Science.gov

Sample records for massive relaxed galaxy

  1. The flat density profiles of massive, and relaxed galaxy clusters

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003-0.03r200, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = -0.88 in the case of A2390, and minimum value α = -0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5-10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, Re, and the BCG mass, and a correlation among the core radius rcore, and Re. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and Re is due to the fact that in order to have a total mass density profile which is NFW

  2. The flat density profiles of massive, and relaxed galaxy clusters

    SciTech Connect

    Popolo, A. Del

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total

  3. The Dark Matter Halos of Massive, Relaxed Galaxy Clusters Observed With Chandra

    SciTech Connect

    Schmidt, Robert W.; Allen, S.W.; /KIPAC, Menlo Park

    2006-10-11

    We use the Chandra X-ray Observatory to study the dark matter halos of 34 massive, dynamically relaxed galaxy clusters, spanning the redshift range 0.06 < z < 0.7. The observed dark matter and total mass (dark-plus-luminous matter) profiles can be approximated by the Navarro Frenk & White (hereafter NFW) model for cold dark matter (CDM) halos; for {approx} 80 percent of the clusters, the NFW model provides a statistically acceptable fit. In contrast, the singular isothermal sphere model can, in almost every case, be completely ruled out. We observe a well-defined mass-concentration relation for the clusters with a normalization and intrinsic scatter in good agreement with the predictions from simulations. The slope of the mass-concentration relation, c {infinity} M{sub vir}{sup a}/(1 + z){sup b} with a = -0.41 {+-} 0.11 at 95 percent confidence, is steeper than the value a {approx} -0.1 predicted by CDM simulations for lower mass halos. With the slope a included as a free fit parameter, the redshift evolution of the concentration parameter, b = 0.54 {+-} 0.47 at 95 percent confidence, is also slower than, but marginally consistent with, the same simulations (b {approx} 1). Fixing a {approx} -0.1 leads to an apparent evolution that is significantly slower, b = 0.20 {+-} 0.45, although the goodness of fit in this case is significantly worse. Using a generalized NFW model, we find the inner dark matter density slope, a, to be consistent with unity at 95 percent confidence for the majority of clusters. Combining the results for all clusters for which the generalized NFW model provides a good description of the data, we measure ? = 0.88 {+-} 0.29 at 95 percent confidence, in agreement with CDM model predictions.

  4. THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. II. SEPARATING LUMINOUS AND DARK MATTER IN CLUSTER CORES

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Sand, David J.

    2013-03-01

    We present stellar and dark matter (DM) density profiles for a sample of seven massive, relaxed galaxy clusters derived from strong and weak gravitational lensing and resolved stellar kinematic observations within the centrally located brightest cluster galaxies (BCGs). In Paper I of the series, we demonstrated that the total density profile derived from these data, which span three decades in radius, is consistent with numerical DM-only simulations at radii {approx}> 5-10 kpc, despite the significant contribution of stellar material in the core. Here, we decompose the inner mass profiles of these clusters into stellar and dark components. Parameterizing the DM density profile as a power law {rho}{sub DM}{proportional_to}r {sup -{beta}} on small scales, we find a mean slope ({beta}) = 0.50 {+-} 0.10(random){sup +0.14} {sub -0.13}(systematic). Alternatively, cored Navarro-Frenk-White (NFW) profiles with (log r {sub core}/kpc) = 1.14 {+-} 0.13{sup +0.14} {sub -0.22} provide an equally good description. These density profiles are significantly shallower than canonical NFW models at radii {approx}< 30 kpc, comparable to the effective radii of the BCGs. The inner DM profile is correlated with the distribution of stars in the BCG, suggesting a connection between the inner halo and the assembly of stars in the central galaxy. The stellar mass-to-light ratio inferred from lensing and stellar dynamics is consistent with that inferred using stellar population synthesis models if a Salpeter initial mass function is adopted. We compare these results to theories describing the interaction between baryons and DM in cluster cores, including adiabatic contraction models and the possible effects of galaxy mergers and active galactic nucleus feedback, and evaluate possible signatures of alternative DM candidates.

  5. THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. I. THE TOTAL DENSITY OVER THREE DECADES IN RADIUS

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Sand, David J.; Nipoti, Carlo; Richard, Johan; Jullo, Eric

    2013-03-01

    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive (M {sub 200} = 0.4-2 Multiplication-Sign 10{sup 15} M {sub Sun }), relaxed galaxy clusters with centrally located brightest cluster galaxies (BCGs) at z = 0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of {approx_equal} 3-3000 kpc. We present Keck spectroscopy yielding seven new spectroscopic redshifts of multiply imaged sources and extended stellar velocity dispersion profiles of the BCGs. Lensing-derived mass profiles typically agree with independent X-ray estimates within {approx_equal} 15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated or compressed along the line of sight. The inner logarithmic slope {gamma}{sub tot} of the total density profile measured over r/r {sub 200} = 0.003-0.03, where {rho}{sub tot}{proportional_to}r{sup -{gamma}{sub t}{sub o}{sub t}}, is found to be nearly universal, with a mean ({gamma}{sub tot}) = 1.16 {+-} 0.05(random){sup +0.05} {sub -0.07} (systematic) and an intrinsic scatter {sigma}{sub {gamma}} < 0.13 (68% confidence). This is further supported by the very homogeneous shape of the observed velocity dispersion profiles, which are mutually consistent after a simple scaling. Remarkably, this slope agrees closely with high-resolution numerical simulations that contain only DM, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold DM is a better description of the total mass density at radii {approx}> 5-10 kpc than that of DM alone. Hydrodynamical simulations that include baryons, cooling, and

  6. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  7. Massive Galaxies at z>4

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy G.; Mobasher, B.

    2008-03-01

    Combining observational data from optical to mid-infrared wavelengths, it has become possible to search for galaxies at look-back times of 12-13 Gyrs. The expectation is to find small and actively star forming systems. While these type of galaxies are indeed seen, a different type of galaxies are also found. These are characterized by having a stellar population which is old, relative to the age of the universe at that epoch, formation redshifts are in the range z=9-15, and to have a large stellar mass, in excess of (5-10) 10^10 Mo. In addition, these stellar systems are extra-odinarily compact, with half-ligth radii of just a few kpc. No counterpart to these objects can be identified in the local universe. In a recent study, we searched for such galaxies at redshifts zɱ in the GOODS South field, finding 11 candidates. Here we extend the search to include old and massive galaxies in the redshift range 4

  8. Massive relic galaxies prefer dense environments

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc

    2016-09-01

    We study the preferred environments of z ˜ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ˜ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ˜ 2 is ˜0.04 per cent for the whole massive galaxy population with M⋆ > 1010 M⊙. This fraction rises to ˜0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  9. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  10. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  11. Superdense Massive Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Cenarro, A. Javier; de Lorenzo-Cáceres, Adriana; Vazdekis, Alexandre; de la Rosa, Ignacio G.; Cava, Antonio

    2009-02-01

    Superdense massive galaxies (re ~ 1 kpc; M ~ 1011 M sun) were common in the early universe (z gsim 1.5). Within some hierarchical merging scenarios, a non-negligible fraction (1%-10%) of these galaxies is expected to survive since that epoch, retaining their compactness and presenting old stellar populations in the present universe. Using the NYU Value-Added Galaxy Catalog from the Sloan Digital Sky Survey Data Release 6, we find only a tiny fraction of galaxies (~0.03%) with re lsim 1.5 kpc and M sstarf gsim 8 × 1010 M sun in the local universe (z < 0.2). Surprisingly, they are relatively young (~2 Gyr) and metal-rich ([Z/H] ~0.2). The consequences of these findings within the current two competing size evolution scenarios for the most massive galaxies ("dry" mergers vs. "puffing up" due to quasar activity) are discussed.

  12. Models of violently relaxed galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, David; Tremaine, Scott; Johnstone, Doug

    1989-02-01

    The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.

  13. Hyper massive black holes in evolved galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Cruz, Fernando J.

    2015-09-01

    From the SDSS DR7 we took a sample of 16733 galaxies which do not show all of the emission lines required to classify their activity according to the classical BPT diagram (Baldwin et al. 1981 PASP). Since they do not show these emission lines they are thought to be evolved enough so to host Hyper Massive Black holes. We compared their statistical properties with other galaxies from the SDSS DR7 which do show emission lines and confirmed that their M-sigma relationship correspond to HMBHs (Gutelkin et al. 2009 ApJ) and also that their SFH confirms evolution. We also analyzed them with a new Diagnostic Diagram in the IR (Coziol et al. 2015 AJ) and found that their position in the IR color space (W3W4 vs W2W3) correspond to AGN activity with current low SF, another confirmation of an evolved galaxy. The position of our final sample in the IR diagram is in the same region in which Holm 15A lies, this galaxy is considered to host the most massive BHs in the nearby universe (Lopez-Cruz et al. 2014 ApJL). The morphology of these galaxies (all of them are classified as elliptical) confirms that they are very evolved. We claim that the hyper massive BH lie in galaxies very evolved and with very low SF and without clear AGN activity in the BPT diagram.

  14. Dwarf galaxy evolution within the environments of massive galaxies

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Klypin, Anatoly A.; Ceverino, Daniel; Trujillo-Gomez, Sebastian; Primack, Joel R.

    2016-01-01

    Understanding galaxy evolution depends on connecting large-scale structure determined by the ΛCDM model with, at minimum, the small-scale physics of gas, star formation, and stellar feedback. Formation of galaxies within dark matter halos is sensitive to the physical phenomena occurring within and around the halo. This is especially true for dwarf galaxies, which have the smallest potential wells and are more susceptible to the effects of gas ionization and removal than larger galaxies. At dwarf galaxies scales comparisons of dark matter-only simulations with observations has unveiled various differences including the core-cusp, the missing satellites, and the too-big-to-fail problems. We have run a new suite of hydrodynamical simulations using the ART code to examine the evolution of dwarf galaxies in massive host environments. These are cosmological zoom-in simulations including deterministic star formation and stellar feedback in the form of supernovae feedback, stellar winds, radiation pressure, and photoionization pressure. We simulates galaxies with final halo masses on the order of 1012 M⊙ with high resolution, allowing us to examine the satellite dwarf galaxies and local isolated dwarf galaxies around each primary galaxy. We analyzed the abundance and structure of these dwarfs specifically the velocity function, their star formation rates, core creation and the circumgalactic medium. By reproducing observations of dwarf galaxies in simulations we show how including baryons in simulations relieves tensions seen in comparing dark matter only simulations with observations.

  15. Empirical measurements of massive galaxy and active galaxy evolution

    NASA Astrophysics Data System (ADS)

    Cool, Richard Jacob

    Using new wide-area galaxy redshift surveys, we explore the evolution of the most massive galaxies and the most luminous quasars in the universe over much of cosmic history. Quasars and massive red galaxies both are extremes; the most luminous high redshift quasars likely play a key role in shaping their nearby environment and the universe as a whole. The most massive galaxies represent the end points of galaxy evolution and contain a fossil record of the galaxy evolution process. Using the AGES redshift survey completed with the MMT and the Hectospec multi- object spectrograph as well as new z -band observations of the NOAO Deep Wide- Field Survey Bootes field, we report the discovery of three new quasars at z > 5. We explore new mid-infrared selection in light of these three new quasars and place constraints on the slope of the high-redshift quasar luminosity function. At lower redshift (0.1< z <0.4) we measure the scatter in red galaxy colors around the optical red-sequence using imaging and spectroscopy from the Sloan Digital Sky Survey. With our sample of nearly 20,000 massive early-type galaxies ( L [Special characters omitted.] 2.2 L *), we find that the scatter around the color-magnitude relation is quite small in colors studied. Each of three model star formation histories can reproduce the scatter we measure, none of the models produce color distributions matching those observed. We measure the evolution of the LRG luminosity function in the redshift range 0.1< z <0.9. We find that the LRG population has evolved little beyond the passive fading of its stellar populations since z ~ 0.9. The most massive (L > 3 L *) red galaxies have grown by less than 50% (at 99% confidence) since z = 0.9 in stark contrast to the factor of 2 to 4 growth observed in the L * red galaxy population over the same epoch. Finally, we introduce the PRIsm MUlti-object Survey (PRIMUS), a new redshift survey aimed at collecting ~300,000 galaxy spectra over 10 deg 2 to z ~ 1. We

  16. The Stellar Halos of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' × 107''), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 pixel-1 in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions σ* > 150 km s-1, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between σ* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are ~ an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 Re , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high α-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  17. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    SciTech Connect

    Volonteri, Marta; Ciotti, Luca

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  18. SEGUE 2: THE LEAST MASSIVE GALAXY

    SciTech Connect

    Kirby, Evan N.; Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj; Cohen, Judith G.; Geha, Marla

    2013-06-10

    Segue 2, discovered by Belokurov et al., is a galaxy with a luminosity of only 900 L{sub Sun }. We present Keck/DEIMOS spectroscopy of 25 members of Segue 2-a threefold increase in spectroscopic sample size. The velocity dispersion is too small to be measured with our data. The upper limit with 90% (95%) confidence is {sigma}{sub v} < 2.2 (2.6) km s{sup -1}, the most stringent limit for any galaxy. The corresponding limit on the mass within the three-dimensional half-light radius (46 pc) is M{sub 1/2} < 1.5 (2.1) Multiplication-Sign 10{sup 5} M{sub Sun }. Segue 2 is the least massive galaxy known. We identify Segue 2 as a galaxy rather than a star cluster based on the wide dispersion in [Fe/H] (from -2.85 to -1.33) among the member stars. The stars' [{alpha}/Fe] ratios decline with increasing [Fe/H], indicating that Segue 2 retained Type Ia supernova ejecta despite its presently small mass and that star formation lasted for at least 100 Myr. The mean metallicity, ([Fe/H]) = -2.22 {+-} 0.13 (about the same as the Ursa Minor galaxy, 330 times more luminous than Segue 2), is higher than expected from the luminosity-metallicity relation defined by more luminous dwarf galaxy satellites of the Milky Way. Segue 2 may be the barest remnant of a tidally stripped, Ursa Minor-sized galaxy. If so, it is the best example of an ultra-faint dwarf galaxy that came to be ultra-faint through tidal stripping. Alternatively, Segue 2 could have been born in a very low mass dark matter subhalo (v{sub max} < 10 km s{sup -1}), below the atomic hydrogen cooling limit.

  19. The outer haloes of massive, elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Das, Payel; Gerhard, Ortwin; de Lorenzi, Flavio; McNeil, Emily; Churazov, Eugene; Coccato, Lodovico

    2010-11-01

    The outer haloes of massive elliptical galaxies are dark-matter dominated regions where stellar orbits have longer dynamical timescales than the central regions and therefore better preserve their formation history. Dynamical models out to large radii suffer from a degeneracy between mass and orbital structure, as the outer kinematics are unable to resolve higher moments of the line-of-sight velocity distribution. We mitigate this degeneracy for a sample of quiescent, massive, nearby ellipticals by determining their mass distributions independently using a non-parametric method on X-ray observations of the surrounding hot interstellar medium. We then create dynamical models using photometric and kinematic constraints consisting of integral-eld, long-slit and planetary nebulae (PNe) data extending to ~50 kpc. The rst two galaxies of our sample, NGC 5846 and NGC 1399, were found to have very shallow pro jected light distributions with a power law index of ~1.5 and a dark matter content of 70-80% at 50 kpc. Spherical Jeans models of the data show that, in the outer haloes of both galaxies, the pro jected velocity dispersions are almost inde- pendent of the anisotropy and that the PNe prefer the lower end of the range of mass distributions consistent with the X-ray data. Using the N-body code NMAGIC, we cre- ated axisymmetric models of NGC 5846 using the individual PNe radial velocities in a likelihood method and found them to be more constraining than the binned velocity dispersions. Characterising the orbital structure in terms of spherically averaged proles of the velocity dispersions we nd σψ > σr > σθ.

  20. The dynamical fingerprint of core scouring in massive elliptical galaxies

    SciTech Connect

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  1. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  2. The origin of the α-enhancement of massive galaxies

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom

    2016-09-01

    We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe]*, of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M* > 1010.5 M⊙, [α/Fe]* increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a `downsizing' galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe]* in M* > 1010.5 M⊙ galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars.

  3. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations. PMID:23192149

  4. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  5. The Most Massive Black Holes in Small Galaxies

    NASA Astrophysics Data System (ADS)

    van den Bosch, Remco

    2012-10-01

    Massive galaxies represent the extreme of galaxy formation and contain the most massive black holes {BH}, as reflected in the scaling relations of BH masses with galaxy velocity dispersions {M-sigma} and luminosities {M-L}. Our spectroscopic survey of 600 nearby galaxies revealed 17 galaxies with extremely high velocity dispersions {indicating BH masses of 10^10 solar masses} and at the same time shockingly small sizes {<2 kpc} and {bulge} luminosities. For one of these galaxies archival HST imaging allowed us to measure an extremely big BH mass of 23 billion solar masses, and confirm it is hosted by a small disk-dominated galaxy of only 90 billion solar masses in stars. This demonstrates that the BH in this system did not co-evolve with its host galaxy the way others are thought to have. It is imperative to go beyond a single anecdotal example to a real sample of galaxies with small bulges and suspected monster black holes. Here we propose to obtain HST imaging of the other 16 galaxies. The WFC3 imaging is required to resolve their small bulge and put accurate constraints {in combination with our spectroscopy} on their black hole mass. A significant sample of compact galaxies with very high black hole masses would be in stark conflict with the popular co-evolution picture and could form the missing link between local galaxies and the quiescent compact nugget galaxies found at z 2.

  6. The role of stellar relaxation in the formation and evolution of the first massive black holes

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Khochfar, Sadegh

    2016-04-01

    We present calculations on the formation of massive black holes of 105 M⊙ at z > 6, which can be the seeds of supermassive black holes at z ≳ 6. Under the assumption of compact star cluster formation in merging galaxies, star clusters in haloes of ˜ 108-109 M⊙ can undergo rapid core collapse, leading to the formation of very massive stars (VMSs) of ˜ 1000 M⊙ that collapse directly into black holes with similar masses. Star clusters in haloes of ≳ 109 M⊙ experience Type II supernovae before the formation of VMSs, due to long core-collapse time-scales. We also model the subsequent growth of black holes via accretion of residual stars in clusters. Two-body relaxation refills the loss cones of stellar orbits efficiently at larger radii and resonant relaxation at small radii is the main driver for accretion of stars on to black holes. As a result, more than 90 percent of stars in the initial cluster are swallowed by the central black holes before z = 6. Using dark matter merger trees, we derive black hole mass functions at z = 6-20. The mass function ranges from 103-105 M⊙ at z ≲ 15. Major merging of galaxies of ≳ 4 × 108 M⊙ at z ˜ 20 leads successfully to the formation of ≳ 105 M⊙ black holes by z ≳ 10, which could be the potential seeds of supermassive black holes seen today.

  7. Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Rapetti, D. A.; Applegate, D. E.; Kelly, P. L.; von der Linden, A.; Schmidt, R. W.

    2014-05-01

    This is the second in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. The data set employed here consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive for hot (kT ≳ 5 keV), massive, morphologically relaxed systems, as well as high-quality weak gravitational lensing data for a subset of these clusters. Here we present cosmological constraints from measurements of the gas mass fraction, fgas, for this cluster sample. By incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, we significantly reduce systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgas, 7.4 ± 2.3 per cent in a spherical shell at radii 0.8-1.2 r2500 (˜1/4 of the virial radius), consistent with the expected level of variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest redshift data in our sample, five clusters at z < 0.16, we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, h3/2 Ωb/Ωm = 0.089 ± 0.012, that is insensitive to the nature of dark energy. Combining this with standard priors on h and Ωbh2 provides a tight constraint on the cosmic matter density, Ωm = 0.27 ± 0.04, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to z > 1, we obtain consistent results for Ωm and interesting constraints on dark energy: Ω _{{Λ }}=0.65^{+0.17}_{-0.22}> for non-flat ΛCDM (cosmological constant) models, and w = -0.98 ± 0.26 for flat models with a constant dark energy equation of state. Our results are both competitive and consistent with those from recent cosmic microwave background, Type Ia supernova and baryon acoustic oscillation data. We present constraints on more

  8. THE MERGER-DRIVEN EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Robaina, Aday R.; Van der Wel, Arjen; Skelton, Rosalind E.; Meisenheimer, Klaus; Bell, Eric F.; Somerville, Rachel S.; McIntosh, Daniel H.; Wolf, Christian

    2010-08-10

    We explore the rate and impact of galaxy mergers on the massive galaxy population using the amplitude of the two-point correlation function on small scales for M {sub *} > 5 x 10{sup 10} M {sub sun} galaxies from the COSMOS and COMBO-17 surveys. Using a pair fraction derived from the Sloan Digital Sky Survey as a low-redshift benchmark, the large survey area at intermediate redshifts allows us to determine the evolution of the close-pair fraction with unprecedented accuracy for a mass-selected sample: we find that the fraction of galaxies more massive than 5 x 10{sup 10} M {sub sun} in pairs separated by less than 30 kpc in three-dimensional space evolves as F(z) = (0.0130 {+-} 0.0019) x (1 + z){sup 1.21{+-}0.25} between z = 0 and z = 1.2. Assuming a merger timescale of 0.5 Gyr, the inferred merger rate is such that galaxies with mass in excess of 10{sup 11} M {sub sun} have undergone, on average, 0.5 (0.7) mergers involving progenitor galaxies both more massive than 5 x 10{sup 10} M {sub sun} since z = 0.6 (1.2). We also study the number density evolution of massive red sequence galaxies using published luminosity functions and constraints on the M/L {sub B} evolution from the fundamental plane. Moreover, we demonstrate that the measured merger rate of massive galaxies is sufficient to explain this observed number density evolution in massive red sequence galaxies since z = 1.

  9. The formation of massive, quiescent galaxies at cosmic noon

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2016-05-01

    The cosmic noon (z ˜ 1.5-3) marked a period of vigorous star formation for most galaxies. However, about a third of the more massive galaxies at those times were quiescent in the sense that their observed stellar populations are inconsistent with rapid star formation. The reduced star formation activity is often attributed to gaseous outflows driven by feedback from supermassive black holes, but the impact of black hole feedback on galaxies in the young Universe is not yet definitively established. We analyse the origin of quiescent galaxies with the help of ultrahigh resolution, cosmological simulations that include feedback from stars but do not model the uncertain consequences of black hole feedback. We show that dark matter haloes with specific accretion rates below ˜0.25-0.4 Gyr-1 preferentially host galaxies with reduced star formation rates and red broad-band colours. The fraction of such haloes in large dark matter only simulations matches the observed fraction of massive quiescent galaxies (˜1010-1011 M⊙). This strongly suggests that halo accretion rate is the key parameter determining which massive galaxies at z ˜ 1.5-3 become quiescent. Empirical models that connect galaxy and halo evolution, such as halo occupation distribution or abundance matching models, assume a tight link between galaxy properties and the masses of their parent haloes. These models will benefit from adding the specific accretion rate of haloes as a second model parameter.

  10. AN UPPER LIMIT TO THE VELOCITY DISPERSION OF RELAXED STELLAR SYSTEMS WITHOUT MASSIVE BLACK HOLES

    SciTech Connect

    Miller, M. Coleman; Davies, Melvyn B.

    2012-08-10

    Massive black holes have been discovered in all closely examined galaxies with high velocity dispersion. The case is not as clear for lower-dispersion systems such as low-mass galaxies and globular clusters. Here we suggest that above a critical velocity dispersion {approx}40 km s{sup -1}, massive central black holes will form in relaxed stellar systems at any cosmic epoch. This is because above this dispersion primordial binaries cannot support the system against deep core collapse. If, as previous simulations show, the black holes formed in the cluster settle to produce a dense subcluster, then given the extremely high densities reached during core collapse the holes will merge with each other. For low velocity dispersions and hence low cluster escape speeds, mergers will typically kick out all or all but one of the holes due to three-body kicks or the asymmetric emission of gravitational radiation. If one hole remains, it will tidally disrupt stars at a high rate. If none remain, one is formed after runaway collisions between stars, and then it tidally disrupts stars at a high rate. The accretion rate after disruption is many orders of magnitude above Eddington. If, as several studies suggest, the hole can accept matter at that rate because the generated radiation is trapped and advected, then it will grow quickly and form a massive central black hole.

  11. The Clustering of Massive Galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Overzier, R. A.; Röttgering, H. J. A.; Wilman, R. J.; Rengelink, R. B.

    2003-05-01

    We use the angular two-point correlation function to estimate the spatial correlation length of radio sources taken from the large-area 1.4 GHz NVSS radio survey. At the median survey redshift of z ~ 1, r0 is found to be increasing with flux density. This is consistent with a scenario in which powerful (i.e. FRII) radio galaxies probe significantly more massive spatial structures than less powerful radio galaxies. The large spatial correlation length that we derive for FRIIs is remarkably close to that of extremely red objects (EROs). This implies that powerful radio galaxies and EROs trace equally massive structures at z ~ 1. Moreover, because powerful radio galaxies and EROs are both associated with luminous early-type galaxies we propose that they could be the same objects seen at different evolutionary stages. The correlation length of massive, luminous galaxies at z ~ 1 is comparable to that of bright ellipticals locally, suggesting that r0 (comoving) of these massive galaxies has changed little from z ~ 1 to z ~ 0. This is in excellent agreement with current ΛCDM hierarchical model predictions.

  12. Compact massive objects in Virgo galaxies: the black hole population

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Haardt, Francesco; Gültekin, Kayhan

    2008-03-01

    We investigate the distribution of massive black holes (MBHs) in the Virgo cluster. Observations suggest that active galactic nuclei activity is widespread in massive galaxies (M* >~ 1010Msolar), while at lower galaxy masses star clusters are more abundant, which might imply a limited presence of central black holes in these galaxy-mass regimes. We explore if this possible threshold in MBH hosting is linked to nature, nurture or a mixture of both. The nature scenario arises naturally in hierarchical cosmologies, as MBH formation mechanisms typically are efficient in biased systems, which would later evolve into massive galaxies. Nurture, in the guise of MBH ejections following MBH mergers, provides an additional mechanism that is more effective for low mass, satellite galaxies. The combination of inefficient formation, and lower retention of MBHs, leads to the natural explanation of the distribution of compact massive objects in Virgo galaxies. If MBHs arrive to the correlation with the host mass and velocity dispersion during merger-triggered accretion episodes, sustained tidal stripping of the host galaxies creates a population of MBHs which lie above the expected scaling between the holes and their host mass, suggesting a possible environmental dependence.

  13. Understanding the size growth of massive galaxies through stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, Ignacio

    2015-08-01

    The growth of massive galaxies remains an open problem. The observational evidence seems to converge on a two-stage scenario, where a compact massive core is formed during an early, intense burst, followed by a more extended process of mass and size growth at intermediate redshift (z<2). This talk focuses on the latter, exploring the growth of massive galaxies through a detailed analysis of the stellar populations in close pairs, to study their formation history. Two surveys are explored (SHARDS and GAMA), probing the stellar populations of pre-merging systems out to z~1.3, and down to a mass ratio ~1:100. We will compare the results between medium band spectral fitting (SHARDS) and those from a more targeted analysis of line strengths in the GAMA data. The combination of the two datasets provide a unique insight of the growth channel of massive galaxies via mergers.

  14. Tracing the Formation and Evolution of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh

    Massive galaxies at higher redshift, z > 2, show different characteristics than their local counterparts. They are compact and most likely have a disk. Understanding the evolutionary path of these massive galaxies can give us some clues on how the universe has been behaving in the last 10 billion years. How well can we measure the bulge and disk properties of these systems? We perform two sets of comprehensive simulations in order to systematically quantify the effects of non-homology in structures and the methods employed. For the first set of simulations, by accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. For the second set of simulations, we employ empirical scaling relations to produce realistic-looking two-component local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the first set of simulations for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T . We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≥ 0.2. The disk component, by contrast, can be measured with little difficulty. Next, we trace back the evolution of local massive galaxies but performing detailed morphological analysis: namely, single Swrsic fitting and bulge+disk decomposition. CANDELS images and catalogues offer an ideal dataset for this study. We

  15. The fate of high-redshift massive compact galaxies

    NASA Astrophysics Data System (ADS)

    de la Rosa, Ignacio G.; La Barbera, Francesco; Ferreras, Ignacio; Sánchez Almeida, Jorge; Dalla Vecchia, Claudio; Martínez-Valpuesta, Inma; Stringer, Martin

    2016-04-01

    Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge-disc decomposition catalogues based on the Sloan Digital Sky Survey to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or discs of present-day massive galaxies. In this study, we designate a compact core as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass-size and mass-density relations are used to show that, in the inner regions of galaxies at z ˜ 0.1, there are abundant compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ˜ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red nuggets with elliptical galaxies, a comparable fraction of red nuggets might have ended up embedded in discs. This result generalizes the inside-out formation scenario; present-day massive galaxies can begin as dense spheroidal cores (red nuggets), around which either a spheroidal halo or a disc is formed later.

  16. Massive Quiescent Disk Galaxies in the CANDELS survey

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    Using data from the GOODS-S field of the CANDELS survey, we find evidence for an increasing fraction of disk-dominated galaxies at high-redshift ( 2) among the quiescent, or non-star-forming galaxy population, in agreement with a growing body of evidence from recent results in the literature. We selected all galaxies with mass M>1010 Msun within the redshift range 0.5 ≤ z ≤ 2.5, and imposed a two-color selection criteria using rest-frame U, V, and J-band flux to separate quiescent from star-forming galaxies. From this sample, we performed a qualitative visual classification and a quantitative classification using the galaxy-fitting program Galfit. Of the original 140 quiescent galaxies, 23 have a disk component that contributes 50% or more of the total integrated galaxy light, and most of these are at high-redshift. At a redshift of z ~ 2 a significant fraction of all quiescent galaxies showed strong disk components with 30% being disk-dominated. We also find that massive disk galaxies seem to live in less densely populated environments while massive ellipticals live in environments with more neighbors, which leads us to believe that there are two mechanisms for the creation of massive quiescent galaxies. For the disks, the lower density environment and the disk nature of these galaxies lead us to favor cold streams over the major merger model of galaxy formation. The ellipticals, which live in higher density environments, could be assembled through major mergers of already aged stellar populations (e.g., dry mergers). This research is supported by the Clare Boothe Luce Foundation.

  17. RELAXATION IN N-BODY SIMULATIONS OF DISK GALAXIES

    SciTech Connect

    Sellwood, J. A.

    2013-06-01

    I use N-body simulations with two mass species of particles to demonstrate that disk galaxy simulations are subject to collisional relaxation at a higher rate than is widely assumed. Relaxation affects the vertical thickness of the disk most strongly, and drives the velocity ellipsoid to a moderately flattened shape similar to that observed for disk stars in the solar neighborhood. The velocity ellipsoid in simulations with small numbers of particles quickly approaches this shape, but shot noise also dominates the in-plane behavior. Simulations with higher, but reachable, numbers of particles relax slowly enough to be considered collisionless, allowing the in-plane dispersions to rise due to spiral activity without heating the vertical motions. Relaxation may have affected many previously published simulations of the formation and evolution of galaxy disks.

  18. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-06-10

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M{sub r} < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  19. The Clustering of Massive Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Quadri, Ryan

    2009-01-01

    Until recently it was thought that the early universe was dominated by low-mass galaxies undergoing rapid star formation. But deep near-infrared (NIR) surveys have uncovered a population of red, massive galaxies at z=2-3 with a wide range of star formation rates. This talk is concerned with the identification and analysis of red galaxies at these redshifts, and particularly with their clustering properties. First, we present deep NIR imaging from the Multiwavelength Survey by Yale-Chile (MUSYC). These data are used to assess differences between several sets of selection criteria that are commonly used to identify distant galaxies, including the J-K>2.3 criterion for distant red galaxies (DRGs). Next, we present MUSYC results for galaxy clustering at z 2.5. While the broad population of NIR-selected galaxies clusters similarly to the low-mass, star-forming galaxies found in previous surveys, the reddest galaxies have much higher correlation lengths. This suggests that a color-density relationship was in place at these redshifts. We use the clustering results to estimate the mass of the dark matter halos that host NIR-selected galaxies. We find that the reddest galaxies, which include DRGs, significantly outnumber the halos that are massive enough to host them. This suggests that the observations may be incompatible with the models. To test whether this discrepancy is an artifact due to limited field size, we also investigate the clustering of DRGs in the larger UKIDSS Ultra-Deep Survey, but the models remain inconsistent with the observations. The disagreement could be due to inaccurate photometric redshifts or to incorrect models. An explanation for this disagreement will result in a more complete understanding of the relationship between different galaxy populations, and of the relationship between galaxy evolution and dark matter.

  20. Discovery of a bright quasar without a massive host galaxy.

    PubMed

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  1. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2015-08-01

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1 - 1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M_BH >= 10^{8.2} Msol, and red galaxies dominate the environment of AGNs with M_BH >= 10^{9} Msol. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  2. Properties of galaxies around the most massive SMBHs

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    We present result of the clustering analysis performed between AGNs and galaxies. AGN samples with redshift 0.1-1.0 were extracted from AGN properties catalogs which contain virial mass estimates of SMBHs. Galaxy samples were extracted from SDSS DR8 catalog and UKIDSS DR9 LAS catalog. The catalogs of SDSS and UKIDSS were merged and used to estimate the IR-opt color and IR magnitude in the rest frame by SED fitting. As we had no redshift information on the galaxy samples, stacking method was applied. We investigated the BH mass dependence of cross correlation length, red galaxy fraction at their environment, and luminosity function of galaxies. We found that the cross correlation length increase above M BH >= 108.2 M ⊙, and red galaxies dominate the environment of AGNs with M BH >= 109 M ⊙. This result indicates that the most massive SMBHs are mainly fueled by accretion of hot halo gas.

  3. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-01

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  4. Ultra Massive Passive Galaxies at z~1.7

    NASA Astrophysics Data System (ADS)

    Arcila-Osejo, Liz; Sawicki, Marcin; Golob, Anneya; Arnouts, Stephane; Moutard, Thibaud

    At redshift z~1.7 the Universe was at the peak of its star-formation activity. It is thus a puzzle why some galaxies, many of them very massive (M* >= 1011 M⊙), had already chosen to stop forming stars. These ultra-massive galaxies, guaranteed to be the central galaxies of their host dark matter halos, must have attained very high rates of star formation to assemble their stellar masses in such a short amount of time. Using the largest (to date) K-selected gzK s survey of passive galaxies (in an effective area of ~ 27.5 deg2) we study the demographics of these dead monsters, hoping to help understand the quenching mechanism that shut them down.

  5. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Soeren

    2015-08-01

    Dwarf galaxies are often characterized by very high globular cluster specific frequencies, in some cases exceeding that of the Milky Way by a factor of 100 or more. Moreover, the GCs are typically much more metal-poor than the bulk of the field stars, so that a substantial fraction (up to 20-25% or more) of all metal-poor stars in some dwarf galaxies are associated with GCs. The metal-poor components of these galaxies thus represent an extreme case of the "specific frequency problem". In this talk I will review the current status of our understanding of GC systems in dwarf galaxies. Particular emphasis will be placed on the implications of the high GC specific frequencies for the amount of mass loss the clusters could have experienced and the constraints this provides on theories for the origin of multiple populations in globular clusters.

  6. Simulations of clusters of galaxies with massive cores.

    NASA Astrophysics Data System (ADS)

    Saarinen, S.; Valtonen, M. J.

    Clusters of galaxies with strong concentration of mass in their cores can be very far from dynamical equilibrium during their early evolution. Then a straightforward application of the virial theorem can lead to a totally wrong idea of the mass distribution of the cluster, hiding away the very central mass concentration. Numerical simulations have been carried out of clusters of galaxies which separate out of the Hubble flow and collapse on their massive cores.

  7. The Life Cycle of Massive Red Galaxies

    NASA Astrophysics Data System (ADS)

    Doherty, M.; Bunker, A. J.; Ellis, R. S.; McCarthy, P. J.

    2007-05-01

    Samples of Extremely Red Galaxies (ERGs) have generally been seen to comprise a mix of actively star-forming galaxies with significant dust reddening and evolved, passive galaxies, at redshifts about z≈12. Initial results from deep Keck spectroscopy of ERGs (Doherty et al. 2005) revealed dominant old stellar populations in 75% of our spectroscopic sample, but only 28% have spectra with no evidence of recent star formation activity, such as would be expected for a strictly passively-evolving population. This study suggests that the bulk of the ERGs are luminous, spheroidal, evolved galaxies, but undergoing intermittent activity consistent with continued growth. Through template fitting of the spectra and broad-band spectral energy distributions, combined with morphological analysis and Spitzer archival observations we investigate a subset of these objects in detail, to address various outstanding questions. What fraction of their mass is produced in ongoing star formation? Is there a characteristic mass at which star formation is abruptly truncated? What mechanism provokes a secondary burst of star formation in evolved galaxies?

  8. Reproducing the assembly of massive galaxies within the hierarchical cosmogony

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Monaco, Pierluigi; Silva, Laura; Grazian, Andrea

    2007-12-01

    In order to gain insight into the physical mechanisms leading to the formation of stars and their assembly in galaxies, we compare the predictions of the MOdel for the Rise of GAlaxies aNd Active nuclei (MORGANA) to the properties of K- and 850-μm-selected galaxies (such as number counts, redshift distributions and luminosity functions) by combining MORGANA with the spectrophotometric model GRASIL. We find that it is possible to reproduce the K- and 850-μm-band data sets at the same time and with a standard Salpeter initial mass function, and ascribe this success to our improved modelling of cooling in DM haloes. We then predict that massively star-forming discs are common at z ~ 2 and dominate the star formation rate, but most of them merge with other galaxies within ~100 Myr. Our preferred model produces an overabundance of bright galaxies at z < 1; this overabundance might be connected to the build-up of the diffuse stellar component in galaxy clusters, as suggested by Monaco et al., but a naive implementation of the mechanism suggested in that paper does not produce a sufficient slowdown of the evolution of these objects. Moreover, our model overpredicts the number of 1010-1011Msolar galaxies at z ~ 1; this is a common behaviour of theoretical models as shown by Fontana et al.. These findings show that, while the overall build-up of the stellar mass is correctly reproduced by galaxy formation models, the `downsizing' trend of galaxies is not fully reproduced yet. This hints to some missing feedback mechanism in order to reproduce at the same time the formation of both the massive and the small galaxies.

  9. A study of massive and evolved galaxies at high redshift

    SciTech Connect

    Nayyeri, H.; Mobasher, B.; Hemmati, S.; De Barros, S.; Ferguson, H. C.; Wiklind, T.; Dahlen, T.; Kassin, S.; Koekemoer, A.; Dickinson, M.; Giavalisco, M.; Fontana, A.; Paris, D.; Ashby, M.; Willner, S.; Barro, G.; Guo, Y.; Hathi, N. P.; Dunlop, J. S.; Targett, T. A.

    2014-10-10

    We use data taken as part of Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) observations of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) to identify massive and evolved galaxies at 3 < z < 4.5. This is performed using the strength of the Balmer break feature at rest-frame 3648 Å, which is a diagnostic of the age of the stellar population in galaxies. Using the WFC3 H-band-selected catalog for the CANDELS GOODS-S field and deep multi-waveband photometry from optical (HST) to mid-infrared (Spitzer) wavelengths, we identify a population of old and evolved post-starburst galaxies based on the strength of their Balmer breaks (Balmer break galaxies, BBGs). The galaxies are also selected to be bright in rest-frame near-IR wavelengths and hence massive. We identify a total of 16 BBGs. Fitting the spectral energy distribution of the BBGs shows that the candidate galaxies have average estimated ages of ∼800 Myr and average stellar masses of ∼5 × 10{sup 10} M {sub ☉}, consistent with being old and massive systems. Two of our BBG candidates are also identified by the criteria that are sensitive to star-forming galaxies (Lyman break galaxy selection). We find a number density of ∼3.2 × 10{sup –5} Mpc{sup –3} for the BBGs, corresponding to a mass density of ∼2.0 × 10{sup 6} M {sub ☉} Mpc{sup –3} in the redshift range covering the survey. Given the old age and the passive evolution, it is argued that some of these objects formed the bulk of their mass only a few hundred million years after the big bang.

  10. Spitzer Observations of Massive, Red Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Moustakas, L. A.; Dickinson, M.; Le Floc'h, E.; Rieke, G. H.; Daddi, E.; Alexander, D. M.; Bauer, F.; Brandt, W. N.; Dahlen, T.; Egami, E.; Eisenhardt, P.; Elbaz, D.; Ferguson, H. C.; Giavalisco, M.; Lucas, R. A.; Mobasher, B.; Pérez-González, P. G.; Stutz, A.; Rieke, M. J.; Yan, H.

    2006-03-01

    We study massive galaxies at z~1-3.5 using HST optical imaging, ground-based near-IR imaging, and Spitzer observations at 3-24 μm. From Ks-selected galaxies in the ~=130 arcmin2 GOODS-S field, we identify 153 distant red galaxies (DRGs) with (J-Ks)Vega>=2.3. This sample is approximately complete in stellar mass for passively evolving galaxies above 1011 Msolar and z<=3. Roughly half of the DRGs are objects whose optical and near-IR rest-frame light is dominated by evolved stars combined with ongoing star formation (at zmed~2.5), and the others are galaxies whose light is dominated by heavily reddened (A1600>~4-6 mag) starbursts (at zmed~1.7). Very few DRGs (<~10%) have no indication of current star formation. DRGs at z~1.5-3 with stellar masses >=1011 Msolar have specific star formation rates (SFRs per unit mass) including the reradiated far-IR emission that range from 0.2 to 10 Gyr-1. Based on the X-ray luminosities and rest-frame near-IR colors, roughly one-quarter of the DRGs contain AGNs, implying that the growth of supermassive black holes coincides with the formation of massive galaxies. At 1.5<=z<=3, the DRGs with M>=1011 Msolar have an integrated specific SFR comparable to the global value of all galaxies. In contrast, galaxies at z~0.3-0.75 with M>=1011 Msolar have an integrated specific SFR less than the global value and more than an order of magnitude lower than that for massive DRGs. At z<~1, lower mass galaxies dominate the overall cosmic mass assembly. This suggests that the bulk of star formation in massive galaxies occurs at early cosmic epochs and is largely complete by z~1.5. Further mass assembly in these galaxies takes place with low specific SFRs. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407; on observations taken with the NASA/ESA Hubble Space Telescope, which is operated by the Association of

  11. Linking the Spin Evolution of Massive Black Holes to Galaxy Kinematics

    NASA Astrophysics Data System (ADS)

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M.

    2014-10-01

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  12. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  13. Massive neutrinos and the pancake theory of galaxy formation

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    Three problems encountered by the pancake theory of galaxy formation in a massive neutrino-dominated universe are discussed. A nonlinear model for pancakes is shown to reconcile the data with the predicted coherence length and velocity field, and minimal predictions are given of the contribution from the large-scale matter distribution.

  14. Infrared galaxies - Evolutionary stages of massive star formation

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Pacini, F.

    1975-01-01

    We cite evidence which indicates that infrared galaxies may represent evolutionary stages during which a large number of massive stars are being formed. The lifetimes of these stars would be rather short (1-10 million years), and the resulting supernova explosions could account for the level of nonthermal activity which often accompanies the thermal infrared emission.

  15. Dwarf Galaxies with Optical Signatures of Accreting Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy; Greene, J.; Geha, M.

    2014-07-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. Observations of high-redshift quasars demonstrate that supermassive BHs must start out with masses considerably in excess of normal stellar-mass BHs. However, we do not know how the initial ``seed'' BHs formed in the early Universe, how massive they were originally, or what types of galaxies they formed in. While direct observations of distant seed BHs and their hosts in the infant Universe are unobtainable with current capabilities, models of BH growth in a cosmological context indicate that present-day dwarf galaxies can place valuable constraints on seed masses and distinguish between various seed formation mechanisms at early times. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting AGN to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known. I will present results from this study and discuss our ongoing efforts to find additional examples of AGN in dwarfs and help constrain theories for the formation of the first seed BHs at high redshift.

  16. Galaxy Bulges and Their Massive Black Holes: A Review

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.

    With references to both key and often forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centers of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.

  17. Completing the survey of the most massive southern galaxy clusters

    NASA Astrophysics Data System (ADS)

    Boehringer, Hans

    2014-09-01

    With the recently completed REFLEX II galaxy cluster survey we obtained a new sample of the most X-ray luminous and most massive galaxy clusters comprising a total of 45 galaxy clusters (Lx>=6e44 erg/s) at z>=0.3 in the southern sky. The majority of these prominent clusters have been detected in various surveys and have been well studied in X-rays before, except for 8 clusters in our new sample. These clusters are the most interesting objects of this kind since they are prominent gravitational lensing objects, easily detected through the Sunyaev-Zeldovich effect, and important cosmological probes. To complete this sample of massive clusters, we propose Chandra observations with a total of 220 ks exposure to well characterize their global parameters and explore their morphology.

  18. Stellar dynamics around a massive black hole - II. Resonant relaxation

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Touma, Jihad R.

    2016-06-01

    We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.

  19. Constructing massive blue elliptical galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim

    Over cosmic time, galaxy mass assembly has transitioned from low-mass, star-forming disk galaxies to massive, quiescent elliptical galaxies. The merger hypothesis for the formation of new elliptical galaxies provides one physical explanation to the observed buildup of this population, a key prediction of which is a brief phase of morphological transformation from highly-disturbed remnant to blue elliptical. We study 12 plausible new ellipticals with varying degrees of morphological peculiarities visually selected from a larger parent sample of nearby (0.01 ≤ z ≤ 0.04), massive (M* ≥ 10 10 M⊙ ), concentrated (Petrosian R90/R50 ≥ 2.6), and optically blue galaxies from the SDSS DR4 catalog. Using integral field spectroscopy, we construct two-dimensional spectra of the stellar populations and azimuthally bin them into concentric annuli to determine the relative ages of the stellar populations as a function of radius. Using this data and conclusions from simulations, we seek to distinguish post-mergers from galaxies undergoing other modes of mass assembly. We find that 1/3 of our sample is consistent with having undergone a recent, gas-rich major merger. Another 1/3 of our sample is consistent with having undergone a 'frosting' of recent star formation. The final 1/3 of our sample is either inconsistent with or inconclusive of having undergone a recent, gas-rich major merger.

  20. MAJOR MERGING: THE WAY TO MAKE A MASSIVE, PASSIVE GALAXY

    SciTech Connect

    Van der Wel, Arjen; Rix, Hans-Walter; Bell, Eric F.; Robaina, Aday R.; Holden, Bradford P.

    2009-11-20

    We analyze the projected axial ratio distribution, p(b/a), of galaxies that were spectroscopically selected from the Sloan Digital Sky Survey (DR6) to have low star formation rates. For these quiescent galaxies we find a rather abrupt change in p(b/a) at a stellar mass of approx10{sup 11} M{sub sun}: at higher masses there are hardly any galaxies with b/a < 0.6, implying that essentially none of them have disk-like intrinsic shapes and must be spheroidal. This transition mass is approx3-4 times higher than the threshold mass above which quiescent galaxies dominate in number over star-forming galaxies, which suggests that these mass scales are unrelated. At masses lower than approx10{sup 11} M{sub sun}, quiescent galaxies show a large range in axial ratios, implying a mix of bulge- and disk-dominated galaxies. Our result strongly suggests that major merging is the most important, and perhaps only relevant, evolutionary channel to produce massive (>10{sup 11} M{sub sun}), quiescent galaxies, as it inevitably results in spheroids.

  1. BRIGHT Lights, BIG City: Massive Galaxies, Giant Ly-A Nebulae, and Proto-Clusters

    SciTech Connect

    van Breugel, W; Reuland, M; de Vries, W; Stanford, A; Dey, A; Kurk, J; Venemans, B; Rottgering, H; Miley, G; De Breuck, C; Dopita, M; Sutherland, R; Bland-Hawthorn, J

    2002-08-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. They report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-{alpha} nebulae centered on the galaxies and to search for over-dense regions around them. They discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  2. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  3. Dual Stellar Halos in Early-type Galaxies and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. It is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. We present photometry and metallicity of the resolved stars in the inner and outer regions of M105. These provide strong evidence that there are two distinct stellar halos in this galaxy, a metal-poor (blue) halo and a metal-rich (red) halo. Then we compare them with those in other early-type galaxies and use the dual halo mode formation scenario to describe how massive galaxies formed.

  4. On stars, galaxies and black holes in massive bigravity

    SciTech Connect

    Enander, Jonas; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2015-11-01

    In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes and stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.

  5. MULTIWAVELENGTH OBSERVATIONS OF MASSIVE STELLAR CLUSTER CANDIDATES IN THE GALAXY

    SciTech Connect

    Richards, Emily E.; Lang, Cornelia C.; Trombley, Christine; Figer, Donald F. E-mail: er7@indiana.edu

    2012-09-01

    The Galaxy appears to be richer in young, massive stellar clusters than previously known, due to advances in infrared surveys that have uncovered deeply embedded regions of star formation. Young, massive clusters can significantly impact the surrounding interstellar medium (ISM) and hence radio observations can also be an important tracer of their activity. Several hundred cluster candidates are now known by examining survey data. Here, we report on multiwavelength observations of six of these candidates in the Galaxy. We carried out 4.9 and 8.5 GHz Very Large Array observations of the radio emission associated with these clusters to obtain the physical characteristics of the surrounding gas, including the Lyman continuum photon flux and ionized gas mass. Spitzer Infrared Array Camera observations were also made of these regions, and provide details on the stellar population as well as the dust continuum and polycyclic aromatic hydrocarbon emission. When compared to the known young, massive clusters in the Galaxy, the six cluster candidates have less powerful Lyman ionizing fluxes and ionize less of the H II mass in the surrounding ISM. Therefore, these cluster candidates appear to be more consistent with intermediate-mass clusters (10{sup 3}-10{sup 4} M{sub Sun }).

  6. Massive Black Holes in Water Maser Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy

    2014-09-01

    We propose to observe the massive black holes (MBHs) in two merging galaxies identified by water masers. Both galaxies offer the opportunity to study the mass and accretion rate of MBHs in the early (IC 750) and late (IIZw40) stages of merging, crucial times for black hole growth and feedback. IIZw40, an advanced merger of two gas-rich dwarf galaxies, is a crucial window on the growth of black holes in the early universe. IC 750 is a spiral in a close pair with interaction-induced morphology, possibly activating the AGN, and a valuable case study of the initial conditions for major mergers and the growth of MBHs. Chandra observations will identify central black holes (perhaps two in IIZw40), constrain the maser excitation, and measure the accretion rate, key for feedback studies.

  7. Super-resolving Compact, Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Auger, Matt

    2011-01-01

    The massive compact objects (`red nuggets') recently discovered at z > 1.5 appear to have disappeared in the local Universe and theoretical models of galaxy evolution are unable to explain where they have gone. The case is dire: either the models are wrong or the observations are being misinterpreted. One promising way forward is to find and study red nuggets at lower redshifts where, for example, extended low-surface brightness envelopes can be observed. I will present results from a pilot program to find and study intermediate-redshift analogs to the high-redshift red nuggets. These new red nuggets are early-type background sources of strong gravitational lens systems (the foreground galaxies are also early-types, so these are early-type/early-type lenses, or EELs), and I exploit the magnification of lensing and adaptive optics imaging to investigate these compact galaxies with approximately 200 pc resolution.

  8. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    SciTech Connect

    Rodriguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-08-20

    Several occupational distributions for satellite galaxies more massive than m{sub *} Almost-Equal-To 4 Multiplication-Sign 10{sup 7} M{sub Sun} around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m{sub *}. For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are Almost-Equal-To 0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N{sub s} ({>=}m{sub *}) , down to the mass of the Fornax dwarf is within the 1{sigma} distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N{sub s} ({>=}m{sub *}) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N{sub s} ({>=}m{sub *}). Then, it is not possible to accurately determine the MW halo mass by means of its N{sub s} ({>=}m{sub *}); from our catalog, we constrain a lower limit of 1.38 Multiplication-Sign 10{sup 12} M{sub Sun} at the 1{sigma} level. Our analysis strongly suggests that the abundance of massive

  9. Cosmology and astrophysics from relaxed galaxy clusters - III. Thermodynamic profiles and scaling relations

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.

    2016-03-01

    This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (i.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.

  10. The role of galaxy merging in the life of massive galaxies

    NASA Astrophysics Data System (ADS)

    Man, Allison W. S.; Zirm, Andrew; Toft, Sune

    2015-08-01

    In the local Universe, the most massive galaxies of above 10^11 solar masses are typically situated at the centres of galaxy clusters or groups, and have elliptical light profiles. They have uniformly old stellar populations with the majority of stars formed when the Universe was only 2-3 Gyrs old. Merging has been invoked as an important driver for their evolution, possibly responsible for morphological transformations, size growth, ignition of active galactic nuclei as well as both triggering and quenching of star formation. Accurate measurements of the merging history of massive galaxies is thus instrumental to understand their evolution. While several measurements of the merging fraction of massive galaxies up to z~3 exist to date, they lead to discrepant conclusions of whether the fraction is increasing or diminishing.My recent work resolves these discrepancies through the accurate measurement of the galaxy merger fraction up to z=3 in the COSMOS field. Combining the large area, near-infrared survey of UltraVISTA with the smaller area, but deeper and higher resolution HST/CANDELS dataset, yields the largest, most complete photometrically identified sample of mergers at z>1. The discrepancy of previous studies is found to be due to a selection effect. Selecting galaxy pairs by stellar mass ratio leads to a diminishing merger fraction at z~2, while selecting by flux ratio leads to an increasing trend. Flux-ratio selection is biased towards low M/L satellites, while stellar mass ratio selected mergers are likely biased against gas-rich satellites at z>2. I argue that the total baryon mass ratio is the least biased probe of the "true" merger rate of galaxies, and discuss future plans for examining the role of galaxy merging in the global star formation history, as well as its relation to star formation quenching.

