinos has been made in the decay π + → e +ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π → e +ν h). Upper limits (90 % C.L.) on the neutrino mixing matrix element |U ei| 2 in the neutrino mass region 60–135 MeV/c 2 were set, which are an order of magnitude improvement over previous results.

  19. TEM characterization of planar defects in massively transformed TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.D.; Wiezorek, J.M.K.; Fraser, H.L.

    1997-12-31

    The microstructure of a massively transformed Ti-49at.%Al alloy has been studied by conventional transmission electron microscopy (CTEM) and high resolution TEM (HREM). A high density of planar defects, namely complex anti-phase domain boundaries (CAPDB) and thermal micro-twins (TMT) have been observed. CTEM images and diffraction patterns showed that two anti-phase related {gamma}-matrix domains were generally separated by a thin layer of a 90{degree}-domain, for which the c-axis is rotated 90{degree} over a common cube axis with respect to those of the {gamma}-matrix domains. HREM confirmed the presence of two crystallographically different types of 90{degree}-domains being associated with the CAPDB. Furthermore,more » interactions between the CAPDB and TMT have been observed. Local faceting of the generally wavy, non-crystallographic CAPDB parallel to the {l_brace}111{r_brace}-twinning planes occurred due to interaction with the TMT. The relaxation of the CAPDB onto {l_brace}111{r_brace} required diffusion which is proposed to be enhanced locally in the presence of the dislocations associated with the formation of TMT during the massive transformation.« less

  20. The effects of dolomitization on petrophysical properties and fracture distribution within rift-related carbonates (Hammam Faraun Fault Block, Suez Rift, Egypt)

    NASA Astrophysics Data System (ADS)

    Korneva, I.; Bastesen, E.; Corlett, H.; Eker, A.; Hirani, J.; Hollis, C.; Gawthorpe, R. L.; Rotevatn, A.; Taylor, R.

    2018-03-01

    Petrographic and petrophysical data from different limestone lithofacies (skeletal packstones, matrix-supported conglomerates and foraminiferal grainstones) and their dolomitized equivalents within a slope carbonate succession (Eocene Thebes Formation) of Hammam Faraun Fault Block (Suez Rift, Egypt) have been analyzed in order to link fracture distribution with mechanical and textural properties of these rocks. Two phases of dolomitization resulted in facies-selective stratabound dolostones extending up to two and a half kilometers from the Hammam Faraun Fault, and massive dolostones in the vicinity of the fault (100 metres). Stratabound dolostones are characterized by up to 8 times lower porosity and 6 times higher frequency of fractures compared to the host limestones. Precursor lithofacies type has no significant effect on fracture frequency in the stratabound dolostones. At a distance of 100 metres from the fault, massive dolostones are present which have 0.5 times porosity of precursor limestones, and lithofacies type exerts a stronger control on fracture frequency than the presence of dolomitization (undolomitized vs. dolomitized). Massive dolomitization corresponds to increased fracture intensity in conglomerates and grainstones but decreased fracture intensity in packstones. This corresponds to a decrease of grain/crystal size in conglomerates and grainstones and its increase in packstones after massive dolomitization. Since fractures may contribute significantly to the flow properties of a carbonate rock, the work presented herein has significant applicability to hydrocarbon exploration and production from limestone and dolostone reservoirs, particularly where matrix porosities are low.

  1. Linear precoding based on polynomial expansion: reducing complexity in massive MIMO.

    PubMed

    Mueller, Axel; Kammoun, Abla; Björnson, Emil; Debbah, Mérouane

    Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or less automatically by enlarging system dimensions. However, the computational precoding complexity grows with the system dimensions. For example, the close-to-optimal and relatively "antenna-efficient" regularized zero-forcing (RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables smooth transition between simple maximum ratio transmission and more advanced RZF. By deriving new random matrix results, we obtain a deterministic expression for the asymptotic signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and the signal-to-noise ratio.

  2. Massive spin-2 scattering and asymptotic superluminality

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Kurt; Joyce, Austin; Rosen, Rachel A.

    2018-03-01

    We place model-independent constraints on theories of massive spin-2 particles by considering the positivity of the phase shift in eikonal scattering. The phase shift is an asymptotic S-matrix observable, related to the time delay/advance experienced by a particle during scattering. Demanding the absence of a time advance leads to constraints on the cubic vertices present in the theory. We find that, in theories with massive spin-2 particles, requiring no time advance means that either: (i) the cubic vertices must appear as a particular linear combination of the Einstein-Hilbert cubic vertex and an h μν 3 potential term or (ii) new degrees of freedom or strong coupling must enter at parametrically the mass of the massive spin-2 field. These conclusions have implications for a variety of situations. Applied to theories of large- N QCD, this indicates that any spectrum with an isolated massive spin-2 at the bottom must have these particular cubic self-couplings. Applied to de Rham-Gabadadze-Tolley massive gravity, the constraint is in accord with results obtained from a shockwave calculation: of the two free dimensionless parameters in the theory there is a one parameter line consistent with a subluminal phase shift.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Edmond

    Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.

  4. Innovating Naval Business Using a War Game

    DTIC Science & Technology

    2013-04-01

    OSA. The Massive Multiplayer Operational War Game Leveraging the Internet (MMOWGLI) game was used as a crowd-sourcing tool to elicit the collective... Multiplayer Operational War Game Leveraging the Internet (MMOWGLI) game was used as a crowd-sourcing tool to elicit the collective intelligence of...problem. The DASN RDT&E selected the Massive Multiplayer Operational War Game Leveraging the Internet (MMOWGLI) as the mechanism to bring innovative

  5. An efficient parallel algorithm for matrix-vector multiplication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, B.; Leland, R.; Plimpton, S.

    The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in themore » well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.« less

  6. Monte Carlo study of exact {ital S}-matrix duality in nonsimply laced affine Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beccaria, M.

    The ({ital g}{sub 2}{sup (1)},{ital d}{sub 4}{sup (3)}) pair of nonsimply laced affine Toda theories is studied from the point of view of nonperturbative duality. The classical spectrum of each member is composed of two massive scalar particles. The exact {ital S}-matrix prediction for the dual behavior of the coupling-dependent mass ratio is found to be in strong agreement with Monte Carlo data. {copyright} {ital 1996 The American Physical Society.}

  7. Relationship between geomorphology and lithotypes of lahar deposit from Chokai volcano, Japan

    NASA Astrophysics Data System (ADS)

    Minami, Y.; Ohba, T.; Hayashi, S.; Kataoka, K.

    2013-12-01

    Chokai volcano, located in the northern Honshu arc in Japan, is an andesitic stratovolcano that collapsed partly at ca. 2500 years ago. A post collapse lahar deposit (Shirayukigawa lahar deposit) is distributed in the northern foot of the volcanic edifice. The deposit consists of 16 units of debris flow, hyperconcentrated flow and streamflow deposits. The Shirayukigawa lahar deposit has a total thickness of 30 m and overlies the 2.5-ka Kisakata debris avalanche deposit. Shirayukigawa lahar deposit forms volcanic fan and volcanic apron. The volcanic fan is subdivided into four areas on the basis of slope angles and of geomorphological features: 1) steeply sloped area, 2) moderately sloped area, 3) gently sloped area and 4) horizontal area. From sedimentary facies and structures, each unit of the Shirayukigawa lahar deposit is classified into one of four lithotypes: clast-supported debris flow deposit (Cc), matrix-supported debris flow deposit (Cm1), hyperconcentrated flow deposit (Cm2) and streamflow deposit (Sl). Each type has the following lithological characteristics. The lithotypes are well correlated with the geomorphology of the volcanic fan. The steeply-sloped and the moderately-sloped areas are dominated by Cc, Cm1, and Cm2, and The horizontal area are dominated by Sl. Debris flow deposit (Cc) is massive, very poorly sorted, partly graded, and clast-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Preferred clast orientation are present. Debris flow deposit (Cm1) is massive, very poorly sorted, and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Some layers exhibit coarse-tail normal/inverse grading. Most clasts are oriented. Hyperconcentrated flow deposit (Cm2) is massive to diffusely laminated, very poorly sorted and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic rocks. Matrix is sandy. The clasts are randomly distributed in the sandy matrix except for some clast-concentrated lenticular layers. Clasts smaller than 1cm account for about 10 percent of the deposits. Maximum clast size is about 30 cm. Streamflow deposit (Sl) is weakly parallel/cross-laminated, sorted and partly graded. The deposit contains volcanic clasts smaller than 20cm, which clasts are preferentially oriented and account for about 5% of the deposit. Clasts of the deposits consist of altered andesite, fresh andesite, mudstone and sandstone. The sedimentary clasts were derived from the substrate. The proportion of altered andesite clasts decreases upwards through the units. Matrix components in the lower eight units (C-LHR) are different from those of the upper eight units (S-LHR). In C-LHR units, grayish blue clay is dominant in matrix, whereas in S-LHR units, brownish yellow volcanic sand is dominant in matrix. Hydrothermal clay minerals such as smectite, chlorite, pyrophyllite and kaoline group minerals are rich in C-LHR units, whereas they are poor in S-LHR units. The stratigraphic variation in matrix component reflects temporal variation in supplied materials from source region.

  8. Fast, Massively Parallel Data Processors

    NASA Technical Reports Server (NTRS)

    Heaton, Robert A.; Blevins, Donald W.; Davis, ED

    1994-01-01

    Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.

  9. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  10. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  11. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE PAGES

    Zhang, Hong; Zapol, Peter; Dixon, David A.; ...

    2015-11-17

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  12. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Zapol, Peter; Dixon, David A.

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  13. Performance Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis with Different Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Huang, Zhenyu; Chavarría-Miranda, Daniel

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimation. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. High performance computing holds the promise of faster analysis of more contingency cases for the purpose of safe and reliable operation of today’s power grids with less operating margin and more intermittent renewable energy sources. This paper evaluates the performance of counter-based dynamic load balancing schemes for massive contingency analysis under different computing environments. Insights frommore » the performance evaluation can be used as guidance for users to select suitable schemes in the application of massive contingency analysis. Case studies, as well as MATLAB simulations, of massive contingency cases using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing with counter-based dynamic load balancing schemes.« less

  14. On the local structure of spacetime in ghost-free bimetric theory and massive gravity

    NASA Astrophysics Data System (ADS)

    Hassan, S. F.; Kocic, Mikica

    2018-05-01

    The ghost-free bimetric theory describes interactions of gravity with another spin-2 field in terms of two Lorentzian metrics. However, if the two metrics do not admit compatible notions of space and time, the formulation of the initial value problem becomes problematic. Furthermore, the interaction potential is given in terms of the square root of a matrix which is in general nonunique and possibly nonreal. In this paper we show that both these issues are evaded by requiring reality and general covariance of the equations. First we prove that the reality of the square root matrix leads to a classification of the allowed metrics in terms of the intersections of their null cones. Then, the requirement of general covariance further restricts the allowed metrics to geometries that admit compatible notions of space and time. It also selects a unique definition of the square root matrix. The restrictions are compatible with the equations of motion. These results ensure that the ghost-free bimetric theory can be defined unambiguously and that the two metrics always admit compatible 3+1 decompositions, at least locally. In particular, these considerations rule out certain solutions of massive gravity with locally Closed Causal Curves, which have been used to argue that the theory is acausal.

  15. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  16. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, S.; Martin, C. P.

    2018-03-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.

  17. Rotator cuff bridging repair using acellular dermal matrix in large to massive rotator cuff tears: histologic and clinical analysis.

    PubMed

    Kim, Jong Ok; Lee, Jong-Ho; Kim, Kwang-Sup; Ji, Jong-Hun; Koh, Sung-Jun; Lee, Jae-Ho

    2017-11-01

    This study investigated the efficacy of the bridging repair using an acellular dermal matrix (ADM) and an ADM with stem cells in rabbits. Also investigated were clinical outcomes of ADM bridging repair for large to massive rotator cuff tears. ADM, with and without stem cells, was used to cover a 5- × 5-mm-sized cuff defect in 17 rabbits, and biomechanical, histologic, and immunohistochemical analyses were conducted. Also evaluated were 24 patients with large to massive rotator cuff tears after ADM bridging repair. In the biomechanical test, the normal rotator cuff, cuff with ADM plus stem cells, and cuff with ADM in the rabbit model showed a maximum load (N) of 287.3, 217.5, and 170.3 and ultimate tensile strength (N/mm 2 ) of 11.1, 8.0, and 5.2, respectively. Histologically, the cuff tendons with the ADM or ADM plus stem cells showed characteristically mature tendons as time passed. In the clinical study, the mean American Shoulder and Elbow Surgeons score improved from preoperative 50 to postoperative 83, the University of California Los Angeles Shoulder Rating Scale from 17 to 30, and the Simple Shoulder Test from 4 to 8, respectively. No further fatty deteriorations or muscle atrophy were observed on follow-up magnetic resonance imaging. A retear was found in 5 of 24 patients (21%). Bridging repair with ADM or stem cells in the rabbit model showed cellular infiltration into the graft and some evidence of neotendon formation. Clinically, ADM repair was a safe alternative that did not show any further fatty deterioration nor muscle atrophy in large to massive rotator cuff tears. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of the Intel iWarp parallel processor for space flight applications

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Fong, Terrence W.

    1993-01-01

    The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.

  19. [Analysis of Diagnosis Related Groups and their Impact on Health Care in Post Massive Weight Loss Surgery].

    PubMed

    Lotter, O; Hoefert, S; Micheel, M; Gonser, P; Schaller, H-E; Rothenberger, J

    2016-08-01

    Diagnosis Related Groups (DRG) were introduced in Germany as a medico-economic classification system in 2004. In this analysis, we looked at restorative surgery after massive weight loss, focusing on reimbursement of this fee-per-case system in comparison to costs to deduce possible effects on health care over time. First we analysed the algorithms for the relevant DRGs including data about length of stay and reimbursement. Furthermore, we integrated cost data from German reference hospitals of the last 5 years as well as single-centre data from a university hospital. Due to a diagnosis-related algorithm, coding will constantly lead to DRG K07Z. In 2016, a new diagnosis code specific to massive weight loss was introduced, which now leads to DRG J10B. As a result, reimbursement is reduced by more than half. In the cost matrix, staff, general ward, operation theatre and anaesthesia were identified as the main cost drivers. As expected, there was a statistically significant correlation between general ward costs and time of stay in hospital as well as operation theatre costs and incision-suture time. Considering the cost data of the reference hospitals, there was an average excess of EUR 781 per case whereas our own cost data revealed a deficit of EUR 1 700 to 2 700 per case. This is mainly due to the fact that approximately one third of our patient cohort underwent highly elaborate circular body lifts. It has to be questioned whether a newly introduced main diagnosis code can be applied as such without any underlying cost data having been collected in previous years. Given unchanged treatment measures, the main cost drivers identified by us remain the same, which means that there is no rationale for a drop in revenue. In addition to providing incentives for an efficient use of resources and quality optimisation, this system should offer medical service providers a sustainable and realistic possibility to break even. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Hamiltonian structure of three-dimensional gravity in Vielbein formalism

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shirzad, Ahmad

    2018-01-01

    Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.

  1. The Potential Social, Economic and Environmental Benefits of MOOCS: Operational and Historical Comparisons with a Massive "Closed Online" Course

    ERIC Educational Resources Information Center

    Lane, Andy; Caird, Sally; Weller, Martin

    2014-01-01

    Massive Online Open Courses (MOOCs) have recently become a much discussed development within higher education. Much of this debate focuses on the philosophical and operational similarities and differences between the types of MOOCs that have emerged to date, the learner completion rates and how they can be sustained. In contrast there has been…

  2. Repair of massively defected hemi-joints using demineralized osteoarticular allografts with protected cartilage.

    PubMed

    Li, Siming; Yang, Xiaohong; Tang, Shenghui; Zhang, Xunmeng; Feng, Zhencheng; Cui, Shuliang

    2015-08-01

    Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints.

  3. String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.

    PubMed

    Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar

    2015-08-28

    We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4  N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.

  4. Three-dimensional wideband electromagnetic modeling on massively parallel computers

    NASA Astrophysics Data System (ADS)

    Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.

    1996-01-01

    A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.

  5. A Strassen-Newton algorithm for high-speed parallelizable matrix inversion

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Ferguson, Helaman R. P.

    1988-01-01

    Techniques are described for computing matrix inverses by algorithms that are highly suited to massively parallel computation. The techniques are based on an algorithm suggested by Strassen (1969). Variations of this scheme use matrix Newton iterations and other methods to improve the numerical stability while at the same time preserving a very high level of parallelism. One-processor Cray-2 implementations of these schemes range from one that is up to 55 percent faster than a conventional library routine to one that is slower than a library routine but achieves excellent numerical stability. The problem of computing the solution to a single set of linear equations is discussed, and it is shown that this problem can also be solved efficiently using these techniques.

  6. MASSIVE LEAKAGE IRRADIATOR

    DOEpatents

    Wigner, E.P.; Szilard, L.; Christy, R.F.; Friedman, F.L.

    1961-05-30

    An irradiator designed to utilize the neutrons that leak out of a reactor around its periphery is described. It avoids wasting neutron energy and reduces interference with the core flux to a minimum. This is done by surrounding all or most of the core with removable segments of the material to be irradiated within a matrix of reflecting material.

  7. Data-driven design optimization for composite material characterization

    Treesearch

    John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos; Samuel G. Lambrakos; Tomonari Furukawa

    2011-06-01

    The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data...

  8. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle.more » The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.« less

  9. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.

  10. Selected Readings in the History of Soviet Operational Art

    DTIC Science & Technology

    1990-05-01

    beginning of the twentieth century (the Russo- Japanese War); now massive armies, numbering millions and supplied with massive equipment, operate on...light, according to the experience of the wars of the twentieth century, a picture of political preparation and maintenance of war. The exposition...history of the most important wars of the twentieth century, the interrelationships of war and politics in the epoch and on the grounds of imperialism

  11. Google matrix analysis of directed networks

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  12. Molecular effects of doxycycline treatment on pterygium as revealed by massive transcriptome sequencing.

    PubMed

    Larráyoz, Ignacio M; de Luis, Alberto; Rúa, Oscar; Velilla, Sara; Cabello, Juan; Martínez, Alfredo

    2012-01-01

    Pterygium is a lesion of the eye surface which involves cell proliferation, migration, angiogenesis, fibrosis, and extracellular matrix remodelling. Surgery is the only approved method to treat this disorder, but high recurrence rates are common. Recently, it has been shown in a mouse model that treatment with doxycycline resulted in reduction of the pterygium lesions. Here we study the mechanism(s) of action by which doxycycline achieves these results, using massive sequencing techniques. Surgically removed pterygia from 10 consecutive patients were set in short term culture and exposed to 0 (control), 50, 200, and 500 µg/ml doxycycline for 24 h, their mRNA was purified, reverse transcribed and sequenced through Illumina's massive sequencing protocols. Acquired data were subjected to quantile normalization and analyzed using cytoscape plugin software to explore the pathways involved. False discovery rate (FDR) methods were used to identify 332 genes which modified their expression in a dose-dependent manner upon exposure to doxycycline. The more represented cellular pathways included all mitochondrial genes, the endoplasmic reticulum stress response, integrins and extracellular matrix components, and growth factors. A high correlation was obtained when comparing ultrasequencing data with qRT-PCR and ELISA results. Doxycycline significantly modified the expression of important cellular pathways in pterygium cells, in a way which is consistent with the observed efficacy of this antibiotic to reduce pterygium lesions in a mouse model. Clinical trials are under way to demonstrate whether there is a benefit for human patients.

  13. Band nesting, massive Dirac fermions, and valley Landé and Zeeman effects in transition metal dichalcogenides: A tight-binding model

    NASA Astrophysics Data System (ADS)

    Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł

    2018-02-01

    We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.

  14. BASIC Matrix Operations.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hongliang; Wang, Yi, E-mail: hjiangag@connect.ust.hk, E-mail: phyw@ust.hk

    During inflation, massive fields can contribute to the power spectrum of curvature perturbation via a dimension-5 operator. This contribution can be considered as a bias for the program of using n {sub s} and r to select inflation models. Even the dimension-5 operator is suppressed by Λ = M {sub p} , there is still a significant shift on the n {sub s} - r diagram if the massive fields have m ∼ H . On the other hand, if the heavy degree of freedom appears only at the same energy scale as the suppression scale of the dimension-5 operator,more » then significant shift on the n {sub s} - r diagram takes place at m =Λ ∼ 70 H , which is around the inflationary time-translation symmetry breaking scale. Hence, the systematics from massive fields pose a greater challenge for future high precision experiments for inflationary model selection. This result can be thought of as the impact of UV sensitivity to inflationary observables.« less

  16. Spin-adapted matrix product states and operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch

    Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner–Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.

  17. Two-spinor description of massive particles and relativistic spin projection operators

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Podoinitsyn, M. A.

    2018-04-01

    On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.

  18. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron-Stein inequalities.

    PubMed

    Cheng, Hao-Chung; Hsieh, Min-Hsiu

    2016-03-01

    We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19 , 1-30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron-Stein inequality.

  19. Mordell integrals and Giveon-Kutasov duality

    NASA Astrophysics Data System (ADS)

    Giasemidis, Georgios; Tierz, Miguel

    2016-01-01

    We solve, for finite N, the matrix model of supersymmetric U( N) Chern-Simons theory coupled to N f massive hypermultiplets of R-charge 1/2 , together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order N f - 1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N=3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to N f = 12 flavours).

  20. In situ Observation of Phase Transformation in MnAl(C) Magnetic Materials

    PubMed Central

    Si, Ping-Zhan; Qian, Hui-Dong; Choi, Chul-Jin; Park, Jihoon; Han, Sangho; Ge, Hong-Liang; Shinde, Kiran P.

    2017-01-01

    The phase transformation in two modes, including both displacive and massive growth of τ-phase from ε-MnAl(C), was observed by in situ transmission electron microscopy. The exact temperature range for different phase transformation modes was determined by magnetic measurements. The displacive growth of ε→τ in Mn54Al46 (or Mn54Al46C2.44) occurs at temperatures below 650 K (or 766 K), above which both modes coexist. One-third or less of the ε-phase can be transformed into τ-phase via displacive mode while the remaining two-thirds or more via massive mode. In bulk τ-phase, most τ-nanocrystals formed via displacive mode are distributed in the matrix of large τ-grains that formed via massive mode. The typical massive growth rate of the τ-phase is 8–60 nm/s, while the displacive growth rate is low. A more complete understanding of the ε→τ phase transformations in the MnAl-based magnets was provided in this work, based on which the annealing process for ε→τ was optimized and thus high purity τ-phase with high saturation magnetization was obtained. PMID:28858231

  1. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities

    PubMed Central

    Cheng, Hao-Chung; Hsieh, Min-Hsiu

    2016-01-01

    We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob. 19, 1–30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron–Stein inequality. PMID:27118909

  2. Phase matrix induced symmetrics for multiple scattering using the matrix operator method

    NASA Technical Reports Server (NTRS)

    Hitzfelder, S. J.; Kattawar, G. W.

    1973-01-01

    Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.

  3. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  4. Elastic S-matrices in (1 + 1) dimensions and Toda field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christe, P.; Mussardo, G.

    Particular deformations of 2-D conformal field theory lead to integrable massive quantum field theories. These can be characterized by the relative scattering data. This paper proposes a general scheme for classifying the elastic nondegenerate S-matrix in (1 + 1) dimensions starting from the possible boot-strap processes and the spins of the conserved currents. Their identification with the S-matrix coming from the Toda field theory is analyzed. The authors discuss both cases of Toda field theory constructed with the simply-laced Dynkin diagrams and the nonsimply-laced ones. The authors present the results of the perturbative analysis and their geometrical interpretations.

  5. Massive Query Resolution for Rapid Selective Dissemination of Information.

    ERIC Educational Resources Information Center

    Cohen, Jonathan D.

    1999-01-01

    Outlines an efficient approach to performing query resolution which, when matched with a keyword scanner, offers rapid selecting and routing for massive Boolean queries, and which is suitable for implementation on a desktop computer. Demonstrates the system's operation with large examples in a practical setting. (AEF)

  6. Biopreservation of Myoglobin in Crowded Environment: A Comparison between Gelatin and Trehalose Matrixes.

    PubMed

    Semeraro, Enrico F; Giuffrida, Sergio; Cottone, Grazia; Cupane, Antonio

    2017-09-21

    Biopreservation by sugar and/or polymeric matrixes is a thoroughly studied research topic with wide technological relevance. Ternary amorphous systems containing both saccharides and proteins are extensively exploited to model the in vivo biopreservation process. With the aim of disentangling the effect of saccharides and polypeptidic crowders (such as gelatin) on the preservation of a model protein, we present here a combined differential scanning calorimetry and UV-vis spectrophotometry study on samples of myoglobin embedded in amorphous gelatin and trehalose + gelatin matrixes at different hydrations, and compare them with amorphous myoglobin-only and myoglobin-trehalose samples. The results point out the different effects of gelatin, which acts mainly as a crowding agent, and trehalose, which acts mainly by direct interaction. Gelatin is able to improve effectively the protein thermal stability at very low hydration; however, it has small effects at medium to high hydration. Consistently, gelatin appears to be more effective than trehalose against massive denaturation in the long time range, while the mixed trehalose + collagen matrix is most effective in preserving protein functionality, outdoing both gelatin-only and trehalose-only matrixes.

  7. Channel Estimation and Pilot Design for Massive MIMO Systems with Block-Structured Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Lv, ZhuoKai; Yang, Tiejun; Zhu, Chunhua

    2018-03-01

    Through utilizing the technology of compressive sensing (CS), the channel estimation methods can achieve the purpose of reducing pilots and improving spectrum efficiency. The channel estimation and pilot design scheme are explored during the correspondence under the help of block-structured CS in massive MIMO systems. The block coherence property of the aggregate system matrix can be minimized so that the pilot design scheme based on stochastic search is proposed. Moreover, the block sparsity adaptive matching pursuit (BSAMP) algorithm under the common sparsity model is proposed so that the channel estimation can be caught precisely. Simulation results are to be proved the proposed design algorithm with superimposed pilots design and the BSAMP algorithm can provide better channel estimation than existing methods.

  8. Formation of multiply charged ions from large molecules using massive-cluster impact.

    PubMed

    Mahoney, J F; Cornett, D S; Lee, T D

    1994-05-01

    Massive-cluster impact is demonstrated to be an effective ionization technique for the mass analysis of proteins as large as 17 kDa. The design of the cluster source permits coupling to both magnetic-sector and quadrupole mass spectrometers. Mass spectra are characterized by the almost total absence of chemical background and a predominance of multiply charged ions formed from 100% glycerol matrix. The number of charge states produced by the technique is observed to range from +3 to +9 for chicken egg lysozyme (14,310 Da). The lower m/z values provided by higher charge states increase the effective mass range of analyses performed with conventional ionization by fast-atom bombardment or liquid secondary ion mass spectrometry.

  9. Emplacement mechanisms of the South Kona slide complex, Hawaii Island: Sampling and observations by remotely operated vehicle Kaiko

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.

    2004-01-01

    Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized a-a lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands. ?? Springer-Verlag 2004.

  10. The spectrum of a vertex model and related spin one chain sitting in a genus five curve

    NASA Astrophysics Data System (ADS)

    Martins, M. J.

    2017-11-01

    We derive the transfer matrix eigenvalues of a three-state vertex model whose weights are based on a R-matrix not of difference form with spectral parameters lying on a genus five curve. We have shown that the basic building blocks for both the transfer matrix eigenvalues and Bethe equations can be expressed in terms of meromorphic functions on an elliptic curve. We discuss the properties of an underlying spin one chain originated from a particular choice of the R-matrix second spectral parameter. We present numerical and analytical evidences that the respective low-energy excitations can be gapped or massless depending on the strength of the interaction coupling. In the massive phase we provide analytical and numerical evidences in favor of an exact expression for the lowest energy gap. We point out that the critical point separating these two distinct physical regimes coincides with the one in which the weights geometry degenerate into union of genus one curves.

  11. Matrix Representation of Symmetry Operators in Elementary Crystallography

    ERIC Educational Resources Information Center

    Cody, R. D.

    1972-01-01

    Presents the derivation of rotation and reflection matrix representation of symmetry operators as used in the initial discussion of crystal symmetry in elementary mineralogy at Iowa State University. Includes references and an appended list of matrix representations of the important crystallographic symmetry operators, excluding the trigonal and…

  12. Predicting the need for massive transfusion in trauma patients: the Traumatic Bleeding Severity Score.

    PubMed

    Ogura, Takayuki; Nakamura, Yoshihiko; Nakano, Minoru; Izawa, Yoshimitsu; Nakamura, Mitsunobu; Fujizuka, Kenji; Suzukawa, Masayuki; Lefor, Alan T

    2014-05-01

    The ability to easily predict the need for massive transfusion may improve the process of care, allowing early mobilization of resources. There are currently no clear criteria to activate massive transfusion in severely injured trauma patients. The aims of this study were to create a scoring system to predict the need for massive transfusion and then to validate this scoring system. We reviewed the records of 119 severely injured trauma patients and identified massive transfusion predictors using statistical methods. Each predictor was converted into a simple score based on the odds ratio in a multivariate logistic regression analysis. The Traumatic Bleeding Severity Score (TBSS) was defined as the sum of the component scores. The predictive value of the TBSS for massive transfusion was then validated, using data from 113 severely injured trauma patients. Receiver operating characteristic curve analysis was performed to compare the results of TBSS with the Trauma-Associated Severe Hemorrhage score and the Assessment of Blood Consumption score. In the development phase, five predictors of massive transfusion were identified, including age, systolic blood pressure, the Focused Assessment with Sonography for Trauma scan, severity of pelvic fracture, and lactate level. The maximum TBSS is 57 points. In the validation study, the average TBSS in patients who received massive transfusion was significantly greater (24.2 [6.7]) than the score of patients who did not (6.2 [4.7]) (p < 0.01). The area under the receiver operating characteristic curve, sensitivity, and specificity for a TBSS greater than 15 points was 0.985 (significantly higher than the other scoring systems evaluated at 0.892 and 0.813, respectively), 97.4%, and 96.2%, respectively. The TBSS is simple to calculate using an available iOS application and is accurate in predicting the need for massive transfusion. Additional multicenter studies are needed to further validate this scoring system and further assess its utility. Prognostic study, level III.

  13. Thermal generation of the magnetic field in the surface layers of massive stars

    NASA Astrophysics Data System (ADS)

    Urpin, V.

    2017-11-01

    A new magnetic field-generation mechanism based on the Nernst effect is considered in hot massive stars. This mechanism can operate in the upper atmospheres of O and B stars where departures from the LTE form a region with the inverse temperature gradient.

  14. Implementing health information exchange for public health reporting: a comparison of decision and risk management of three regional health information organizations in New York state

    PubMed Central

    Phillips, Andrew B; Wilson, Rosalind V; Kaushal, Rainu; Merrill, Jacqueline A

    2014-01-01

    Health information exchange (HIE) is a significant component of healthcare transformation strategies at both the state and national levels. HIE is expected to improve care coordination, and advance public health, but implementation is massively complex and involves significant risk. In New York, three regional health information organizations (RHIOs) implemented an HIE use case for public health reporting by demonstrating capability to deliver accurate responses to electronic queries via a set of services called the Universal Public Health Node. We investigated process and outcomes of the implementation with a comparative case study. Qualitative analysis was structured around a decision and risk matrix. Although each RHIO had a unique operational model, two common factors influenced risk management and implementation success: leadership capable of agile decision-making and commitment to a strong organizational vision. While all three RHIOs achieved certification for the public health reporting, only one has elected to deploy a production version. PMID:23975626

  15. Implementing health information exchange for public health reporting: a comparison of decision and risk management of three regional health information organizations in New York state.