  11. Understanding Ultra Massive Galaxies at Z~1.6

    NASA Astrophysics Data System (ADS)

    Arcila-Osejo, Liz; Sawicki, Marcin; Arnouts, Stephane; Moutard, Thibaud; Golob, Anneya

    2015-08-01

    Using an adaptation of the BzKs technique, we select and distinguish between star-forming and passive galaxies at high redshift in order to focus our attention on the most massive (Mstar > 1011 Msun), passive galaxies at high redshift (z~1.5-2). We will refer to these objects as Ultra-Massive Passive Galaxies or UMPEGs.It is of great interest trying to understand how massive passive galaxies can exist in large numbers by z~2, when the age of the Universe is just ~3 Gyr. Since they are already quenched by the time we observe them at the peak epoch of cosmic star formation, they must have attained very high rates of star formation to assemble their stellar masses in the short time available to them. Their SFRs at the time of quenching must have been several hundred Msun/yr. UMPEGs are also believed to reside in high-density environments, and due to their extremely large stellar masses are guaranteed to be the central galaxies of their host dark matter haloes.We use the CFHTLS Wide Fields and matching Ks-band observations (Arnouts et al. (in prep.)) covering an effective area of ~20 deg2 to select and study a large sample of UMPEGs at z~1.5--2. This large area provides us with a unique opportunity to detect these very rare and bright objects in large numbers and to effectively constrain the bright end of their luminosity and mass functions. Given how steep the stellar mass function is at its massive end (where we expect UMPEGS with stellar masses of Mstar > 1011 Msun), it is important to constrain it by building a representative sample. Thereby allowing us to understand their evolution from a very hight redshift of z=2 down to z=0 (for instance the contribution of dry mergers).We we will present a summary of properties of these rare but important objects based on our large sample of ~150 UMPEGS, including their luminosity and mass functions as well as general morphologies and SED-fitting results.

  12. Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of ultracompact dwarf galaxies

    SciTech Connect

    Amaro-Seoane, Pau; Konstantinidis, Symeon; Freitag, Marc Dewi; Coleman Miller, M.; Rasio, Frederic A. E-mail: simos@ari.uni-heidelberg.de E-mail: miller@astro.umd.edu

    2014-02-20

    Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼10{sup 4}-10{sup 6} M {sub ☉} in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies. Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.

  13. TELESCOPES UNVEIL VIEW OF REMOTE, MASSIVE GALAXY CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    hese images, taken by three different telescopes, show the distant, hefty galaxy cluster MS1054-0321, containing thousands of galaxies and trillions of stars. Weighing the equivalent of several thousand of our Milky Ways, the cluster is 8 billion light-years from Earth. The image on the left is a color composite taken by ground-based and X-ray observatories showing the entire galaxy cluster surrounded by background and foreground galaxies. The blue color in the center of the image represents the huge amount of hot gas that fills the space between the galaxies in the cluster. This gas - colored blue - cannot be seen in visible light, but glows in X-ray frequencies. Astronomers have measured its temperature at 300 million degrees Fahrenheit. The X-ray information was used to estimate the cluster's total mass. The boxed area in the center of the image pinpoints the Hubble telescope's field of view. The image on the right, taken by the Wide Field and Planetary Camera 2, shows a clearer view of the galaxies in the heart of the cluster. The width of this massive cluster is a few million light-years. The ground-based image was taken between May 1992 and November 1993 by the 88-inch telescope at the University of Hawaii. Astronomers Isabella Gioia and Gerry Luppino of the University of Hawaii made this four-hour exposure with a near-infrared filter (8,000 angstroms). The X-ray image was taken in 1996 by astronomer Megan Donahue of the Space Telescope Science Institute with the High Resolution Imager aboard the Rosat satellite. The exposure time was 34 hours. Donahue used a near-infrared filter (F814W) to take the Hubble telescope image in 1996. The exposure time was four hours.

  14. Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Aguilar, L. A.

    1990-11-01

    RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other

  15. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    SciTech Connect

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  16. The role of massive stars in young starburst galaxies

    NASA Astrophysics Data System (ADS)

    Norris, Richard Paul Furber

    Starburst galaxies are defined as those galaxies undergoing violent star formation over relatively short periods of time (10 to 100 Myr). These objects may form stellar populations of > 106 Msun, containing massive stars with masses > 100 Msun. Although most starburst galaxies are observed at relatively low redshift, recent evidence suggests that these types of galaxies were far more important in the high redshift past. It is believed that the chemical evolution of the Universe has been strongly influenced by this mode of star formation through the dense winds from massive stars and supernovae ejecta. Our understanding of starbursts is still relatively poor, since most are too distant to be resolved. We can gain some understanding of starbursts indirectly through the modelling of associated nebulae via the calculation of theoretical spectral energy distributions (SEDs) and photoionization modelling. This technique heavily relies upon the accuracy of the predicted far UV continuum of the massive star population. This thesis presents a new grid of SEDs for O stars, early B supergiants and Wolf-Rayet stars which have been incorporated into the evolutionary synthesis code Starburst99 (Leitherer et al. 1999). A total of 285 expanding, non-LTE, line-blanketed model atmospheres have been calculated to replace old, inaccurate LTE models for O stars, and pure helium, unblanketed models for W-R stars. These new grids cover five metallicities and the wind parameters are scaled with metallicity. We find that the new models yield significantly less ionizing flux below the He 0 ionizing edge at early phases and as a consequence, nebular He II lambda4686 will not be observable in young starbursts. We use the photoionization code CLOUDY to test the accuracy of the predicted ionizing fluxes from our new models. We find that they are in much better agreement with observed optical and IR nebular line diagnostics than any previous models. The new W-R atmospheres are used in

  17. Early quenching of massive protocluster galaxies around z = 2.2 radio galaxies

    NASA Astrophysics Data System (ADS)

    Husband, K.; Bremer, M. N.; Stott, J. P.; Murphy, D. N. A.

    2016-10-01

    Radio galaxies are among the most massive galaxies in the high-redshift Universe and are known to often lie in protocluster environments. We have studied the fields of seven z = 2.2 radio galaxies with High Acuity Wide field K-band Imager (HAWK-I) narrow-band and broad-band imaging in order to map out their environment using Hα emitters (HAEs). The results are compared to the blank field HAE survey HiZELS. All of the radio galaxy fields are overdense in HAEs relative to a typical HiZELS field of the same area and four of the seven are richer than all except one of 65 essentially random HiZELS subfields of the same size. The star formation rates of the massive HAEs are lower than those necessary to have formed their stellar population in the preceding Gyr - indicating that these galaxies are likely to have formed the bulk of their stars at higher redshifts, and are starting to quench.

  18. The Stripe 82 Massive Galaxy Project. I. Catalog Construction

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin; Leauthaud, Alexie; Saito, Shun; Bolton, Adam; Lin, Yen-Ting; Maraston, Claudia; Nichol, Robert C.; Schneider, Donald P.; Thomas, Daniel; Wake, David A.

    2015-11-01

    The Stripe 82 Massive Galaxy Catalog (s82-mgc) is the largest-volume stellar mass-limited sample of galaxies beyond z ≈ 0.1 constructed to date. Spanning 139.4 deg2, the s82-mgc includes a mass-limited sample of 41,770 galaxies with {log}{M}*/{M}⊙ ≳ 11.2 to z ≈ 0.7, sampling a volume of 0.3 Gpc3, roughly equivalent to the volume of the Sloan Digital Sky Survey-I/II (SDSS-I/II) z < 0.15 main sample. The catalog is built on three pillars of survey data: the SDSS Stripe 82 Coadd photometry which reaches r-band magnitudes of ˜23.5 AB, Y JHK photometry at depths of 20th magnitude (AB) from the UK Infrared Deep Sky Survey Large Area Survey, and over 70,000 spectroscopic galaxy redshifts from the SDSS-I/II and the Baryon Oscillation Spectroscopic Survey. We describe the catalog construction and verification, the production of 9-band matched aperture photometry, tests of existing and newly estimated photometric redshifts required to supplement spectroscopic redshifts for 55% of the {log}{M}*/{M}⊙ ≳ 11.2 sample, and geometric masking. We provide near-IR based stellar mass estimates and compare these to previous estimates. All catalog products are made publicly available. The s82-mgc not only addresses previous statistical limitations in high-mass galaxy evolution studies, but also begins tackling inherent data challenges in the coming era of wide-field imaging surveys.

  19. A faint galaxy redshift survey behind massive clusters

    SciTech Connect

    Frye, Brenda

    1999-12-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of {approximately}20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  20. Cosmology and astrophysics from relaxed galaxy clusters - V. Consistency with cold dark matter structure formation

    NASA Astrophysics Data System (ADS)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-10-01

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration-mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ˜50 kpc-1 Mpc), and test for departures from the simple Navarro-Frenk-White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.

  1. WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT z = 2.3? THE POPULATION OF MASSIVE GALAXIES AT z > 3 FROM NMBS AND CANDELS

    SciTech Connect

    Stefanon, Mauro; Rudnick, Gregory H.; Marchesini, Danilo; Brammer, Gabriel B.; Whitaker, Katherine E.

    2013-05-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z {approx} 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z {approx} 2, implying that the SFRs for all of these galaxies must be much lower by z {approx} 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening {approx}1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z {approx} 3 that are compact (R{sub e} < 1.4 kpc) and have stellar mass M{sub *} > 10{sup 10.6} M{sub Sun }; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z {approx} 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z {approx} 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z {approx} 2 that are consistent with the observed number density. Better agreement with the observed

  2. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  3. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1

    NASA Astrophysics Data System (ADS)

    Buitrago, Fernando; Trujillo, Ignacio; Conselice, Christopher J.; Häußler, Boris

    2013-01-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar ≥ 1011 h- 270 M⊙) galaxies in the redshift interval 0 < z < 3. Our sample of 1082 objects comprises 207 local galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sérsic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ˜20-30 per cent at z ˜ 3 to ˜70 per cent at z = 0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1.

  4. OBSERVATIONS OF DARK AND LUMINOUS MATTER: THE RADIAL DISTRIBUTION OF SATELLITE GALAXIES AROUND MASSIVE RED GALAXIES

    SciTech Connect

    Tal, Tomer; Wake, David A.; Van Dokkum, Pieter G.

    2012-05-20

    We study the projected radial distribution of satellite galaxies around more than 28,000 luminous red galaxies (LRGs) at 0.28 < z < 0.40 and trace the gravitational potential of LRG groups in the range 15 < r/kpc < 700. We show that at large radii the satellite number-density profile is well fitted by a projected Navarro-Frenk-White (NFW) profile with r{sub s} {approx} 270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks, we demonstrate that this small-scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number-density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r > 25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early-type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.

  5. Ten Billion Years of Growth: Massive Galaxy Evolution from Structures and Dynamics

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel

    Once thought to be relies of a much earlier epoch, the most massive local galaxies are red and dead ellipticals, with little ongoing star formation or organized rotation. In the last decade, observations of their assumed progenitors have demonstrated that billions of years ago, massive galaxies were more compact and morphologically different, possibly with more disklike structures. The details of this observed evolution can place constraints on the physical processes that have driven massive galaxy evolution through cosmic time. The work presented in this thesis provides observational constraints on the dynamical and structural evolution of massive galaxies since z ~ 1.5 - 2 using a variety of photometric and spectroscopic surveys, including OBEY, SDSS, NMBS, and UDS. First, we find that although overall densities of these galaxies have decreased with time, the central densities of massive galaxies at high and low redshifts, are quite similar. This suggests that massive galaxies grow "inside-out": compact cores form early and then gradually build a more diffuse envelope of stars in their outskirts. Balancing the need for efficient size growth and consistent number densities of progenitor and descendent galaxies, we conclude that minor-merging is the best physical explanation for the observed size evolution. The remainder of this dissertation focuses on the inferred and measured dynamical evolution of massive galaxies since z ~ 2. Using velocity dispersions inferred by galaxy stellar masses and morphologies, we find that the number density of galaxies at a given velocity dispersion, or velocity dispersion function , is quite stable with redshift since z ~ 1.5, with a weak evolution at the low dispersion end due to a growing population of quenched galaxies. The constancy provides evidence in favor of inside-out growth of galaxies and is consistent with theoretical predictions that the central potentials of massive galaxies are set early. We suggest a toy model that

  6. Massive Elliptical Galaxies at High Redshift: NICMOS Imaging of z~1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Zirm, Andrew W.; Dickinson, Mark; Dey, Arjun

    2003-03-01

    We present deep, ~1.6 μm, continuum images of 11 high-redshift (0.811galaxies observed with NICMOS on board the Hubble Space Telescope. Our NICMOS images probe the rest-frame optical light where stars are expected to dominate the galaxy luminosity. The rest-frame ultraviolet light of eight of these galaxies demonstrates the well-known ``alignment effect,'' with extended and often complex morphologies elongated along an axis close to that of the Fanaroff-Riley type II (FRII) radio source. As has been previously noted from ground-based near-infrared imaging, most of the radio galaxies have rounder, more symmetric morphologies at rest-frame optical wavelengths. Here we show the most direct evidence that in most cases the stellar hosts are normal elliptical galaxies with r1/4-law light profiles. For a few galaxies, very faint traces (less than 4% of the total H-band light) of the UV-bright aligned component are also visible in the infrared images. We derive both the effective radius and surface brightness for nine of 11 sample galaxies by fitting one- and two-dimensional surface-brightness models to them. We compare the high-redshift radio galaxies to lower redshift counterparts. We find that their sizes are similar to those of local FRII radio source hosts and are in general larger than other local galaxies. The derived host galaxy luminosities are very high and lie at the bright end of luminosity functions constructed at similar redshifts. This indicates that the high-redshift radio galaxies are likely rare, massive sources. The galaxies in our sample are also brighter than the rest-frame size-surface-brightness locus defined by the low-redshift sources. Passive evolution roughly aligns the z~1 galaxies with the low-redshift samples with a slope equal to 4.7. This value is intermediate between the canonical Kormendy relation (~3.5) and a constant luminosity line (=5). The optical host is sometimes centered on a local minimum in the rest-frame UV

  7. A high abundance of massive galaxies 3-6 billion years after the Big Bang.

    PubMed

    Glazebrook, Karl; Abraham, Roberto G; McCarthy, Patrick J; Savaglio, Sandra; Chen, Hsiao-Wen; Crampton, David; Murowinski, Rick; Jørgensen, Inger; Roth, Kathy; Hook, Isobel; Marzke, Ronald O; Carlberg, R G

    2004-07-01

    Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

  8. Radio-Mode Feedback in Massive Galaxies at Redshift 0 < z < 1

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Croom, Scott M.; Ching, John H. Y.; Johnston, Helen M.; Cannon, Russell D.; Mauch, Tom

    2010-05-01

    We have carried out a large observational study of the radio luminosities, stellar populations, and environments of massive galaxies over the redshift range 0 < z < 1. Radio jets powered by an accreting central black hole are common in massive galaxies, and there is a large class of “optically quiet AGN,” with radio emission but no optical/IR signature of black-hole accretion. The central black holes in these galaxies are probably accreting in a radiatively inefficient mode, and our results suggest that “radio-mode feedback” as described by Croton et al. is likely to occur in all masssive early-type galaxies at z < 0.8. While it appears that radio-loud AGN occur episodically in all massive early-type galaxies, we also identify a sub-population of galaxies with powerful radio sources and a prominent younger (~ 108 yr) stellar population that may have undergone recent mergers.

  9. Radio AGN signatures in massive quiescent galaxies out to z=1.5

    NASA Astrophysics Data System (ADS)

    Man, Allison

    2016-08-01

    This work represents the first multi-wavelength analysis of the average IR and radio emission in 14200 quiescent galaxies out to z=3. By stacking 24um, Herschel and VLA imaging data, we reveal the widespread presence of low-luminosity radio AGN among massive galaxies of Mstar>10^11Msun out to at least z=1.5, reciprocating the fact that massive quiescent galaxies are the preferential hosts of low-lumionsity AGN. Combined with the result of low average 24um emission, we infer that only radio-mode feedback, but not (obscured) quasar-mode feedback, is at work in keeping star formation inefficient in these galaxies.

  10. EXPLORING THE z = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES

    SciTech Connect

    Spitler, Lee R.; Rees, Glen; Straatman, Caroline M. S.; Labbé, Ivo; Glazebrook, Karl; Kacprzak, Glenn G.; Nanayakkara, Themiya; Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Tilvi, Vithal; Tomczak, Adam R.; Quadri, Ryan F.; Persson, S. Eric; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J.; Van Dokkum, Pieter; Allen, Rebecca

    2014-06-01

    Our understanding of the redshift z > 3 galaxy population relies largely on samples selected using the popular ''dropout'' technique, typically consisting of UV-bright galaxies with blue colors and prominent Lyman breaks. As it is currently unknown if these galaxies are representative of the massive galaxy population, we here use the FOURSTAR Galaxy Evolution (ZFOURGE) survey to create a stellar mass-limited sample at z = 3-4. Uniquely, ZFOURGE uses deep near-infrared medium-bandwidth filters to derive accurate photometric redshifts and stellar population properties. The mass-complete sample consists of 57 galaxies with log M >10.6, reaching below M {sup *} at z = 3-4. On average, the massive z = 3-4 galaxies are extremely faint in the observed optical with median R{sub tot}{sup AB}=27.48±0.41 (rest-frame M {sub 1700} = –18.05 ± 0.37). They lie far below the UV luminosity-stellar mass relation for Lyman break galaxies and are about ∼100 × fainter at the same mass. The massive galaxies are red (R – K {sub s} {sub AB} = 3.9 ± 0.2; rest-frame UV-slope β = –0.2 ± 0.3) likely from dust or old stellar ages. We classify the galaxy spectral energy distributions by their rest-frame U–V and V–J colors and find a diverse population: 46{sub −6−17}{sup +6+10}% of the massive galaxies are quiescent, 40{sub −6−5}{sup +6+7}% are dusty star-forming galaxies, and only 14{sub −3−4}{sup +3+10}% resemble luminous blue star-forming Lyman break galaxies. This study clearly demonstrates an inherent diversity among massive galaxies at higher redshift than previously known. Furthermore, we uncover a reservoir of dusty star-forming galaxies with 4 × lower specific star-formation rates compared to submillimeter-selected starbursts at z > 3. With 5 × higher numbers, the dusty galaxies may represent a more typical mode of star formation compared to submillimeter-bright starbursts.

  11. Revealing Massive Black Holes in Dwarf Galaxies with X-rays

    NASA Astrophysics Data System (ADS)

    Reines, A.

    2014-07-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies, power AGN, and are thought to be important agents in the evolution of their hosts. However, the origin of these monster BHs is largely unknown. While direct observations of the first ``seeds" of supermassive BHs in the infant Universe are unobtainable with current telescopes, finding and studying dwarf galaxies hosting massive BHs today can provide valuable constraints on the masses, host galaxies, and formation mechanism of supermassive BH seeds. We have recently completed the first systematic search for AGN in dwarf galaxies using optical spectroscopy, increasing the number of known dwarfs with massive BHs by more than an order of magnitude (Reines et al. 2013). However, this optical search is biased towards BHs radiating at high fractions of their Eddington limit in galaxies with little on-going star formation. Alternative search techniques and diagnostics at other wavelengths are necessary to make further progress. I will discuss our efforts to find and study massive BHs in dwarf galaxies using observations at X-ray wavelengths. These observations are more sensitive to weakly accreting massive BHs and are already beginning to reveal massive BHs hidden at optical wavelengths in star-forming dwarf galaxies.

  12. Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    DOE PAGESBeta

    Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al

    2016-02-04

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less

  13. Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing

    NASA Astrophysics Data System (ADS)

    Applegate, D. E.; Mantz, A.; Allen, S. W.; der Linden, A. von; Morris, R. Glenn; Hilbert, S.; Kelly, Patrick L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.

    2016-04-01

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9 per cent (stat) ± 9 per cent (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c_{200} = 3.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30-50 per cent, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.

  14. Satellites around Massive Galaxies Since z ~ 2: Confronting the Millennium Simulation with Observations

    NASA Astrophysics Data System (ADS)

    Quilis, Vicent; Trujillo, Ignacio

    2012-06-01

    Minor merging has been postulated as the most likely evolutionary path to produce the increase in size and mass observed in the massive galaxies since z ~ 2. In this Letter, we directly test this hypothesis, comparing the population of satellites around massive galaxies in cosmological simulations versus the observations. We use state-of-the-art, publically available, Millennium I and II simulations, and the associated semi-analytical galaxy catalogs to explore the time evolution of the fraction of massive galaxies that have satellites, the number of satellites per galaxy, the projected distance at which the satellites locate from the host galaxy, and the mass ratio between the host galaxies and their satellites. The three virtual galaxy catalogs considered here overproduce the fraction of galaxies with satellites by a factor ranging between 1.5 and 6 depending on the epoch, whereas the mean projected distance and ratio of the satellite mass over host mass are in closer agreement with data. The larger pull of satellites in the semi-analytical samples could suggest that the size evolution found in previous hydrodynamical simulations is an artifact due to the larger number of infalling satellites compared to the real universe. These results advise us to revise the physical ingredients implemented in the semi-analytical models in order to reconcile the observed and computed fraction of galaxies with satellites, and eventually, it would leave some room for other mechanisms explaining the galaxy size growth not related to the minor merging.

  15. SATELLITES AROUND MASSIVE GALAXIES SINCE z {approx} 2: CONFRONTING THE MILLENNIUM SIMULATION WITH OBSERVATIONS

    SciTech Connect

    Quilis, Vicent; Trujillo, Ignacio

    2012-06-20

    Minor merging has been postulated as the most likely evolutionary path to produce the increase in size and mass observed in the massive galaxies since z {approx} 2. In this Letter, we directly test this hypothesis, comparing the population of satellites around massive galaxies in cosmological simulations versus the observations. We use state-of-the-art, publically available, Millennium I and II simulations, and the associated semi-analytical galaxy catalogs to explore the time evolution of the fraction of massive galaxies that have satellites, the number of satellites per galaxy, the projected distance at which the satellites locate from the host galaxy, and the mass ratio between the host galaxies and their satellites. The three virtual galaxy catalogs considered here overproduce the fraction of galaxies with satellites by a factor ranging between 1.5 and 6 depending on the epoch, whereas the mean projected distance and ratio of the satellite mass over host mass are in closer agreement with data. The larger pull of satellites in the semi-analytical samples could suggest that the size evolution found in previous hydrodynamical simulations is an artifact due to the larger number of infalling satellites compared to the real universe. These results advise us to revise the physical ingredients implemented in the semi-analytical models in order to reconcile the observed and computed fraction of galaxies with satellites, and eventually, it would leave some room for other mechanisms explaining the galaxy size growth not related to the minor merging.

  16. VizieR Online Data Catalog: Massive early-type galaxies (Buitrago+, 2013)

    NASA Astrophysics Data System (ADS)

    Buitrago, F.; Trujillo, I.; Conselice, C. J.; Haussler, B.

    2013-08-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar>=1011h-270M⊙) galaxies in the redshift interval 0galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sersic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ~20-30 per cent at z~3 to~70 per cent at z=0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z~1. (1 data file).

  17. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGESBeta

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; et al

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  18. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; et al.

    2015-05-21

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  19. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  20. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  1. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    PubMed

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  2. CORE CREATION IN GALAXIES AND HALOS VIA SINKING MASSIVE OBJECTS

    SciTech Connect

    Goerdt, Tobias; Moore, Ben; Stadel, Joachim; Read, J. I.

    2010-12-20

    We perform a detailed investigation into the disruption of central cusps via the transfer of energy from sinking massive objects. Constant density inner regions form at the radius where the enclosed mass approximately matches the mass of the infalling body. We explore parameter space using numerical simulations and give an empirical relation for the size of the resulting core within structures that have different initial cusp slopes. We find that infalling bodies always stall at the edge of these newly formed cores, experiencing no dynamical friction over many dynamical times. As applications, we consider the resulting decrease in the dark matter annihilation flux due to centrally destroyed cusps, and we present a new theory for the formation of close binary nuclei-the 'stalled binary' model. We focus on one particularly interesting binary nucleus system, the dwarf spheroidal galaxy VCC 128 which is dark matter dominated at all radii. We show that its nuclei would rapidly coalesce within a few million years if it has a central dark matter cusp slope steeper than r {sup -1}. However, if its initial dark matter cusp is slightly shallower than a logslope of -0.75 at {approx}0.1% of the virial radius, then the sinking nuclei naturally create a core equal to their observed separation and stall. This is close to the logslope measured in a recent billion particle cold dark matter halo simulation.

  3. A search for massive compact halo objects in our galaxy

    SciTech Connect

    Alock, C.; Axelrod, T.; Cook, K.; Park, H. ); Griest, K.; Stubbs, C. . Center for Particle Astrophysics); Freeman, K.; Peterson, B.; Quinn, P.; Rodgers, A. . Mount Stromlo and Siding Spring Observatories); Bennett, D.P.

    1990-12-19

    MAssive Compact Halo Objects such as brown dwarfs, Jupiters, and black holes are prime candidates to comprise the dark halo of our galaxy. Paczynski noted that these objects (dubbed MACHOs) can be detected via gravitational microlensing of stars in the Magellanic Clouds with the caveat that only about one in 10{sup 6} stars will be lensed at any given time. Our group is currently involved in constructing a dedicated observing system at the Mount Stromlo Observatory in Australia. We will use a refurbished 1.27 meter telescope and an innovative two-color CCD camera with 3.4 {times} 10{sup 7} pixels to monitor 10{sup 6} {minus} 10{sup 7} stars in the Magellanic Clouds. During the first year of operation (1991--1992), we hope to detect (or rule out) objects in the mass range 0.001M{sub {circle dot}} {le} M {le} 0.1M{sub {circle dot}}, and after five years, we hope to have covered the range 10{sup {minus}6}M{sub {circle dot}} < M {approx lt} 100M{sub {circle dot}}. 4 refs.

  4. SUPERDENSE MASSIVE GALAXIES IN THE ESO DISTANT CLUSTER SURVEY (EDisCS)

    SciTech Connect

    Valentinuzzi, T.; D'onofrio, M.; Vulcani, B.; Poggianti, B. M.; Fritz, J.; Moretti, A.; Saglia, R. P.; Aragon-Salamanca, A.; Simard, L.; Sanchez-Blazquez, P.; Cava, A.; Couch, W. J.

    2010-09-20

    We find a significant number of massive and compact galaxies in clusters from the ESO Distant Clusters Survey (EDisCS) at 0.4 < z < 1. They have similar stellar masses, ages, sizes, and axial ratios to local z {approx} 0.04 compact galaxies in WIde field Nearby Galaxy clusters Survey (WINGS) clusters, and to z = 1.4-2 massive and passive galaxies found in the general field. If non-brightest cluster galaxies of all densities, morphologies, and spectral types are considered, the median size of EDisCS galaxies is only a factor 1.18 smaller than in WINGS. We show that for morphologically selected samples, the morphological evolution taking place in a significant fraction of galaxies during the last Gyr may introduce an apparent, spurious evolution of size with redshift, which is actually due to intrinsic differences in the selected samples. We conclude that the median mass-size relation of cluster galaxies does not evolve significantly from z {approx} 0.7 to z {approx} 0.04. In contrast, the masses and sizes of BCGs and galaxies with M {sub *}>4 x 10{sup 11} M {sub sun} have significantly increased by a factor of 2 and 4, respectively, confirming the results of a number of recent works on the subject. Our findings show that progenitor bias effects play an important role in the size-growth paradigm of massive and passive galaxies.

  5. The formation of the massive galaxies in the SSA22 z = 3.1 protocluster

    SciTech Connect

    Kubo, M.; Uchimoto, Y. K.; Yamada, T.; Ichikawa, T.; Akiyama, M.; Kajisawa, M.; Matsuda, Y.; Hayashino, T.; Konishi, M.; Nishimura, T.; Omata, K.; Suzuki, R.; Tanaka, I.; Yoshikawa, T.; Alexander, D. M.; Fazio, G. G.; Huang, J.-S.; Lehmer, B. D.

    2013-12-01

    We study the properties of K-band-selected galaxies (K {sub AB} < 24) in the z = 3.09 SSA22 protocluster field. 430 galaxies at 2.6 < z {sub phot} < 3.6 are selected as potential protocluster members in a 112 arcmin{sup 2} area based on their photometric redshifts. We find that ≈20% of the massive galaxies with stellar masses >10{sup 11} M {sub ☉} at z {sub phot} ∼ 3.1 have colors consistent with those of quiescent galaxies with ages >0.5 Gyr. This fraction increases to ≈50% after correcting for unrelated foreground/background objects. We also find that 30% of the massive galaxies are heavily reddened, dusty, star-forming galaxies. Few such quiescent galaxies at similar redshifts are seen in typical survey fields. An excess surface density of 24 μm sources at z {sub phot} ∼ 3.1 is also observed, implying the presence of dusty star-formation activity in the protocluster. Cross-correlation with the X-ray data indicates that the fraction of K-band-selected protocluster galaxies hosting active galactic nuclei (AGNs) is also high compared with the field. The sky distribution of the quiescent galaxies, the 24 μm sources, and the X-ray AGNs show clustering around a density peak of z = 3.1 Lyα emitters. A significant fraction of the massive galaxies have already become quiescent, while dusty star-formation is still active in the SSA22 protocluster. These findings indicate that we are witnessing the formation epoch of massive early-type galaxies in the centers of the predecessors to present-day rich galaxy clusters.

  6. The fate of high redshift massive compact galaxies in dense environments

    SciTech Connect

    Kaufmann, Tobias; Mayer, Lucio; Carollo, Marcella; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  7. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  8. NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT z = 3.09

    SciTech Connect

    Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi

    2015-01-20

    We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K {sub AB} < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z {sub spec} < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 ≤ z {sub spec} ≤ 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J – K {sub AB} > 1.4), hyper extremely red objects (J – K {sub AB} > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ∼2-5 × 10{sup 14} M {sub ☉}, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J – K {sub AB} ≥ 2.4) protocluster galaxies are massive galaxies with M {sub star} ∼ 10{sup 11} M {sub ☉} showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ∼ 2-3 in the general field.

  9. The Fate of Massive Black Holes in Gas-Rich Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D.

    2006-06-01

    Using SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by the very massive nuclear gas disks observed in the central regions of merging galaxies. Here we present results that expand on the treatment in previous works (Escala et al. 2004, 2005), by studying the evolution of a binary with different black holes masses in a massive gas disk.

  10. A massive protocluster of galaxies at a redshift of z ≈ 5.3.

    PubMed

    Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G

    2011-02-10

    Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.

  11. Disky Elliptical Galaxies and the Allegedly Over-massive Black Hole in the Compact “ES“ Galaxy NGC 1271

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Ciambur, Bogdan C.; Savorgnan, Giulia A. D.

    2016-11-01

    While spiral and lenticular galaxies have large-scale disks extending beyond their bulges, and most local early-type galaxies with 1010 < M */M ⊙ < 2 × 1011 contain a disk (e.g., ATLAS3D), the early-type galaxies do possess a range of disk sizes. The edge-on, intermediate-scale disk in the “disky elliptical” galaxy NGC 1271 has led to some uncertainty regarding its spheroidal component. Walsh et al. reported a directly measured black hole mass of ({3.0}-1.1+1.0)× {10}9 {M}ȯ for this galaxy, which they remarked was an order of magnitude greater than what they expected based on their derivation of the host spheroid’s luminosity. Our near-infrared image analysis supports a small embedded disk within a massive spheroidal component with {M}{sph,* }=(0.9+/- 0.2)× {10}11 {M}ȯ (using {M}* /{L}H={1.4}-0.11+0.13 from Walsh et al.). This places NGC 1271 just 1.6σ above the near-linear M bh–M sph,* relation for early-type galaxies. Therefore, past speculation that there may be a systematic difference in the black hole scaling relations between compact massive early-type galaxies with intermediate-scale disks, i.e., ES galaxies such as NGC 1271, and early-type galaxies with either no substantial disk (E) or a large-scale disk (S0) is not strongly supported by NGC 1271. We additionally (1) show how ES galaxies fit naturally in the (“bulge”-to-total)-(morphological-type) diagram, while noting a complication with recent revisions to the Hubble-Jeans tuning-fork diagram, (2) caution about claims of over-massive black holes in other ES galaxies if incorrectly modeled as S0 galaxies, and (3) reveal that the compact massive spheroid in NGC 1271 has properties similar to bright bulges in other galaxies, which have grown larger-scale disks.

  12. CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62

    SciTech Connect

    Lotz, Jennifer M.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Papovich, Casey; Tran, Kim-Vy; Faber, S. M.; Guo Yicheng; Lee, Kyoung-Soo; McIntosh, Daniel; Momcheva, Ivelina; Rudnick, Gregory; Saintonge, Amelie; Van der Wel, Arjen; Willmer, Christopher

    2013-08-20

    We present the recent merger history of massive galaxies in a spectroscopically confirmed proto-cluster at z = 1.62. Using Hubble Space Telescope WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we select cluster and z {approx} 1.6 field galaxies with M{sub star} {>=} 3 Multiplication-Sign 10{sup 10} M{sub Sun }, to determine the frequency of double nuclei or close companions within projected separations less than 20 kpc co-moving. We find that four out of five spectroscopically confirmed massive proto-cluster galaxies have double nuclei, and 57 {sup +13}{sub -14}% of all M{sub star} {>=} 3 Multiplication-Sign 10{sup 10} M{sub Sun} cluster candidates are observed in either close pair systems or have double nuclei. In contrast, only 11% {+-} 3% of the field galaxies are observed in close pair/double nuclei systems. After correcting for the contribution from random projections, the implied merger rate per massive galaxy in the proto-cluster is {approx}3-10 times higher than the merger rate of massive field galaxies at z {approx} 1.6. Close pairs in the cluster have minor merger stellar mass ratios (M{sub primary}: M{sub satellite} {>=} 4), while the field pairs consist of both major and minor mergers. At least half of the cluster mergers are gas-poor, as indicated by their red colors and low 24 {mu}m fluxes. Two of the double-nucleated cluster members have X-ray detected active galactic nuclei with L{sub x} > 10{sup 43} erg s{sup -1}, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly via minor mergers, and discuss the implications for galaxy evolution in proto-cluster environments.

  13. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-01

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum. PMID:19661911

  14. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-01

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum.

  15. Dark matter and the assembly history of massive galaxies and clusters

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.

    In Part I of this thesis we study the distribution of dark matter and baryons in a sample of seven massive, relaxed galaxy clusters by combining multiple observational tools. Our aim is to make comprehensive mass profile measurements and compare these to the form of the universal density profile derived in numerical cold dark matter (CDM) simulations. By joining weak and strong gravitational lensing observations with resolved stellar kinematic data within the central brightest cluster galaxy (BCG), we constrain the density profile over the wide dynamic range of 3-3000 kpc in radius for the first time. We first compare lensing- and X-ray-derived mass measures to constrain the line-of-sight geometry of the clusters in our sample. We then show that the logarithmic slope of the total density profile -- comprising both stars and dark matter -- agrees closely with numerical simulations containing only dark matter down to radii of ˜ 7 kpc, despite the significant contribution of stellar material on such small scales. Our unique stellar kinematic data allow us to constrain two-component models of the stellar and dark matter distributions in the cluster cores. We find a mean logarithmic slope for the dark matter density of beta = 0.50 +/- 0.10 (random) +0.14, -0.13 (systematic) at small radii, where rho DM ˜ r-beta. This is significantly shallower than a canonical CDM cusp having beta = 1. Alternatively, a cored dark matter profile with log rcore / kpc = 1.14 +/- 0.13 (random) +0.14,-0.22 (systematic) provides an equally good description. The mean mass-to-light ratio of the stars in the BCGs, derived from lensing and dynamics, is found to be consistent with estimates from stellar population synthesis modeling provided that a Salpeter initial mass function (IMF), or one with a similarly high mass-to-light ratio, is adopted. We find some evidence for a correlation between the inner dark matter profile and the size or luminosity of the BCG, which suggests a connection

  16. One of the most massive stars in the Galaxy may have formed in isolation

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Steinke, M.; Hamann, W.-R.; Sander, A.; Todt, H.; Liermann, A.

    2013-12-01

    Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Centre (GC). We find that two such isolated massive stars display bow shocks and hence may be `runaways' from their birthplace. Thus, some isolated massive stars in the GC region might have been born in star clusters known in this region. However, no bow shock is detected around the isolated star WR 102ka (Peony nebula star), which is one of the most massive and luminous stars in the Galaxy. This star is located at the centre of an associated circumstellar nebula. To study whether a star cluster may be `hidden' in the surroundings of WR 102ka, to obtain new and better spectra of this star, and to measure its radial velocity, we obtained observations with the integral-field spectrograph SINFONI at the ESO's Very Large Telescope. Our observations confirm that WR 102ka is one of the most massive stars in the Galaxy and reveal that this star is not associated with a star cluster. We suggest that WR 102ka has been born in relative isolation, outside of any massive star cluster.

  17. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  18. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    SciTech Connect

    Trujillo, Ignacio; Vazdekis, Alexandre; Balcells, Marc; Sánchez-Blázquez, Patricia

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  19. ULTRA-DEEP SUB-KILOPARSEC VIEW OF NEARBY MASSIVE COMPACT GALAXIES

    SciTech Connect

    Trujillo, Ignacio; Ferre-Mateu, Anna

    2012-05-20

    Using Gemini North telescope ultra-deep and high-resolution (sub-kiloparsec) K-band adaptive optics imaging of a sample of four nearby (z {approx} 0.15) massive ({approx}10{sup 11} M{sub Sun }) compact (R < 1.5 kpc) galaxies, we have explored the structural properties of these rare objects with unprecedented detail. Our surface brightness profiles expand over 12 mag in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities {approx}10{sup 6} M{sub Sun} kpc{sup -2} at radial distances of {approx}15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, visually resembling S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around (2-3) Multiplication-Sign 10{sup 10} M{sub Sun} stellar mass from their inner (R < 1.7 kpc) region toward their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size, and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.

  20. The Most Massive Ultra-compact Dwarf Galaxy in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Liu, Chengze; Peng, Eric W.; Toloba, Elisa; Mihos, J. Christopher; Ferrarese, Laura; Alamo-Martínez, Karla; Zhang, Hong-Xin; Côté, Patrick; Cuillandre, Jean-Charles; Cunningham, Emily C.; Guhathakurta, Puragra; Gwyn, Stephen; Herczeg, Gregory; Lim, Sungsoon; Puzia, Thomas H.; Roediger, Joel; Sánchez-Janssen, Rubén; Yin, Jun

    2015-10-01

    We report on the properties of the most massive ultra-compact dwarf galaxy (UCD) in the nearby Virgo Cluster of galaxies using imaging from the Next Generation Virgo Cluster Survey and spectroscopy from Keck/DEIMOS. This object (M59-UCD3) appears to be associated with the massive Virgo galaxy M59 (NGC 4621), has an integrated velocity dispersion of 78 {km} {{{s}}}-1, a dynamical mass of 3.7× {10}8{M}⊙ , and an effective radius (Re) of 25 pc. With an effective surface mass density of 9.4× {10}10{M}⊙ {{kpc}}-2, it is the densest galaxy in the local universe discovered to date, surpassing the density of the luminous Virgo UCD, M60-UCD1. M59-UCD3 has a total luminosity of {M}{g\\prime }=-14.2 mag, and a spectral energy distribution consistent with an old (14 Gyr) stellar population with [Fe/H] = 0.0 and [α /{Fe}]=+0.2. We also examine deep imaging around M59 and find a broad low surface brightness stream pointing toward M59-UCD3, which may represent a tidal remnant of the UCD progenitor. This UCD, along with similar objects like M60-UCD1 and M59cO, likely represents an extreme population of tidally stripped galaxies more akin to larger and more massive compact early-type galaxies than to nuclear star clusters in present-day dwarf galaxies.

  1. The Most Massive Ultra-compact Dwarf Galaxy in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Liu, Chengze; Peng, Eric W.; Toloba, Elisa; Mihos, J. Christopher; Ferrarese, Laura; Alamo-Martínez, Karla; Zhang, Hong-Xin; Côté, Patrick; Cuillandre, Jean-Charles; Cunningham, Emily C.; Guhathakurta, Puragra; Gwyn, Stephen; Herczeg, Gregory; Lim, Sungsoon; Puzia, Thomas H.; Roediger, Joel; Sánchez-Janssen, Rubén; Yin, Jun

    2015-10-01

    We report on the properties of the most massive ultra-compact dwarf galaxy (UCD) in the nearby Virgo Cluster of galaxies using imaging from the Next Generation Virgo Cluster Survey and spectroscopy from Keck/DEIMOS. This object (M59-UCD3) appears to be associated with the massive Virgo galaxy M59 (NGC 4621), has an integrated velocity dispersion of 78 {km} {{{s}}}-1, a dynamical mass of 3.7× {10}8{M}ȯ , and an effective radius (Re) of 25 pc. With an effective surface mass density of 9.4× {10}10{M}ȯ {{kpc}}-2, it is the densest galaxy in the local universe discovered to date, surpassing the density of the luminous Virgo UCD, M60-UCD1. M59-UCD3 has a total luminosity of {M}{g\\prime }=-14.2 mag, and a spectral energy distribution consistent with an old (14 Gyr) stellar population with [Fe/H] = 0.0 and [α /{Fe}]=+0.2. We also examine deep imaging around M59 and find a broad low surface brightness stream pointing toward M59-UCD3, which may represent a tidal remnant of the UCD progenitor. This UCD, along with similar objects like M60-UCD1 and M59cO, likely represents an extreme population of tidally stripped galaxies more akin to larger and more massive compact early-type galaxies than to nuclear star clusters in present-day dwarf galaxies.

  2. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  3. The Stripe 82 Massive Galaxy Project - II. Stellar mass completeness of spectroscopic galaxy samples from the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; Bundy, Kevin; Saito, Shun; Tinker, Jeremy; Maraston, Claudia; Tojeiro, Rita; Huang, Song; Brownstein, Joel R.; Schneider, Donald P.; Thomas, Daniel

    2016-04-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected spectra for over one million galaxies at 0.15 < z < 0.7 over a volume of 15.3 Gpc3 (9376 deg2) - providing us an opportunity to study the most massive galaxy populations with vanishing sample variance. However, BOSS samples are selected via complex colour cuts that are optimized for cosmology studies, not galaxy science. In this paper, we supplement BOSS samples with photometric redshifts from the Stripe 82 Massive Galaxy Catalog and measure the total galaxy stellar mass function (SMF) at z ˜ 0.3 and z ˜ 0.55. With the total SMF in hand, we characterize the stellar mass completeness of BOSS samples. The high-redshift CMASS (constant mass) sample is significantly impacted by mass incompleteness and is 80 per cent complete at log 10(M*/M⊙) > 11.6 only in the narrow redshift range z = [0.51, 0.61]. The low-redshift LOWZ sample is 80 per cent complete at log 10(M*/M⊙) > 11.6 for z = [0.15, 0.43]. To construct mass complete samples at lower masses, spectroscopic samples need to be significantly supplemented by photometric redshifts. This work will enable future studies to better utilize the BOSS samples for galaxy-formation science.

  4. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  5. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  6. A Candidate Massive Black Hole in the Low-metallicity Dwarf Galaxy Pair Mrk 709

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Condon, James J.; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M BH ~ 105-7 M ⊙). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M sstarf ~ 2.5 × 109 M ⊙ and M sstarf ~ 1.1 × 109 M ⊙ for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ~10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  7. A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709

    SciTech Connect

    Reines, Amy E.; Condon, James J.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M {sub BH} ∼ 10{sup 5-7} M {sub ☉}). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M {sub *} ∼ 2.5 × 10{sup 9} M {sub ☉} and M {sub *} ∼ 1.1 × 10{sup 9} M {sub ☉} for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ∼10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  8. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation.

    PubMed

    Khurana, Saheba; Thachuk, Mark

    2016-03-14

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation. PMID:26979675

  9. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  10. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    PubMed

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang. PMID:23598341

  11. A Snapshot Survey of The Most Massive Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald

    2007-07-01

    We propose the continuation of our highly successful SNAPshot survey of a sample of 125 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14 and Cycle15 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy interactions. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. All of our primary science goals require only the detection and characterisation of high-surface-brightness features and are thus achievable even at the reduced sensitivity of WFPC2. Because of their high redshift and thus compact angular scale our target clusters are less adversely affected by the smaller field of view of WFPC2 than more nearby systems. Acknowledging the broad community interest in this sample we waive our data rights for these observations. Due to a clerical error at STScI our approved Cycle15 SNAP program was barred from execution for 3 months and only 6 observations have been performed to date - reinstating this SNAP at Cycle16 priority is of paramount importance to reach meaningful statistics.

  12. The MASSIVE Survey. II. Stellar Population Trends Out to Large Radius in Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Janish, Ryan; Ma, Chung-Pei; McConnell, Nicholas J.; Blakeslee, John P.; Thomas, Jens; Murphy, Jeremy D.

    2015-07-01

    We examine stellar population gradients in ˜100 massive early-type galaxies spanning 180\\lt {σ }*\\lt 370 km s-1 and MK of -22.5 to -26.5 mag, observed as part of the MASSIVE survey. Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7 m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (˜ 2.5 {R}{e}). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift), stellar age and [α/Fe] increase with increasing {σ }* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 {R}{e}, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for {σ }*, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius, internal properties matter more than environment in determining star formation history.

  13. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  14. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  15. Unveiling the Most Massive Galaxies in the Universe: IRAC Mapping of the NMBSII/CFHTLS Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo; Muzzin, Adam; van Dokkum, Pieter; Wake, David; Franx, Marijn; Marsan, Cemile; Rudnick, Gregory; Brammer, Gabriel; Stefanon, Mauro; Lundgren, Britt; Whitaker, Katherine; Tal, Tomer; Labbe, Ivo; Bezanson, Rachel; Weigel, Catherine

    2013-10-01

    Observations of massive galaxies and their redshift evolution place strong constraints on the physical processes of galaxy formation. Although substantial data have been collected on galaxies with masses LogM~11.2 out to z~4-5 from the recent myriad of ground-based wide-field NIR surveys, very little is known about the evolution of the most massive (LogM>11.4) galaxies in the universe. At the tip of the Schechter function, their space density is estimated to be 30x lower than LogM=11 galaxies and hence only a few have been found, even in the widest-field surveys. We recently undertook the NMBS-II survey, a medium-deep wide-field (4.7 deg^2) NIR medium-band survey designed to accurately characterize the stellar mass function, number density, stellar populations, and clustering properties of the most massive galaxies out to z=3. The primary survey fields of the NMBS-II are the CFHTLS-deep fields; however, presently only 60% of these fields have IRAC coverage. We propose to complete the IRAC coverage of the NMBS-II. The IRAC data are essential for accurately measuring photometric redshifts and stellar masses of the high-redshift population. IRAC data are critical for constructing the UVJ diagram, which has become the de-facto method for differentiating red dusty star-forming from red quiescent galaxies. The proposed observations will allow us to construct a sample of ~300 ultra-massive (LogM>11.4) galaxies at 1.5galaxies. Because these massive galaxies are expected to be one of the most clustered populations, and thus greatly affected by cosmic variance, maximal area and number of independent sight-lines are needed for robust clustering measurements. The proposed IRAC survey will more than double the sight-lines allowing us to exploit the full NMBS-II area. We waive our proprietary data-rights period, committing to publicly release the fully reduced IRAC

  16. The many assembly histories of massive void galaxies as revealed by integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A.; Penny, Samantha J.; Brown, Michael J. I.

    2016-06-01

    We present the first detailed integral field spectroscopy study of nine central void galaxies with M⋆ > 1010 M⊙ using the Wide Field Spectrograph to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Hα-derived star formation rates (<1 M⊙ yr-1). Two of our nine galaxies host active galactic nuclei, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph galaxy survey. We find that despite environmental differences, galaxies of mass M⋆ > 1010 M⊙ have similarly low star formation rates (<3 M⊙ yr-1). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.

  17. Charting the evolution of the ages and metallicities of massive galaxies since z = 0.7

    SciTech Connect

    Gallazzi, Anna; Zibetti, Stefano; Bell, Eric F.; Brinchmann, Jarle; Kelson, Daniel D.

    2014-06-10

    Detailed studies of the stellar populations of intermediate-redshift galaxies can shed light onto the processes responsible for the growth of the massive galaxy population in the last 8 billion years. We here take a step toward this goal by means of deep, multiobject rest-frame optical spectroscopy, performed with the Inamori Magellan Areal Camera and Spectrograph on the Magellan telescope, of a sample of ∼70 galaxies in the Extended Chandra Deep Field South survey with redshift 0.65 ≤ z ≤ 0.75, apparent R > 22.7 mag{sub Vega}, and stellar mass >10{sup 10} M {sub ☉}. We measure velocity dispersion and stellar absorption features for individual sources. We interpret them by means of a large Monte Carlo library of star formation histories, following the Bayesian approach adopted for previous low redshift studies, and derive constraints on the stellar mass, mean stellar age, and stellar metallicity of these galaxies. We characterize for the first time the relations between stellar age and stellar mass and between stellar metallicity and stellar mass at z ∼ 0.7 for the galaxy population as a whole and for quiescent and star-forming galaxies separately. These relations of increasing age and metallicity with galaxy mass for the galaxy population as a whole have a similar shape as the z ∼ 0.1 analog derived for Sloan Digital Sky Survey galaxies but are shifted by –0.28 dex in age and by –0.13 dex in metallicity, at odds with simple passive evolution. Considering z = 0.7 quiescent galaxies alone, we find that no additional star formation and chemical enrichment are required for them to evolve into the present-day quiescent population. However, other observations require the quiescent population to grow from z = 0.7 to the present day. This growth could be supplied by the quenching of a fraction of z = 0.7 M {sub *} > 10{sup 11} M {sub ☉} star-forming galaxies with metallicities already comparable to those of quiescent galaxies, thus leading to the

  18. Charting the Evolution of the Ages and Metallicities of Massive Galaxies since z = 0.7

    NASA Astrophysics Data System (ADS)

    Gallazzi, Anna; Bell, Eric F.; Zibetti, Stefano; Brinchmann, Jarle; Kelson, Daniel D.

    2014-06-01

    Detailed studies of the stellar populations of intermediate-redshift galaxies can shed light onto the processes responsible for the growth of the massive galaxy population in the last 8 billion years. We here take a step toward this goal by means of deep, multiobject rest-frame optical spectroscopy, performed with the Inamori Magellan Areal Camera and Spectrograph on the Magellan telescope, of a sample of ~70 galaxies in the Extended Chandra Deep Field South survey with redshift 0.65 <= z <= 0.75, apparent R > 22.7 magVega, and stellar mass >1010 M ⊙. We measure velocity dispersion and stellar absorption features for individual sources. We interpret them by means of a large Monte Carlo library of star formation histories, following the Bayesian approach adopted for previous low redshift studies, and derive constraints on the stellar mass, mean stellar age, and stellar metallicity of these galaxies. We characterize for the first time the relations between stellar age and stellar mass and between stellar metallicity and stellar mass at z ~ 0.7 for the galaxy population as a whole and for quiescent and star-forming galaxies separately. These relations of increasing age and metallicity with galaxy mass for the galaxy population as a whole have a similar shape as the z ~ 0.1 analog derived for Sloan Digital Sky Survey galaxies but are shifted by -0.28 dex in age and by -0.13 dex in metallicity, at odds with simple passive evolution. Considering z = 0.7 quiescent galaxies alone, we find that no additional star formation and chemical enrichment are required for them to evolve into the present-day quiescent population. However, other observations require the quiescent population to grow from z = 0.7 to the present day. This growth could be supplied by the quenching of a fraction of z = 0.7 M sstarf > 1011 M ⊙ star-forming galaxies with metallicities already comparable to those of quiescent galaxies, thus leading to the observed increase of the scatter in age without

  19. The GHOSTS survey - II. The diversity of halo colour and metallicity profiles of massive disc galaxies

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Bailin, Jeremy; de Jong, Roelof S.; Holwerda, Benne; Streich, David; Silverstein, Grace

    2016-04-01

    We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar outskirts out to projected distances of ˜50-70 kpc from their galactic centre along the minor axis. The 50 per cent completeness levels of the colour-magnitude diagrams are typically at 2 mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar haloes out to ˜50 kpc and two out to ˜70 kpc. We determined the halo colour distribution and colour profile for each galaxy using the median colours of stars in the RGB. Within each galaxy, we find variations in the median colours as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other have no significant colour or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo colour/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent in the assembling history of galaxies.

  20. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z < 2.5-3 since they evolve only in luminosity. On the contrary, in the hierarchical scenario massive spheroids are built up through subsequent mergers reaching their final masses at z < 1.5 [3,5]. As a consequence, massive systems are very rare at z > 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z < 1.5, concurrent with the merging event(s) of their formation. These opposed predicted properties of early-types at z > 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  1. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    PubMed

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. PMID:25977547

  2. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    PubMed

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations.

  3. A Snapshot Survey of The Most Massive Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald

    2010-09-01

    We propose the continuation of our highly successful HST/ACS SNAPshot survey of a sample of 123 very X-ray luminous clusters in the redshift range 0.3-0.7, detected and compiled by the MACS cluster survey. As demonstrated by dedicated HST observations of the 12 most distant MACS clusters {GO-09722} as well as by the MACS SNAPshots of an additional 25 obtained with ACS so far in Cycles 14 and 15, these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy evolution. A large number of additional MACS SNAPs have since been obtained with WFPC2, leading to the discovery of several more powerful cluster lenses. The dramatic loss, however, of depth, field-of-view, and angular resolution compared to ACS led to significantly reduced scientific returns, underlining the need for ACS for this project. The proposed observations will provide important constraints on the cluster mass distributions, on the physical nature of !galaxy-galaxy and galaxy-gas interactions in cluster cores, and will yield a set of optically bright, lensed galaxies for further 8-10m spectroscopy. For those of our targets with existing ACS SNAPshot images, we propose SNAPshots in the WFC3 F110W and F140W passbands to obtain colour information that will greatly improve the secure identification of multiple-image systems and may, in the form of F606W or F814W dropouts, lead to the lensing-enabled discovery of very distant galaxies at z>5. Acknowledging the broad community interest in this sample {16 of the 25 targets of the approved MCT cluster program are MACS discoveries} we waive our data rights for these observations.This proposal is an updated and improved version of our successful Cycle 15 proposal of the same title. Alas, SNAP-10875 collected only six snapshots in the F606W or F814W passbands, due to, first, a clerical error at STScI which caused the program to be barred from execution for four months and, ultimately, the failure of ACS. With ACS

  4. JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS

    SciTech Connect

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.

  5. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  6. Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W < -21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.

  7. Stellar kinematics of X-ray bright massive elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Moiseev, A.; Sil'chenko, O.; Zhuravleva, I.

    2014-07-01

    We discuss a simple and fast method for estimating masses of early-type galaxies from optical data and compare the results with X-ray derived masses. The optical method relies only on the most basic observables such as the surface brightness I(R) and the line-of-sight velocity dispersion σp(R) profiles and provides an anisotropy-independent estimate of the galaxy circular speed Vc. The mass-anisotropy degeneracy is effectively overcome by evaluating Vc at a characteristic radius Rsweet defined from local properties of observed profiles. The sweet radius Rsweet is expected to lie close to R2, where I(R) ∝ R-2, and not far from the effective radius Reff. We apply the method to a sample of five X-ray bright elliptical galaxies observed with the 6 m telescope BTA-6 in Russia. We then compare the optical Vc estimate with the X-ray derived value, and discuss possible constraints on the non-thermal pressure in the hot gas and configuration of stellar orbits. We find that the average ratio of the optical Vc estimate to the X-ray one is equal to ≈0.98 with 11 per cent scatter, i.e. there is no evidence for the large non-thermal pressure contribution in the gas at ˜Rsweet. From analysis of the Lick indices Hβ, Mgb, Fe5270 and Fe5335, we calculate the mass of the stellar component within the sweet radius. We conclude that a typical dark matter fraction inside Rsweet in the sample galaxies is ˜60 per cent for the Salpeter initial mass function (IMF) and ˜75 per cent for the Kroupa IMF.

  8. An extremely young massive clump forming by gravitational collapse in a primordial galaxy

    NASA Astrophysics Data System (ADS)

    Zanella, A.; Daddi, E.; Le Floc'h, E.; Bournaud, F.; Gobat, R.; Valentino, F.; Strazzullo, V.; Cibinel, A.; Onodera, M.; Perret, V.; Renaud, F.; Vignali, C.

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ~ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

  9. An extremely young massive clump forming by gravitational collapse in a primordial galaxy.

    PubMed

    Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies. PMID:25951282

  10. Rapid growth of black holes in massive star-forming galaxies.

    PubMed

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-01

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  11. The Coevolution of Nuclear Star Clusters, Massive Black Holes, and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-01

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  12. Chaos and collective relaxation in galaxies and charged-particle beams

    SciTech Connect

    Bohn, Courtlandt; Kandrup, Henry E.; Kishek, Rami A.; O'Shea, Patrick G.; Reiser, Martin; Sideris, Ioannis V.; /Florida U. /Northern Illinois U.

    2003-01-01

    Both galaxies and charged particle beams can exhibit collective relaxation on surprisingly short time scales. This can be attributed to the effects of chaos, often triggered by resonances caused by time-dependences in the bulk potential, which act almost identically for attractive gravitational and repulsive electrostatic forces. These similarities suggest that many physical processes at work in galaxies, albeit not subject to direct controlled experiments, can be tested indirectly using facilities such as the University of Maryland Electron Ring (UMER) currently nearing completion.

  13. The Spiderweb Galaxy: A Forming Massive Cluster Galaxy at z ~ 2

    NASA Astrophysics Data System (ADS)

    Miley, George K.; Overzier, Roderik A.; Zirm, Andrew W.; Ford, Holland C.; Kurk, Jaron; Pentericci, Laura; Blakeslee, John P.; Franx, Marijn; Illingworth, Garth D.; Postman, Marc; Rosati, Piero; Röttgering, Huub J. A.; Venemans, Bram P.; Helder, Eveline

    2006-10-01

    We present a deep image of the radio galaxy MRC 1138-262 taken with the Hubble Space Telescope (HST) at a redshift of z=2.2. The galaxy is known to have properties of a cD galaxy progenitor and be surrounded by a 3 Mpc-sized structure, identified with a protocluster. The morphology shown on the new deep HST ACS image is reminiscent of a spider's web. More than 10 individual clumpy features are observed, apparently star-forming satellite galaxies in the process of merging with the progenitor of a dominant cluster galaxy 11 Gyr ago. There is an extended emission component, implying that star formation was occurring over a 50×40 kpc region at a rate of more than 100 Msolar yr-1. A striking feature of the newly named ``Spiderweb galaxy'' is the presence of several faint linear galaxies within the merging structure. The dense environments and fast galaxy motions at the centers of protoclusters may stimulate the formation of these structures, which dominate the faint resolved galaxy populations in the Hubble Ultra Deep Field. The new image provides a unique testbed for simulations of forming dominant cluster galaxies.

  14. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-04-20

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M{sub K} < -24 early-type galaxies, the distribution of radio powers at fixed absolute magnitude spans four orders of magnitude and the median radio power is proportional to K-band luminosity to the power 2.78 {+-} 0.16. The measured flux densities of M{sub K} < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  15. SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Ramkumar, Balasubramanian; Wuyts, Stijn; Zibetti, Stefano; Holden, Bradford

    2013-01-10

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg{sup 2} to study the structural evolution of massive early-type galaxies since z {approx} 2. Mass-selected samples, complete down to log(M/M {sub Sun }) {approx} 10.7 such that 'typical' (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the {approx}400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z {approx}< 2, the most massive early-type galaxies (log(M/M {sub Sun }) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M {sub Sun }) {approx} 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  16. Shape Evolution of Massive Early-type Galaxies: Confirmation of Increased Disk Prevalence at z > 1

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford

    2013-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg2 to study the structural evolution of massive early-type galaxies since z ~ 2. Mass-selected samples, complete down to log(M/M ⊙) ~ 10.7 such that "typical" (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z <~ 2, the most massive early-type galaxies (log(M/M ⊙) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M ⊙) ~ 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  17. The progenitors of the most massive galaxy clusters at 1 < z < 3

    NASA Astrophysics Data System (ADS)

    Hatch, Nina; Brodwin, Mark; Cooke, Elizabeth; Galametz, Audrey; Gonzalez, Anthony; Muldrew, Stuart; Noirot, Gael; Smith, Daniel; Stern, Daniel; Vernet, Joel; Wylezalek, Dominika

    2016-08-01

    This project will locate and characterize the progenitors of the most massive galaxy clusters in our Universe at z ~ 2. These rare, massive objects are cosmological probes that test the validity of Lambda-CDM, and open a window into the early formation of the oldest and most massive galaxies in the most extreme overdensities in the Universe. Searching across 10,000 square degrees of the SDSS BOSS survey we have located 27 spectroscopically confirmed groups of radio-loud quasars at 1.3 < z < 3.2. Radio-loud quasars are preferentially located in high-redshift clusters and protoclusters (Wylezalek et al. 2013; Hatch et al. 2014), but the association of several radio-loud quasars implies the presence of an agglomeration of several >10^13 solar mass dark matter haloes that will eventually combine to form some of the most massive clusters in the Universe (Orsi et al. 2016; see Fig. 1). In this proposal we request 119.1 hours to observe all 27 radio-loud quasar groups in order to identify the associated galaxy overdensities that makes up the collapsing clusters.

  18. The Hierarchical Build-Up of Massive Galaxies And the Intracluster Light Since z=1

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.; Kravtsov, Andrey V.; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI

    2007-03-19

    We use a set of simulation-based models for the dissipationless evolution of galaxies since z = 1 to constrain the fate of accreted satellites embedded in dark matter subhalos. These models assign stellar mass to dark matter halos at z = 1 by relating the observed galaxy stellar mass function (GSMF) to the halo+subhalo mass function monotonically. The evolution of the stellar mass content is then followed using halo merger trees extracted from N-body simulations. Our models are differentiated only in the fate assigned to satellite galaxies once subhalos, within which satellites are embedded, disrupt. These models are confronted with the observed evolution in the massive end of the GSMF, the z {approx} 0 brightest cluster galaxy (BCG)-cluster mass relation, and the combined BCG and intracluster light (ICL) luminosity distribution--all observables expected to evolve approximately dissipationlessly since z = 1. The combined observational constraints favor a model in which the vast majority ({approx}> 80%) of satellite stars from disrupted subhalos go into the ICL (operationally defined here as light below a surface brightness cut of {mu}{sub i} {approx} 23mag arcsec{sup -2}). Conversely, models that leave behind a significant population of satellite galaxies once the subhalo has disrupted are strongly disfavored, as are models that put a significant fraction of satellite stars into the BCG. Our results show that observations of the ICL provide useful and unique constraints on models of galaxy merging and the dissipationless evolution of galaxies in groups and clusters.

  19. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  20. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys. PMID:25162527

  1. Intrinsic alignments of disc and elliptical galaxies in the MassiveBlack-II and Illustris simulations

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana

    2016-11-01

    We study the shapes and intrinsic alignments of discs and elliptical galaxies in the MassiveBlack-II (MBII) and Illustris cosmological hydrodynamic simulations, with volumes of (100 h-1 Mpc)3 and (75 h-1 Mpc)3, respectively. We find that simulated disc galaxies are more oblate in shape and more misaligned with the shape of their host dark matter subhalo when compared with ellipticals. The disc major axis is found to be oriented towards the location of nearby elliptical galaxies. We also find that the discs are thinner in MBII and misalignments with dark matter halo orientations are smaller in both discs and ellipticals when compared with Illustris. As a result, the intrinsic alignment correlation functions at fixed mass have a higher amplitude in MBII than in Illustris. Finally, at scales above ˜0.1 h-1 Mpc, the intrinsic alignment two-point correlation functions for disc galaxies in both simulations are consistent with a null detection, unlike those for ellipticals. Despite significant differences in the treatments of hydrodynamics and baryonic physics in the simulations, we find that the wδ + correlation function scales similarly with transverse separation. However, the less massive galaxies show different scale dependence in the ellipticity-direction correlation. This result indicates that, while hydrodynamic simulations are a promising tool to study intrinsic alignments, further study is needed to understand the impact of differences in the implementations of hydrodynamics and baryonic feedback.

  2. Which processes shape stellar population gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2016-08-01

    We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to better constrain still uncertain models for energetic processes in simulations.

  3. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    SciTech Connect

    Straatman, Caroline M. S.; Labbé, Ivo; Spitler, Lee R.; Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G.; Altieri, Bruno; Dickinson, Mark; Inami, Hanae; Van Dokkum, Pieter; Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan; and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  4. A z = 1.82 ANALOG OF LOCAL ULTRA-MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Onodera, M.; Daddi, E.; Gobat, R.; Arimoto, N.; Yamada, Y.; Renzini, A.; Mancini, C.; McCracken, H. J.; Capak, P.; Carollo, M.; Lilly, S.; Cimatti, A.; Giavalisco, M.; Ilbert, O.; Kong, X.; Motohara, K.; Ohta, K.; Sanders, D. B.; Scoville, N.

    2010-05-20

    We present observations of a very massive galaxy at z = 1.82 that show that its morphology, size, velocity dispersion, and stellar population properties are fully consistent with those expected for passively evolving progenitors of today's giant ellipticals. These findings are based on a deep optical rest-frame spectrum obtained with the Multi-Object InfraRed Camera and Spectrograph on the Subaru Telescope of a high-z passive galaxy candidate (pBzK) from the COSMOS field, for which we accurately measure its redshift of z = 1.8230 and obtain an upper limit on its velocity dispersion {sigma}{sub *} < 326 km s{sup -1}. By detailed stellar population modeling of both the galaxy broadband spectral energy distribution and the rest-frame optical spectrum, we derive a star formation-weighted age and formation redshift of t {sub sf} {approx_equal} 1-2 Gyr and z {sub form} {approx_equal} 2.5-4, and a stellar mass of M {sub *} {approx_equal} (3-4) x 10{sup 11} M {sub sun}. This is in agreement with a virial mass limit of M {sub vir} < 7 x 10{sup 11} M {sub sun}, derived from the measured {sigma}{sub *} value and stellar half-light radius, as well as with the dynamical mass limit based on the Jeans equations. In contrast to previously reported super-dense passive galaxies at z {approx} 2, the present galaxy at z = 1.82 appears to have both size and velocity dispersion similar to early-type galaxies in the local universe with similar stellar mass. This suggests that z {approx} 2 massive and passive galaxies may exhibit a wide range of properties, then possibly following quite different evolutionary histories from z {approx} 2 to z = 0.

  5. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  6. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  7. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  8. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Fiacconi, Davide; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-09-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far, theoretical models and simulations, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts, have been unable to directly predict the SMBH merger timescale from ab-initio galaxy formation theory. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave (GW) searches. Here, we present the first multi-scale ΛCDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at z∼ 3, all the way to the final coalescence driven by GW emission. The two SMBHs, with masses ∼ {10}8 {M}ȯ , settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only ∼10 Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.

  9. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  10. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  11. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Fiacconi, Davide; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-09-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far, theoretical models and simulations, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts, have been unable to directly predict the SMBH merger timescale from ab-initio galaxy formation theory. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave (GW) searches. Here, we present the first multi-scale ΛCDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at z˜ 3, all the way to the final coalescence driven by GW emission. The two SMBHs, with masses ˜ {10}8 {M}⊙ , settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only ˜10 Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.

  12. THE MASSIVE ELLIPTICAL GALAXY NGC 4649 FROM THE PERSPECTIVE OF EXTENDED GRAVITY

    SciTech Connect

    Jimenez, M. A.; Garcia, G.; Hernandez, X.; Nasser, L.

    2013-05-10

    Elliptical galaxies are systems where dark matter is usually less necessary to explain observed dynamics than in the case of spiral galaxies; however, there are some instances where Newtonian gravity and the observable mass are insufficient to explain their observed structure and kinematics. Such is the case of NGC 4649, a massive elliptical galaxy in the Virgo cluster for which recent studies report a high fraction of dark matter, 0.78 at 4 R{sub e} . However, this galaxy has been studied within the MOdified Newtonian Dynamics (MOND) hypothesis, where a good agreement with the observed values of velocity dispersion is found. Using a MONDian gravity force law, here we model this galaxy as a self-consistent gravitational equilibrium dynamical system. This force law reproduces the MOND phenomenology in the a < a{sub 0} regime, and reduces to the Newtonian case when a > a{sub 0}. Within the MONDian a < a{sub 0} scales, centrifugal equilibrium or dispersion velocities become independent of radius, and show a direct proportionality to the fourth root of the total baryonic mass, V {sup 4}{proportional_to}(MGa{sub 0}). We find that the recent detailed observations of the surface brightness profile and the velocity dispersion profile for this galaxy are consistent with the phenomenology expected in MONDian theories of modified gravity, without the need to invoke the presence of any hypothetical dark matter.

  13. A two-parameter matching scheme for massive galaxies and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Ostriker, Jeremiah P.

    2015-10-01

    Halo abundance matching has been used to construct a one-parameter mapping between galaxies and dark matter haloes by assuming that halo mass and galaxy luminosity (or stellar mass) are monotonically related. While this approach has been reasonably successful, it is known that galaxies must be described by at least two parameters, as can be seen from the two-parameter Fundamental Plane on which massive early-type galaxies lie. In this paper, we derive a connection between initial dark matter density perturbations in the early Universe and present-day virialized dark matter haloes by assuming simple spherical collapse combined with conservation of mass and energy. We find that z = 0 halo concentration, or alternatively the inner slope of the halo density profile α, is monotonically and positively correlated with the collapse redshift of the halo. This is qualitatively similar to the findings of some previous works based on numerical simulations, with which we compare our results. We then describe how the halo mass and concentration (or inner slope α) can be used as two halo parameters in combination with two parameters of early-type galaxies to create an improved abundance matching scheme. In a forthcoming paper, we will show an application of this scheme to galaxies on the Fundamental Plane.

  14. Gravitational waves and stalled satellites from massive galaxy mergers at z ≤ 1

    SciTech Connect

    McWilliams, Sean T.; Pretorius, Frans; Ostriker, Jeremiah P.

    2014-07-10

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ≤ 1) implied by this model, and find that this population has a signal-to-noise ratio 2 × to 5 × larger than previous estimates for pulsar timing arrays, with a (2σ, 3σ) lower limit within this model of h{sub c}(f = 1 yr{sup –1}) = (1.1 × 10{sup –15}, 6.8 × 10{sup –16}). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ∼2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  15. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    SciTech Connect

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel E-mail: sari@phys.huji.ac.i

    2009-09-20

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in {approx}<10 dynamical times, or {approx}<0.5 Gyr. The cosmological streams replenish the draining disk and prolong the clumpy phase to several Gigayears in a steady state, with comparable masses in disk, bulge, and dark matter within the disk radius. The clumps form stars in dense subclumps following the overall accretion rate, {approx}100 M{sub sun} yr{sup -1}, and each clump converts into stars in {approx}0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z {approx} 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z {approx} 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  16. Mass assembly of galaxies from the MASSIV survey and the MIRAGE simulation sample

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    The MIRAGE (Merging & isolated high-redshift AMR galaxies, Perret et al. 2014) sample has been built in order to understand the contribution of the merger processes to the mass assembly in the MASSIV (Mass Assembly Survey with SINFONI in VVDS, Contini et al. 2012) sample. It consists of a sample of idealized simulations based on the RAMSES code; the initial conditions were designed to reproduce the physical properties of the most gas-rich young galaxies. It is composed of simulations of mergers exploring the initial parameters of mass and orientation of the disks with a spatial resolution reaching 7 parsecs. We carry out a comparative study of the MASSIV kinematical data to a set of more than 4000 pseudo-observations at z=1.7 built from simulations of the MIRAGE sample to determine the ability to detect galaxy merger signatures under the observational conditions of the SINFONI instrument. The MIRAGE simulations show (i) an absence of star formation bursts in mergers of fragmented and turbulent disks, suggesting a saturation mechanism; (ii) that the gas rich clump merging mechanism is able to control the bulge mass growth, to erode the central profile of the dark matter halo and to drive massive gas outflows into the disk plane; (iii) irrespectively of the orbital configuration and of the mass ratio between the disks a new disk of gas is reconstructed quickly after the merger.

  17. Mass Assembly of galaxies from the MASSIV survey and the MIRAGE simulation sample.

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    The MIRAGE (Merging & isolated high-redshift AMR galaxies, Perret et al. 2014) sample has been built in order to understand the contribution of the merger processes to the mass assembly in the MASSIV (Mass Assembly Survey with SINFONI in VVDS, Contini et al. 2012) sample. It consists of a sample of idealized simulations based on the RAMSES code; the initial conditions were designed to reproduce the physical properties of the most gas-rich young galaxies. It is composed of simulations of mergers exploring the initial parameters of mass and orientation of the disks with a spatial resolution reaching 7 parsecs. We carry out a comparative study of the MASSIV kinematical data to a set of more than 4000 pseudo-observations at z=1.7 built from simulations of the MIRAGE sample to determine the ability to detect galaxy merger signatures under the observational conditions of the SINFONI instrument. The MIRAGE simulations show (i) an absence of star formation bursts in mergers of fragmented and turbulent disks, suggesting a saturation mechanism; (ii) that the gas rich clump merging mechanism is able to control the bulge mass growth, to erode the central profile of the dark matter halo and to drive massive gas outflows into the disk plane; (iii) irrespectively of the orbital configuration and of the mass ratio between the disks a new disk of gas is reconstructed quickly after the merger.

  18. Byurakan-IRAS galaxies as massive galaxies with nuclear and starburst activity

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Harutyunyan, Gohar S.

    2013-07-01

    Byurakan-IRAS Galaxies (BIG) (Mickaelian 1995) are the result of optical identifications of IRAS PSC sources at high-galactic latitudes using the First Byurakan Survey (FBS) low-dispersion spectra (Markarian et al. 1989). Among the 1577 targets, 1178 galaxies have been identified. Most are dusty spiral galaxies and there is a number of ULIRGs among these objects. Our spectroscopic observations, carried out with three telescopes (Byurakan Astrophysical Observatory 2.6m, Russian Special Astrophysical Observatory 6m and Observatoire de Haute Provence 1.93m; Mickaelian & Sargsyan 2010), for 172 galaxies, as well as the SDSS DR8 spectra for 83 galaxies make up the list of 255 spectroscopically studied BIG objects. The classification regarding activity type for narrow-line emission galaxies has been carried out using the diagnostic diagrams by Veilleux & Osterbrock (1987). All possible physical characteristics have been measured and/or calculated, including radial velocities and distances, angular and physical sizes, absolute magnitudes and luminosities (both optical and IR). IR luminosities and star-formation rates have been calculated from the IR fluxes (Duc et al. 1997).

  19. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  20. THE MASSIVE DISTANT CLUSTERS OF WISE SURVEY: THE FIRST DISTANT GALAXY CLUSTER DISCOVERED BY WISE

    SciTech Connect

    Gettings, Daniel P.; Gonzalez, Anthony H.; Mancone, Conor; Stanford, S. Adam; Eisenhardt, Peter R. M.; Stern, Daniel; Brodwin, Mark; Zeimann, Gregory R.; Masci, Frank J.; Papovich, Casey; Tanaka, Ichi; Wright, Edward L.

    2012-11-01

    We present spectroscopic confirmation of a z = 0.99 galaxy cluster discovered using data from the Wide-field Infrared Survey Explorer (WISE). This is the first z {approx} 1 cluster candidate from the Massive Distant Clusters of WISE Survey to be confirmed. It was selected as an overdensity of probable z {approx}> 1 sources using a combination of WISE and Sloan Digital Sky Survey DR8 photometric catalogs. Deeper follow-up imaging data from Subaru and WIYN reveal the cluster to be a rich system of galaxies, and multi-object spectroscopic observations from Keck confirm five cluster members at z = 0.99. The detection and confirmation of this cluster represents a first step toward constructing a uniformly selected sample of distant, high-mass galaxy clusters over the full extragalactic sky using WISE data.

  1. Enhanced Star Formation of Less Massive Galaxies in a Protocluster at z = 2.5

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Kodama, Tadayuki; Tanaka, Ichi; Shimakawa, Rhythm; Koyama, Yusei; Tadaki, Ken-ichi; Suzuki, Tomoko L.; Yamamoto, Moegi

    2016-08-01

    We investigate a correlation between star formation rate (SFR) and stellar mass for Hα emission-line galaxies (HAEs) in one of the richest protoclusters ever known at z ˜ 2.5, the USS 1558-003 protocluster. This study is based on a 9.7 hr narrowband imaging data with MOIRCS on the Subaru telescope. We are able to construct a sample in combination with additional H-band data taken with WFC3 on the Hubble Space Telescope, of 100 HAEs reaching the dust-corrected SFRs down to 3 M ⊙ yr-1 and the stellar masses down to 108.0 M ⊙. We find that while the star-forming galaxies with ≳109.3 M ⊙ are located on the universal SFR-mass main sequence (MS) irrespective of the environment, less massive star-forming galaxies with ≲109.3 M ⊙ show a significant upward scatter from the MS in this protocluster. This suggests that some less massive galaxies are in a starburst phase, although we do not know yet if this is due to environmental effects.

  2. What are the Progenitors of Compace, Massive, Quiescent Galaxies at z (equals) 2.3? The Population of Massive Galaxies at z (greater than) 3 From NMBS AND CANDELS

    NASA Technical Reports Server (NTRS)

    Stefanon, Mauro; Marchesini, Danilo; Rudnick, Gregory H.; Brammer, Gabriel B.; Tease, Katherine Whitaker

    2013-01-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z 2, implying that the SFRs for all of these galaxies must be much lower by z 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening 1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z 3 that are compact (Re < 1.4 kpc) and have stellar mass M* > 1010.6M; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z 2 that are consistent with the observed number density. Better agreement with the observed number density of CMQGs at z 2 is obtained if merging is included in the analysis and better still if

  3. Is the Size Evolution of Massive Galaxies Accelerated in Cluster Environments?

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2013-10-01

    At z 1.6 the main progenitors of present-day massive clusters are undergoing rapid collapse, and have the highest rates of galaxy merging and assembly. Recent observational studies have hinted at accelerated galaxy evolution in dense environments at this epoch, including increased merger rates and rapid growth in galaxy size relative to the field. We propose WFC3 G102 spectroscopy and F125W {Broad J} imaging of a sample of four massive spectroscopically-confirmed clusters at z = 1.6. Our primary scientific goal is to leverage the CANDELS Wide Legacy dataset to carry out a head-to-head comparison of the sizes of cluster members relative to the field {as a function of stellar mass and Sersic index}, and quantify the role of environment in the observed rapid evolution in galaxy sizes since z = 2. These clusters are four of the highest significance overdensities in the 50 square degree SWIRE fields, and will evolve over time to have present-day masses similar to Coma. They were detected using IRAC [3.6]-[4.5] color, which identifies galaxy overdensities regardless of optically red or blue color. A heroic ground-based spectroscopic campaign has resulted in 44 spectroscopically-confirmed members. However this sample is heavily biased toward star-forming {SF} galaxies, and WFC3 spectroscopy is essential to definitively determine cluster membership for 200 members, without bias with respect to quiescent or SF type. The F125W {rest-frame V-band} imaging is necessary to measure the sizes and morphologies of cluster members. 17-passband broadband imaging spanning UV, optical, near-IR, Spitzer IR and Herschel far-IR is already in hand.

  4. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  5. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  6. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES

    SciTech Connect

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-10

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  7. Chemical Pollution and Evolution of Massive Starbursts: Cleaning up the Environment in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Kobulnicky, C.

    1996-12-01

    I present the results of a research program seeking to characterize the impact of massive star-clusters on the chemical and dynamical evolution of metal-poor, irregular and blue compact galaxies. The evolution of high mass stars is thought to contribute the bulk of heavy element enrichment in the interstellar medium, especially alpha -process elements like O, Si, etc. Yet, in actively star-forming galaxies, localized chemical inhomogeneities are seldom observed. Spatially-resolved optical and ultraviolet spectroscopy from the Hubble Space Telescope and ground-based observatories is used to search for chemical enrichment in the vicinity of young star clusters in nearby galaxies. VLA aperture synthesis maps are used to examine the neutral hydrogen content, dynamics, and local environment of the sample galaxies. Despite the spread in evolutionary state of the starbursts determined by the EW of Balmer emission lines and the radio continuum spectral index, few instances of localized enrichment are found. In light of these data, the ``instantaneous enrichment'' scenario for extragalactic HII regions appears less probable than one which operates on long timescales and global spatial scales. The results are consistent with the idea that starburst driven winds expel freshly synthesized metals in a hot 10(6) K phase into the halos of galaxies where they cool, condense into globules, and mix homogeneously with the rest of the galaxy on long (dynamical) timescales. The C/O and N/O ratios of the galaxies are used as new tools for measuring the recent star formation history. Implications for chemical evolution of galaxies both locally and cosmologically are developed.

  8. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  9. Ophiuchus: An optical view of a very massive cluster of galaxies hidden behind the Milky Way ⋆

    NASA Astrophysics Data System (ADS)

    Durret, F.; Wakamatsu, K.; Nagayama, T.; Adami, C.; Biviano, A.

    2015-11-01

    Context. The Ophiuchus cluster, at a redshift z = 0.0296, is known from X-rays to be one of the most massive nearby clusters, but its optical properties have not been investigated in detail because of its very low Galactic latitude. Aims: We discuss the optical properties of the galaxies in the Ophiuchus cluster, in particular, with the aim of understanding its dynamical properties better. Methods: We have obtained deep optical imaging in several bands with various telescopes, and applied a sophisticated method to model and subtract the contributions of stars to measure galaxy magnitudes as accurately as possible. The colour-magnitude relations obtained show that there are hardly any blue galaxies in Ophiuchus (at least brighter than r' ≤ 19.5), and this is confirmed by the fact that we only detect two galaxies in Hα. We also obtained a number of spectra with ESO-FORS2, which we combined with previously available redshifts. Altogether, we have 152 galaxies with spectroscopic redshifts in the 0.02 ≤ z ≤ 0.04 range, and 89 galaxies with both a redshift within the cluster redshift range and a measured r' band magnitude (limited to the Megacam 1 × 1 deg2 field). Results: A complete dynamical analysis based on the galaxy redshifts available shows that the overall cluster is relaxed and has a mass of 1.1 × 1015 M⊙. The Sernal-Gerbal method detects a main structure and a much smaller substructure, which are not separated in projection. Conclusions: From its dynamical properties derived from optical data, the Ophiuchus cluster seems overall to be a relaxed structure, or at most a minor merger, though in X-rays the central region (radius ~ 150 kpc) may show evidence for merging effects. Based on observations obtained with MegaPrime/MegaCam (program 10AF02), a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the

  10. Towards a census of supercompact massive galaxies in the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Roy, N.; Radovich, M.; Cavuoti, S.; Brescia, M.; Longo, G.; Getman, F.; Capaccioli, M.; Grado, A.; Kuijken, K. H.; de Jong, J. T. A.; McFarland, J. P.; Puddu, E.

    2016-04-01

    The abundance of compact, massive, early-type galaxies (ETGs) provides important constraints to galaxy formation scenarios. Thanks to the area covered, depth, excellent spatial resolution and seeing, the ESO Public optical Kilo Degree Survey (KiDS), carried out with the VLT Survey Telescope, offers a unique opportunity to conduct a complete census of the most compact galaxies in the Universe. This paper presents a first census of such systems from the first 156 deg2 of KiDS. Our analysis relies on g-, r- and i-band effective radii (Re), derived by fitting galaxy images with point spread function (PSF)-convolved Sérsic models, high-quality photometric redshifts, zphot, estimated from machine learning techniques, and stellar masses, M⋆, calculated from KiDS aperture photometry. After massiveness ({M_{⋆}}≳ 8 × 10^{10} M_{⊙}) and compactness ({R_e}≲ 1.5 kpc in g, r and i bands) criteria are applied, a visual inspection of the candidates plus near-infrared photometry from VIKING-DR1 are used to refine our sample. The final catalogue, to be spectroscopically confirmed, consists of 92 systems in the redshift range z ˜ 0.2-0.7. This sample, which we expect to increase by a factor of 10 over the total survey area, represents the first attempt to select massive supercompact ETGs (MSCGs) in KiDS. We investigate the impact of redshift systematics in the selection, finding that this seems to be a major source of contamination in our sample. A preliminary analysis shows that MSCGs exhibit negative internal colour gradients, consistent with a passive evolution of these systems. We find that the number density of MSCGs is only mildly consistent with predictions from simulations at z > 0.2, while no such system is found at z < 0.2.

  11. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    NASA Astrophysics Data System (ADS)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  12. The Stellar Halos of Massive Elliptical Galaxies. III. Kinematics at Large Radius

    NASA Astrophysics Data System (ADS)

    Raskutti, Sudhir; Greene, Jenny E.; Murphy, Jeremy D.

    2014-05-01

    We present a two-dimensional kinematic analysis out to ~2-5 effective radii (Re ) of 33 massive elliptical galaxies with stellar velocity dispersions σ > 150 km s-1. Our observations were taken using the Mitchell Spectrograph (formerly VIRUS-P), a spectrograph with a large 107 × 107 arcsec2 field of view that allows us to construct robust, spatially resolved kinematic maps of V and σ for each galaxy extending to at least 2 Re . Using these maps, we study the radial dependence of the stellar angular momentum and other kinematic properties. We see the familiar division between slow and fast rotators persisting out to a large radius in our sample. Centrally slow rotating galaxies, which are almost universally characterized by some form of kinematic decoupling or misalignment, remain slowly rotating in their halos. The majority of fast-rotating galaxies show either increases in specific angular momentum outward or no change beyond Re . The generally triaxial nature of the slow rotators suggests that they formed through mergers, consistent with a "two-phase" picture of elliptical galaxy formation. However, we do not observe the sharp transitions in kinematics proposed in the literature as a signpost of moving from central dissipationally formed components to outer accretion-dominated halos.

  13. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  14. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  15. Dust Heating By Low-mass Stars in Massive Galaxies at z< 1

    NASA Astrophysics Data System (ADS)

    Kajisawa, M.; Morishita, T.; Taniguchi, Y.; Kobayashi, M. A. R.; Ichikawa, T.; Fukui, Y.

    2015-03-01

    Using the Hubble Space Telescope/Wide Field Camera 3 imaging data and multi-wavelength photometric catalog, we investigated the dust temperature of passively evolving and star-forming galaxies at 0.2\\lt z\\lt 1.0 in the CANDELS fields. We estimated the stellar radiation field by low-mass stars from the stellar mass and surface brightness profile of these galaxies and then calculated their steady-state dust temperature. At first, we tested our method using nearby early-type galaxies with the deep far-IR data by the Herschel Virgo cluster survey and confirmed that the estimated dust temperatures are consistent with the observed temperatures within the uncertainty. We then applied the method to galaxies at 0.2\\lt z\\lt 1.0, and found that most passively evolving galaxies with {{M}star}\\gt {{10}10} {{M}⊙ } have relatively high dust temperatures of {{T}dust}\\gt 20 K, for which the formation efficiency of molecular hydrogen on the surface of dust grains in the diffuse ISM is expected to be very low from the laboratory experiments. The fraction of passively evolving galaxies strongly depends on the expected dust temperature at all redshifts and increases rapidly increasing temperature around {{T}dust}˜ 20 K. These results suggest that the dust heating by low-mass stars in massive galaxies plays an important role in the continuation of their passive evolution because the lack of the shielding effect of the molecular hydrogen on the UV radiation can prevent the gas cooling and formation of new stars.

  16. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  17. The MassiveBlack-II simulation: the evolution of haloes and galaxies to z ˜ 0

    NASA Astrophysics Data System (ADS)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao-Sheng

    2015-06-01

    We investigate the properties of haloes, galaxies and black holes to z = 0 in the high-resolution hydrodynamical simulation MassiveBlack-II (MBII) which evolves a Λ cold dark matter cosmology in a comoving volume Vbox = (100 Mpc h-1)3. MBII is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the MBII data set and publicly release our galaxy catalogues. We find that baryons affect strongly the halo mass function (MF), with 20-33 per cent change in the halo abundance below the knee of the MF (Mhalo < 1013.2 M⊙ h-1 at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations. We study the halo occupation distribution and clustering of galaxies, in particular the evolution and scale dependence of stochasticity and bias finding reasonable agreement with observational data. The shape of the cosmic spectral energy distribution of galaxies in MBII is consistent with observations, but lower in amplitude. The Galaxy stellar mass function (GSMF) function is broadly consistent with observations at z ≥ 2. At z < 2, the population of passive low-mass (M* < 109 M⊙) galaxies in MBII makes the GSMF too steep compared to observations whereas at the high-mass end (M* > 1011 M⊙) galaxies hosting bright AGNs make significant contributions to the GSMF. The quasar bolometric luminosity function is also largely consistent with observations. We note however that more efficient AGN feedback is necessary for the largest, rarest objects/clusters at low redshifts.

  18. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE PAGESBeta

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excessmore » in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  19. The MASSIVE Survey - V. Spatially-Resolved Stellar Angular Momentum, Velocity Dispersion, and Higher Moments of the 41 Most Massive Local Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Thomas, Jens; Greene, Jenny E.; McConnell, Nicholas J.; Walsh, Jonelle; Ito, Jennifer; Blakeslee, John P.; Janish, Ryan

    2016-09-01

    We present spatially-resolved two-dimensional stellar kinematics for the 41 most massive early-type galaxies (MK ≲ -25.7 mag, stellar mass M★ ≳ 1011.8 M⊙) of the volume-limited (D < 108 Mpc) MASSIVE survey. For each galaxy, we obtain high-quality spectra in the wavelength range of 3650 to 5850 Å from the 246-fiber Mitchell integral-field spectrograph (IFS) at McDonald Observatory, covering a 107″ × 107″ field of view (often reaching 2 to 3 effective radii). We measure the 2-D spatial distribution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher-order non-Gaussian velocity features (Gauss-Hermite moments h3 to h6). Our sample contains a high fraction (˜80%) of slow and non-rotators with λ ≲ 0.2. When combined with the lower-mass ETGs in the ATLAS3D survey, we find the fraction of slow-rotators to increase dramatically with galaxy mass, reaching ˜50% at MK ˜ -25.5 mag and ˜90% at MK ≲ -26 mag. All of our fast rotators show a clear anti-correlation between h3 and V/σ, and the slope of the anti-correlation is steeper in more round galaxies. The radial profiles of σ show a clear luminosity and environmental dependence: the 12 most luminous galaxies in our sample (MK ≲ -26 mag) are all brightest cluster/group galaxies (except NGC 4874) and all have rising or nearly flat σ profiles, whereas five of the seven "isolated" galaxies are all fainter than MK = -25.8 mag and have falling σ. All of our galaxies have positive average h4; the most luminous galaxies have average h4 ˜ 0.05 while less luminous galaxies have a range of values between 0 and 0.05. Most of our galaxies show positive radial gradients in h4, and those galaxies also tend to have rising σ profiles. We discuss the implications for the relationship among dynamical mass, σ, h4, and velocity anisotropy for these massive galaxies.

  20. FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT z > 1

    SciTech Connect

    Van Dokkum, Pieter G.; Nelson, Erica; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Fumagalli, Mattia; Franx, Marijn; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Bian Fuyan; Fan Xiaohui; Erb, Dawn K.; Foerster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan; and others

    2011-12-10

    We present first results from the 3D-HST program, a near-IR spectroscopic survey performed with the Wide Field Camera 3 (WFC3) on the HST. We have used 3D-HST spectra to measure redshifts and H{alpha} equivalent widths (EW{sub H{alpha}}) for a complete, stellar mass-limited sample of 34 galaxies at 1 < z < 1.5 with M{sub star} > 10{sup 11} M{sub Sun} in the COSMOS, GOODS, and AEGIS fields. We find that a substantial fraction of massive galaxies at this epoch are forming stars at a high rate: the fraction of galaxies with EW{sub H{alpha}} >10 A is 59%, compared to 10% among Sloan Digital Sky Survey galaxies of similar masses at z = 0.1. Galaxies with weak H{alpha} emission show absorption lines typical of 2-4 Gyr old stellar populations. The structural parameters of the galaxies, derived from the associated WFC3 F140W imaging data, correlate with the presence of H{alpha}; quiescent galaxies are compact with high Sersic index and high inferred velocity dispersion, whereas star-forming galaxies are typically large two-armed spiral galaxies, with low Sersic index. Some of these star-forming galaxies might be progenitors of the most massive S0 and Sa galaxies. Our results challenge the idea that galaxies at fixed mass form a homogeneous population with small scatter in their properties. Instead, we find that massive galaxies form a highly diverse population at z > 1, in marked contrast to the local universe.

  1. Probing dust-obscured star formation in the most massive gamma-ray burst host galaxies

    NASA Astrophysics Data System (ADS)

    Greiner, Jochen; Michałowski, Michał J.; Klose, Sylvio; Hunt, Leslie K.; Gentile, Gianfranco; Kamphuis, Peter; Herrero-Illana, Rubén; Wieringa, Mark; Krühler, Thomas; Schady, Patricia; Elliott, Jonathan; Graham, John F.; Ibar, Eduardo; Knust, Fabian; Nicuesa Guelbenzu, Ana; Palazzi, Eliana; Rossi, Andrea; Savaglio, Sandra

    2016-08-01

    Context. As a result of their relation to massive stars, long-duration gamma-ray bursts (GRBs) allow the pinpointing of star formation in galaxies independent of redshift, dust obscuration, or galaxy mass/size, thus providing a unique tool to investigate star formation history over cosmic time. Aims: About half of the optical afterglows of long-duration GRBs are missed owing to dust extinction and are primarily located in the most massive GRB hosts. It is important to investigate the amount of obscured star formation in these GRB host galaxies to understand this bias. Methods: Radio emission of galaxies correlates with star formation, but does not suffer extinction as do the optical star formation estimators. We selected 11 GRB host galaxies with either large stellar mass or large UV-based and optical-based star formation rates (SFRs) and obtained radio observations of these with the Australia Telescope Compact Array and the Karl Jansky Very Large Array. Results: Despite intentionally selecting GRB hosts with expected high SFRs, we do not find any radio emission related to star formation in any of our targets. Our upper limit for GRB 100621A implies that the earlier reported radio detection was due to afterglow emission. We detect radio emission from the position of GRB 020819B, but argue that it is in large part, if not completely, due to afterglow contamination. Conclusions: Half of our sample has radio-derived SFR limits, which are only a factor 2-3 above the optically measured SFRs. This supports other recent studies that the majority of star formation in GRB hosts is not obscured by dust. Based on observations collected with ATCA under ID C2718, and at VLA under ID 13B-017.

  2. DETECTION OF A LUMINOUS HOT X-RAY CORONA AROUND THE MASSIVE SPIRAL GALAXY NGC 266

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.; Jones, Christine

    2013-08-01

    The presence of luminous hot X-ray coronae in the dark matter halos of massive spiral galaxies is a basic prediction of galaxy formation models. However, observational evidence for such coronae is very scarce, with the first few examples having only been detected recently. In this paper, we study the large-scale diffuse X-ray emission associated with the massive spiral galaxy NGC 266. Using ROSAT and Chandra X-ray observations we argue that the diffuse emission extends at least {approx}70 kpc, whereas the bulk of the stellar light is confined to within {approx}25 kpc. Based on X-ray hardness ratios, we find that most of the diffuse emission is released at energies {approx}< 1.2 keV, which indicates that this emission originates from hot X-ray gas. Adopting a realistic gas temperature and metallicity, we derive that in the (0.05-0.15)r{sub 200} region (where r{sub 200} is the virial radius) the bolometric X-ray luminosity of the hot gas is (4.3 {+-} 0.8) Multiplication-Sign 10{sup 40} erg s{sup -1} and the gas mass is (9.1 {+-} 0.9) Multiplication-Sign 10{sup 9} M{sub Sun }. These values are comparable to those observed for the two other well-studied X-ray coronae in spiral galaxies, suggesting that the physical properties of such coronae are similar. This detection offers an excellent opportunity for comparison of observations with detailed galaxy formation simulations.

  3. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P.

    2015-06-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of M_stel= 8.8 × 10^{10}-6.0 × 10^{11} M_{⊙}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 haloes with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter haloes and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed MBH-σ relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of 2 compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ˜10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with σ = 200 km s- 1, the X-ray luminosity is reduced from 1042 erg s- 1 to 1040 erg s- 1. It also efficiently suppresses late-time star formation, reducing the specific star formation rate from 10-10.5 yr- 1 to 10-14 yr- 1 on average and resulting in quiescent galaxies since z = 2, whereas the thermal feedback model shows higher late-time in situ star formation rates than observed.

  4. Properties of galaxies around AGNs with the most massive supermassive black holes revealed by clustering analysis

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2016-04-01

    We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0, which was performed to investigate the properties of galaxies associated with the AGNs and reveal the nature of the fueling mechanism of supermassive black holes (SMBHs). We used 8059 AGNs/quasi-stellar objects (QSOs) for which virial masses of individual SMBHs were measured, and divided them into four mass groups.Cross-correlation analysis was performed to reconfirm our previous result that cross-correlation length increases with SMBH mass MBH; we obtained consistent results. A linear bias of AGN for each mass group was measured as 1.47 for MBH = 107.5-108.2 M⊙ and 3.08 for MBH = 109-1010 M⊙. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color Dopt-IR was estimated from a spectral energy distribution (SED) constructed from a catalog derived by merging the Sloan Digital Sky Survey (SDSS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) catalogs. The distributions of color and luminosity were derived by a subtraction method, which does not require redshift information of galaxies. The main results of this work are as follows. (1) A linear bias increases by a factor of two from the lower-mass group to the highest-mass group. (2) The environment around AGNs with the most massive SMBHs (MBH > 109 M⊙) is dominated by red sequence galaxies. (3) Marginal indication of decline in luminosity function at dimmer side of MIR > -19.5 is found for galaxies around AGNs with MBH = 108.2-109 M⊙ and nearest redshift group (z = 0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where a large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be one of the plausible mechanisms to fuel the SMBHs above ˜ 109 M⊙.

  5. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  6. X-ray and Weak Lensing Masses for a Sample of 50 Relaxed and Non-Relaxed Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mahdavi, Andisheh; Hoekstra, Henk; Babul, Arif

    2014-08-01

    We present an updated, recalibrated, multiwavelength, X-ray + weak lensing measurement of the mass profiles for 50 rich systems of galaxies. We find that our weak gravitational lensing masses, calibrated with state-of-the-art shear testing simulations, are 18% +/- 4% higher than those found for the clusters in the Planck satellite sample. Using the Joint Analysis of Cluster Observations codebase, we simultaneously model the baryonic and nonbaryonic matter profiles in these systems, deriving joint constraints on the gas entropy, pressure, metallicity, and dark matter distributions. Simultaneous analysis of Chandra and XMM-Newton data where both are available allows us to constrain these profiles over nearly two decades in radius. We find clusters with low BCG-to-X-ray center offsets form a remarkably regular sample, with NFW dark matter profiles and gas fraction values that are consistent with the cosmological value. Clusters with low central gas entropy exhibit a similar trend, and do so with an intrinsic scatter that is consistent with zero. Non-relaxed clusters, on the other hand---those with offset BCGs and high central entropies---exhibit significant scatter and have mass profiles inconsistent with the NFW value (most likely due to strong violations of spherical symmetry).

  7. The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45

    SciTech Connect

    Stanford, S A; Romer, A K; Sabirli, K; Davidson, M; Hilton, M; Viana, P P; Collins, C A; Kay, S T; Liddle, A R; Mann, R G; Miller, C J; Nichol, R C; West, M J; Conselice, C J; Spinrad, H; Stern, D; Bundy, K

    2006-05-24

    We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at z = 1.45, which was found in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy shows that 6 galaxies within a {approx}60 arcsec diameter region lie at z = 1.45 {+-} 0.01. Model fits to the X-ray spectra of the extended emission yield kT = 7.4{sub -1.8}{sup +2.7} keV (90% confidence); if there is an undetected central X-ray point source then kT = 6.5{sub -1.8}{sup +2.6} keV. The bolometric X-ray luminosity is L{sub x} = 4.4{sub -0.6}{sup +0.8} x 10{sup 44} ergs s{sup -1} over a 2 Mpc radial region. The measured T{sub x}, which is the highest for any known cluster at z > 1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS J2215.9-1738 is the highest currently known for a spectroscopically-confirmed cluster of galaxies.

  8. Formation of massive Population III galaxies through photoionization feedback: a possible explanation for CR 7

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2016-07-01

    We explore the formation of massive high-redshift Population III (Pop III) galaxies through photoionization feedback. We consider dark matter haloes formed from progenitors that have undergone no star formation as a result of early reionization and photoevaporation caused by a nearby galaxy. Once such a halo reaches ≈109 M⊙, corresponding to the Jeans mass of the photoheated intergalactic medium at z ≈ 7, pristine gas is able to collapse into the halo, potentially producing a massive Pop III starburst. We suggest that this scenario may explain the recent observation of strong He II 1640 Å line emission in CR 7, which is consistent with ˜107 M⊙ of young Pop III stars. Such a large mass of Pop III stars is unlikely without the photoionization feedback scenario, because star formation is expected to inject metals into haloes above the atomic cooling threshold (˜108 M⊙ at z ≈ 7). We use merger trees to analytically estimate the abundance of observable Pop III galaxies formed through this channel, and find a number density of ≈10-7 Mpc-3 at z = 6.6 (the redshift of CR 7). This is approximately a factor of 10 lower than the density of Ly α emitters as bright as CR 7.

  9. Galaxy shapes and Intrinsic Alignments in the MassiveBlack-II SImulation

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; DiMatteo, Tiziana; Feng, Yu; Khandai, Nishikanta

    2014-06-01

    The intrinsic alignment of galaxy shapes with the large-scale density field is a contaminant to weak lensing measurements, as well as being an interesting signature of galaxy formation and evolution (albeit one that is difficult to predict theoretically). Here we investigate the shapes and relative orientations of the stars and dark matter of halos and subhalos (central and satellite) extracted from the MassiveBlack-II simulation, a state-of-the-art high resolution hydrodynamical cosmological simulation which includes stellar and AGN feedback in a volume of (100h-1Mpc)3. We consider redshift evolution from z = 1 to 0.06 and mass evolution within the range of subhalo masses, 1010 - 6.0 × 1014.0h-1M⊙. The shapes of the dark matter distributions are generally more round than the shapes defined by stellar matter. We find that the shapes of stellar and dark matter are more round for less massive subhalos and at lower redshifts. By directly measuring the relative orientation of the stellar matter and dark matter of subgroups, we find that, on average, the misalignment between the two components is larger for less massive subhalos. The mean misalignment angle varies from ˜ 30°-10° for M ˜ 1010 - 1014 h-1M⊙ and shows a weak dependence on redshift. We also compare the misalignment angles in central and satellite subhalos at fixed subhalo mass, and find that centrals are more misaligned than satellites.

  10. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    DOE PAGESBeta

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; et al

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy clusters with median redshift z≃0.42 selected from the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian≃0.9 (low-z background) and zmedian≃1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit NFW models simultaneously to all observedmore » magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We also use our best-fit η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. Our work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.« less

  11. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; Desai, S.; Gangkofner, C.; Gonzalez, A. H.; Gupta, N.; Hennig, C.; Hoekstra, H.; von der Linden, A.; Liu, J.; McDonald, M.; Reichardt, C. L.; Saro, A.; Schrabback, T.; Strazzullo, V.; Stubbs, C. W.; Zenteno, A.

    2016-04-01

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z ≃ 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian ≃ 0.9 (low-z background) and zmedian ≃ 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.

  12. Galaxy populations in the 26 most massive galaxy clusters in the South Pole Telescope SPT-SZ survey

    NASA Astrophysics Data System (ADS)

    Zenteno, A.; Mohr, J. J.; Desai, S.; Stalder, B.; Saro, A.; Dietrich, J. P.; Bayliss, M.; Bocquet, S.; Chiu, I.; Gonzalez, A. H.; Gangkofner, C.; Gupta, N.; Hlavacek-Larrondo, J.; McDonald, M.; Reichardt, C.; Rest, A.

    2016-10-01

    We present a study of the optical properties of the 26 most massive galaxy clusters within the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) 2500 deg2 survey spanning the redshift range 0.10 < z < 1.13. We measure the radial profiles, the luminosity functions (LFs), and the halo occupation numbers (HONs) using optical data of typical depth m* + 2. The stacked radial profiles are consistent with a Navarro-Frenk-White profile of concentration 2.84^{+0.40}_{-0.37} for the red sequence (RS) and 2.36^{+0.38}_{-0.35} for the total population. Stacking the data in multiple redshift bins shows slight redshift evolution in the concentration when both the total population is used, and when only RS galaxies are used (at 2.1σ and 2.8σ, respectively). The stacked LF shows a faint end slope α = -1.06^{+0.04}_{-0.03} for the total and α = -0.80^{+0.04}_{-0.03} for the RS population. The redshift evolution of m* is consistent with a passively evolving composite stellar population (CSP) model. Adopting the CSP model predictions, we explore the redshift evolution of the Schechter parameters α and φ*. We find α for the total population to be consistent with no evolution (0.3σ), and mildly significant evidence of evolution for the red galaxies (1.1-2.1σ). The data show that the density φ*/E2(z) decreases with redshift, in tension with the self-similar expectation at a 2.4σ level for the total population. The measured HON-mass relation has a lower normalization than previous low redshift studies. Finally, our data support HON redshift evolution at a 2.1σ level, with clusters at higher redshift containing fewer galaxies than their low-z counterparts.