    PubMed

    Phillips, Andrew B; Wilson, Rosalind V; Kaushal, Rainu; Merrill, Jacqueline A

    2014-02-01

    Health information exchange (HIE) is a significant component of healthcare transformation strategies at both the state and national levels. HIE is expected to improve care coordination, and advance public health, but implementation is massively complex and involves significant risk. In New York, three regional health information organizations (RHIOs) implemented an HIE use case for public health reporting by demonstrating capability to deliver accurate responses to electronic queries via a set of services called the Universal Public Health Node. We investigated process and outcomes of the implementation with a comparative case study. Qualitative analysis was structured around a decision and risk matrix. Although each RHIO had a unique operational model, two common factors influenced risk management and implementation success: leadership capable of agile decision-making and commitment to a strong organizational vision. While all three RHIOs achieved certification for the public health reporting, only one has elected to deploy a production version.

  16. Matrix multiplication operations using pair-wise load and splat operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E.; Gschwind, Michael K.; Gunnels, John A.

    Mechanisms for performing a matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A pair-wise load and splat operation is performed to load a pair of scalar values of a second vector operand and replicate the pair of scalar values within a second target vector register. An operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product is accumulatedmore » with other partial products and a resulting accumulated partial product is stored. This operation may be repeated for a second pair of scalar values of the second vector operand.« less

  17. Recovery of Peripheral Nerve with Massive Loss Defect by Tissue Engineered Guiding Regenerative Gel

    PubMed Central

    Nevo, Zvi

    2014-01-01

    Objective. Guiding Regeneration Gel (GRG) was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated. Background. Many severe peripheral nerve injuries can only be treated through surgical reconstructive procedures. Such procedures are challenging, since functional recovery is slow and can be unsatisfactory. One of the most promising solutions already in clinical practice is synthetic nerve conduits connecting the ends of damaged nerve supporting nerve regeneration. However, this solution still does not enable recovery of massive nerve loss defect. The proposed technology is a biocompatible and biodegradable gel enhancing axonal growth and nerve regeneration. It is composed of a complex of substances comprising transparent, highly viscous gel resembling the extracellular matrix that is almost impermeable to liquids and gasses, flexible, elastic, malleable, and adaptable to various shapes and formats. Preclinical study on rat model of peripheral nerve injury showed that GRG enhanced nerve regeneration when placed in nerve conduits, enabling recovery of massive nerve loss, previously unbridgeable, and enabled nerve regeneration at least as good as with autologous nerve graft “gold standard” treatment. PMID:25105121

  18. Design of a massively parallel computer using bit serial processing elements

    NASA Technical Reports Server (NTRS)

    Aburdene, Maurice F.; Khouri, Kamal S.; Piatt, Jason E.; Zheng, Jianqing

    1995-01-01

    A 1-bit serial processor designed for a parallel computer architecture is described. This processor is used to develop a massively parallel computational engine, with a single instruction-multiple data (SIMD) architecture. The computer is simulated and tested to verify its operation and to measure its performance for further development.

  19. Successful management of trachea stenosis with massive substernal goiter via thacheobronchial stent

    PubMed Central

    2013-01-01

    A case of 65 year-old Chinese male patient with severe tracheal stenosis due to a massive substernal goiter, is presented. MRI and CT scan revealed that the massive substernal goiter was 9.3 × 6.1 × 4.7 cm in size, displacing the trachea and adjacent large vessels to the patient’s right contributing to severe intrathoracic trachea compression up to 6 cm in length and the narrowest caliber of the trachea only 3.0 mm in diameter. To the best of our knowledge, optimal airway management for the massive substernal goiter resection was considered to be temporary tracheobronchial stent placement pre-operation. PMID:24228633

  20. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less

  1. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  2. Embolization of a Hemorrhoid Following 18 Hours of Life-Threatening Bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berczi, Viktor, E-mail: berczi@hotmail.com; Gopalan, Deepa; Cleveland, Trevor J

    2008-01-15

    Hemorrhoids usually do not pose diagnostic difficulties and they rarely cause massive bleeding. We report a case of massive rectal bleeding over 18 h needing 22 U blood transfusion treated by superselective transcatheter coil embolization 12 h following operative treatment performed in a different hospital. Diagnostic angiography with a view to superselective embolization, following failure of sigmoidoscopy to localize and treat the cause of hemorrhage, might act as a life-saving treatment in massive rectal bleeding, obviating the need for repeated endoscopy or emergency surgery.

  3. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  4. Recursive flexible multibody system dynamics using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1992-01-01

    This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.

  5. Relation between Birth Weight and Intraoperative Hemorrhage during Cesarean Section in Pregnancy with Placenta Previa

    PubMed Central

    Ishibashi, Hiroki; Takano, Masashi; Sasa, Hidenori; Furuya, Kenichi

    2016-01-01

    Background Placenta previa, one of the most severe obstetric complications, carries an increased risk of intraoperative massive hemorrhage. Several risk factors for intraoperative hemorrhage have been identified to date. However, the correlation between birth weight and intraoperative hemorrhage has not been investigated. Here we estimate the correlation between birth weight and the occurrence of intraoperative massive hemorrhage in placenta previa. Materials and Methods We included all 256 singleton pregnancies delivered via cesarean section at our hospital because of placenta previa between 2003 and 2015. We calculated not only measured birth weights but also standard deviation values according to the Japanese standard growth curve to adjust for differences in gestational age. We assessed the correlation between birth weight and the occurrence of intraoperative massive hemorrhage (>1500 mL blood loss). Receiver operating characteristic curves were constructed to determine the cutoff value of intraoperative massive hemorrhage. Results Of 256 pregnant women with placenta previa, 96 (38%) developed intraoperative massive hemorrhage. Receiver-operating characteristic curves revealed that the area under the curve of the combination variables between the standard deviation of birth weight and intraoperative massive hemorrhage was 0.71. The cutoff value with a sensitivity of 81.3% and specificity of 55.6% was −0.33 standard deviation. The multivariate analysis revealed that a standard deviation of >−0.33 (odds ratio, 5.88; 95% confidence interval, 3.04–12.00), need for hemostatic procedures (odds ratio, 3.31; 95% confidence interval, 1.79–6.25), and placental adhesion (odds ratio, 12.68; 95% confidence interval, 2.85–92.13) were independent risk of intraoperative massive hemorrhage. Conclusion In patients with placenta previa, a birth weight >−0.33 standard deviation was a significant risk indicator of massive hemorrhage during cesarean section. Based on this result, further studies are required to investigate whether fetal weight estimated by ultrasonography can predict hemorrhage during cesarean section in patients with placental previa. PMID:27902772

  6. Relation between Birth Weight and Intraoperative Hemorrhage during Cesarean Section in Pregnancy with Placenta Previa.

    PubMed

    Soyama, Hiroaki; Miyamoto, Morikazu; Ishibashi, Hiroki; Takano, Masashi; Sasa, Hidenori; Furuya, Kenichi

    2016-01-01

    Placenta previa, one of the most severe obstetric complications, carries an increased risk of intraoperative massive hemorrhage. Several risk factors for intraoperative hemorrhage have been identified to date. However, the correlation between birth weight and intraoperative hemorrhage has not been investigated. Here we estimate the correlation between birth weight and the occurrence of intraoperative massive hemorrhage in placenta previa. We included all 256 singleton pregnancies delivered via cesarean section at our hospital because of placenta previa between 2003 and 2015. We calculated not only measured birth weights but also standard deviation values according to the Japanese standard growth curve to adjust for differences in gestational age. We assessed the correlation between birth weight and the occurrence of intraoperative massive hemorrhage (>1500 mL blood loss). Receiver operating characteristic curves were constructed to determine the cutoff value of intraoperative massive hemorrhage. Of 256 pregnant women with placenta previa, 96 (38%) developed intraoperative massive hemorrhage. Receiver-operating characteristic curves revealed that the area under the curve of the combination variables between the standard deviation of birth weight and intraoperative massive hemorrhage was 0.71. The cutoff value with a sensitivity of 81.3% and specificity of 55.6% was -0.33 standard deviation. The multivariate analysis revealed that a standard deviation of >-0.33 (odds ratio, 5.88; 95% confidence interval, 3.04-12.00), need for hemostatic procedures (odds ratio, 3.31; 95% confidence interval, 1.79-6.25), and placental adhesion (odds ratio, 12.68; 95% confidence interval, 2.85-92.13) were independent risk of intraoperative massive hemorrhage. In patients with placenta previa, a birth weight >-0.33 standard deviation was a significant risk indicator of massive hemorrhage during cesarean section. Based on this result, further studies are required to investigate whether fetal weight estimated by ultrasonography can predict hemorrhage during cesarean section in patients with placental previa.

  7. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  8. Control of electrolyte fill to fuel cell stack

    DOEpatents

    Pollack, William

    1982-01-01

    A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.

  9. Proteomic Mapping of Dental Enamel Matrix from Inbred Mouse Strains: Unraveling Potential New Players in Enamel.

    PubMed

    Lima Leite, Aline; Silva Fernandes, Mileni; Charone, Senda; Whitford, Gary Milton; Everett, Eric T; Buzalaf, Marília Afonso Rabelo

    2018-01-01

    Enamel formation is a complex 2-step process by which proteins are secreted to form an extracellular matrix, followed by massive protein degradation and subsequent mineralization. Excessive systemic exposure to fluoride can disrupt this process and lead to a condition known as dental fluorosis. The genetic background influences the responses of mineralized tissues to fluoride, such as dental fluorosis, observed in A/J and 129P3/J mice. The aim of the present study was to map the protein profile of enamel matrix from A/J and 129P3/J strains. Enamel matrix samples were obtained from A/J and 129P3/J mice and analyzed by 2-dimensional electrophoresis and liquid chromatography coupled with mass spectrometry. A total of 120 proteins were identified, and 7 of them were classified as putative uncharacterized proteins and analyzed in silico for structural and functional characterization. An interesting finding was the possibility of the uncharacterized sequence Q8BIS2 being an enzyme involved in the degradation of matrix proteins. Thus, the results provide a comprehensive view of the structure and function for putative uncharacterized proteins found in the enamel matrix that could help to elucidate the mechanisms involved in enamel biomineralization and genetic susceptibility to dental fluorosis. © 2018 S. Karger AG, Basel.

  10. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  11. The dynamics of secretion during sea urchin embryonic skeleton formation.

    PubMed

    Wilt, Fred H; Killian, Christopher E; Hamilton, Patricia; Croker, Lindsay

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.

  12. The Dynamics of Secretion during Sea Urchin Embryonic Skeleton Formation

    PubMed Central

    Wilt, Fred H.; Killian, Christopher E.; Hamilton, Patricia; Croker, Lindsay

    2008-01-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes. PMID:18355808

  13. Generic construction of efficient matrix product operators

    NASA Astrophysics Data System (ADS)

    Hubig, C.; McCulloch, I. P.; Schollwöck, U.

    2017-01-01

    Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.

  14. Who Networks? The Social Psychology of Virtual Communities

    DTIC Science & Technology

    2004-06-01

    virtual life: the open side - characterized by communities of interest, civil society movements, virtual “states,” and 4 online gaming communities...network of people hailing from Sicily. Sometimes the offline/ online similari- ties mesh even more, as when a gaming society in a small Swedish town...Commercially owned and regulated graphics-based Massively Multi- Player Gaming Communities (EverQuest, The Matrix Online ®, etc.) • UseNET

  15. Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Shijie; Liu, Yinong; Ren, Yang

    2016-06-08

    Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa andmore » a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.« less

  16. Complex matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    DOEpatents

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2014-02-11

    Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.

  17. Energy Dissipation of Rayleigh Waves due to Absorption Along the Path by the Use of Finite Element Method

    DTIC Science & Technology

    1979-07-31

    3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is

  18. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    PubMed

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  19. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  20. QCD dirac operator at nonzero chemical potential: lattice data and matrix model.

    PubMed

    Akemann, Gernot; Wettig, Tilo

    2004-03-12

    Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.

  1. The derivative and tangent operators of a motion in Lorentzian space

    NASA Astrophysics Data System (ADS)

    Durmaz, Olgun; Aktaş, Buşra; Gündoğan, Hali˙t

    In this paper, by using Lorentzian matrix multiplication, L-Tangent operator is obtained in Lorentzian space. The L-Tangent operators related with planar, spherical and spatial motion are computed via special matrix groups. L-Tangent operators are related to vectors. Some illustrative examples for applications of L-Tangent operators are also presented.

  2. Table-sized matrix model in fractional learning

    NASA Astrophysics Data System (ADS)

    Soebagyo, J.; Wahyudin; Mulyaning, E. C.

    2018-05-01

    This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.

  3. Infrared and Raman spectroscopic features of plant cuticles: a review

    PubMed Central

    Heredia-Guerrero, José A.; Benítez, José J.; Domínguez, Eva; Bayer, Ilker S.; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio

    2014-01-01

    The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants. PMID:25009549

  4. Gravitational collapse and Hawking-like radiation of a shell in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Saini, Anshul; Stojkovic, Dejan

    2018-01-01

    In this paper, we study the collapse of a massive shell in 2 +1 and 3 +1 dimensional gravity with anti-de Sitter asymptotics. Using the Gauss-Codazzi method, we derive gravitational equations of motion of the shell. We then use the functional Schrödinger formalism to calculate the spectrum of particles produced during the collapse. At the late time, radiation agrees very well with the standard Hawking results. In 3 +1 dimensions, we reproduce the Hawking-Page transition. We then construct the density matrix of this collapsing system and analyze the information content in the emitted radiation. We find that the off-diagonal elements of the density matrix are very important in preserving the unitarity of the system.

  5. Galaxy bispectrum from massive spinning particles

    NASA Astrophysics Data System (ADS)

    Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora

    2018-05-01

    Massive spinning particles, if present during inflation, lead to a distinctive bispectrum of primordial perturbations, the shape and amplitude of which depend on the masses and spins of the extra particles. This signal, in turn, leaves an imprint in the statistical distribution of galaxies; in particular, as a non-vanishing galaxy bispectrum, which can be used to probe the masses and spins of these particles. In this paper, we present for the first time a new theoretical template for the bispectrum generated by massive spinning particles, valid for a general triangle configuration. We then proceed to perform a Fisher-matrix forecast to assess the potential of two next-generation spectroscopic galaxy surveys, EUCLID and DESI, to constrain the primordial non-Gaussianity sourced by these extra particles. We model the galaxy bispectrum using tree-level perturbation theory, accounting for redshift-space distortions and the Alcock-Paczynski effect, and forecast constraints on the primordial non-Gaussianity parameters marginalizing over all relevant biases and cosmological parameters. Our results suggest that these surveys would potentially be sensitive to any primordial non-Gaussianity with an amplitude larger than fNL≈ 1, for massive particles with spins 2, 3, and 4. Interestingly, if non-Gaussianities are present at that level, these surveys will be able to infer the masses of these spinning particles to within tens of percent. If detected, this would provide a very clear window into the particle content of our Universe during inflation.

  6. Renormalization of composite operators in Yang-Mills theories using a general covariant gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, J.C.; Scalise, R.J.

    Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear whenmore » gluonic matrix elements are taken on shell at zero momentum transfer.« less

  7. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    NASA Astrophysics Data System (ADS)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  8. Dilutional hyponatraemia: a cause of massive fatal intraoperative cerebral oedema in a child undergoing renal transplantation.

    PubMed

    Armour, A

    1997-05-01

    A four year old boy with polyuric renal failure resulting from recurrent urinary tract infections and vesicoureteric reflux from birth underwent renal transplantation. In the past he had had five ureteric reimplant operations and a gastrostomy, as he ate nothing by mouth. He required peritoneal dialysis 13 hours a night, six nights a week. His fluid requirements were 2100 ml per day. This included a night feed of 1.5 litres Nutrizon. Before operation he received 900 ml of Dioralyte instead of the Nutrizon feed, and peritoneal dialysis was performed as usual. The operation itself was technically difficult and there was more blood loss than anticipated, requiring intravenous fluids and blood. The operation ended about four hours later but he did not wake up. Urgent computed tomography revealed gross cerebral oedema. He died the next day. At necropsy the brain was massively oedematous and weighed 1680 g.

  9. Holography for Schrödinger backgrounds

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.

    2011-02-01

    We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in ( d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.

  10. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates

    NASA Astrophysics Data System (ADS)

    Protasevich, Alexander E.; Nikitin, Andrei V.

    2018-01-01

    In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.

  11. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  12. New Factorization Techniques and Fast Serial and Parrallel Algorithms for Operational Space Control of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Djouani, Karim; Fried, George; Pontnau, Jean

    1997-01-01

    In this paper a new factorization technique for computation of inverse of mass matrix, and the operational space mass matrix, as arising in implementation of the operational space control scheme, is presented.

  13. Dispersive estimates for massive Dirac operators in dimension two

    NASA Astrophysics Data System (ADS)

    Erdoğan, M. Burak; Green, William R.; Toprak, Ebru

    2018-05-01

    We study the massive two dimensional Dirac operator with an electric potential. In particular, we show that the t-1 decay rate holds in the L1 →L∞ setting if the threshold energies are regular. We also show these bounds hold in the presence of s-wave resonances at the threshold. We further show that, if the threshold energies are regular then a faster decay rate of t-1(log ⁡ t) - 2 is attained for large t, at the cost of logarithmic spatial weights. The free Dirac equation does not satisfy this bound due to the s-wave resonances at the threshold energies.

  14. Investigation of the status quo of massive blood transfusion in China and a synopsis of the proposed guidelines for massive blood transfusion

    PubMed Central

    Yang, Jiang-Cun; Wang, Qiu-Shi; Dang, Qian-Li; Sun, Yang; Xu, Cui-Xiang; Jin, Zhan-Kui; Ma, Ting; Liu, Jing

    2017-01-01

    Abstract The aim of this study was to provide an overview of massive transfusion in Chinese hospitals, identify the important indications for massive transfusion and corrective therapies based on clinical evidence and supporting experimental studies, and propose guidelines for the management of massive transfusion. This multiregion, multicenter retrospective study involved a Massive Blood Transfusion Coordination Group composed of 50 clinical experts specializing in blood transfusion, cardiac surgery, anesthesiology, obstetrics, general surgery, and medical statistics from 20 tertiary general hospitals across 5 regions in China. Data were collected for all patients who received ≥10 U red blood cell transfusion within 24 hours in the participating hospitals from January 1 2009 to December 31 2010, including patient demographics, pre-, peri-, and post-operative clinical characteristics, laboratory test results before, during, and after transfusion, and patient mortality at post-transfusion and discharge. We also designed an in vitro hemodilution model to investigate the changes of blood coagulation indices during massive transfusion and the correction of coagulopathy through supplement blood components under different hemodilutions. The experimental data in combination with the clinical evidence were used to determine the optimal proportion and timing for blood component supplementation during massive transfusion. Based on the findings from the present study, together with an extensive review of domestic and international transfusion-related literature and consensus feedback from the 50 experts, we drafted the guidelines on massive blood transfusion that will help Chinese hospitals to develop standardized protocols for massive blood transfusion. PMID:28767599

  15. [Penile augmentation using acellular dermal matrix].

    PubMed

    Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan

    2004-11-01

    Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.

  16. Modulation and control of matrix converter for aerospace application

    NASA Astrophysics Data System (ADS)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix Converter technology for ac to ac power conversion regarding the existing technologies of Matrix Converters.

  17. Distance descending ordering method: An O(n) algorithm for inverting the mass matrix in simulation of macromolecules with long branches

    NASA Astrophysics Data System (ADS)

    Xu, Xiankun; Li, Peiwen

    2017-11-01

    Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.

  18. Priority Intelligence Requirements: The Operational Vacuum

    DTIC Science & Technology

    1990-05-16

    armored vehicles , not ho!: the systems are used to achieve operational goals.34 Enemy mobilization, employment philosophy, and history are excluded in...extensive security problems create massive bottlenecks in the dissemination of intellingence information .48 Today, we sport a tremendous intelligence

  19. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  20. FPGA-based coprocessor for matrix algorithms implementation

    NASA Astrophysics Data System (ADS)

    Amira, Abbes; Bensaali, Faycal

    2003-03-01

    Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

  1. Channel estimation based on quantized MMP for FDD massive MIMO downlink

    NASA Astrophysics Data System (ADS)

    Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie

    2016-10-01

    In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.

  2. Integrated Analysis Tools for Determination of Structural Integrity and Durability of High temperature Polymer Matrix Composites

    DTIC Science & Technology

    2008-08-18

    fidelity will be used to reduce the massive experimental testing and associated time required for qualification of new materials. Tools and...develping a model of the thermo-oxidative process for polymer systems, that incorporates the effects of reaction rates, Fickian diffusion, time varying...degradation processes. Year: 2005 Month: 12 Not required at this time . AIR FORCE OFFICE OF SCIENTIFIC KESEARCH 04 SEP 2008 Page 2 of 2 DTIC Data

  3. Linear spin-2 fields in most general backgrounds

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  4. A CyberCIEGE Traffic Analysis Extension for Teaching Network Security

    DTIC Science & Technology

    2011-12-01

    Information Technology LAN Local Area Network MAADNET Military Academy Attack/Defense Network MAC Media Access Control MMORPG Massively...ready to launch its latest massively multiplayer online role-playing game ( MMORPG ) “SyberSIEGE”! The product is currently in the final stages of...achieve his goal, this approach will still allow Tina to meet her goals and avoid disruptions to existing operations, which is also what would have

  5. Multi-threading: A new dimension to massively parallel scientific computation

    NASA Astrophysics Data System (ADS)

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2000-06-01

    Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.

  6. Locally smeared operator product expansions in scalar field theory

    DOE PAGES

    Monahan, Christopher; Orginos, Kostas

    2015-04-01

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolda, Tamara Gibson

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties ofmore » the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.« less

  8. Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Komargodski, Zohar; Sever, Amit; Zhiboedov, Alexander

    2017-10-01

    We consider weakly coupled theories of massive higher-spin particles. This class of models includes, for instance, tree-level String Theory and Large-N Yang-Mills theory. The S-matrix in such theories is a meromorphic function obeying unitarity and crossing symmetry. We discuss the (unphysical) regime s, t ≫ 1, in which we expect the amplitude to be universal and exponentially large. We develop methods to study this regime and show that the amplitude necessarily coincides with the Veneziano amplitude there. In particular, this implies that the leading Regge trajectory, j( t), is asymptotically linear in Yang-Mills theory. Further, our analysis shows that any such theory of higherspin particles has stringy excitations and infinitely many asymptotically parallel subleading trajectories. More generally, we argue that, under some assumptions, any theory with at least one higher-spin particle must have strings.

  9. Making extreme computations possible with virtual machines

    NASA Astrophysics Data System (ADS)

    Reuter, J.; Chokoufe Nejad, B.; Ohl, T.

    2016-10-01

    State-of-the-art algorithms generate scattering amplitudes for high-energy physics at leading order for high-multiplicity processes as compiled code (in Fortran, C or C++). For complicated processes the size of these libraries can become tremendous (many GiB). We show that amplitudes can be translated to byte-code instructions, which even reduce the size by one order of magnitude. The byte-code is interpreted by a Virtual Machine with runtimes comparable to compiled code and a better scaling with additional legs. We study the properties of this algorithm, as an extension of the Optimizing Matrix Element Generator (O'Mega). The bytecode matrix elements are available as alternative input for the event generator WHIZARD. The bytecode interpreter can be implemented very compactly, which will help with a future implementation on massively parallel GPUs.

  10. The Cognitive Architecture for Chaining of Two Mental Operations

    ERIC Educational Resources Information Center

    Sackur, Jerome; Dehaene, Stanislas

    2009-01-01

    A simple view, which dates back to Turing, proposes that complex cognitive operations are composed of serially arranged elementary operations, each passing intermediate results to the next. However, whether and how such serial processing is achieved with a brain composed of massively parallel processors, remains an open question. Here, we study…

  11. Spatial operator factorization and inversion of the manipulator mass matrix

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.

  12. SU-G-TeP1-15: Toward a Novel GPU Accelerated Deterministic Solution to the Linear Boltzmann Transport Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, R; Fallone, B; Cross Cancer Institute, Edmonton, AB

    Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. Themore » LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been formulated on GPU, resulting in two orders of magnitude speedup. Funding support from Natural Sciences and Engineering Research Council and Alberta Innovates Health Solutions. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less

  13. Node Resource Manager: A Distributed Computing Software Framework Used for Solving Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.

    2011-12-01

    With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  15. Determination of the self-adjoint matrix Schrödinger operators without the bound state data

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Chuan; Yang, Chuan-Fu

    2018-06-01

    (i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.

  16. Right massive haemothorax as the presentation of blunt cardiac rupture: the pitfall of coexisting pericardial laceration

    PubMed Central

    Chen, Shao-Wei; Huang, Yao-Kuang; Liao, Chien-Hung; Wang, Shang-Yu

    2014-01-01

    A 74-year old female was transferred to our institution because of blunt chest trauma. Chest X-ray and computed tomography (CT) revealed right haemothorax and little pericardial effusion. She was taken to the operating theatre for emergent operation because of hypotension and massive bleeding from the right-sided chest tube. Cardiopulmonary resuscitation was started during surgical exploration. There were three 1-cm lacerations actively bleeding from the right atrium and inferior vena cava junction, which were repaired successfully. Furthermore, we identified a 10 cm laceration in the right-side pleuropericardium and a communication existing between the pericardial space and the right pleural space. PMID:24218497

  17. Right massive haemothorax as the presentation of blunt cardiac rupture: the pitfall of coexisting pericardial laceration.

    PubMed

    Chen, Shao-Wei; Huang, Yao-Kuang; Liao, Chien-Hung; Wang, Shang-Yu

    2014-02-01

    A 74-year old female was transferred to our institution because of blunt chest trauma. Chest X-ray and computed tomography (CT) revealed right haemothorax and little pericardial effusion. She was taken to the operating theatre for emergent operation because of hypotension and massive bleeding from the right-sided chest tube. Cardiopulmonary resuscitation was started during surgical exploration. There were three 1-cm lacerations actively bleeding from the right atrium and inferior vena cava junction, which were repaired successfully. Furthermore, we identified a 10 cm laceration in the right-side pleuropericardium and a communication existing between the pericardial space and the right pleural space.

  18. LDRD final report on massively-parallel linear programming : the parPCx system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar

    2005-02-01

    This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.« less

  19. A robust method of computing finite difference coefficients based on Vandermonde matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin

    2018-05-01

    When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.

  20. Outcome of Large to Massive Rotator Cuff Tears Repaired With and Without Extracellular Matrix Augmentation: A Prospective Comparative Study.

    PubMed

    Gilot, Gregory J; Alvarez-Pinzon, Andres M; Barcksdale, Leticia; Westerdahl, David; Krill, Michael; Peck, Evan

    2015-08-01

    To compare the results of arthroscopic repair of large to massive rotator cuff tears (RCTs) with or without augmentation using an extracellular matrix (ECM) graft and to present ECM graft augmentation as a valuable surgical alternative used for biomechanical reinforcement in any RCT repair. We performed a prospective, blinded, single-center, comparative study of patients who underwent arthroscopic repair of a large to massive RCT with or without augmentation with ECM graft. The primary outcome was assessed by the presence or absence of a retear of the previously repaired rotator cuff, as noted on ultrasound examination. The secondary outcomes were patient satisfaction evaluated preoperatively and postoperatively using the 12-item Short Form Health Survey, the American Shoulder and Elbow Surgeons shoulder outcome score, a visual analog scale score, the Western Ontario Rotator Cuff index, and a shoulder activity level survey. We enrolled 35 patients in the study: 20 in the ECM-augmented rotator cuff repair group and 15 in the control group. The follow-up period ranged from 22 to 26 months, with a mean of 24.9 months. There was a significant difference between the groups in terms of the incidence of retears: 26% (4 retears) in the control group and 10% (2 retears) in the ECM graft group (P = .0483). The mean pain level decreased from 6.9 to 4.1 in the control group and from 6.8 to 0.9 in the ECM graft group (P = .024). The American Shoulder and Elbow Surgeons score improved from 62.1 to 72.6 points in the control group and from 63.8 to 88.9 points (P = .02) in the treatment group. The mean Short Form 12 scores improved in the 2 groups, with a statistically significant difference favoring graft augmentation (P = .031), and correspondingly, the Western Ontario Rotator Cuff index scores improved in both arms, favoring the treatment group (P = .0412). The use of ECM for augmentation of arthroscopic repairs of large to massive RCTs reduces the incidence of retears, improves patient outcome scores, and is a viable option during complicated cases in which a significant failure rate is anticipated. Level III, prospective, blinded, nonrandomized, comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. Two B’s, or Not Two B’s? An NPOI Survey of Massive Stars

    DTIC Science & Technology

    2014-01-01

    considering the formation and survivability of disks and proto-planetary systems around these massive stars. We detail the status of an ongoing volume... systems (e.g., Patience 251 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and

  2. Fundamental Studies of Beta Phase Decomposition Modes in Titanium Alloys.

    DTIC Science & Technology

    1988-01-31

    to support the P.l.’s accelerating paperwriting activities on the bainite reaction in steel . This ,# ferrous-oriented effort is being actively aided by...kinetics of the proeutectoid alpha, the massive alpha and the bainite reactions in Ti-X alloys. Because that portion of the beta matrix which is not...allotriomorphs will be completed at the same time. During the latter portion of Mr. Furuhara’s research, this program will re-enter bainite studies as he

  3. Texture operator for snow particle classification into snowflake and graupel

    NASA Astrophysics Data System (ADS)

    Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro

    2012-11-01

    In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.

  4. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    PubMed

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  5. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  6. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  7. Exact finite volume expectation values of \\overline{Ψ}Ψ in the massive Thirring model from light-cone lattice correlators

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2018-03-01

    In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.

  8. Improvements in sparse matrix operations of NASTRAN

    NASA Technical Reports Server (NTRS)

    Harano, S.

    1980-01-01

    A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.

  9. Role of TSP-5/COMP in pseudoachondroplasia.

    PubMed

    Posey, Karen L; Hayes, Elizabeth; Haynes, Richard; Hecht, Jacqueline T

    2004-06-01

    Pseudoachondroplasia (PSACH) is a well-characterized dwarfing condition associated with disproportionate short stature, abnormal joints and osteoarthritis requiring joint replacement. PSACH is caused by mutations in cartilage oligomeric matrix protein (COMP). COMP, the fifth member of the thrombospondin (TSP) gene family, is a pentameric protein found primarily in the extracellular matrix of musculoskeletal tissues. Functional studies have shown that COMP binds types II and IX collagens but the role of COMP in the extracellular matrix remains to be defined. Mutations in COMP interfere with calcium-binding and protein conformation. PSACH growth plate and growth plate chondrocytes studies indicate that COMP mutations have a dominant negative effect with both COMP and type IX collagen being retained in large rER cisternae. This massive retention causes impaired chondrocyte function with little COMP secreted into the matrix and premature loss of chondrocytes. Deficiency of linear growth results from loss of chondrocytes from the growth plate. Secondarily, the matrix contains minimal COMP, which may be normal and/or mutant, and little type IX collagen. This deficiency results in abnormal joints that are easily eroded and cause painful osteoarthritis. Unlike other misfolded proteins that are targeted for degradation, much of the retained COMP escapes degradation, compromises cell function, and causes cell death. Gene therapy will need to target the reduction of COMP in order to restore normal chondrocyte function and longevity.

  10. An outcomes analysis of patients undergoing body contouring surgery after massive weight loss.

    PubMed

    Shermak, Michele A; Chang, David; Magnuson, Thomas H; Schweitzer, Michael A

    2006-09-15

    Although published reports about technical management of massive weight loss patients are beginning to appear, risk factors for complications following body contouring operations are not known. A retrospective analysis of massive weight loss patients who had body contouring operations between March of 1998 and October of 2004 was performed. Demographic and surgical factors were analyzed. Outcome measures included seroma, wound dehiscence, thromboembolic complications, blood transfusion after surgery, and extended lengths of stay (>2 days). A total of 139 patients were analyzed; 82.7 percent of them were female; mean age was 41 years. On multiple logistic regression, male gender was associated with significant risks for wound dehiscence (odds ratio, 6.4; p = 0.01). There were also trends toward increased risk for wound dehiscence with hypothyroidism (odds ratio, 4.3; p = 0.06) and Ehlers-Danlos syndrome (odds ratio, 18.7; p = 0.05). In terms of risk of blood transfusion, asthma and having three or more procedures were the two variables that emerged with significant association (odds ratio, 16.8 and 13.7, respectively; both p < 0.01). Increased length of stay to greater than 2 days was also significantly associated with having three or more procedures (odds ratio, 4.72; p < 0.01). Male gender, hypothyroidism, and Ehlers-Danlos syndrome may be risk factors for wound dehiscence following body contour operations for massive weight loss. Asthma may be a marker of poor general health status, and asthmatic patients are at increased risk for requiring blood transfusions. Having three or more procedures is associated with an increased risk of blood transfusion and increased length of stay.

  11. An analysis of the crossover between local and massive separation on airfoils

    NASA Technical Reports Server (NTRS)

    Barnett, M.; Carter, J. E.

    1987-01-01

    Massive separation on airfoils operating at high Reynolds number is an important problem to the aerodynamicist, since its onset generally determines the limiting performance of an airfoil, and it can lead to serious problems related to aircraft control as well as turbomachinery operation. The phenomenon of crossover between local separation and massive separation on realistic airfoil geometries induced by airfoil thickness is investigated for low speed (incompressible) flow. The problem is studied both for the asymptotic limit of infinite Reynolds number using triple-deck theory, and for finite Reynolds number using interacting boundary-layer theory. Numerical results are presented which follow the evolution of the flow as it develops from a mildly separated state to one dominated by the massively separated flow structure as the thickness of the airfoil geometry is systematically increased. The effect of turbulence upon the evolution of the flow is considered, and the impact is significant, with the principal effect being the suppression of the onset of separation. Finally, the effect of surface suction and injection for boundary-layer control is considered. The approach which was developed provides a valuable tool for the analysis of boundary-layer separation up to and beyond stall. Another important conclusion is that interacting boundary-layer theory provides an efficient tool for the analysis of the effect of turbulence and boundary-layer control upon separated vicsous flow.

  12. Theorems on symmetries and flux conservation in radiative transfer using the matrix operator theory.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.

    1973-01-01

    The matrix operator approach to radiative transfer is shown to be a very powerful technique in establishing symmetry relations for multiple scattering in inhomogeneous atmospheres. Symmetries are derived for the reflection and transmission operators using only the symmetry of the phase function. These results will mean large savings in computer time and storage for performing calculations for realistic planetary atmospheres using this method. The results have also been extended to establish a condition on the reflection matrix of a boundary in order to preserve reciprocity. Finally energy conservation is rigorously proven for conservative scattering in inhomogeneous atmospheres.

  13. A group matrix representation relevant to scales of measurement of clinical disease states via stratified vectors.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2016-02-09

    Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.

  14. Associative Networks on a Massively Parallel Computer.

    DTIC Science & Technology

    1985-10-01

    lgbt (as a group of numbers, in this case), but this only leads to sensible queries when a statistical function is applied: "What is the largest salary...34.*"* . •.,. 64 the siW~pe operations being used during ascend, each movement step costs the same as executing an operation

  15. Utilization of Veno-Arterial Extracorporeal Membrane Oxygenation for Massive Pulmonary Embolism.

    PubMed

    Pasrija, Chetan; Kronfli, Anthony; George, Praveen; Raithel, Maxwell; Boulos, Francesca; Herr, Daniel L; Gammie, James S; Pham, Si M; Griffith, Bartley P; Kon, Zachary N

    2018-02-01

    The management of massive pulmonary embolism remains challenging, with a considerable mortality rate. Although veno-arterial extracorporeal membrane oxygenation (VA-ECMO) for massive pulmonary embolism has been reported, its use as salvage therapy has been associated with poor outcomes. We reviewed our experience utilizing an aggressive, protocolized approach of VA-ECMO to triage, optimize, and treat these patients. All patients with a massive pulmonary embolism who were placed on VA-ECMO, as an initial intervention determined by protocol, were retrospectively reviewed. ECMO support was continued until organ optimization was achieved or neurologic status was determined. At that time, if the thrombus burden resolved, decannulation was performed. If substantial clot burden was still present with evidence of right ventricular (RV) strain, operative therapy was undertaken. Twenty patients were identified. Before cannulation, all patients had an RV-to-left ventricular ratio greater than 1.0 and severe RV dysfunction. The median duration of ECMO support was 5.1 days, with significant improvement in end-organ function. Ultimately, 40% received anticoagulation alone, 5% underwent catheter-directed therapy, and 55% underwent surgical pulmonary embolectomy. Care was withdrawn in 1 patient with a prolonged pre-cannulation cardiac arrest after confirmation of neurologic death. In-hospital and 90-day survival was 95%. At discharge, 18 of 19 patients had normal RV function, and 1 patient, who received catheter-directed therapy, had mild dysfunction. VA-ECMO appears to be an effective tool to optimize end-organ function as a bridge to recovery or intervention, with excellent outcomes. This approach may allow clinicians to better triage patients with massive pulmonary embolism to the appropriate therapy on the basis of recovery of RV function, residual thrombus burden, operative risk, and neurologic status. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. [Transhumeral head plasty and massive osteocartilaginous allograft transplantation for the management of large hill-sachs lesions].

    PubMed

    Hart, R; Okál, F; Komzák, M

    2010-10-01

    The aim of this presentation is to inform the medical community about causal therapy (transhumeral head plasty or massive osteochondral allograft transplantation) for large Hill-Sachs lesions which frequently cause failure of anterior stabilisation following ventral shoulder dislocations. Seven men with an average age of 26 years (19 to 33 years) undergoing surgery in 2006 and 2007 were evaluated. The minimum follow-up was 18 months (41 to 18 months). Impressions on more than 30 % of the articular surface, or those whose critical size was larger than one-eighth of the humeral diameter (on CT scan) were taken as indications for surgery. Four patients had had previous surgery for anterior instability and three had a primary procedure. Four men underwent acute surgery and three had elective operations.Trans- humeral head plasty was used in five and massive osteochondral allograft in two patients. In the patients with large lesions in the anterior aspect of the shoulder joint, transhumeral head plasty involving repair of the ventral structures from the anterior approach was indicatedúúú in those with an isolated posterior bony defect, a massive osteochondral allograft was transplanted through the posterior approach. The Constant-Murley score was used to assess clinical status before (not in acute conditions) and after surgery. All patients reported improved clinical status. The average Constant-Murley score at final follow-up was 95.9 points (83-100 points). In the patients not having an acute procedure in whom pre-operative Constant-Murley scores were obtained, the average improvement was by 22.7 points (8 - 37 points). No general surgical complications were recorded. All patients reported subjective satisfaction and willingness to undergo surgery under the same conditions again. A Hill-Sachs lesion is a frequent injury to the humeral head resulting from anterior shoulder dislocation. To distinguish between major and minor defects in terms of clinical significance is essential for the choice of appropriate shoulder treatment. Up to now large lesions have mostly been managed by non-causal techniques affecting shoulder biomechanics. Transhumeral head plasty or transplantation of a massive osteochondral allograft, on the other hand, offers a causal treatment. However, these two methods have rarely been mentioned in the international literature, and usually only as case reports. Transhumeral head plasty and transplantation of a massive osteochondral allograft offer a causal therapy for the management of Hill-Sachs lesions that does not alter shoulder biomechanics. They are not associated with a higher percentage of post-operative complications. Neither technique is more demanding than non-causal procedures. Operations carried out as primary and not as "salvage" procedures restored the function of the shoulder joint to normal. After secondary surgery, occasional shoulder pain may persist as well as its restricted range of motion.

  17. Hyperspectral Imagers for the Study of Massive Star Nebulae

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Spiomm/Sitelle Team

    2012-12-01

    We present two wide-field imaging Fourier transform spectrometers built by our team to study the interstellar medium around massive stars in the Milky Way and nearby galaxies. SpIOMM, attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in about a million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We illustrate SpIOMM's capabilities to study the interactions between massive stars and their environment.

  18. Simulating cosmologies beyond ΛCDM with PINOCCHIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi

    2017-01-01

    We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results frommore » simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.« less

  19. Productivity Contribution of Paleozoic Woodlands to the Formation of Shale-Hosted Massive Sulfide Deposits in the Iberian Pyrite Belt (Tharsis, Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Harir, Mourad; Carrizo, Daniel; Schmitt-Kopplin, Philippe; Amils, Ricardo

    2018-03-01

    The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community, which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The cooccurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.

  20. Method of making carbon fiber-carbon matrix reinforced ceramic composites

    NASA Technical Reports Server (NTRS)

    Williams, Brian (Inventor); Benander, Robert (Inventor)

    2007-01-01

    A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.

  1. A Re-Analysis of the Collaborative Knowledge Transcripts from a Noncombatant Evacuation Operation Scenario: The Next Phase in the Evolution of a Team Collaboration Model

    DTIC Science & Technology

    2008-04-15

    65 E. Scoring Matrix for the NEO Scenario ............................................................................ 69 F. Experimenter...the unclassified scenario. Warner, Wroblewski, and Shuck (2004) also developed a scoring matrix for the final NEO plan (see appendix E). They did...this with input from military operational personnel who had experience in actual NEO scenarios. The researchers created the matrix so that they

  2. Test and Evaluation of the Malicious Activity Simulation Tool (MAST) in a Local Area Network (LAN) Running the Common PC Operating System Environment (COMPOSE)

    DTIC Science & Technology

    2013-09-01

    Malicious Activity Simulation Tool MMORPG Massively Multiplayer Online Role-Playing Game MMS Mission Management Server MOA Memorandum of Agreement MS...conferencing, and massively multiplayer online role- playing games (MMORPG). During all of these Internet-based exchanges and transactions, the Internet user...In its 2011 Internet Crime Report, the Internet Crime Complaint Center (IC3) stated there were more than 300,000 complaints of online criminal

  3. Neutrinoless double beta decay and chiral SU(3)

    DOE PAGES

    Cirigliano, Vincenzo; Dekens, Wouter Gerard; Graesser, Michael Lawrence; ...

    2017-04-14

    TeV-scale lepton number violation can affect neutrinoless double beta decay through dimension-9 ΔL=ΔI=2 operators involving two electrons and four quarks. Since the dominant effects within a nucleus are expected to arise from pion exchange, the π -→π +ee matrix elements of the dimension-9 operators are a key hadronic input. Here in this letter we provide estimates for the π -→π + matrix elements of all Lorentz scalar ΔI=2 four-quark operators relevant to the study of TeV-scale lepton number violation. The analysis is based on chiral SU(3) symmetry, which relates the π -→π + matrix elements of the ΔI=2 operators to themore » $K$ 0→$$\\bar{K}$$ 0 and K→ππ matrix elements of their ΔS=2 and ΔS=1 chiral partners, for which lattice QCD input is available. The inclusion of next-to-leading order chiral loop corrections to all symmetry relations used in the analysis makes our results robust at the 30% level or better, depending on the operator.« less

  4. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany

    NASA Astrophysics Data System (ADS)

    Reinhold, C.

    1998-10-01

    The Upper Jurassic of the eastern Swabian Alb is composed of oolitic platform sands with associated microbe-siliceous sponge mounds at the platform margins. They are surrounded by argillaceous or calcareous mudstones and marl-limestone alternations, deposited in adjacent marl basins. Partial to complete dolomitization is predominantly confined to the mound facies. Six types of dolomite, as well as one type of ankerite, document a complex diagenetic history during shallow burial with multiple episodes of dolomite formation and recrystallization. The earliest massive matrix dolomitization is Ca-rich, has slightly depleted oxygen isotope values relative to Late Jurassic seawater, and carbon isotopic values in equilibrium with Late Jurassic seawater. This initial massive matrix dolomitization occurred during latest Jurassic to earliest Cretaceous and is related to pressure dissolution during very shallow burial at temperatures of at least 50°C. Hydrologic conditions and mass-balance calculations indicate that burial compaction provided sufficient fluids for dolomitization. Mg is derived from negligibly modified seawater, that was expelled from the adjacent off-reef strata into the mound facies. Position of the mounds along the platform margins controlled the distribution of the shallow-burial dolomite. Covariant trends between textural modification, increasing stoichiometry, partial changes in trace element content (Mn, Fe, Sr) and depletion in stable isotopes as well as distinctive CL pattern illustrate two recrystallization phases of the precursor matrix dolomite during further burial at elevated temperatures. Strong Sr enrichment of the second phase of recrystallized dolomite is ascribed to Sr-rich meteoric waters descending from overlying aragonite-bearing reef limestones or evaporite-bearing peritidal carbonates. Late-stage coarsely crystalline dolomite cements occur as vug and fracture fillings and formed during burial. Ankerite, associated with sulphide and sulphate minerals, and saddle dolomite are assumed to have formed from hydrothermal waters that moved to higher stratigraphic levels along fracture conduit systems that developed during Late Cretaceous to Tertiary Alpine orogenesis.

  5. Classical space-times from the S-matrix

    NASA Astrophysics Data System (ADS)

    Neill, Duff; Rothstein, Ira Z.

    2013-12-01

    We show that classical space-times can be derived directly from the S-matrix for a theory of massive particles coupled to a massless spin two particle. As an explicit example we derive the Schwarzchild space-time as a series in GN. At no point of the derivation is any use made of the Einstein-Hilbert action or the Einstein equations. The intermediate steps involve only on-shell S-matrix elements which are generated via BCFW recursion relations and unitarity sewing techniques. The notion of a space-time metric is only introduced at the end of the calculation where it is extracted by matching the potential determined by the S-matrix to the geodesic motion of a test particle. Other static space-times such as Kerr follow in a similar manner. Furthermore, given that the procedure is action independent and depends only upon the choice of the representation of the little group, solutions to Yang-Mills (YM) theory can be generated in the same fashion. Moreover, the squaring relation between the YM and gravity three point functions shows that the seeds that generate solutions in the two theories are algebraically related. From a technical standpoint our methodology can also be utilized to calculate quantities relevant for the binary inspiral problem more efficiently then the more traditional Feynman diagram approach.

  6. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA).

    PubMed

    Ramella, Martina; Boccafoschi, Francesca; Bellofatto, Kevin; Md, Antonia Follenzi; Fusaro, Luca; Boldorini, Renzo; Casella, Francesco; Porta, Carla; Settembrini, Piergiorgio; Cannas, Mario

    2017-01-01

    Progression of abdominal aortic aneurysm (AAA) is typified by chronic inflammation and extracellular matrix (ECM) degradation of the aortic wall. Vascular inflammation involves complex interactions among inflammatory cells, endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and ECM. Although vascular endothelium and medial neoangiogenesis play a key role in AAA, the molecular mechanisms underlying their involvement are only partially understood. In AAA biopsies, we found increased MMP-9, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which correlated with massive medial neo-angiogenesis (C4d positive staining). In this study, we developed an in vitro model in order to characterize the role of endothelial matrix metalloproteinase-9 (e-MMP-9) as a potential trigger of medial disruption and in the inflammatory response bridging between ECs and vSMC. Lentiviral-mediated silencing of e-MMP-9 through RNA interference inhibited TNF-alpha-mediated activation of NF-κB in EA.hy926 human endothelial cells. In addition, EA.hy926 cells void of MMP-9 failed to migrate in a 3D matrix. Moreover, silenced EA.hy926 affected vSMC behavior in terms of matrix remodeling. In fact, also MMP-9 in vSMC resulted inhibited when endothelial MMP-9 was suppressed.

  7. Generating Nice Linear Systems for Matrix Gaussian Elimination

    ERIC Educational Resources Information Center

    Homewood, L. James

    2004-01-01

    In this article an augmented matrix that represents a system of linear equations is called nice if a sequence of elementary row operations that reduces the matrix to row-echelon form, through matrix Gaussian elimination, does so by restricting all entries to integers in every step. Many instructors wish to use the example of matrix Gaussian…

  8. The Russo-Japanese War of 1904-1905 and the Evolution of Operational Art

    DTIC Science & Technology

    2013-12-10

    exhibited operational art as he could conceptualize the operation, and plan appropriate resources for an operation. The French army corps was able to...to manage massive forces and developed the corps under a Field Marshall that could maneuver and sustain until more French forces could arrive...Napoleon. Japan adopted the Western general staff model used by the French and Prussian armies to ensure effective management of armies at the

  9. A novel chaotic image encryption scheme using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei

    2015-10-01

    In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.

  10. On space of integrable quantum field theories

    DOE PAGES

    Smirnov, F. A.; Zamolodchikov, A. B.

    2016-12-21

    Here, we study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields X s, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars X s are built from the components of the associated conserved currents in a universal way. The first of these scalars, X 1, coincides with the composite field View the MathMLmore » source(TT¯) built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X 1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations X s are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators X s in sine-Gordon theory. Lastly, we also make some remarks on the problem of UV completeness of such integrable deformations.« less

  11. Ontology-based coupled optimisation design method using state-space analysis for the spindle box system of large ultra-precision optical grinding machine

    NASA Astrophysics Data System (ADS)

    Wang, Qianren; Chen, Xing; Yin, Yuehong; Lu, Jian

    2017-08-01

    With the increasing complexity of mechatronic products, traditional empirical or step-by-step design methods are facing great challenges with various factors and different stages having become inevitably coupled during the design process. Management of massive information or big data, as well as the efficient operation of information flow, is deeply involved in the process of coupled design. Designers have to address increased sophisticated situations when coupled optimisation is also engaged. Aiming at overcoming these difficulties involved in conducting the design of the spindle box system of ultra-precision optical grinding machine, this paper proposed a coupled optimisation design method based on state-space analysis, with the design knowledge represented by ontologies and their semantic networks. An electromechanical coupled model integrating mechanical structure, control system and driving system of the motor is established, mainly concerning the stiffness matrix of hydrostatic bearings, ball screw nut and rolling guide sliders. The effectiveness and precision of the method are validated by the simulation results of the natural frequency and deformation of the spindle box when applying an impact force to the grinding wheel.

  12. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Milman, M.

    1988-01-01

    A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.

  13. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  14. Operator bases, S-matrices, and their partition functions

    NASA Astrophysics Data System (ADS)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi

    2017-10-01

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.

  15. Massive star evolution and SN 1987A

    NASA Technical Reports Server (NTRS)

    Arnett, David

    1991-01-01

    The evolution of massive stars through hydrogen and helium burning is addressed. A set of stellar evolutionary sequences for mass/solar mass of 15, 20, and 25, and metallicity of 0.002, 0.005, 0.007, 0.010, and 0.20 are presented; semiconvection is restricted to operating slower than the local thermal time scale. Using these sequences, simple models of the massive star content of the LMC are found to agree moderately well with the new observational data of Fitzpatrick and Garmany (1990). LMC supergiants were detected only in their postmain-sequence phases, so that 5-10 times more massive stars are there but not identified as such. It is argued that SN 1987A exhibits the normal evolution of a single star of about 20 solar mases having LMC abundances. Despite the variety of envelope behavior, the structure of the core at collapse is rather similar for the stars of a given mass. Variations due to different rates of mass loss are likely to be larger than those due to composition.

  16. Aortic occlusion balloon catheter technique is useful for uncontrollable massive intraabdominal bleeding after hepato-pancreato-biliary surgery.

    PubMed

    Miura, Fumihiko; Takada, Tadahiro; Ochiai, Takenori; Asano, Takehide; Kenmochi, Takashi; Amano, Hodaka; Yoshida, Masahiro

    2006-04-01

    Massive intraabdominal hemorrhage sometimes requires urgent hemostatic surgical intervention. In such cases, its rapid stabilization is crucial to reestablish a general hemodynamic status. We used an aortic occlusion balloon catheter in patients with massive intraabdominal hemorrhage occurring after hepato-pancreato-biliary surgery. An 8-French balloon catheter was percutaneously inserted into the aorta from the femoral artery, and the balloon was placed just above the celiac artery. Fifteen minutes inflation and 5 minutes deflation were alternated during surgery until the bleeding was surgically controlled. An aortic occlusion balloon catheter was inserted on 13 occasions in 10 patients undergoing laparotomy for hemostasis of massive hemorrhage. The aorta was successfully occluded on 12 occasions in nine patients. Both systolic pressure and heart rate were normalized during aortic occlusion, and the operative field became clearly visible after adequate suction of leaked blood. Bleeding sites were then easily found and controlled. Hemorrhage was successfully controlled in 7 of 10 patients (70%), and they were discharged in good condition. The aortic occlusion balloon catheter technique was effective for easily controlling massive intraabdominal bleeding by hemostatic procedure after hepato-pancreato-biliary surgery.

  17. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  18. Matrix Design: An Alternative Model for Organizing the School or Department.

    ERIC Educational Resources Information Center

    Salem, Philip J.; Gratz, Robert D.

    1984-01-01

    Explains the matrix organizational structure and describes conditions or pressures that lead an administrator to consider the matrix approach. Provides examples of how it operates in a department or school. (PD)

  19. Jejunal variceal bleeding after esophageal transection in a patient with idiopathic portal hypertension.

    PubMed

    Migou, S; Hashizume, M; Tsugawa, K; Kishihara, F; Kawanaka, H; Ohta, M; Tanoue, K; Kuroiwa, T; Kawamoto, K; Sugimachi, K

    1998-01-01

    This report describes a 38-year-old man with massive gastrointestinal bleeding from jejunal varices. He had been previously diagnosed to have idiopathic portal hypertension and esophageal varices, and had undergone an esophageal transection 8 years earlier. The pre-operative diagnosis was a suspected hemorrhage from the small intestine as visualized by 99mTc-HSAD scintigraphy (technetium 99m-labeled human serum albumin D-type) and was not considered to be repeated massive lower GI tract bleeding. An exploratory laparotomy was performed, and intra-operative endoscopy revealed active bleeding from the jejunal varices. A partial resection of the small intestine resulted in a complete resolution of the bleeding. A review of the literature thereafter disclosed twelve previously reported cases of jejunal variceal bleeding.

  20. Autologous Skin Cell Spray for Massive Soft Tissue War Injuries: A Prospective, Case-Control, Multicenter Trial

    DTIC Science & Technology

    2014-04-01

    randomization design, after all patients are treated with dermal matrix, patients will be randomized to Arm 1 (control group; standard skin grafting with... grafts are often “meshed” or flattened and spread out to increase the size of the skin graft to better cover a large wound. Standard “meshing” increases...the size of the donor graft by 1.5 times (1:1.5). Problems with healing and skin irritation remain with such skin grafts when the injured areas are

  1. Pallet Management System: A Study of the Implementation of UID/RFID Technology for Tracking Shipping Materials Within the Department of Defense Distribution Network

    DTIC Science & Technology

    2008-06-01

    numbers—into inventory, sales, purchasing, marketing , and similar database systems distributed throughout an enterprise.(Sweeney, 2005) It can be seen as...the following: • Data sharing , both inside and outside of an enterprise. • Efficient management of massive data produced by an RFID system...matrix can be read omni-directionally and can be scaled down so that it can be affixed to small items. The DoD brokered an agreement with EAN/ UCC , the

  2. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    NASA Astrophysics Data System (ADS)

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H.

    2017-02-01

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.

  3. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    DOE PAGES

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; ...

    2016-07-12

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Craymore » XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.« less

  4. Reflectionless CMV Matrices and Scattering Theory

    NASA Astrophysics Data System (ADS)

    Chu, Sherry; Landon, Benjamin; Panangaden, Jane

    2015-04-01

    Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).

  5. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  6. Comparative investigation on magnetic capture selectivity between single wires and a real matrix

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Chen, Luzheng; Liu, Wenbo; Shao, Yanhai; Zeng, Jianwu

    2018-03-01

    High gradient magnetic separation (HGMS) achieves the effective separation to fine weakly magnetic minerals through a magnetic matrix. In practice, the matrix is made of numerous magnetic wires, so that an insight into the magnetic capture characteristics of single wires to magnetic minerals would provide a basic foundation for the optimum design and choice of real matrix. The magnetic capture selectivity of cylindrical and rectangular single wires in concentrating ilmenite minerals were investigated through a cyclic pulsating HGMS separator with its key operating parameters (magnetic induction, feed velocity and pulsating frequency) varied, and their capture selectivity characteristics were parallelly compared with that of a real 3.0 mm cylindrical matrix. It was found that the cylindrical single wires have superior capture selectivity to the rectangular one; and, the single wires and the real matrix have basically the same capture trend with changes in the key operating parameters, but the single wires have a much higher capture selectivity than that of real matrix.

  7. Pharmacokinetic analysis of cloxacillin loss in children undergoing major surgery with massive bleeding.

    PubMed Central

    Levy, M; Egersegi, P; Strong, A; Tessoro, A; Spino, M; Bannatyne, R; Fear, D; Posnick, J C; Koren, G

    1990-01-01

    To determine the magnitude of cloxacillin loss during surgical procedures involving significant blood loss and high fluid replacement, we compared the pharmacokinetics of cloxacillin in children during craniomaxillofacial surgery with the disposition of the drug in healthy young adult volunteers with intact circulation. Blood loss during craniofacial operations may exceed blood volume, in some cases by as much as three times. Hemodynamic replacement with electrolyte solutions and blood products, which do not contain the drug, further dilute cloxacillin concentrations. In the patients that we studied, mean drug loss was estimated at 71%. Cloxacillin concentrations in serum fell below the lower range of the MIC for Staphylococcus aureus during significant portions of the surgical procedures. Thus, the traditional dosing of cloxacillin during prolonged operations with massive blood loss is inadequate. A more frequent dosing interval or priming of all replacement fluids with the drug may be required to maintain therapeutic levels. Our findings suggest that massive blood loss is likely to have a dramatic effect on the level of any drug with a small distribution volume. If such a drug is essential to the patient's well-being (e.g., antibiotics, antiarrhythmics, and anticonvulsants), it must be replaced promptly. PMID:2393274

  8. Plastic surgery after weight loss: current concepts in massive weight loss surgery.

    PubMed

    Gusenoff, Jeffrey A; Rubin, J Peter

    2008-01-01

    The authors begin their discussion of current concepts in massive weight loss (MWL) surgery by offering terminological guidelines that help define reconstructive and aesthetic concepts and procedures for the post-MWL patient. Measures for effective preoperative nutritional and metabolic screening include assessment of weight fluctuations over time, constitutional symptoms, and medications and nutritional supplements. Although there is no established body-mass index (BMI) threshold above which surgery should be refused, higher BMIs have been associated with increased complications. Residual medical problems and psychosocial issues require assessment before surgery, with appropriate specialist consultation as necessary. Consultation with patients concerning the different expectations for functional versus aesthetic procedures and issues such as postoperative scarring and the common incidence of wound healing problems is essential. Patient safety is paramount in decisions to combine multiple procedures and plan stages. The authors often recommend combining abdominoplasty and mastopexy. Surgeon experience, operative setting, and a patient's medical status are factors which influence how much surgery should be performed in the same operative setting. Centers of Excellence in body contouring that provide a team approach combining comprehensive patient evaluation, outcomes research, and surgical training may be the optimal approach for treating the massive weight loss patient.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Andres; Manzano Franco, Joseph B.; Song, Shuaiwen

    With Exascale performance and its challenges in mind, one ubiquitous concern among architects is energy efficiency. Petascale systems projected to Exascale systems are unsustainable at current power consumption rates. One major contributor to system-wide power consumption is the number of memory operations leading to data movement and management techniques applied by the runtime system. To address this problem, we present the concept of the Architected Composite Data Types (ACDT) framework. The framework is made aware of data composites, assigning them a specific layout, transformations and operators. Data manipulation overhead is amortized over a larger number of elements and program performancemore » and power efficiency can be significantly improved. We developed the fundamentals of an ACDT framework on a massively multithreaded adaptive runtime system geared towards Exascale clusters. Showcasing the capability of ACDT, we exercised the framework with two representative processing kernels - Matrix Vector Multiply and the Cholesky Decomposition – applied to sparse matrices. As transformation modules, we applied optimized compress/decompress engines and configured invariant operators for maximum energy/performance efficiency. Additionally, we explored two different approaches based on transformation opaqueness in relation to the application. Under the first approach, the application is agnostic to compression and decompression activity. Such approach entails minimal changes to the original application code, but leaves out potential applicationspecific optimizations. The second approach exposes the decompression process to the application, hereby exposing optimization opportunities that can only be exploited with application knowledge. The experimental results show that the two approaches have their strengths in HW and SW respectively, where the SW approach can yield performance and power improvements that are an order of magnitude better than ACDT-oblivious, hand-optimized implementations.We consider the ACDT runtime framework an important component of compute nodes that will lead towards power efficient Exascale clusters.« less

  10. Massive transfusion and nonsurgical hemostatic agents.

    PubMed

    Perkins, Jeremy G; Cap, Andrew P; Weiss, Brendan M; Reid, Thomas J; Bolan, Charles D; Bolan, Charles E

    2008-07-01

    Hemorrhage in trauma is a significant challenge, accounting for 30% to 40% of all fatalities, second only to central nervous system injury as a cause of death. However, hemorrhagic death is the leading preventable cause of mortality in combat casualties and typically occurs within 6 to 24 hrs of injury. In cases of severe hemorrhage, massive transfusion may be required to replace more than the entire blood volume. Early prediction of massive transfusion requirements, using clinical and laboratory parameters, combined with aggressive management of hemorrhage by surgical and nonsurgical means, has significant potential to reduce early mortality. Although the classification of massive transfusion varies, the most frequently used definition is ten or more units of blood in 24 hrs. Transfusion of red blood cells is intended to restore blood volume, tissue perfusion, and oxygen-carrying capacity; platelets, plasma, and cryoprecipitate are intended to facilitate hemostasis through prevention or treatment of coagulopathy. Massive transfusion is uncommon in civilian trauma, occurring in only 1% to 3% of trauma admissions. As a result of a higher proportion of penetrating injury in combat casualties, it has occurred in approximately 8% of Operation Iraqi Freedom admissions and in as many as 16% during the Vietnam conflict. Despite its potential to reduce early mortality, massive transfusion is not without risk. It requires extensive blood-banking resources and is associated with high mortality. This review describes the clinical problems associated with massive transfusion and surveys the nonsurgical management of hemorrhage, including transfusion of blood products, use of hemostatic bandages/agents, and treatment with hemostatic medications.