  13. Jellyfish: the origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    McPartland, Conor; Ebeling, Harald; Roediger, Elke; Blumenthal, Kelly

    2016-01-01

    We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3-0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen `jellyfish' galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is ≲500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional `jellyfish" galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift.

  14. PHOTOMETRIC PROPERTIES AND LUMINOSITY FUNCTION OF NEARBY MASSIVE EARLY-TYPE GALAXIES

    SciTech Connect

    He, Y. Q.; Xia, X. Y.; Hao, C. N.; Jing, Y. P.; Mao, S.; Li, Cheng

    2013-08-10

    We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (M{sub r} < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (M{sub r} < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec{sup -2} and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSS Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r{sub 50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M{sub *} {approx} 5 Multiplication-Sign 10{sup 11} M{sub Sun} and M{sub *} {approx} 10{sup 12} M{sub Sun} are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.

  15. [C II] LINE EMISSION IN MASSIVE STAR-FORMING GALAXIES AT z = 4.7

    SciTech Connect

    Wagg, J.; Aravena, M.; Martin, S.; Wiklind, T.; Peck, A.; Barkats, D.; Cortes, J. R.; Hills, R.; Hodge, J.; Impellizzeri, C. M V.; Rawlings, M. G.; Carilli, C. L.; Espada, D.; Iono, D.; Riechers, D.; Walter, F.; Wootten, A.; Leroy, A.; Maiolino, R.; McMahon, R. G.; and others

    2012-06-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] 157.7 {mu}m fine structure line and thermal dust continuum emission from a pair of gas-rich galaxies at z = 4.7, BR1202-0725. This system consists of a luminous quasar host galaxy and a bright submillimeter galaxy (SMG), while a fainter star-forming galaxy is also spatially coincident within a 4'' (25 kpc) region. All three galaxies are detected in the submillimeter continuum, indicating FIR luminosities in excess of 10{sup 13} L{sub Sun} for the two most luminous objects. The SMG and the quasar host galaxy are both detected in [C II] line emission with luminosities L{sub [CII]} = (10.0 {+-} 1.5) Multiplication-Sign 10{sup 9} L{sub Sun} and L{sub [CII]} = (6.5 {+-} 1.0) Multiplication-Sign 10{sup 9} L{sub Sun }, respectively. We estimate a luminosity ratio L{sub [CII]}/L{sub FIR} = (8.3 {+-} 1.2) Multiplication-Sign 10{sup -4} for the starburst SMG to the north and L{sub [CII]}/L{sub FIR} = (2.5 {+-} 0.4) Multiplication-Sign 10{sup -4} for the quasar host galaxy, in agreement with previous high-redshift studies that suggest lower [C II]-to-FIR luminosity ratios in quasars than in starburst galaxies. The third fainter object with a flux density S{sub 340GHz} = 1.9 {+-} 0.3 mJy is coincident with a Ly{alpha} emitter and is detected in HST ACS F775W and F814W images but has no clear counterpart in the H band. Even if this third companion does not lie at a redshift similar to BR1202-0725, the quasar and the SMG represent an overdensity of massive, infrared luminous star-forming galaxies within 1.3 Gyr of the big bang.

  16. Powerful quasar outflow in a massive disc galaxy at z ˜ 5

    NASA Astrophysics Data System (ADS)

    Curtis, Michael; Sijacki, Debora

    2016-03-01

    There is growing observational evidence of high-redshift quasars launching energetic, fast outflows, but the effects that these have on their host galaxies is poorly understood. We employ the moving-mesh code AREPO to study the feedback from a quasar that has grown to ˜109 M⊙ by z ˜ 5 and the impact that this has on its host galaxy. Our simulations use a super-Lagrangian refinement technique to increase the accuracy with which the interface of the quasar-driven wind and the surrounding gas is resolved. We find that the feedback injected in these simulations is less efficient at removing gas from the galaxy than in an identical simulation with no super-Lagrangian refinement. This leads to the growth of a massive, rotationally supported, star-forming disc, co-existing with a powerful quasar-driven outflow. The properties of our host galaxy, including the kinematical structure of the gaseous disc and of the outflow, are in good agreement with current observations. Upcoming ALMA and JWST observations will be an excellent test of our model and will provide further clues as to the variance in properties of high-redshift quasar hosts.

  17. Detailed abundance analysis of the brightest star in Segue 2, the least massive galaxy

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Kirby, Evan N.

    2014-05-01

    We present the first high-resolution spectroscopic observations of one red giant star in the ultra-faint dwarf galaxy Segue 2, which has the lowest total mass (including dark matter) estimated for any known galaxy. These observations were made using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Magellan II Telescope at Las Campanas Observatory. We perform a standard abundance analysis of this star, SDSS J021933.13+200830.2, and present abundances of 21 species of 18 elements as well as upper limits for 25 additional species. We derive [Fe/H] = -2.9, in excellent agreement with previous estimates from medium-resolution spectroscopy. Our main result is that this star bears the chemical signatures commonly found in field stars of similar metallicity. The heavy elements produced by neutron-capture reactions are present, but they are deficient at levels characteristic of stars in other ultra-faint dwarf galaxies and a few luminous dwarf galaxies. The otherwise normal abundance patterns suggest that the gas from which this star formed was enriched by metals from multiple Type II supernovae reflecting a relatively well-sampled IMF. This adds to the growing body of evidence indicating that Segue 2 may have been substantially more massive in the past.

  18. RHAPSODY-G simulations - II. Baryonic growth and metal enrichment in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Hahn, Oliver; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2016-07-01

    We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙ h-1) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of active galactic nucleus (AGN) feedback at the subgrid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low- and high-resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of 2 lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple `regulator' model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however, this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

  19. Stellar kinematics in the nucleus of NGC 6240: A massive galaxy revealed

    NASA Technical Reports Server (NTRS)

    Lester, Dan F.; Gaffney, Niall I.

    1994-01-01

    We have used the 2.3 micron bandhead of CO to measure the kinematics of the red stellar population in the nucleus of the luminous galaxy NGC 6240, the near-infrared spectrum of which is dominated by lines of shocked gas. With this manifest evidence for dissipative effects in the gas, it is such stellar velocity dispersion that is most unambiguously indicative of gravitational potential. We find a nuclear velocity dispersion sigma = 350 km/sec which is considerably larger than that seen in any gaseous component of this galaxy. At least one partner in this merger must therefore have been very massive, with M(sub B) approximately -23. In view of conventional wisdom that the high luminosity of NGC 6240 derives from star formation, it is suprising that we find M/L to be of order unity. While there seems to be little question that star formation is taking place in this interacting system, this high M/L calls into question the importance of star formation in the luminosity budget of the galaxy. In particular, it seems likely that the red starlight in NGC 6240 is produced by giants rather than a population of young red supergiants. This brings into question the (now reflexive) association of relatively deep CO bands in galaxies (which are conspicuously strong in NGC 6240) with recent star formation.

  20. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    PubMed

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow.

  1. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    PubMed

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. PMID:26160942

  2. The Coevolution of Supermassive Black Holes and Massive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Negrello, M.; Celotti, A.; De Zotti, G.; Danese, L.

    2014-02-01

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z >~ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale <~ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L Edd <~ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  3. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  4. Searching for massive galaxies at z ≥ 3.5 in GOODS-North

    NASA Astrophysics Data System (ADS)

    Mancini, C.; Matute, I.; Cimatti, A.; Daddi, E.; Dickinson, M.; Rodighiero, G.; Bolzonella, M.; Pozzetti, L.

    2009-06-01

    Aims: We constrain the space density and properties of massive galaxy candidates at redshifts of z≥3.5 in the Great Observatories Origin Deep Survey North (GOODS-N) field. By selecting sources in the Spitzer + IRAC bands, a sample highly complete in stellar-mass is assembled, including massive galaxies that are very faint in the optical/near-IR bands and would be missed by samples selected at shorter wavelengths. Methods: The z≥3.5 sample was selected to m_AB=23 mag at 4.5 μm using photometric redshifts obtained by fitting the galaxies spectral energy distribution at optical, near-IR bands, and IRAC bands. We also require that the brightest band (in AB scale) in which candidates are detected is the IRAC 8.0 μm band to ensure that the near-IR 1.6 μm (rest-frame) peak is falling in or beyond this band. Results: We found 53 z ≥3.5 candidates, of masses in the range Mstar˜1010{-}1011 M⊙. At least 81% of these galaxies are missed by traditional Lyman Break selection methods based on ultraviolet light. Spitzer + MIPS emission is detected for 60% of the sample of z≥3.5 galaxy candidates. Although in some cases this might suggest a residual contamination from lower redshift star-forming galaxies or Active Galactic Nuclei, 37% of these objects are also detected in the sub-mm/mm bands in SCUBA, AzTEC, and MAMBO surveys, and have properties fully consistent with vigorous starburst galaxies at z≥3.5. The comoving number density of galaxies with stellar masses of above 5 × 1010 M⊙ (a reasonable stellar-mass completeness limit for our sample) is 2.6 × 10-5 Mpc-3 (using the volume within 3.5galaxies, we measure a number density of ˜0.97 × 10-5 Mpc-3 and a stellar mass density of ˜(1.15± 0.7) × 10^6 M⊙ Mpc-3. Even in the unlikely case that these are all truly

  5. The mass and angular momentum distribution of simulated massive early-type galaxies to large radii

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Gerhard, Ortwin; Naab, Thorsten; Oser, Ludwig; Martinez-Valpuesta, Inma; Hilz, Michael; Churazov, Eugene; Lyskova, Natalya

    2014-03-01

    We study the dark and luminous mass distributions, circular velocity curves (CVCs), line-of-sight kinematics and angular momenta for a sample of 42 cosmological zoom simulations of galaxies with stellar masses from 2.0 × 1010 to 3.4 × 1011 M⊙ h-1. Using a temporal smoothing technique, we are able to reach large radii. We find the following. The dark matter halo density profiles outside a few kpc follow simple power-law models, with flat dark matter CVCs for lower mass systems, and rising CVCs for high-mass haloes. The projected stellar density distributions at large radii can be fitted by Sérsic functions with n ≳ 10, larger than for typical early-type galaxies (ETGs). The massive systems have nearly flat total (luminous plus dark matter) CVCs at large radii, while the less massive systems have mildly decreasing CVCs. The slope of the circular velocity at large radii correlates with circular velocity itself. The dark matter fractions within the projected stellar half-mass radius Re are in the range 15-30 per cent and increase to 40-65 per cent at 5Re. Larger and more massive galaxies have higher dark matter fractions. The fractions and trends with mass and size are in agreement with observational estimates, even though the stellar-to-total mass ratio is ˜2-3 times higher than estimated for ETGs. The short axes of simulated galaxies and their host dark matter haloes are well aligned and their short-to-long axis ratios are correlated. The stellar root mean square velocity vrms(R) profiles are slowly declining, in agreement with planetary nebulae observations in the outer haloes of most ETGs. The line-of-sight velocity fields {bar{v}} show that rotation properties at small and large radii are correlated. Most radial profiles for the cumulative specific angular momentum parameter λ(R) are nearly

  6. TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2

    SciTech Connect

    Bezanson, Rachel; Van Dokkum, Pieter G.; Leja, Joel; Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska

    2013-12-20

    The fundamental plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy formation mechanisms. The evolution of the zero point of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the ''mass FP'' for massive, quiescent galaxies since z ∼ 2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z ∼ 3, we find that quiescent galaxies lie on the mass FP out to z ∼ 2. In contrast with ∼1.4 dex evolution in the luminosity FP, average residuals from the z ∼ 0 mass FP are less than ∼0.15 dex since z ∼ 2. Assuming the Hyde and Bernardi mass FP slope, we find that this minimal offset scales as (1 + z){sup –0.095} {sup ±} {sup 0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z ∼ 2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.

  7. Herschel-ATLAS Galaxy Counts and High-redshift Luminosity Functions: The Formation of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lapi, A.; González-Nuevo, J.; Fan, L.; Bressan, A.; De Zotti, G.; Danese, L.; Negrello, M.; Dunne, L.; Eales, S.; Maddox, S.; Auld, R.; Baes, M.; Bonfield, D. G.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; Dye, S.; Fritz, J.; Herranz, D.; Hopwood, R.; Ibar, E.; Ivison, R.; Jarvis, M. J.; Kaviraj, S.; López-Caniego, M.; Massardi, M.; Michałowski, M. J.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Serjeant, S.; Smith, D. J. B.; Temi, P.; Wardlow, J.; van der Werf, P.

    2011-11-01

    Exploiting the Herschel Astrophysical Terahertz Large Area Survey Science Demonstration Phase survey data, we have determined the luminosity functions (LFs) at rest-frame wavelengths of 100 and 250 μm and at several redshifts z >~ 1, for bright submillimeter galaxies with star formation rates (SFRs) >~ 100 M ⊙ yr-1. We find that the evolution of the comoving LF is strong up to z ≈ 2.5, and slows down at higher redshifts. From the LFs and the information on halo masses inferred from clustering analysis, we derived an average relation between SFR and halo mass (and its scatter). We also infer that the timescale of the main episode of dust-enshrouded star formation in massive halos (M H >~ 3 × 1012 M ⊙) amounts to ~7 × 108 yr. Given the SFRs, which are in the range of 102-103 M ⊙ yr-1, this timescale implies final stellar masses of the order of 1011-1012 M ⊙. The corresponding stellar mass function matches the observed mass function of passively evolving galaxies at z >~ 1. The comparison of the statistics for submillimeter and UV-selected galaxies suggests that the dust-free, UV bright phase is >~ 102 times shorter than the submillimeter bright phase, implying that the dust must form soon after the onset of star formation. Using a single reference spectral energy distribution (SED; the one of the z ≈ 2.3 galaxy SMM J2135-0102), our simple physical model is able to reproduce not only the LFs at different redshifts >1 but also the counts at wavelengths ranging from 250 μm to ≈1 mm. Owing to the steepness of the counts and their relatively broad frequency range, this result suggests that the dispersion of submillimeter SEDs of z > 1 galaxies around the reference one is rather small. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. How a Massive Photon Retards the Universal Expansion Until Galaxies Form

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, J. P.

    2011-04-01

    Michael Faraday understood magnetism from the patterns of iron filings near bar magnets. He deduced the rule that field lines are in tension. Maxwell's stress tensor adds an additional feature, an isotropic pressure B2/8π . Both Maxwell and Faraday believed that electromagnetic fields are scale-invariant. Expressed in the language of particle physics, they believed that m⊙ = 0. A massive photon adds a scale λo inversely proportional to its mass: λo = h/m⊙ c. For scales larger than λo, the vector potential A dominates the magnetic field B. Lines of A are in negative tension; A supports a negative pressure. Here we will show how this negative pressure retards the expansion of the universe. After the formation of galaxies, matter becomes too hot to handle and the universe coasts. We will also discuss the role of the massive photon in binding clusters of galaxies such as the Coma cluster. 1)G.V. Chibisov, Sov. Phys. Usp 19, 624 (1976).

  9. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    SciTech Connect

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D. E-mail: franx@strw.leidenuniv.n E-mail: forster@mpe.mpg.d E-mail: swuyts@cfa.harvard.ed

    2009-11-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M{sub *} > 5 x 10{sup 10} M {sub sun}) galaxies at 1.5 < z < 2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed rest-frame UV-NIR spectral energy distributions, and independent MIPS 24 mum observations, 65% of the galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from two-dimensional surface brightness profile fits to high-resolution (FWHM{sub PSF} approx 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z approx 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 +- 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z approx 3-4, in contrast to star-forming galaxies at z approx 2 which are extended and dominated by distributed star formation.

  10. Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages

    NASA Astrophysics Data System (ADS)

    Buchan, Stewart; Shankar, Francesco

    2016-10-01

    There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in situ growth versus later accretion via mergers. In this paper, we set firmer constraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fraction of massive galaxies with Mstar>3 × 1011 M⊙ reside at the centre of clusters with mass Mhalo>3 × 1013 M⊙. Spectral analysis supports ages >10 Gyr, corresponding to a formation redshift zform>2. We combine these two pieces of observationally based evidence with the mass accretion history of their host dark matter haloes. We find that in these massive haloes, the stellar mass locked up in the central galaxy is comparable to, if not greater than, the total baryonic mass at zform. These findings indicate that either only a relatively minor fraction of their present-day stellar mass was formed in situ at zform, or that these massive, central galaxies form in the extreme scenario where almost all of the baryons in the progenitor halo are converted into stars. Interestingly, the latter scenario would not allow for any substantial size growth since the galaxy's formation epoch either via mergers or expansion. We show our results hold irrespective of systematic uncertainties in stellar mass, abundances, galaxy merger rates, stellar initial mass function, star formation rate and dark matter accretion histories.

  11. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    SciTech Connect

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.

  12. ENHANCED LENSING RATE BY CLUSTERING OF MASSIVE GALAXIES: NEWLY DISCOVERED SYSTEMS IN THE SLACS FIELDS

    SciTech Connect

    Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso

    2009-05-10

    Galaxy-scale strong gravitational lens systems are useful for a variety of astrophysical applications. However, their use is limited by the relatively small samples of lenses known to date. It is thus important to develop efficient ways to discover new systems both in present and forthcoming data sets. For future large high-resolution imaging surveys we anticipate an ever-growing need for efficiency and for independence from spectroscopic data. In this paper, we exploit the clustering of massive galaxies to perform a high-efficiency imaging search for gravitational lenses. Our data set comprises 44 fields imaged by the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS), each of which is centered on a lens discovered by the Strong Lens ACS Survey (SLACS). We compare four different search methods: (1) automated detection with the HST Archive Galaxy-scale Gravitational Lens Survey (HAGGLeS) robot, (2) examining cutout images of bright galaxies (BGs) after subtraction of a smooth galaxy light distribution, (3) examining the unsubtracted BG cutouts, and (4) performing a full-frame visual inspection of the ACS images. We compute purity and completeness and consider investigator time for the four algorithms, using the main SLACS lenses as a testbed. The first and second algorithms perform the best. We present the four new lens systems discovered during this comprehensive search, as well as one other likely candidate. For each new lens we use the fundamental plane to estimate the lens velocity dispersion and predict, from the resulting lens geometry, the redshifts of the lensed sources. Two of these new systems are found in galaxy clusters, which include the SLACS lenses in the two respective fields. Overall we find that the enhanced lens abundance (30{sup +24} {sub -8} lenses deg{sup -2}) is higher than expected for random fields (12{sup +4} {sub -2} lenses deg{sup -2} for the COSMOS survey). Additionally, we find that the gravitational lenses we detect are

  13. Feedback from quasars in star-forming galaxies and the triggering of massive galactic winds

    NASA Astrophysics Data System (ADS)

    Monaco, Pierluigi; Fontanot, Fabio

    2005-05-01

    The shining of quasars is a likely trigger of massive galactic winds, able to remove most interstellar medium (ISM) from a star-forming spheroid. However, the mechanism responsible for the deposition of energy into the ISM is still unclear. Starting from a model for feedback in galaxy formation with a two-phase medium (Monaco), we propose that the perturbation induced by radiative heating from a quasar on the ISM triggers a critical change of feedback regime. In the feedback model, supernova remnants (SNRs) expanding in the hot and pressurized phase of a star-forming spheroid typically become pressure confined before the hot interior gas is able to cool. In the presence of runaway radiative heating by a quasar, a mass flow from the cold to the hot phase develops; whenever this evaporation flow is significant with respect to the star formation rate, owing to the increased density of the hot phase the SNRs reach the point where their interior gas cools before being confined, forming a thick cold shell. We show that in this case the consequent drop in pressure leads quickly to the percolation of all the shells and to the formation of a super shell of cold gas that sweeps the whole galaxy. Radiation pressure is then very effective in removing such a shell from the galaxy. This self-limiting mechanism leads to a correlation between black hole and bulge masses for more massive bulges than 1010 Msolar. The insertion of a motivated wind trigger criterion in a hierarchical galaxy formation model shows, however, that winds are not necessary to obtain a good black hole-bulge correlation. In the absence of winds, good results are obtained if the mechanism responsible for the creation of a reservoir of low-angular momentum gas (able to accrete on to the black hole) deposits mass at a rate proportional to the star formation rate. Using a novel galaxy formation model, we show under which conditions black hole masses are self-limited by the wind mechanism described above, and

  14. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  15. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  16. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    SciTech Connect

    Teng, Stacy H.; Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J.; Oh, Kyuseok; Cardamone, Carolin N.; Keel, William C.; Simmons, Brooke D.; Treister, Ezequiel

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  17. SPIDER - VII. Revealing the stellar population content of massive early-type galaxies out to 8Re

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Ferreras, I.; de Carvalho, R. R.; Bruzual, G.; Charlot, S.; Pasquali, A.; Merlin, E.

    2012-11-01

    Radial trends of stellar populations in galaxies provide a valuable tool to understand the mechanisms of galaxy growth. In this paper, we present the first comprehensive analysis of optical-optical and optical-NIR colours, as a function of galaxy mass, out to the halo region (8Re) of early-type galaxies (ETGs). We select a sample of 674 massive ETGs (M★ ≳ 3 × 1010 M⊙) from the Sloan Digital Sky Survey (SDSS)-based SPIDER survey. By comparing with a large range of population synthesis models, we derive robust constraints on the radial trends in age and metallicity. Metallicity is unambiguously found to decrease outwards, with a measurable steepening of the slope in the outer regions (Re < R < 8Re). The gradients in stellar age are found to be more sensitive to the models used, but in general, the outer regions of ETGs feature older populations compared to the cores. This trend is strongest for the most massive galaxies in our sample (M★ ≳ 1011 M⊙). Furthermore, when segregating with respect to large-scale environment, the age gradient is more significant in ETGs residing in higher density regions. These results shed light on the processes leading from the formation of the central core to the growth of the stellar envelope of massive galaxies. The fact that the populations in the outer regions are older and more metal-poor than in the core suggests a process whereby the envelope of massive galaxies is made up of accreted small satellites (i.e. minor mergers) whose stars were born during the first stages of galaxy formation.

  18. Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana; Feng, Yu; Khandai, Nishikanta

    2014-06-01

    The intrinsic alignment of galaxy shapes with the large-scale density field is a contaminant to weak lensing measurements, as well as being an interesting signature of galaxy formation and evolution (albeit one that is difficult to predict theoretically). Here we investigate the shapes and relative orientations of the stars and dark matter of haloes and subhaloes (central and satellite) extracted from the MassiveBlack-II simulation, a state-of-the-art high-resolution hydrodynamical cosmological simulation which includes stellar and active galactic nucleus feedback in a volume of (100 h-1 Mpc)3. We consider redshift evolution from z = 1 to 0.06 and mass evolution within the range of subhalo masses, 1010-6.0 × 1014.0 h-1 M⊙. The shapes of the dark matter distributions are generally more round than the shapes defined by stellar matter. The projected root-mean-square ellipticity per component for stellar matter is measured to be erms = 0.28 at z = 0.3 for Msubhalo > 1012.0 h-1 M⊙, which compares favourably with observational measurements. We find that the shapes of stellar and dark matter are more round for less massive subhaloes and at lower redshifts. By directly measuring the relative orientation of the stellar matter and dark matter of subgroups, we find that, on average, the misalignment between the two components is larger for less massive subhaloes. The mean misalignment angle varies from ˜30° to 10° for M ˜ 1010-1014 h-1 M⊙ and shows a weak dependence on redshift. We also compare the misalignment angles in central and satellite subhaloes at fixed subhalo mass, and find that centrals are more misaligned than satellites. We present fitting formulae for the shapes of dark and stellar matter in subhaloes and also the probability distributions of misalignment angles.

  19. SUCCESSIVE MERGER OF MULTIPLE MASSIVE BLACK HOLES IN A PRIMORDIAL GALAXY

    SciTech Connect

    Tanikawa, A.; Umemura, M.

    2011-02-20

    Using highly accurate N-body simulations, we explore the evolution of multiple massive black holes (hereafter MBHs) in a primordial galaxy that is composed of stars and MBHs. The evolution is pursed with a fourth-order Hermite scheme, where not only three-body interaction of MBHs but also dynamical friction by stars are incorporated. Initially, 10 MBHs with equal masses of 10{sup 7} M{sub sun} are set in a host galaxy with 10{sup 11} M{sub sun}. It is found that 4-6 MBHs merge successively within 1 Gyr, emitting gravitational wave radiation. The key process for the successive merger of MBHs is the dynamical friction by field stars, which enhances three-body interactions of MBHs when they enter the central regions of the galaxy. The heaviest MBH always composes a close binary at the galactic center, which shrinks owing to the angular momentum transfer by the third MBH and eventually merges. The angular momentum transfer by the third MBH is due to the sling-shot mechanism. We find that the secular Kozai mechanism does not work for a binary to merge if we include the relativistic pericenter shift. The simulations show that a multiple MBH system can produce a heavier MBH at the galactic center purely through N-body process. This merger path can be of great significance for the growth of MBHs in a primordial galaxy. The merger of multiple MBHs may be a potential source of gravitational waves for the Laser Interferometer Space Antenna and pulsar timing.

  20. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z {approx} 2.4 IN THE COSMOS/UltraVISTA FIELD

    SciTech Connect

    Muzzin, Adam; Labbe, Ivo; Franx, Marijn; Holt, J.; Szomoru, Daniel; Van de Sande, Jesse; Van Dokkum, Pieter; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Dunlop, James; Caputi, K. I.; Fynbo, J. P. U.; Milvang-Jensen, Bo; Le Fevre, Olivier; McCracken, Henry J.

    2012-12-20

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger

  1. The MASSIVE Survey. IV. The X-ray Halos of the Most Massive Early-type Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Ma, Chung-Pei; Veale, Melanie; Bogdan, Akos; Nyland, Kristina; Blakeslee, John P.; McConnell, Nicholas J.; Thomas, Jens

    2016-08-01

    Studies of the physical properties of local elliptical galaxies are shedding new light on galaxy formation. Here we present the hot-gas properties of 33 early-type systems within the MASSIVE galaxy survey that have archival Chandra X-ray observations, and we use these data to derive X-ray luminosities ({L}{{X,gas}}) and plasma temperatures ({T}{{gas}}) for the diffuse gas components. We combine this with the {{ATLAS}}{{3D}} survey to investigate the X-ray-optical properties of a statistically significant sample of early-type galaxies across a wide range of environments. When X-ray measurements are performed consistently in apertures set by the galaxy stellar content, we deduce that all early types (independent of galaxy mass, environment, and rotational support) follow a universal scaling law such that {L}{{X,gas}}\\propto {T}{{gas}}˜ 4.5. We further demonstrate that the scatter in {L}{{X,gas}} around both K-band luminosity (L K ) and the galaxy stellar velocity dispersion ({σ }e) is primarily driven by {T}{{gas}}, with no clear trends with halo mass, radio power, or angular momentum of the stars. It is not trivial to tie the gas origin directly to either stellar mass or galaxy potential. Indeed, our data require a steeper relation between {L}{{X,gas}},{L}K, and {σ }e than predicted by standard mass-loss models. Finally, we find that {T}{{gas}} is set by the galaxy potential inside the optical effective radius. We conclude that within the innermost 10-30 kpc region, early types maintain pressure-supported hot gas, with a minimum {T}{{gas}} set by the virial temperature, but the majority show evidence for additional heating.

  2. The MASSIVE Survey. IV. The X-ray Halos of the Most Massive Early-type Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Ma, Chung-Pei; Veale, Melanie; Bogdan, Akos; Nyland, Kristina; Blakeslee, John P.; McConnell, Nicholas J.; Thomas, Jens

    2016-08-01

    Studies of the physical properties of local elliptical galaxies are shedding new light on galaxy formation. Here we present the hot-gas properties of 33 early-type systems within the MASSIVE galaxy survey that have archival Chandra X-ray observations, and we use these data to derive X-ray luminosities ({L}{{X,gas}}) and plasma temperatures ({T}{{gas}}) for the diffuse gas components. We combine this with the {{ATLAS}}{{3D}} survey to investigate the X-ray–optical properties of a statistically significant sample of early-type galaxies across a wide range of environments. When X-ray measurements are performed consistently in apertures set by the galaxy stellar content, we deduce that all early types (independent of galaxy mass, environment, and rotational support) follow a universal scaling law such that {L}{{X,gas}}\\propto {T}{{gas}}˜ 4.5. We further demonstrate that the scatter in {L}{{X,gas}} around both K-band luminosity (L K ) and the galaxy stellar velocity dispersion ({σ }e) is primarily driven by {T}{{gas}}, with no clear trends with halo mass, radio power, or angular momentum of the stars. It is not trivial to tie the gas origin directly to either stellar mass or galaxy potential. Indeed, our data require a steeper relation between {L}{{X,gas}},{L}K, and {σ }e than predicted by standard mass-loss models. Finally, we find that {T}{{gas}} is set by the galaxy potential inside the optical effective radius. We conclude that within the innermost 10–30 kpc region, early types maintain pressure-supported hot gas, with a minimum {T}{{gas}} set by the virial temperature, but the majority show evidence for additional heating.

  3. Sunyaev - Zel'dovich Effect Imaging of Massive Clusters of Galaxies at Redshift > 0.8

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; LaRoque, Samuel; Grego, Laura; Carlstrom, John E.; Dawson, Kyle; Ebeling, Harald; Holzapfel, William L.; Nagai, Daisuke; Reese, Erik D.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We present Sunyaev-Zel'dovich Effect (SZE) imaging observations of three distant (z greater than 0.8) and highly X-ray luminous clusters of galaxies, C1J1226+33, C1J0152-13 and MS1054-03. Two of the clusters, C1J1226+33 and C1J0152-13, were recently discovered in the WARPS X-ray survey. Their high X-ray luminosity suggests they are massive systems and, if confirmed, would provide strong constraints on the cosmological parameters of structure formation models. Our Sunyaev-Zel'dovich Effect data provide confirmation that they are massive clusters similar to the well studied cluster MS1054-03. Assuming the clusters have the same gas mass fraction derived from SZE measurements of eighteen known massive clusters, we are able to infer their mass and electron temperatures from the SZE data. The derived electron temperatures are 10.0, 8.5, and 10.3 KeV, respectively, and we infer total masses of approximately 2 x 10(circumflex) 14 h(circumflex) -l M - sun within a radius of 65" for all three clusters. For C1J0152-13 and MS1054-03 we find good agreement between our SZE derived temperatures and those derived from X-ray spectroscopic measurements. No X-ray derived temperatures are available for C1J1226+33, and thus the SZE data provide the first confirmation that it is indeed a massive system. The demonstrated ability to determine cluster temperatures and masses from SZE observations without access to X-ray data illustrates the power of using deep SZE surveys to probe the distant universe.

  4. Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment

    NASA Astrophysics Data System (ADS)

    Bonoli, Silvia; Mayer, Lucio; Callegari, Simone

    2014-01-01

    We study the statistics and cosmic evolution of massive black hole seeds formed during major mergers of gas-rich late-type galaxies. Generalizing the results of the hydrosimulations from Mayer et al., we envision a scenario in which a supermassive star can form at the centre of galaxies that just experienced a major merger owing to a multiscale powerful gas inflow, provided that such galaxies live in haloes with masses above 1011 M⊙, are gas rich and disc dominated, and do not already host a massive black hole. We assume that the ultimate collapse of the supermassive star leads to the rapid formation of a black hole of 105 M⊙ following a quasi-star stage. Using a model for galaxy formation applied to the outputs of the Millennium Simulation, we show that the conditions required for this massive black hole formation route to take place in the concordance Λ cold dark matter model are actually common at high redshift and can be realized even at low redshift. Most major mergers above z ˜ 4 in haloes with mass >1011 M⊙ can lead to the formation of a massive seed and, at z ˜ 2, the fraction of favourable mergers decreases to about half. Interestingly, we find that even in the local universe a fraction (˜20 per cent) of major mergers in massive haloes still satisfies the conditions for our massive black hole formation route. Those late events take place in galaxies with a markedly low clustering amplitude, that have lived in isolation for most of their life and that are experiencing a major merger for the first time. We predict that massive black hole seeds from galaxy mergers can dominate the massive end of the mass function at high (z > 4) and intermediate (z ˜ 2) redshifts relative to lighter seeds formed at higher redshift, for example, by the collapse of Pop III stars. Finally, a fraction of these massive seeds could lie, soon after formation, above the MBH-MBulge relation.

  5. THE ORIGIN OF METALS IN THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z = 3

    SciTech Connect

    Shen Sijing; Madau, Piero; Aguirre, Anthony; Guedes, Javiera; Mayer, Lucio; Wadsley, James

    2012-11-20

    We present a detailed study of the metal-enriched circumgalactic medium (CGM) of a massive galaxy at z = 3 using results from 'ErisMC', a new cosmological hydrodynamic 'zoom-in' simulation of a disk galaxy with mass comparable to the Milky Way. The reference run adopts a blast wave scheme for supernova feedback that generates galactic outflows without explicit wind particles, a star formation recipe based on a high gas density threshold and high-temperature metal cooling. ErisMC's main progenitor at z = 3 resembles a 'Lyman break' galaxy of total mass M {sub vir} = 2.4 Multiplication-Sign 10{sup 11} M {sub Sun }, virial radius R {sub vir} = 48 kpc, and star formation rate 18 M {sub Sun} yr{sup -1}, and its metal-enriched CGM extends as far as 200 (physical) kpc from its center. Approximately 41%, 9%, and 50% of all gas-phase metals at z = 3 are locked in a hot (T > 3 Multiplication-Sign 10{sup 5} K), warm (3 Multiplication-Sign 10{sup 5} K > T > 3 Multiplication-Sign 10{sup 4} K), and cold (T < 3 Multiplication-Sign 10{sup 4} K) medium, respectively. We identify three sources of heavy elements: (1) the main host, responsible for 60% of all the metals found within 3 R {sub vir}; (2) its satellite progenitors, which shed their metals before and during infall, and are responsible for 28% of all the metals within 3 R {sub vir}, and for only 5% of those beyond 3 R {sub vir}; and (3) nearby dwarfs, which give origin to 12% of all the metals within 3 R {sub vir} and 95% of those beyond 3 R {sub vir}. Late (z < 5) galactic 'superwinds'-the result of recent star formation in ErisMC-account for only 9% of all the metals observed beyond 2 R {sub vir}, the bulk having been released at redshifts 5 {approx}< z {approx}< 8 by early star formation and outflows. In the CGM, lower overdensities are typically enriched by 'older', colder metals. Heavy elements are accreted onto ErisMC along filaments via low-metallicity cold inflows and are ejected hot via galactic outflows at a few

  6. THE DETECTION OF THE LARGE-SCALE ALIGNMENT OF MASSIVE GALAXIES AT z {approx} 0.6

    SciTech Connect

    Li Cheng; Jing, Y. P.; Faltenbacher, A.; Wang Jie

    2013-06-10

    We report on the detection of the alignment between galaxies and large-scale structure at z {approx} 0.6 based on the CMASS galaxy sample from the Baryon Oscillation Spectroscopy Survey Data Release 9. We use two statistics to quantify the alignment signal: (1) the alignment two-point correlation function that probes the dependence of galaxy clustering at a given separation in redshift space on the projected angle ({theta}{sub p}) between the orientation of galaxies and the line connecting to other galaxies, and (2) the cos (2{theta})-statistic that estimates the average of cos (2{theta}{sub p}) for all correlated pairs at a given separation s. We find a significant alignment signal out to about 70 h {sup -1} Mpc in both statistics. Applications of the same statistics to dark matter halos of mass above 10{sup 12} h {sup -1} M{sub Sun} in a large cosmological simulation show scale-dependent alignment signals similar to the observation, but with higher amplitudes at all scales probed. We show that this discrepancy may be partially explained by a misalignment angle between central galaxies and their host halos, though detailed modeling is needed in order to better understand the link between the orientations of galaxies and host halos. In addition, we find systematic trends of the alignment statistics with the stellar mass of the CMASS galaxies, in the sense that more massive galaxies are more strongly aligned with the large-scale structure.

  7. A massive cloud of cold atomic hydrogen in the outer Galaxy.

    PubMed

    Knee, L B; Brunt, C M

    2001-07-19

    A large fraction of the mass of the interstellar medium in our Galaxy is in the form of warm (103-104 K) and cool (50-100 K) atomic hydrogen (H i) gas. Cold (10-30 K) regions are thought to be dominated by dense clouds of molecular hydrogen. Cold H i is difficult to observe, and therefore our knowledge of its abundance and distribution in the interstellar medium is poor. The few known clouds of cold H i are much smaller in size and mass than typical molecular clouds. Here we report the discovery that the H i supershell GSH139-03-69 is very cold (10 K). It is about 2 kiloparsecs in size and as massive as the largest molecular complexes. The existence of such an immense structure composed of cold atomic hydrogen in the interstellar medium runs counter to the prevailing view that cold gas resides almost exclusively in clouds dominated by molecular hydrogen.

  8. Radio AGN signatures in massive quiescent galaxies out to z=1.5

    NASA Astrophysics Data System (ADS)

    Järvelä, Emilia

    2016-08-01

    Detection of gamma-rays from narrow-line Seyfert 1 galaxies (NLS1) by Fermi confirmed the presence of powerful relativistic jets in them, and thus challenged our understanding of active galactic nuclei (AGN). In the current AGN paradigm powerful relativistic jets are produced in massive elliptical galaxies with supermassive black holes. NLS1s differ from them significantly; they harbour lower mass black holes accreting at higher Eddington ratios, have preferably compact radio morphology, reside mostly in spiral galaxies, and were thought to be radio-quiet.Fermi's discovery invokes questions about the AGN evolution; what triggers and maintains the AGN activity, and what are the evolutionary lines of the different populations? It is also necessary to revise the AGN unification schemes to fit in NLS1s. They convolute the whole AGN scenario, but offer us a new look on the jet phenomena and will help us construct a more comprehensive big picture of AGN.Despite their importance, NLS1s are rather poorly studied as a class. For example, some NLS1s seem to be totally radio-silent, but a considerable fraction are radio-loud and thus probably host jets. This, along with other observational evidence, implies that they do not form a homogeneous class. However, it remains unclear what is triggering the radio loudness in some of them, but, for example, the properties of the host galaxy and the large-scale environment might play a role. Also the parent population of NLS1s remains an open question.We used various statistical methods, for example, multiwavelength correlations and principal component analysis to study a large sample of NLS1 sources. We will present the results and discuss the interplay between their properties, such as emission properties, black hole masses, large-scale environments, and their effect on radio loudness. We will also introduce the Metsähovi Radio Observatory NLS1 galaxy observing programme, which is the first one dedicated to systematical observations

  9. A massive star origin for an unusual helium-rich supernova in an elliptical galaxy.

    PubMed

    Kawabata, K S; Maeda, K; Nomoto, K; Taubenberger, S; Tanaka, M; Deng, J; Pian, E; Hattori, T; Itagaki, K

    2010-05-20

    The unusual helium-rich (type Ib) supernova SN 2005E is distinguished from all supernovae hitherto observed by its faint and rapidly fading light curve, prominent calcium lines in late-phase spectra and lack of any mark of recent star formation near the supernova location. These properties are claimed to be explained by a helium detonation in a thin surface layer of an accreting white dwarf. Here we report that the observed properties of SN 2005cz, which appeared in an elliptical galaxy, resemble those of SN 2005E. We argue that these properties are best explained by a core-collapse supernova at the low-mass end (8-12 solar masses) of the range of massive stars that explode. Such a low-mass progenitor lost its hydrogen-rich envelope through binary interaction, had very thin oxygen-rich and silicon-rich layers above the collapsing core, and accordingly ejected a very small amount of radioactive (56)Ni and oxygen. Although the host galaxy NGC 4589 is an elliptical, some studies have revealed evidence of recent star-formation activity, consistent with the core-collapse model. PMID:20485430

  10. A critical analysis of high-redshift, massive, galaxy clusters. Part I

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Verde, Licia; Hotchkiss, Shaun E-mail: licia.verde@icc.ub.edu E-mail: shaun.hotchkiss@helsinki.fi

    2012-02-01

    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the > M, > z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee et al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the ( > M, > z) existence probabilities of all clusters are fully consistent with ΛCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at > 95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.

  11. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  12. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    DOE PAGESBeta

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals thatmore » baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M⊙ h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.« less

  13. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    SciTech Connect

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.

  14. A massive star origin for an unusual helium-rich supernova in an elliptical galaxy.

    PubMed

    Kawabata, K S; Maeda, K; Nomoto, K; Taubenberger, S; Tanaka, M; Deng, J; Pian, E; Hattori, T; Itagaki, K

    2010-05-20

    The unusual helium-rich (type Ib) supernova SN 2005E is distinguished from all supernovae hitherto observed by its faint and rapidly fading light curve, prominent calcium lines in late-phase spectra and lack of any mark of recent star formation near the supernova location. These properties are claimed to be explained by a helium detonation in a thin surface layer of an accreting white dwarf. Here we report that the observed properties of SN 2005cz, which appeared in an elliptical galaxy, resemble those of SN 2005E. We argue that these properties are best explained by a core-collapse supernova at the low-mass end (8-12 solar masses) of the range of massive stars that explode. Such a low-mass progenitor lost its hydrogen-rich envelope through binary interaction, had very thin oxygen-rich and silicon-rich layers above the collapsing core, and accordingly ejected a very small amount of radioactive (56)Ni and oxygen. Although the host galaxy NGC 4589 is an elliptical, some studies have revealed evidence of recent star-formation activity, consistent with the core-collapse model.

  15. Towards combined analysis of the most distant massive galaxy clusters with XMM and Chandra

    NASA Astrophysics Data System (ADS)

    Bartalucci, I.

    2016-06-01

    We present a detailed study of the gas and dark matter properties of the 5 most massive and distant, z ˜ 1, clusters detected via the Sunyaev-Zel'Dovich effect. These massive objects represent an ideal laboratory to test our models of structure evolution in a mass regime driven mainly by gravity. This work presents a new method to study these objects, where informations coming from XMM-Newton and Chandra instruments are efficiently combined. The combination of Chandra fine spatial resolution and XMM-Newton effective area allows us to efficiently investigate the properties of the Intra Cluster medium in the core and probe cluster outskirts. The resulting combined density profiles are used to fully characterize the thermodynamic and physical properties of the gas. Evolution properties are investigated from comparison with the REXCESS local galaxy cluster sample. In the context of the joint analysis of future Chandra and XMM large programs, we discuss the current limitations of this method and future prospects.

  16. A spectroscopic sample of massive, quiescent z ∼ 2 galaxies: implications for the evolution of the mass-size relation

    SciTech Connect

    Krogager, J.-K.; Zirm, A. W.; Toft, S.; Man, A.; Brammer, G.

    2014-12-10

    We present deep, near-infrared Hubble Space Telescope/Wide Field Camera 3 grism spectroscopy and imaging for a sample of 14 galaxies at z ≈ 2 selected from a mass-complete photometric catalog in the COSMOS field. By combining the grism observations with photometry in 30 bands, we derive accurate constraints on their redshifts, stellar masses, ages, dust extinction, and formation redshifts. We show that the slope and scatter of the z ∼ 2 mass-size relation of quiescent galaxies is consistent with the local relation, and confirm previous findings that the sizes for a given mass are smaller by a factor of two to three. Finally, we show that the observed evolution of the mass-size relation of quiescent galaxies between z = 2 and 0 can be explained by the quenching of increasingly larger star forming galaxies at a rate dictated by the increase in the number density of quiescent galaxies with decreasing redshift. However, we find that the scatter in the mass-size relation should increase in the quenching-driven scenario in contrast to what is seen in the data. This suggests that merging is not needed to explain the evolution of the median mass-size relation of massive galaxies, but may still be required to tighten its scatter, and explain the size growth of individual z = 2 galaxies quiescent galaxies.

  17. HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Vogelsberger, Mark; Sijacki, Debora; Mazzotta, Pasquale; Kraft, Ralph P.; Jones, Christine; David, Laurence P.; Bourdin, Herve; Gilfanov, Marat; Churazov, Eugene

    2013-08-01

    Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two 'normal' massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to {approx}60 kpc-well beyond their optical radii. The hot gas has a best-fit temperature of kT {approx} 0.6 keV and an abundance of {approx}0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-static gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r{sub 200} region (r{sub 200} is the virial radius) is {approx}6 Multiplication-Sign 10{sup 40} erg s{sup -1} for both galaxies. The baryon mass fractions of NGC 1961 and NGC 6753 are f{sub b,NGC1961} {approx} 0.11 and f{sub b,NGC6753} {approx} 0.09, which values fall short of the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code AREPO and the smoothed particle hydrodynamics code GADGET. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the AREPO code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by AREPO within {approx}0.5r{sub 200}. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.

  18. H-Band dropouts in the deepest CANDELS field. A new population of bright massive galaxies at z >3

    NASA Astrophysics Data System (ADS)

    Alcalde Pampliega, B.; Pérez-González, P. G.; Domínguez Sánchez, H.; Esquej, P.; Eliche-Moral, M. C.; Barro, G.

    2015-05-01

    The recent increase in depth, spatial and wavelength coverage of extragalactic surveys has improved dramatically our understanding of galaxy formation and evolution and is revealing a new population of galaxies at high redshift. That is consistent with a downsizing (Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839; Heavens, A., Panter, B., Jiménez, R., & Dunlop, J. 2004, Nature, 428, 625; Juneau, S., et al. 2005, ApJ, 619, L135; Bauer, A. E., Drory, N., Hill, G. J., & Feulner, G. 2005, ApJ, 621, L89; Pérez-González et al. 2008, ApJ, 675, 234) scenario, which implies that the most massive galaxies formed early in the history of the universe and evolved quickly. Red color criteria and the analysis of deep mid-IR, has been proven to very useful to identify high-z extremely red galaxies as shown in (Caputi, K. et al. 2012, ApJ, 750, L20 and Huang, J.-S., Zheng, X. Z., Rigopoulou, D. et al., 2011, ApJ, 742, L13). We present our analysis of the deepest near-infrared (F160W/H-band from CANDELS) and mid-infrared (IRAC from GOODS) data taken by HST and Spitzer (in the GOODS fields) to select sources only detected by IRAC and with no CANDELS counterpart (i.e., H>27, [3.6]≤25). These H-Band dropouts constitute a previously unknown population of dust-enshrouded and/or quiescent massive red galaxies at z>3. Using the wealth of data available in the GOODS field, especially the SHARDS data, we characterize the properties of this population of red galaxies and discuss on its relevance for previous estimations of the stellar mass function at z=3-5, and the evolution of massive galaxies in the early Universe.

  19. Why do the HIghMass Galaxies Have so Much Gas?: Studying Massive, Gas-Rich Galaxies at z~0 with Resolved HI and H2

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory L.; HIghMass Team

    2016-01-01

    In the standard ΛCDM cosmology, galaxies form via mergers of many smaller dark matter halos. Because mergers drive star formation, the most massive galaxies should also be the ones which have been the most efficient at converting their gas reservoirs into stars. This trend is seen observationally: in general, as stellar mass increases, gas fraction (GF = MHI/M*) decreases. Galaxies which have large reservoirs of atomic hydrogen (HI) are thus expected to be extremely rare, which was seemingly supported by earlier blind HI surveys.In seeming contradiction, ALFALFA, the Arecibo Legacy Fast ALFA Survey has observed a sample of 34 galaxies which are both massive (MHI>1010 M⊙) and have unusually high gas fractions (all ≥ 0.3; half are > 1). We call this sample HighMass. Unlike other extremely HI-massive samples, such galaxies are neither low surface brightness galaxies nor are they simply "scaled up" spirals. Could this gas be recently acquired, either from accreting small companions or directly from the cosmic web? Or is it primordial, and has been kept from forming stars, possibly because of an unusually high dark matter halo spin parameter?We present resolved HI, H2, and star formation properties of three of these HIghMass galaxies, and compare them with two HIghMass galaxies previously discussed in Hallenbeck et al. (2014). One of these galaxies, UGC 6168, appears in the process of transitioning from a quiescent to star-forming phase, as indicated by its bar and potential non-circular flows. A second, UGC 7899, has a clear warp, which could be evidence of recently accreted gas—but the presence of a warp is far from conclusive evidence. Both have moderately high dark matter halo spin parameters (λ' = 0.09), similar to the previously studied UGC 9037. The third, NGC 5230, looks undisturbed both optically and in its radio emission, but is in a group full of extragalactic gas. A neighboring galaxy has been significantly disrupted, and NGC 5230 may be in the

  20. Massive star formation in Wolf-Rayet galaxies. I. Optical and NIR photometric results

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Esteban, C.

    2008-11-01

    Aims: We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show the presence of a substantial population of massive stars. The main aims are the study of the massive star formation and stellar populations in these galaxies, and the role that interactions with or between dwarf galaxies and/or low surface companion objects have in triggering the bursts. In this series of papers, we present our new optical and near-infrared photometric and spectroscopic observations, and complete with data at other wavelengths (X-ray, far-infrared, and radio) available in the literature. In this paper, the first in the series, we analyze the morphology, stellar population age, and star-formation rate of each system. Methods: We completed new deep optical and NIR broad-band images, as well as the new continuum-subtracted Hα maps, of our sample of Wolf-Rayet galaxies. We analyze the morphology of each system and its surroundings and quantify the photometric properties of all important objects. All data were corrected for both extinction and nebular emission using our spectroscopic data. The age of the most recent star-formation burst is estimated and compared with the age of the underlying older low-luminosity population. The Hα-based star-formation rate, number of O7V equivalent stars, mass of ionized gas, and mass of the ionizing star cluster are also derived. Results: We found interaction features in many (15 up to 20) of the analyzed objects, which were extremely evident in the majority. We checked that the correction for nebular emission to the broad-band filter fluxes is important in compact objects and/or with intense nebular emission to obtain realistic colors and compare with the predictions of evolutionary synthesis models. The estimate of the age of the most recent star-formation burst is derived consistently. In general, the Hα-based star formation rate agrees with the estimates given by independent multiwavelength methods

  1. SERENDIPITOUS DISCOVERY OF A MASSIVE cD GALAXY AT z = 1.096: IMPLICATIONS FOR THE EARLY FORMATION AND LATE EVOLUTION OF cD GALAXIES

    SciTech Connect

    Liu, F. S.; Guo Yicheng; Koo, David C.; Trump, Jonathan R.; Barro, Guillermo; Yesuf, Hassen; Faber, S. M.; Cheung, Edmond; Cassata, P.; Koekemoer, A. M.; Grogin, Norman A.; Pentericci, L.; Castellano, M.; Mao, Shude; Xia, X. Y.; Hathi, Nimish P.; Huang, Kuang-Han; Kocevski, Dale; McGrath, Elizabeth J.; and others

    2013-06-01

    We have made a serendipitous discovery of a massive ({approx}5 Multiplication-Sign 10{sup 11} M{sub Sun }) cD galaxy at z = 1.096 in a candidate-rich cluster in the Hubble Ultra Deep Field (HUDF) area of GOODS-South. This brightest cluster galaxy (BCG) is the most distant cD galaxy confirmed to date. Ultra-deep HST/WFC3 images reveal an extended envelope starting from {approx}10 kpc and reaching {approx}70 kpc in radius along the semimajor axis. The spectral energy distributions indicate that both its inner component and outer envelope are composed of an old, passively evolving (specific star formation rate <10{sup -4} Gyr{sup -1}) stellar population. The cD galaxy lies on the same mass-size relation as the bulk of quiescent galaxies at similar redshifts. The cD galaxy has a higher stellar mass surface density ({approx}M{sub *}/R{sub 50}{sup 2}) but a similar velocity dispersion ({approx}{radical}(M{sub *}/R{sub 50})) to those of more massive, nearby cDs. If the cD galaxy is one of the progenitors of today's more massive cDs, its size (R{sub 50}) and stellar mass have had to increase on average by factors of 3.4 {+-} 1.1 and 3.3 {+-} 1.3 over the past {approx}8 Gyr, respectively. Such increases in size and stellar mass without being accompanied by significant increases in velocity dispersion are consistent with evolutionary scenarios driven by both major and minor dissipationless (dry) mergers. If such cD envelopes originate from dry mergers, our discovery of even one example proves that some BCGs entered the dry merger phase at epochs earlier than z = 1. Our data match theoretical models which predict that the continuance of dry mergers at z < 1 can result in structures similar to those of massive cD galaxies seen today. Moreover, our discovery is a surprise given that the extreme depth of the HUDF is essential to reveal such an extended cD envelope at z > 1 and, yet, the HUDF covers only a minuscule region of sky ({approx}3.1 Multiplication-Sign 10{sup -8

  2. Galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58. Red-sequence formation, massive galaxy assembly, and central star formation activity

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Nastasi, A.; Santos, J. S.; Lidman, C.; Verdugo, M.; Koyama, Y.; Rosati, P.; Pierini, D.; Padilla, N.; Romeo, A. D.; Menci, N.; Bongiorno, A.; Castellano, M.; Cerulo, P.; Fontana, A.; Galametz, A.; Grazian, A.; Lamastra, A.; Pentericci, L.; Sommariva, V.; Strazzullo, V.; Šuhada, R.; Tozzi, P.

    2014-08-01

    Context. Recent observational progress has enabled the detection of galaxy clusters and groups out to very high redshifts and for the first time allows detailed studies of galaxy population properties in these densest environments in what was formerly known as the "redshift desert" at z> 1.5. Aims: We aim to investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z = 1.58, which constitutes the most extreme currently known matter-density peak at this redshift. Methods: We analyzed deep VLT/HAWK-I near-infrared data with an image quality of 0.5'' and limiting Vega magnitudes (50% completeness) of 24.2 in J- and 22.8 in the Ks band, complemented by similarly deep Subaru imaging in i and V, Spitzer observations at 4.5 μm, and new spectroscopic observations with VLT/FORS 2. Results: We detect a cluster-associated excess population of about 90 galaxies, most of them located within the inner 30'' (250 kpc) of the X-ray centroid, which follows a centrally peaked, compact NFW galaxy surface-density profile with a concentration of c200 ≃ 10. Based on the Spitzer 4.5 μm imaging data, we measure a total enclosed stellar mass of M∗500 ≃ (6.3 ± 1.6) × 1012 M⊙ and a resulting stellar mass fraction of f∗,500 = M∗,500/M500 = (3.3 ± 1.4)%, consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple zf = 3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass-assembly epoch through merging processes. Consequently, the bright end of the cluster red sequence is not in place, while a red-locus population is present at intermediate magnitudes [Ks*, Ks* + 1.6], which is then sharply truncated at magnitudes fainter than Ks* + 1.6. The dominant

  3. The stellar accretion origin of stellar population gradients at large radii in massive, early-type galaxies

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Naab, Thorsten

    2015-08-01

    We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolved, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to constrain models for energetic processes in simulations.

  4. The dominant role of mergers in the size evolution of massive early-type galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Le Fèvre, O.; Ilbert, O.; Tasca, L. A. M.; Bridge, C.; Cucciati, O.; Kampczyk, P.; Pozzetti, L.; Xu, C. K.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Sanders, D.; Scodeggio, M.; Scoville, N. Z.; Taniguchi, Y.; Zamorani, G.; Aussel, H.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Le Floc'h, E.; Maier, C.; McCracken, H. J.; Mignoli, M.; Pelló, R.; Peng, Y.; Pérez-Montero, E.; Presotto, V.; Ricciardelli, E.; Salvato, M.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.; Barnes, L.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; Koekemoer, A.; Liu, C. T.; Moresco, M.; Nair, P.; Oesch, P.; Schawinski, K.; Welikala, N.

    2012-12-01

    Aims: The role of galaxy mergers in massive galaxy evolution, and in particular to mass assembly and size growth, remains an open question. In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M ⋆ ≥ 1011 M⊙) in the COSMOS field, and study their role in mass and size evolution. Methods: We used the 30-band photometric catalogue in COSMOS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation on the sky plane 10 h-1 kpc ≤ rp ≤ 30 h-1 kpc and a relative velocity Δv ≤ 500 km s-1 in redshift space. We measured both major (stellar mass ratio μ ≡ M ⋆ ,2/M ⋆ ,1 ≥ 1/4) and minor (1/10 ≤ μ < 1/4) merger fractions of massive galaxies, and studied their dependence on redshift and on morphology (early types vs. late types). Results: The merger fraction and rate of massive galaxies evolves as a power-law (1 + z)n, with major mergers increasing with redshift, nMM = 1.4, and minor mergers showing little evolution, nmm ~ 0. When split by their morphology, the minor merger fraction for early-type galaxies (ETGs) is higher by a factor of three than that for late-type galaxies (LTGs), and both are nearly constant with redshift. The fraction of major mergers for massive LTGs evolves faster (nMMLT ~ 4 ) than for ETGs (nMMET= 1.8). Conclusions: Our results show that massive ETGs have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that μ ≥ 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (μ < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and the velocity dispersion evolution of these galaxies. We

  5. The star-formation rates of 1.5 < z < 2.5 massive galaxies

    NASA Astrophysics Data System (ADS)

    Nordon, R.; Lutz, D.; Shao, L.; Magnelli, B.; Berta, S.; Altieri, B.; Andreani, P.; Aussel, H.; Bongiovanni, A.; Cava, A.; Cepa, J.; Cimatti, A.; Daddi, E.; Dominguez, H.; Elbaz, D.; Förster Schreiber, N. M.; Genzel, R.; Grazian, A.; Magdis, G.; Maiolino, R.; Pérez García, A. M.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Saintonge, A.; Sanchez-Portal, M.; Santini, P.; Sturm, E.; Tacconi, L.; Valtchanov, I.; Wetzstein, M.; Wieprecht, E.

    2010-07-01

    The star formation rate (SFR) is a key parameter in the study of galaxy evolution. The accuracy of SFR measurements at z ~ 2 has been questioned following a disagreement between observations and theoretical models. The latter predict SFRs at this redshift that are typically a factor 4 or more lower than the measurements. We present star-formation rates based on calorimetric measurements of the far-infrared (FIR) luminosities for massive 1.5 < z < 2.5, normal star-forming galaxies (SFGs), which do not depend on extinction corrections and/or extrapolations of spectral energy distributions. The measurements are based on observations in GOODS-N with the Photodetector Array Camera and Spectrometer (PACS) onboard Herschel, as part of the PACS evolutionary probe (PEP) project, that resolve for the first time individual SFGs at these redshifts at FIR wavelengths. We compare FIR-based SFRs to the more commonly used 24 μm and UV SFRs. We find that SFRs from 24 μm alone are higher by a factor of ~4-7.5 than the true SFRs. This overestimation depends on luminosity: gradually increasing for log L(24 μm) > 12.2 L_⊙. The SFGs and AGNs tend to exhibit the same 24 μm excess. The UV SFRs are in closer agreement with the FIR-based SFRs. Using a Calzetti UV extinction correction results in a mean excess of up to 0.3 dex and a scatter of 0.35 dex from the FIR SFRs. The previous UV SFRs are thus confirmed and the mean excess, while narrowing the gap, is insufficient to explain the discrepancy between the observed SFRs and simulation predictions. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. The SL2S Galaxy-scale Lens Sample. V. Dark Matter Halos and Stellar IMF of Massive Early-type Galaxies Out to Redshift 0.8

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Suyu, Sherry H.; Gavazzi, Raphaël; Auger, Matthew W.; Nipoti, Carlo

    2015-02-01

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  7. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    SciTech Connect

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Suyu, Sherry H.; Gavazzi, Raphaël; Auger, Matthew W.; Nipoti, Carlo

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  8. Massive molecular gas flows in the a1664 brightest cluster galaxy

    SciTech Connect

    Russell, H. R.; McNamara, B. R.; Main, R. A.; Vantyghem, A. N.; Edge, A. C.; Wilman, R. J.; Nulsen, P. E. J.; Combes, F.; Salomé, P.; Fabian, A. C.; Murray, N.; Baum, S. A.; O'Dea, C. P.; Donahue, M.; Voit, G. M.; Oonk, J. B. R.; Tremblay, G. R.

    2014-03-20

    We report ALMA Early Science CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in A1664. The BCG contains 1.1 × 10{sup 10} M {sub ☉} of molecular gas divided roughly equally between two distinct velocity systems: one from –250 to +250 km s{sup –1} centered on the BCG's systemic velocity and a high-velocity system blueshifted by 570 km s{sup –1} with respect to the systemic velocity. The BCG's systemic component shows a smooth velocity gradient across the BCG center, suggestive of rotation about the nucleus. However, the mass and velocity structure are highly asymmetric and there is little star formation coincident with a putative disk. It may be an inflow of gas that will settle into a disk over several 10{sup 8} yr. The high-velocity system consists of two gas clumps, each ∼2 kpc across, located to the north and southeast of the nucleus. Each has a line of sight velocity spread of 250-300 km s{sup –1}. The velocity of the gas in the high-velocity system increases toward the BCG center and may be a massive flow into the nucleus. However, the velocity gradient is not smooth. These structures are also coincident with low optical-ultraviolet surface brightness regions, which could indicate dust extinction associated with each clump. The structure is complex, making a clear interpretation difficult, but if the dusty, molecular gas lies predominantly in front of the BCG, the blueshifted velocities would indicate an outflow. Based on the energy requirements, such a massive outflow would most likely be driven by the active galactic nucleus. A merger origin is unlikely but cannot be ruled out.

  9. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    SciTech Connect

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng Weikang; Clubb, Kelsey I.

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.

  10. Evidence that Gamma-Ray Burst 130702A Exploded in a Dwarf Satellite of a Massive Galaxy

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.; Zheng, Weikang; Clubb, Kelsey I.

    2013-09-01

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of ~7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and ~0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects and find a 2σ upper limit on their line-of-sight velocity offset of lsim60 km s-1. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a ~60 kpc central offset, or ~9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is ~0.05 M ⊙ yr-1, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.

  11. The inside-out growth of the most massive galaxies at 0.3 < z < 0.9

    SciTech Connect

    Bai, Lei; Yee, H. K. C.; Li, I. H.; Yan, Renbin; Lee, Eve; Gilbank, David G.; Ellingson, E.; Barrientos, L. F.; Gladders, M. D.; Hsieh, B. C.

    2014-07-10

    We study the surface brightness profiles of a sample of brightest cluster galaxies (BCGs) with 0.3 < z < 0.9. The BCGs are selected from the first Red-sequence Cluster Survey and an X-ray cluster survey. The surface brightness profiles of the BCGs are measured using HST ACS images, and the majority of them can be well modeled by a single Sérsic profile with a typical Sérsic index n ∼ 6 and a half-light radius ∼30 kpc. Although the single Sérsic model fits the profiles well, we argue that the systematics in the sky background measurement and the coupling between the model parameters make the comparison of the best-fit model parameters ambiguous. Direct comparison of the BCG profiles, on the other hand, has revealed an inside-out growth for these most massive galaxies: as the mass of a BCG increases, the central mass density of the galaxy increases slowly (ρ{sub 1kpc}∝M{sub ∗}{sup 0.39}), while the slope of the outer profile grows continuously shallower (α{sub r{sup 1}{sup /}{sup 4}}∝M{sub ∗}{sup −2.5}). Such a fashion of growth continues down to the less massive early-type galaxies (ETGs) as a smooth function of galaxy mass, without apparent distinction between BCGs and non-BCGs. For the very massive ETGs and BCGs, the slope of the Kormendy relation starts to trace the slope of the surface brightness profiles and becomes insensitive to subtle profile evolution. These results are generally consistent with dry mergers being the major driver of the mass growth for BCGs and massive ETGs. We also find strong correlations between the richness of clusters and the properties of BCGs: the more massive the clusters are, the more massive the BCGs (M{sub bcg}{sup ∗}∝M{sub clusters}{sup 0.6}) and the shallower their surface brightness profiles. After taking into account the bias in the cluster samples, we find the masses of the BCGs have grown by at least a factor of 1.5 from z = 0.5 to z = 0, in contrast to the previous findings of no evolution. Such an

  12. Imprints of recoiling massive black holes on the hot gas of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Devecchi, B.; Rasia, E.; Dotti, M.; Volonteri, M.; Colpi, M.

    2009-04-01

    Anisotropic gravitational radiation from a coalescing black hole (BH) binary is known to impart recoil velocities of up to ~1000kms-1 to the remnant BH. In this context, we study the motion of a recoiling BH inside a galaxy modelled as a Hernquist sphere, and the signature that the hole imprints on the hot gas, using N-body/smoothed particle hydrodynamics simulations. Ejection of the BH results in a sudden expansion of the gas ending with the formation of a gaseous core, similarly to what is seen for the stars. A cometary tail of particles bound to the BH is initially released along its trail. As the BH moves on a return orbit, a nearly spherical swarm of hot gaseous particles forms at every apocentre: this feature can live up to ~108 years. If the recoil velocity exceeds the sound speed initially, the BH shocks the gas in the form of a Mach cone in density near each supersonic pericentric passage. We find that the X-ray fingerprint of a recoiling BH can be detected in Chandra X-ray maps out to a distance of Virgo. For exceptionally massive BHs, the Mach cone and the wakes can be observed out to a few hundred of milliparsec. The detection of the Mach cone is of twofold importance as it can be a probe of high-velocity recoils, and an assessment of the scatter of the MBH - Mbulge relation at large BH masses.

  13. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien; García-Bellido, Juan

    2015-07-01

    In this paper we present a new scenario where massive primordial black holes (PBHs) are produced from the collapse of large curvature perturbations generated during a mild-waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetarylike masses at matter-radiation equality and producing abundances comparable to those of dark matter today, while the matter power spectrum on scales probed by cosmic microwave background (CMB) anisotropies agrees with Planck data. These PBHs could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and microlensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultraluminous x-ray sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-Planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a Swiss-cheese-like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.

  14. PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D.

    2015-01-30

    We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.

  15. Resolved photometry of young massive clusters in the starburst galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Cignoni, M.; Gratton, R. G.; Tosi, M.; Bragaglia, A.; Lucatello, S.; Meurer, G.

    2014-01-01

    We present the results of deep high-resolution imaging performed with Advanced Camera for Surveys (ACS)/HRC@HST in the most active region of the nearby starburst galaxy NGC 4214. We resolved the stellar populations of five young massive clusters and their surrounding galactic field. The star formation history of this region is characterized by two main bursts occurred within the last 500 Myr, with the oldest episode spread out across an area larger than that covered by the most recent one. The ages derived for the analysed clusters cover a wide range within 6.4 < log t/yr < 8.1 in agreement with those predicted by recent analyses based on integrated photometry. The comparison between the mass of the young associations and that of the surrounding field population with similar ages indicates a high cluster formation efficiency (Γ ˜ 33 per cent) which decreases when old populations are considered. The mass function of the major assembly has been found to be slightly flatter than the Salpeter law with a hint of mass segregation. We found no clear signatures of multiple stellar populations in the two young (log t/yr < 6.8) associations where we were able to resolve their innermost region. The masses and sizes of three clusters indicate that at least one of them could evolve towards a globular cluster-like structure.

  16. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  17. Massive Star Formation in a Gravitationally-Lensed H II Galaxy at z = 3.357

    SciTech Connect

    Villar-Martin, M; Stern, D; Hook, R N; Rosati, P; Lombardi, M; Humphrey, A; Fosbury, R; Stanford, S A; Holden, B P

    2004-03-02

    The Lynx arc, with a redshift of 3.357, was discovered during spectroscopic follow-up of the z = 0.570 cluster RX J0848+4456 from the ROSAT Deep Cluster Survey. The arc is characterized by a very red R - K color and strong, narrow emission lines. Analysis of HST WFPC 2 imaging and Keck optical and infrared spectroscopy shows that the arc is an H II galaxy magnified by a factor of {approx} 10 by a complex cluster environment. The high intrinsic luminosity, the emission line spectrum, the absorption components seen in Ly{alpha} and C IV, and the restframe ultraviolet continuum are all consistent with a simple H II region model containing {approx} 10{sup 6} hot O stars. The best fit parameters for this model imply a very hot ionizing continuum (T{sub BB} {approx} 80, 000 K), high ionization parameter (log U {approx} -1), and low nebular metallicity (Z/Z{sub {circle_dot}} {approx} 0.05). The narrowness of the emission lines requires a low mass-to-light ratio for the ionizing stars, suggestive of an extremely low metallicity stellar cluster. The apparent overabundance of silicon in the nebula could indicate enrichment by past pair instability supernovae, requiring stars more massive than {approx}140M{sub {circle_dot}}.

  18. Stellar population properties of the most massive globular clusters and ultra-compact dwarf galaxies of the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Hilker, Michael

    2015-08-01

    Most of the massive globular clusters (GCs) of our Milky Way show evidence of multiple stellar populations with distinct light element abundances. A few GCs even exhibit spreads in iron abundance and probably age. Those are nuclear star cluster candidates whose host galaxies were disrupted during the assembly history of the Milky Way. In galaxy clusters, disruption of low mass, nucleated galaxies was very common in the past. Indeed, in the Virgo and Fornax clusters there exists a large population of very massive and compact star cluster-like objects, often called ultra-compact dwarf galaxies (UCDs). If one postulates that the complex GCs omega Centauri and M54 in the Milky Way and G1 in Andromeda are low-mass UCDs, one would expect that UCDs in general should also have complex star formation and chemical enrichment histories. However, due to the large distance and thus unresolved nature of UCDs, multiple stellar populations in them are very difficult to detect and quantify. I will present our most recent attempts to constrain the stellar content, dynamical state and origin of UCDs in the Fornax cluster. Multi-band imaging as well as low to medium resolution spectroscopy is used to derive ages, metallicites and [alpha/Fe] abundances, as well as to constrain their IMFs and find hints for multiple stellar populations through UV to NIR SED fitting.Our recent simulations on the disruption process of nucleated dwarf galaxies in cluster environments showed that more than 50% of the most massive UCDs should originate from nuclear star clusters. Some Fornax UCDs actually show evidence for this scenario, as revealed by extended low surface brightness disks around them and onsets of tidal tails.

  19. Constraining the Major Merger History of Massive Galaxies from z~0 to z~3 using Pairs from CANDELS & SDSS

    NASA Astrophysics Data System (ADS)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Cook, Joshua; Conselice, Christopher; Lotz, Jennifer; Hathi, Nimish P.; CANDELS Collaboration

    2016-01-01

    Major merging may play an important role in the morphological transformation and mass assembly at play in the evolution of massive galaxies. An important way to measure the impact of merging is to study close pairs of nearly equal-mass galaxies. We do this by using data from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) and the SDSS to measure the evolution between redshifts 0≤z≤3 of massive (stellar masses Mhost>2E10 Msun) galaxies that are involved in major (1≤Mhost/Mcomp≤4), close (≤50 kpc separation) pairs. Our preliminary results are based on data from two of the legacy fields: UDS and GOODS-S. If we simply define major pairs based on H-Band flux ratios and corrected for line-of-sight contamination, we find that the fraction of massive galaxies in such pairs increases from 2-5% (z~0) to 20-45% (z~3), in agreement with a broad range of previous studies. In contrast, when we consider stellar mass ratios and attempt to account for close redshift proximity using the best available redshifts (either spectroscopic or photometric), the pair fraction and fraction of galaxies in pairs each follow a broken redshift dependence where there is an increase (~(1+z)2 ) from z~0 to z~1, followed by a decreasing (~(1+z)-1.1) redshift dependence to z~3. Thus, our results point towards diminishing importance of major merging at z≥1, consistent with recent findings by Man et al.

  20. A Very Massive Stellar Black Hole in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    2001-11-01

    VLT ISAAC Uncovers an Enigmatic Microquasar Summary One of the most enigmatic stellar systems in our Milky Way Galaxy has been shown to harbour a very massive black hole. With 14 times more mass than the Sun [1], this is the heaviest known stellar black hole in the Galaxy. Using the ISAAC instrument on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory , an international team of astronomers [2] peered into a remote area of the Milky Way to probe the binary system GRS 1915+105 , located almost 40,000 light-years away. They were able to identify the low-mass star that feeds the black hole by means of a steady flow of stellar material. A detailed follow-up study revealed how this star revolves around its hungry companion. The analysis of the orbital motion then made it possible to estimate the mass of the black hole. The observation of the heavy black hole in GRS 1915+105 is opening up fundamental questions about how massive stellar black holes form, and whether or not such objects rotate around their own axes. PR Photo 31a/01 : Schematic drawing of the GRS 1915+105 binary system . PR Photo 31b/01 : ISAAC spectrum of the companion star . PR Photo 31c/01 : The velocity curve from which the mass of the black hole was derived . Miniature Quasars in our Galaxy ESO PR Photo 31a/01 ESO PR Photo 31a/01 [Preview - JPEG: 400 x 399 pix - 44k] [Normal - JPEG: 800 x 797 pix - 192k] Caption : PR Photo 31a/01 shows an artist's impression of the binary stellar system GRS 1915+105 in which a heavy black hole is present. The distance between the donor star and the accreting black hole is about half the distance between the Earth and the Sun. The drawing illustrates how the donor star feeds the black hole via an accretion disk , and also the emergence of jets perpendicular to the disk. In the lower panel the blue colour denotes matter that spirals in the accretion disk, while in the orange region matter is freely falling radially into the black hole. Technical information

  1. Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the past 10 Gyr

    NASA Astrophysics Data System (ADS)

    Schreiber, C.; Elbaz, D.; Pannella, M.; Ciesla, L.; Wang, T.; Koekemoer, A.; Rafelski, M.; Daddi, E.

    2016-05-01

    We study the causes of the reported mass-dependence in the slope of the SFR-M∗ relation, the so-called main sequence of star-forming galaxies, and discuss its implication on the physical processes that shaped the star formation history of massive galaxies over cosmic time. We made use of the near-infrared high-resolution imaging from the Hubble Space Telescope in the CANDELS fields to perform a careful bulge-to-disk decomposition of distant galaxies and measure for the first time the slope of the SFR-Mdisk relation at z = 1. We find that this relation very closely follows the shape of the nominal SFR-M∗ correlation, still with a pronounced flattening at the high-mass end. This clearly excludes, at least at z = 1, the progressive growth of quiescent stellar bulges in star-forming galaxies as the main driver for the change of slope of the main sequence. Then, by stacking the Herschel data available in the CANDELS field, we estimated the gas mass (Mgas = MH i + MH2) and the star formation efficiency (SFE ≡ SFR/Mgas) at different positions on the SFR-M∗ relation. We find that the relatively low SFRs observed in massive galaxies (M∗> 5 × 1010 M⊙) are not caused by a reduced gas content, but by a star formation efficiency that is lower by up to a factor of 3 than in galaxies with lower stellar mass. The trend at the lowest masses is probably linked to the dominance of atomic over molecular gas. We argue that this stellar-mass-dependent SFE can explain the varying slope of the main sequence since z = 1.5, hence over 70% of the Hubble time. The drop in SFE occurs at lower masses in the local Universe (M∗> 2 × 1010 M⊙) and is not present at z = 2. Altogether, this provides evidence for a slow decrease in star formation efficiency in massive main sequence galaxies. The resulting loss of star formation is found to be rising starting from z = 2 to reach a level similar to the mass growth of the quiescent population by z = 1. We finally discuss the possible

  2. Numerical Simulations Challenged on the Prediction of Massive Subhalo Abundance in Galaxy Clusters: The Case of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Grillo, C.; De Lucia, G.; Biviano, A.; Annunziatella, M.; Borgani, S.; Lombardi, M.; Mercurio, A.; Rosati, P.

    2016-08-01

    In this Letter we compare the abundance of the member galaxies of a rich, nearby (z = 0.09) galaxy cluster, Abell 2142, with that of halos of comparable virial mass extracted from sets of state-of-the-art numerical simulations, both collisionless at different resolutions and with the inclusion of baryonic physics in the form of cooling, star formation, and feedback by active galactic nuclei. We also use two semi-analytical models to account for the presence of orphan galaxies. The photometric and spectroscopic information, taken from the Sloan Digital Sky Survey Data Release 12 database, allows us to estimate the stellar velocity dispersion of member galaxies of Abell 2142. This quantity is used as proxy for the total mass of secure cluster members and is properly compared with that of subhalos in simulations. We find that simulated halos have a statistically significant (≳ 7 sigma confidence level) smaller amount of massive (circular velocity above 200 {km} {{{s}}}-1) subhalos, even before accounting for the possible incompleteness of observations. These results corroborate the findings from a recent strong lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416 and suggest that the observed difference is already present at the level of dark matter (DM) subhalos and is not solved by introducing baryonic physics. A deeper understanding of this discrepancy between observations and simulations will provide valuable insights into the impact of the physical properties of DM particles and the effect of baryons on the formation and evolution of cosmological structures.

  3. A massive dense gas cloud close to the nucleus of the Seyfert galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Furuya, Ray S.; Taniguchi, Yoshiaki

    2016-10-01

    Using the ALMA archival data of both 12CO (6-5) line and 689-GHz continuum emission towards the archetypical Seyfert galaxy, NGC 1068, we identified a distinct continuum peak separated by 15 pc from the nuclear radio component S1 in projection. The continuum flux gives a gas mass of ˜2 × 105 M⊙ and bolometric luminosity of ˜108 L⊙, leading to a star formation rate of ˜0.1 M⊙ yr-1. Subsequent analysis on the line data suggest that the gas cloud has a size of ˜10 pc, yielding to a mean H2 number density of ˜105 cm-3. We therefore refer to the gas as a "massive dense gas cloud": the gas density is high enough to form a "protostar cluster" with a stellar mass of ˜104 M⊙. We found that the gas stands at a unique position between galactic and extraglactic clouds in the diagrams of start formation rate (SFR) vs. gas mass proposed by Lada et al. (2012, ApJ, 745, 190) and surface density of gas vs. SFR density by Krumholz and McKee (2005, ApJ, 630, 250). All the gaseous and star-formation properties may be understood in terms of the turbulence-regulated star formation scenario. Since there are two stellar populations with ages of 300 Myr and 30 Myr in the 100 pc scale circumnulear region, we discuss that NGC 1068 has experienced at least three episodic star-formation events with the likelihood that the inner star-forming region is the younger. Together with several lines of evidence that the dynamics of the nuclear region is decoupled from that of the entire galactic disk, we discuss that the gas inflow towards the nuclear region of NGC 1068 may be driven by a past minor merger.

  4. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    SciTech Connect

    Perley, D. A.; Levan, A. J.; Tanvir, N. R.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N.; Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B.; Fruchter, A.; Kalirai, J.; Jakobsson, P.; Prochaska, J. X.

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  5. Building a better understanding of the massive high-redshift BOSS CMASS galaxies as tools for cosmology

    NASA Astrophysics Data System (ADS)

    Favole, Ginevra; McBride, Cameron K.; Eisenstein, Daniel J.; Prada, Francisco; Swanson, Molly E.; Chuang, Chia-Hsun; Schneider, Donald P.

    2016-10-01

    We explore the massive bluer star-forming population of the Sloan Digital Sky Survey (SDSS) III/BOSS CMASS DR11 galaxies at z > 0.55 to quantify their differences, in terms of redshift-space distortions and large-scale bias, with respect to the luminous red galaxy sample. We perform a qualitative analysis to understand the significance of these differences and whether we can model and reproduce them in mock catalogues. Specifically, we measure galaxy clustering in CMASS on small and intermediate scales (0.1 ≲ r ≲ 50 h-1 Mpc) by computing the two-point correlation function - both projected and redshift-space - of these galaxies, and a new statistic, Σ(π), able to separate the coherent and dispersed redshift-space distortion contributions and the large-scale bias. We interpret our clustering measurements by adopting a Halo Occupation Distribution (HOD) scheme that maps them on to high-resolution N-body cosmological simulations to produce suitable mock galaxy catalogues. The traditional HOD prescription can be applied to the red and the blue samples, independently, but this approach is unphysical since it allows the same mock galaxies to be either red or blue. To overcome this ambiguity, we modify the standard formulation and infer the red and the blue models by splitting the full mock catalogue into two complementary and non-overlapping submocks. This separation is performed by constraining the HOD with the observed CMASS red and blue galaxy fractions and produces reliable and accurate models.

  6. Testing the modern merger hypothesis via the assembly of massive blue elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim; McIntosh, D. H.; Sánchez, S. F.; Tremonti, C.; Rudnick, G.

    2015-07-01

    The modern merger hypothesis offers a method of forming a new elliptical galaxy through merging two equal-mass, gas-rich disc galaxies fuelling a nuclear starburst followed by efficient quenching and dynamical stabilization. A key prediction of this scenario is a central concentration of young stars during the brief phase of morphological transformation from highly disturbed remnant to new elliptical galaxy. To test this aspect of the merger hypothesis, we use integral field spectroscopy to track the stellar Balmer absorption and 4000-Å break strength indices as a function of galactic radius for 12 massive (M* ≥ 1010 M⊙), nearby (z ≤ 0.03), visually-selected plausible new ellipticals with blue-cloud optical colours and varying degrees of morphological peculiarities. We find that these index values and their radial dependence correlate with specific morphological features such that the most disturbed galaxies have the smallest 4000-Å break strengths and the largest Balmer absorption values. Overall, two-thirds of our sample are inconsistent with the predictions of the modern merger hypothesis. Of these eight, half exhibit signatures consistent with recent minor merger interactions. The other half have star formation histories similar to local, quiescent early-type galaxies. Of the remaining four galaxies, three have the strong morphological disturbances and star-forming optical colours consistent with being remnants of recent, gas-rich major mergers, but exhibit a weak, central burst consistent with forming ˜5 per cent of their stars. The final galaxy possesses spectroscopic signatures of a strong, centrally concentrated starburst and quiescent core optical colours indicative of recent quenching (i.e. a post-starburst signature) as prescribed by the modern merger hypothesis.

  7. Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana; Kiessling, Alina; Khandai, Nishikanta

    2015-10-01

    We compare the shapes and intrinsic alignments of galaxies in the MassiveBlack-II (MBII) cosmological hydrodynamic simulation to those in an identical dark matter-only (DMO) simulation. Understanding the impact of baryonic physics on galaxy shapes should prove useful for creating mock galaxy catalogues based on DMO simulations that mimic intrinsic alignments in hydrodynamic simulations. The dark matter subhaloes are typically rounder in MBII, and the shapes of stellar matter in low-mass galaxies are more misaligned with the shapes of dark matter of the corresponding subhaloes in the DMO simulation. At z = 0.06, the fractional difference in the mean misalignment angle between MBII and DMO simulations varies from ˜28to12 per cent in the mass range 1010.8-6.0 × 1014 h-1 M⊙. We study the dark matter halo shapes and alignments as a function of radius, and find that while galaxies in MBII are more aligned with the inner parts of their dark matter subhaloes, there is no radial trend in their alignments with the corresponding subhalo in the DMO simulation. This result highlights the importance of baryonic physics in determining galaxy alignments with inner parts of their halo. Finally, we find that the stellar-dark matter misalignment suppresses the ellipticity-direction (ED) correlation of galaxies in comparison to that of dark matter haloes. In the projected shape-density correlation (wδ +), higher mean ellipticities of the stellar component reduce this effect, but differences of the order of 30-40 per cent remain on scales >1 Mpc.

  8. CANDELS: CORRELATIONS OF SPECTRAL ENERGY DISTRIBUTIONS AND MORPHOLOGIES WITH STAR FORMATION STATUS FOR MASSIVE GALAXIES AT z {approx} 2

    SciTech Connect

    Wang Tao; Gu Qiusheng; Huang Jiasheng; Fang Guanwen; Fazio, G. G.; Faber, S. M.; McGrath, Elizabeth J.; Kocevski, Dale; Yan Haojing; Dekel, Avishai; Guo Yicheng; Ferguson, Henry C.; Grogin, Norman; Lotz, Jennifer M.; Lucas, Ray A.; Koekemoer, A. M.; Weiner, Benjamin; Hathi, Nimish P.; Kong Xu

    2012-06-20

    We present a study on spectral energy distributions, morphologies, and star formation for an IRAC-selected extremely red object sample in the GOODS Chandra Deep Field-South. This work was enabled by new HST/WFC3 near-IR imaging from the CANDELS survey as well as the deepest available X-ray data from Chandra 4 Ms observations. This sample consists of 133 objects with the 3.6 {mu}m limiting magnitude of [3.6] = 21.5 and is approximately complete for galaxies with M{sub *} > 10{sup 11} M{sub Sun} at 1.5 {<=} z {<=} 2.5. We classify this sample into two types, quiescent and star-forming galaxies (SFGs), in the observed infrared color-color ([3.6]-[24] versus K - [3.6]) diagram. The further morphological study of this sample shows a consistent result with the observed color classification. The classified quiescent galaxies are bulge dominated and SFGs in the sample have disk or irregular morphologies. Our observed infrared color classification is also consistent with the rest-frame color (U - V versus V - J) classification. We also found that quiescent and SFGs are well separated in the nonparametric morphology parameter (Gini versus M{sub 20}) diagram measuring their concentration and clumpiness: quiescent galaxies have a Gini coefficient higher than 0.58 and SFGs have a Gini coefficient lower than 0.58. We argue that the star formation quenching process must lead to or be accompanied by the increasing galaxy concentration. One prominent morphological feature of this sample is that disks are commonly seen in this massive galaxy sample at 1.5 {<=} z {<=} 2.5: 30% of quiescent galaxies and 70% of SFGs with M{sub *} > 10{sup 11} M{sub Sun} have disks in their rest-frame optical morphologies. The prevalence of these extended, relatively undisturbed disks challenges the merging scenario as the main mode of massive galaxy formation.

  9. The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    NASA Astrophysics Data System (ADS)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Davidzon, I.; Guzzo, L.; Hudelot, P.; McCracken, H. J.; Van Werbaeke, L.; Morrison, G. E.; Le Fèvre, O.; Comte, V.; Bolzonella, M.; Fritz, A.; Garilli, B.; Scodeggio, M.

    2016-05-01

    We investigate the evolution of the galaxy stellar mass function and stellar mass density from redshift z = 0.2 to z = 1.5 of a Ks < 22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on near-infrared observations carried out with the WIRCam instrument at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high-quality optical photometry from the CFHTLS and ultraviolet observations with the GALEX satellite. The accuracy of our photometric redshifts is σΔz/ (1 + z) < 0.03 and 0.05 for the bright (iAB< 22.5) and faint (iAB > 22.5) samples, respectively. The galaxy stellar mass function is measured with ~760 000 galaxies down to Ks ~ 22 and over an effective area of ~22.4 deg2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error and cosmic variance). We point out the importance of carefully controlling the photometric calibration, whose effect becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future cosmological surveys with EUCLID or LSST, for instance. By exploring the rest-frame (NUV-r) vs. (r-Ks) colour-colour diagram with which we separated star-forming and quiescent galaxies, (1) we find that the density of very massive log (M∗/M⊙) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z ~ 1 to z ~ 0.2, which allows for additional mass assembly through dry mergers. (2) We also confirm the scenario in which star formation activity is impeded above a stellar mass log(ℳ*SF/M⊙) = 10.64±0.01. This value is found to be very stable at 0.2 massive star-forming galaxies, and we finally (4) characterise another quenching mechanism that is required to explain the clear excess of low-mass quiescent galaxies that is observed at low redshift.

  10. The progenitors of local ultra-massive galaxies across cosmic time: from dusty star-bursting to quiescent stellar populations

    SciTech Connect

    Marchesini, Danilo; Marsan, Cemile Z.; Muzzin, Adam; Franx, Marijn; Stefanon, Mauro; Brammer, Gabriel G.; Vulcani, Benedetta; Fynbo, J. P. U.; Milvang-Jensen, Bo; Dunlop, James S.; Buitrago, Fernando

    2014-10-10

    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4 Gyr since z = 3 of the progenitors of local ultra-massive galaxies (log (M {sub star}/M {sub ☉}) ≈ 11.8; UMGs), providing a complete and consistent picture of how the most massive galaxies at z = 0 have assembled. By selecting the progenitors with a semi-empirical approach using abundance matching, we infer a growth in stellar mass of 0.56{sub −0.25}{sup +0.35} dex, 0.45{sub −0.20}{sup +0.16} dex, and 0.27{sub −0.12}{sup +0.08} dex from z = 3, z = 2, and z = 1, respectively, to z = 0. At z < 1, the progenitors of UMGs constitute a homogeneous population of only quiescent galaxies with old stellar populations. At z > 1, the contribution from star-forming galaxies progressively increases, with the progenitors at 2 < z < 3 being dominated by massive (M {sub star} ≈ 2 × 10{sup 11} M {sub ☉}), dusty (A {sub V} ∼ 1-2.2 mag), star-forming (SFR ∼ 100-400 M {sub ☉} yr{sup –1}) galaxies with a large range in stellar ages. At z = 2.75, ∼15% of the progenitors are quiescent, with properties typical of post-starburst galaxies with little dust extinction and strong Balmer break, and showing a large scatter in color. Our findings indicate that at least half of the stellar content of local UMGs was assembled at z > 1, whereas the remaining was assembled via merging from z ∼ 1 to the present. Most of the quenching of the star-forming progenitors happened between z = 2.75 and z = 1.25, in good agreement with the typical formation redshift and scatter in age of z = 0 UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since z = 3. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent with our findings.

  11. THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

    SciTech Connect

    Saintonge, Amelie; Fabello, Silvia; Wang Jing; Catinella, Barbara; Tacconi, Linda J.; Genzel, Reinhard; Gracia-Carpio, Javier; Wuyts, Stijn; Kramer, Carsten; Moran, Sean; Heckman, Timothy M.; Schiminovich, David; Schuster, Karl

    2012-10-20

    Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H{sub 2} mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M {sub *} plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies ({mu}{sub *} >5 Multiplication-Sign 10{sup 8} M {sub Sun} kpc{sup -2}, C > 2.6) that are either gas-poor (M{sub H{sub 2}}/M {sub *} <1.5%) or else on average less efficient by a factor of {approx}2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO

  12. THE GALEX ARECIBO SDSS SURVEY. VII. THE BIVARIATE NEUTRAL HYDROGEN-STELLAR MASS FUNCTION FOR MASSIVE GALAXIES

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Catinella, Barbara; Heckman, Timothy M.; Moran, Sean M.

    2013-10-20

    We present the bivariate neutral atomic hydrogen (H I)-stellar mass function (HISMF) φ(M{sub H{sub I}}, M{sub *}) for massive (log M{sub *}/M{sub ☉} \\gt 10) galaxies derived from a sample of 480 local (0.025 < z < 0.050) galaxies observed in H I at Arecibo as part of the GALEX Arecibo SDSS Survey. We fit six different models to the HISMF and find that a Schechter function that extends down to a 1% H I gas fraction, with an additional fractional contribution below that limit, is the best parameterization of the HISMF. We calculate Ω{sub H{sub I,{sub M{sub *>10{sup 1}{sup 0}}}}} and find that massive galaxies contribute 41% of the H I density in the local universe. In addition to the binned HISMF, we derive a continuous bivariate fit, which reveals that the Schechter parameters only vary weakly with stellar mass: M{sub H{sub I}{sup *}}, the characteristic H I mass, scales as M{sub *}{sup 0.39}; α, the slope of the HISMF at moderate H I masses, scales as M{sub *}{sup 0.07}; and f, the fraction of galaxies with H I gas fraction greater than 1%, scales as M{sub *}{sup -0.24}. The variation of f with stellar mass should be a strong constraint for numerical simulations. To understand the physical mechanisms that produce the shape of the HISMF, we redefine the parameters of the Schechter function as explicit functions of stellar mass and star formation rate (SFR) to produce a trivariate fit. This analysis reveals strong trends with SFR. While M{sub H{sub I}{sup *}} varies weakly with stellar mass and SFR (M{sub H{sub I}{sup *}} ∝ M{sub *}{sup 0.22}, M{sub H{sub I}{sup *}} ∝ SFR{sup –0.03}), α is a stronger function of both stellar mass and especially SFR (α ∝ M{sub *}{sup 0.47}, α ∝ SFR{sup 0.95}). The HISMF is a crucial tool that can be used to constrain cosmological galaxy simulations, test observational predictions of the H I content of populations of galaxies, and identify galaxies whose properties deviate from average trends.

  13. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-04-01

    The intrinsic alignment of galaxies with the large-scale density field is an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg+) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wg+ correlations increase in amplitude with subhalo mass (in the range of 1010-6.0 × 1014 h-1 M⊙), with a weak redshift dependence (from z = 1 to 0.06) at fixed mass. At z ˜ 0.3, we predict a wg+ that is in reasonable agreement with Sloan Digital Sky Survey luminous red galaxy measurements and that decreases in amplitude by a factor of ˜5-18 for galaxies in the Large Synoptic Survey Telescope survey. We also compared the intrinsic alignments of centrals and satellites, with clear detection of satellite radial alignments within their host haloes. Finally, we show that wg+ (using subhaloes as tracers of density) and wδ+ (using dark matter density) predictions from the simulations agree with that of non-linear alignment (NLA) models at scales where the two-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The one-halo term induces a scale-dependent bias at small scales which is not modelled in the NLA model.

  14. Comparison of Intrinsic Alignment of Galaxies in MassiveBlack-II Hydroynamic and N-body Simulations

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Mandelbaum, Rachel; DiMatteo, Tiziana; Khandai, Nishikanta

    2015-01-01

    The intrinsic alignment of galaxies with the large-scale density field is an important astrophysical systematic in upcoming weak lensing surveys whilst offering insights into galaxy formation and evolution. We compare the intrinsic alignments of galaxies in the cosmological hydrodynamic MassiveBlack-II (MBII) simulation that includes stellar matter and AGN feedback, in a volume of (100h-1Mpc)3 with that of a dark matter only N-body simulation (DMO) performed with the same volume, resolution, cosmological parameters, and initial conditions. For subhalos matched in the two simulations, we find that the axis ratios of the dark matter subhalos of MBII, obtained using the reduced inertia tensor are larger, meaning that subhalos in MB-II are rounder than in the DMO simulation. The shapes of stellar matter in subhalos of MBII are more misaligned with the shapes of dark matter in the corresponding subhalos of the DMO simulation when compared to the misalignment with dark matter shapes of MBII. The fractional change in the mean misalignment angle is larger in galaxies of low mass and it varies from ~ 37% - 13% as we go from low to high mass galaxies. Similarly, the projected intrinsic alignment density-shape correlation function, wδ+ for the shapes of galaxies in the MBII simulation is smaller in comparison to the wδ+ obtained using shapes of dark matter subhalos in DMO with larger decrease at low mass thresholds. These results are necessary if we wish to map the intrinsic alignments from hydrodynamic simulations onto large mock catalogs based on N-body simulations that will be used by upcoming surveys to interpret weak lensing measurements.

  15. Gas-to-dust ratios in massive star-forming galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Aono, Yuya; Iono, Daisuke

    2016-08-01

    We present results of 12CO(J = 2-1) observations toward four massive star-forming galaxies at z ˜ 1.4 with the Nobeyama 45 m radio telescope. The galaxies are detected with Spitzer/MIPS in 24 μm and Herschel/SPIRE in 250 μm and 350 μm, and they mostly reside in the main sequence. Their gas-phase metallicities derived by the N2 method using the Hα and [N II]λ 6584 emission lines are near the solar value. CO lines are detected toward three galaxies. The molecular-gas masses obtained are (9.6-35) × 1010 M⊙ by adopting the Galactic CO-to-H2 conversion factor and a CO(2-1)/CO(1-0) flux ratio of 3. The dust masses derived from the modified blackbody model (assuming a dust temperature of 35 K and an emissivity index of 1.5) are (2.4-5.4) × 108 M⊙. Resulting gas-to-dust ratios (not accounting for H I mass) at z ˜ 1.4 are 220-1450, which are several times larger than those in local star-forming galaxies. A dependence of the gas-to-dust ratio on the far-infrared luminosity density is not clearly seen.

  16. IDCS J1426.5+3508: DISCOVERY OF A MASSIVE, INFRARED-SELECTED GALAXY CLUSTER AT z = 1.75

    SciTech Connect

    Stanford, S. A.; Zeimann, Greg; Brodwin, M.; Gonzalez, Anthony H.; Mancone, C.; Stern, Daniel; Eisenhardt, P. R.; Dey, Arjun; Snyder, Gregory F.

    2012-07-10

    We report the discovery of an IR-selected massive galaxy cluster in the IRAC Deep Cluster Survey (IDCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm IDCS J1426.5+3508 at z = 1.75. Moreover, the cluster is detected in archival Chandra data as an extended X-ray source, comprising 53 counts after the removal of point sources. We calculate an X-ray luminosity of L{sub 0.5-2keV} = (5.4 {+-} 1.2) Multiplication-Sign 10{sup 44} erg s{sup -1} within r = 60 arcsec ({approx}1 Mpc diameter), which implies M{sub 200,L{sub x}}= (5.3{+-}1.6) Multiplication-Sign 10{sup 14} M{sub Sun }. IDCS J1426.5+3508 appears to be an exceptionally massive cluster for its redshift.

  17. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    SciTech Connect

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola; Spitler, Lee R.; Cowley, Michael; Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya; Labbé, Ivo; Straatman, Caroline M. S.; Allen, Rebecca; Davé, Romeel; Dekel, Avishai; Ferguson, Henry C.; Koekemoer, Anton M.; Hartley, W. G.; Koo, David C.; and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  18. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Marulli, Federico; Castorina, Emanuele; Sefusatti, Emiliano; Saito, Shun E-mail: federico.marulli3@unibo.it E-mail: branchin@fis.uniroma3.it E-mail: esefusat@ictp.it

    2014-03-01

    By using a suite of large box-size N-body simulations that incorporate massive neutrinos as an extra set of particles, with total masses of 0.15, 0.30, and 0.60 eV, we investigate the impact of neutrino masses on the spatial distribution of dark matter haloes and on the distribution of galaxies within the haloes. We compute the bias between the spatial distribution of dark matter haloes and the overall matter and cold dark matter distributions using statistical tools such as the power spectrum and the two-point correlation function. Overall we find a scale-dependent bias on large scales for the cosmologies with massive neutrinos. In particular, we find that the bias decreases with the scale, being this effect more important for higher neutrino masses and at high redshift. However, our results indicate that the scale-dependence in the bias is reduced if the latter is computed with respect to the cold dark matter distribution only. We find that the value of the bias on large scales is reasonably well reproduced by the Tinker fitting formula once the linear cold dark matter power spectrum is used, instead of the total matter power spectrum. We also investigate whether scale-dependent bias really comes from purely neutrino's effect or from nonlinear gravitational collapse of haloes. For this purpose, we address the Ω{sub ν}-σ{sub 8} degeneracy and find that such degeneracy is not perfect, implying that neutrinos imprint a slight scale dependence on the large-scale bias. Finally, by using a simple halo occupation distribution (HOD) model, we investigate the impact of massive neutrinos on the distribution of galaxies within dark matter haloes. We use the main galaxy sample in the Sloan Digital Sky Survey (SDSS) II Data Release 7 to investigate if the small-scale galaxy clustering alone can be used to discriminate among different cosmological models with different neutrino masses. Our results suggest that different choices of the HOD parameters can reproduce the

  19. Galaxy clustering, CMB and supernova data constraints on ϕCDM model with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Xu, Lixin

    2016-01-01

    We investigate a scalar field dark energy model (i.e., ϕCDM model) with massive neutrinos, where the scalar field possesses an inverse power-law potential, i.e., V (ϕ) ∝ϕ-α (α > 0). We find that the sum of neutrino masses Σmν has significant impacts on the CMB temperature power spectrum and on the matter power spectrum. In addition, the parameter α also has slight impacts on the spectra. A joint sample, including CMB data from Planck 2013 and WMAP9, galaxy clustering data from WiggleZ and BOSS DR11, and JLA compilation of Type Ia supernova observations, is adopted to confine the parameters. Within the context of the ϕCDM model under consideration, the joint sample determines the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the Thomson scattering optical depth due to reionization, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ* = (1.0415-0.0011+0.0012) ×10-2, τ =0.0914-0.0242+0.0266, Ωbh2 = 0.0222 ± 0.0005, Ωch2 = 0.1177 ± 0.0036, and ns =0.9644-0.0119+0.0118, respectively, at 95% confidence level (CL). It turns out that α < 4.995 at 95% CL for the ϕCDM model. And yet, the ΛCDM scenario corresponding to α = 0 is not ruled out at 95% CL. Moreover, we get Σmν < 0.262 eV at 95% CL for the ϕCDM model, while the corresponding one for the ΛCDM model is Σmν < 0.293 eV. The allowed scale of Σmν in the ϕCDM model is a bit smaller than that in the ΛCDM model. It is consistent with the qualitative analysis, which reveals that the increases of α and Σmν both can result in the suppression of the matter power spectrum. As a consequence, when α is larger, in order to avoid suppressing the matter power spectrum too much, the value of Σmν should be smaller.

  20. Evidence for a Massive, Extended Circumgalactic Medium Around the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Lehner, Nicolas; Howk, J. Christopher; Wakker, Bart P.

    2015-05-01

    We demonstrate the presence of an extended and massive circumgalactic medium (CGM) around Messier 31 using archival HST Cosmic Origins Spectrograph ultraviolet spectroscopy of 18 QSOs projected within two virial radii of M31 ({{R}vir}=300 kpc). We detect absorption from Si iii at -300≲ {{v}LSR}≲ -150 km s-1 toward all three sightlines at R≲ 0.2{{R}vir}, 3 of 4 sightlines at 0.8≲ R/{{R}vir}≲ 1.1, and possibly 1 of 11 at 1.1\\lt R/{{R}vir}≲ 1.8. We present several arguments that the gas at these velocities observed in these directions originates from the M31 CGM rather than the Local Group or Milky Way CGM or Magellanic Stream. We show that the dwarf galaxies located in the CGM of M31 have very similar velocities over similar projected distances from M31. We find a non-trivial relationship only at these velocities between the column densities (N) of all the ions and R, whereby N decreases with increasing R. At R\\lt 0.8{{R}vir}, the covering fraction is close to unity for Si iii and C iv ({{f}c}˜ 60%-97% at the 90% confidence level), but drops to {{f}c}≲ 10%-20% at R≳ {{R}vir}. We show that the M31 CGM gas is bound, multiphase, predominantly ionized, and is more highly ionized gas at larger R. We estimate using Si ii, Si iii, and Si iv, a CGM metal mass of ≳ 2× {{10}6} M⊙ and gas mass of ≳ 3× {{10}9}({{Z}⊙ }/Z) M⊙ within 0.2{{R}vir}, and possibly a factor of ˜10 larger within {{R}vir}, implying substantial metal and gas masses in the CGM of M31. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract No. NAS5-26555.

  1. THE FAINT STELLAR HALOS OF MASSIVE RED GALAXIES FROM STACKS OF MORE THAN 42,000 SDSS LRG IMAGES

    SciTech Connect

    Tal, Tomer; Van Dokkum, Pieter G.

    2011-04-20

    We study the properties of massive galaxies at an average redshift of z {approx} 0.34 through stacking more than 42,000 images of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS). This is the largest data set ever used for such an analysis and it allows us to explore the outskirts of massive red galaxies at unprecedented physical scales. Our image stacks extend farther than 400 kpc, where the r-band profile surface brightness reaches 30 mag arcsec{sup -2}. This analysis confirms that the stellar bodies of LRGs follow a simple Sersic profile out to 100 kpc. At larger radii, the profiles deviate from the best-fit Sersic models and exhibit extra light in the r-, i-, and z-band stacks. This excess light can probably be attributed to unresolved intragroup or intracluster light or a change in the light profile itself. We further show that standard analyses of SDSS-depth images typically miss 20% of the total stellar light and underestimate the size of LRGs by 10% compared to our best-fit r-band Sersic model of n = 5.5 and r{sub e} = 13.1 kpc. If the excess light at r > 100 kpc is considered to be part of the galaxy, the best-fit r-band Sersic parameters are n = 5.8 and r{sub e} = 13.6 kpc. In addition, we study the radially dependent stack ellipticity and find an increase with radius from {epsilon} = 0.25 at r = 10 kpc to {epsilon} = 0.3 at r = 100 kpc. This provides support that the stellar light that we trace out to at least 100 kpc is physically associated with the galaxies themselves and may confirm that the halos of individual LRGs have higher ellipticities than their central parts. Lastly, we show that the broadband color gradients of the stacked images are flat beyond roughly 40 kpc, suggesting that the stellar populations do not vary significantly with radius in the outer parts of massive ellipticals.

  2. Deep Chandra Observations of the Compact Starburst Galaxy Henize 2–10: X-Rays from the Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Reynolds, Mark T.; Miller, Jon M.; Sivakoff, Gregory R.; Greene, Jenny E.; Hickox, Ryan C.; Johnson, Kelsey E.

    2016-10-01

    We present follow-up X-ray observations of the candidate massive black hole (BH) in the nucleus of the low-mass, compact starburst galaxy Henize 2–10. Using new high-resolution observations from the Chandra X-ray Observatory totaling 200 ks in duration, as well as archival Chandra observations from 2001, we demonstrate the presence of a previously unidentified X-ray point source that is spatially coincident with the known nuclear radio source in Henize 2–10 (i.e., the massive BH). We show that the hard X-ray emission previously identified in the 2001 observation is dominated by a source that is distinct from the nucleus, with the properties expected for a high-mass X-ray binary. The X-ray luminosity of the nuclear source suggests the massive BH is radiating significantly below its Eddington limit (∼10{}-6 {L}{Edd}), and the soft spectrum resembles other weakly accreting massive BHs including Sagittarius A*. Analysis of the X-ray light curve of the nucleus reveals the tentative detection of a ∼9 hr periodicity, although additional observations are required to confirm this result. Our study highlights the need for sensitive high-resolution X-ray observations to probe low-level accretion, which is the dominant mode of BH activity throughout the universe.