  11. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  12. On Max-Plus Algebra and Its Application on Image Steganography

    PubMed Central

    Santoso, Kiswara Agung

    2018-01-01

    We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems. PMID:29887761

  13. On Max-Plus Algebra and Its Application on Image Steganography.

    PubMed

    Santoso, Kiswara Agung; Fatmawati; Suprajitno, Herry

    2018-01-01

    We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems.

  14. Generalization of the Jones vector-matrix method and the regularity of the Weigert effect for partially polarized light.

    PubMed

    Kilosanidze, Barbara

    2010-06-01

    Generalization of the Jones vector for partially polarized radiation carried out by Kakichashvili is given. Partially polarized light is presented as two noncoherent components of mutually orthogonal polarization. The formal operation of amplitude summation of mutually noncoherent components and the symbol of this operation are introduced. The rules of operating with this symbol are determined. The regularity of the Weigert effect is modified for partial polarization of the inducing light. On this basis the modification of the Jones matrix for partially polarized light is made. The rules for the formation of the resulting matrix from the Jones matrices corresponding to the noncoherent components of partially polarized light are determined.

  15. Extended Reissner-Nordström solutions sourced by dynamical torsion

    NASA Astrophysics Data System (ADS)

    Cembranos, Jose A. R.; Valcarcel, Jorge Gigante

    2018-04-01

    We find a new exact vacuum solution in the framework of the Poincaré Gauge field theory with massive torsion. In this model, torsion operates as an independent field and introduces corrections to the vacuum structure present in General Relativity. The new static and spherically symmetric configuration shows a Reissner-Nordström-like geometry characterized by a spin charge. It extends the known massless torsion solution to the massive case. The corresponding Reissner-Nordström-de Sitter solution is also compatible with a cosmological constant and additional U (1) gauge fields.

  16. Routing performance analysis and optimization within a massively parallel computer

    DOEpatents

    Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen

    2013-04-16

    An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.

  17. Treatment Strategy for Irreparable Rotator Cuff Tears

    PubMed Central

    Oh, Joo Han; Rhee, Sung Min

    2018-01-01

    Recently, patients with shoulder pain have increased rapidly. Of all shoulder disorders, rotator cuff tears (RCTs) are most prevalent in the middle-aged and older adults, which is the primary reason for shoulder surgery in the population. Some authors have reported that up to 30% of total RCTs can be classified as irreparable due to the massive tear size and severe muscle atrophy. In this review article, we provide an overview of treatment methods for irreparable massive RCTs and discuss proper surgical strategies for RCTs that require operative management. PMID:29854334

  18. Ultrasonic scissors-assisted 'open-book' thyroidectomy in massive goiter compressing airway and causing unilateral vocal cord paralysis.

    PubMed

    M, Irfan; Yaroko, Ali Ango; S M, Najeb; Periasamy, Centilnathan

    2013-04-01

    A massive goiter may constrict the trachea resulting in shortness of breath. Recurrent laryngeal nerve compression may cause vocal cord paralysis. We highlight a case of a 62- year-old female with a 30 year history of an anterior neck swelling gradually increasing in size. She presented with acute symptoms of upper airway obstruction and voice changes. Emergency thyroidectomy was performed by dividing the middle part of the gland using ultrasonic scissors. The recovery was uneventful and the patient regained normal vocal cord function post operatively.

  19. Mathematical foundations of the GraphBLAS

    DOE PAGES

    Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...

    2016-12-01

    The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less

  20. SevenOperators, a Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions

    NASA Astrophysics Data System (ADS)

    Haxton, Wick; Lunardini, Cecilia

    2008-09-01

    Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2227 No. of bytes in distributed program, including test data, etc.: 19 382 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer running Mathematica; tested on Mac OS X PowerPC (32-bit) running Mathematica 6.0.0 Operating system: Any running Mathematica RAM: Memory requirements determined by Mathematica; 512 MB or greater RAM and hard drive space of at least 3.0 GB recommended Classification: 17.16, 17.19 Nature of problem: Algebraic evaluation of harmonic oscillator nuclear matrix elements for the one-body multipole operators governing semi-leptonic weak interactions, such as charged- or neutral-current neutrino scattering off nuclei. Solution method: Mathematica evaluation of associated angular momentum algebra and spherical Bessel function radial integrals. Running time: Depends on the complexity of the one-body density matrix employed, but times of a few seconds are typical.

  1. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less

  2. Curriculum Management Using an Interdisciplinary Matrix Structure and a Modular/Credit System

    ERIC Educational Resources Information Center

    Walsh, Edward M.

    1977-01-01

    The operation and results of an experiment at The National Institute for Higher Education, Limerick, Ireland, are described. A matrix structure, consisting of interdisciplines and departments responsible for academic policy and operation, is used with a U.S.-style modular credit system for curriculum management and development. (Author/LBH)

  3. Matrix Management in DoD: An Annotated Bibliography

    DTIC Science & Technology

    1984-04-01

    ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS ACSC/EDCC, MAXWELL AFB AL 36112 1 1. CONTROLLING OFFICE NAME AND ADDRESS 12 ...completes their message that matrix orga- nization is the likely format of the multiprogram Program Office. 12 The text’s discussion of matrix is...manager, and functional specialist are of vital importance to the effective operation of the matrix .... Matrix management will not achieve its

  4. Acausal measurement-based quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-07-01

    In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.

  5. General linear codes for fault-tolerant matrix operations on processor arrays

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Abraham, J. A.

    1988-01-01

    Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.

  6. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.

  7. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.

  8. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2015-03-01

    Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.

  9. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  10. Topologically massive gravity and galilean conformal algebra: a study of correlation functions

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun

    2011-02-01

    The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.

  11. Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media

    NASA Astrophysics Data System (ADS)

    Shin, Jungkyun; Shin, Changsoo; Calandra, Henri

    2016-06-01

    Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.

  12. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  14. Building generalized inverses of matrices using only row and column operations

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey

    2010-12-01

    Most students complete their first and only course in linear algebra with the understanding that a real, square matrix A has an inverse if and only if rref(A), the reduced row echelon form of A, is the identity matrix I n . That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix [A | I n ] to obtain [rref(A) | P], then the matrix A is invertible exactly when rref(A) = I n , in which case, P = A -1. Many students must wonder what happens when A is not invertible, and what information P conveys in that case. That question is, however, seldom answered in a first course. We show that investigating that question emphasizes the close relationships between matrix multiplication, elementary row operations, linear systems, and the four fundamental spaces associated with a matrix. More important, answering that question provides an opportunity to show students how mathematicians extend results by relaxing hypotheses and then exploring the strengths and limitations of the resulting generalization, and how the first relaxation found is often not the best relaxation to be found. Along the way, we introduce students to the basic properties of generalized inverses. Finally, our approach should fit within the time and topic constraints of a first course in linear algebra.

  15. Hunting for Shooting Stars in 30 Doradus

    NASA Astrophysics Data System (ADS)

    de Mink, Selma E.; Lennon, D. J.; Sabbi, E.; Anderson, J.; Bedin, L. R.; Sohn, S.; van der Marel, R. P.; Walborn, N. R.; Bastian, N.; Bressert, E.; Crowther, P. A.; Evans, C. J.; Herrero, A.; Langer, N.; Sana, H.

    2012-01-01

    We are undertaking an ambitious proper motion survey of massive stars in the 30 Doradus region of the Large Magellanic Cloud using the unique capabilities of HST. We aim to derive the directions of motion of massive runaway stars, searching in particular for stars which have been ejected from the dense star cluster R136. These stars probe the dynamical processes in the core of the cluster. The core has been suggested as a formation site for very massive stars exceeding the canonical upper limit of the IMF. These are possible progenitors of intermediate-mass black holes. Furthermore, they provide insight about the origin of massive field stars, addressing open questions related to the poorly understood process of massive star formation. Some may originate from disrupted binary systems and bear the imprints of interaction with the original companion. They will end their life far away from their birth location as core collapse supernova or possibly even long gamma-ray bursts. Here we discuss the first epoch of observations, presenting a 16'x13' mosaic of the data, and initial results based on comparisons with archival data. SdM acknowledges the NASA Hubble Fellowship grant HST-HF-51270.01-A awarded by STScI, operated by AURA for NASA, contract NAS 5-26555.

  16. Surface Operations Systems Improve Airport Efficiency

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  17. Operator bases, S-matrices, and their partition functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Brian; Lu, Xiaochuan; Melia, Tom

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less

  18. Operator bases, S-matrices, and their partition functions

    DOE PAGES

    Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...

    2017-10-27

    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less

  19. Analysis of crossover between local and massive separation on airfoils

    NASA Technical Reports Server (NTRS)

    Barnett, Mark

    1987-01-01

    The occurrence of massive separation on airfoils operating at high Reynolds number poses an important problem to the aerodynamicist. In the present study, the phenomenon of crossover, induced by airfoil thickness, between local separation and massive separation is investigated for low speed (incompressible), symmetric flow past realistic airfoil geometries. This problem is studied both for the infinite Reynolds number asymptotic limit using triple-deck theory and for finite Reynolds number using interacting boundary-layer theory. Numerical results are presented which illustrate how the flow evolves from local to massive separation as the airfoil thickness is increased. The results of the triple-deck and the interacting boundary-layer analyses are found to be in qualitative agreement for the NACA four digit series and an uncambered supercritical airfoil. The effect of turbulence on the evolution of the flow is also considered. Solutions are presented for turbulent flows past a NACA 0014 airfoil and a circular cylinder. For the latter case, the calculated surface pressure distribution is found to agree well with experimental data if the proper eddy pressure level is specified.

  20. Comparison of two Galerkin quadrature methods

    DOE PAGES

    Morel, Jim E.; Warsa, James; Franke, Brian C.; ...

    2017-02-21

    Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less

  1. Comparison of two Galerkin quadrature methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, Jim E.; Warsa, James; Franke, Brian C.

    Here, we compare two methods for generating Galerkin quadratures. In method 1, the standard S N method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard S N method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwisemore » sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding S N equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.« less

  2. So-called massive retinal gliosis: A critical review and reappraisal.

    PubMed

    Jakobiec, Frederick A; Thanos, Aristomenis; Stagner, Anna M; Grossniklaus, Hans E; Proia, Alan D

    2016-01-01

    Massive retinal gliosis, a nonneoplastic retinal glial proliferation, was first described in detail over 25 years ago, before the era of immunohistochemistry, in a series of 38 cases-to which can be added 30 case reports or small series (no more than 3 cases) subsequently. We analyze a new series of 3 nontumoral intraretinal glioses and 15 cases of tumoral retinal gliosis, not all of which, strictly speaking, were massive. The data from this series are compared with the findings in previously published cases. Included are 2 cases of massive retinal gliosis diagnosed from evisceration specimens. In reviewing all published and current cases, we were able to establish 3 subgroups of retinal tumoral glioses rather than a single "massive" category: focal nodular gliosis, submassive gliosis, and massive gliosis. Among 43 reported cases, including the present series, but excluding the previous large series of 38 cases in which substantial clinical data were omitted, there were 19 men and 24 women. Their mean and median ages were 36.2 years and 36 years, respectively, with a range of 2 to 79 years. All lesions were composed of mitotically quiet, compact spindled fibrous astrocytes devoid of an Alcian blue-positive myxoid matrix. The most common associated ocular conditions were phthisis bulbi and congenital diseases or malformations. Histopathologically, all 3 tumoral categories were accompanied by progressively more extensive fibrous and osseous metaplasia of the pigment epithelium, the latter forming a clinically and diagnostically useful, almost continuous, outer rim of eggshell calcification in the submassive and massive categories that should be detectable with appropriate imaging studies. In decreasing order of frequency, microcysts and macrocysts, vascular sclerosis, exudates, calcospherites, and Rosenthal fibers were observed among the proliferating fibrous astrocytes. Immunohistochemistry was positive for glial fibrillary acidic protein in all cases and nestin in most (an intermediate cytoplasmic filament typically restricted to embryonic and reparative neural tissue). The nonneoplastic nature of all categories of gliosis was confirmed by absent TP53 (tumor suppressor gene) dysregulation, Ki-67 negativity, and intact p16 expression (the protein product of the p16 tumor suppressor gene) in the overwhelming majority of cases. These findings indicate an intrinsic attempt to regulate and maintain a low level of glial cell proliferation that becomes unsuccessful as the disease evolves. The categories of tumoral proliferation appeared to constitute a spectrum. We conclude that focal nodular tumors encompass lesions previously called retinal vasoproliferative lesions, which display the same histopathologic and immunohistochemical findings as 3 major categories of retinal gliosis characterized herein. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Simplified Antenna Group Determination of RS Overhead Reduced Massive MIMO for Wireless Sensor Networks.

    PubMed

    Lee, Byung Moo

    2017-12-29

    Massive multiple-input multiple-output (MIMO) systems can be applied to support numerous internet of things (IoT) devices using its excessive amount of transmitter (TX) antennas. However, one of the big obstacles for the realization of the massive MIMO system is the overhead of reference signal (RS), because the number of RS is proportional to the number of TX antennas and/or related user equipments (UEs). It has been already reported that antenna group-based RS overhead reduction can be very effective to the efficient operation of massive MIMO, but the method of deciding the number of antennas needed in each group is at question. In this paper, we propose a simplified determination scheme of the number of antennas needed in each group for RS overhead reduced massive MIMO to support many IoT devices. Supporting many distributed IoT devices is a framework to configure wireless sensor networks. Our contribution can be divided into two parts. First, we derive simple closed-form approximations of the achievable spectral efficiency (SE) by using zero-forcing (ZF) and matched filtering (MF) precoding for the RS overhead reduced massive MIMO systems with channel estimation error. The closed-form approximations include a channel error factor that can be adjusted according to the method of the channel estimation. Second, based on the closed-form approximation, we present an efficient algorithm determining the number of antennas needed in each group for the group-based RS overhead reduction scheme. The algorithm depends on the exact inverse functions of the derived closed-form approximations of SE. It is verified with theoretical analysis and simulation that the proposed algorithm works well, and thus can be used as an important tool for massive MIMO systems to support many distributed IoT devices.

  4. Simplified Antenna Group Determination of RS Overhead Reduced Massive MIMO for Wireless Sensor Networks

    PubMed Central

    2017-01-01

    Massive multiple-input multiple-output (MIMO) systems can be applied to support numerous internet of things (IoT) devices using its excessive amount of transmitter (TX) antennas. However, one of the big obstacles for the realization of the massive MIMO system is the overhead of reference signal (RS), because the number of RS is proportional to the number of TX antennas and/or related user equipments (UEs). It has been already reported that antenna group-based RS overhead reduction can be very effective to the efficient operation of massive MIMO, but the method of deciding the number of antennas needed in each group is at question. In this paper, we propose a simplified determination scheme of the number of antennas needed in each group for RS overhead reduced massive MIMO to support many IoT devices. Supporting many distributed IoT devices is a framework to configure wireless sensor networks. Our contribution can be divided into two parts. First, we derive simple closed-form approximations of the achievable spectral efficiency (SE) by using zero-forcing (ZF) and matched filtering (MF) precoding for the RS overhead reduced massive MIMO systems with channel estimation error. The closed-form approximations include a channel error factor that can be adjusted according to the method of the channel estimation. Second, based on the closed-form approximation, we present an efficient algorithm determining the number of antennas needed in each group for the group-based RS overhead reduction scheme. The algorithm depends on the exact inverse functions of the derived closed-form approximations of SE. It is verified with theoretical analysis and simulation that the proposed algorithm works well, and thus can be used as an important tool for massive MIMO systems to support many distributed IoT devices. PMID:29286339

  5. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation.

    PubMed

    Scheins, J J; Vahedipour, K; Pietrzyk, U; Shah, N J

    2015-12-21

    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation time is further reduced by using simultaneous multi-threading (SMT). A global speedup factor of 11 without SMT and above 100 with SMT has been achieved for the improved CPU-based implementation while obtaining equivalent numerical results.

  6. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation

    NASA Astrophysics Data System (ADS)

    Scheins, J. J.; Vahedipour, K.; Pietrzyk, U.; Shah, N. J.

    2015-12-01

    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation time is further reduced by using simultaneous multi-threading (SMT). A global speedup factor of 11 without SMT and above 100 with SMT has been achieved for the improved CPU-based implementation while obtaining equivalent numerical results.

  7. MODA A Framework for Memory Centric Performance Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Sunil; Su, Chun-Yi; White, Amanda M.

    2012-06-29

    In the age of massive parallelism, the focus of performance analysis has switched from the processor and related structures to the memory and I/O resources. Adapting to this new reality, a performance analysis tool has to provide a way to analyze resource usage to pinpoint existing and potential problems in a given application. This paper provides an overview of the Memory Observant Data Analysis (MODA) tool, a memory-centric tool first implemented on the Cray XMT supercomputer. Throughout the paper, MODA's capabilities have been showcased with experiments done on matrix multiply and Graph-500 application codes.

  8. Driven-dissipative quantum Monte Carlo method for open quantum systems

    NASA Astrophysics Data System (ADS)

    Nagy, Alexandra; Savona, Vincenzo

    2018-05-01

    We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville-von Neumann time evolution of the density matrix thanks to a massively parallel algorithm, thus providing estimates of observables on the nonequilibrium steady state. We present the underlying theory and introduce an initiator technique and importance sampling to reduce the statistical error. Finally, we demonstrate the efficiency of our approach by applying it to the driven-dissipative two-dimensional X Y Z spin-1/2 model on a lattice.

  9. Robust mosiacs of close-range high-resolution images

    NASA Astrophysics Data System (ADS)

    Song, Ran; Szymanski, John E.

    2008-03-01

    This paper presents a robust algorithm which relies only on the information contained within the captured images for the construction of massive composite mosaic images from close-range and high-resolution originals, such as those obtained when imaging architectural and heritage structures. We first apply Harris algorithm to extract a selection of corners and, then, employ both the intensity correlation and the spatial correlation between the corresponding corners for matching them. Then we estimate the eight-parameter projective transformation matrix by the genetic algorithm. Lastly, image fusion using a weighted blending function together with intensity compensation produces an effective seamless mosaic image.

  10. Stockholder projector analysis: A Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    NASA Astrophysics Data System (ADS)

    Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel

    2012-01-01

    A previously introduced partitioning of the molecular one-electron density matrix over atoms and bonds [D. Vanfleteren et al., J. Chem. Phys. 133, 231103 (2010)] is investigated in detail. Orthogonal projection operators are used to define atomic subspaces, as in Natural Population Analysis. The orthogonal projection operators are constructed with a recursive scheme. These operators are chemically relevant and obey a stockholder principle, familiar from the Hirshfeld-I partitioning of the electron density. The stockholder principle is extended to density matrices, where the orthogonal projectors are considered to be atomic fractions of the summed contributions. All calculations are performed as matrix manipulations in one-electron Hilbert space. Mathematical proofs and numerical evidence concerning this recursive scheme are provided in the present paper. The advantages associated with the use of these stockholder projection operators are examined with respect to covalent bond orders, bond polarization, and transferability.

  11. Locally-smeared operator product expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, Christopher; Orginos, Kostantinos

    2014-12-01

    We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approachmore » using the example of real scalar field theory.« less

  12. On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces

    NASA Astrophysics Data System (ADS)

    Castro-González, N.; Vélez-Cerrada, J. Y.

    2008-05-01

    Given a bounded operator A on a Banach space X with Drazin inverse AD and index r, we study the class of group invertible bounded operators B such that I+AD(B-A) is invertible and . We show that they can be written with respect to the decomposition as a matrix operator, , where B1 and are invertible. Several characterizations of the perturbed operators are established, extending matrix results. We analyze the perturbation of the Drazin inverse and we provide explicit upper bounds of ||B#-AD|| and ||BB#-ADA||. We obtain a result on the continuity of the group inverse for operators on Banach spaces.

  13. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  14. Plastic Surgery Challenges in War Wounded II: Regenerative Medicine

    PubMed Central

    Valerio, Ian L.; Sabino, Jennifer M.; Dearth, Christopher L.

    2016-01-01

    Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report on clinical outcomes that substantiate current treatment paradigms and concepts within regenerative medicine, reconstructive, and rehabilitation care. These results are applicable to not only combat casualty care but also to nonmilitary patients. PMID:27679752

  15. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  16. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  17. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  18. Application of symbolic/numeric matrix solution techniques to the NASTRAN program

    NASA Technical Reports Server (NTRS)

    Buturla, E. M.; Burroughs, S. H.

    1977-01-01

    The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.

  19. Another elementary proof of the Jordan form of a matrix

    NASA Astrophysics Data System (ADS)

    Budhi, Wono Setya

    2012-05-01

    In this paper we establish the Jordan Form for a matrix using the elementary concepts of vector differentiation and partial fractions. The idea comes from the resolvent of the operator. For the matrix, the Laurent series is finite and easy to compute through rational representation. We also give a proof of some famous theorems in matrix analysis as consequences from the result.

  20. Building Generalized Inverses of Matrices Using Only Row and Column Operations

    ERIC Educational Resources Information Center

    Stuart, Jeffrey

    2010-01-01

    Most students complete their first and only course in linear algebra with the understanding that a real, square matrix "A" has an inverse if and only if "rref"("A"), the reduced row echelon form of "A", is the identity matrix I[subscript n]. That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix…

  1. Neural dynamics in reconfigurable silicon.

    PubMed

    Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E

    2010-10-01

    A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).

  2. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  3. A Prevalidation of the Product-Process Matrix

    ERIC Educational Resources Information Center

    Ashenbaum, Bryan

    2013-01-01

    A major challenge for instructors of supply chain and operations management (SCOM) courses is to help students who have never seen a production floor visualize concepts, such as the product-process matrix from standard introductory SCOM texts. This article presents a classroom exercise, which "prevalidates" the product-process matrix.…

  4. Debilitating lung disease among surface coal miners with no underground mining tenure.

    PubMed

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  5. Debilitating Lung Disease Among Surface Coal Miners With No Underground Mining Tenure

    PubMed Central

    Halldin, Cara N.; Reed, William R.; Joy, Gerald J.; Colinet, Jay F.; Rider, James P.; Petsonk, Edward L.; Abraham, Jerrold L.; Wolfe, Anita L.; Storey, Eileen; Laney, A. Scott

    2015-01-01

    Objective To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Methods Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Results Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner’s lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Conclusions Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor. PMID:25563541

  6. Effective field theory of broken spatial diffeomorphisms

    DOE PAGES

    Lin, Chunshan; Labun, Lance Z.

    2016-03-17

    We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constantmore » for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. In conclusion, we discuss several examples relevant to theories of massive gravity.« less

  7. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  8. General transfer matrix formalism to calculate DNA-protein-drug binding in gene regulation: application to OR operator of phage lambda.

    PubMed

    Teif, Vladimir B

    2007-01-01

    The transfer matrix methodology is proposed as a systematic tool for the statistical-mechanical description of DNA-protein-drug binding involved in gene regulation. We show that a genetic system of several cis-regulatory modules is calculable using this method, considering explicitly the site-overlapping, competitive, cooperative binding of regulatory proteins, their multilayer assembly and DNA looping. In the methodological section, the matrix models are solved for the basic types of short- and long-range interactions between DNA-bound proteins, drugs and nucleosomes. We apply the matrix method to gene regulation at the O(R) operator of phage lambda. The transfer matrix formalism allowed the description of the lambda-switch at a single-nucleotide resolution, taking into account the effects of a range of inter-protein distances. Our calculations confirm previously established roles of the contact CI-Cro-RNAP interactions. Concerning long-range interactions, we show that while the DNA loop between the O(R) and O(L) operators is important at the lysogenic CI concentrations, the interference between the adjacent promoters P(R) and P(RM) becomes more important at small CI concentrations. A large change in the expression pattern may arise in this regime due to anticooperative interactions between DNA-bound RNA polymerases. The applicability of the matrix method to more complex systems is discussed.

  9. General transfer matrix formalism to calculate DNA–protein–drug binding in gene regulation: application to OR operator of phage λ

    PubMed Central

    Teif, Vladimir B.

    2007-01-01

    The transfer matrix methodology is proposed as a systematic tool for the statistical–mechanical description of DNA–protein–drug binding involved in gene regulation. We show that a genetic system of several cis-regulatory modules is calculable using this method, considering explicitly the site-overlapping, competitive, cooperative binding of regulatory proteins, their multilayer assembly and DNA looping. In the methodological section, the matrix models are solved for the basic types of short- and long-range interactions between DNA-bound proteins, drugs and nucleosomes. We apply the matrix method to gene regulation at the OR operator of phage λ. The transfer matrix formalism allowed the description of the λ-switch at a single-nucleotide resolution, taking into account the effects of a range of inter-protein distances. Our calculations confirm previously established roles of the contact CI–Cro–RNAP interactions. Concerning long-range interactions, we show that while the DNA loop between the OR and OL operators is important at the lysogenic CI concentrations, the interference between the adjacent promoters PR and PRM becomes more important at small CI concentrations. A large change in the expression pattern may arise in this regime due to anticooperative interactions between DNA-bound RNA polymerases. The applicability of the matrix method to more complex systems is discussed. PMID:17526526

  10. Super-resolution Doppler beam sharpening method using fast iterative adaptive approach-based spectral estimation

    NASA Astrophysics Data System (ADS)

    Mao, Deqing; Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu

    2018-01-01

    Doppler beam sharpening (DBS) is a critical technology for airborne radar ground mapping in forward-squint region. In conventional DBS technology, the narrow-band Doppler filter groups formed by fast Fourier transform (FFT) method suffer from low spectral resolution and high side lobe levels. The iterative adaptive approach (IAA), based on the weighted least squares (WLS), is applied to the DBS imaging applications, forming narrower Doppler filter groups than the FFT with lower side lobe levels. Regrettably, the IAA is iterative, and requires matrix multiplication and inverse operation when forming the covariance matrix, its inverse and traversing the WLS estimate for each sampling point, resulting in a notably high computational complexity for cubic time. We propose a fast IAA (FIAA)-based super-resolution DBS imaging method, taking advantage of the rich matrix structures of the classical narrow-band filtering. First, we formulate the covariance matrix via the FFT instead of the conventional matrix multiplication operation, based on the typical Fourier structure of the steering matrix. Then, by exploiting the Gohberg-Semencul representation, the inverse of the Toeplitz covariance matrix is computed by the celebrated Levinson-Durbin (LD) and Toeplitz-vector algorithm. Finally, the FFT and fast Toeplitz-vector algorithm are further used to traverse the WLS estimates based on the data-dependent trigonometric polynomials. The method uses the Hermitian feature of the echo autocorrelation matrix R to achieve its fast solution and uses the Toeplitz structure of R to realize its fast inversion. The proposed method enjoys a lower computational complexity without performance loss compared with the conventional IAA-based super-resolution DBS imaging method. The results based on simulations and measured data verify the imaging performance and the operational efficiency.

  11. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  12. One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2016-12-02

    We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.

  13. Uncertainty quantification in downscaling procedures for effective decisions in energy systems

    NASA Astrophysics Data System (ADS)

    Constantinescu, E. M.

    2010-12-01

    Weather is a major driver both of energy supply and demand, and with the massive adoption of renewable energy sources and changing economic and producer-consumer paradigms, the management of the next-generation energy systems is becoming ever more challenging. The operational and planning decisions in energy systems are guided by efficiency and reliability, and therefore a central role in these decisions will be played by the ability to obtain weather condition forecasts with accurate uncertainty estimates. The appropriate temporal and spatial resolutions needed for effective decision-making, be it operational or planning, is not clear. It is arguably certain however, that such temporal scales as hourly variations of temperature or wind conditions and ramp events are essential in this process. Planning activities involve decade or decades-long projections of weather. One sensible way to achieve this is to embed regional weather models in a global climate system. This strategy acts as a downscaling procedure. Uncertainty modeling techniques must be developed in order to quantify and minimize forecast errors as well as target variables that impact the decision-making process the most. We discuss the challenges of obtaining a realistic uncertainty quantification estimate using mathematical algorithms based on scalable matrix-free computations and physics-based statistical models. The process of making decisions for energy management systems based on future weather scenarios is a very complex problem. We shall focus on the challenges in generating wind power predictions based on regional weather predictions, and discuss the implications of making the common assumptions about the uncertainty models.

  14. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    DOE PAGES

    Cirigliano, V.; Dekens, W.; de Vries, J.; ...

    2017-12-15

    Here, we analyze neutrinoless double beta decay (0νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We then develop a power-counting scheme and derive the two-nucleon 0νββ currents up to leading order in the power counting for each lepton-number-violating operator. We arguemore » that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We also calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0νββ in terms of the effective Majorana mass m ββ .« less

  15. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirigliano, V.; Dekens, W.; de Vries, J.

    Here, we analyze neutrinoless double beta decay (0νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We then develop a power-counting scheme and derive the two-nucleon 0νββ currents up to leading order in the power counting for each lepton-number-violating operator. We arguemore » that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We also calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0νββ in terms of the effective Majorana mass m ββ .« less

  16. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Ashish Kumar, E-mail: ashish.memech@gmail.com; Singh, Akhileshwar; Mokhalingam, A.

    Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for themore » interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young’s modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young’s modulus of the Al matrix up to 77 % as compared to pure Al.« less

  18. Parameter estimation by decoherence in the double-slit experiment

    NASA Astrophysics Data System (ADS)

    Matsumura, Akira; Ikeda, Taishi; Kukita, Shingo

    2018-06-01

    We discuss a parameter estimation problem using quantum decoherence in the double-slit interferometer. We consider a particle coupled to a massive scalar field after the particle passing through the double slit and solve the dynamics non-perturbatively for the coupling by the WKB approximation. This allows us to analyze the estimation problem which cannot be treated by master equation used in the research of quantum probe. In this model, the scalar field reduces the interference fringes of the particle and the fringe pattern depends on the field mass and coupling. To evaluate the contrast and the estimation precision obtained from the pattern, we introduce the interferometric visibility and the Fisher information matrix of the field mass and coupling. For the fringe pattern observed on the distant screen, we derive a simple relation between the visibility and the Fisher matrix. Also, focusing on the estimation precision of the mass, we find that the Fisher information characterizes the wave-particle duality in the double-slit interferometer.

  19. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  20. Prototype design for a predictive model to improve evacuation operations : technical report.

    DOT National Transportation Integrated Search

    2011-08-01

    Mass evacuations of the Texas Gulf Coast remain a difficult challenge. These events are massive in scale, : highly complex, and entail an intricate, ever-changing conglomeration of technical and jurisdictional issues. : This project focused primarily...

  1. Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm

    NASA Astrophysics Data System (ADS)

    Xia, Meimei

    2018-04-01

    Fuzzy game theory has been applied in many decision-making problems. The matrix game with interval-valued intuitionistic fuzzy numbers (IVIFNs) is investigated based on Archimedean t-conorm and t-norm. The existing matrix games with IVIFNs are all based on Algebraic t-conorm and t-norm, which are special cases of Archimedean t-conorm and t-norm. In this paper, the intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm are employed to aggregate the payoffs of players. To derive the solution of the matrix game with IVIFNs, several mathematical programming models are developed based on Archimedean t-conorm and t-norm. The proposed models can be transformed into a pair of primal-dual linear programming models, based on which, the solution of the matrix game with IVIFNs is obtained. It is proved that the theorems being valid in the exiting matrix game with IVIFNs are still true when the general aggregation operator is used in the proposed matrix game with IVIFNs. The proposed method is an extension of the existing ones and can provide more choices for players. An example is given to illustrate the validity and the applicability of the proposed method.