  3. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    SciTech Connect

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  4. Relics of Galaxy Merging: Observational Predictions for a Wandering Massive Black Hole and Accompanying Star Cluster in the Halo of M31

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  5. SImulator of GAlaxy Millimetre/submillimetre Emission (SÍGAME): CO emission from massive z = 2 main-sequence galaxies

    NASA Astrophysics Data System (ADS)

    Olsen, Karen P.; Greve, Thomas R.; Brinch, Christian; Sommer-Larsen, Jesper; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew

    2016-04-01

    We present SÍGAME (SImulator of GAlaxy Millimetre/submillimetre Emission), a new numerical code designed to simulate the 12CO rotational line spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3D radiative transfer code LIME. We have applied SÍGAME to cosmological SPH simulations of three disc galaxies at z = 2 with stellar masses in the range ˜0.5-2 × 1011 M⊙ and star formation rates ˜40-140 M⊙ yr-1. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z ˜ 2 up to and including J = 3-2 but falling short of the few existing J=5-4 observations. The central 5 kpc regions of our galaxies have CO 3 - 2/1 - 0 and 7 - 6/1 - 0 brightness temperature ratios of ˜0.55-0.65 and ˜0.02-0.08, respectively, while further out in the disc the ratios drop to more quiescent values of ˜0.5 and <0.01. Global CO-to-H2 conversion (αCO) factors are {˜eq } 1.5 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}, i.e. ˜2-3 times below the typically adopted values for disc galaxies, and αCO increases with radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does not significantly change the results. Steepening the GMC density profiles leads to higher global line ratios for Jup ≥ 3 and CO-to-H2 conversion factors [{˜eq } 3.6 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}].

  6. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    DOE PAGESBeta

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensormore » but that luminosity versus mass weighting has only negligible effects. Both ED and wg₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M⊙), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.« less

  7. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    SciTech Connect

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wg₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.

  8. ONE PLANE FOR ALL: MASSIVE STAR-FORMING AND QUIESCENT GALAXIES LIE ON THE SAME MASS FUNDAMENTAL PLANE AT z ∼ 0 AND z ∼ 0.7

    SciTech Connect

    Bezanson, Rachel; Franx, Marijn; Van Dokkum, Pieter G.

    2015-02-01

    Scaling relations between galaxy structures and dynamics have been studied extensively for early- and late-type galaxies, both in the local universe and at high redshifts. The abundant differences between the properties of disky and elliptical, or star-forming and quiescent, galaxies seem to be characteristic of the local universe; such clear distinctions begin to disintegrate as observations of massive galaxies probe higher redshifts. In this paper we investigate the existence of the mass fundamental plane of all massive galaxies (σ ≳ 100 km s{sup –1}). This work includes local galaxies (0.05 < z < 0.07) from the Sloan Digital Sky Survey, in addition to 31 star-forming and 72 quiescent massive galaxies at intermediate redshift (z ∼ 0.7) with absorption-line kinematics from deep Keck-DEIMOS spectra and structural parameters from Hubble Space Telescope imaging. In two-parameter scaling relations, star-forming and quiescent galaxies differ structurally and dynamically. However, we show that massive star-forming and quiescent galaxies lie on nearly the same mass fundamental plane, or the relationship between stellar mass surface density, stellar velocity dispersion, and effective radius. The scatter in this relation (measured about log σ) is low: 0.072 dex (0.055 dex intrinsic) at z ∼ 0 and 0.10 dex (0.08 dex intrinsic) at z ∼ 0.7. This 3D surface is not unique: virial relations, with or without a dependence on luminosity profile shapes, can connect galaxy structures and stellar dynamics with similar scatter. This result builds on the recent finding that mass fundamental plane has been stable for early-type galaxies since z ∼ 2. As we now find that this also holds for star-forming galaxies to z ∼ 0.7, this implies that these scaling relations of galaxies will be minimally susceptible to progenitor biases owing to the evolving stellar populations, structures, and dynamics of galaxies through cosmic time.

  9. DISCOVERY OF MASSIVE, MOSTLY STAR FORMATION QUENCHED GALAXIES WITH EXTREMELY LARGE Lyα EQUIVALENT WIDTHS AT z ∼ 3

    SciTech Connect

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Nagao, Tohru; Shioya, Yasuhiro; Scoville, Nick Z.; Capak, Peter L.; Sanders, David B.; Koekemoer, Anton M.; Toft, Sune; McCracken, Henry J.; Le Fèvre, Olivier; Tasca, Lidia; Ilbert, Olivier; Sheth, Kartik; Renzini, Alvio; Lilly, Simon; Carollo, Marcella; Kovač, Katarina; Schinnerer, Eva; and others

    2015-08-10

    We report a discovery of six massive galaxies with both extremely large Lyα equivalent widths (EWs) and evolved stellar populations at z ∼ 3. These MAssive Extremely STrong Lyα emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lyα emitters (LAEs) with 12 optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the spectral energy distribution fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame EWs of EW{sub 0} (Lyα) ∼ 100–300 Å, (2) M{sub ⋆} ∼ 10{sup 10.5}–10{sup 11.1} M{sub ⊙}, and (3) relatively low specific star formation rates of SFR/M{sub ⋆} ∼ 0.03–1 Gyr{sup −1}. Three of the six MAESTLOs have extended Lyα emission with a radius of several kiloparsecs, although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for active galactic nuclei, the observed extended Lyα emission is likely to be caused by a star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star formation history.

  10. Large-scale gas dynamics in the adhesion model: implications for the two-phase massive galaxy formation scenario

    NASA Astrophysics Data System (ADS)

    Domínguez-Tenreiro, R.; Oñorbe, J.; Martínez-Serrano, F.; Serna, A.

    2011-06-01

    We have studied the mass assembly and star formation histories of massive galaxies identified at low redshift in different cosmological hydrodynamical simulations. To this end, we have carried out a detailed follow-up backwards in time of their constituent mass elements (sampled by particles) of different types. After that, the configurations they depict at progressively higher zs were carefully analysed. The analyses show that these histories share common generic patterns, irrespective of particular circumstances. In any case, however, the results we have found are different depending on the particle type. The most outstanding differences follow. We have found that by z˜ 3.5-6, mass elements identified as stellar particles at z= 0 exhibit a gaseous cosmic-web-like morphology with scales of ˜1 physical Mpc, where the densest mass elements have already turned into stars by z˜ 6. These settings are in fact the densest pieces of the cosmic web, where no hot particles show up, and dynamically organized as a hierarchy of flow convergence regions (FCRs), that is, attraction basins for mass flows. At high z FCRs undergo fast contractive deformations with very low angular momentum, shrinking them violently. Indeed, by z˜ 1 most of the gaseous or stellar mass they contain shows up as bound to a massive elliptical-like object at their centres, with typical half-mass radii of rmassstar˜ 2-3 kpc. After this, a second phase comes about where the mass assembly rate is much slower and characterized by mergers involving angular momentum. On the other hand, mass elements identified at the diffuse hot coronae surrounding massive galaxies at z= 0 do not display a clear web-like morphology at any z. Diffuse gas is heated when FCRs go through contractive deformations. Most of this gas remains hot and with low density throughout the evolution. To shed light on the physical foundations of the behaviour revealed by our analyses (i.e. a two-phase formation process with different

  11. THERE ARE NO STARLESS MASSIVE PROTO-CLUSTERS IN THE FIRST QUADRANT OF THE GALAXY

    SciTech Connect

    Ginsburg, A.; Bally, J.; Battersby, C.; Bressert, E.

    2012-10-20

    We search the {lambda} = 1.1 mm Bolocam Galactic Plane Survey for clumps containing sufficient mass to form {approx}10{sup 4} M{sub Sun} star clusters. Eighteen candidate massive proto-clusters are identified in the first Galactic quadrant outside of the central kiloparsec. This sample is complete to clumps with mass M{sub clump} > 10{sup 4} M{sub Sun} and radius r {approx}< 2.5 pc. The overall Galactic massive cluster formation rate is CFR(M{sub cluster} > 10{sup 4}) {approx}<5 Myr{sup -1}, which is in agreement with the rates inferred from Galactic open clusters and M31 massive clusters. We find that all massive proto-clusters in the first quadrant are actively forming massive stars and place an upper limit of {tau}{sub starless} < 0.5 Myr on the lifetime of the starless phase of massive cluster formation. If massive clusters go through a starless phase with all of their mass in a single clump, the lifetime of this phase is very short.

  12. SALPETER NORMALIZATION OF THE STELLAR INITIAL MASS FUNCTION FOR MASSIVE GALAXIES AT z ∼ 1

    SciTech Connect

    Shetty, Shravan; Cappellari, Michele

    2014-05-10

    The stellar initial mass function (IMF) is a key parameter for studying galaxy evolution. Here we measure the IMF mass normalization for a sample of 68 field galaxies in the redshift range 0.7-0.9 within the Extended Groth Strip. To do this we derive the total (stellar + dark matter) mass-to-light [(M/L)] ratio using axisymmetric dynamical models. Within the region where we have kinematics (about one half-light radius), the models assume (1) that mass follows light, implying negligible differences between the slope of the stellar and total density profiles, (2) constant velocity anisotropy (β{sub z}≡1−σ{sub z}{sup 2}/σ{sub R}{sup 2}=0.2), and (3) that galaxies are seen at the average inclination for random orientations (i.e., i = 60°, where i = 90° represents edge-on). The dynamical models are based on anisotropic Jeans equations, constrained by Hubble Space Telescope/Advanced Camera for Surveys imaging and the central velocity dispersion of the galaxies, extracted from good-quality spectra taken by the DEEP2 survey. The population (M/L) are derived from full-spectrum fitting of the same spectra with a grid of simple stellar population models. Recent dynamical modeling results from the ATLAS{sup 3D} project and numerical simulations of galaxy evolution indicate that the dark matter fraction within the central regions of our galaxies should be small. This suggests that our derived total (M/L) should closely approximate the stellar M/L. Our comparison of the dynamical (M/L) and the population (M/L) then implies that for galaxies with stellar mass M {sub *} ≳ 10{sup 11} M {sub ☉}, the average normalization of the IMF is consistent with a Salpeter slope, with a substantial scatter. This is similar to what is found within a similar mass range for nearby galaxies.

  13. Properties of 34 massive galaxy groups within 0.012 < z < 0.027

    NASA Astrophysics Data System (ADS)

    Kopylova, F. G.; Kopylov, A. I.

    2015-04-01

    In order to extend the relationship between the infrared luminosity of groups and clusters of galaxies and their dynamic mass to the 1-5 × 1013 M ⊙ mass region, we selected from the study of Ramella et al. (2004) certain galaxy groups in the region of 0.012 < z < 0.027. Based on the archive data from the SDSS, NED, and 2MASX, for these 34 galaxy groups we determined the dynamic and photometric characteristics. Overall, the sample has the following median characteristics: z = 0.0226, M 200 = 0.58 × 1014 M ⊙, L K = 1.26 × 1012 L ⊙, and N( M K < -21m) = 22. Having this sample added to the earlier prepared sample of 148 groups and clusters of galaxies, we found the following relationships between the dynamic mass M 200, infrared (IR) luminosity, and the number of galaxies within the R 200 radius: L K ( M K < -21m) ∝ M 0.77, N( M K < -21m) ∝ M 0.82, and M/L K ∝ L K/0.22. Practically all the members of the studied sample show a good agreement between the dynamic mass of groups M 200 and IR luminosity of galaxies, and eventually their stellar mass (only the group MKW12 deviates more than 2 σ in all the dependencies).

  14. VELOCITY DISPERSIONS AND STELLAR POPULATIONS OF THE MOST COMPACT AND MASSIVE EARLY-TYPE GALAXIES AT REDSHIFT {approx}1

    SciTech Connect

    Martinez-Manso, Jesus; Guzman, Rafael; Barro, Guillermo; Cardiel, Nicolas; Gallego, Jesus; Cenarro, Javier; Perez-Gonzalez, Pablo; Sanchez-Blazquez, Patricia; Trujillo, Ignacio; Balcells, Marc; Hempel, Angela; Prieto, Mercedes

    2011-09-10

    We present Gran-Telescopio-Canarias/OSIRIS optical spectra of four of the most compact and massive early-type galaxies (ETGs) in the Groth Strip Survey at redshift z {approx} 1, with effective radii R{sub e} = 0.5-2.4 kpc and photometric stellar masses M{sub *} = (1.2-4) x 10{sup 11} M{sub sun}. We find that these galaxies have velocity dispersions {sigma} = 156-236 km s{sup -1}. The spectra are well fitted by single stellar population models with approximately 1 Gyr of age and solar metallicity. We find that (1) the dynamical masses of these galaxies are systematically smaller by a factor of {approx}6 than the published stellar masses using BRIJK photometry, and (2) when estimating stellar masses as 0.7x M{sub dyn}, a combination of passive luminosity fading with mass/size growth due to minor mergers can plausibly evolve our objects to match the properties of the local population of ETGs.

  15. Starbursting brightest cluster galaxy: a Herschel view of the massive cluster MACS J1931.8-2634

    NASA Astrophysics Data System (ADS)

    Santos, J. S.; Balestra, I.; Tozzi, P.; Altieri, B.; Valtchanov, I.; Mercurio, A.; Nonino, M.; Yu, Heng; Rosati, P.; Grillo, C.; Medezinski, E.; Biviano, A.

    2016-02-01

    We investigate the dust-obscured star formation (SF) properties of the massive, X-ray-selected galaxy cluster MACS J1931.8-2634 at z = 0.352. Using far-infrared (FIR) imaging in the range 100-500 μm obtained with the Herschel telescope, we extract 31 sources (2σ) within r ˜ 1 Mpc from the brightest cluster galaxy (BCG). Among these sources, we identify six cluster members for which we perform an analysis of their spectral energy distributions (SEDs). We measure total infrared luminosity (LIR), star formation rate (SFR) and dust temperature. The BCG, with LIR = 1.4 × 1012 L⊙ is an ultraluminous infrared galaxy and hosts a type-II active galactic nuclei (AGN). We decompose its FIR SED into AGN and starburst components and find equal contributions from AGN and starburst. We also recompute the SFR of the BCG finding SFR = 150 ± 15 M⊙ yr-1. We search for an isobaric cooling flow in the cool core using Chandra X-ray data, and find no evidence for gas colder than 1.8 keV in the inner 30 kpc, for an upper limit to the instantaneous mass-deposition rate of 58 M⊙ yr-1 at 95 per cent c.l. This value is 3× lower than the SFR in the BCG, suggesting that the on-going SF episode lasts longer than the intracluster medium cooling events.

  16. Discovery of a Strongly Lensed Massive Quiescent Galaxy at z = 2.636: Spatially Resolved Spectroscopy and Indications of Rotation

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Belli, Sirio; Ellis, Richard S.

    2015-11-01

    We report the discovery of RG1M0150, a massive, recently quenched galaxy at z = 2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of {log}{M}*={11.49}-0.16+0.10 and a half-light radius of {R}e,{maj}=1.8+/- 0.4 {{kpc}}. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z\\gt 2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6{R}e-1.6{R}e, which are consistent with an age of 760 Myr. Gas emission in [N ii] broadly traces the spatial distribution of the stars and is coupled with weak Hα emission (log [N ii]/{{H}}α =0.6+/- 0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is {σ }e,{stars}=271+/- 41 km s{}-1. We detect rotation in the stellar absorption lines for the first time beyond z∼ 1. Using a two-integral Jeans model that accounts for observational effects, we measure a dynamical mass of {log}{M}{{dyn}}=11.24+/- 0.14 and V/σ =0.70+/- 0.21. This is a high degree of rotation considering the modest observed ellipticity of 0.12 ± 0.08, but it is consistent with predictions from dissipational merger simulations that produce compact remnants. The mass of RG1M0150 implies that it is likely to become a slowly rotating elliptical. If it is typical, this suggests that the progenitors of massive ellipticals retain significant net angular momentum after quenching which later declines, perhaps through accretion of satellites.

  17. CENSUS OF SELF-OBSCURED MASSIVE STARS IN NEARBY GALAXIES WITH SPITZER: IMPLICATIONS FOR UNDERSTANDING THE PROGENITORS OF SN 2008S-LIKE TRANSIENTS

    SciTech Connect

    Khan, Rubab; Stanek, K. Z.; Kochanek, C. S.; Thompson, Todd A.; Beacom, J. F.; Prieto, J. L. E-mail: kstanek@astronomy.ohio-state.ed E-mail: thompson@astronomy.ohio-state.ed E-mail: beacom@mps.ohio-state.ed

    2010-06-01

    A new link in the causal mapping between massive stars and potentially fatal explosive transients opened with the 2008 discovery of the dust-obscured progenitors of the luminous outbursts in NGC 6946 and NGC 300. Here, we carry out a systematic mid-IR photometric search for massive, luminous, and self-obscured stars in four nearby galaxies: M33, NGC 300, M81, and NGC 6946. For detection, we use only the 3.6 {mu}m and 4.5 {mu}m IRAC bands, as these can still be used for multi-epoch Spitzer surveys of nearby galaxies ({approx}<10 Mpc). We combine familiar point-spread function and aperture photometry with an innovative application of image subtraction to catalog the self-obscured massive stars in these galaxies. In particular, we verify that stars analogous to the progenitors of the NGC 6946 (SN 2008S) and NGC 300 transients are truly rare in all four galaxies: their number may be as low as {approx}1 per galaxy at any given moment. This result empirically supports the idea that the dust-enshrouded phase is a very short lived phenomenon in the lives of many massive stars and that these objects constitute a natural extension of the asymptotic giant branch sequence. We also provide mid-IR catalogs of sources in NGC 300, M81, and NGC 6946.

  18. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    SciTech Connect

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B.; Urquhart, J. S.; Davies, B.; Moore, T. J. T.; Mottram, J. C.

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  19. DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING 'LIGHT' INITIAL MASS FUNCTIONS

    SciTech Connect

    Auger, M. W.; Treu, T.; Gavazzi, R.; Bolton, A. S.; Koopmans, L. V. E.; Marshall, P. J.

    2010-10-01

    We use stellar dynamics, strong lensing, stellar population synthesis models, and weak lensing shear measurements to constrain the dark matter (DM) profile and stellar mass in a sample of 53 massive early-type galaxies. We explore three DM halo models (unperturbed Navarro, Frenk, and White (NFW) halos and the adiabatic contraction models of Blumenthal and Gnedin) and impose a model for the relationship between the stellar and virial mass (i.e., a relationship for the star formation efficiency as a function of halo mass). We show that, given our model assumptions, the data clearly prefer a Salpeter-like initial mass function (IMF) over a lighter IMF (e.g., Chabrier or Kroupa), irrespective of the choice of DM halo. In addition, we find that the data prefer at most a moderate amount of adiabatic contraction (Blumenthal adiabatic contraction is strongly disfavored) and are only consistent with no adiabatic contraction (i.e., an NFW halo) if a mass-dependent IMF is assumed, in the sense of a more massive normalization of the IMF for more massive halos.

  20. Massive star formation in Wolf-Rayet galaxies. IV. Colours, chemical-composition analysis and metallicity-luminosity relations

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Esteban, C.

    2010-07-01

    Aims: We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show a substantial population of very young massive stars, most of them classified as Wolf-Rayet (WR) galaxies. In this paper, the forth of the series, we present the global analysis of the derived photometric and chemical properties. Methods: We compare optical/NIR colours and the physical properties (reddening coefficient, equivalent widths of the emission and underlying absorption lines, ionization degree, electron density, and electron temperature) and chemical properties (oxygen abundances and N/O, S/O, Ne/O, Ar/O, and Fe/O ratios) with previous observations and galaxy evolution models. We compile 41 independent star-forming regions - with oxygen abundances between 12 + log(O/H) = 7.58 and 8.75 - , of which 31 have a direct estimate of the electron temperature of the ionized gas. Results: According to their absolute B-magnitude, many of them are not dwarf galaxies, but they should be during their quiescent phase. We found that both c(Hβ) and Wabs increase with increasing metallicity. The differences in the N/O ratio is explained assuming differences in the star formation histories. We detected a high N/O ratio in objects showing strong WR features (HCG 31 AC, UM 420, IRAS 0828+2816, III Zw 107, ESO 566-8 and NGC 5253). The ejecta of the WR stars may be the origin of the N enrichment in these galaxies. We compared the abundances provided by the direct method with those obtained through empirical calibrations, finding that (i) the Pilyugin method is the best suited empirical calibration for these star-forming galaxies; (ii) the relations provided by Pettini & Pagel (2004, MNRAS, 348, 59) give acceptable results for objects with 12 + log(O/H) > 8.0; and (iii) the results provided by empirical calibrations based on photoionization models are systematically 0.2-0.3 dex higher than the values derived from the direct method. The O and N abundances and the N

  1. Galaxy halo formation in the absence of violent relaxation and a universal density profile of the halo center

    SciTech Connect

    Baushev, A. N.

    2014-05-01

    While N-body simulations testify to a cuspy profile of the central region of dark matter halos, observations favor a shallow, cored density profile of the central region of at least some spiral galaxies and dwarf spheroidals. We show that a central profile, very close to the observed one, inevitably forms in the center of dark matter halos if we make a supposition about a moderate energy relaxation of the system during the halo formation. If we assume the energy exchange between dark matter particles during the halo collapse is not too intensive, the profile is universal: it depends almost not at all on the properties of the initial perturbation and is very akin, but not identical, to the Einasto profile with a small Einasto index n ∼ 0.5. We estimate the size of the 'central core' of the distribution, i.e., the extent of the very central region with a respectively gentle profile, and show that the cusp formation is unlikely, even if the dark matter is cold. The obtained profile is in good agreement with observational data for at least some types of galaxies but clearly disagrees with N-body simulations.

  2. Evolutionary paths among different red galaxy types at 0.3massive E-S0's

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Prieto, M.; Eliche-Moral, M. C.; Balcells, M.; Cristóbal-Hornillos, D.; Erwin, P.; Abreu, Domínguez-Palmero, L.; Hempel, A.; López-Sanjuan, C.; Guzmán, R.; Pérez-González, P. G.; Barro, G.; Zamorano, J.

    2013-05-01

    Some recent observations seem to disagree with hierarchical theories of galaxy formation on the role of major mergers in a late buildup of massive early-type galaxies. We re-address this question by analysing the morphology, structural distortion level, and star formation enhancement of a sample of massive galaxies (M_*> 5× 10^{10}M_⊙) lying on the Red Sequence and its surroundings at 0.3massive red galaxies at 0.6massive red regular galaxies at low redshifts derive from the irregular ones populating the Red Sequence and its neighbourhood at earlier epochs up to z˜ 1.5; 2) the progenitors of the bulk of present-day massive red regular galaxies have been blue disks that have migrated to the Red Sequence majoritarily through major mergers at 0.6 10^{11}M_⊙ at z=0 through gas-rich major mergers has frozen since z˜ 0.6. Our results support that major mergers have played the dominant role in the definitive buildup of present-day E-S0's with M_*> 10^{11}M_⊙ at 0.6

  3. Possible identification of massive and evolved galaxies at z ≳ 5

    NASA Astrophysics Data System (ADS)

    Mawatari, Ken; Yamada, Toru; Fazio, Giovanni G.; Huang, Jia-Sheng; Ashby, Matthew L. N.

    2016-06-01

    We report on the identification of the old stellar population galaxy candidates at z ≳ 5. We developed a new infrared color selection scheme to isolate galaxies with the strong Balmer breaks at z ≳ 5, and applied it to the ultra-deep and wide infrared survey data from the Spitzer Extended Deep Survey (SEDS) and the UKIRT Infrared Deep Sky Survey. The eight objects satisfying K - [3.6] > 1.3 and K - [3.6] > 2.4([3.6] - [4.5]) + 0.6 are selected in the 0.34 deg2 SEDS Ultra Deep Survey field. Rich multi-wavelength imaging data from optical to far-infrared are also used to reject blending sources and strong nebular line emitters, and we finally obtained the three most likely evolved galaxies at z ≳ 5. Their stacked spectral energy distribution is fitted well with the old stellar population template with M* = (7.5 ± 1.5) × 1010 M⊙, star formation rate = 0.9 ± 0.2 M⊙ yr-1, dust AV < 1, and age =0.7 ± 0.4 Gyr at z = 5.7 ± 0.6, where the dusty star-forming galaxies at z ˜ 2.8 are disfavored because of the faintness in the 24 μm. The stellar mass density of these evolved galaxy candidates, (6 ± 4) × 104 M⊙ Mpc-3, is much lower than that of star-forming galaxies, but the non-zero fraction suggests that initial star-formation and quenching have been completed by z ˜ 6.

  4. Quasars probing quasars. VII. The pinnacle of the cool circumgalactic medium surrounds massive z ∼ 2 galaxies

    SciTech Connect

    Prochaska, J. Xavier; Lau, Marie Wingyee

    2014-12-01

    We survey the incidence and absorption strength of the metal-line transitions C II 1334 and C IV 1548 from the circumgalactic medium (CGM) surrounding z ∼ 2 quasars, which act as signposts for massive dark matter halos M {sub halo} ≈ 10{sup 12.5} M {sub ☉}. On scales of the virial radius (r {sub vir} ≈ 160 kpc), we measure a high covering fraction f{sub C} = 0.73 ± 0.10 to strong C II 1334 absorption (rest equivalent width W {sub 1334} ≥ 0.2 Å), implying a massive reservoir of cool (T ∼ 10{sup 4} K) metal enriched gas. We conservatively estimate a metal mass exceeding 10{sup 8} M {sub ☉}. We propose that these metals trace enrichment of the incipient intragroup/intracluster medium that these halos eventually inhabit. This cool CGM around quasars is the pinnacle among galaxies observed at all epochs, as regards covering the fraction and average equivalent width of H I Lyα and low-ion metal absorption. We argue that the properties of this cool CGM primarily reflect the halo mass, and that other factors such as feedback, star-formation rate, and accretion from the intergalactic medium are secondary. We further estimate that the CGM of massive, z ∼ 2 galaxies accounts for the majority of strong Mg II absorption along random quasar sightlines. Last, we detect an excess of strong C IV 1548 absorption (W {sub 1548} ≥ 0.3 Å) over random incidence to the 1 Mpc physical impact parameter and measure the quasar-C IV cross-correlation function: ξ{sub C} {sub IV-Q}(r)=(r/r{sub 0}){sup −γ} with r{sub 0}=7.5{sub −1.4}{sup +2.8} h{sup −1} Mpc and γ=1.7{sub −0.2}{sup +0.1}. Consistent with previous work on larger scales, we infer that this highly ionized C IV gas traces massive (10{sup 12} M {sub ☉}) halos.

  5. Chandra Deep Observation of XDCP J0044.0-2033, a Massive Galaxy Cluster at z > 1.5

    NASA Astrophysics Data System (ADS)

    Tozzi, P.; Santos, J. S.; Jee, M. J.; Fassbender, R.; Rosati, P.; Nastasi, A.; Forman, W.; Sartoris, B.; Borgani, S.; Boehringer, H.; Altieri, B.; Pratt, G. W.; Nonino, M.; Jones, C.

    2015-01-01

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ~ 20) on a circular region with a 44'' radius, corresponding to R ext = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature kT=6.7+1.3-0.9 keV, and a iron abundance ZFe = 0.41-0.26+0.29ZFe_⊙ (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius R ext = 375 kpc to be M ICM(r < R ext) = (1.48 ± 0.20) × 1013 M ⊙. Under the assumption of hydrostatic equilibrium and assuming isothermality within R ext, the total mass is M2500= 1.23-0.27+0.46 × 10 14 M_⊙ for R2500 = 240-20+30 kpc. Extrapolating the profile at radii larger than the extraction radius R ext we find M500 = 3.2-0.6+0.9 × 10 14 M_⊙ for R500 = 562-37+50 kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ~ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

  6. CHANDRA DEEP OBSERVATION OF XDCP J0044.0-2033, A MASSIVE GALAXY CLUSTER AT z > 1.5

    SciTech Connect

    Tozzi, P.; Santos, J. S.; Rosati, P.; Jee, M. J.; Fassbender, R.; Nastasi, A.; Forman, W.; Jones, C.; Sartoris, B.; Borgani, S.; Boehringer, H.; Altieri, B.; Pratt, G. W.; Nonino, M.

    2015-01-20

    We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z = 1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high-redshift cluster. Extended emission from the intra cluster medium (ICM) is detected at a very high significance level (S/N ∼ 20) on a circular region with a 44'' radius, corresponding to R {sub ext} = 375 kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature kT=6.7{sub −0.9}{sup +1.3} keV, and a iron abundance Z{sub Fe}=0.41{sub −0.26}{sup +0.29}Z{sub Fe{sub ⊙}} (error bars correspond to 1σ). We fit the background-subtracted surface brightness profile with a single β-model out to 44'', finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius R {sub ext} = 375 kpc to be M {sub ICM}(r < R {sub ext}) = (1.48 ± 0.20) × 10{sup 13} M {sub ☉}. Under the assumption of hydrostatic equilibrium and assuming isothermality within R {sub ext}, the total mass is M{sub 2500}=1.23{sub −0.27}{sup +0.46}×10{sup 14} M{sub ⊙} for R{sub 2500}=240{sub −20}{sup +30} kpc. Extrapolating the profile at radii larger than the extraction radius R {sub ext} we find M{sub 500}=3.2{sub −0.6}{sup +0.9}×10{sup 14} M{sub ⊙} for R{sub 500}=562{sub −37}{sup +50} kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift z ∼ 1.6, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 ΛCDM cosmology.

  7. On the origin of the intracluster light in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Bradač, Maruša

    2015-04-01

    We present a pilot study on the origin and assembly history of the intracluster starlight (ICL) for four galaxy clusters at 0.44 ≤ z ≤ 0.57 observed with the Hubble Space Telescope from the Cluster Lensing and Supernova Survey with Hubble (CLASH) sample. Using this sample of CLASH clusters we set an empirical limit on the amount of scatter in ICL surface brightness profiles of such clusters at z = 0.5, a mean of 0.24 mag arcsec-2 for 10 < r < 110 kpc, and constrain the progenitor population and formation mechanism of the ICL by measuring the ICL surface brightness profile, the ICL colour and colour gradient, and the total ICL luminosity within the same radial range. This scatter is physical - it exceeds the observational errors, straightforward expectations from the range of cluster masses in our sample, and predictions based on published evolutionary models for the variance attributable to the redshift span of our sample. We associate the additional scatter with differences in ICL assembly process, formation epoch, and/or ICL content. Using stellar population synthesis models we transform the observed colours to metallicity. For three of the four clusters we find clear negative gradients that, on average, decrease from supersolar in the central regions of the brightest cluster galaxy (BCG) to subsolar in the ICL, under the assumption that the age of the intracluster stars is >11 Gyr. Such negative colour (and equivalently, metallicity) gradients can arise from tidal stripping of L* galaxies and/or the disruption of dwarf galaxies, but not major mergers with the BCG. We also find that the ICL at 110 kpc has a colour comparable to m* + 2 red sequence galaxies, suggesting that out to this radius the ICL is dominated by stars liberated from galaxies with L > 0.2 L*. Finally, we find ICL luminosities of 4-8 L* in the range 10 < r < 110 kpc for these clusters. Neither dwarf disruption nor major mergers with the BCG alone can explain this level of luminosity and

  8. VizieR Online Data Catalog: X-ray bright AGN in massive galaxy clusters (Ehlert+, 2015)

    NASA Astrophysics Data System (ADS)

    Ehlert, S.; Allen, S. W.; Brandt, W. N.; Canning, R. E. A.; Luo, B.; Mantz, A.; Morris, R. G.; von der Linden, A.; Xue, Y. Q.

    2015-06-01

    The clusters included in our study have been drawn from wide-area cluster surveys derived from the ROSAT All Sky Survey (Truemper, 1993Sci...260.1769T, See Cat. IX/29): the ROSAT Brightest Cluster Sample (BCS; Ebeling et al., 1998, Cat. J/MNRAS/301/881); the ROSAT-ESO Flux-Limited X-ray Sample (REFLEX; Bohringer et al., 2004, Cat. J/A+A/425/367); and the Massive Cluster Survey (MACS; Ebeling et al., 2007ApJ...661L..13T, 2010MNRAS.407...83E). We also included clusters from the 400deg2 ROSAT PSPC Galaxy Cluster Survey (Burenin et al., 2007, Cat. J/ApJS/172/561). (1 data file).

  9. Discovery of Massive, Mostly Star Formation Quenched Galaxies with Extremely Large Lyα Equivalent Widths at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Nagao, Tohru; Shioya, Yasuhiro; Scoville, Nick Z.; Sanders, David B.; Capak, Peter L.; Koekemoer, Anton M.; Toft, Sune; McCracken, Henry J.; Le Fèvre, Olivier; Tasca, Lidia; Sheth, Kartik; Renzini, Alvio; Lilly, Simon; Carollo, Marcella; Kovač, Katarina; Ilbert, Olivier; Schinnerer, Eva; Fu, Hai; Tresse, Laurence; Griffiths, Richard E.; Civano, Francesca

    2015-08-01

    We report a discovery of six massive galaxies with both extremely large Lyα equivalent widths (EWs) and evolved stellar populations at z ˜ 3. These MAssive Extremely STrong Lyα emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lyα emitters (LAEs) with 12 optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the spectral energy distribution fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame EWs of EW0 (Lyα) ˜ 100-300 Å, (2) M⋆ ˜ 1010.5-1011.1 M⊙, and (3) relatively low specific star formation rates of SFR/M⋆ ˜ 0.03-1 Gyr-1. Three of the six MAESTLOs have extended Lyα emission with a radius of several kiloparsecs, although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for active galactic nuclei, the observed extended Lyα emission is likely to be caused by a star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star formation history. Based on observations with NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555; also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; and also based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.

  10. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY: MOO J1142+1527, A 10{sup 15}M{sub ⊙} GALAXY CLUSTER AT z = 1.19

    SciTech Connect

    Gonzalez, Anthony H.; Gettings, Daniel P.; Decker, Bandon; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Marrone, Daniel P.; Greer, Christopher H.; Stanford, S. A.; Wylezalek, Dominika; Aldering, Greg; Boone, Kyle; Fagrelius, Parker; Hayden, Brian; Abdulla, Zubair; Carlstrom, John; Leitch, Erik M.; Lin, Yen-Ting; Mantz, Adam B.; Muchovej, Stephen; and others

    2015-10-20

    We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at z = 1.19, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev–Zel’dovich (SZ) decrement at 13.2σ. The SZ data imply a mass of M{sub 200m} = (1.1 ± 0.2) × 10{sup 15}M{sub ⊙}, making MOO J1142+1527 the most massive galaxy cluster known at z > 1.15 and the second most massive cluster known at z > 1. For a standard ΛCDM cosmology it is further expected to be one of the ∼5 most massive clusters expected to exist at z ≥ 1.19 over the entire sky. Our ongoing Spitzer program targeting ∼1750 additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky.

  11. The Massive and Distant Clusters of WISE Survey: MOO J1142+1527, a 1015 M⊙ Galaxy Cluster at z = 1.19

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony H.; Decker, Bandon; Brodwin, Mark; Eisenhardt, Peter R. M.; Marrone, Daniel P.; Stanford, S. A.; Stern, Daniel; Wylezalek, Dominika; Aldering, Greg; Abdulla, Zubair; Boone, Kyle; Carlstrom, John; Fagrelius, Parker; Gettings, Daniel P.; Greer, Christopher H.; Hayden, Brian; Leitch, Erik M.; Lin, Yen-Ting; Mantz, Adam B.; Muchovej, Stephen; Perlmutter, Saul; Zeimann, Gregory R.

    2015-10-01

    We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at z = 1.19, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev–Zel’dovich (SZ) decrement at 13.2σ. The SZ data imply a mass of M200m = (1.1 ± 0.2) × 1015M⊙, making MOO J1142+1527 the most massive galaxy cluster known at z > 1.15 and the second most massive cluster known at z > 1. For a standard ΛCDM cosmology it is further expected to be one of the ∼5 most massive clusters expected to exist at z ≥ 1.19 over the entire sky. Our ongoing Spitzer program targeting ∼1750 additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky.

  12. Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Rauch, Michael; Wilson, Michelle L.; Zabludoff, Ann

    2016-05-01

    We present multisightline absorption spectroscopy of cool gas around three lensing galaxies at z = 0.4-0.7. These lenses have half-light radii re = 2.6-8 kpc and stellar masses of log M*/M⊙ = 10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d = 3-15 kpc (or d ≈ 1-2 re) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r ˜ re and circumgalactic gas at larger radii r ≫ re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE 0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE 0047-1756, and in one of the two sightlines near the double lens for HE 1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of Δ v ≈ 300-600 km s-1. The large ionic column densities, log N ≳ 14, observed in two components suggest that these may be Lyman limit or damped Ly α absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform supersolar Fe/Mg ratio with a scatter of <0.1 dex across the full Δ v range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r ˜ re. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multisightline approach provide a powerful tool to resolve the origin of chemically enriched cool gas in massive haloes.

  13. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  14. A Case for an Ultra Massive Black Hole in the Galaxy Cluster MS0735.6+7421

    NASA Astrophysics Data System (ADS)

    Jorshari, Razzi Movassaghi

    In this work, we study the galaxy cluster MS0735.6+7421 that hosts the most energetic observed active galactic nucleus (AGN) outburst so far. Explaining this very energetic AGN outburst is found to be challenging. McNamara et al. (2009) grappled with this problem and proposed two possible solutions: either the black hole (BH) must be an ultra massive one (with mass > 1010 M⊙ ), or the efficiency of the mass to energy conversion (epsilon) should be higher than the generally assumed value epsilon ˜ 0.1. However, the efficiency of the mass to energy conversion depends on the BH's spin (Benson & Babul, 2009); higher epsilon can be achieved with a higher spinning BH. Here, we explore the second solution in detail, and ask the question: How did the BH spin up to the very high spins in advance of the outburst? We also explore the attendant physical processes, such as star formation, during the spin-up mode and investigate the associated observational implications. Comparing our results with what is generally expected from simulations and observational studies suggests that for all intents and purposes, the existence of an ultra massive BH is the simplest solution.

  15. SMM J04135+10277: A CANDIDATE EARLY-STAGE ''WET-DRY'' MERGER OF TWO MASSIVE GALAXIES AT z = 2.8

    SciTech Connect

    Riechers, Dominik A.

    2013-03-10

    We report interferometric imaging of CO(J = 3{yields}2) emission toward the z = 2.846 submillimeter-selected galaxy SMM J04135+10277, using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). SMM J04135+10277 was previously thought to be a gas-rich, submillimeter-selected quasar, with the highest molecular gas mass among high-z quasars reported in the literature. Our maps at {approx}6 Multiplication-Sign improved linear resolution relative to earlier observations spatially resolve the emission on {approx}1.''7 scales, corresponding to a (lensing-corrected) source radius of {approx}5.2 kpc. They also reveal that the molecular gas reservoir, and thus, likely the submillimeter emission, is not associated with the host galaxy of the quasar, but with an optically faint gas-rich galaxy at 5.''2, or 41.5 kpc projected distance from the active galactic nucleus (AGN). The obscured gas-rich galaxy has a dynamical mass of M{sub dyn} sin{sup 2} i = 5.6 Multiplication-Sign 10{sup 11} M{sub Sun }, corresponding to a gas mass fraction of {approx_equal}21%. Assuming a typical M{sub BH}/M{sub *} ratio for z {approx}> 2 quasars, the two galaxies in this system have an approximate mass ratio of {approx}1.9. Our findings suggest that this quasar-starburst galaxy pair could represent an early stage of a rare major, gas-rich/gas-poor ({sup w}et-dry{sup )} merger of two massive galaxies at z = 2.8, rather than a single, gas-rich AGN host galaxy. Such systems could play an important role in the early buildup of present-day massive galaxies through a submillimeter-luminous starburst phase, and may remain hidden in larger numbers among rest-frame far-infrared-selected quasar samples at low and high redshift.

  16. Detection of the Splashback Radius and Halo Assembly Bias of Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    More, Surhud; Miyatake, Hironao; Takada, Masahiro; Diemer, Benedikt; Kravtsov, Andrey V.; Dalal, Neal K.; More, Anupreeta; Murata, Ryoma; Mandelbaum, Rachel; Rozo, Eduardo; Rykoff, Eli S.; Oguri, Masamune; Spergel, David N.

    2016-07-01

    We show that the projected number density profiles of Sloan Digital Sky Survey photometric galaxies around galaxy clusters display strong evidence for the splashback radius, a sharp halo edge corresponding to the location of the first orbital apocenter of satellite galaxies after their infall. We split the clusters into two subsamples with different mean projected radial distances of their members, < {R}{{mem}}> , at fixed richness and redshift. The sample with smaller < {R}{{mem}}> has a smaller ratio of the splashback radius to the traditional halo boundary {R}{{200m}} than the subsample with larger < {R}{{mem}}> , indicative of different mass accretion rates for these subsamples. The same subsamples were recently used by Miyatake et al. to show that their large-scale clustering differs despite their similar weak lensing masses, demonstrating strong evidence for halo assembly bias. We expand on this result by presenting a 6.6σ difference in the clustering amplitudes of these samples using cluster-photometric galaxy cross-correlations. This measurement is a clear indication that halo clustering depends on parameters other than halo mass. If < {R}{{mem}}> is related to the mass assembly history of halos, the measurement is a manifestation of the halo assembly bias. However, our measured splashback radii are smaller, while the strength of the assembly bias signal is stronger, than the predictions of collisionless Λ cold dark matter simulations. We show that dynamical friction, cluster mis-centering, or projection effects are not likely to be the sole source of these discrepancies. However, further investigations regarding unknown catastrophic weak lensing or cluster identification systematics are warranted.

  17. Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters

    SciTech Connect

    Costanzi, Matteo; Borgani, Stefano; Villaescusa-Navarro, Francisco; Viel, Matteo; Xia, Jun-Qing; Castorina, Emanuele; Sefusatti, Emiliano E-mail: villaescusa@oats.inaf.it E-mail: xiajq@ihep.ac.cn E-mail: castori@sissa.it

    2013-12-01

    We use a suite of N-body simulations that incorporate massive neutrinos as an extra-set of particles to investigate their effect on the halo mass function. We show that for cosmologies with massive neutrinos the mass function of dark matter haloes selected using the spherical overdensity (SO) criterion is well reproduced by the fitting formula of Tinker et al. (2008) once the cold dark matter power spectrum is considered instead of the total matter power, as it is usually done. The differences between the two implementations, i.e. using P{sub cdm}(k) instead of P{sub m}(k), are more pronounced for large values of the neutrino masses and in the high end of the halo mass function: in particular, the number of massive haloes is higher when P{sub cdm}(k) is considered rather than P{sub m}(k). As a quantitative application of our findings we consider a Planck-like SZ-clusters survey and show that the differences in predicted number counts can be as large as 30% for ∑m{sub ν} = 0.4 eV. Finally, we use the Planck-SZ clusters sample, with an approximate likelihood calculation, to derive Planck-like constraints on cosmological parameters. We find that, in a massive neutrino cosmology, our correction to the halo mass function produces a shift in the σ{sub 8}(Ω{sub m}/0.27){sup γ} relation which can be quantified as Δγ ∼ 0.05 and Δγ ∼ 0.14 assuming one (N{sub ν} = 1) or three (N{sub ν} = 3) degenerate massive neutrino, respectively. The shift results in a lower mean value of σ{sub 8} with Δσ{sub 8} = 0.01 for N{sub ν} = 1 and Δσ{sub 8} = 0.02 for N{sub ν} = 3, respectively. Such difference, in a cosmology with massive neutrinos, would increase the tension between cluster abundance and Planck CMB measurements.

  18. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS {sup ,}

    SciTech Connect

    Sifon, Cristobal; Barrientos, L. Felipe; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando; Menanteau, Felipe; Hughes, John P.; Baker, Andrew J.; Hasselfield, Matthew; Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B.; Addison, Graeme E.; Dunkley, Joanna; Battaglia, Nick; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; Hilton, Matt; and others

    2013-07-20

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg{sup 2} area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R {approx} 700-800) spectra and redshifts for Almost-Equal-To 60 member galaxies on average per cluster. The dynamical masses M{sub 200c} of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M{sub 200c}{approx_equal}12 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun} with a lower limit M{sub 200c}{approx_equal}6 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun}, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y{sub 0}-tilde, the central Compton parameter y{sub 0}, and the integrated Compton signal Y{sub 200c}, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter ({approx}< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that {approx}50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.

  19. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ∼ 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg{sup 2}

    SciTech Connect

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-08-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ∼ 1 clusters of galaxies over an area of 10,000 deg{sup 2}. Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.

  20. A Mechanism for Stimulating AGN Feedback by Lifting Gas in Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McNamara, B. R.; Russell, H. R.; Nulsen, P. E. J.; Hogan, M. T.; Fabian, A. C.; Pulido, F.; Edge, A. C.

    2016-10-01

    Observation shows that nebular emission, molecular gas, and young stars in giant galaxies are associated with rising X-ray bubbles inflated by radio jets launched from nuclear black holes. We propose a model where molecular clouds condense from low-entropy gas caught in the updraft of rising X-ray bubbles. The low-entropy gas becomes thermally unstable when it is lifted to an altitude where its cooling time is shorter than the time required to fall to its equilibrium location in the galaxy, i.e., {t}{{c}}/{t}{{I}}≲ 1. The infall speed of a cloud is bounded by the lesser of its free-fall and terminal speeds, so that the infall time here can exceed the free-fall time by a significant factor. This mechanism is motivated by Atacama Large Millimeter Array observations revealing molecular clouds lying in the wakes of rising X-ray bubbles with velocities well below their free-fall speeds. Our mechanism would provide cold gas needed to fuel a feedback loop while stabilizing the atmosphere on larger scales. The observed cooling time threshold of ∼ 5× {10}8 {yr}—the clear-cut signature of thermal instability and the onset of nebular emission and star formation—may result from the limited ability of radio bubbles to lift low-entropy gas to altitudes where thermal instabilities can ensue. Outflowing molecular clouds are unlikely to escape, but instead return to the central galaxy in a circulating flow. We contrast our mechanism to precipitation models where the minimum value of {t}{{c}}/{t}{{ff}}≲ 10 triggers thermal instability, which we find to be inconsistent with observation.

  1. Star formation in grand-design, spiral galaxies. Young, massive clusters in the near-infrared

    NASA Astrophysics Data System (ADS)

    Grosbøl, P.; Dottori, H.

    2012-06-01

    Aims: Spiral structure is a prominent feature in many disk galaxies and is often outlined by bright, young objects. We study the distribution of young stellar clusters in grand-design spiral galaxies and thereby determine whether strong spiral perturbations can influence star formation. Methods: Deep, near-infrared JHK-maps were observed for ten nearby, grand-design, spiral galaxies using HAWK-I at the Very Large Telescope. Complete, magnitude-limited candidate lists of star-forming complexes were obtained by searching within the K-band maps. The properties of the complexes were derived from (H - K) - (J - H) diagrams including the identification of the youngest complexes (i.e. ≲7 Myr) and the estimation of their extinction. Results: Young stellar clusters with ages ≲7 Myr have significant internal extinction in the range of AV = 3-7m, while older ones typically have AV < 1m. The cluster luminosity function (CLF) is well-fitted by a power law with an exponent of around -2 and displays no evidence of a high luminosity cut-off. The brightest cluster complexes in the disk reach luminosities of MK = -15.5m or estimated masses of 106 M⊙. At radii with a strong, two-armed spiral pattern, the star formation rate in the arms is higher by a factor of 2-5 than in the inter-arm regions. The CLF in the arms is also shifted towards brighter MK by at least 0.4m. We also detect clusters with colors compatible with Large Magellanic Cloud intermediate age clusters and Milky Way globular clusters. The (J - K) - MK diagram of several galaxies shows, for the brightest clusters, a clear separation between young clusters that are highly attenuated by dust and older ones with low extinction. Conclusions: The gap in the (J - K) - MK diagrams implies that there has been a rapid expulsion of dust at an age around 7 Myr, possibly triggered by supernovae. Strong spiral perturbations concentrate the formation of clusters in the arm regions and shifts their CLF towards brighter magnitudes

  2. ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE z ∼ 1

    SciTech Connect

    Shankar, Francesco; Buchan, Stewart; Guo, Hong; Zheng, Zheng; Bouillot, Vincent; Rettura, Alessandro; Meert, Alan; Bernardi, Mariangela; Sheth, Ravi; Vikram, Vinu; Kravtsov, Andrey; Marchesini, Danilo; Behroozi, Peter; Maraston, Claudia; Capozzi, Diego; Ascaso, Begoña; Huertas-Company, Marc; Lemaux, Brian C.; Gal, Roy R.; Lubin, Lori M.; and others

    2014-12-20

    The stellar mass-halo mass relation is a key constraint in all semi-analytic, numerical, and semi-empirical models of galaxy formation and evolution. However, its exact shape and redshift dependence remain under debate. Several recent works support a relation in the local universe steeper than previously thought. Based on comparisons with a variety of data on massive central galaxies, we show that this steepening holds up to z ∼ 1 for stellar masses M {sub star} ≳ 2 × 10{sup 11} M {sub ☉}. Specifically, we find significant evidence for a high-mass end slope of β ≳ 0.35-0.70 instead of the usual β ≲ 0.20-0.30 reported by a number of previous results. When including the independent constraints from the recent Baryon Oscillation Spectroscopic Survey clustering measurements, the data, independent of any systematic errors in stellar masses, tend to favor a model with a very small scatter (≲ 0.15 dex) in stellar mass at fixed halo mass, in the redshift range z < 0.8 and for M {sub star} > 3 × 10{sup 11} M {sub ☉}, suggesting a close connection between massive galaxies and host halos even at relatively recent epochs. We discuss the implications of our results with respect to the evolution of the most massive galaxies since z ∼ 1.

  3. A DEEP SEARCH FOR MOLECULAR GAS IN TWO MASSIVE LYMAN BREAK GALAXIES AT z = 3 AND 4: VANISHING CO-EMISSION DUE TO LOW METALLICITY?

    SciTech Connect

    Tan, Q.; Gao, Y.; Daddi, E.; Sargent, M.; Béthermin, M.; Bournaud, F.; Elbaz, D.; Pannella, M.; Hodge, J.; Walter, F.; Carilli, C.; Owen, F.; Dannerbauer, H.; Dickinson, M.; Morrison, G.; Riechers, D.

    2013-10-20

    We present deep IRAM Plateau de Bure Interferometer observations, searching for CO-emission toward two massive, non-lensed Lyman break galaxies at z = 3.216 and 4.058. With one low significance CO detection (3.5σ) and one sensitive upper limit, we find that the CO lines are ∼>3-4 times weaker than expected based on the relation between IR and CO luminosities followed by similarly massive galaxies at z = 0-2.5. This is consistent with a scenario in which these galaxies have low metallicity, causing an increased CO-to-H{sub 2} conversion factor, i.e., weaker CO-emission for a given molecular (H{sub 2}) mass. The required metallicities at z > 3 are lower than predicted by the fundamental metallicity relation at these redshifts, consistent with independent evidence. Unless our galaxies are atypical in this respect, detecting molecular gas in normal galaxies at z > 3 may thus remain challenging even with ALMA.

  4. CONFIRMATION OF ENHANCED DWARF-SENSITIVE ABSORPTION FEATURES IN THE SPECTRA OF MASSIVE ELLIPTICAL GALAXIES: FURTHER EVIDENCE FOR A NON-UNIVERSAL INITIAL MASS FUNCTION

    SciTech Connect

    Van Dokkum, Pieter G.; Conroy, Charlie

    2011-07-01

    We recently found that massive cluster elliptical galaxies have strong Na I {lambda}8183, 8195 and FeH {lambda}9916 Wing-Ford band absorption, indicating the presence of a very large population of stars with masses {approx}< 0.3 M{sub sun}. Here we test this result by comparing the elliptical galaxy spectra to those of luminous globular clusters associated with M31. These globular clusters have similar metallicities, abundance ratios, and ages as massive elliptical galaxies but their low dynamical mass-to-light ratios rule out steep stellar initial mass functions (IMFs). From high-quality Keck spectra we find that the dwarf-sensitive absorption lines in globular clusters are significantly weaker than in elliptical galaxies and consistent with normal IMFs. The differences in the Na I and Wing-Ford indices are 0.027 {+-} 0.007 mag and 0.017 {+-} 0.006 mag, respectively. We directly compare the two classes of objects by subtracting the averaged globular cluster spectrum from the averaged elliptical galaxy spectrum. The difference spectrum is well fit by the difference between a stellar population synthesis model with a bottom-heavy IMF and one with a bottom-light IMF. We speculate that the slope of the IMF may vary with velocity dispersion, although it is not yet clear what physical mechanism would be responsible for such a relation.

  5. Evolutionary paths among different red galaxy types at 0.3 < z < 1.5 and the build-up of massive E-S0's

    NASA Astrophysics Data System (ADS)

    Gallego, Jesús; Prieto, Mercedes; Eliche-Moral, M. Carmen; Balcells, Marc; Cristóbal-Hornillos, David; Erwin, Peter; Abreu, David; Domínguez-Palmero, Lilian; Hempel, Angela; López-Sanjuan, Carlos; Guzmán, Rafael; Pérez-González, Pablo G.; Barro, Guillermo; Zamorano, Jaime

    2013-07-01

    Some recent observations seem to disagree with hierarchical theories of galaxy formation on the role of major mergers in a late build-up of massive early-type galaxies. We re-address this question by analysing the morphology, structural distortion level, and star formation enhancement of a sample of massive galaxies (M* > 5 × 1010M⊙) lying on the Red Sequence and its surroundings at 0.3 < z < 1.5. We have used an initial sample of ~1800 sources with Ks < 20.5 mag over an area ~155 arcmin2 on the Groth Strip, combining data from the Rainbow Extragalactic Database and the GOYA Survey. Red galaxy classes that can be directly associated to intermediate stages of major mergers and to their final products have been defined. For the first time we report observationally the existence of a dominant evolutionary path among massive red galaxies at 0.6 < z < 1.5, consisting in the conversion of irregular disks into irregular spheroids, and of these ones into regular spheroids. This result points to: 1) the massive red regular galaxies at low redshifts derive from the irregular ones populating the Red Sequence and its neighbourhood at earlier epochs up to z ~ 1.5; 2) the progenitors of the bulk of present-day massive red regular galaxies have been blue disks that have migrated to the Red Sequence majoritarily through major mergers at 0.6 < z < 1.2 (these mergers thus starting at z ~ 1.5); 3) the formation of E-S0's that end up with M* > 1011M⊙ at z = 0 through gas-rich major mergers has frozen since z ~ 0.6. Our results support that major mergers have played the dominant role in the definitive build-up of present-day E-S0's with M* > 1011M⊙ at 0.6 < z < 1.2, in good agreement with the hierarchical scenario proposed in the Eliche-Moral et al. (2010a) model (see also Eliche-Moral et al. 2010b). This study is published in Prieto et al. (2012). Supported by the Spanish Ministry of Science and Innovation (MICINN) under projects AYA2009-10368, AYA2006-12955, AYA2010-21887-C04

  6. Baryon content of massive galaxy clusters at 0.57 < z < 1.33

    NASA Astrophysics Data System (ADS)

    Chiu, I.; Mohr, J.; McDonald, M.; Bocquet, S.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Desai, S.; Dietrich, J. P.; Forman, W. R.; Gangkofner, C.; Gonzalez, A. H.; Hennig, C.; Liu, J.; Reichardt, C. L.; Saro, A.; Stalder, B.; Stanford, S. A.; Song, J.; Schrabback, T.; Šuhada, R.; Strazzullo, V.; Zenteno, A.

    2016-01-01

    We study the stellar, brightest cluster galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and mass M500 = 6 × 1014 M⊙. We estimate stellar masses for each cluster and BCG using six photometric bands, the ICM mass using X-ray observations and the virial masses using the SPT Sunyaev-Zel'dovich effect signature. At z = 0.9, the BCG mass M_{star }^{BCG} constitutes 0.12 ± 0.01 per cent of the halo mass for a 6 × 1014 M⊙ cluster, and this fraction falls as M_{500}^{-0.58± 0.07}. The cluster stellar mass function has a characteristic mass M0 = 1011.0 ± 0.1 M⊙, and the number of galaxies per unit mass in clusters is larger than in the field by a factor of 1.65 ± 0.20. We combine our SPT sample with previously published samples at low redshift and correct to a common initial mass function and for systematic virial mass differences. We then explore mass and redshift trends in the stellar fraction f⋆, the ICM fraction fICM, the collapsed baryon fraction fc and the baryon fraction fb. At a pivot mass of 6 × 1014 M⊙ and redshift z = 0.9, the characteristic values are f⋆ = 1.1 ± 0.1 per cent, fICM = 9.6 ± 0.5 per cent, fc = 10.7 ± 1.1 per cent and fb = 10.7 ± 0.6 per cent. These fractions all vary with cluster mass at high significance, with higher mass clusters having lower f⋆ and fc and higher fICM and fb. When accounting for a 15 per cent systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass. Our results support the scenario where clusters grow through accretion from subclusters (higher f⋆, lower fICM) and the field (lower f⋆, higher fICM), balancing to keep f⋆ and fICM approximately constant since z ˜ 0.9.

  7. Massive star formation in Wolf-Rayet galaxies. III. Analysis of the O and WR populations

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Esteban, C.

    2010-06-01

    Aims: We perform a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show a substantial population of Wolf-Rayet (WR) stars. In this paper, the third of the series, we present the analysis of the O and WR star populations within these galaxies. Methods: We study the spatial localization of the WR-rich clusters via the detection of the blue WR bump, mainly composed by the broad He ii λ4686 line and attributed to WN stars, and the red WR bump, composed by the broad C iv λ5808 line observed in WC stars. We perform a detailed fitting of the nebular and broad emission lines within these broad features and derive the numbers of WN, WC and O stars using (i) the standard assumption of constant WR luminosities and (ii) considering metallicity-dependent WR luminosities. We then compare our results with the predictions given by evolutionary synthesis models and with previous empirical results. Results: We report the detection of blue WR bump in 20 regions, but the red WR bump is only detected in six. Aperture effects and the exact positioning of the slit onto the WR-rich bursts play a fundamental role in their detection. The nebular He ii λ4686 line is detected in 21 regions; its intensity clearly decreases with increasing metallicity. We derive an empirical estimation of the WNL/(WNL+O) ratio using the intensity of the broad He ii line assuming metallicity-dependent WR luminosities. As expected, the total number of WR stars increases with increasing metallicity, but objects with 12 + log(O/H) < 8.2 show a rather constant WR/(WR+O) ratio. The computed WCE/WNL ratios are different than those empirically found in nearby star-forming galaxies, indicating that the observed galaxies are experiencing a strong and very short burst. Considering metallicity-dependent WR luminosities, our data agree with a Salpeter-like IMF in all regimes. Conclusions: We consider that the contribution of the WCE stars is not negligible at low metallicities, but deeper

  8. The Massive Black Hole in the Dwarf Galaxy NGC 4486B

    NASA Astrophysics Data System (ADS)

    Bender, A.; Green, R. F.; Gebhardt, K.; Bower, G. A.; Kormendy, J.; Lauer, T.; Richstone, D. O.; STIS IDT Galaxy Nuclei Team; Nuker Team

    2003-12-01

    We report results from the application of a three-integral galactic dynamical model to NGC 4486B. This dwarf E1 companion to M87 has long been known to be an outlier in the Fundamental Plane. Kormendy and Magorrian et al. found a substantial central black hole mass, making it an outlier in the MBH to Lbulge relationship as well. From the modeling we are able to determine the extent to which NGC 4486B follows the MBH - sigma relation more closely than the other bulge galaxy relationships. The other unique feature NGC 4486B exhibits is a double nucleus structure, the second of only two observed. We combine the high resolution of STIS spectra with ground based data to form a more complete description of the line-of-sight velocity distributions (LOSVDs) in the nuclear region of NGC 4486B. Through the increased resolution of the dynamics and the three-integral model, we place an improved constraint on the mass-to-light ratio and black hole mass. Bender's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. RG and GB were supported by NASA for the STIS Instrument Definition Team. This work is a collaboration with the STIS Instrument Definition Team galaxy nuclei group, which also includes John Hutchings, Charles Joseph, Mary Elizabeth Kaiser, Charles Nelson, Donna Weistrop, and Bruce Woodgate. This work is a collaboration with the Nuker Team, which also includes Ralf Bender, Alan Dressler, Sandra Faber, Alex Filippenko, Carl Grillmair, Luis Ho, John Magorrian, Jason Pinkney, Christos Siopis, and Scott Tremaine.

  9. IRS observations of a new population of massive high-z galaxies discovered by SWIRE and MAMBO

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine; Baker, Andrew; Berta, Stefano; Bertincourt, Benjamin; Boulanger, Francois; Farrah, Duncan; Fiolet, Nicolas; Lonsdale, Carol; Omont, Alain; Owen, Frazer; Polletta, Maria; Shupe, David; Yan, Lin

    2008-03-01

    We propose to obtain low resolution mid-IR spectra of a sample of 16 SWIRE-selected massive star-forming ULIRGs at z~2, deeply observed at 1.2 mm with IRAM-MAMBO. This sample is complete, with a selection of all sources in 0.5 square degree whose IRAC photometry peaks at 5.8 microns, S(24)>500 microJy and r>23. More than 80% of the sources have S(1.2mm)>~ 1.5 mJy, and are thus submillimeter galaxies (SMGs) with far-IR luminosities greater than a few 10^12 Lo. The sample is thus representative of a rich, Spitzer-selected special subclass of SMGs (~2000 in all SWIRE fields). Compared to sub-mm selected SMGs, these sources are brighter at 24 microns (larger PAH/FIR ratio), and have larger stellar masses. They represent thus an important stage of the assembly of elliptical galaxies already massive at z~2, with a strong, close to 'maximal', starburst probably triggered by one of the last major gaseous mergers. The sample benefits from exceptionally rich complementary data, with one of the deepest VLA observations and deep 70-160 micron data. We expect that, in most of these objects, the emission is dominated by the starburst in mid-IR (PAHs) and far-IR (thermal dust), but the parallel growth of black holes is also known to be at work in such objects and the lack of AGN signatures in our sample is somehow surprising. The proposed IRS spectra will provide essential information about this important, but poorly studied, sub-class of high z starbursts by: 1) disentangling the mid-IR PAH and AGN contribution; 2) analyzing the detailed properties of their PAH spectrum, in relation with mm, radio and far-IR properties, and comparing with classical SMGs; 3) checking any evidence of silicate absorption; 4) inferring physical and spatial properties of the starburst from this spectral information together with complete multi-wavelength data.

  10. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  11. Dynamics of dusty radiation-pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Fabian, Andrew C.; Quataert, Eliot; Murray, Norman

    2015-05-01

    It is typically assumed that radiation-pressure-driven winds are accelerated to an asymptotic velocity of v∞ ≃ vesc, where vesc is the escape velocity from the central source. We note that this is not the case for dusty shells and clouds. Instead, if the shell or cloud is initially optically thick to the UV emission from the source of luminosity L, then there is a significant boost in v∞ that reflects the integral of the momentum absorbed as it is accelerated. For shells reaching a generalized Eddington limit, we show that v∞ ≃ (4RUVL/Mshc)1/2, in both point-mass and isothermal-sphere potentials, where RUV is the radius where the shell becomes optically thin to UV photons, and Msh is the mass of the shell. The asymptotic velocity significantly exceeds vesc for typical parameters, and can explain the ˜1000-2000 km s-1 outflows observed from rapidly star-forming galaxies and active galactic nuclei (AGN) if the surrounding halo has low gas density. Similarly fast outflows from massive stars can be accelerated on ˜few-103 yr time-scales. These results carry over to clouds that subtend only a small fraction of the solid angle from the source of radiation and that expand as a consequence of their internal sound speed. We further consider the dynamics of shells that sweep up a dense circumstellar or circumgalactic medium. We calculate the `momentum ratio' dot{M} v/(L/c) in the shell limit and show that it can only significantly exceed ˜2 if the effective optical depth of the shell to re-radiated far-infrared photons is much larger than unity. We discuss simple prescriptions for the properties of galactic outflows for use in large-scale cosmological simulations. We also briefly discuss applications to the dusty ejection episodes of massive stars, the disruption of giant molecular clouds, and AGN.

  12. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  13. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    SciTech Connect

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P.; Newman, S. F.; Burkert, A.; Carollo, C. M.; Lilly, S. J.; Cresci, G.; Daddi, E.; Mainieri, V.; Mancini, C.; and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  14. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  15. How Super-Massive Black Holes grow and shape galaxies. The promise of the Athena X-ray observatory

    NASA Astrophysics Data System (ADS)

    Barcons, Xavier

    2016-08-01

    X-ray observations are essential to understand and find AGN, as they are emitted from a few Schwarzschild radii from the central Super-Massive Black Hole, they can escape through relatively large amounts of obscuring material and contamination by the host galaxy is minute. The launch of ESA's Athena X-ray observatory in the late 2020s will revolutionise our knowledge about the AGN phenomenon and their demographics. Athena will consist of a large X-ray imaging telescope with two focal plane instruments offering wide-field sensitive imaging and integral field high-resolution X-ray spectroscopy. Athena will be able to constrain the geometry of accretion disk/corona through X-ray reverberation, measure SMBH spins of tens of AGN, measure AGN radiative and mechanical energy output in local and distant AGN, see perform a complete census of obscured and unobscured AGN out to z~2-3 and find hundreds of growing SMBH at z>6 well into the re-ionisation epoch. Athena will complement and work in synergy with other contemporary facilities (ESO's VLT/E-ELT and ALMA among others) to achieve these and other science objectives related to AGN.

  16. AMiBA: Sunyaev-Zel'Dovich Effect-derived Properties and Scaling Relations of Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Wei; Proty Wu, Jiun-Huei; Ho, Paul T. P.; Locutus Huang, Chih-Wei; Koch, Patrick M.; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Altamirano, Pablo; Birkinshaw, Mark; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Chiueh, Tzihong; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek Y.; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2010-04-01

    The Sunyaev-Zel'dovich Effect (SZE) has been observed toward six massive galaxy clusters, at redshifts 0.091 <= z <= 0.322 in the 86-102 GHz band with the Y. T. Lee Array for Microwave Background Anisotropy (AMiBA). We modify an iterative method, based on the isothermal β models, to derive the electron temperature T e, total mass M t, gas mass M g, and integrated Compton Y within r 2500, from the AMiBA SZE data. Non-isothermal universal temperature profile (UTP) β models are also considered in this paper. These results are in good agreement with those deduced from other observations. We also investigate the embedded scaling relations, due to the assumptions that have been made in the method we adopted, between these purely SZE-deduced T e, M t, M g, and Y. Our results suggest that cluster properties may be measurable with SZE observations alone. However, the assumptions built into the pure-SZE method bias the results of scaling relation estimations and need further study.

  17. The physics of massive OB stars in different parent galaxies. 1: Ultraviolet and optical spectral morphology in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.; Lennon, Daniel J.; Haser, Stephan M.; Kudritzki, Rolf-Peter; Voels, Stephen A.

    1995-01-01

    Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) and European Space Observatory (ESO) 3.6-m/CASPEC observations have been made of 18 stars ranging in spectral type from O3 through B0.5 Ia, half of them in each of the Large and Small Magellanic Clouds, in order to investigate massive stellar winds and evolution as a function of metallicity. The spectroscopic data are initially presented and described here in an atlas format. The relative weakness of the stellar-wind features in the SMC early O V spectra, due to their metal deficiency, is remarkable. Because of their unsaturated profiles, discrete absorption components can be detected in many of them, which is generally not possible in LMC and Galactic counterparts at such early types, or even in SMC giants and supergiants. On the other hand, an O3 III spectrum in the SMC has a weak C IV but strong N V wind profile, possibly indicating the presence of processed material. Wind terminal velocities are also given and intercompared between similar spectral types in the two galaxies. In general, the terminal velocities of the SMC stars are smaller, in qualitative agreement with the predictions of radiation-driven wind theory. Further analyses in progress will provide atmospheric and wind parameters for these stars, which will be relevant to evolutionary models and the interpretation of composite starburst spectra.

  18. Detecting tidal disruption events of massive black holes in normal galaxies with the Einstein Probe

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Komossa, S.; Zhang, C.; Feng, H.; Ling, Z.-X.; Zhao, D. H.; Zhang, S.-N.; Osborne, J. P.; O'Brien, P.; Willingale, R.; Lapington, J.; Lapington

    2016-02-01

    Stars are tidally disrupted and accreted when they approach massive black holes (MBHs) closely, producing a flare of electromagnetic radiation. The majority of the (approximately two dozen) tidal disruption events (TDEs) identified so far have been discovered by their luminous, transient X-ray emission. Once TDEs are detected in much larger numbers, in future dedicated transient surveys, a wealth of new applications will become possible. Here, we present the proposed Einstein Probe mission, which is a dedicated time-domain soft X-ray all-sky monitor aiming at detecting X-ray transients including TDEs in large numbers. The mission consists of a wide-field micro-pore Lobster-eye imager (60° × 60°), and is designed to carry out an all-sky transient survey at energies of 0.5-4 keV. It will also carry a more sensitive telescope for X-ray follow-ups, and will be capable of issuing public transient alerts rapidly. Einstein Probe is expected to revolutionise the field of TDE research by detecting several tens to hundreds of events per year from the early phase of flares, many with long-term, well sampled lightcurves.

  19. Inferring the star-formation histories of the most massive and passive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    Citro, Annalisa; Pozzetti, Lucia; Moresco, Michele; Cimatti, Andrea

    2016-07-01

    Context. In the Λ cold dark matter (ΛCDM) cosmological framework, massive galaxies are the end-points of the hierarchical evolution and are therefore key probes for understanding how the baryonic matter evolves within the dark matter halos. Aims: The aim of this work is to use the archaeological approach in order to infer the stellar population properties and star formation histories of the most massive (M > 1010.75 M⊙) and passive early-type galaxies (ETGs) at 0 < z < 0.3 (corresponding to a cosmic time interval of ~3.3 Gyr) based on stacked, high signal-to-noise (S/N), spectra extracted from the Sloan Digital Sky Survey (SDSS). Our study is focused on the most passive ETGs in order to avoid the contamination of galaxies with residual star formation activity and extract the evolutionary information on the oldest envelope of the global galaxy population. Methods: Unlike most previous studies in this field, we did not rely on individual absorption features such as the Lick indices, but we used the information present in the full spectrum with the STARLIGHT public code, adopting different stellar population synthesis models. Successful tests have been performed to assess the reliability of STARLIGHT to retrieve the evolutionary properties of the ETG stellar populations such as the age, metallicity and star formation history. The results indicate that these properties can be derived with accuracy better than 10% at S/N ≳ 10-20, and also that the procedure of stacking galaxy spectra does not introduce significant biases into their retrieval. Results: Based on our spectral analysis, we found that the ETGs of our sample are very old systems - the most massive ones are almost as old as the Universe. The stellar metallicities are slightly supersolar, with a mean of Z ~ 0.027 ± 0.002 and Z ~ 0.029 ± 0.0015 (depending on the spectral synthesis models used for the fit) and do not depend on redshift. Dust extinction is very low, with a mean of AV ~ 0.08 ± 0.030 mag

  20. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    SciTech Connect

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J.; Brammer, G. E-mail: genzel@mpe.mpg.de; and others

    2014-11-20

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M {sub *}/M {sub ☉}) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M {sub *}/M {sub ☉}) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS{sup 3D}spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s{sup –1}), with large [N II]/Hα ratios, above log(M {sub *}/M {sub ☉}) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  1. The Massive and Distant Clusters of WISE Survey. III. Sunyaev-Zel'dovich Masses of Galaxy Clusters at z˜1

    NASA Astrophysics Data System (ADS)

    Brodwin, M.; Greer, C. H.; Leitch, E. M.; Stanford, S. A.; Gonzalez, A. H.; Gettings, D. P.; Abdulla, Z.; Carlstrom, J. E.; Decker, B.; Eisenhardt, P. R.; Lin, H. W.; Mantz, A. B.; Marrone, D. P.; McDonald, M.; Stalder, B.; Stern, D.; Wylezalek, D.

    2015-06-01

    We present CARMA 30 GHz Sunyaev-Zel’dovich (SZ) observations of five high-redshift (z≳ 1), infrared-selected galaxy clusters discovered as part of the all-sky Massive and Distant Clusters of WISE Survey (MaDCoWS). The SZ decrements measured toward these clusters demonstrate that the MaDCoWS selection is discovering evolved, massive galaxy clusters with hot intracluster gas. Using the SZ scaling relation calibrated with South Pole Telescope clusters at similar masses and redshifts, we find these MaDCoWS clusters have masses in the range {{M}200}≈ 2-6× {{10}14} {{M}⊙ }. Three of these are among the most massive clusters found to date at z≳ 1, demonstrating that MaDCoWS is sensitive to the most massive clusters to at least z = 1.3. The added depth of the AllWISE data release will allow all-sky infrared cluster detection to z ≈ 1.5 and beyond.

  2. Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter

    2016-05-01

    We present low-resolution near-infrared stacked spectra from the 3D–HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}ȯ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color–color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.

  3. Massive Spheroidal Galaxies: Nature and Evolution During 0.6

    NASA Astrophysics Data System (ADS)

    Rizer, Zachary; McIntosh, Daniel H.; Cook, Joshua; Kartaltepe, Jeyhan S.; Wuyts, Stijn; van der Wel, Arjen; Barro, Guillermo; Koekemoer, Anton M.; Conselice, Christopher; Bell, Eric F.; Kocevski, Dale; Koo, David C.; Giavalisco, Mauro

    2015-01-01

    Spheroidal galaxies are linked to the observed buildup of massive non-star-forming (quiescent) galaxies over cosmic time. Yet, it remains unclear whether the primary growth channel involves the formation of new bulge-dominated galaxies followed by the quenching of star formation (SF), or the cessation of star production preceded by the transformation from disk-dominated to spheroidal galaxies. Using a new comprehensive catalog of visual classifications based on the HST/WFC3 imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we study the nature and evolution of high-mass (Mstar>1e10 Msun) 'spheroids' (elliptical and bulge-dominated galaxies) over a wide redshift range (0.6galaxies. Using either rest-frame UVJ colors or total SF rates (IR + UV) when available, which we've verified yield similar selections in these fields, we find a clear increase in the fraction of high-mass galaxies that are quiescent spheroids with decreasing redshift, accompanied by a relatively constant low fraction (10-25%) of star-forming spheroids at z>1, and a possible drop to lower fractions at z<1. We find quantitatively similar results using spheroid samples defined solely or jointly by automatic (Sérsic n>2) selection. We find that as the high-mass galaxy population becomes more quenched, it also becomes more dominated by spheroids with very few quiescent disks (<10%) at any redshift. Taken together, these results are consistent with a scenario in which new spheroids were continuously added and subsequently quenched, and inconsistent with an evolutionary process that primarily added newly quenched disks. The actual picture likely includes contributions from multiple channels and requires detailed modeling to better constrain the relative

  4. THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z {approx} 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS

    SciTech Connect

    Shen Sijing; Madau, Piero; Prochaska, J. Xavier; Guedes, Javiera; Mayer, Lucio; Wadsley, James

    2013-03-10

    We present new results on the kinematics, thermal and ionization state, and spatial distribution of metal-enriched gas in the circumgalactic medium (CGM) of massive galaxies at redshift {approx}3, using the Eris suite of cosmological hydrodynamic ''zoom-in'' simulations. The reference run adopts a blastwave scheme for supernova feedback that produces large-scale galactic outflows, a star formation recipe based on a high gas density threshold, metal-dependent radiative cooling, and a model for the diffusion of metals and thermal energy. The effect of the local UV radiation field is added in post-processing. The CGM (defined as all gas at R > 0.2 R{sub vir} = 10 kpc, where R{sub vir} is the virial radius) contains multiple phases having a wide range of physical conditions, with more than half of its heavy elements locked in a warm-hot component at T > 10{sup 5} K. Synthetic spectra, generated by drawing sightlines through the CGM, produce interstellar absorption-line strengths of Ly{alpha}, C II, C IV, Si II, and Si IV as a function of the galactocentric impact parameter (scaled to the virial radius) that are in broad agreement with those observed at high redshift by Steidel et al. The covering factor of absorbing material declines less rapidly with impact parameter for Ly{alpha} and C IV compared to C II, Si IV, and Si II, with Ly{alpha} remaining strong (W{sub Ly{alpha}} > 300 mA) to {approx}> 5 R{sub vir} = 250 kpc. Only about one third of all the gas within R{sub vir} is outflowing. The fraction of sightlines within one virial radius that intercept optically thick, N{sub H{sub I}}>10{sup 17.2} cm{sup -2} material is 27%, in agreement with recent observations by Rudie et al. Such optically thick absorption is shown to trace inflowing ''cold'' streams that penetrate deep inside the virial radius. The streams, enriched to metallicities above 0.01 solar by previous episodes of star formation in the main host and in nearby dwarfs, are the origin of strong (N{sub C

  5. SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems

    SciTech Connect

    Eisenstein, Daniel J.; Weinberg, David H.; Agol, Eric; Aihara, Hiroaki; Prieto, Carlos Allende; Anderson, Scott F.; Arns, James A.; Aubourg, Eric; Bailey, Stephen; Balbinot, Eduardo; Barkhouser, Robert; /Johns Hopkins U. /Michigan State U.

    2011-01-01

    Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. The Baryon Oscillation Spectroscopic Survey (BOSS) will measure redshifts of 1.5 million massive galaxies and Ly{alpha} forest spectra of 150,000 quasars, using the baryon acoustic oscillation (BAO) feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z {approx} 2.5. SEGUE-2, a now-completed continuation of the Sloan Extension for Galactic Understanding and Exploration, measured medium-resolution (R = {lambda}/{Delta}{lambda} 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R {approx} 30,000), high signal-to-noise ratio (S/N {ge} 100 per resolution element), H-band (1.51 {micro}m < {lambda} < 1.70 {micro}m) spectra of 10{sup 5} evolved, late-type stars, measuring separate abundances for {approx} 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m s{sup -1}, {approx} 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of January 2011, SDSS-III has obtained

  6. The three-dimensional geometry and merger history of the massive galaxy cluster MACS J0358.8-2955

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Ebeling, Harald; Richard, Johan

    2013-02-01

    We present results of a combined X-ray/optical analysis of the dynamics of the massive cluster MACS J0358.8-2955 (z = 0.428) based on observations with the Chandra X-ray Observatory, the Hubble Space Telescope and the Keck-I telescope on Mauna Kea. MACS J0358.8-2955 is found to be one of the most X-ray luminous clusters known at z > 0.3, featuring LX, bol( < r500) = 4.24 × 1045 erg s-1, kT = 9.55+ 0.58- 0.37 keV, M3Dgas( < r500) = (9.18 ± 1.45) × 1013 M⊙ and M3Dtot( < r500) = (1.12 ± 0.18) × 1015 M⊙. The system's high velocity dispersion of 1440+ 130- 110 km s- 1 (890 km s-1 when the correct relativistic equation is used), however, is inflated by infall along the line of sight, as the result of a complex merger of at least three subclusters. One collision proceeds close to head-on, while the second features a significant impact parameter. The temperature variations in the intracluster gas, two tentative cold fronts, the radial velocities measured for cluster galaxies and the small offsets between collisional and non-collisional cluster components all suggest that both merger events are observed close to core passage and along the axes that are greatly inclined with respect to the plane of the sky. A strong-lensing analysis of the system anchored upon three triple-image systems (two of which have spectroscopic redshifts) yields independent constraints on the mass distribution. For a gas fraction of 8.2 per cent, the resulting strong-lensing mass profile is in good agreement with our X-ray estimates, and the details of the mass distribution are fully consistent with our interpretation of the 3D merger history of this complex system. Underlining yet again the power of X-ray selection, our analysis also resolves earlier confusion about the contribution of the partly superimposed foreground cluster A 3192 (z = 0.168). Based on very faint X-ray emission detected by our Chandra observation and 16 concordant redshifts we identify A 3192 as two groups of galaxies

  7. Infrared Spectroscopy of a Massive Obscured Star Cluster in the Antennae Galaxies (NGC 4038/9) with NIRSPEC.

    PubMed

    Gilbert; Graham; McLean; Becklin; Figer; Larkin; Levenson; Teplitz; Wilcox

    2000-04-10

    We present infrared spectroscopy of the Antennae galaxies (NGC 4038/9) with the near-infrared spectrometer (NIRSPEC) at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) with 0&farcs;39 seeing in the K band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR [MK&parl0;0&parr0; approximately -17.9] is insignificant optically but is coincident with the highest surface brightness peak in the mid-IR (12-18 µm) Infrared Space Observatory image presented by Mirabel et al. We obtained high signal-to-noise ratio 2.03-2.45 µm spectra of the nucleus and the obscured star cluster at R approximately 1900. The cluster is very young ( approximately 4 Myr), massive (M approximately 16x106 M middle dot in circle), and compact (with a density of approximately 115 M middle dot in circle pc-3 within a 32 pc half-light radius), assuming a Salpeter initial mass function (0.1-100 M middle dot in circle). Its hot stars have a radiation field characterized by Teff approximately 39,000 K, and they ionize a compact H ii region with ne approximately 104 cm-3. The stars are deeply embedded in gas and dust (AV approximately 9-10 mag), and their strong far-ultraviolet field powers a clumpy photodissociation region with densities nH greater, similar105 cm-3 on scales of approximately 200 pc, radiating LH21-0S&parl0;1&parr0;=9600 L middle dot in circle.

  8. Infrared Spectroscopy of a Massive Obscured Star Cluster in the Antennae Galaxies (NGC 4038/9) with NIRSPEC.

    PubMed

    Gilbert; Graham; McLean; Becklin; Figer; Larkin; Levenson; Teplitz; Wilcox

    2000-04-10

    We present infrared spectroscopy of the Antennae galaxies (NGC 4038/9) with the near-infrared spectrometer (NIRSPEC) at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) with 0&farcs;39 seeing in the K band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR [MK&parl0;0&parr0; approximately -17.9] is insignificant optically but is coincident with the highest surface brightness peak in the mid-IR (12-18 µm) Infrared Space Observatory image presented by Mirabel et al. We obtained high signal-to-noise ratio 2.03-2.45 µm spectra of the nucleus and the obscured star cluster at R approximately 1900. The cluster is very young ( approximately 4 Myr), massive (M approximately 16x106 M middle dot in circle), and compact (with a density of approximately 115 M middle dot in circle pc-3 within a 32 pc half-light radius), assuming a Salpeter initial mass function (0.1-100 M middle dot in circle). Its hot stars have a radiation field characterized by Teff approximately 39,000 K, and they ionize a compact H ii region with ne approximately 104 cm-3. The stars are deeply embedded in gas and dust (AV approximately 9-10 mag), and their strong far-ultraviolet field powers a clumpy photodissociation region with densities nH greater, similar105 cm-3 on scales of approximately 200 pc, radiating LH21-0S&parl0;1&parr0;=9600 L middle dot in circle. PMID:10727391

  9. The bulge-halo conspiracy in massive elliptical galaxies: implications for the stellar initial mass function and halo response to baryonic processes

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Treu, Tommaso

    2014-03-01

    Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.

  10. SPT-CL J0205-5829: A z = 1.32 EVOLVED MASSIVE GALAXY CLUSTER IN THE SOUTH POLE TELESCOPE SUNYAEV-ZEL'DOVICH EFFECT SURVEY

    SciTech Connect

    Stalder, B.; Ashby, M. L. N.; Ruel, J.; Bayliss, M.; Suhada, R.; Andersson, K.; Bazin, G.; Brodwin, M.; Aird, K. A.; Armstrong, R.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2013-02-15

    The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically confirmed redshift, z = 1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of T{sub X} = 8.7{sup +1.0} {sub -0.8} keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich-derived mass. The combined SZ and X-ray mass estimate of M {sub 500} = (4.8 {+-} 0.8) Multiplication-Sign 10{sup 14} h {sup -1} {sub 70} M {sub Sun} makes it the most massive known SZ-selected galaxy cluster at z > 1.2 and the second most massive at z > 1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was <5 Gyr old, with stellar population ages {approx}>3 Gyr, and low rates of star formation (<0.5 M {sub Sun} yr{sup -1}). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat {Lambda}CDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg{sup 2} SPT-SZ survey is 69%.

  11. Morphologically Disturbed Massive Galaxies: Nature and Evolution During 0.6 < z < 2.5 in the CANDELS UDS and GOODS-S Fields

    NASA Astrophysics Data System (ADS)

    Cook, Joshua S.; McIntosh, Daniel H.; Rizer, Zachary; Kartaltepe, Jeyhan S.; Koekemoer, Anton M.; Lotz, Jennifer; Conselice, Christopher; Hopkins, Philip F.; Wuyts, Stijn; Peth, Michael; Barro, Guillermo; Candels Collaboration

    2015-01-01

    Merging is predicted to be an important process in the early and turbulent assembly of massive galaxies. These violent encounters heavily impact galaxy morphology and structure. As such, the evolution of morphologically disturbed systems may help constrain the relative importance of merging, the answer to which is largely debated especially at higher redshifts. Disagreements between studies however, may be attributed to the various methods used to identify merging galaxies such as visual or quantitative classifications based on different rest-frame wavelengths. Using a new comprehensive catalog of visual rest-frame optical classifications based on HST/WFC3+ACS imaging from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we compare the nature and evolution of merging and highly disturbed galaxy subsamples within the UDS and GOODS-S fields. We limit our sample for completeness to high-mass objects (Mstar > 1e10 Msun) with redshifts between 0.6 < z < 2.5. Most disturbed galaxies are star-forming and two-thirds have masses under 3e10 Msun. We note that one-third appear to be neither interacting nor merging, rather they are isolated and visually disk-like. Under the assumption that many disturbed or unusual morphologies are related to merging, we compare visually-selected subsamples to merger selections based on two popular quantitative methods (Gini-M20 and CAS). We find that all selections produce similar fractions across our redshift range, but the individual galaxies making up the respective fractions are often different. This may indicate that different classification methods are preferentially selecting objects undergoing either different processes such as major merging, minor merging and violent disk instabilities, or different stages of the same process.

  12. An extremely dense group of massive galaxies at the centre of the protocluster at z = 3.09 in the SSA22 field

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Yamada, T.; Ichikawa, T.; Kajisawa, M.; Matsuda, Y.; Tanaka, I.; Umehata, H.

    2016-01-01

    We report the discovery of an extremely dense group of massive galaxies at the centre of the protocluster at z = 3.09 in the SSA22 field from near-infrared spectroscopy conducted with the multi-object infrared camera and spectrograph (MOIRCS) on the Subaru Telecope. The newly discovered group comprises seven galaxies confirmed at zspec ≈ 3.09 within 180 kpc, including five massive objects with the stellar masses larger than 1010.5 M⊙ and is associated with a bright submillimetre source SSA22-AzTEC14. The dynamical mass of the group estimated from the line-of-sight velocity dispersion of the members is Mdyn ˜ 1.6 ± 0.3 × 1013 M⊙. Such a dense group is expected to be very rare at high redshift, as we have found only a few comparable systems in large-volume cosmological simulations. Such rare groups in simulations are hosted in collapsed haloes with Mvir = 1013.4-1014.0 M⊙ and evolve into the brightest cluster galaxies (BCGs) of the most massive clusters at present. The observed AzTEC14 group at z = 3.09 is therefore very likely to be a proto-BCG in the multiple merger phase. The observed total stellar mass of the group is 5.8^{+5.1}_{-2.0}× 10^{11} M_{⊙}, which suggests that over half the stellar mass of its descendant had been formed by z = 3. Moreover, we have identified over two members for each of the four Lyα blobs (LABs) using our new spectroscopic data. This verifies our previous argument that many of the LABs in the SSA22 protocluster associated with multiple developed stellar components.

  13. The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II). VI. Effect of massive neutrinos on the cosmological constraints from clusters

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Chon, Gayoung

    2015-02-01

    Clusters of galaxies are important probes for the large-scale structure that allow us to test cosmological models. With the REFLEX II galaxy cluster survey we previously derived tight constraints on the cosmological parameters for the matter density, Ωm, and the amplitude parameter of the matter density fluctuations, σ8. Whereas in these previous studies no effect of massive neutrinos was taken into account, we explore these effects in the present publication. We derive cosmological constraints for the sum of the neutrino masses of the conventional three neutrino families in the range Mν = ∑ imνi = 0 to 0.6 eV. The influence on the constraints of Ωm and σ8 for the expected mass range is weak. Interesting constraints on the neutrino properties can be derived by comparing the cluster data with those from the Planck cosmic microwave background observations. The current tension between the Planck results and clusters can formally be resolved with neutrino masses of about Mν = 0.45(±0.28,1σ) eV. While we caution not to consider this a firm measurement because it might also be the result of unresolved systematics, it is interesting that other measurements of the local large-scale structure fluctuation amplitude, like that of cosmic lensing shear, yield similar results and additionally confirm the effect of massive neutrinos. Among the indicators for massive neutrinos, galaxy clusters and in particular our large and well-controlled cluster survey currently provide the best potential for constraints of the total neutrino mass.

  14. Determining the Role of Merging in the Growth of the Galaxy Cluster Population in the Massive and Distant Clusters of WISE Survey

    NASA Astrophysics Data System (ADS)

    Brodwin, Mark; Decker, Bandon; Gonzalez, Anthony; Stanford, Adam; Eisenhardt, Peter; Stern, Daniel; Wylezalek, Dominika; Marrone, Daniel; Stalder, Brian; Mantz, Adam; Galametz, Audrey

    2015-10-01

    We propose to obtain deep Spitzer/IRAC imaging of 14 distant (z ~ 1), stellar mass-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) for which robust Sunyaev-Zel'dovich (SZ)-based masses spanning ~2-10 x 10^14 Msun have been measured. These proposed IRAC data, along with joint HST imaging, will allow us to directly test key predictions of current models of cluster formation. These models posit that galaxy-galaxy merging drives the bursts of star formation and AGN activity seen in high redshift Spitzer studies of low-mass clusters, and predict the rate of such activity should be a function of total cluster mass. As clusters grow in mass (and hence velocity dispersion), the merging efficiency drops and the growth of the galaxy population, via both mergers and star formation, should cease. By measuring the cluster stellar mass function, as a function of both mass and morphological type, we will directly confirm or refute this model. We will also identify, on the basis of IRAC colors and HST morphologies, the AGN content in these clusters. We will thus test the prediction that the incidence of AGN should be higher in the lower mass clusters. Finally, we will measure the stellar mass fraction as a function of total mass, a crucial quantity in calibrating numerical cluster simulations that are key for cluster abundance cosmology.

  15. Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope.

    PubMed

    Geringer-Sameth, Alex; Koushiappas, Savvas M

    2011-12-01

    Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of weakly interacting massive particles based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-Ray Space Telescope. We exclude generic weakly interacting massive particle candidates annihilating into bb with a mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+ τ-, these limits become 19, 13, and 80 GeV, respectively.

  16. Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope.

    PubMed

    Geringer-Sameth, Alex; Koushiappas, Savvas M

    2011-12-01

    Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating dark matter. We present new limits on the annihilation cross section of weakly interacting massive particles based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction and Pass 7 data from the Fermi Gamma-Ray Space Telescope. We exclude generic weakly interacting massive particle candidates annihilating into bb with a mass less than 40 GeV that reproduce the observed relic abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+ τ-, these limits become 19, 13, and 80 GeV, respectively. PMID:22242988

  17. Dearth of dark matter or massive dark halo? Mass-shape-anisotropy degeneracies revealed by NMAGIC dynamical models of the elliptical galaxy NGC 3379

    NASA Astrophysics Data System (ADS)

    de Lorenzi, F.; Gerhard, O.; Coccato, L.; Arnaboldi, M.; Capaccioli, M.; Douglas, N. G.; Freeman, K. C.; Kuijken, K.; Merrifield, M. R.; Napolitano, N. R.; Noordermeer, E.; Romanowsky, A. J.; Debattista, V. P.

    2009-05-01

    Recent results from the Planetary Nebula Spectrograph (PNS) survey have revealed a rapidly falling velocity dispersion profile in the nearby elliptical galaxy NGC 3379, casting doubts on whether this intermediate-luminosity galaxy has the kind of dark matter (DM) halo expected in Λ cold dark matter (ΛCDM) cosmology. We present a detailed dynamical study of this galaxy, combining ground based long-slit spectroscopy, integral-field data from the Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) instrument and PNS data reaching to more than seven effective radii. We construct dynamical models with the flexible χ2-made-to-measure (χ2M2M) particle method implemented in the NMAGIC code. We fit spherical, axisymmetric and some triaxial models to the photometric and combined kinematic data in a sequence of gravitational potentials whose circular velocity curves at large radii vary between a near-Keplerian decline and the nearly flat shapes generated by massive haloes. We find that models with a range of halo masses, anisotropies, shapes and inclinations are good representations of the data. In particular, the data are consistent both with near-isotropic systems dominated by the stellar mass and with models in moderately massive haloes with strongly radially anisotropic outer parts (β >~ 0.8 at 7Re). Formal likelihood limits would exclude (at 1σ) the model with stars only, as well as halo models with vcirc(7Re) >~ 250kms-1. All valid models fitting all the data are dynamically stable over gigayears, including the most anisotropic ones. Overall the kinematic data for NGC 3379 out to 7Re are consistent with a range of mass distributions in this galaxy. NGC 3379 may well have a DM halo as predicted by recent merger models within ΛCDM cosmology, provided its outer envelope is strongly radially anisotropic.

  18. Mergers and Star Formation: The Environment and Stellar Mass Growth of the Progenitors of Ultra-massive Galaxies since z = 2

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Marchesini, Danilo; De Lucia, Gabriella; Muzzin, Adam; Stefanon, Mauro; Brammer, Gabriel B.; Labbé, Ivo; Le Fèvre, Olivier; Milvang-Jensen, Bo

    2016-01-01

    The growth of galaxies is a key problem in understanding the structure and evolution of the universe. Galaxies grow their stellar mass by a combination of star formation and mergers, with a relative importance that is redshift dependent. Theoretical models predict quantitatively different contributions from the two channels; measuring these from the data is a crucial constraint. Exploiting the UltraVISTA catalog and a unique sample of progenitors of local ultra-massive galaxies selected with an abundance matching approach, we quantify the role of the two mechanisms from z = 2 to 0. We also compare our results to two independent incarnations of semi-analytic models. At all redshifts, progenitors are found in a variety of environments, ranging from being isolated to having 5-10 companions with mass ratio at least 1:10 within a projected radius of 500 kpc. In models, progenitors have a systematically larger number of companions, entailing a larger mass growth for mergers than in observations, at all redshifts. Generally, in both observations and models, the inferred and the expected mass growth roughly agree, within the uncertainties. Overall, our analysis confirms the model predictions, showing how the growth history of massive galaxies is dominated by in situ star formation at z ˜ 2, both star formation and mergers at 1 < z < 2, and by mergers alone at z < 1. Nonetheless, detailed comparisons still point out tensions between the expected mass growth and our results, which might be due to either an incorrect progenitors-descendants selection, uncertainties on star-formation rate and mass estimates, or the adopted assumptions on merger rates.

  19. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  20. Identification of dusty massive stars in star-forming dwarf irregular galaxies in the Local Group with mid-IR photometry

    NASA Astrophysics Data System (ADS)

    Britavskiy, N. E.; Bonanos, A. Z.; Mehner, A.; Boyer, M. L.; McQuinn, K. B. W.

    2015-12-01

    Context. Increasing the statistics of spectroscopically confirmed evolved massive stars in the Local Group enables the investigation of the mass loss phenomena that occur in these stars in the late stages of their evolution. Aims: We aim to complete the census of luminous mid-IR sources in star-forming dwarf irregular (dIrr) galaxies of the Local Group. To achieve this we employed mid-IR photometric selection criteria to identify evolved massive stars, such as red supergiants (RSGs) and luminous blue variables (LBVs), by using the fact that these types of stars have infrared excess due to dust. Methods: The method is based on 3.6 μm and 4.5 μm photometry from archival Spitzer Space Telescope images of nearby galaxies. We applied our criteria to four dIrr galaxies: Pegasus, Phoenix, Sextans A, and WLM, selecting 79 point sources that we observed with the VLT/FORS2 spectrograph in multi-object spectroscopy mode. Results: We identified 13 RSGs, of which 6 are new discoveries, as well as two new emission line stars, and one candidate yellow supergiant. Among the other observed objects we identified carbon stars, foreground giants, and background objects, such as a quasar and an early-type galaxy that contaminate our survey. We use the results of our spectroscopic survey to revise the mid-IR and optical selection criteria for identifying RSGs from photometric measurements. The optical selection criteria are more efficient in separating extragalactic RSGs from foreground giants than mid-IR selection criteria, but the mid-IR selection criteria are useful for identifying dusty stars in the Local Group. This work serves as a basis for further investigation of the newly discovered dusty massive stars and their host galaxies. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 090.D-0009 and 091.D-0010.Appendix A is available in electronic form at http://www.aanda.org

  1. Evidence for Wide-spread Active Galactic Nucleus-driven Outflows in the Most Massive z ~ 1-2 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Brammer, G.; Burkert, A.; Buschkamp, P.; Chan, J.; Carollo, C. M.; Davies, R.; Eisenhauer, F.; Fabricius, M.; Fossati, M.; Kriek, M.; Kulkarni, S.; Lilly, S. J.; Mancini, C.; Momcheva, I.; Naab, T.; Nelson, E. J.; Renzini, A.; Saglia, R.; Sharples, R. M.; Sternberg, A.; Tacchella, S.; van Dokkum, P.

    2014-11-01

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M */M ⊙) >= 10.9) z ~ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M */M ⊙) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS3Dspectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ~450-5300 km s-1), with large [N II]/Hα ratios, above log(M */M ⊙) ~ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ~ 1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 073.B-9018, 074.A-9011, 075.A-0466, 076.A-0527, 078.A-0660, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 081.A-0672, 082.A-0396, 183.A-0781, 087.A-0081, 088.A-0202, 088.A-0209, 091.A-0126, 092.A-0082, 092.A-0091, 093.A-0079). Also based on observations at the Large Binocular Telescope (LBT) on Mt. Graham in Arizona.

  2. Unveiling the Monsters: Characterization of Ultra-massive Galaxies in the Early Universe with IRAC Mapping of the NMBS-II/CFHTLS Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo

    Observations of massive galaxies and their evolution with cosmic time place strong constraints on the physical processes of galaxy formation. Although substantial data have been collected on galaxies with masses log(Mstar/Msun)~11.2 out to z~4-5 from the recent myriad of ground-based near-infrared (NIR) surveys, very little is known about the evolution of the most massive (log(Mstar/Msun)>11.4) galaxies in the universe. At the tip of the Schechter function, their space density is estimated to be 30x lower than log (Mstar/Msun)=11 galaxies and hence only a few have been found, even in the widest-field surveys. We recently undertook the NMBS-II survey, a wide-field NIR medium-band survey designed to accurately characterize the stellar mass function, number density, stellar population and clustering properties of the most massive galaxies out to z=3. The NMBSII uses a set of five medium-bandwidth NIR filters to provide precise photometric redshifts and well-sampled spectral energy distributions (SEDs) of galaxies at z>1.5. The primary survey fields of the NMBS-II are the CFHTLS-deep fields; however, presently only 60% of these fields have IRAC coverage. The IRAC data are essential for accurately measuring photometric redshifts and stellar masses of the high-redshift population. IRAC data are also critical for separating the red quiescent from the red, dusty star-forming galaxies at z>0.8. In Cycle 10 (12/2013-10/2014), the PI Marchesini was awarded 22 hours of Spitzer time to complete the IRAC coverage of the NMBS-II fields, for a total area of 5.4 sq. deg. over 7 independent lines of sight. This proposal describes a program consisting of three main components. First, the newly acquired IRAC data at 3.6 and 4.5 micron awarded to the PI to complete the IRAC coverage of the NMBS-II fields will be reduced. Second, the addition of the Spitzer-IRAC and MIPS photometry to the NMBS-II K-selected catalogs will be completed. Third, a unique sample of ~300 ultra-massive

  3. Resolved H I imaging of a population of massive H I-rich galaxies with suppressed star formation

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Catinella, Barbara; Heckman, Timothy M.; Moran, Sean M.

    2014-07-20

    Despite the existence of well-defined relationships between cold gas and star formation, there is evidence that some galaxies contain large amounts of H I that do not form stars efficiently. By systematically assessing the link between H I and star formation within a sample of galaxies with extremely high H I masses (log M{sub H{sub I}}/M{sub ☉} > 10), we uncover a population of galaxies with an unexpected combination of high H I masses and low specific star formation rates that exists primarily at stellar masses greater than log M{sub *}/M{sub ☉} ∼ 10.5. We obtained H I maps of 20 galaxies in this population to understand the distribution of the H I and the physical conditions in the galaxies that could be suppressing star formation in the presence of large quantities of H I. We find that all of the galaxies we observed have low H I surface densities in the range in which inefficient star formation is common. The low H I surface densities are likely the main cause of the low specific star formation rates, but there is also some evidence that active galactic nuclei or bulges contribute to the suppression of star formation. The sample's agreement with the global star formation law highlights its usefulness as a tool for understanding galaxies that do not always follow expected relationships.

  4. Pathways to quiescence: SHARDS view on the star formation histories of massive quiescent galaxies at 1.0 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Domínguez Sánchez, Helena; Pérez-González, Pablo G.; Esquej, Pilar; Eliche-Moral, M. Carmen; Barro, Guillermo; Cava, Antonio; Koekemoer, Anton M.; Alcalde Pampliega, Belén; Alonso Herrero, Almudena; Bruzual, Gustavo; Cardiel, Nicolás; Cenarro, Javier; Ceverino, Daniel; Charlot, Stéphane; Hernán Caballero, Antonio

    2016-04-01

    We present star formation histories (SFHs) for a sample of 104 massive (stellar mass M > 1010 M⊙) quiescent galaxies (MQGs) at z = 1.0-1.5 from the analysis of spectrophotometric data from the Survey for High-z Absorption Red and Dead Sources (SHARDS) and HST/WFC3 G102 and G141 surveys of the GOODS-North field, jointly with broad-band observations from ultraviolet (UV) to far-infrared (far-IR). The sample is constructed on the basis of rest-frame UVJ colours and specific star formation rates (sSFRs = SFR/Mass). The spectral energy distributions (SEDs) of each galaxy are compared to models assuming a delayed exponentially declining SFH. A Monte Carlo algorithm characterizes the degeneracies, which we are able to break taking advantage of the SHARDS data resolution, by measuring indices such as MgUV and D4000. The population of MQGs shows a duality in their properties. The sample is dominated (85 per cent) by galaxies with young mass-weighted ages, overline{t_M} < 2 Gyr, short star formation time-scales, <τ> ˜ 60-200 Myr, and masses log(M/M⊙) ˜ 10.5. There is an older population (15 per cent) with overline{t_M} = 2-4 Gyr, longer star formation time-scales, <τ> ˜ 400 Myr, and larger masses, log(M/M⊙) ˜ 10.7. The SFHs of our MQGs are consistent with the slope and the location of the main sequence of star-forming galaxies at z > 1.0, when our galaxies were 0.5-1.0 Gyr old. According to these SFHs, all the MQGs experienced a luminous infrared galaxy phase that lasts for ˜500 Myr, and half of them an ultraluminous infrared galaxy phase for ˜100 Myr. We find that the MQG population is almost assembled at z ˜ 1, and continues evolving passively with few additions to the population.

  5. Variations of the Stellar Initial Mass Function in the Progenitors of Massive Early-type Galaxies and in Extreme Starburst Environments

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles; Hennebelle, Patrick; Charlot, Stéphane

    2014-12-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle & Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power-law exponent α ~= -2.7, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parameterizations of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.

  6. Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments

    SciTech Connect

    Chabrier, Gilles; Hennebelle, Patrick

    2014-12-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle and Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power-law exponent α ≅ –2.7, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parameterizations of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.

  7. A weak lensing mass reconstruction of the large-scale filament feeding the massive galaxy cluster MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Jullo, Eric; Kneib, Jean-Paul; Ebeling, Harald; Leauthaud, Alexie; Ma, Cheng-Jiun; Limousin, Marceau; Massey, Richard; Richard, Johan

    2012-11-01

    We report the first weak lensing detection of a large-scale filament funnelling matter on to the core of the massive galaxy cluster MACS J0717.5+3745. Our analysis is based on a mosaic of 18 multipassband images obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ˜10 × 20 arcmin2. We use a weak lensing pipeline developed for the Cosmic Evolution Survey, modified for the analysis of galaxy clusters, to produce a weak lensing catalogue. A mass map is then computed by applying a weak gravitational lensing multiscale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the resulting mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong lensing constraints and find excellent agreement. Our analysis detects the MACS J0717.5+3745 filament within the 3σ detection contour of the lensing mass reconstruction, and underlines the importance of filaments for theoretical and numerical models of the mass distribution in the cosmic web. We measure the filament's projected length as ˜4.5 h74-1 Mpc, and its mean density as (2.92 ± 0.66) × 108 h74 M⊙ kpc-2. Combined with the redshift distribution of galaxies obtained after an extensive spectroscopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible constraints concerning the structure's geometry based on its galaxy velocity field, we construct a three-dimensional (3D) model of the large-scale filament. Within this framework, we derive the 3D length of the filament to be 18 h74-1 Mpc. The filament's deprojected density in terms of the critical density of the Universe is measured as (206 ± 46) ρcrit, a value that lies at the very high end of the range predicted by numerical simulations. Finally, we study the distribution of stellar mass in the

  8. GALAXY FORMATION WITH SELF-CONSISTENTLY MODELED STARS AND MASSIVE BLACK HOLES. I. FEEDBACK-REGULATED STAR FORMATION AND BLACK HOLE GROWTH

    SciTech Connect

    Kim, Ji-hoon; Abel, Tom; Wise, John H.; Alvarez, Marcelo A.

    2011-09-01

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M{sub sun} galactic halo and its 10{sup 5} M{sub sun} embedded MBH at redshift 3 in a cosmological {Lambda}CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  9. SPT-CL J0546-5345: A MASSIVE z>1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE

    SciTech Connect

    Brodwin, M.; Ashby, M. L. N.; Fazio, G. G.; Foley, R. J.; Ruel, J.; Ade, P. A. R.; Aird, K. A.; Andersson, K.; Bautz, M.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; De Haan, T.; Dobbs, M. A.; Dudley, J. P.; Desai, S.