  2. Spectrum of the Wilson Dirac operator at finite lattice spacings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akemann, G.; Damgaard, P. H.; Splittorff, K.

    2011-04-15

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energymore » constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.« less

  3. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  4. Time and band limiting for matrix valued functions: an integral and a commuting differential operator

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. A.; Pacharoni, I.; Zurrián, I.

    2017-02-01

    The problem of recovering a signal of finite duration from a piece of its Fourier transform was solved at Bell Labs in the 1960’s, by exploiting a ‘miracle’: a certain naturally appearing integral operator commutes with an explicit differential one. Here we show that this same miracle holds in a matrix valued version of the same problem.

  5. Learning Circulant Sensing Kernels

    DTIC Science & Technology

    2014-03-01

    Furthermore, we test learning the circulant sensing matrix/operator and the nonparametric dictionary altogether and obtain even better performance. We...scale. Furthermore, we test learning the circulant sensing matrix/operator and the nonparametric dictionary altogether and obtain even better performance...matrices, Tropp et al.[28] de - scribes a random filter for acquiring a signal x̄; Haupt et al.[12] describes a channel estimation problem to identify a

  6. A mapping from the unitary to doubly stochastic matrices and symbols on a finite set

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander V.

    2008-11-01

    We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.

  7. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  8. Introduction to Matrix Algebra, Student's Text, Unit 23.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…

  9. Systems and methods for deactivating a matrix converter

    DOEpatents

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  10. Preserving the Helmholtz dispersion relation: One-way acoustic wave propagation using matrix square roots

    NASA Astrophysics Data System (ADS)

    Keefe, Laurence

    2016-11-01

    Parabolized acoustic propagation in transversely inhomogeneous media is described by the operator update equation U (x , y , z + Δz) =eik0 (- 1 +√{ 1 + Z }) U (x , y , z) for evolution of the envelope of a wavetrain solution to the original Helmholtz equation. Here the operator, Z =∇T2 + (n2 - 1) , involves the transverse Laplacian and the refractive index distribution. Standard expansion techniques (on the assumption Z << 1)) produce pdes that approximate, to greater or lesser extent, the full dispersion relation of the original Helmholtz equation, except that none of them describe evanescent/damped waves without special modifications to the expansion coefficients. Alternatively, a discretization of both the envelope and the operator converts the operator update equation into a matrix multiply, and existing theorems on matrix functions demonstrate that the complete (discrete) Helmholtz dispersion relation, including evanescent/damped waves, is preserved by this discretization. Propagation-constant/damping-rates contour comparisons for the operator equation and various approximations demonstrate this point, and how poorly the lowest-order, textbook, parabolized equation describes propagation in lined ducts.

  11. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneouslymore » in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.« less

  12. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  13. QEDMOD: Fortran program for calculating the model Lamb-shift operator

    NASA Astrophysics Data System (ADS)

    Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.

    2018-02-01

    We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.

  14. TextureCam Field Test Results from the Mojave Desert, California: Autonomous Instrument Classification of Sediment and Rock Surfaces

    NASA Astrophysics Data System (ADS)

    Castano, R.; Abbey, W. J.; Bekker, D. L.; Cabrol, N. A.; Francis, R.; Manatt, K.; Ortega, K.; Thompson, D. R.; Wagstaff, K.

    2013-12-01

    TextureCam is an intelligent camera that uses integrated image analysis to classify sediment and rock surfaces into basic visual categories. This onboard image understanding can improve the autonomy of exploration spacecraft during the long periods when they are out of contact with operators. This could increase the number of science activities performed in each command cycle by, for example, autonomously targeting science features of opportunity with narrow field of view remote sensing, identifying clean surfaces for autonomous placement of arm-mounted instruments, or by detecting high value images for prioritized downlink. TextureCam incorporates image understanding directly into embedded hardware with a Field Programmable Gate Array (FPGA). This allows the instrument to perform the classification in real time without taxing the primary spacecraft computing resources. We use a machine learning approach in which operators train a statistical model of surface appearance using examples from previously acquired images. A random forest model extrapolates from these training cases, using the statistics of small image patches to characterize the texture of each pixel independently. Applying this model to each pixel in a new image yields a map of surface units. We deployed a prototype instrument in the Cima Volcanic Fields during a series of experiments in May 2013. We imaged each environment with a tripod-mounted RGB camera connected directly to the FPGA board for real time processing. Our first scenario assessed ground surface cover on open terrain atop a weathered volcanic flow. We performed a transect consisting of 16 forward-facing images collected at 1m intervals. We trained the system to categorize terrain into four classes: sediment, basalt cobbles, basalt pebbles, and basalt with iron oxide weathering. Accuracy rates with regards to the fraction of the actual feature that was labeled correctly by the automated system were calculated. Lower accuracy rates were observed for pebble and iron oxide resulting from the intrinsic ambiguity between these categories and the basalt cobble class. The second scenario classified strata in the exposed layers of a younger lava flow incised by a channel. The instrument classified the section into five layers: the channel bed, sorted volcanic gravel, gravel in a clay matrix, oxidized clay, and massive blocks. Performance was poor (<30% true positives) for the massive block class, since this material was often covered by clay very similar to the matrix below. We disregarded this top layer. The performance on the remaining layers of the column was better than 95%, a level that would significantly improve autonomous targeting with respect to random sampling. Future development will continue to refine the classification algorithms as well as the speed of the data processing hardware. Acknowledgements: The TextureCam project is supported by the NASA Astrobiology Science and Technology Instrument Development program (NNH10ZDA001N-ASTID) and National Park Service permit MOJA-2013-SCI-0011. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Copyright 2013, California Institute of Technology.

  15. Systems and methods for commutating inductor current using a matrix converter

    DOEpatents

    Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun

    2012-10-16

    Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.

  16. Transurethral Ultrasound Diffraction Tomography

    DTIC Science & Technology

    2007-03-01

    the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering

  17. Quantum Markov chains

    NASA Astrophysics Data System (ADS)

    Gudder, Stanley

    2008-07-01

    A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.

  18. Quantum groups, Yang-Baxter maps and quasi-determinants

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo

    2018-01-01

    For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.

  19. Fault detection of helicopter gearboxes using the multi-valued influence matrix method

    NASA Technical Reports Server (NTRS)

    Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.

    1993-01-01

    In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.

  20. Systematic sparse matrix error control for linear scaling electronic structure calculations.

    PubMed

    Rubensson, Emanuel H; Sałek, Paweł

    2005-11-30

    Efficient truncation criteria used in multiatom blocked sparse matrix operations for ab initio calculations are proposed. As system size increases, so does the need to stay on top of errors and still achieve high performance. A variant of a blocked sparse matrix algebra to achieve strict error control with good performance is proposed. The presented idea is that the condition to drop a certain submatrix should depend not only on the magnitude of that particular submatrix, but also on which other submatrices that are dropped. The decision to remove a certain submatrix is based on the contribution the removal would cause to the error in the chosen norm. We study the effect of an accumulated truncation error in iterative algorithms like trace correcting density matrix purification. One way to reduce the initial exponential growth of this error is presented. The presented error control for a sparse blocked matrix toolbox allows for achieving optimal performance by performing only necessary operations needed to maintain the requested level of accuracy. Copyright 2005 Wiley Periodicals, Inc.

  1. Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts

    PubMed Central

    Khurana, Ashwani; Jung-Beom, Deok; He, Xiaoping; Kim, Sung-Hoon; Busby, Robert C.; Lorenzon, Laura; Villa, Massimo; Baldi, Alfonso; Molina, Julian; Goetz, Matthew P.; Shridhar, Viji

    2013-01-01

    Sulfatase 2 (Sulf-2) has been previously shown to be upregulated in breast cancer. Sulf-2 removes sulfate moieties on heparan sulfate proteoglycans which in turn modulate heparin binding growth factor signaling. Here we report that matrix detachment resulted in decreased Sulf-2 expression in breast cancer cells and increased cleavage of poly ADP-ribose polymerase. Silencing of Sulf-2 promotes matrix detachment induced cell death in MCF10DCIS cells. In an attempt to identify Sulf-2 specific inhibitor, we found that proteasomal inhibitors such as MG132, Lactacystin and Bortezomib treatment abolished Sulf-2 expression in multiple breast cancer cell lines. Additionally, we show that Bortezomib treatment of MCF10DCIS cell xenografts in mouse mammary fat pads significantly reduced tumor size, caused massive apoptosis and more importantly reduced Sulf-2 levels in vivo. Finally, our immunohistochemistry analysis of Sulf-2 expression in cohort of patient derived breast tumors indicates that Sulf-2 is significantly upregulated in autologous metastatic lesions compared to primary tumors (p < 0.037, Pearson correlation, Chi-Square analysis). In all, our data suggest that Sulf-2 might play an important role in breast cancer progression from ductal carcinoma in situ into an invasive ductal carcinoma potentially by resisting cell death. PMID:23412907

  2. Energy storage apparatus

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Evans, H. E. (Inventor)

    1978-01-01

    A high efficiency, flywheel type energy storage device which comprises an electronically commutated d.c. motor/generator unit having a massive flywheel rotor magnetically suspended around a ring shaped stator is presented. During periods of low energy demand, the storage devices were operated as a motor, and the flywheel motor was brought up to operating speed. Energy was drawn from the device functioning as a generator as the flywheel rotor rotated during high energy demand periods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trujillo, Angelina Michelle

    Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.

  4. Engaging with ENERGY STAR[R]: How to Increase Student Involvement in Your Energy Management Plan Energy Efficiency in K-12 Schools

    ERIC Educational Resources Information Center

    Grene, Hanna

    2011-01-01

    It is no secret that school budgets are growing smaller, forcing districts to make tough financial choices. Building operating costs drain a massive portion of most districts' budgets. As such, energy efficiency is a powerful tool to cut short- and long-term operating costs, and reductions in energy use. The U.S. Environmental Protection Agency's…

  5. Analysis of U.S. Military Helicopter Operations in Support of Humanitarian Assistance and Disaster Relief

    DTIC Science & Technology

    2011-12-01

    effectiveness and speed) of current and future operations and programs; • serves as a bridge between disaster preparedness and response, between...mission due to the massive devastation that destroyed roads, bridges , and docks (Elleman, 2007). 4. Logistics Productivity of Aircraft LTG Phillip...may be needed. This assistance can include helicopter transportation, road and bridge repair, or delivery of temporary water supplies. The

  6. Superior Mesenteric Artery Syndrome in a Young Military Basic Trainee

    DTIC Science & Technology

    2013-03-01

    referred to both bariatric and vascular surgery specialists for consideration of operative repair. She declined operative intervention and was...patients with severe anorexia nervosa.10 Severe cases may require surgery or parenteral feeding because of food avoidance leading to further loss of...artery syn- drome presenting with acute massive gastric dilatation, gastric wall pneumatosis and portal venous gas. Surgery 2003; 134: 840–3. 6. Rudinsky

  7. The spectrum and some subdivisions of the spectrum of discrete generalized Cesàro operators on [Formula: see text] ([Formula: see text]).

    PubMed

    Yıldırım, Mustafa; Durna, Nuh

    2017-01-01

    The discrete generalized Cesàro matrix [Formula: see text] is the triangular matrix with nonzero entries [Formula: see text], where [Formula: see text]. In this paper, boundedness, compactness, spectra, the fine spectra and subdivisions of the spectra of discrete generalized Cesàro operator on [Formula: see text] ([Formula: see text]) have been determined.

  8. LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.

  9. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; Anderson, A. J.; Aramaki, T.

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^2.

  10. Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.

    PubMed

    Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung

    2009-03-01

    An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.

  11. Solving large sparse eigenvalue problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef

    1988-01-01

    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.

  12. MSFC Combustion Devices in 2001

    NASA Technical Reports Server (NTRS)

    Dexter, Carol; Turner, James (Technical Monitor)

    2001-01-01

    The objectives of the project detailed in this viewgraph presentation were to reduce thrust assembly weights to create lighter engines and to increase the cycle life and/or operating temperatures. Information is given on material options (metal matrix composites and polymer matrix composites), ceramic matrix composites subscale liners, lightweight linear chambers, lightweight injector development, liquid/liquid preburner tasks, and vortex chamber tasks.

  13. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  14. CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres

    NASA Astrophysics Data System (ADS)

    Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli

    2017-09-01

    CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.

  15. Intercity passenger rail : Amtrak's progress in improving its financial condition has been mixed

    DOT National Transportation Integrated Search

    1999-07-01

    Since its creation in 1971, Amtrak has accumulated massive financial losses, with recent losses averaging more than $800 million per year. To help Amtrak sustain operations and make needed capital investments, the federal government has provided Amtr...

  16. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  17. Arthroscopic Repair for Chronic Massive Rotator Cuff Tears: A Systematic Review.

    PubMed

    Henry, Patrick; Wasserstein, David; Park, Sam; Dwyer, Tim; Chahal, Jaskarndip; Slobogean, Gerard; Schemitsch, Emil

    2015-12-01

    To systematically review the available evidence for arthroscopic repair of chronic massive rotator cuff tears and identify patient demographics, pre- and post-operative functional limitations, reparability and repair techniques, and retear rates. Medline, Embase, the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials were searched to identify all clinical papers describing arthroscopic repair of chronic massive rotator cuff tears. Papers were excluded if a definition of "massive" was not provided, if the definition of "massive" was considered inappropriate by agreement between the 2 reviewers, or if patients with smaller tears were also included in the study population. Study quality and clinical outcome data were pooled and summarized. There were 18 papers that met the eligibility criteria; they involved 954 patients with a mean age of 63 (range, 37 to 87), 48% of whom were female. There were 5 prospective and 13 retrospective study designs. The overall study quality was poor according to the Modified Coleman Methodology Score. Of the 954 repairs, 81% were complete repairs and 19% were partial repairs. The follow-up range was between 33 and 52 months, and the mean duration between symptom onset and surgery was 24 months. Single-row repairs were performed in 56% or patients, and double-row repairs were performed in 44%. A pooled analysis demonstrated an improvement in visual analog scale from 5.9 to 1.7, active range of motion from 125° to 169°, and the Constant-Murley score from 49 to 74. The pooled retear rate was 79%. Arthroscopic repair of chronic massive rotator cuff tears is associated with complete repair in the majority of cases and consistently improves pain, range of motion, and functional outcome scores; however, the retear rate is high. Existing research on massive rotator cuff repair is limited to poor- to fair-quality studies. Level IV, systematic review including Level IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  19. Diagnostic validity of hematologic parameters in evaluation of massive pulmonary embolism.

    PubMed

    Ates, Hale; Ates, Ihsan; Kundi, Harun; Yilmaz, Fatma Meric

    2017-09-01

    The aim of this study was to determine the hematologic parameter with the highest diagnostic differentiation in the identification of massive acute pulmonary embolism (APE). A retrospective study was performed on patients diagnosing with APE between June 2014 and June 2016. All radiological and laboratory parameters of patients were scanned through the electronic information management system of the hospital. PLR was obtained from the ratio of platelet count to lymphocyte count, NLR was obtained from the ratio of neutrophil count to lymphocyte count, WMR was obtained from white blood cell in mean platelet volume ratio, MPR was obtained from the ratio of mean platelet volume to platelet count, and RPR was obtained from the ratio of red distribution width to platelet count. Six hundred and thirty-nine patients consisting of 292 males (45.7%) and 347 females (54.3%) were included in the research. Independent predictors of massive risk as compared to sub-massive group were; pulmonary arterial systolic pressure (PASP) (OR=1.40; P=.001), PLR (OR=1.59; P<.001), NLR (OR=2.22; P<.001), WMR (OR=1.22; P<.001), MPR (OR=0.33; P<.001), and RPR (OR=0.68; P<.001). Upon evaluation of the diagnostic differentiation of these risk factors for massive APE by employing receiver operating characteristic curve analysis, it was determined that PLR (AUC±SE=0.877±0.015; P<.001), and NLR (AUC±SE=0.893±0.013; P<.001) have similar diagnostic differentiation in diagnosing massive APE and these two parameters are superior over PASP, MPR, WMR, and RPR. We determined that the levels of NLR and PLR are superior to other parameters in the determination of clinical severity in APE cases. © 2016 Wiley Periodicals, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Kent; Tanaka, Takahiro; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502

    We calculate how strongly one can put constraints on alternative theories of gravity such as Brans-Dicke and massive graviton theories with LISA. We consider inspiral gravitational waves from a compact binary composed of a neutron star and an intermediate mass black hole in Brans-Dicke (BD) theory and that composed of a super massive black hole in massive graviton theories. We use the restricted second post-Newtonian waveforms including the effects of spins. We also take both precession and eccentricity of the orbit into account. For simplicity, we set the fiducial value for the spin of one of the binary constituents tomore » zero so that we can apply the approximation called simple precession. We perform the Monte Carlo simulations of 10{sup 4} binaries, estimating the determination accuracy of binary parameters including the BD parameter {omega}{sub BD} and the Compton wavelength of graviton {lambda}{sub g} for each binary using the Fisher matrix method. We find that including both the spin-spin coupling {sigma} and the eccentricity e into the binary parameters reduces the determination accuracy by an order of magnitude for the Brans-Dicke case, while it has less influence on massive graviton theories. On the other hand, including precession enhances the constraint on {omega}{sub BD} only 20% but it increases the constraint on {lambda}{sub g} by several factors. Using a (1.4+1000)M{sub {center_dot}}neutron star/black hole binary of SNR={radical}(200), one can put a constraint {omega}{sub BD}>6944, while using a (10{sup 7}+10{sup 6})M{sub {center_dot}}black hole/black hole binary at 3 Gpc, one can put {lambda}{sub g}>3.10x10{sup 21} cm, on average. The latter is 4 orders of magnitude stronger than the one obtained from the solar system experiment. These results are consistent with previous results within uncontrolled errors and indicate that the effects of precession and eccentricity must be taken carefully in the parameter estimation analysis.« less

  1. Massive Weight Loss Obtained by Bariatric Surgery Affects Semen Quality in Morbid Male Obesity: a Preliminary Prospective Double-Armed Study.

    PubMed

    Samavat, Jinous; Cantini, Giulia; Lotti, Francesco; Di Franco, Alessandra; Tamburrino, Lara; Degl'Innocenti, Selene; Maseroli, Elisa; Filimberti, Erminio; Facchiano, Enrico; Lucchese, Marcello; Muratori, Monica; Forti, Gianni; Baldi, Elisabetta; Maggi, Mario; Luconi, Michaela

    2018-01-01

    The aim of this study is to evaluate the effect of massive weight loss on the seminal parameters at 6 months from bariatric surgery. Two-armed prospective study performed in 31 morbidly obese men, undergoing laparoscopic roux-en-Y-gastric bypass (n = 23) or non-operated (n = 8), assessing sex hormones, conventional (sperm motility, morphology, number, semen volume), and non-conventional (DNA fragmentation and seminal interleukin-8), semen parameters, at baseline and after 6 months from surgery or patients' recruitment. In operated patients only, a statistically significant improvement in the sex hormones was confirmed. Similarly, a positive trend in the progressive/total sperm motility and number was observed, though only the increase in semen volume and viability was statistically significant (Δ = 0.6 ml and 10%, P < 0.05, respectively). A decrease in the seminal interleukin-8 levels and in the sperm DNA fragmentation was also present after bariatric surgery, whereas these parameters even increased in non-operated subjects. Age-adjusted multivariate analysis showed that the BMI variations significantly correlated with the changes in the sperm morphology (β = -0.675, P = 0.025), sperm number (β = 0.891, P = 0.000), and semen volume (r = 0.618, P = 0.015). The massive weight loss obtained with bariatric surgery was associated with an improvement in some semen parameters. The correlations found between weight loss and semen parameter variations after surgery suggest that these might occur early downstream of the testis and more slowly than the changes in the sex hormones.

  2. Scoring model to predict massive post-partum bleeding in pregnancies with placenta previa: A retrospective cohort study.

    PubMed

    Lee, Ji Yeon; Ahn, Eun Hee; Kang, Sukho; Moon, Myung Jin; Jung, Sang Hee; Chang, Sung Woon; Cho, Hee Young

    2018-01-01

    We aimed to identify factors associated with massive post-partum bleeding in pregnancies with placenta previa and to establish a scoring model to predict post-partum severe bleeding. A retrospective cohort study was performed in 506 healthy singleton pregnancies with placenta previa from 2006 to 2016. Cases with intraoperative blood loss (≥2000 mL), packed red blood cells transfusion (≥4), uterine artery embolization, or hysterectomy were defined as massive bleeding. After performing multivariable analysis, using the adjusted odds ratios (aOR), we formulated a scoring model. Seventy-three women experienced massive post-partum bleeding (14.4%). After multivariable analysis, seven variables were associated with massive bleeding: maternal old age (≥35 years; aOR 1.79, 95% confidence interval [CI] 1.00-3.20, P = 0.049), antepartum bleeding (aOR 4.76, 95%CI 2.01-11.02, P < 0.001), non-cephalic presentation (aOR 3.41, 95%CI 1.40-8.30, P = 0.007), complete placenta previa (aOR 1.93, 95%CI 1.05-3.54, P = 0.034), anterior placenta (aOR 2.74, 95%CI 1.54-4.89, P = 0.001), multiple lacunae (≥4; aOR 2.77, 95%CI 1.54-4.99, P = 0.001), and uteroplacental hypervascularity (aOR 4.51, 95%CI 2.30-8.83, P < 0.001). We formulated a scoring model including maternal old age (<35: 0, ≥35: 1), antepartum bleeding (no: 0, yes: 2), fetal non-cephalic presentation (no: 0, yes: 2), placenta previa type (incomplete: 0, complete: 1), placenta location (posterior: 0, anterior: 1), uteroplacental hypervascularity (no: 0, yes: 2), and multiple lacunae (no: 0, yes: 1) to predict post-partum massive bleeding. According to our scoring model, a score of 5/10 had a sensitivity of 81% and a specificity of 77% for predicting massive post-partum bleeding. The area under the receiver-operator curve was 0.856 (P < 0.001). The negative predictive value was 95.9%. Our scoring model might provide useful information for prediction of massive post-partum bleeding in pregnancies with placenta previa. © 2017 Japan Society of Obstetrics and Gynecology.

  3. Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models

    NASA Astrophysics Data System (ADS)

    Yang, Linxiao; Fang, Jun; Duan, Huiping; Li, Hongbin; Zeng, Bing

    2018-06-01

    The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.

  4. Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Hendrickson; T.G. Kolda

    1998-09-01

    A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.

  5. Finite-element time evolution operator for the anharmonic oscillator

    NASA Technical Reports Server (NTRS)

    Milton, Kimball A.

    1995-01-01

    The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.

  6. A review of the matrix-exponential formalism in radiative transfer

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian

    2017-07-01

    This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.

  7. Aspects of Higher Spin Symmetry and its Breaking

    NASA Astrophysics Data System (ADS)

    Zhiboedov, Alexander

    This thesis explores different aspects of higher spin symmetry and its breaking in the context of Quantum Field Theory, AdS/CFT and String Theory. In chapter 2, we study the constraints imposed by the existence of a single higher spin conserved current on a three-dimensional conformal field theory (CFT). A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of N free bosons or free fermions. This is an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S-matrix. In chapter 3, we consider three-dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single-trace and multi-trace and obey the usual large N factorization properties. We assume that the only single trace operators are the higher spin currents plus an additional scalar. Using the slightly broken higher spin symmetry we constrain the three-point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O( N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. In chapter 4, we consider several aspects of unitary higher-dimensional conformal field theories. We investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists tau 1, tau2 appear in the spectrum, there are operators whose twists are arbitrarily close to tau1 + tau2. We characterize how tau1 + tau2 is approached at large spin by solving the crossing equations analytically. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking. In chapter 5, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an infinite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients (a-c)/c lesssim 1/Delta gap2 in terms of Deltagap, the dimension of the lightest single particle operator with spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.

  8. Comparison Between Navy and Army Implementation of SIOH and Recommendations for Navy Implementation

    DTIC Science & Technology

    2015-12-01

    8 Figure 3. NAVFAC Matrix Organization and Relationship .......................................9 Figure 4. Matrix Roles...Program DFAS Defense Finance and Accounting Service DOD Department of Defense DOH Departmental Overhead EFA Engineering Field Activity EFD...Command (NAVFAC). (2015). Concept of operations. Washington, DC: Author. p. 8 8 NAVFAC is organized both as a tiered organization, and as a matrix

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Andrew J

    A heterogeneous body having ceramic rich cermet regions in a more ductile metal matrix. The heterogeneous bodies are formed by thermal spray operations on metal substrates. The thermal spray operations apply heat to a cermet powder and project it onto a solid substrate. The cermet powder is composed of complex composite particles in which a complex ceramic-metallic core particle is coated with a matrix precursor. The cermet regions are generally comprised of complex ceramic-metallic composites that correspond approximately to the core particles. The cermet regions are approximately lenticular shaped with an average width that is at least approximately twice themore » average thickness. The cermet regions are imbedded within the matrix phase and generally isolated from one another. They have obverse and reverse surfaces. The matrix phase is formed from the matrix precursor coating on the core particles. The amount of heat applied during the formation of the heterogeneous body is controlled so that the core particles soften but do not become so fluid that they disperse throughout the matrix phase. The force of the impact on the surface of the substrate tends to flatten them. The flattened cermet regions tend to be approximately aligned with one another in the body.« less

  10. Sensitivity analysis of hydrodynamic stability operators

    NASA Technical Reports Server (NTRS)

    Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.

    1992-01-01

    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.

  11. Environmental Impact of Buildings--What Matters?

    PubMed

    Heeren, Niko; Mutel, Christopher L; Steubing, Bernhard; Ostermeyer, York; Wallbaum, Holger; Hellweg, Stefanie

    2015-08-18

    The goal of this study was to identify drivers of environmental impact and quantify their influence on the environmental performance of wooden and massive residential and office buildings. We performed a life cycle assessment and used thermal simulation to quantify operational energy demand and to account for differences in thermal inertia of building mass. Twenty-eight input parameters, affecting operation, design, material, and exogenic building properties were sampled in a Monte Carlo analysis. To determine sensitivity, we calculated the correlation between each parameter and the resulting life cycle inventory and impact assessment scores. Parameters affecting operational energy demand and energy conversion are the most influential for the building's total environmental performance. For climate change, electricity mix, ventilation rate, heating system, and construction material rank the highest. Thermal inertia results in an average 2-6% difference in heat demand. Nonrenewable cumulative energy demand of wooden buildings is 18% lower, compared to a massive variant. Total cumulative energy demand is comparable. The median climate change impact is 25% lower, including end-of-life material credits and 22% lower, when credits are excluded. The findings are valid for small offices and residential buildings in Switzerland and regions with similar building culture, construction material production, and climate.

  12. Stability of the matrix model in operator interpretation

    NASA Astrophysics Data System (ADS)

    Sakai, Katsuta

    2017-12-01

    The IIB matrix model is one of the candidates for nonperturbative formulation of string theory, and it is believed that the model contains gravitational degrees of freedom in some manner. In some preceding works, it was proposed that the matrix model describes the curved space where the matrices represent differential operators that are defined on a principal bundle. In this paper, we study the dynamics of the model in this interpretation, and point out the necessity of the principal bundle from the viewpoint of the stability and diffeomorphism invariance. We also compute the one-loop correction which yields a mass term for each field due to the principal bundle. We find that the stability is not violated.

  13. Massive unseen companions to hot faint underluminous stars from SDSS (MUCHFUSS). Analysis of seven close subdwarf B binaries

    NASA Astrophysics Data System (ADS)

    Geier, S.; Maxted, P. F. L.; Napiwotzki, R.; Østensen, R. H.; Heber, U.; Hirsch, H.; Kupfer, T.; Müller, S.; Tillich, A.; Barlow, B. N.; Oreiro, R.; Ottosen, T. A.; Copperwheat, C.; Gänsicke, B. T.; Marsh, T. R.

    2011-02-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions like massive white dwarfs (M > 1.0 M⊙), neutron stars or stellar mass black holes. The existence of such systems is predicted by binary evolution theory and recent discoveries indicate that they exist in our Galaxy. First results are presented for seven close binary sdBs with short orbital periods ranging from ≃ 0.21 d to 1.5 d. The atmospheric parameters of all objects are compatible with core helium-burning stars. The companions are most likely white dwarfs. In one case the companion could be shown to be a white dwarf by the absence of light-curve variations. However, in most cases late type main sequence stars cannot be firmly excluded. Comparing our small sample with the known population of close sdB binaries we show that our target selection method aiming at massive companions is efficient. The minimum companion masses of all binaries in our sample are high compared to the reference sample of known sdB binaries. Based on observations at the Paranal Observatory of the European Southern Observatory for programme number 081.D-0819. Based on observations at the La Silla Observatory of the European Southern Observatory for programmes number 082.D-0649 and 084.D-0348. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations with the William Herschel Telescope and the Isaac Newton Telescope operated both by the Isaac Newton Group at the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias on the island of La Palma, Spain. Based on observations with the Southern Astrophysical Research (SOAR) telescope operated by the U.S. National Optical Astronomy Observatory (NOAO), the Ministerio da Ciłncia e Tecnologia of the Federal Republic of Brazil (MCT), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciłncia e Tecnologia (Brazil) and Ministerio de Ciłncia, Tecnologia e Innovacin Productiva (Argentina). This paper uses observations made at the South African Astronomical Observatory (SAAO).Appendices are only available in electronic form at http://www.aanda.org

  14. The European Union Battle Groups: Operational and Strategic Implications for NATO

    DTIC Science & Technology

    2009-06-12

    in Italia e nei paesi dell’Unione Europea. Roma: Istituto Alti Studi per la Difesa. De Leonardis, M., and Pastori, G. 2008. Le nuove sfide per la ...faced the strong opposition of the French president Charles de Gaulle, who considered the passage from ―massive retaliation‖ to ―flexible response‖ as... De Leonardis, Pastori, 2008). The humanitarian assistance operation in Pakistan, after the terrible earthquake of October 2005, is the second

  15. Shark attack.

    PubMed

    Guidera, K J; Ogden, J A; Highhouse, K; Pugh, L; Beatty, E

    1991-01-01

    Shark attacks are rare but devastating. This case had major injuries that included an open femoral fracture, massive hemorrhage, sciatic nerve laceration, and significant skin and muscle damage. The patient required 15 operative procedures, extensive physical therapy, and orthotic assistance. A review of the literature pertaining to shark bites is included.

  16. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  17. Massive spontaneous hemoperitoneum due to rupture of visceral branches of the abdominal aorta.

    PubMed

    Pollak, E W; Michas, C A

    1979-10-01

    Review of 153 cases of massive spontaneous hemoperitoneum following visceral arterial rupture showed that 94% of all young women and 100% of all pregnant women had ruptured congenital splenic artery aneurysms at the time of hemorrhage, whereas young males bled from a variety of sources. Individuals who were 45 years old or older bled either from lesions of the celiac axis or its branches (66%) or from arterial mesenteric system lesions (34%). Only 22% of the older individuals of either sex bled from splenic artery sources. Arterial hypertension was present in 40% and previous or simultaneous intracranial hemorrhage occurred in 9% of the older patients. There were no survivors among those in whom the bleeding source was not operatively controlled. With operation, 79% of the younger patients and 57% of the older ones survived. Results emphasize the high mortality of visceral artery rupture with intraperitoneal bleeding. Prophylactic excision is advised for all complicated aneurysms regardless of age and all uncomplicated aneurysms in healthy individuals, especially in fertile or pregnent women.

  18. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2017-01-01

    Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.

  19. Continuum modes of nonlocal field theories

    NASA Astrophysics Data System (ADS)

    Saravani, Mehdi

    2018-04-01

    We study a class of nonlocal Lorentzian quantum field theories, where the d’Alembertian operator \\Box is replaced by a non-analytic function of the d’Alembertian, f(\\Box) . This is inspired by the causal set program where such an evolution arises as the continuum limit of a wave equation on causal sets. The spectrum of these theories contains a continuum of massive excitations. This is perhaps the most important feature which leads to distinct/interesting phenomenology. In this paper, we study properties of the continuum massive modes in depth. We derive the path integral formulation of these theories. Meanwhile, this derivation introduces a dual picture in terms of local fields which clearly shows how continuum massive modes of the nonlocal field interact. As an example, we calculate the leading order modification to the Casimir force of a pair of parallel planes. The dual picture formulation opens the way for future developments in the study of nonlocal field theories using tools already available in local quantum field theories.

  20. Efficient Risk Determination of Risk of Road Blocking by Means of MMS and Data of Buildings and Their Surrounding

    NASA Astrophysics Data System (ADS)

    Nose, Kazuhito; Hatake, Shuhei

    2016-06-01

    Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.

  1. [Assessment of prophylaxis and treatment of blood loss in patients with pre-eclampsia].

    PubMed

    Timokhova, S Iu; Golubtsov, V V; Zabolotskikh, I B

    2014-01-01

    To improve treatment results of women with massive obstetrical blood loss. Subjects and methods: 96 female patients with average and heavy degree preeclampsia worsened massive blood developing were involved into the investigation. The women were divided into two groups: main (n=55) (basic) - it's patients were treated with complex of offered wiays control (n=41) - it's patients were evaluated retrospectively. During the investigation the parameters of hemostasis system and periphery blood values were performed as dynamic evaluations, acidity-basic state and water-electrolyte balance parameters, medical history were monitored. As a result of the investigation it was found out that these offered actions complex application about reducing massive obstetric blood accelerates restoration of clinic, bio-chemical paramnleters during the early post-operating period The application of the offered methods has reduced both inltraoperative blood loss in women with preeclamsia and use of blood components and the time spent on the hemostasis system correction for all the women of the base group.

  2. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  3. Cosmological constraints from galaxy clustering in the presence of massive neutrinos

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L.

    2018-06-01

    The clustering ratio is defined as the ratio between the correlation function and the variance of the smoothed overdensity field. In Λ cold dark matter (ΛCDM) cosmologies without massive neutrinos, it has already been proven to be independent of bias and redshift space distortions on a range of linear scales. It therefore can provide us with a direct comparison of predictions (for matter in real space) against measurements (from galaxies in redshift space). In this paper we first extend the applicability of such properties to cosmologies that account for massive neutrinos, by performing tests against simulated data. We then investigate the constraining power of the clustering ratio on cosmological parameters such as the total neutrino mass and the equation of state of dark energy. We analyse the joint posterior distribution of the parameters that satisfy both measurements of the galaxy clustering ratio in the SDSS-DR12, and the angular power spectra of cosmic microwave background temperature and polarization anisotropies measured by the Planck satellite. We find the clustering ratio to be very sensitive to the CDM density parameter, but less sensitive to the total neutrino mass. We also forecast the constraining power the clustering ratio will achieve, predicting the amplitude of its errors with a Euclid-like galaxy survey. First we compute parameter forecasts using the Planck covariance matrix alone, then we add information from the clustering ratio. We find a significant improvement on the constraint of all considered parameters, and in particular an improvement of 40 per cent for the CDM density and 14 per cent for the total neutrino mass.

  4. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  5. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  6. Approaching the CDF Top Quark Mass Legacy Measurement in the Lepton+Jets channel with the Matrix Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosciri, Cecilia

    2016-01-01

    The discovery of the bottom quark in 1977 at the Tevatron Collider triggered the search for its partner in the third fermion isospin doublet, the top quark, which was discovered 18 years later in 1995 by the CDF and D=0 experiments during the Tevatron Run I. By 1990, intensive efforts by many groups at several accelerators had lifted to over 90 GeV=c2 the lower mass limit, such that since then the Tevatron became the only accelerator with high-enough energy to possibly discover this amazingly massive quark. After its discovery, the determination of top quark properties has been one of themore » main goals of the Fermilab Tevatron Collider, and more recently also of the Large Hadron Collider (LHC) at CERN. Since the mass value plays an important role in a large number of theoretical calculations on fundamental processes, improving the accuracy of its measurement has been at any time a goal of utmost importance. The present thesis describes in detail the contributions given by the candidate to the massive preparation work needed to make the new analysis possible, during her 8 months long stay at Fermilab.« less

  7. Complexity of nearshore strontium-to-calcium ratio variability in a core sample of the massive coral Siderastrea siderea obtained in Coral Bay, St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Reich, Christopher D.; Kuffner, Ilsa B.; Hickey, T. Don; Morrison, Jennifer M.; Flannery, Jennifer A.

    2013-01-01

    Strontium-to-calcium ratios (Sr/Ca) were measured on the skeletal matrix of a core sample from a colony of the massive coral Siderastrea siderea collected in Coral Bay, St. John, U.S. Virgin Islands. Strontium and calcium are incorporated into the coral skeleton during the precipitation of aragonite by the coral polyps and their ratio is highly temperature dependent. The robustness of this temperature dependence makes Sr/Ca a reliable proxy for sea surface temperature (SST). Details presented from the St. John S. siderea core indicate that terrestrial inputs of sediment and freshwater can disrupt the chemical balance and subsequently complicate the utility of Sr/Ca in reconstructing historical SST. An approximately 44-year-long record of Sr/Ca shows that an annual SST signal is recorded but with an increasing Sr/Ca trend from 1980 to present, which is likely the result of runoff from the mountainous terrain of St. John. The overwhelming influence of the terrestrial fingerprint on local seawater chemistry makes utilizing Sr/Ca as a SST proxy in nearshore environments very difficult.

  8. Quantum privacy and Schur product channels

    NASA Astrophysics Data System (ADS)

    Levick, Jeremy; Kribs, David W.; Pereira, Rajesh

    2017-12-01

    We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.

  9. Symmetry properties of the configuration interaction space in relation to one- and two-particle operators: The splitting theorem

    NASA Astrophysics Data System (ADS)

    Živković, Tomislav P.

    1984-09-01

    The configuration interaction (CI) space Xn built upon n electrons moving over 2n orthonormalized orbitals χi is considered. It is shown that the space Xn splits into two complementary subspaces X+n and X-n having special properties: each state Ψ+∈X+n and Ψ-∈X-n is ``alternantlike'' in the sense that it has a uniform charge density distribution over all orbitals χi and vanishing bond-orders between all orbitals of the same parity. In addition, matrix elements Γ(ij;kl) of a two-particle density matrix vanish whenever four distinct orbitals are involved and there is an odd number of orbitals of the same parity. Further, Γ(ij;lj)=γ(il)/4 ( j≠i,l), whenever (i) and (l) are of different parity. This last relation shows the connection between a two-particle (Γ) and a one-particle (γ) density matrix. ``Elementary'' alternant and antialternant operators are identified. These operators connect either only the states in the same subspace, or only the states in different subspaces, and each one- and two-particle symmetric operator can be represented by their linear combination. Alternant Hamiltonians, which can be represented as linear combinations of elementary alternant operators, have alternantlike eigenstates. It is also shown that each symmetric Hamiltonian possessing alternantlike eigenstates can be represented as such a linear combination. In particular, the PPP Hamiltonian describing an alternant hydrocarbon system is such a case. Complementary subspaces X+n and X-n can be explicitly constructed using the so-called regular resonance structures (RRS's) which are normalized determinants containing mutually disjunct bond orbitals. Expressions for the derivation of matrix elements of one- and two-particle operators between different RRS's are also derived.

  10. An efficient basis set representation for calculating electrons in molecules

    DOE PAGES

    Jones, Jeremiah R.; Rouet, Francois -Henry; Lawler, Keith V.; ...

    2016-04-27

    The method of McCurdy, Baertschy, and Rescigno, is generalised to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. Themore » calculation of contracted two-electron matrix elements among orbitals requires only O( Nlog (N)) multiplication operations, not O( N 4), where N is the number of basis functions; N = n 3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionisation potentials are reported for 1- (He +, H + 2), 2- (H 2, He), 10- (CH 4), and 56-electron (C 8H 8) systems.« less

  11. A string theory which isn't about strings

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  12. Administrative Uses of Microcomputers.

    ERIC Educational Resources Information Center

    Crawford, Chase

    1987-01-01

    This paper examines the administrative uses of the microcomputer, stating that high performance educational managers are likely to have microcomputers in their organizations. Four situations that would justify the use of a computer are: (1) when massive amounts of data are processed through well-defined operations; (2) when data processing is…

  13. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment

    DOE PAGES

    Agnese, R.

    2016-02-17

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. Lastly, new parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c 2.

  14. Ladder operators for the Klein-Gordon equation with a scalar curvature term

    NASA Astrophysics Data System (ADS)

    Mück, Wolfgang

    2018-01-01

    Recently, Cardoso, Houri and Kimura constructed generalized ladder operators for massive Klein-Gordon scalar fields in space-times with conformal symmetry. Their construction requires a closed conformal Killing vector, which is also an eigenvector of the Ricci tensor. Here, a similar procedure is used to construct generalized ladder operators for the Klein-Gordon equation with a scalar curvature term. It is proven that a ladder operator requires the existence of a conformal Killing vector, which must satisfy an additional property. This property is necessary and sufficient for the construction of a ladder operator. For maximally symmetric space-times, the results are equivalent to those of Cardoso, Houri and Kimura.

  15. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.

  16. The evaluation of the pyrochemistry for the treatment of Gen IV nuclear fuels Inert matrix chlorination studies in the gas phase or molten chloride salts

    NASA Astrophysics Data System (ADS)

    Bourg, S.; Péron, F.; Lacquement, J.

    2007-01-01

    The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 °C whereas it is necessary to be over 900 °C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing).

  17. Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics

    NASA Astrophysics Data System (ADS)

    Shariati, Nafiseh; Bjornson, Emil; Bengtsson, Mats; Debbah, Merouane

    2014-10-01

    This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a L-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that L needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we ...

  18. Radiation Exposure and Vascular Access in Acute Coronary Syndromes: The RAD-Matrix Trial.

    PubMed

    Sciahbasi, Alessandro; Frigoli, Enrico; Sarandrea, Alessandro; Rothenbühler, Martina; Calabrò, Paolo; Lupi, Alessandro; Tomassini, Francesco; Cortese, Bernardo; Rigattieri, Stefano; Cerrato, Enrico; Zavalloni, Dennis; Zingarelli, Antonio; Calabria, Paolo; Rubartelli, Paolo; Sardella, Gennaro; Tebaldi, Matteo; Windecker, Stephan; Jüni, Peter; Heg, Dik; Valgimigli, Marco

    2017-05-23

    It remains unclear whether radial access increases the risk of operator or patient radiation exposure compared to transfemoral access when performed by expert operators. This study sought to determine whether radial access increases radiation exposure. A total of 8,404 patients, with or without ST-segment elevation acute coronary syndrome, were randomly assigned to radial or femoral access for coronary angiography and percutaneous intervention, and collected fluoroscopy time and dose-area product (DAP). RAD-MATRIX is a radiation sub-study of the MATRIX (Minimizing Adverse Haemorrhagic Events by Transradial Access Site and Systemic Implementation of AngioX) trial. We anticipated that 13 or more operators, each wearing a thorax (primary endpoint), wrist, and head (secondary endpoints) lithium fluoride thermoluminescent dosimeter, and randomizing at least 13 patients per access site, were needed to establish noninferiority of radial versus femoral access. Among 18 operators, performing 777 procedures in 767 patients, the noninferiority primary endpoint was not achieved (p value for noninferiority = 0.843). Operator equivalent dose at the thorax (77 μSv) was significantly higher with radial than femoral access (41 μSv; p = 0.02). After normalization of operator radiation dose by fluoroscopy time or DAP, the difference remained significant. Radiation dose at wrist or head did not differ between radial and femoral access. Thorax operator dose did not differ for right radial (84 μSv) compared to left radial access (52 μSv; p = 0.15). In the overall MATRIX population, fluoroscopy time and DAP were higher with radial compared to femoral access: 10 min versus 9 min (p < 0.0001) and 65 Gy·cm 2 versus 59 Gy·cm 2 (p = 0.0001), respectively. Compared to femoral access, radial access is associated with greater operator and patient radiation exposure when performed by expert operators in current practice. Radial operators and institutions should be sensitized towards radiation risks and adopt adjunctive radioprotective measures. (Minimizing Adverse Haemorrhagic Events by Transradial Access Site and Systemic Implementation of AngioX; NCT101433627). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Perturbative Power Counting, Lowest-Index Operators and Their Renormalization in Standard Model Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Ma, Xiao-Dong

    2018-03-01

    We study two aspects of higher dimensional operators in standard model effective field theory. We first introduce a perturbative power counting rule for the entries in the anomalous dimension matrix of operators with equal mass dimension. The power counting is determined by the number of loops and the difference of the indices of the two operators involved, which in turn is defined by assuming that all terms in the standard model Lagrangian have an equal perturbative power. Then we show that the operators with the lowest index are unique at each mass dimension d, i.e., (H † H) d/2 for even d ≥ 4, and (LT∈ H)C(LT∈ H) T (H † H)(d-5)/2 for odd d ≥ 5. Here H, L are the Higgs and lepton doublet, and ∈, C the antisymmetric matrix of rank two and the charge conjugation matrix, respectively. The renormalization group running of these operators can be studied separately from other operators of equal mass dimension at the leading order in power counting. We compute their anomalous dimensions at one loop for general d and find that they are enhanced quadratically in d due to combinatorics. We also make connections with classification of operators in terms of their holomorphic and anti-holomorphic weights. Supported by the National Natural Science Foundation of China under Grant Nos. 11025525, 11575089, and by the CAS Center for Excellence in Particle Physics (CCEPP)

  20. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    PubMed Central

    Matochko, Wadim L.; Derda, Ratmir

    2013-01-01

    Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071

  1. Global Strike 2035: Considerations for Enabling Effective Command and Control

    DTIC Science & Technology

    2012-02-16

    reach places .1 Broadly grouped under the moniker Global Strike,2 this family-of-systems capability should mature by 2035 leading to the realization of...and] ‘micro-actors with massive impact,’…[combine] with new technology and new or transfigured ways of war, but the old threats also remain and have...as the Joint Time-Sensitive Targets Manager (JTSTM),38 “operators and analysts [could] access the same dynamic common operating picture…to provide

  2. Operation Chromite: A Case Study for the National Maneuver Force Exercise Concept of the Armed Forces of the Philippines

    DTIC Science & Technology

    2013-04-20

    interest, and the country’s archipelagic landscape, there is no capability more functional and indispensable to the AFP than the full spectrum of...military operations other than war. 6 Considering the strategic environment, maritime interest, and its archipelagic landscape, there is no... doctrines . Massive firepower and superior leadership remained the centerpieces of US forces that checked the North Koreans. On the other hand, the

  3. Convergence of moment expansions for expectation values with embedded random matrix ensembles and quantum chaos

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2003-07-01

    Smoothed forms for expectation values < K> E of positive definite operators K follow from the K-density moments either directly or in many other ways each giving a series expansion (involving polynomials in E). In large spectroscopic spaces one has to partition the many particle spaces into subspaces. Partitioning leads to new expansions for expectation values. It is shown that all the expansions converge to compact forms depending on the nature of the operator K and the operation of embedded random matrix ensembles and quantum chaos in many particle spaces. Explicit results are given for occupancies < ni> E, spin-cutoff factors < JZ2> E and strength sums < O†O> E, where O is a one-body transition operator.

  4. Block LU factorization

    NASA Technical Reports Server (NTRS)

    Demmel, James W.; Higham, Nicholas J.; Schreiber, Robert S.

    1992-01-01

    Many of the currently popular 'block algorithms' are scalar algorithms in which the operations have been grouped and reordered into matrix operations. One genuine block algorithm in practical use is block LU factorization, and this has recently been shown by Demmel and Higham to be unstable in general. It is shown here that block LU factorization is stable if A is block diagonally dominant by columns. Moreover, for a general matrix the level of instability in block LU factorization can be founded in terms of the condition number kappa(A) and the growth factor for Gaussian elimination without pivoting. A consequence is that block LU factorization is stable for a matrix A that is symmetric positive definite or point diagonally dominant by rows or columns as long as A is well-conditioned.

  5. Molecular dynamics study of mechanical properties of carbon nanotube reinforced aluminum composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashish Kumar; Mokhalingam, A.; Singh, Akhileshwar; Kumar, Dinesh

    2016-05-01

    Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for the interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young's modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young's modulus of the Al matrix up to 77 % as compared to pure Al.

  6. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    PubMed

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  7. Matrix preconditioning: a robust operation for optical linear algebra processors.

    PubMed

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.

  8. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  9. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    2012-07-01

    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.

  10. Sharp Estimates in Ruelle Theorems for Matrix Transfer Operators

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Latushkin, Y.

    A matrix coefficient transfer operator , on the space of -sections of an m-dimensional vector bundle over n-dimensional compact manifold is considered. The spectral radius of is estimated bya; and the essential spectral radius by Here is the set of ergodic f-invariant measures, and for is the measure-theoretic entropy of f, is the largest Lyapunov exponent of the cocycle over f generated by , and is the smallest Lyapunov exponent of the differential of f.

  11. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, p{sup N}, and d{sup N} configurations and the SL-jj transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.J.

    1997-09-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.

  12. Aspects of the inverse problem for the Toda chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, K. K., E-mail: karol.kozlowski@u-bourgogne.fr

    We generalize Babelon's approach to equations in dual variables so as to be able to treat new types of operators which we build out of the sub-constituents of the model's monodromy matrix. Further, we also apply Sklyanin's recent monodromy matrix identities so as to obtain equations in dual variables for yet other operators. The schemes discussed in this paper appear to be universal and thus, in principle, applicable to many models solvable through the quantum separation of variables.

  13. Nonstate Actors and the Open Border Policy: The Border Security Case Study of Nepal and India

    DTIC Science & Technology

    2014-12-01

    Washington headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302... remuneration .”276 This massive migration of young and eager workers allowed Germany to take advantage of booming industries and markets. The impact on

  14. The costs of photorespiration to food production now and in the future

    USDA-ARS?s Scientific Manuscript database

    Photorespiration is essential for C3 plants, but operates at the massive expense of fixed carbon dioxide and energy. Photorespiration is initiated when the initial enzyme of photosynthesis, Rubisco, reacts with oxygen instead of carbon dioxide and produces a toxic compound which is recycled by photo...

  15. Author Correction: A massive core for a cluster of galaxies at a redshift of 4.3.

    PubMed

    Miller, T B; Chapman, S C; Aravena, M; Ashby, M L N; Hayward, C C; Vieira, J D; Weiß, A; Babul, A; Béthermin, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chen, Chian-Chou; Cunningham, D J M; De Breuck, C; Gonzalez, A H; Greve, T R; Harnett, J; Hezaveh, Y; Lacaille, K; Litke, K C; Ma, J; Malkan, M; Marrone, D P; Morningstar, W; Murphy, E J; Narayanan, D; Pass, E; Perry, R; Phadke, K A; Rennehan, D; Rotermund, K M; Simpson, J; Spilker, J S; Sreevani, J; Stark, A A; Strandet, M L; Strom, A L

    2018-06-21

    Change history: In this Letter, the Acknowledgements section should have included the following sentence: "The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.". This omission has been corrected online.

  16. Computationally Efficient Modeling and Simulation of Large Scale Systems

    NASA Technical Reports Server (NTRS)

    Jain, Jitesh (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Vankataramanan (Inventor); Cauley, Stephen F (Inventor); Li, Hong (Inventor)

    2014-01-01

    A system for simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof, including a processor, and a memory, the processor configured to perform obtaining a matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure, the element values for each matrix including inductance L and inverse capacitance P, obtaining an adjacency matrix A associated with the interconnect structure, storing the matrices X, Y, and A in the memory, and performing numerical integration to solve first and second equations.

  17. SPARSKIT: A basic tool kit for sparse matrix computations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1990-01-01

    Presented here are the main features of a tool package for manipulating and working with sparse matrices. One of the goals of the package is to provide basic tools to facilitate the exchange of software and data between researchers in sparse matrix computations. The starting point is the Harwell/Boeing collection of matrices for which the authors provide a number of tools. Among other things, the package provides programs for converting data structures, printing simple statistics on a matrix, plotting a matrix profile, and performing linear algebra operations with sparse matrices.

  18. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

    DOE PAGES

    Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...

    2017-03-05

    Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

  19. Systemic sclerosis-scleroderma.

    PubMed

    Haustein, U-F

    2002-06-01

    Systemic sclerosis is a clinically heterogeneous, systemic disorder which affects the connective tissue of the skin, internal organs and the walls of blood vessels. It is characterized by alterations of the microvasculature, disturbances of the immune system and by massive deposition of collagen and other matrix substances in the connective tissue. This review discusses epidemiology and survival, clinical features including subsets and internal organ involvement, pathophysiology and genetics, microvasculature, immunobiology, fibroblasts and connective tissue metabolism and environmental factors. Early diagnosis and individually tailored therapy help to manage this disorder, which is treatable, but not curable. Therapy involves immunomodulation as well as the targeting of blood vessel mechanics and fibrosis. Physical therapy and psychotherapy are also important adjunctive therapies in this multifactorial disease.

  20. A Novel Approach to Solve Linearized Stellar Pulsation Equations

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Teitler, S.

    2011-01-01

    We present a new approach to modeling linearized, non-radial pulsations in differentially rotating, massive stars. As a first step in this direction, we consider adiabatic pulsations and adopt the Cowling approximation that perturbations of the gravitational potential and its radial derivative are negligible. The angular dependence of the pulsation modes is expressed as a series expansion of associated Legendre polynomials; the resulting coupled system of differential equations is then solved by finding the eigenfrequencies at which the determinant of a characteristic matrix vanishes. Our method improves on previous treatments by removing the requirement that an arbitrary normalization be applied to the eigenfunctions; this brings the benefit of improved numerical robustness.

  1. Integrated Circuit For Simulation Of Neural Network

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.; Khanna, Satish K.

    1988-01-01

    Ballast resistors deposited on top of circuit structure. Cascadable, programmable binary connection matrix fabricated in VLSI form as basic building block for assembly of like units into content-addressable electronic memory matrices operating somewhat like networks of neurons. Connections formed during storage of data, and data recalled from memory by prompting matrix with approximate or partly erroneous signals. Redundancy in pattern of connections causes matrix to respond with correct stored data.

  2. MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Ramakrishnan; Ballard, Grey; Park, Haesun

    Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given input matrix A, such that A≈WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new, high-performance parallel computational framework for a broad class of NMF algorithms thatmore » iteratively solves alternating non-negative least squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments are available online.« less

  3. State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration

    NASA Astrophysics Data System (ADS)

    Read, Julie L.; Younes, Ahmad Bani; Macomber, Brent; Turner, James; Junkins, John L.

    2015-06-01

    The Modified Chebyshev Picard Iteration (MCPI) method has recently proven to be highly efficient for a given accuracy compared to several commonly adopted numerical integration methods, as a means to solve for perturbed orbital motion. This method utilizes Picard iteration, which generates a sequence of path approximations, and Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function approximation. The nodes consistent with discrete Chebyshev orthogonality are generated using cosine sampling; this strategy also reduces the Runge effect and as a consequence of orthogonality, there is no matrix inversion required to find the basis function coefficients. The MCPI algorithms considered herein are parallel-structured so that they are immediately well-suited for massively parallel implementation with additional speedup. MCPI has a wide range of applications beyond ephemeris propagation, including the propagation of the State Transition Matrix (STM) for perturbed two-body motion. A solution is achieved for a spherical harmonic series representation of earth gravity (EGM2008), although the methodology is suitable for application to any gravity model. Included in this representation the normalized, Associated Legendre Functions are given and verified numerically. Modifications of the classical algorithm techniques, such as rewriting the STM equations in a second-order cascade formulation, gives rise to additional speedup. Timing results for the baseline formulation and this second-order formulation are given.

  4. MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization

    DOE PAGES

    Kannan, Ramakrishnan; Ballard, Grey; Park, Haesun

    2017-10-30

    Non-negative matrix factorization (NMF) is the problem of determining two non-negative low rank factors W and H, for the given input matrix A, such that A≈WH. NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient parallel algorithms to solve the problem for big data sets. The main contribution of this work is a new, high-performance parallel computational framework for a broad class of NMF algorithms thatmore » iteratively solves alternating non-negative least squares (NLS) subproblems for W and H. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). The framework is flexible and able to leverage a variety of NMF and NLS algorithms, including Multiplicative Update, Hierarchical Alternating Least Squares, and Block Principal Pivoting. Our implementation allows us to benchmark and compare different algorithms on massive dense and sparse data matrices of size that spans from few hundreds of millions to billions. We demonstrate the scalability of our algorithm and compare it with baseline implementations, showing significant performance improvements. The code and the datasets used for conducting the experiments are available online.« less

  5. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  6. User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.

    2000-01-01

    PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.

  7. Computationally efficient modeling and simulation of large scale systems

    NASA Technical Reports Server (NTRS)

    Jain, Jitesh (Inventor); Cauley, Stephen F. (Inventor); Li, Hong (Inventor); Koh, Cheng-Kok (Inventor); Balakrishnan, Venkataramanan (Inventor)

    2010-01-01

    A method of simulating operation of a VLSI interconnect structure having capacitive and inductive coupling between nodes thereof. A matrix X and a matrix Y containing different combinations of passive circuit element values for the interconnect structure are obtained where the element values for each matrix include inductance L and inverse capacitance P. An adjacency matrix A associated with the interconnect structure is obtained. Numerical integration is used to solve first and second equations, each including as a factor the product of the inverse matrix X.sup.1 and at least one other matrix, with first equation including X.sup.1Y, X.sup.1A, and X.sup.1P, and the second equation including X.sup.1A and X.sup.1P.

  8. Review of Current Data Exchange Practices: Providing Descriptive Data to Assist with Building Operations Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingood, W.; Stein, J.; Considine, T.

    Retailers who participate in the U.S. Department of Energy Commercial Building Energy Alliances (CBEA) identified the need to enhance communication standards. The means are available to collect massive numbers of buildings operational data, but CBEA members have difficulty transforming the data into usable information and energy-saving actions. Implementing algorithms for automated fault detection and diagnostics and linking building operational data to computerized maintenance management systems are important steps in the right direction, but have limited scalability for large building portfolios because the algorithms must be configured for each building.

  9. Seasat. Volume 3: Ground systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    The Seasat Project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June of 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The ground systems using during the mission life are discussed. Descriptions of the operating organization, the system elements, and the testing program are included. The various phases of the mission: launch and orbit insertion; cruise; and calibration are discussed. A special section is included on the orbit maneuver activites. Operations during the satellite failure are reviewed and summarized.

  10. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are still growing into stars, newborn stars, adult stars and stars nearing the end of their life. All these stars have roughly the same age, a million years, a blink of an eye compared to our five billion year-old Sun and Solar System. The fact that some of the stars have just started their lives while others are already dying is due to their extraordinary range of masses: high-mass stars, being very bright and hot, burn through their existence much faster than their less massive, fainter and cooler counterparts. The newly released image, obtained with the FORS instrument attached to the VLT at Cerro Paranal, Chile, portrays a wide field around the stellar cluster and reveals the rich texture of the surrounding clouds of gas and dust. Notes [1] The star, NGC 3603-A1, is an eclipsing system of two stars orbiting around each other in 3.77 days. The most massive star has an estimated mass of 116 solar masses, while its companion has a mass of 89 solar masses. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. Invariant operators, orthogonal bases and correlators in general tensor models

    NASA Astrophysics Data System (ADS)

    Diaz, Pablo; Rey, Soo-Jong

    2018-07-01

    We study invariant operators in general tensor models. We show that representation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry Gd = U (N1) ⊗ ⋯ ⊗ U (Nd). As a continuation and completion of our earlier work, we present two natural ways of counting invariants, one for arbitrary Gd and another valid for large rank of Gd. We construct bases of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of Gd diagonalizes the two-point function of the free theory. It is analogous to the restricted Schur basis used in matrix models. We show that the constructions get almost identical as we swap the Littlewood-Richardson numbers in multi-matrix models with Kronecker coefficients in general tensor models. We explore the parallelism between matrix model and tensor model in depth from the perspective of representation theory and comment on several ideas for future investigation.

  12. Diagrammatic technique for calculating matrix elements of collective operators in superradiance. [eigenstates for N two-level atom systems

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1975-01-01

    Adopting the so-called genealogical construction, one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicity the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes.

  13. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  14. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  15. A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    2014-08-01

    In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show themore » accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.« less

  16. Two-tier Haddon matrix approach to fault analysis of accidents and cybernetic search for relationship to effect operational control: a case study at a large construction site.

    PubMed

    Mazumdar, Atmadeep; Sen, Krishna Nirmalya; Lahiri, Balendra Nath

    2007-01-01

    The Haddon matrix is a potential tool for recognizing hazards in any operating engineering system. This paper presents a case study of operational hazards at a large construction site. The fish bone structure helps to visualize and relate the chain of events, which led to the failure of the system. The two-tier Haddon matrix approach helps to analyze the problem and subsequently prescribes preventive steps. The cybernetic approach has been undertaken to establish the relationship among event variables and to identify the ones with most potential. Those event variables in this case study, based on the cybernetic concepts like control responsiveness and controllability salience, are (a) uncontrolled swing of sheet contributing to energy, (b) slippage of sheet from anchor, (c) restricted longitudinal and transverse swing or rotation about the suspension, (d) guilt or uncertainty of the crane driver, (e) safe working practices and environment.

  17. Calculating Path-Dependent Travel Time Prediction Variance and Covariance for the SALSA3D Global Tomographic P-Velocity Model with a Distributed Parallel Multi-Core Computer

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.

    2011-12-01

    Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.

  19. Project Solo; Newsletter Number Twenty.

    ERIC Educational Resources Information Center

    Pittsburgh Univ., PA. Project Solo.

    Three Project Solo modules are presented. They are designed to teach the concepts of elementary matrix operation, matrix multiplication, and finite-state automata. Together with the module on communication matrices from Newsletter #17 they form a well motivated but structured path to expertise in this area. (JY)

  20. The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs

    NASA Astrophysics Data System (ADS)

    Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter

    2014-06-01

    In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.

  1. Iterative approach as alternative to S-matrix in modal methods

    NASA Astrophysics Data System (ADS)

    Semenikhin, Igor; Zanuccoli, Mauro

    2014-12-01

    The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.

  2. Partial Removal of Nail Matrix in the Treatment of Ingrown Nails: Prospective Randomized Control Study Between Curettage and Electrocauterization.

    PubMed

    Kim, Maru; Song, In-Guk; Kim, Hyung Jin

    2015-06-01

    The aim of this study was to compare the result of electrocauterization and curettage, which can be done with basic instruments. Patients with ingrown nail were randomized to 2 groups. In the first group, nail matrix was removed by curettage, and the second group, nail matrix was removed by electrocautery. A total of 61 patients were enrolled; 32 patients were operated by curettage, and 29 patients were operated by electrocautery. Wound infections, as early complication, were found in 15.6% (5/32) of the curettage group, 10.3% (3/29) of the electrocautery group patients each (P = .710). Nonrecurrence was observed in 93.8% (30/32) and 86.2% (25/29) of the curettage and electrocautery groups, respectively, (lower limit of 1-sided 90% confidence interval = -2.3% > -15% [noninferiority margin]). To remove nail matrix, the curettage is effective as well as the electrocauterization. Further study is required to determine the differences between the procedures. © The Author(s) 2014.

  3. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  4. Use of autologous platelet rich plasma (PRP) in stopping massive hemoptysis at the Lung Center of the Philippines: a pilot study.

    PubMed

    Sarmiento, Armand Gregorio C; Danguilan, Jose Luis J; Mariano, Zenaida M; Barzaga, Maria Teresa A

    2017-01-01

    The purpose of this study is to determine the effect of using autologous platelet rich plasma (PRP) in patients having massive hemoptysis within a period of one week. This is a prospective cohort study involving 20 consecutive patients admitted who met the criteria for massive hemoptysis from July to October 2011. After stabilizing the patient, fiberoptic bronchoscopy (FOB) was performed for localization of bleeding within 6 hours from diagnosis. A 50mL of blood was extracted from the patient whom was to be used for autologous PRP concentrate. After identifying the anatomic site of bleeding, autologous PRP concentrate was instilled on the affected bronchus and was allowed to stay for 5 minutes after instillation. Patients were then monitored from the time the bleeding stopped in the first 24 hours, 2 days and 7 days respectively. Mean age of the study population with massive hemoptysis was 47 years old (SD 17.3). Majority of cases were male 18 out of 20 (90%) and smokers 14 (70%) with a normal BMI (75%). Identification of bleeding site was more commonly seen on the right upper lobe 9 out of 20 (45%). Overall, 14 out of 20 patients (70%) were reported to have stopped bleeding immediately. Subsequent hospital days showed that 8 out of 20 patients (40%) had no hemoptysis. However, one [1] post-tuberculosis (TB) bronchiectatic patient had recurrence of massive hemoptysis, approximately 250 mL per expectorate, expired within the 7 days observation and one patient had lobectomy on the 2nd day. The rest had non-massive hemoptysis wherein their expectorations were only streaks of blood. Moreover, there was one [1] patient who had recurrence of massive hemoptysis 1 week after autologous PRP infusion and was eventually intubated. Majority of the subjects, eleven [11] were diagnosed to have post-TB bronchiectasis. The rest of the patients were worked-up prior to operation. Overall, it was observed that the use of autologous PRP was able to stop bleeding in 40% of the study population for 7 days. It is simple and easy to reproduce as it was directly extracted from the patient.

  5. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international co-operation between the European Space Agency and NASA. The California Institute of Technology in Pasadena manages JPL for NASA.

  6. The MUCHFUSS project - searching for hot subdwarf binaries with massive unseen companions. Survey, target selection and atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Geier, S.; Hirsch, H.; Tillich, A.; Maxted, P. F. L.; Bentley, S. J.; Østensen, R. H.; Heber, U.; Gänsicke, B. T.; Marsh, T. R.; Napiwotzki, R.; Barlow, B. N.; O'Toole, S. J.

    2011-06-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding sdBs with compact companions like supermassive white dwarfs (M > 1.0 M⊙), neutron stars or black holes. The existence of such systems is predicted by binary evolution theory and recent discoveries indicate that they are likely to exist in our Galaxy. A determination of the orbital parameters is sufficient to put a lower limit on the companion mass by calculating the binary mass function. If this lower limit exceeds the Chandrasekhar mass and no sign of a companion is visible in the spectra, the existence of a massive compact companion is proven without the need for any additional assumptions. We identified about 1100 hot subdwarf stars from the SDSS by colour selection and visual inspection of their spectra. Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. In total 127 radial velocity variable subdwarfs have been discovered. Binaries with high RV shifts and binaries with moderate shifts within short timespans have the highest probability of hosting massive compact companions. Atmospheric parameters of 69 hot subdwarfs in these binary systems have been determined by means of a quantitative spectral analysis. The atmospheric parameter distribution of the selected sample does not differ from previously studied samples of hot subdwarfs. The systems are considered the best candidates to search for massive compact companions by follow-up time resolved spectroscopy. Based on observations at the Paranal Observatory of the European Southern Observatory for programme number 081.D-0819. Based on observations at the La Silla Observatory of the European Southern Observatory for programme number 082.D-0649. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations with the William Herschel Telescope operated by the Isaac Newton Group at the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias on the island of La Palma, Spain.Tables 2-4 and Appendix A are available in electronic form at http://www.aanda.org

  7. The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.

    2015-03-01

    Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under program ID 187.D-0917.

  8. Staggered chiral random matrix theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  9. Organization of the channel-switching process in parallel computer systems based on a matrix optical switch

    NASA Technical Reports Server (NTRS)

    Golomidov, Y. V.; Li, S. K.; Popov, S. A.; Smolov, V. B.

    1986-01-01

    After a classification and analysis of electronic and optoelectronic switching devices, the design principles and structure of a matrix optical switch is described. The switching and pair-exclusion operations in this type of switch are examined, and a method for the optical switching of communication channels is elaborated. Finally, attention is given to the structural organization of a parallel computer system with a matrix optical switch.

  10. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    PubMed

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  11. Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia Cheng

    2015-01-01

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N f = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a 2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a 2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We reportmore » values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.« less

  12. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    DOE PAGES

    McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less

  13. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less

  14. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.

    PubMed

    McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  15. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.

    2017-11-01

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  16. A novel chaos-based image encryption algorithm using DNA sequence operations

    NASA Astrophysics Data System (ADS)

    Chai, Xiuli; Chen, Yiran; Broyde, Lucie

    2017-01-01

    An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.

  17. On the transition from the quantum to the classical regime for massive scalar particles: A spatiotemporal approach

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca; Pauri, Massimo

    2014-08-01

    If the classical structure of space-time is assumed to define an a priori scenario for the formulation of quantum theory (QT), the coordinate representation of the solutions of the Schroedinger equation of a quantum system containing one ( N) massive scalar particle has a preferred status. Let us consider all of the solutions admitting a multipolar expansion of the probability density function (and more generally of the Wigner function) around a space-time trajectory to be properly selected. For every normalized solution there is a privileged trajectory implying the vanishing of the dipole moment of the multipolar expansion: it is given by the expectation value of the position operator . Then, the special subset of solutions which satisfy Ehrenfest's Theorem (named thereby Ehrenfest monopole wave functions (EMWF)), have the important property that this privileged classical trajectory is determined by a closed Newtonian equation of motion where the effective force is the Newtonian force plus non-Newtonian terms (of order ħ 2 or higher) depending on the higher multipoles of the probability distribution ρ. Note that the superposition of two EMWFs is not an EMWF, a result to be strongly hoped for, given the possible unwanted implications concerning classical spatial perception. These results can be extended to N-particle systems in such a way that, when N classical trajectories with all the dipole moments vanishing and satisfying Ehrenfest theorem are associated with the normalized wave functions of the N-body system, we get a natural transition from the 3 N-dimensional configuration space to the space-time. Moreover, these results can be extended to relativistic quantum mechanics. Consequently, in suitable states of N quantum particle which are EMWF, we get the "emergence" of corresponding "classical particles" following Newton-like trajectories in space-time. Note that all this holds true in the standard framework of quantum mechanics, i.e. assuming, in particular, the validity of Born's rule and the individual system interpretation of the wave function (no ensemble interpretation). These results are valid without any approximation (like ħ → 0, big quantum numbers, etc.). Moreover, we do not commit ourselves to any specific ontological interpretation of quantum theory (such as, e.g., the Bohmian one). We will argue that, in substantial agreement with Bohr's viewpoint, the macroscopic description of the preparation, certain intermediate steps and the detection of the final outcome of experiments involving massive particles are dominated by these classical "effective" trajectories. This approach can be applied to the point of view of de-coherence in the case of a diagonal reduced density matrix ρ red (an improper mixture) depending on the position variables of a massive particle and of a pointer. When both the particle and the pointer wave functions appearing in ρ red are EMWF, the expectation value of the particle and pointer position variables becomes a statistical average on a classical ensemble. In these cases an improper quantum mixture becomes a classical statistical one, thus providing a particular answer to an open problem of de-coherence about the emergence of classicality.

  18. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  19. Matrix Transformations between Certain Sequence Spaces over the Non-Newtonian Complex Field

    PubMed Central

    Efe, Hakan

    2014-01-01

    In some cases, the most general linear operator between two sequence spaces is given by an infinite matrix. So the theory of matrix transformations has always been of great interest in the study of sequence spaces. In the present paper, we introduce the matrix transformations in sequence spaces over the field ℂ* and characterize some classes of infinite matrices with respect to the non-Newtonian calculus. Also we give the necessary and sufficient conditions on an infinite matrix transforming one of the classical sets over ℂ* to another one. Furthermore, the concept for sequence-to-sequence and series-to-series methods of summability is given with some illustrated examples. PMID:25110740

  20. Insolubilized enzymes for food synthesis

    NASA Technical Reports Server (NTRS)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  1. SIMPLE: An Introduction.

    ERIC Educational Resources Information Center

    Endres, Frank L.

    Symbolic Interactive Matrix Processing Language (SIMPLE) is a conversational matrix-oriented source language suited to a batch or a time-sharing environment. The two modes of operation of SIMPLE are conversational mode and programing mode. This program uses a TAURUS time-sharing system and cathode ray terminals or teletypes. SIMPLE performs all…

  2. Stratigraphic And Lithofacies Study Of Distal Rain-Triggered Lahars: The Case Of West Coast Of Ecuador

    NASA Astrophysics Data System (ADS)

    Mulas, M.; Chunga, K.; Peña Carpio, E.; Falquez Torres, D. A.; Alcivar, R., Sr.; Lopez Coronel, M. C.

    2015-12-01

    The central zone of the coast of Ecuador at the north of Manabí Province, on the area comprised between Salango and Jama communities, is characterized by the presence of whitish to grey, centimeters to meters thick, consolidated to loose distal ash deposits. Recent archeological studies on Valdivia (3500 BC) and Manteña (800-1500 AC - Harris et al. 2004) civilizations remains link this deposits with the intense eruptive phases that afflicted Ecuador 700-900 years ago (Usselman, 2006). Stratigraphic evidences and bibliographic datations of paleosols (Estrada, 1962; Mothes and Hall, 2008), allowed to estimate that these deposits are linked with the 800 BP eruption of Quilotoa and the following eruptions of Cotopaxi. According to the Smith and Lowe classification (1991), the deposits outcropping on the coast (located at a distance greater than 160 km from the volcanic vents), varied from whitish to grey, loose to weakly consolidated, massive to weakly stratified, centimeters to meters thick, coarse to fine ash matrix layers (diluite streamflow facies) to massive, large angular to sub-rounded siltitic blocks-rich and coarse to medium ash matrix deposits (debris flow facies). These types of lithofacies are associated to a rain-triggered lahar (De Belizal et al., 2013). The presence in some stratigraphic sections of sharp contacts, laminated layers of very fine ash, and also cm-thick sand and silt layers between the ash beds of the same deposits permit to understand that the different pulses were generated in short periods and after a long period. Structures like water pipes imply that the lahar went into the sea (Schneider, 2004), and allow the reconstruction of the paleotopographic condition during the emplacement of these deposits. This study focuses on the characterization of these types of deposits, permit to understand the kind of risk that may affect the towns located on the coast of Ecuador after VEI 4 to 6 eruptions on short time and within years.

  3. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili

    2018-03-01

    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  4. Temporary abdominal closure and delayed biliary reconstruction due to massive bleeding in patients undergoing liver transplantation: an old trick in a new indication

    PubMed Central

    Komorowski, Andrzej L.; Li, Wei‐Feng; Millan, Carlos A.; Huang, Tun‐Sung; Yong, Chee‐Chien; Lin, Tsan‐Shiun; Lin, Ting‐Lung; Jawan, Bruno; Chen, Chao‐Long

    2016-01-01

    Abstract Background Massive bleeding during liver transplantation (LT) is difficult to manage surgical event. Perihepatic packing (PP) and temporary abdominal closure (TAC) with delayed biliary reconstruction (DBR) can be applied in these circumstances. Method A prospective database of LT in a major transplant center was analyzed to identify patients with massive uncontrollable bleeding during LT that was resolved by PP, TAC, and DBR. Results From January 2009 to July 2013, 20 (3.6%) of 547 patients who underwent LT underwent DBR. Mean intraoperative blood loss was 20,500 ml at the first operation. The DBR was performed with a mean of 55.2 h (16–110) after LT. Biliary reconstruction included duct‐to‐duct (n = 9) and hepatico‐jejunostomy (n = 11). Complications occurred in eight patients and included portal vein thrombosis, cholangitis, severe bacteremia, pneumonia. There was one in‐hospital death. In the follow‐up of 18 to 33 months we have seen one patient died 9 months after transplantation. The remaining 18 patients are alive and well. Conclusions In case of massive uncontrollable bleeding and bowel edema during LT, the combined procedures of PP, TAC, and DBR offer an alternatively surgical option to solve the tough situation. PMID:26692574

  5. The Use of Behavior Therapy Techniques in Crisis-Intervention: A Case Report

    ERIC Educational Resources Information Center

    Balson, Paul M.

    1971-01-01

    In the case of a man with an acute onset of stuttering and massive free floating anxiety following an automobile accident, a variety of behavioral techniques, including relaxation training, assertive training, graded rehearsal and modification of behavioral operants were employed, with the complete eradication of the symptoms in five sessions. The…

  6. The toll of toxics: investigating environmental contaminants

    USGS Publications Warehouse

    Sparling, Donald W.; Rattner, Barnett A.; Barclay, John S.

    2010-01-01

    On Earth Day of this year, the British Petroleum-operated Deepwater Horizon oil drilling rig exploded in the Gulf of Mexico, 41 miles off the Louisiana coast. The blast killed 11 workers, injured 17, launched a massive oil spill, and triggered an environmental catastrophe—the full impact of which may not be realized for years.

  7. Fracturing alliance allows economical production of massive diatomite oil reserves: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klins, M.A.; Stewart, D.W.; Pferdehirt, D.J.

    1996-01-01

    As North American oilfield operations mature, there is a perceptible loosening of the autocratic ties between oil companies and contractors. They are being replaced by alliances or partnerships designed to minimize cost while improving profitability of the companies involved. This paper evaluates a mature alliance, its implementation, structure, and results.

  8. Type IV Ehlers-Danlos Syndrome: A Surgical Emergency? A Case of Massive Retroperitoneal Hemorrhage

    PubMed Central

    Chun, Stephen G; Pedro, Patrick; Yu, Mihae; Takanishi, Danny M

    2011-01-01

    Retroperitoneal hemorrhagic bleeding is a known manifestation of Type-IV Ehlers-Danlos Syndrome that is caused by loss-of-function mutations of the pro-alpha-1 chains of type III pro-collagen (COL3A1) resulting in vascular fragility. A number of previous reports describe futile surgical intervention for retroperitoneal bleeding in Type-IV Ehlers-Danlos Syndrome with high post-operative mortality, although the rarity of retroperitoneal bleeding associated with Type-IV Ehlers-Danlos Syndrome precludes an evidence-based approach to clinical management. We report a 23-year-old male with history of Type-IV Ehlers-Danlos Syndrome who presented with severe abdominal pain and tachycardia following an episode of vomiting. Further work-up of his abdominal pain revealed massive retroperitoneal bleeding by CT-scan of the abdomen. Given numerous cases of catastrophic injury caused by surgical intervention in Type-IV Ehlers-Danlos Syndrome, the patient was treated non-operatively, and the patient made a full recovery. This case suggests that even in cases of large retroperitoneal hemorrhages associated with Ehlers-Danlos Syndrome, it may not truly represent a surgical emergency. PMID:21966332

  9. Primary aortojejunal fistula: a rare cause for massive upper gastrointestinal bleeding.

    PubMed

    Paulasir, Sylvester; Khorfan, Rhami; Harsant, Christina; Anderson, Harry Linne

    2017-04-26

    A 68-year-old man presented to the emergency department with haematemesis and shock. Upper endoscopy and selective angiography could not identify the source of bleeding. He underwent selective embolisation of the gastroduodenal artery. The patient then had a period of about 24 hours with relative haemodynamic stability before having another episode of massive upper gastrointestinal bleed. A second attempt to embolise the common hepatic artery and distal coeliac axis was unsuccessful. Hence, he was urgently taken to the operating room for exploratory laparotomy. The source of bleeding could not be identified in the operating room. The patient went into cardiac arrest and expired. Autopsy revealed a fistula between proximal jejunum and a previously unknown abdominal aortic aneurysm (AAA). We present an entity that has only been described a few times in the literature while highlighting the importance of having a broad differential with upper gastrointestinal bleeding, especially when the source is not clearly evident. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  11. A real time spectrum to dose conversion system

    NASA Technical Reports Server (NTRS)

    Farmer, B. J.; Johnson, J. H.; Bagwell, R. G.

    1972-01-01

    A system has been developed which permits the determination of dose in real time or near real time directly from the pulse-height output of a radiation spectrometer. The technique involves the use of the resolution matrix of a spectrometer, the radiation energy-to-dose conversion function, and the geometrical factors, although the order of matrix operations is reversed. The new technique yields a result which is mathematically identical to the standard method while requiring no matrix manipulations or resolution matrix storage in the remote computer. It utilizes only a single function for each type dose required and each geometric factor involved.

  12. Interior radiances in optically deep absorbing media. I - Exact solutions for one-dimensional model.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    An exact analytic solution to the one-dimensional scattering problem with arbitrary single scattering albedo and arbitrary surface albedo is presented. Expressions are given for the emergent flux from a homogeneous layer, the internal flux within the layer, and the radiative heating. A comparison of these results with the values calculated from the matrix operator theory indicates an exceedingly high accuracy. A detailed study is made of the error in the matrix operator results and its dependence on the accuracy of the starting value.

  13. Some applications of the Kronecker product in Hubbard representation

    NASA Astrophysics Data System (ADS)

    Enríquez, Marco; Rosas-Ortiz, Oscar

    2014-10-01

    The properties of the Kronecker product are revisited in terms of Hubbard operators. The simplest representation of a Hubbard operator Xi,jn is a square matrix of size n with an entry equal to 1 and zero elsewhere. This framework simplifies the calculation of the Kronecker product of arbitrary matrices no matter the size or the number of the involved factors. Some applications are presented, these include the algebra of permutation matrices, the Hadamard matrix, the XXX Heisenberg model and the interaction of an atom with radiation fields.

  14. A Framework to Debug Diagnostic Matrices

    NASA Technical Reports Server (NTRS)

    Kodal, Anuradha; Robinson, Peter; Patterson-Hine, Ann

    2013-01-01

    Diagnostics is an important concept in system health and monitoring of space operations. Many of the existing diagnostic algorithms utilize system knowledge in the form of diagnostic matrix (D-matrix, also popularly known as diagnostic dictionary, fault signature matrix or reachability matrix) gleaned from physical models. But, sometimes, this may not be coherent to obtain high diagnostic performance. In such a case, it is important to modify this D-matrix based on knowledge obtained from other sources such as time-series data stream (simulated or maintenance data) within the context of a framework that includes the diagnostic/inference algorithm. A systematic and sequential update procedure, diagnostic modeling evaluator (DME) is proposed to modify D-matrix and wrapper logic considering least expensive solution first. This iterative procedure includes conditions ranging from modifying 0s and 1s in the matrix, or adding/removing the rows (failure sources) columns (tests). We will experiment this framework on datasets from DX challenge 2009.

  15. Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory

    NASA Astrophysics Data System (ADS)

    Hoare, B.; Tseytlin, A. A.

    2010-02-01

    With a motivation to find a 2-d Lorentz-invariant solution of the AdS 5 × S 5 superstring we continue the study of the Pohlmeyer-reduced form of this theory. The reduced theory is constructed from currents of the superstring sigma model and is classically equivalent to it. Its action is that of G/ H = Sp(2, 2) × Sp(4)/[SU(2)]4 gauged WZW model deformed by an integrable potential and coupled to fermions. This theory is UV finite and is conjectured to be related to the superstring theory also at the quantum level. Expanded near the trivial vacuum it has the same elementary excitations (8+8 massive bosonic and fermionic 2-d degrees of freedom) as the AdS 5 × S 5 superstring in the S 5 light-cone gauge or near plane-wave expansion. In contrast to the superstring case, the interaction terms in the reduced action are manifestly 2-d Lorentz invariant. Since the theory is integrable, its S-matrix should be effectively determined by the two-particle scattering. Here we explicitly compute the tree-level two-particle S-matrix for the elementary excitations of the reduced theory. We find that this S-matrix has the same index structure and group factorization properties as the superstring S-matrix computed in hep-th/0611169 but has simpler coefficients, depending only on the difference of two rapidities. While the gauge-fixed form of the reduced action has only the bosonic [SU(2)]4 part of the PSU(2|2) × PSU(2|2) symmetry of the light-cone superstring spectrum as its manifest symmetry we conjecture that it should also have a hidden fermionic symmetry that effectively interchanges bosons and fermions and which should guide us towards understanding the relation between the two S-matrices.

  16. Solving large tomographic linear systems: size reduction and error estimation

    NASA Astrophysics Data System (ADS)

    Voronin, Sergey; Mikesell, Dylan; Slezak, Inna; Nolet, Guust

    2014-10-01

    We present a new approach to reduce a sparse, linear system of equations associated with tomographic inverse problems. We begin by making a modification to the commonly used compressed sparse-row format, whereby our format is tailored to the sparse structure of finite-frequency (volume) sensitivity kernels in seismic tomography. Next, we cluster the sparse matrix rows to divide a large matrix into smaller subsets representing ray paths that are geographically close. Singular value decomposition of each subset allows us to project the data onto a subspace associated with the largest eigenvalues of the subset. After projection we reject those data that have a signal-to-noise ratio (SNR) below a chosen threshold. Clustering in this way assures that the sparse nature of the system is minimally affected by the projection. Moreover, our approach allows for a precise estimation of the noise affecting the data while also giving us the ability to identify outliers. We illustrate the method by reducing large matrices computed for global tomographic systems with cross-correlation body wave delays, as well as with surface wave phase velocity anomalies. For a massive matrix computed for 3.7 million Rayleigh wave phase velocity measurements, imposing a threshold of 1 for the SNR, we condensed the matrix size from 1103 to 63 Gbyte. For a global data set of multiple-frequency P wave delays from 60 well-distributed deep earthquakes we obtain a reduction to 5.9 per cent. This type of reduction allows one to avoid loss of information due to underparametrizing models. Alternatively, if data have to be rejected to fit the system into computer memory, it assures that the most important data are preserved.

  17. Theory of quark mixing matrix and invariant functions of mass matrices

    NASA Astrophysics Data System (ADS)

    Jarloskog, C.

    1987-10-01

    The origin of the quark mixing matrix; super elementary theory of flavor projection operators; equivalences and invariances; the commutator formalism and CP violation; CP conditions for any number of families; the angle between the quark mass matrices; and application to Fritzsch and Stech mass matrices are discussed.

  18. Direct Iterative Nonlinear Inversion by Multi-frequency T-matrix Completion

    NASA Astrophysics Data System (ADS)

    Jakobsen, M.; Wu, R. S.

    2016-12-01

    Researchers in the mathematical physics community have recently proposed a conceptually new method for solving nonlinear inverse scattering problems (like FWI) which is inspired by the theory of nonlocality of physical interactions. The conceptually new method, which may be referred to as the T-matrix completion method, is very interesting since it is not based on linearization at any stage. Also, there are no gradient vectors or (inverse) Hessian matrices to calculate. However, the convergence radius of this promising T-matrix completion method is seriously restricted by it's use of single-frequency scattering data only. In this study, we have developed a modified version of the T-matrix completion method which we believe is more suitable for applications to nonlinear inverse scattering problems in (exploration) seismology, because it makes use of multi-frequency data. Essentially, we have simplified the single-frequency T-matrix completion method of Levinson and Markel and combined it with the standard sequential frequency inversion (multi-scale regularization) method. For each frequency, we first estimate the experimental T-matrix by using the Moore-Penrose pseudo inverse concept. Then this experimental T-matrix is used to initiate an iterative procedure for successive estimation of the scattering potential and the T-matrix using the Lippmann-Schwinger for the nonlinear relation between these two quantities. The main physical requirements in the basic iterative cycle is that the T-matrix should be data-compatible and the scattering potential operator should be dominantly local; although a non-local scattering potential operator is allowed in the intermediate iterations. In our simplified T-matrix completion strategy, we ensure that the T-matrix updates are always data compatible simply by adding a suitable correction term in the real space coordinate representation. The use of singular-value decomposition representations are not required in our formulation since we have developed an efficient domain decomposition method. The results of several numerical experiments for the SEG/EAGE salt model illustrate the importance of using multi-frequency data when performing frequency domain full waveform inversion in strongly scattering media via the new concept of T-matrix completion.

  19. Signed-negabinary-arithmetic-based optical computing by use of a single liquid-crystal-display panel.

    PubMed

    Datta, Asit K; Munshi, Soumika

    2002-03-10

    Based on the negabinary number representation, parallel one-step arithmetic operations (that is, addition and subtraction), logical operations, and matrix-vector multiplication on data have been optically implemented, by use of a two-dimensional spatial-encoding technique. For addition and subtraction, one of the operands in decimal form is converted into the unsigned negabinary form, whereas the other decimal number is represented in the signed negabinary form. The result of operation is obtained in the mixed negabinary form and is converted back into decimal. Matrix-vector multiplication for unsigned negabinary numbers is achieved through the convolution technique. Both of the operands for logical operation are converted to their signed negabinary forms. All operations are implemented by use of a unique optical architecture. The use of a single liquid-crystal-display panel to spatially encode the input data, operational kernels, and decoding masks have simplified the architecture as well as reduced the cost and complexity.

  20. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  1. Body contouring surgery following bariatric surgery and dietetically induced massive weight reduction: a risk analysis.

    PubMed

    de Kerviler, S; Hüsler, R; Banic, A; Constantinescu, M A

    2009-05-01

    This study analyzed the impact of weight reduction method, preoperative, and intraoperative variables on the outcome of reconstructive body contouring surgery following massive weight reduction. All patients presenting with a maximal BMI >/=35 kg/m(2) before weight reduction who underwent body contouring surgery of the trunk following massive weight loss (excess body mass index loss (EBMIL) >/= 30%) between January 2002 and June 2007 were retrospectively analyzed. Incomplete records or follow-up led to exclusion. Statistical analysis focused on weight reduction method and pre-, intra-, and postoperative risk factors. The outcome was compared to current literature results. A total of 104 patients were included (87 female and 17 male; mean age 47.9 years). Massive weight reduction was achieved through bariatric surgery in 62 patients (59.6%) and dietetically in 42 patients (40.4%). Dietetically achieved excess body mass index loss (EBMIL) was 94.20% and in this cohort higher than surgically induced reduction EBMIL 80.80% (p < 0.01). Bariatric surgery did not present increased risks for complications for the secondary body contouring procedures. The observed complications (26.9%) were analyzed for risk factors. Total tissue resection weight was a significant risk factor (p < 0.05). Preoperative BMI had an impact on infections (p < 0.05). No impact on the postoperative outcome was detected in EBMIL, maximal BMI, smoking, hemoglobin, blood loss, body contouring technique or operation time. Corrective procedures were performed in 11 patients (10.6%). The results were compared to recent data. Bariatric surgery does not increase risks for complications in subsequent body contouring procedures when compared to massive dietetic weight reduction.

  2. "G.P.S Matrices" programme: A method to improve the mastery level of social science students in matrices operations

    NASA Astrophysics Data System (ADS)

    Lee, Ken Voon

    2013-04-01

    The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.

  3. Recursive mass matrix factorization and inversion: An operator approach to open- and closed-chain multibody dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.

    1988-01-01

    This report advances a linear operator approach for analyzing the dynamics of systems of joint-connected rigid bodies.It is established that the mass matrix M for such a system can be factored as M=(I+H phi L)D(I+H phi L) sup T. This yields an immediate inversion M sup -1=(I-H psi L) sup T D sup -1 (I-H psi L), where H and phi are given by known link geometric parameters, and L, psi and D are obtained recursively by a spatial discrete-step Kalman filter and by the corresponding Riccati equation associated with this filter. The factors (I+H phi L) and (I-H psi L) are lower triangular matrices which are inverses of each other, and D is a diagonal matrix. This factorization and inversion of the mass matrix leads to recursive algortihms for forward dynamics based on spatially recursive filtering and smoothing. The primary motivation for advancing the operator approach is to provide a better means to formulate, analyze and understand spatial recursions in multibody dynamics. This is achieved because the linear operator notation allows manipulation of the equations of motion using a very high-level analytical framework (a spatial operator algebra) that is easy to understand and use. Detailed lower-level recursive algorithms can readily be obtained for inspection from the expressions involving spatial operators. The report consists of two main sections. In Part 1, the problem of serial chain manipulators is analyzed and solved. Extensions to a closed-chain system formed by multiple manipulators moving a common task object are contained in Part 2. To retain ease of exposition in the report, only these two types of multibody systems are considered. However, the same methods can be easily applied to arbitrary multibody systems formed by a collection of joint-connected regid bodies.

  4. Self-amplified CMOS image sensor using a current-mode readout circuit

    NASA Astrophysics Data System (ADS)

    Santos, Patrick M.; de Lima Monteiro, Davies W.; Pittet, Patrick

    2014-05-01

    The feature size of the CMOS processes decreased during the past few years and problems such as reduced dynamic range have become more significant in voltage-mode pixels, even though the integration of more functionality inside the pixel has become easier. This work makes a contribution on both sides: the possibility of a high signal excursion range using current-mode circuits together with functionality addition by making signal amplification inside the pixel. The classic 3T pixel architecture was rebuild with small modifications to integrate a transconductance amplifier providing a current as an output. The matrix with these new pixels will operate as a whole large transistor outsourcing an amplified current that will be used for signal processing. This current is controlled by the intensity of the light received by the matrix, modulated pixel by pixel. The output current can be controlled by the biasing circuits to achieve a very large range of output signal levels. It can also be controlled with the matrix size and this permits a very high degree of freedom on the signal level, observing the current densities inside the integrated circuit. In addition, the matrix can operate at very small integration times. Its applications would be those in which fast imaging processing, high signal amplification are required and low resolution is not a major problem, such as UV image sensors. Simulation results will be presented to support: operation, control, design, signal excursion levels and linearity for a matrix of pixels that was conceived using this new concept of sensor.

  5. A Case of Massive Pleural Effusion: Pleurodesis by Bleomycin.

    PubMed

    Hasan, R; Khan, O S; Aftabuddin, M; Razzaque, A M; Chowdhury, G A

    2016-04-01

    Malignant pleural effusion is a common complication of primary and metastatic pleural malignancies. Pleurodesis for the management of malignant pleural effusion is intended to achieve symphysis between parietal and visceral pleura, and to prevent relapse of pleural effusion. Many chemical agents are tried to induce inflammation and damage of the pleural mesothelial layer to achieve this symphysis. Hemorrhagic pleural effusion, especially in the right hemithorax commonly occurs as presentation of primary and metastatic pleural malignancies. This case reports massive right-sided hemorrhagic pleural effusion as the sole manifestation of primary lung cancer in a 45 year old man. Patient attended our department of thoracic surgery complaining of cough, shortness of breath and right sided chest pain. A chest X-ray and chest computer tomography (CT) radiograph shows right sided massive pleural effusion. Right sided tube thoracotomy done. Pleural fluid study was done. Fluid for cytopathology was positive for malignant cell. Computed tomography guided fine needle aspiration cytology from right lung lesion was also done. Diagnosis was as small cell carcinoma. Pleural effusion resolved after 9(th) post operative day of chest tube insertion. Bleomycin pleurodesis was done. Day after pleurodesis intra thoracic tube was removed and patient was discharged from hospital on 10(th) Post operative day with an advice to attend the oncology department for further treatment. The protocol of tube thoracostomy and chemical pleurodesis was almost always successful in giving symptomatic relief of respiratory distress for a considerable period of time. However, chemical pleurodesis is not possible in all cases of malignant pleural effusion because it has got potential complication including death.

  6. A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo

    2017-08-01

    In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.

  7. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year.

    PubMed

    Rashid, Mustafa S; Cooper, Cushla; Cook, Jonathan; Cooper, David; Dakin, Stephanie G; Snelling, Sarah; Carr, Andrew J

    2017-12-01

    Background and purpose - There is a need to understand the reasons why a high proportion of rotator cuff repairs fail to heal. Using data from a large randomized clinical trial, we evaluated age and tear size as risk factors for failure of rotator cuff repair. Patients and methods - Between 2007 and 2014, 65 surgeons from 47 hospitals in the National Health Service (NHS) recruited 447 patients with atraumatic rotator cuff tendon tears to the United Kingdom Rotator Cuff Trial (UKUFF) and 256 underwent rotator cuff repair. Cuff integrity was assessed by imaging in 217 patients, at 12 months post-operation. Logistic regression analysis was used to determine the influence of age and intra-operative tear size on healing. Hand dominance, sex, and previous steroid injections were controlled for. Results - The overall healing rate was 122/217 (56%) at 12 months. Healing rate decreased with increasing tear size (small tears 66%, medium tears 68%, large tears 47%, and massive tears 27% healed). The mean age of patients with a healed repair was 61 years compared with 64 years for those with a non-healed repair. Mean age increased with larger tear sizes (small tears 59 years, medium tears 62 years, large tears 64 years, and massive tears 66 years). Increasing age was an independent factor that negatively influenced healing, even after controlling for tear size. Only massive tears were an independent predictor of non-healing, after controlling for age. Interpretation - Although increasing age and larger tear size are both risks for failure of rotator cuff repair healing, age is the dominant risk factor.

  8. Python Winding Itself Around Datacubes: How to Access Massive Multi-Dimensional Arrays in a Pythonic Way

    NASA Astrophysics Data System (ADS)

    Merticariu, Vlad; Misev, Dimitar; Baumann, Peter

    2017-04-01

    While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.

  9. FIMP and muon ( g - 2) in a U(1) Lμ- Lτ model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2017-02-01

    The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via freeze-in. In this scenario the DM never attains thermal equilibrium with the thermal soup because of its feeble coupling strength (˜10-12) with the other particles in the thermal bath and is generally called the Feebly Interacting Massive Particle (FIMP). In this work, we present a gauged U(1) Lμ- Lτ extension of the Standard Model (SM) which has a scalar FIMP DM candidate and can consistently explain the DM relic density bound. In addition, the spontaneous breaking of the U(1) Lμ- Lτ gauge symmetry gives an extra massive neutral gauge boson Z μτ which can explain the muon ( g - 2) data through its additional one-loop contribution to the process. Lastly, presence of three right-handed neutrinos enable the model to successfully explain the small neutrino masses via the Type-I seesaw mechanism. The presence of the spontaneously broken U(1) Lμ- Lτ gives a particular structure to the light neutrino mass matrix which can explain the peculiar mixing pattern of the light neutrinos.

  10. Skeletal Muscle Fibrosis and Stiffness Increase after Rotator Cuff Tendon Injury and Neuromuscular Compromise in a Rat Model

    PubMed Central

    Sato, Eugene J.; Killian, Megan L.; Choi, Anthony J.; Lin, Evie; Esparza, Mary C.; Galatz, Leesa M.; Thomopoulos, Stavros; Ward, Samuel R.

    2015-01-01

    Rotator cuff tears can cause irreversible changes (e.g., fibrosis) to the structure and function of the injured muscle(s). Fibrosis leads to increased muscle stiffness resulting in increased tension at the rotator cuff repair site. This tension influences repairability and healing potential in the clinical setting. However, the micro- and meso-scale structural and molecular sources of these whole-muscle mechanical changes are poorly understood. Here, single muscle fiber and fiber bundle passive mechanical testing was performed on rat supraspinatus and infraspinatus muscles with experimentally induced massive rotator cuff tears (Tenotomy) as well as massive tears with chemical denervation (Tenotomy+BTX) at 8 and 16 weeks post-injury. Titin molecular weight, collagen content, and myosin heavy chain profiles were measured and correlated with mechanical variables. Single fiber stiffness was not different between controls and experimental groups. However, fiber bundle stiffness was significantly increased at 8 weeks in the Tenotomy+BTX group compared to Tenotomy or control groups. Many of the changes were resolved by 16 weeks. Only fiber bundle passive mechanics was weakly correlated with collagen content. These data suggest that tendon injury with concomitant neuromuscular compromise results in extracellular matrix production and increases in stiffness of the muscle, potentially complicating subsequent attempts for surgical repair. PMID:24838823

  11. Dual antiplatelet treatment in patients candidates for abdominal surgery.

    PubMed

    Illuminati, Giulio; Ceccanei, Gianluca; Pacilè, Maria A; Pizzardi, Giulia; Palumbo, Piergaspare; Vietri, Francesco

    2013-01-01

    With the increasing diffusion of percutaneous interventions (PCI), surgeons are often faced with the problem of operating on patients under dual antiplatelet treatment. Replacing dual antiplatelet regiment with low molecular weight heparin may expose to the abrupt thrombosis of coronary stent and massive myocardial infarction. The purpose of this study was to test the hypothesis that abdominal operations can be safely performed under dual antiplatelet treatment. Eleven patients underwent 5 colectomies, 3 nefrectomies, 2 gastrectomies and 1 hysterectomy under aspirin and plavix without any significant perioperative hemorrhage. These preliminary results show that abdominal operations can be safely performed under dual antiplatelet regimen. Abdominal surgery, Dual antiplatelet treatment.

  12. Decomposition of the Multistatic Response Matrix and Target Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D H

    2008-02-14

    Decomposition of the time-reversal operator for an array, or equivalently the singular value decomposition of the multistatic response matrix, has been used to improve imaging and localization of targets in complicated media. Typically, each singular value is associated with one scatterer even though it has been shown in several cases that a single scatterer can generate several singular values. In this paper we review the analysis of the time-reversal operator (TRO), or equivalently the multistatic response matrix (MRM), of an array system and a small target. We begin with two-dimensional scattering from a small cylinder then show the results formore » a small non-spherical target in three dimensions. We show that the number and magnitudes of the singular values contain information about target composition, shape, and orientation.« less

  13. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix designmore » that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.« less

  14. Application of Boston matrix combined with SWOT analysis on operational development and evaluations of hospital development.

    PubMed

    Tao, Z-Q; Shi, A-M

    2016-05-01

    The aim of this study is to explore the application of Boston matrix combined with SWOT analysis on operational development and evaluations of hospital departments. We selected 73 clinical and medical technology departments of our hospital from 2011 to 2013, and evaluated our hospital by Boston matrix combined with SWOT analysis according to the volume of services, medical quality, work efficiency, patients' evaluations, development capacity, operational capability, economic benefits, comprehensive evaluation of hospital achievement, innovation ability of hospital, influence of hospital, human resources of hospital, health insurance costs, etc. It was found that among clinical departments, there were 11 in Stars (22.4%), 17 in cash cow (34.7%), 15 in question marks (31.2%), 6 Dogs (12.2%), 16 in the youth stage of life cycle assessment (27.6%), 14 in the prime stage (24.1%), 12 in the stationary stage (20.7%), 9 in the aristocracy stage (15.5%) and 7 in the recession stage (12.1%). Among medical technology departments, there were 5 in Stars (20.8%), 1 in Cash cow (4.2%), 10 in question marks (41.6%), 8 Dogs (29.1%), 9 in the youth stage of life cycle assessment (37.5%), 4 in the prime stage (16.7%), 4 in the stable stage (16.7%), 1 in the aristocracy stage (4.2%) and 6 in the recession stage (25%). In conclusion, Boston matrix combined with SWOT analysis is suitable for operational development and comprehensive evaluations of hospital development, and it plays an important role in providing hospitals with development strategies.

  15. BRD4 inhibition for the treatment of pathological organ fibrosis

    PubMed Central

    Stratton, Matthew S.; Haldar, Saptarsi M.; McKinsey, Timothy A.

    2017-01-01

    Fibrosis is defined as excess deposition of extracellular matrix, resulting in tissue scarring and organ dysfunction. It is estimated that 45% of deaths in the developed world are due to fibrosis-induced organ failure. Despite the well-accepted role of fibrosis in the pathogenesis of numerous diseases, there are only two US Food and Drug Administration–approved anti-fibrotic therapies, both of which are currently restricted to the treatment of pulmonary fibrosis. Thus, organ fibrosis represents a massive unmet medical need. Here, we review recent findings suggesting that an epigenetic regulatory protein, BRD4, is a nodal effector of organ fibrosis, and we highlight the potential of small-molecule BRD4 inhibitors for the treatment of diverse fibrotic diseases. PMID:28721198

  16. Sintering behavior of U 80 at.%Zr powder compacts in a vacuum environment

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Kyu; Lee, Chong-Tak; Sohn, Dong-Seong

    2008-01-01

    Sintering behavior of U-80 at.%Zr powder compacts in a temperature range from 1100 to 1500 °C in a vacuum of 1 × 10 -4 Pa was evaluated. The sintered density depended more on the sintering temperature than on the sintering time. The sintered specimens consisted of the δ-UZr 2 matrix with acicular α-Zr precipitates, but it still had un-reacted zirconium when the sintering temperature was 1100 °C. The uranium depletion near the surface of the specimens sintered at temperatures above 1300 °C was detected. Massive Zr(O) grains in the sintered specimen were found, and their formation was restrained when the cooling rate from the sintering temperature was increased.

  17. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  18. Research on evaluation of third-party governance operation services for environmental pollution

    NASA Astrophysics Data System (ADS)

    Xu, Bingsheng; Ling, Lin; Jin, Huang

    2017-11-01

    This paper focuses on the evaluation of third-party governance operation services for environmental pollution, and determines the evaluation indicator system composed of 5 primary indicators as the basic competence of enterprise, operation of equipment, technique economics, environmental benefit and management level, and 26 secondary indicators via policies and regulations, standards, literature research and expert consultation in combination with the composition elements, service value judgment factors and full-life cycle of the work, providing theoretical support for the effect evaluation of third-governance over the environmental pollution in China. Then, the hierarchical analytic matrix is formed by analyzing the environmental pollution governance evaluation indicator system via analytic hierarchy process and scoring the importance of various indicators by experts by applying the Delphi method. The feature vector of the matrix is then calculated to obtain the weight of each indicator and verify the effectiveness of the Delphi method and obtain the comprehensive weight by judging the consistency of the matrix, so as to finally determine the overall ordering level of the importance of secondary indicators.

  19. Real time evolution at finite temperatures with operator space matrix product states

    NASA Astrophysics Data System (ADS)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  20. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  1. Applications of massively parallel computers in telemetry processing

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; Pritchard, Jim; Knoble, Gordon

    1994-01-01

    Telemetry processing refers to the reconstruction of full resolution raw instrumentation data with artifacts, of space and ground recording and transmission, removed. Being the first processing phase of satellite data, this process is also referred to as level-zero processing. This study is aimed at investigating the use of massively parallel computing technology in providing level-zero processing to spaceflights that adhere to the recommendations of the Consultative Committee on Space Data Systems (CCSDS). The workload characteristics, of level-zero processing, are used to identify processing requirements in high-performance computing systems. An example of level-zero functions on a SIMD MPP, such as the MasPar, is discussed. The requirements in this paper are based in part on the Earth Observing System (EOS) Data and Operation System (EDOS).

  2. Announcing the First Results from Daya Bay: Discovery of a New Kind of

    Science.gov Websites

    collaboration observed tens of thousands of interactions of electron antineutrinos, caught by six massive was the sizable disappearance, equal to about six percent. Although disappearance has been observed in . "Even with only the six detectors already operating, we have more target mass than any similar

  3. Massive Multiplayer Online Role Playing Games and Interaction: A Measurable Model of Interaction for Online Learning

    ERIC Educational Resources Information Center

    Anderson, Bodi

    2014-01-01

    This current study examines the need for operational definitions of the concept of interaction in distance education studies. It is proposed that a discourse analysis of linguistic features conversation noted as being representative of interaction can be used to operationalize interaction in synchronous CMC. This study goes on compare two…

  4. Big City Schools in America: The Views of Superintendents and School Board Presidents.

    ERIC Educational Resources Information Center

    Kennedy, Joseph C.

    Attitudes of the superintendents and school board officials of 25 major cities concerning the operation of their schools were determined. In lengthy discussions, these officials observed that big city schools need massive financial assistance from State and Federal governments, since the local property tax as a base is inadequate, and because the…

  5. General of the Army George C. Marshall’s Strategic Leadership

    DTIC Science & Technology

    2017-03-15

    coordinate organizational activities… structure tasks, engage in planning, build vision, acquire resources to achieve goals, manage crises, personal...organization while initiating massive changes in organizational structure and ideology in spite of conflicting traditions and preferences. His enabling...immediately upon taking the position, Marshall realized that an antiquated organizational structure interfered with daily operations. He told his

  6. Unique Impressions

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2008-01-01

    For much of the 20th century, it was the engine that powered one of nation's most massive retail operations. By the beginning of the 21st century, the historic building was no longer needed to supply energy to what remained of the once bustling Sears, Roebuck and Co. campus on the West Side of Chicago. The original purpose of the Power House, as…

  7. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  8. Modifying a numerical algorithm for solving the matrix equation X + AX T B = C

    NASA Astrophysics Data System (ADS)

    Vorontsov, Yu. O.

    2013-06-01

    Certain modifications are proposed for a numerical algorithm solving the matrix equation X + AX T B = C. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from O( n 4) to O( n 3) arithmetic operations.

  9. SPAR reference manual

    NASA Technical Reports Server (NTRS)

    Whetstone, W. D.

    1976-01-01

    The functions and operating rules of the SPAR system, which is a group of computer programs used primarily to perform stress, buckling, and vibrational analyses of linear finite element systems, were given. The following subject areas were discussed: basic information, structure definition, format system matrix processors, utility programs, static solutions, stresses, sparse matrix eigensolver, dynamic response, graphics, and substructure processors.

  10. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight mass spectrometry of beta-(1 --> 3), beta-(1 --> 4)-xylans from Nothogenia fastigiata using nor-harmane as matrix.

    PubMed

    Fukuyama, Yuko; Kolender, Adriana A; Nishioka, Masae; Nonami, Hiroshi; Matulewicz, María C; Erra-Balsells, Rosa; Cerezo, Alberto S

    2005-01-01

    Three xylan fractions isolated from the red seaweed Nothogenia fastigiata (Nemaliales) were analyzed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOFMS). UV-MALDI-TOFMS was carried out in the linear and reflectron modes, and as routine in the positive and negative ion modes. Of the several matrices tested, nor-harmane was the only effective one giving good spectra in the positive ion mode. The number-average molar masses of two of the fractions, calculated from the distribution profiles, were lower than those determined previously by (1)H NMR analysis, suggesting a decrease in the ionization efficiency with increasing molecular weight; weight-average molar mass and polydispersity index were also determined. As the xylans retained small but significant quantities of calcium salts, the influence of added Ca(2+) as CaCl(2) on UV-MALDI-MS was investigated. The simultaneous addition of sodium chloride and calcium chloride was also analyzed. Addition of sodium chloride did not change the distribution profile of the native sample showing that the inhibitory effect is due to Ca(2+) and not to Cl(-). Addition of calcium chloride with 1:1 analyte/salt molar ratio gave spectra with less efficient desorption/ionization of oligomers; the signals of these oligomers were completely suppressed when the addition of the salt became massive (1:100 analyte/salt molar ratio). Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  12. Collagen matrix as an inlay in endoscopic skull base reconstruction.

    PubMed

    Oakley, G M; Christensen, J M; Winder, M; Jonker, B P; Davidson, A; Steel, T; Teo, C; Harvey, R J

    2018-03-01

    Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described. A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined. Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients. Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.

  13. Multipole expansions and Fock symmetry of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Meremianin, A. V.; Rost, J.-M.

    2006-10-01

    The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.

  14. Implementation of a digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    NASA Technical Reports Server (NTRS)

    Habiby, Sarry F.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.

  15. Applications of a new mass-driver concept

    NASA Technical Reports Server (NTRS)

    Oneill, G. K.

    1981-01-01

    A description of the operating principles and requirements of a novel mass-driver concept is presented. The design obtains acceleration of payload bucket coils by means of transverse focussing from strong, off-axis restoring forces that are produced by drive coils operating in a 'pull-only' mode. The concept offers the unprecedented possibility of operating high-performance mass-drivers entirely within the limitations of existing commercial switching devices, such as silicon-controlled rectifiers, spark gaps, vacuum-triggered arcs or vacuum mechanical switches. Representative applications of the concept described are: (1) a large-diameter magnetic lunar launcher for payloads having autonomous maneuvering; (2) an intermediate-diameter launcher with long operational life; and (3) a reaction engine for orbit transfer of large, massive objects.

  16. Recursive dynamics for flexible multibody systems using spatial operators

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1990-01-01

    Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed.

  17. [Three cases of uterine cervix lymphoma. Two of them preceded by erroneous hystology reports, resulting in radical surgery with lymphnode desection. Third case--lethality of a 21 year old patient in the course of chemotherapy].

    PubMed

    Hristamian, A; Hristamian, V

    2014-01-01

    Three cases of primary uterine cervix lymphomas are presented. Two of the cases were preceded by erroneous histology reports. Subsequent radical surgery and post operative establishment of the correct diagnosis. Case 3--young patient with massive tumor under chemotherapy Lethal outcome in the chemotherapy course as a result of multiple PE, that preceded the planned operative intervention. A literature review of this extremely rare pathology is presented.

  18. An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising

    PubMed Central

    Guo, Muran; Chen, Tao; Wang, Ben

    2017-01-01

    Co-prime arrays can estimate the directions of arrival (DOAs) of O(MN) sources with O(M+N) sensors, and are convenient to analyze due to their closed-form expression for the locations of virtual lags. However, the number of degrees of freedom is limited due to the existence of holes in difference coarrays if subspace-based algorithms such as the spatial smoothing multiple signal classification (MUSIC) algorithm are utilized. To address this issue, techniques such as positive definite Toeplitz completion and array interpolation have been proposed in the literature. Another factor that compromises the accuracy of DOA estimation is the limitation of the number of snapshots. Coarray-based processing is particularly sensitive to the discrepancy between the sample covariance matrix and the ideal covariance matrix due to the finite number of snapshots. In this paper, coarray interpolation based on matrix completion (MC) followed by a denoising operation is proposed to detect more sources with a higher accuracy. The effectiveness of the proposed method is based on the capability of MC to fill in holes in the virtual sensors and that of MC denoising operation to reduce the perturbation in the sample covariance matrix. The results of numerical simulations verify the superiority of the proposed approach. PMID:28509886

  19. An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising.

    PubMed

    Guo, Muran; Chen, Tao; Wang, Ben

    2017-05-16

    Co-prime arrays can estimate the directions of arrival (DOAs) of O ( M N ) sources with O ( M + N ) sensors, and are convenient to analyze due to their closed-form expression for the locations of virtual lags. However, the number of degrees of freedom is limited due to the existence of holes in difference coarrays if subspace-based algorithms such as the spatial smoothing multiple signal classification (MUSIC) algorithm are utilized. To address this issue, techniques such as positive definite Toeplitz completion and array interpolation have been proposed in the literature. Another factor that compromises the accuracy of DOA estimation is the limitation of the number of snapshots. Coarray-based processing is particularly sensitive to the discrepancy between the sample covariance matrix and the ideal covariance matrix due to the finite number of snapshots. In this paper, coarray interpolation based on matrix completion (MC) followed by a denoising operation is proposed to detect more sources with a higher accuracy. The effectiveness of the proposed method is based on the capability of MC to fill in holes in the virtual sensors and that of MC denoising operation to reduce the perturbation in the sample covariance matrix. The results of numerical simulations verify the superiority of the proposed approach.

  20. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  1. Stochastic optimal operation of reservoirs based on copula functions

    NASA Astrophysics Data System (ADS)

    Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen

    2018-02-01

    Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.

  2. Harnessing molecular excited states with Lanczos chains.

    PubMed

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-24

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  3. Optimization of the Brillouin operator on the KNL architecture

    NASA Astrophysics Data System (ADS)

    Dürr, Stephan

    2018-03-01

    Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.

  4. Low-power SXGA active matrix OLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2009-05-01

    This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.

  5. Harnessing molecular excited states with Lanczos chains

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-01

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  6. Construction of general colored R matrices for the Yang-Baxter equation and q-boson realization of quantum algebra SL[sub q](2) when q is a root of unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, M.L.; Sun, C.P.; Xue, K.

    1992-10-20

    In this paper, through a general q-boson realization of quantum algebra sl[sub q](2) and its universal R matrix an operator R matrix with many parameters is obtained in terms of q-boson operators. Building finite-dimensional representations of q-boson algebra, the authors construct various colored R matrices associated with nongeneric representations of sl[sub q](2) with dimension-independent parameters. The nonstandard R matrices obtained by Lee-Couture and Murakami are their special examples.

  7. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  8. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis.

    PubMed

    Bellac, Caroline L; Dufour, Antoine; Krisinger, Michael J; Loonchanta, Anantasak; Starr, Amanda E; Auf dem Keller, Ulrich; Lange, Philipp F; Goebeler, Verena; Kappelhoff, Reinhild; Butler, Georgina S; Burtnick, Leslie D; Conway, Edward M; Roberts, Clive R; Overall, Christopher M

    2014-10-23

    Resolution of inflammation reduces pathological tissue destruction and restores tissue homeostasis. Here, we used a proteomic protease substrate discovery approach, terminal amine isotopic labeling of substrates (TAILS), to analyze the role of the macrophage-specific matrix metalloproteinase-12 (MMP12) in inflammation. In murine peritonitis, MMP12 inactivates antithrombin and activates prothrombin, prolonging the activated partial thromboplastin time. Furthermore, MMP12 inactivates complement C3 to reduce complement activation and inactivates the chemoattractant anaphylatoxins C3a and C5a, whereas iC3b and C3b opsonin cleavage increases phagocytosis. Loss of these anti-inflammatory activities in collagen-induced arthritis in Mmp12(-/-) mice leads to unresolved synovitis and extensive articular inflammation. Deep articular cartilage loss is associated with massive neutrophil infiltration and abnormal DNA neutrophil extracellular traps (NETs). The NETs are rich in fibrin and extracellular actin, which TAILS identified as MMP12 substrates. Thus, macrophage MMP12 in arthritis has multiple protective roles in countering neutrophil infiltration, clearing NETs, and dampening inflammatory pathways to prepare for the resolution of inflammation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Massive-scale gene co-expression network construction and robustness testing using random matrix theory.

    PubMed

    Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.

  10. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    NASA Astrophysics Data System (ADS)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  11. High precision computing with charge domain devices and a pseudo-spectral method therefor

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor); Fijany, Amir (Inventor); Zak, Michail (Inventor)

    1997-01-01

    The present invention enhances the bit resolution of a CCD/CID MVM processor by storing each bit of each matrix element as a separate CCD charge packet. The bits of each input vector are separately multiplied by each bit of each matrix element in massive parallelism and the resulting products are combined appropriately to synthesize the correct product. In another aspect of the invention, such arrays are employed in a pseudo-spectral method of the invention, in which partial differential equations are solved by expressing each derivative analytically as matrices, and the state function is updated at each computation cycle by multiplying it by the matrices. The matrices are treated as synaptic arrays of a neural network and the state function vector elements are treated as neurons. In a further aspect of the invention, moving target detection is performed by driving the soliton equation with a vector of detector outputs. The neural architecture consists of two synaptic arrays corresponding to the two differential terms of the soliton-equation and an adder connected to the output thereof and to the output of the detector array to drive the soliton equation.

  12. Microbial megacities fueled by methane oxidation in a mineral spring cave

    PubMed Central

    Karwautz, Clemens; Kus, Günter; Stöckl, Michael; Neu, Thomas R; Lueders, Tillmann

    2018-01-01

    Massive biofilms have been discovered in the cave of an iodine-rich former medicinal spring in southern Germany. The biofilms completely cover the walls and ceilings of the cave, giving rise to speculations about their metabolism. Here we report on first insights into the structure and function of the biofilm microbiota, combining geochemical, imaging and molecular analytics. Stable isotope analysis indicated that thermogenic methane emerging into the cave served as an important driver of biofilm formation. The undisturbed cavern atmosphere contained up to 3000 p.p.m. methane and was microoxic. A high abundance and diversity of aerobic methanotrophs primarily within the Methylococcales (Gammaproteobacteria) and methylotrophic Methylophilaceae (Betaproteobacteria) were found in the biofilms, along with a surprising diversity of associated heterotrophic bacteria. The highest methane oxidation potentials were measured for submerged biofilms on the cavern wall. Highly organized globular structures of the biofilm matrix were revealed by fluorescent lectin staining. We propose that the extracellular matrix served not only as an electron sink for nutrient-limited biofilm methylotrophs but potentially also as a diffusive barrier against volatilized iodine species. Possible links between carbon and iodine cycling in this peculiar habitat are discussed. PMID:28949325

  13. Development of an EMC3-EIRENE Synthetic Imaging Diagnostic

    NASA Astrophysics Data System (ADS)

    Meyer, William; Allen, Steve; Samuell, Cameron; Lore, Jeremy

    2017-10-01

    2D and 3D flow measurements are critical for validating numerical codes such as EMC3-EIRENE. Toroidal symmetry assumptions preclude tomographic reconstruction of 3D flows from single camera views. In addition, the resolution of the grids utilized in numerical code models can easily surpass the resolution of physical camera diagnostic geometries. For these reasons we have developed a Synthetic Imaging Diagnostic capability for forward projection comparisons of EMC3-EIRENE model solutions with the line integrated images from the Doppler Coherence Imaging diagnostic on DIII-D. The forward projection matrix is 2.8 Mpixel by 6.4 Mcells for the non-axisymmetric case we present. For flow comparisons, both simple line integral, and field aligned component matrices must be calculated. The calculation of these matrices is a massive embarrassingly parallel problem and performed with a custom dispatcher that allows processing platforms to join mid-problem as they become available, or drop out if resources are needed for higher priority tasks. The matrices are handled using standard sparse matrix techniques. Prepared by LLNL under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences. LLNL-ABS-734800.

  14. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features

    PubMed Central

    Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia

    2016-01-01

    For more than a century, several inclusions have been mixed with Portland cement—nowadays the most-consumed construction material worldwide—to improve both the strength and durability required for construction. The present paper describes the different families of inclusions that can be combined with cement matrix and reviews the achievements reported to date regarding mechanical performance, as well as two other innovative functionalities of growing importance: reducing the high carbon footprint of Portland cement, and obtaining new smart features. Nanomaterials stand out in the production of such advanced features, allowing the construction of smart or multi-functional structures by means of thermal- and strain-sensing, and photocatalytic properties. The first self-cleaning concretes (photocatalytic) have reached the markets. In this sense, it is expected that smart concretes will be commercialized to address specialized needs in construction and architecture. Conversely, other inclusions that enhance strength or reduce the environmental impact remain in the research stage, in spite of the promising results reported in these issues. Despite the fact that such functionalities are especially profitable in the case of massive cement consumption, the shift from the deeply established Portland cement to green cements still has to overcome economic, institutional, and technical barriers. PMID:28774091

  15. The supersymmetric method in random matrix theory and applications to QCD

    NASA Astrophysics Data System (ADS)

    Verbaarschot, Jacobus

    2004-12-01

    The supersymmetric method is a powerful method for the nonperturbative evaluation of quenched averages in disordered systems. Among others, this method has been applied to the statistical theory of S-matrix fluctuations, the theory of universal conductance fluctuations and the microscopic spectral density of the QCD Dirac operator. We start this series of lectures with a general review of Random Matrix Theory and the statistical theory of spectra. An elementary introduction of the supersymmetric method in Random Matrix Theory is given in the second and third lecture. We will show that a Random Matrix Theory can be rewritten as an integral over a supermanifold. This integral will be worked out in detail for the Gaussian Unitary Ensemble that describes level correlations in systems with broken time-reversal invariance. We especially emphasize the role of symmetries. As a second example of the application of the supersymmetric method we discuss the calculation of the microscopic spectral density of the QCD Dirac operator. This is the eigenvalue density near zero on the scale of the average level spacing which is known to be given by chiral Random Matrix Theory. Also in this case we use symmetry considerations to rewrite the generating function for the resolvent as an integral over a supermanifold. The main topic of the second last lecture is the recent developments on the relation between the supersymmetric partition function and integrable hierarchies (in our case the Toda lattice hierarchy). We will show that this relation is an efficient way to calculate superintegrals. Several examples that were given in previous lectures will be worked out by means of this new method. Finally, we will discuss the quenched QCD Dirac spectrum at nonzero chemical potential. Because of the nonhermiticity of the Dirac operator the usual supersymmetric method has not been successful in this case. However, we will show that the supersymmetric partition function can be evaluated by means of the replica limit of the Toda lattice equation.

  16. An efficient approach to CI: General matrix element formulas for spin-coupled particle-hole excitations

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1980-03-01

    A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.

  17. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    NASA Astrophysics Data System (ADS)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  18. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  19. Dynamic Jahn-Teller effect: Calculation of fine structure spectrum, isotope shift and Zeeman behavior at deep center Ni2+ in CdS

    NASA Astrophysics Data System (ADS)

    Schoepp, Juergen

    The internal transition of the deep center Ni2+ in II to IV semiconductor cadmium sulfide is examined with reference to crystal field theory. An algorithm was developed for calculation, in a basis fitted to trigonal symmetry, of fine structure operator matrix which is made of the sum of operators from spin trajectory coupling, trigonal field and electron phonon coupling. The dependence of energy level on the mass was calculated in order to examine the isotropy effect at Ni2+ transition. The mass dependence of phonon energy was estimated in an atomic cluster by using a valence force model from Keating for elastic energy. The Zeeman behavior of Ni2+ transition was examined for magnetic fields; the Zeeman operator was added to the fine structure operator and the resulting matrix was diagonalized. It is noticed that calculations are quantitatively and qualitatively in agreement with experiments.

  20. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praphairaksit, Narong

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at ~70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W withmore » an outer gas flow rate of ~4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression of signal for even the most troublesome combination of light analyte and heavy matrix elements can be attenuated from 90-99% to only 2-10% for 2 mM matrix solutions with an ultrasonic nebulizer. The supplemental electron current can be adjusted to ''titrate'' out the matrix effects as desired.« less

Top