    2010-09-20

    We report the spectroscopic confirmation of SPT-CL J0546-5345 at (z) = 1.067. To date this is the most distant cluster to be spectroscopically confirmed from the 2008 South Pole Telescope (SPT) catalog, and indeed the first z>1 cluster discovered by the Sunyaev-Zel'dovich Effect (SZE). We identify 21 secure spectroscopic members within 0.9 Mpc of the SPT cluster position, 18 of which are quiescent, early-type galaxies. From these quiescent galaxies we obtain a velocity dispersion of 1179{sup +232}{sub -167} km s{sup -1}, ranking SPT-CL J0546-5345 as the most dynamically massive cluster yet discovered at z>1. Assuming that SPT-CL J0546-5345 is virialized, this implies a dynamical mass of M{sub 200} = 1.0{sup +0.6}{sub -0.4} x 10{sup 15} M{sub sun}, in agreement with the X-ray and SZE mass measurements. Combining masses from several independent measures leads to a best-estimate mass of M{sub 200} = (7.95 {+-} 0.92) x 10{sup 14} M{sub sun}. The spectroscopic confirmation of SPT-CL J0546-5345, discovered in the wide-angle, mass-selected SPT cluster survey, marks the onset of the high-redshift SZE-selected galaxy cluster era.

  10. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    SciTech Connect

    Kim, Ji-hoon; Wise, John H.; Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  11. Observational evidence that massive cluster galaxies were forming stars at z ~ 2.5 and did not grow in mass at later times

    NASA Astrophysics Data System (ADS)

    Andreon, S.

    2013-06-01

    Using Spitzer 3.6 micron data we derived the luminosity function and the mass function of galaxies in five z > 1.4 clusters selected to have a firm intracluster medium detection. The five clusters differ in richness (ISCS J1438.1+3414 and XMMXCS J2215.9-1738 are twice as rich as ISCS J1432.4+3250, IDCS J1426.5+3508, and JKCS 041) and morphological appareance. At the median redshift z = 1.5, from the 150 member galaxies of the five clusters, we derived a characteristic magnitude of 16.92 ± 0.13 in the [3.6] band and a characteristic mass of lg M∗ = 11.30 ± 0.05 M⊙. We find that the characteristic luminosity and mass does not evolve between z = 1 and 1.4 < z < 1.8, directly ruling out ongoing mass assembly between these epochs because massive galaxies are already present up to z = 1.8. Lower-redshift build-up epochs have already been ruled out by previous works, leaving only z > 1.8 as a possible epoch for the mass build up. However, the observed values of m∗ at very high redshift are too bright for galaxies without any star formation immediately preceding the observed redshift and therefore imply a star formation episode not earlier than zf = 2.5. For the first time, mass/luminosity functions are able to robustly distinguish tiny differences between formation redshifts and to set upper limits to the epoch of the last star-formation episode.

  12. Les galaxies les plus lointaines: des elliptiques massives en pleine formation d'étoiles et de trous noirs

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2016-08-01

    The most distant galaxies discovered at z>4 by the telescopes Herschel +Spitzer + HST, surprisingly appear as monsters compared to our Galaxy, with luminosities increasing with z. Younger in the space-time universe, they could be of low mass at high z , hard to detect and furtherly growing by a classical hierarchical merging process. However using the spectral evolutionary synthesis on the continuous UV to far-IR energy distribution with the help of the code Pegase.3, three distinct components are identified: i) the redshifted 1-2 microns peak, typical of a "passive" elliptical galaxy ii) a star formation episode iii) an AGN torus component more or less active. Moreover the cumulated supernova mass allows to estimate the stellar black hole mass of 109 solar masses, of the same order as supermassive black holes (Rocca-Volmerange et al, 2013, 2015, Drouart et al, 2016). These results, associated with the recent discoveries by the telescopes ALMA and MUSE, give a new view on the mass of primeval galaxies, on the AGN-star formation link, on the debated formation of elliptical galaxies and even on the re-ionization of the early universe.

  13. Hydrodynamical simulations of realistic massive cluster populations

    NASA Astrophysics Data System (ADS)

    Barnes, David J.; Henson, Monique A.; Kay, Scott T.; McCarthy, Ian G.; Bahe, Yannick M.; Eagle Collaboration

    2015-09-01

    Galaxy clusters are seeded by density fluctuations in the early Universe and grow via hierarchical collapse to become the most massive virialised objects we observed today. They are powerful probes that study both cosmology and astrophysical processes. Their internal structure at the current epoch is the result of a non-trivial interplay between gravitational collapse and the energy fed into the intra-cluster medium (ICM) by star formation and active galactic nuclei (AGN). These processes shape the ICM during its formation at high redshift, but current observations of galaxy clusters are limited to z<0.5. The resolution and sensitivity of textit{Athena+} will allow it to study galaxy clusters in unprecedented detail. It will constrain cluster properties, such as its entropy, temperature and gas fraction, out to z˜2, enabling it to investigate the progenitors of today's massive clusters and observing the evolution of the properties of the ICM for the first time. Athena+ will produce a significant change in our understanding of the formation of galaxy clusters. Recently the theoretical modelling of clusters has advanced significantly and issues, such as the 'cooling catastophea', have been overcome by including feedback from star formation and AGN. We present the MAssive ClusterS and Intercluster Structures (MACSIS) project. The MACSIS project is a representative sample of 390 of galaxy clusters, with M_{FOF} > 10(15} M_{⊙) , re-simulated using the cosmo-OWLS model (Le Brun et al. 2014, McCarthy et al. in prep.) to extend it to the most massive and rarest objects. We demonstrate that this sample reproduces the scaling relations, with intrinsic scatter, observed with current instruments at low redshift. Under the hierarchical paradigm, the progenitors of these systems will be the first objects to collapse at high redshift and we examine to z=2 how the scaling relations of these massive objects evolve with redshift. Finally, we investigate methods of defining a

  14. The Relative Abundance of Compact and Normal Massive Early-type Galaxies and Its Evolution from Redshift z ~ 2 to the Present

    NASA Astrophysics Data System (ADS)

    Cassata, P.; Giavalisco, M.; Guo, Yicheng; Renzini, A.; Ferguson, H.; Koekemoer, A. M.; Salimbeni, S.; Scarlata, C.; Grogin, N. A.; Conselice, C. J.; Dahlen, T.; Lotz, J. M.; Dickinson, M.; Lin, Lihwai

    2011-12-01

    We report on the evolution of the number density and size of early-type galaxies (ETGs) from z ~ 2 to z ~ 0. We select a sample of 563 massive (M > 1010 M ⊙), passively evolving (specific star formation rate <10-2 Gyr-1), and morphologically spheroidal galaxies at 0 < z < 2.5, using the panchromatic photometry and spectroscopic redshifts available in the Great Observatories Origins Deep Surveys fields. We combine Advanced Camera for Surveys and Wide Field Camera 3 Hubble Space Telescope images to study the morphology of our galaxies in their optical rest frame in the entire 0 < z < 2.5 range. We find that throughout the explored redshift range the passive galaxies selected with our criteria have weak morphological K-correction, with size being slightly smaller in the optical than in the UV rest frame (by ~20% and ~10% at z > 1.2 and z < 1.2, respectively). We measure a significant evolution of the mass-size relation of ETGs, with a fractional increment that is almost independent of the stellar mass. ETGs formed at z > 1 appear to be preferentially small, and the evolution of the mass-size relation at z < 1 is driven by both the continuous size growth of the compact galaxies and the appearance of new ETGs with large sizes. We also find that the number density of all passive ETGs increases rapidly, by a factor of five, from z ~ 2 to z ~ 1, and then more mildly by another factor of 1.5 from z ~ 1 to z ~ 0. We interpret these results as evidence that the bulk of the ETGs are formed at 1 < z < 3 through a mechanism that leaves very compact remnants. At z < 1 the compact ETGs grow gradually in size, becoming normal-size galaxies, and at the same time new ETGs with normal-large sizes are formed. Based on data obtained with the Hubble Space Telescope operated by AURA, Inc. for NASA under contract NAS5-26555.

  15. Comparative internal kinematics of the H II regions in interacting and isolated galaxies: implications for massive star formation modes

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Beckman, John E.; Font, Joan; García-Lorenzo, Begoña; Camps-Fariña, Artemi; Fathi, Kambiz; James, Philip A.; Erroz-Ferrer, Santiago; Barrera-Ballesteros, Jorge; Cisternas, Mauricio

    2015-08-01

    We have observed 12 interacting galaxy pairs using the Fabry-Perot interferometer GH αFaS (Galaxy H α Fabry-Perot system) on the 4.2-m William Herschel Telescope at the Observatorio del Roque de los Muchachos, La Palma. We present here the Hα surface brightness, velocity and velocity dispersion maps for the 10 systems we have not previously observed using this technique, as well as the physical properties (sizes, Hα luminosities and velocity dispersion) of 1259 H II regions from the full sample. We also derive the physical properties of 1054 H II regions in a sample of 28 isolated galaxies observed with the same instrument in order to compare the two populations of H II regions. We find a population of the brightest H II regions for which the scaling relations, for example the relation between the Hα luminosity and the radius, are clearly distinct from the relations for the regions of lower luminosity. The regions in this bright population are more frequent in the interacting galaxies. We find that the turbulence, and also the star formation rate (SFR), are enhanced in the H II regions in the interacting galaxies. We have also extracted the Hα equivalent widths for the H II regions of both samples, and we have found that the distribution of H II region ages coincides for the two samples of galaxies. We suggest that the SFR enhancement is brought about by gas flows induced by the interactions, which give rise to gravitationally bound gas clouds which grow further by accretion from the flowing gas, producing conditions favourable to star formation.

  16. The environmental history of group and cluster galaxies in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Weinmann, Simone; Poggianti, Bianca M.; Aragón-Salamanca, Alfonso; Zaritsky, Dennis

    2012-06-01

    We use publicly available galaxy merger trees, obtained applying semi-analytic techniques to a large high-resolution cosmological simulation, to study the environmental history of group and cluster galaxies. Our results highlight the existence of an intrinsic history bias which makes the nature versus nurture (as well as the mass versus environment) debate inherently ill posed. In particular, we show that (i) surviving massive satellites were accreted later than their less massive counterparts, from more massive haloes and (ii) the mixing of galaxy populations is incomplete during halo assembly, which creates a correlation between the time a galaxy becomes satellite and its present distance from the parent halo centre. The weakest trends are found for the most massive satellites, as a result of efficient dynamical friction and late formation times of massive haloes. A large fraction of the most massive group/cluster members are accreted on to the main progenitor of the final halo as central galaxies, while about half of the galaxies with low and intermediate stellar masses are accreted as satellites. Large fractions of group and cluster galaxies (in particular those of low stellar mass) have therefore been ‘pre-processed’ as satellites of groups with mass ˜1013 M⊙. To quantify the relevance of hierarchical structure growth on the observed environmental trends, we have considered observational estimates of the passive galaxy fractions and their variation as a function of halo mass and clustercentric distance. Comparisons with our theoretical predictions require relatively long times (˜5-7 Gyr) for the suppression of star formation in group and cluster satellites. It is unclear how such a gentle mode of strangulation can be achieved by simply relaxing the assumption of instantaneous stripping of the hot gas reservoir associated with accreting galaxies, or if the difficulties encountered by recent galaxy formation models in reproducing the observed trends

  17. Narrow He II emission in star-forming galaxies at low metallicity. Stellar wind emission from a population of very massive stars

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Vink, J. S.

    2015-06-01

    Context. In a recent study, star-forming galaxies with He ii λ1640 emission at moderate redshifts between 2 and 4.6 have been found to occur in two modes that are distinguished by the width of their He ii emission lines. Broad He ii emission has been attributed to stellar emission from a population of evolved Wolf-Rayet (WR) stars. The origin of narrow He ii emission is less clear but has been attributed to nebular emission excited by a population of very hot Pop III stars formed in pockets of pristine gas at moderate redshifts. Aims: We propose an alternative scenario for the origin of the narrow He ii emission, namely very massive stars (VMS) at low metallicity (Z), which form strong but slow WR-type stellar winds due to their proximity to the Eddington limit. Methods: We estimated the expected He ii line fluxes and equivalent widths based on wind models for VMS and Starburst99 population synthesis models and compared the results with recent observations of star-forming galaxies at moderate redshifts. Results: The observed He ii line strengths and equivalent widths are in line with what is expected for a population of VMS in one or more young super-clusters located within these galaxies. Conclusions: In our scenario the two observed modes of He ii emission originate from massive stellar populations in distinct evolutionary stages at low Z (~0.01 Z⊙). If this interpretation is correct, there is no need to postulate the existence of Pop III stars at moderate redshifts to explain the observed narrow He ii emission. An interesting possibility is the existence of self-enriched VMS with similar WR-type spectra at extremely low Z. Stellar He ii emission from such very early generations of VMS may be detectable in future studies of star-forming galaxies at high redshifts with the James Webb Space Telescope (JWST). The fact that the He ii emission of VMS is largely neglected in current population synthesis models will generally affect the interpretation of the

  18. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes?

    NASA Astrophysics Data System (ADS)

    Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.

    2016-08-01

    We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.

  19. Lower mass normalization of the stellar initial mass function for dense massive early-type galaxies at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Gargiulo, A.; Saracco, P.; Longhetti, M.; Tamburri, S.; Lonoce, I.; Ciocca, F.

    2015-01-01

    Aims: This paper aims at understanding whether the normalization of the stellar initial mass function (IMF) of massive galaxies varies with cosmic time and/or with mean stellar mass density Σ = M⋆/(2πRe2). Methods: We have tackled this question by taking advantage of a spectroscopic sample of 18 dense (Σ > 2500 M⊙ pc-2) massive early-type galaxies (ETGs) that we collected at 1.2 ≲ z ≲ 1.6. Each galaxy in the sample was selected in order to have available: i) a high-resolution deep HST-F160W image to visually classify it as an ETG; ii) an accurate velocity dispersion estimate; iii) stellar mass derived through the fit of multiband photometry; and iv) structural parameters (i.e. effective radius Re and Sersic index n) derived in the F160W-band. We have constrained the mass-normalization of the IMF of dense high-z ETGs by comparing the true stellar masses of the ETGs in the sample (Mtrue) derived through virial theorem, hence IMF independent, with those inferred through the fit of the photometry which assume a reference IMF (Mref). Adopting the virial estimator as proxy of the true stellar mass, we have implicitly assumed that these systems have zero dark matter. However, recent dynamical analysis of massive local ETGs have shown that the dark matter fraction within Re in dense ETGs is negligible (<5-10%) and simulations of dissipationless mergers of spheroidal galaxies have shown that this fraction decreases going back with time. Accurate dynamical models of local ETGs performed by the ATLAS3D team have shown that the virial estimator is prone to underestimating or overestimating the total masses. We have considered this, and based on the results of ATLAS3D we have shown that for dense ETGs the mean value of total masses derived through the virial estimator with a non-homologous virial coefficient and Sersic-Re are perfectly in agreement with the mean value of those derived through more sophisticated dynamical models, although, of course, the estimates

  20. CH+(1-0) Line Detection in a High-z Hyper-Luminous Galaxy SDP17b: the First Probe of a Massive Turbulent Region

    NASA Astrophysics Data System (ADS)

    Falgarone, E.; Zwaan, M.; Godard, B.; Bussmann, S.; Bergin, E.; Omont, A.; Bournaud, F.; Elbaz, D.; Andreani, P.

    2015-12-01

    We illustrate the power of CH+ spectroscopy at high spectral resolution with the first detection by ALMA of a CH+(J=1-0) line in an hyper-luminous galaxy, SDP17b at z=2.3. Unlike other molecular tracers, the unique chemical and spectroscopic properties of the CH+ cation make it a tracer of the turbulent energy trail, from its scale of injection to that of dissipation at which CH+ forms. In SDP17b, CH+ emission and absorption are detected. The emission line is broad and the absorption is seen against the dust continuum and the emission. The absorption probes a massive turbulent region of low density, while the emission may arise in a large number of irradiated shocks that could be located in the large turbulent region or in the star-forming disk.

  1. On the evolution of the star formation rate function of massive galaxies: constraints at 0.4 < z < 1.8 from the GOODS-MUSIC catalogue

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Cristiani, Stefano; Santini, Paola; Fontana, Adriano; Grazian, Andrea; Somerville, Rachel S.

    2012-03-01

    We study the evolution of the star formation rate function (SFRF) of massive (M★ > 1010 M⊙) galaxies over the 0.4 < z < 1.8 redshift range and its implications for our understanding of the physical processes responsible for galaxy evolution. We use multiwavelength observations included in the Great Observatories Origins Deep Survey-Multiwavelength Southern Infrared Catalog (GOODS-MUSIC) catalogue, which provides a suitable coverage of the spectral region from 0.3 to 24 ?m and either spectroscopic or photometric redshifts for each object. Individual SFRs have been obtained by combining ultraviolet and 24-?m observations, when the latter were available. For all other sources a 'spectral energy distribution (SED) fitting' SFR estimate has been considered. We then define a stellar mass limited sample, complete in the M★ > 1010 M⊙ range and determine the SFRF using the 1/Vmax algorithm. We thus define simulated galaxy catalogues based on the predictions of three different state-of-the-art semi-analytical models (SAMs) of galaxy formation and evolution, and compare them with the observed SFRF. We show that the theoretical SFRFs are well described by a double power law functional form and its redshift evolution is approximated with high accuracy by a pure evolution of the typical SFR (SFR★). We find good agreement between model predictions and the high-SFR end of the SFRF, when the observational errors on the SFR are taken into account. However, the observational SFRF is characterized by a double-peaked structure, which is absent in its theoretical counterparts. At z > 1.0 the observed SFRF shows a relevant density evolution, which is not reproduced by SAMs, due to the well-known overprediction of intermediate-mass galaxies at z˜ 2. SAMs are thus able to reproduce the most intense SFR events observed in the GOODS-MUSIC sample and their redshift distribution. At the same time, the agreement at the low-SFR end is poor: all models overpredict the space density of

  2. Quasars Probing Quasars. VIII. The Physical Properties of the Cool Circumgalactic Medium Surrounding z ~ 2–3 Massive Galaxies Hosting Quasars

    NASA Astrophysics Data System (ADS)

    Lau, Marie Wingyee; Prochaska, J. Xavier; Hennawi, Joseph F.

    2016-10-01

    We characterize the physical properties of the cool T ∼ 104 K circumgalactic medium (CGM) surrounding z ∼ 2–3 quasar host galaxies, which are predicted to evolve into present-day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation <300 kpc and spectra of high dispersion and high signal-to-noise ratio, we find extreme kinematics with low metal ion lines typically spanning ≈500 km s‑1, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] ≈ ‑0.6. The α/Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by core-collapse supernovae. The projected cool gas mass within the virial radius is estimated to be 1.9 × 1011 M ⊙ (R ⊥/160 kpc)2, accounting for ≈1/3 of the baryonic budget of the galaxy halo. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Lyα emission, and another system shows strong N v lines. Taken together, these anomalies suggest that transverse sightlines are—at least in some cases—possibly illuminated. We also discovered a peculiar case where detection of the C ii fine-structure line implies an electron density >100 cm‑3 and sub-parsec-scale gas clumps.

  3. THE DISCOVERY OF PERIODIC MODULATIONS IN THE OPTICAL SPECTRA OF GALAXIES, POSSIBLY DUE TO ULTRARAPID LIGHT BURSTS FROM THEIR MASSIVE CENTRAL BLACK HOLES

    SciTech Connect

    Borra, Ermanno F.

    2013-09-10

    A Fourier transform analysis of 2.5 million spectra in the SDSS survey was carried out to detect periodic modulations contained in the intensity versus frequency spectrum. A statistically significant signal was found for 223 galaxies, while the spectra of 0.9 million galaxies were observed. A plot of the periods as a function of redshift clearly shows that the effect is real without any doubt, because the modulations are quantized at two base periods that increase with redshift in two very tight parallel linear relations. We suggest that this result could be caused by light bursts separated by times on the order of 10{sup -13} s, but other causes may be possible. We investigate the hypothesis that the modulation is generated by the Fourier transform of spectral lines, but conclude that this hypothesis is not valid. Although the light burst suggestion implies absurdly high temperatures, it is supported by the fact that the Crab pulsar also has extremely short unresolved pulses (<0.5 ns) that imply similarly high temperatures. Furthermore, the radio spectrum of the Crab pulsar also has spectral bands similar to those that have been detected. Finally, decreasing the signal-to-noise threshold of detection gives results consistent with beamed signals having a small beam divergence, as expected from non-thermal sources that send a jet, like those seen in pulsars. Considering that galaxy centers contain massive black holes, exotic black hole physics may be responsible for the spectral modulation. However, at this stage, this idea is only a hypothesis to be confirmed with further work.

  4. Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39

    NASA Astrophysics Data System (ADS)

    Chan, Jeffrey C. C.; Beifiori, Alessandra; Mendel, J. Trevor; Saglia, Roberto P.; Bender, Ralf; Fossati, Matteo; Galametz, Audrey; Wegner, Michael; Wilman, David J.; Cappellari, Michele; Davies, Roger L.; Houghton, Ryan C. W.; Prichard, Laura J.; Lewis, Ian J.; Sharples, Ray; Stott, John P.

    2016-05-01

    We analyse the sizes, colour gradients and resolved stellar mass distributions for 36 massive and passive galaxies in the cluster XMMUJ2235-2557 at z = 1.39 using optical and near-infrared Hubble Space Telescope (HST) imaging. We derive light-weighted Sérsic fits in five HST bands (i775, z850, Y105, J125, H160), and find that the size decreases by ˜20 per cent going from i775 to H160 band, consistent with recent studies. We then generate spatially resolved stellar mass maps using an empirical relationship between M_{{ast }}/L_{H_{160}} and (z850 - H160) and use these to derive mass-weighted Sérsic fits: the mass-weighted sizes are ˜41 per cent smaller than their rest-frame r-band counterparts compared with an average of ˜12 per cent at z ˜ 0. We attribute this evolution to the evolution in the M_{{ast }}/L_{H_{160}} and colour gradient. Indeed, as expected, the ratio of mass-weighted to light-weighted size is correlated with the M*/L gradient, but is also mildly correlated with the mass surface density and mass-weighted size. The colour gradients (∇z - H) are mostly negative, with a median value of ˜0.45 mag dex-1, twice the local value. The evolution is caused by an evolution in age gradients along the semimajor axis (a), with ∇age = dlog (age)/dlog (a) ˜- 0.33, while the survival of weaker colour gradients in old, local galaxies implies that metallicity gradients are also required, with ∇Z = dlog (Z)/dlog (a) ˜- 0.2. This is consistent with recent observational evidence for the inside-out growth of passive galaxies at high redshift, and favours a gradual mass growth mechanism, such as minor mergers.

  5. New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Bressan, Alessandro; Rosenfield, Philip; Slemer, Alessandra; Marigo, Paola; Girardi, Léo; Bianchi, Luciana

    2014-12-01

    We extend the PARSEC library of stellar evolutionary tracks by computing new models of massive stars, from 14 to 350 M⊙. The input physics is the same used in the PARSEC V1.1 version, but for the mass-loss rate from considering the most recent updates in the literature. We focus on low metallicity, Z = 0.001 and Z = 0.004, for which the metal-poor dwarf irregular star-forming galaxies, Sextans A, the Wolf-Lundmark-Melotte galaxy and NGC 6822, provide simple but powerful workbenches. The models reproduce fairly well the observed colour-magnitude diagrams (CMDs) but the stellar colour distributions indicate that the predicted blue loop is not hot enough in models with a canonical extent of overshooting. In the framework of a mild extended mixing during central hydrogen burning, the only way to reconcile the discrepancy is to enhance the overshooting at the base of the convective envelope (EO) during the first dredge-up. The mixing scales required to reproduce the observed loops, EO = 2HP or EO = 4HP, are definitely larger than those derived from, e.g. the observed location of the red-giant-branch bump in low mass stars. This effect, if confirmed, would imply a strong dependence of the mixing scale below the formal Schwarzschild border, on the stellar mass or luminosity. Reproducing the features of the observed CMDs with standard values of envelope overshooting would require a metallicity significantly lower than the values measured in these galaxies. Other quantities, such as the star formation rate and the initial mass function, are only slightly sensitive to this effect. Future investigations will consider other metallicities and different mixing schemes.

  6. LoCuSS: THE MASS DENSITY PROFILE OF MASSIVE GALAXY CLUSTERS AT z = 0.2 {sup ,}

    SciTech Connect

    Okabe, Nobuhiro; Umetsu, Keiichi; Smith, Graham P.; Takada, Masahiro; Futamase, Toshifumi E-mail: gps@star.sr.bham.ac.uk

    2013-06-01

    We present a stacked weak-lensing analysis of an approximately mass-selected sample of 50 galaxy clusters at 0.15 < z < 0.3, based on observations with Suprime-Cam on the Subaru Telescope. We develop a new method for selecting lensed background galaxies from which we estimate that our sample of red background galaxies suffers just 1% contamination. We detect the stacked tangential shear signal from the full sample of 50 clusters, based on this red sample of background galaxies, at a total signal-to-noise ratio of 32.7. The Navarro-Frenk-White model is an excellent fit to the data, yielding sub-10% statistical precision on mass and concentration: M{sub vir}=7.19{sup +0.53}{sub -0.50} Multiplication-Sign 10{sup 14} h{sup -1} M{sub sun}, c{sub vir}=5.41{sup +0.49}{sub -0.45} (c{sub 200}=4.22{sup +0.40}{sub -0.36}). Tests of a range of possible systematic errors, including shear calibration and stacking-related issues, indicate that they are subdominant to the statistical errors. The concentration parameter obtained from stacking our approximately mass-selected cluster sample is broadly in line with theoretical predictions. Moreover, the uncertainty on our measurement is comparable with the differences between the different predictions in the literature. Overall, our results highlight the potential for stacked weak-lensing methods to probe the mean mass density profile of cluster-scale dark matter halos with upcoming surveys, including Hyper-Suprime-Cam, Dark Energy Survey, and KIDS.

  7. Baryon content of massive galaxy clusters at 0.57 < z < 1.33

    SciTech Connect

    Chiu, I.; Mohr, J.; McDonald, M.; Bocquet, S.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Desai, S.; Dietrich, J. P.; Forman, W. R.; Gangkofner, C.; Gonzalez, A. H.; Henning, C.; Lui, J.; Reichardt, C. L.; Saro, A.; Stalder, B.; Stanford, S. A.; Song, J.; Schrabback, T.; Suhada, R.; Strazzullo, V.; Zenteno, A.

    2015-11-02

    Here, we study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and median mass M500 = 6 x 1014M. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At z = 0.9 the BCG mass M*BCG constitutes 0.12 ± 0.01% of the halo mass for a 6 x 1014M cluster, and this fraction falls as M500-0.58±0.007. The cluster stellar mass function has a characteristic mass M0 = 1011.0±0.1M, and the number of galaxies per unit mass in clusters is larger than in the field by a factor 1.65 ± 0.2. Both results are consistent with measurements on group scales and at lower redshift.

  8. Baryon content of massive galaxy clusters at 0.57 < z < 1.33

    DOE PAGESBeta

    Chiu, I.; Mohr, J.; McDonald, M.; Bocquet, S.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Desai, S.; et al

    2015-11-02

    Here, we study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and median mass M500 = 6 x 1014M⊙. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At z = 0.9 the BCG mass M*BCG constitutes 0.12 ±more » 0.01% of the halo mass for a 6 x 1014M⊙ cluster, and this fraction falls as M500-0.58±0.007. The cluster stellar mass function has a characteristic mass M0 = 1011.0±0.1M⊙, and the number of galaxies per unit mass in clusters is larger than in the field by a factor 1.65 ± 0.2. Both results are consistent with measurements on group scales and at lower redshift.« less

  9. THE SL2S GALAXY-SCALE GRAVITATIONAL LENS SAMPLE. I. THE ALIGNMENT OF MASS AND LIGHT IN MASSIVE EARLY-TYPE GALAXIES AT z = 0.2-0.9

    SciTech Connect

    Gavazzi, Raphaeel; Brault, Florence; Treu, Tommaso; Marshall, Philip J.; Ruff, Andrea

    2012-12-20

    We study the relative alignment of mass and light in a sample of 16 massive early-type galaxies at z = 0.2-0.9 that act as strong gravitational lenses. The sample was identified from deep multi-band images obtained as part of the Canada-France-Hawaii Telescope Legacy Survey and as part of the Strong Lensing Legacy Survey (SL2S). Higher resolution follow-up imaging is available for a subset of 10 systems. We construct gravitational lens models and infer total enclosed mass, elongation, and position angle of the mass distribution. By comparison with the observed distribution of light we infer that there is a substantial amount of external shear with mean value ({gamma}{sub ext}) = 0.12 {+-} 0.05, arising most likely from the environment of the SL2S lenses. In a companion paper, we combine these measurements with follow-up Keck spectroscopy to study the evolution of the stellar and dark matter content of early-type galaxies as a function of cosmic time.

  10. Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities

    NASA Astrophysics Data System (ADS)

    Anderson, Michael E.; Sunyaev, Rashid

    2016-07-01

    Non-thermal pressure from turbulence and bulk flows is a fundamental ingredient in hot gaseous haloes, and in the intracluster medium, it will be measured through emission line kinematics with calorimeters on future X-ray spacecraft. In this paper, we present a complementary method for measuring these effects, using forbidden FUV emission lines of highly ionized Iron which trace 107 K gas. The brightest of these is [Fe XXI] λ1354.1. We search for these lines in archival Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectra from the well-known elliptical galaxies M87 and NGC4696, which harbor large reservoirs of 107 K gas. We report a 2.2σ feature which we attribute to [Fe XXI] from a filament in M87, and positive residuals in the nuclei of M87 and NGC4696, for which the 90 per cent upper limits on the line flux are close to the predicted fluxes based on X-ray observations. In a newer reduction of the data from the Hubble Spectroscopic Legacy Archive, these limits become tighter and the [Fe XXI] feature reaches a formal significance of 5.3σ, neglecting uncertainty in fitting the continuum. Using our constraints, we perform emission measure analysis, constraining the characteristic path length and column density of the ˜107 K gas. We also examine several sightlines towards filaments or cooling flows in other galaxy clusters, for which the fraction of gas at 107 K is unknown, and place upper limits on its emission measure in each case. A medium-resolution HST-COS observation of the M87 filament for ˜10 orbits would confirm our detection of [Fe XXI] and measure its width.

  11. THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. VI. CONSTRAINTS ON DARK ENERGY AND THE EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Oguri, Masamune; Kayo, Issha; Fukugita, Masataka; Inada, Naohisa; Strauss, Michael A.; Shin, Min-Su; Bahcall, Neta A.; Kochanek, Christopher S.; Morokuma, Tomoki; Richards, Gordon T.; Rusu, Cristian E.; Frieman, Joshua A.; Schneider, Donald P.; York, Donald G.; White, Richard L.

    2012-05-15

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention given to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to {Omega}{sub {Lambda}} = 0.79{sup +0.06}{sub -0.07}(stat.){sup +0.06}{sub -0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w = -1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z {approx}< 1 in any combinations of constraints. For instance, number density evolution quantified as {nu}{sub n} {identical_to} dln {phi}{sub *}/dln (1 + z) and the velocity dispersion evolution {nu}{sub {sigma}} {identical_to} dln {sigma}{sub *}/dln (1 + z) are constrained to {nu}{sub n} = 1.06{sup +1.36}{sub -1.39}(stat.){sup +0.33}{sub -0.64}(syst.) and {nu}{sub {sigma}} = -0.05{sup +0.19}{sub -0.16}(stat.){sup +0.03}{sub -0.03}(syst.), respectively, when the SQLS result is combined with BAO and WMAP for flat models with a cosmological constant. We find that a significant amount of dark energy is preferred even after fully marginalizing over the galaxy evolution parameters. Thus, the statistics of lensed quasars robustly confirm the accelerated cosmic expansion.

  12. THE RELATION BETWEEN DYNAMICAL MASS-TO-LIGHT RATIO AND COLOR FOR MASSIVE QUIESCENT GALAXIES OUT TO z ∼ 2 AND COMPARISON WITH STELLAR POPULATION SYNTHESIS MODELS

    SciTech Connect

    Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska; Bezanson, Rachel; Van Dokkum, Pieter G.

    2015-02-01

    We explore the relation between the dynamical mass-to-light ratio (M/L) and rest-frame color of massive quiescent galaxies out to z ∼ 2. We use a galaxy sample with measured stellar velocity dispersions in combination with Hubble Space Telescope and ground-based multi-band photometry. Our sample spans a large range in log M {sub dyn}/L {sub g} (of 1.6 dex) and log M {sub dyn}/L {sub K} (of 1.3 dex). There is a strong, approximately linear correlation between the M/L for different wavebands and rest-frame color. The root-mean-square scatter in log M {sub dyn}/L residuals implies that it is possible to estimate the M/L with an accuracy of ∼0.25 dex from a single rest-frame optical color. Stellar population synthesis (SPS) models with a Salpeter stellar initial mass function (IMF) cannot simultaneously match M {sub dyn}/L {sub g} versus (g – z){sub rest-frame} and M {sub dyn}/L {sub K} versus (g – K){sub rest-frame}. By changing the slope of the IMF we are still unable to explain the M/L of the bluest and reddest galaxies. We find that an IMF with a slope between α = 2.35 and α = 1.35 provides the best match. We also explore a broken IMF with a Salpeter slope at M < 1 M {sub ☉} and M > 4 M {sub ☉} and a slope α in the intermediate region. The data favor a slope of α = 1.35 over α = 2.35. Nonetheless, our results show that variations between different SPS models are comparable to the IMF variations. In our analysis we assume that the variation in M/L and color is driven by differences in age, and that other contributions (e.g., metallicity evolution, dark matter) are small. These assumptions may be an important source of uncertainty as galaxies evolve in more complex ways.

  13. The Power of Wide Field HI Surveys: ALFALFA Imaging of Massive Tidal Features in the Leo Cloud of Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2016-01-01

    Tidal interactions are well known to play an important role in galactic evolution in group environments, but the extent of these interactions, and their relative impact on the morphology-density relation is still unclear. Neutral hydrogen (HI) mapping can reveal the recent interaction history of group galaxies, but is difficult to execute due to the need for high sensitivity over wide fields. The Arecibo Legacy Fast ALFA survey (ALFALFA; Giovanelli et al. 2005; Haynes et al. 2011) provides high sensitivity, unbiased, wide field maps of HI in the local volume; here we will present a 50 deg2 ALFALFA map of a well studied region of the Leo Cloud of galaxies, which includes the NGC3226/7 group and HCG44. These observations reveal HI tails and plumes with extents exceeding 1.4 deg (~600 kpc), well beyond the primary beams of previous observations. These tails constitute a significant fraction of the total HI mass in NGC3226/7 (Arp 94) and HCG44. We will also present WSRT maps of the extended emission near Arp 94, which show tail morphologies inconsistent with 2 body interactions. These observations demonstrate that large scale group interactions will be an important science outcome for future sensitive, wide field HI surveys.This work is supported by NSF grants AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.

  14. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies

    SciTech Connect

    Oguri, Masamune; et al.

    2012-05-01

    We present a statistical analysis of the final lens sample from the Sloan Digital Sky Survey Quasar Lens Search (SQLS). The number distribution of a complete subsample of 19 lensed quasars selected from 50,836 source quasars is compared with theoretical expectations, with particular attention to the selection function. Assuming that the velocity function of galaxies does not evolve with redshift, the SQLS sample constrains the cosmological constant to \\Omega_\\Lambda=0.79^{+0.06}_{-0.07}(stat.)^{+0.06}_{-0.06}(syst.) for a flat universe. The dark energy equation of state is found to be consistent with w=-1 when the SQLS is combined with constraints from baryon acoustic oscillation (BAO) measurements or results from the Wilkinson Microwave Anisotropy Probe (WMAP). We also obtain simultaneous constraints on cosmological parameters and redshift evolution of the galaxy velocity function, finding no evidence for redshift evolution at z<1 in any combinations of constraints. For instance, number density evolution quantified as \

  15. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  16. VizieR Online Data Catalog: Stellar MFP for massive quiescent z<0.7 galaxies (Zahid+, 2016)

    NASA Astrophysics Data System (ADS)

    Zahid, H. J.; Damjanov, I.; Geller, M. J.; Hwang, H. S.; Fabricant, D. G.

    2016-07-01

    We derive the stellar mass fundamental plane (MFP) from a sample of local galaxies taken from the SDSS Legacy Survey. The nominal spectral range of the observations is 3800-9200Å and the spectral resolution is R~1500 at 5000Å. We examine the redshift evolution of the MFP using data from the 1.6deg2 COSMOS field. We have conducted a redshift survey of the field (Damjanov+ 2015ApJ...815..104D; 2016, in prep.) using Hectospec on the MMT to observe ~2500 objects selected from the UltraVISTA catalog of Muzzin et al. (2013ApJS..206....8M). Our typical integration time was ~1hr and the data were obtained under variable conditions in February and April of 2015. (1 data file).

  17. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    SciTech Connect

    Miniati, Francesco

    2015-02-10

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10{sup 15} M {sub ☉} galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s{sup –1} even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ≅ 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys.

  18. The "toothbrush-relic": evidence for a coherent linear 2-Mpc scale shock wave in a massive merging galaxy cluster?

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Röttgering, H. J. A.; Intema, H. T.; Rudnick, L.; Brüggen, M.; Hoeft, M.; Oonk, J. B. R.

    2012-10-01

    Some merging galaxy clusters host diffuse extended radio emission, so-called radio halos and relics, unrelated to individual galaxies. The origin of these halos and relics is still debated, although there is compelling evidence now that they are related to cluster merger events. Here we present detailed Westerbork Synthesis Radio Telescope (WSRT) and Giant Metrewave Radio Telescope (GMRT) radio observations between 147 MHz and 4.9 GHz of a new radio-selected galaxy cluster 1RXS J0603.3+4214, for which we find a redshift of 0.225. The cluster is detected as an extended X-ray source in the ROSAT All Sky Survey with an X-ray luminosity of LX, 0.1-2.4 keV ~ 1 × 1045 erg s-1. The cluster hosts a large bright 1.9 Mpc radio relic, an elongated ~2 Mpc radio halo, and two fainter smaller radio relics. The large radio relic has a peculiar linear morphology. For this relic we observe a clear spectral index gradient from the front of the relic towards the back, in the direction towards the cluster center. Parts of this relic are highly polarized with a polarization fraction of up to 60%. We performed rotation measure (RM) synthesis between 1.2 and 1.7 GHz. The results suggest that for the west part of the large relic some of the Faraday rotation is caused by the intracluster medium and not only due to galactic foregrounds. We also carried out a detailed spectral analysis of this radio relic and created radio color-color diagrams. We find (i) an injection spectral index of -0.6 to -0.7; (ii) steepening spectral index and increasing spectral curvature in the post-shock region; and (iii) an overall power-law spectrum between 74 MHz and 4.9 GHz with α = -1.10 ± 0.02. Mixing of emission in the beam from regions with different spectral ages is probably the dominant factor that determines the shape of the radio spectra. Changes in the magnetic field, total electron content, or adiabatic gains/losses do not play a major role. A model in which particles are (re)accelerated in a

  19. ATLASGAL-selected massive clumps in the inner Galaxy. II. Characterisation of different evolutionary stages and their SiO emission

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Leurini, S.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Walmsley, M.; Bontemps, S.; Wienen, M.; Beuther, H.; Motte, F.; Nguyen-Luong, Q.; Schilke, P.; Schuller, F.; Zavagno, A.; Sanna, C.

    2016-02-01

    Context. The processes leading to the birth of high-mass stars are poorly understood. The key first step to reveal their formation processes is characterising the clumps and cores from which they form. Aims: We define a representative sample of massive clumps in different evolutionary stages selected from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), from which we aim to establish a census of molecular tracers of their evolution. As a first step, we study the shock tracer, SiO, mainly associated with shocks from jets probing accretion processes. In low-mass young stellar objects (YSOs), outflow and jet activity decreases with time during the star formation processes. Recently, a similar scenario was suggested for massive clumps based on SiO observations. Here we analyse observations of the SiO (2-1) and (5-4) lines in a statistically significant sample to constrain the change of SiO abundance and the excitation conditions as a function of evolutionary stage of massive star-forming clumps. Methods: We performed an unbiased spectral line survey covering the 3-mm atmospheric window between 84-117 GHz with the IRAM 30 m telescope of a sample of 430 sources of the ATLASGAL survey, covering various evolutionary stages of massive clumps. A smaller sample of 128 clumps has been observed in the SiO (5-4) transition with the APEX telescope to complement the (2-1) line and probe the excitation conditions of the emitting gas. We derived detection rates to assess the star formation activity of the sample, and we estimated the column density and abundance using both an LTE approximation and non-LTE calculations for a smaller subsample, where both transitions have been observed. Results: We characterise the physical properties of the selected sources, which greatly supersedes the largest samples studied so far, and show that they are representative of different evolutionary stages. We report a high detection rate of >75% of the SiO (2-1) line and a >90% detection

  20. UV-extended E-MILES stellar population models: young components in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Vazdekis, A.; Koleva, M.; Ricciardelli, E.; Röck, B.; Falcón-Barroso, J.

    2016-09-01

    We present UV-extended E-MILES stellar population synthesis models covering the spectral range λλ 1680 - 50000 Å at moderately high resolution. We employ the NGSL space-based stellar library to compute spectra of single-age, single-metallicity stellar populations in the wavelength range from 1680 to 3540 Å. These models represent a significant improvement in resolution and age/metallicity coverage over previous studies based on earlier space-based libraries. These model spectra were joined with those we computed in the visible using MILES, and other empirical libraries for redder wavelengths. The models span the metallicity range -1.79⩽ {[M/H]}}⩽ +0.26 and ages above 30 Myr, for a suite of IMF types with varying slopes. We focus on the behaviour of colours, spectra and line-strength indices in the UV range as a function of relevant stellar population parameters. Whereas some indices strengthen with increasing age and metallicity, as most metallicity indicators in the visible, other indices peak around 3 Gyr for metal-rich stellar populations, such as Mg at 2800 Å. Our models provide reasonably good fits to the integrated colours and most line-strengths of the stellar clusters of the Milky-Way and LMC. Our full-spectrum fits in the UV range for a representative set of ETGs of varying mass yield age and metallicity estimates in very good agreement with those obtained in the optical range. The comparison of UV colours and line-strengths of massive ETGs with our models reveals the presence of young stellar components, with ages in the range 0.1 - 0.5 Gyr and mass fractions 0.1 - 0.5%, on the top of an old stellar population.

  1. Bailing out the Milky Way: variation in the properties of massive dwarfs among galaxy-sized systems

    SciTech Connect

    Purcell, Chris W.; Zentner, Andrew R. E-mail: zentner@pitt.edu

    2012-12-01

    Recent kinematical constraints on the internal densities of the Milky Way's dwarf satellites have revealed a discrepancy with the subhalo populations of simulated Galaxy-scale halos in the standard cold dark matter model of hierarchical structure formation. In particular, the Via Lactea II and Aquarius simulations both have large subhalos with internal densities that are larger than the constraints inferred for any Milky Way dwarf satellites. This has been dubbed the ''too big to fail'' problem, with reference to the improbability of large and invisible companions existing in the Galactic environment. In this paper, we argue that both the Milky Way observations and simulated subhalos are consistent with the predictions of the standard model for structure formation. Specifically, we show that there is significant variation in the properties of subhalos among distinct host halos of fixed mass and suggest that this can reasonably account for the deficit of dense satellites in the Milky Way. We exploit well-tested analytic techniques to predict the properties in a large sample of distinct host halos with a variety of masses spanning the range expected of the Galactic halo. Such techniques render the problem of estimating the variance in subhalo properties computationally feasible. The analytic model produces subhalo populations consistent with both Via Lactea II and Aquarius, and our results suggest that natural variation in subhalo properties suffices to explain the discrepancy between Milky Way satellite kinematics and these numerical simulations. At least ∼ 10% of Milky Way-sized halos host subhalo populations for which there is no ''too big to fail'' problem, even when the host halo mass is as large as M{sub host} = 10{sup 12.2} h{sup −1} M{sub s}un. Follow-up studies consisting of high-resolution simulations of a large number of Milky Way-sized hosts are necessary to confirm our predictions. In the absence of such efforts, the ''too big to fail'' problem does

  2. Mass and Hot Baryons in Massive Galaxy Clusters from Subaru Weak-Lensing and AMiBA Sunyaev-Zel'Dovich Effect Observations

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi; Birkinshaw, Mark; Liu, Guo-Chin; Wu, Jiun-Huei Proty; Medezinski, Elinor; Broadhurst, Tom; Lemze, Doron; Zitrin, Adi; Ho, Paul T. P.; Huang, Chih-Wei Locutus; Koch, Patrick M.; Liao, Yu-Wei; Lin, Kai-Yang; Molnar, Sandor M.; Nishioka, Hiroaki; Wang, Fu-Cheng; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek Y.; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2009-04-01

    We present a multiwavelength analysis of a sample of four hot (TX > 8 keV) X-ray galaxy clusters (A1689, A2261, A2142, and A2390) using joint AMiBA Sunyaev-Zel'dovich effect (SZE) and Subaru weak-lensing observations, combined with published X-ray temperatures, to examine the distribution of mass and the intracluster medium (ICM) in massive cluster environments. Our observations show that A2261 is very similar to A1689 in terms of lensing properties. Many tangential arcs are visible around A2261, with an effective Einstein radius ~40'' (at z ~ 1.5), which when combined with our weak-lensing measurements implies a mass profile well fitted by a Navarro-Frenk-White model with a high concentration c vir ~ 10, similar to A1689 and to other massive clusters. The cluster A2142 shows complex mass substructure, and displays a shallower profile (c vir ~ 5), consistent with detailed X-ray observations which imply recent interaction. The AMiBA map of A2142 exhibits an SZE feature associated with mass substructure lying ahead of the sharp northwest edge of the X-ray core suggesting a pressure increase in the ICM. For A2390 we obtain highly elliptical mass and ICM distributions at all radii, consistent with other X-ray and strong-lensing work. Our cluster gas fraction measurements, free from the hydrostatic equilibrium assumption, are overall in good agreement with published X-ray and SZE observations, with the sample-averaged gas fraction of langf gas(

  3. Galaxy-galaxy(-galaxy) lensing as a sensitive probe of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Saghiha, H.; Hilbert, S.; Schneider, P.; Simon, P.

    2012-11-01

    Context. The gravitational lensing effect provides various ways to study the mass environment of galaxies. Aims: We investigate how galaxy-galaxy(-galaxy) lensing can be used to test models of galaxy formation and evolution. Methods: We consider two semi-analytic galaxy formation models based on the Millennium Run N-body simulation: the Durham model by Bower et al. (2006, MNRAS, 370, 645) and the Garching model by Guo et al. (2011, MNRAS, 413, 101). We generate mock lensing observations for the two models, and then employ Fast Fourier Transform methods to compute second- and third-order aperture statistics in the simulated fields for various galaxy samples. Results: We find that both models predict qualitatively similar aperture signals, but there are large quantitative differences. The Durham model predicts larger amplitudes in general. In both models, red galaxies exhibit stronger aperture signals than blue galaxies. Using these aperture measurements and assuming a linear deterministic bias model, we measure relative bias ratios of red and blue galaxy samples. We find that a linear deterministic bias is insufficient to describe the relative clustering of model galaxies below ten arcmin angular scales. Dividing galaxies into luminosity bins, the aperture signals decrease with decreasing luminosity for brighter galaxies, but increase again for fainter galaxies. This increase is likely an artifact due to too many faint satellite galaxies in massive group and cluster halos predicted by the models. Conclusions: Our study shows that galaxy-galaxy(-galaxy) lensing is a sensitive probe of galaxy evolution.

  4. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z {approx} 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    SciTech Connect

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A.; Neri, R.; Cox, P.; Combes, F.; Bolatto, A.; Cooper, M. C.; Bournaud, F.; Comerford, J.; Davis, M.; Newman, S.; Garcia-Burillo, S.; Naab, T.; Omont, A. E-mail: genzel@mpe.mpg.de; and others

    2013-05-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z {approx} 1.2 and 2.2, with log(M{sub *}(M{sub Sun })) {>=} 10.4 and log(SFR(M{sub Sun }/yr)) {>=} 1.5. Including a correction for the incomplete coverage of the M{sub *} -SFR plane, and adopting a ''Galactic'' value for the CO-H{sub 2} conversion factor, we infer average gas fractions of {approx}0.33 at z {approx} 1.2 and {approx}0.47 at z {approx} 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z {approx} 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a {approx}0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z {approx} 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M{sub *}, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z {approx} 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  5. A SUNYAEV-ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg{sup 2} SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Williamson, R.; Benson, B. A.; High, F. W.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Vanderlinde, K.; Ade, P. A. R.; Aird, K. A.; Andersson, K.; Bazin, G.; Armstrong, R.; Ashby, M. L. N.; Brodwin, M.; Bautz, M.; Bertin, E.; Bonamente, M.; Chapman, S. C.; Clocchiatti, A.

    2011-09-10

    The South Pole Telescope (SPT) is currently surveying 2500 deg{sup 2} of the southern sky to detect massive galaxy clusters out to the epoch of their formation using the Sunyaev-Zel'dovich (SZ) effect. This paper presents a catalog of the 26 most significant SZ cluster detections in the full survey region. The catalog includes 14 clusters which have been previously identified and 12 that are new discoveries. These clusters were identified in fields observed to two differing noise depths: 1500 deg{sup 2} at the final SPT survey depth of 18 {mu}K arcmin at 150 GHz and 1000 deg{sup 2} at a depth of 54 {mu}K arcmin. Clusters were selected on the basis of their SZ signal-to-noise ratio (S/N) in SPT maps, a quantity which has been demonstrated to correlate tightly with cluster mass. The S/N thresholds were chosen to achieve a comparable mass selection across survey fields of both depths. Cluster redshifts were obtained with optical and infrared imaging and spectroscopy from a variety of ground- and space-based facilities. The redshifts range from 0.098 {<=} z {<=} 1.132 with a median of z{sub med} = 0.40. The measured SZ S/N and redshifts lead to unbiased mass estimates ranging from 9.8 x 10{sup 14} M{sub sun} h{sup -1}{sub 70} {<=} M{sub 200}({rho}{sub mean}) {<=} 3.1 x 10{sup 15} M{sub sun} h{sup -1}{sub 70}. Based on the SZ mass estimates, we find that none of the clusters are individually in significant tension with the {Lambda}CDM cosmological model. We also test for evidence of non-Gaussianity based on the cluster sample and find the data show no preference for non-Gaussian perturbations.

  6. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  7. The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z = 3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Martis, Nicholas S.; Marchesini, Danilo; Brammer, Gabriel B.; Muzzin, Adam; Labbé, Ivo; Momcheva, Ivelina G.; Skelton, Rosalind E.; Stefanon, Mauro; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2016-08-01

    Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a stellar-mass-complete sample, unique for its combination of surveyed volume and depth, to study the evolution of the fractions of quiescent galaxies, moderately unobscured star-forming galaxies, and dusty star-forming galaxies as a function of stellar mass over the redshift interval 0.2 ≤ z ≤ 3.0. We show that the role of dusty star-forming galaxies within the overall galaxy population becomes more important with increasing stellar mass and grows rapidly with increasing redshift. Specifically, dusty star-forming galaxies dominate the galaxy population with {log}({M}{{star}}/{M}ȯ )≳ 10.3 at z ≳ 2. The ratio of dusty and non-dusty star-forming galaxies as a function of stellar mass changes little with redshift. Dusty star-forming galaxies dominate the star-forming population at {log}({M}{{star}}/{M}ȯ )≳ 10.0{--}10.5, being a factor of ˜3–5 more common, while unobscured star-forming galaxies dominate at {log}({M}{{star}}/{M}ȯ )≲ 10. At {log}({M}{{star}}/{M}ȯ )\\gt 10.5, red galaxies dominate the galaxy population at all redshift z < 3, either because they are quiescent (at late times) or dusty star-forming (in the early universe).

  8. The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z = 3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Martis, Nicholas S.; Marchesini, Danilo; Brammer, Gabriel B.; Muzzin, Adam; Labbé, Ivo; Momcheva, Ivelina G.; Skelton, Rosalind E.; Stefanon, Mauro; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2016-08-01

    Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a stellar-mass-complete sample, unique for its combination of surveyed volume and depth, to study the evolution of the fractions of quiescent galaxies, moderately unobscured star-forming galaxies, and dusty star-forming galaxies as a function of stellar mass over the redshift interval 0.2 ≤ z ≤ 3.0. We show that the role of dusty star-forming galaxies within the overall galaxy population becomes more important with increasing stellar mass and grows rapidly with increasing redshift. Specifically, dusty star-forming galaxies dominate the galaxy population with {log}({M}{{star}}/{M}⊙ )≳ 10.3 at z ≳ 2. The ratio of dusty and non-dusty star-forming galaxies as a function of stellar mass changes little with redshift. Dusty star-forming galaxies dominate the star-forming population at {log}({M}{{star}}/{M}⊙ )≳ 10.0{--}10.5, being a factor of ˜3-5 more common, while unobscured star-forming galaxies dominate at {log}({M}{{star}}/{M}⊙ )≲ 10. At {log}({M}{{star}}/{M}⊙ )\\gt 10.5, red galaxies dominate the galaxy population at all redshift z < 3, either because they are quiescent (at late times) or dusty star-forming (in the early universe).

  9. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH