Science.gov

Sample records for massive vector-meson model

  1. Cranking in hedgehog models with vector mesons

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Cohen, Thomas D.

    1986-09-01

    A cranking calculation is performed in a massive SU(2) × SU(2) × U(1) model with valence quarks and the σ, π, ϱ, A and ω mesons. The nucleon moment of inertia, the N-Δ mass splitting and the proton and neutron charge distributions are obtained. The general framework and the specific ansatz for the cranked fields can be used in any hedgehog model with vector mesons. A possible role of η and δ mesons is also discussed.

  2. Vector and axial vector mesons in a nonlocal chiral quark model

    NASA Astrophysics Data System (ADS)

    Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.

    2016-09-01

    Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.

  3. Scalar mesons in a linear sigma model with (axial-)vector mesons

    SciTech Connect

    Parganlija, D.; Kovacs, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.

    2013-03-25

    The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.

  4. Electromagnetic structure of vector mesons

    NASA Astrophysics Data System (ADS)

    Adamuščín, C.; Dubnička, S.; Dubničková, A. Z.

    2014-11-01

    Electromagnetic structure of the complete nonet of vector mesons (ρ0, ρ+, ρ-, ω, ϕ, K*0, K*+, K¯*0, K*-) is investigated in the framework of the Unitary and Analytic model and insufficient experimental information on it is discussed.

  5. Mass spectrum of vector mesons and their leptonic-decay constants in the bilocal relativistic potential model

    SciTech Connect

    Ablakulov, Kh. Narzikulov, Z.

    2015-01-15

    A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.

  6. Deeply Virtual Compton Scattering on nucleons and nuclei in generalized vector meson dominance model

    SciTech Connect

    Vadim Guzey; Klaus Goeke; Marat Siddikov

    2008-02-01

    We consider Deeply Virtual Compton Scattering (DVCS) on nucleons and nuclei in the framework of generalized vector meson dominance (GVMD) model. We demonstrate that the GVMD model provides a good description of the HERA data on the dependence of the proton DVCS cross section on $Q^2$, $W$ (at $Q^2=4$ GeV$^2$) and $t$. At $Q^2 = 8$ GeV$^2$, the soft $W$-behavior of the GVMD model somewhat underestimates the $W$-dependence of the DVCS cross section due to the hard contribution not present in the GVMD model. We estimate $1/Q^2$ power-suppressed corrections to the DVCS amplitude and the DVCS cross section and find them large. We also make predictions for the nuclear DVCS amplitude and cross section in the kinematics of the future Electron-Ion Collider. We predict significant nuclear shadowing, which matches well predictions of the leading-twist nuclear shadowing in DIS on nuclei.

  7. Existence of the critical endpoint in the vector meson extended linear sigma model

    NASA Astrophysics Data System (ADS)

    Kovács, P.; Szép, Zs.; Wolf, Gy.

    2016-06-01

    The chiral phase transition of the strongly interacting matter is investigated at nonzero temperature and baryon chemical potential (μB) within an extended (2 +1 ) flavor Polyakov constituent quark-meson model that incorporates the effect of the vector and axial vector mesons. The effect of the fermionic vacuum and thermal fluctuations computed from the grand potential of the model is taken into account in the curvature masses of the scalar and pseudoscalar mesons. The parameters of the model are determined by comparing masses and tree-level decay widths with experimental values in a χ2-minimization procedure that selects between various possible assignments of scalar nonet states to physical particles. We examine the restoration of the chiral symmetry by monitoring the temperature evolution of condensates and the chiral partners' masses and of the mixing angles for the pseudoscalar η -η' and the corresponding scalar complex. We calculate the pressure and various thermodynamical observables derived from it and compare them to the continuum extrapolated lattice results of the Wuppertal-Budapest collaboration. We study the T -μB phase diagram of the model and find that a critical endpoint exists for parameters of the model, which give acceptable values of χ2.

  8. Exclusive diffractive production of real photons and vector mesons in a factorized Regge-pole model with nonlinear Pomeron trajectory

    NASA Astrophysics Data System (ADS)

    Fazio, S.; Fiore, R.; Jenkovszky, L.; Lavorini, A.

    2012-03-01

    Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon production (deeply virtual Compton scattering), as well as production of vector mesons treated on the same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a satisfactory description of the experimental data, both for the total cross section as a function of the photon virtuality Q2 or the energy W in the center of mass of the γ*p system, and the differential cross sections as a function of the squared four-momentum transfer t with fixed Q2 and W.

  9. Medium Modification of Vector Mesons

    SciTech Connect

    Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour

    2011-03-01

    The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.

  10. Vector meson dominance and the {rho} meson

    SciTech Connect

    Benayoun, M.; OConnell, H.B.; Williams, A.G.

    1999-04-01

    We discuss the properties of vector mesons, in particular the {rho}{sup 0}, in the context of the hidden local symmetry (HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. First, we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance, VMD1 and VMD2, at both the tree level and one loop order. Finally the S matrix pole position is shown to provide a model and process independent means of specifying the {rho} mass and width, in contrast with the real axis prescription currently used in the Particle Data Group tables. {copyright} {ital 1999} {ital The American Physical Society}

  11. Light Vector Mesons in the Nuclear Medium

    SciTech Connect

    Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen

    2008-07-01

    The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff

  12. QCD description of backward vector meson hard electroproduction

    NASA Astrophysics Data System (ADS)

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

    2015-05-01

    We consider backward vector meson exclusive electroproduction off nucleons in the framework of collinear QCD factorization. Nucleon to vector meson transition distribution amplitudes (TDAs) arise as building blocks for the corresponding factorized amplitudes. In the near-backward kinematics, the suggested factorization mechanism results in the dominance of the transverse cross section of vector meson production (σT≫σL ) and in the characteristic 1 /Q8-scaling behavior of the cross section. We evaluate nucleon to vector meson TDAs in the cross-channel nucleon exchange model and present estimates of the differential cross section for backward ρ0, ω and ϕ meson production off protons. The resulting cross sections are shown to be measurable in the forthcoming JLab@12 GeV experiments.

  13. Quantum Electrodynamics for Vector Mesons

    SciTech Connect

    Djukanovic, Dalibor; Schindler, Matthias R.; Scherer, Stefan; Gegelia, Jambul

    2005-07-01

    Quantum electrodynamics for {rho} mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the {rho}{sup +} is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M{sub {rho}}{sub {sup 0}}-M{sub {rho}}{sub {sup {+-}}}{approx}1 MeV at tree order.

  14. Holographically emulating sequential versus instantaneous disappearance of vector mesons in a hot environment

    NASA Astrophysics Data System (ADS)

    Zöllner, R.; Kämpfer, B.

    2016-10-01

    Minor extensions of the soft-wall model are used to accommodate two variants of Regge trajectories of vector meson excitations. At nonzero temperatures, various options for either sequential or instantaneous disappearance of vector mesons as normalizable modes are found, thus emulating deconfinement at a certain temperature in the order of the (pseudo)critical temperature of QCD. The crucial role of the blackness function, which steers the thermodynamic properties of the considered system, is highlighted.

  15. Asymmetric vector mesons produced in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.; Nechitailo, V. A.

    2016-09-01

    It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.

  16. Exclusive vector meson production at HERA from QCD with saturation

    SciTech Connect

    Marquet, C.; Peschanski, R.; Soyez, G.

    2007-08-01

    Following recent predictions that the geometric scaling properties of deep inelastic scattering data in inclusive {gamma}*p collisions are expected also in exclusive diffractive processes, we investigate the diffractive production of vector mesons. Using analytic results in the framework of the Balitsky-Kovchegov (BK) equation at nonzero momentum transfer, we extend to the nonforward amplitude a QCD-inspired forward saturation model including charm, following the theoretical predictions for the momentum transfer dependence of the saturation scale. We obtain a good fit to the available HERA data and make predictions for deeply virtual Compton scattering measurements.

  17. Multisolitons with vector mesons on the two-sphere

    NASA Astrophysics Data System (ADS)

    Carrasco, F. L.; Reula, Oscar A.

    2014-08-01

    Recent studies have suggested a strong connection between the static solutions of the 3D Skyrme model and those corresponding to its low-dimensional analog (baby-Skyrme model) on a two-sphere. We have found almost identical solutions considering an alternative two-dimensional model in which a vector meson field is introduced and coupled to the system, instead of the usual Skyrme term. It has been known that including this vector meson field in three dimensions stabilizes the nonlinear sigma model without the need for a term that is quartic on derivatives of the pion fields (Skyrme term). The resulting model has proven to share many of the features that the usual Skyrme theory has, but with a better mathematical formulation in terms of the well posedness of its evolution equations. In the present work, we have numerically searched for static multisolitonic solutions of this alternative stabilization, for the case in which the base space is a two-sphere. Moreover, we analyze the stability of these solutions under small perturbations in a fully dynamical setting. We have also considered the inclusion of a particular potential term in the Lagrangian and explored the low- and high-density phases of solitons for different ranges of the parameter space, achieving solitons localized enough, which allows for a comparison with planar (two-dimensional) studies.

  18. Spin alignment of vector mesons in heavy ion and proton-proton collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Cuautle, Eleazar; Corral, G. Herrera; Magnin, J.; Montaño, Luis Manuel

    2010-01-01

    The spin alignment matrix element ρ00 for the vector mesons K and ϕ(1020) has been measured in RHIC at central rapidities. These measurements are consistent with the absence of polarization with respect to the reaction plane in mid-central Au+Au collisions whereas, when measured with respect to the production plane in the same reactions and in p+p collisions, a non-vanishing and p⊥-dependent ρ00 is found. We show that this behavior can be understood in a simple model of vector meson production where the spin of their constituent quarks is oriented during hadronization as the result of Thomas precession.

  19. Vector meson production in ultra-peripheral collisions

    NASA Astrophysics Data System (ADS)

    Thomas, James O.

    Charged ions moving at relativistic speeds generate strong electromagnetic fields (E/M) that, at regions outside the source (important when the E/M sources are nuclei), behave like the fields from a beam of real photons. These equivalent, or virtual photons, can induce an excitation in another nucleus as the source flies by. Existing theories attempt to explain such processes and predict their outcome. One way to study such Ultra-Peripheral Collisions (UPCs) is to simulate them using a Monte-Carlo Multi-Collisional (MCMC) model based on nucleon degrees of freedom. The CRISP (acronym for Collaboration Rio-Illheus-Sao Paulo) model is one such theory. It is basically at the stage of a well-documented software package that implements the MCMC. This model has successfully predicted observables, such as neutron multiplicity, from central collisions and also in UPCs with relativistic heavy ions. However, the photoproduction of vector mesons has only recently been added to the CRISP model. A completely different approach to study UPCs focuses on the role of Parton Distribution Functions (PDFs) in the excitation process. Here, instead of nucleons, the degrees of freedom are quarks and gluons (generically known as partons). Several distinct PDFs exist in the literature and are continually being updated. This work used experimental results released from the ALICE collaboration at the Large Hadron Collider (LHC) facility located at the international particle physics laboratory CERN in Switzerland. Our outputs from the CRISP model, and from the sub-nucleon degrees of freedom model, were photonuclear cross sections for vector meson production. A comparison of our results with the experimental data allowed us to constrain different PDFs, as well as the effect of multiple collisions on the production of mesons with nucleons in the final channel. Upon completion of the calculations, it was seen that the hadronic models could accurately predict the production of the J/psi meson, but

  20. Vector meson production in ultra-peripheral collisions at the LHC

    SciTech Connect

    Fiore, R.; Jenkovszky, L.; Salii, A.; Libov, V.; Machado, M. V. T.

    2015-04-10

    By using a Regge-pole model for vector meson production (VMP), that successfully describes the HERA data, we analyse the connection of VMP cross sections in photon-induced reactions at HERA with those in ultra-peripheral collisions at the Large Hadron Collider (LHC). The role of the low-energy behaviour of VMP cross sections in γp collisions is scrutinized.

  1. Electroproduction of the {phi}(1020) Vector Meson at 4 GeV

    SciTech Connect

    Konstantin Loukachine

    2000-02-01

    We studied the reaction ep {yields} e{prime}p{prime}{phi} with a 4.2 GeV incident electron beam in the region of the electroproduction variables Q{sup 2} from 0.7 to 2.2 GeV{sup 2} and W from 2.0 to 2.6 GeV. The data were taken and analyzed at the Thomas Jefferson National Accelerator Facility. For the first time, we observe the expected t-slope dependence on Q{sup 2} and {Delta}{tau} in {phi} vector meson production. We find that the width of the forward {phi}-meson diffraction peak increases rapidly as the interaction time decreases below c{Delta}{tau} of 1 fm. Within a simple optical model framework, the data show that {phi} meson has a smaller size than the {rho}. The measured {phi} cross-section dependence on Q{sup 2} is in a good agreement with previous measurements and well-described by the phenomenological Pomeron exchange model. Our cross-section data do not favor the standard Vector Meson Dominance and s{bar s}-knockout model predictions. From the angular distribution of the decay {phi} {yields} K{sup +} K{sup -}, assuming the s-channel helicity conservation, we extracted the longitudinal-to-transverse cross-section ratio, R, and Vector Meson Dominance scaling parameter, {xi}{sup 2}, which are consistent with the previous measurements and the model expectations.

  2. Beauty vector meson decay constants from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2016-01-01

    We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.

  3. Medium Modification of the Light Vector Mesons in Nuclei

    SciTech Connect

    Nasseripour, R.; Djalali, C.; Wood, M.; Weygand, D.

    2008-10-13

    Theoretical calculations predict the modification of properties of vector mesons, such as a shift in their masses and/or broadening of their widths in dense nuclear matter. These effects can be related to partial restoration of chiral symmetry at high density or temperature. Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The data were taken with a beam of tagged photons with energies up to 4 GeV on various nuclear targets. The properties of the {rho} vector mesons were investigated via their rare leptonic decay to e+e{sup -}. This decay channel is preferred over hadronic modes in order to eliminate final state interactions in the nuclear matter. The combinatorial background in the mass spectrum was removed by a self-normalizing mixed-event technique. The {rho} meson mass distributions were extracted for each of the targets. Statistically significant results regarding medium modification of the rho meson in the nuclear medium rule out large medium effects. Transparency studies of the {omega} and {phi} vector mesons allows a determination of their widths in the medium.

  4. Leading Twist Parton Distribution Amplitudes in Heavy Vector Mesons

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Ding, Minghui; Chang, Lei; Liu, Yu-Xin; Roberts, Craig D.

    2016-03-01

    We employed QCD's Dyson-Schwinger equations (DSEs) for heavy quarks and obtained the leading twist parton distribution amplitudes (PDAs) in heavy vector mesons J/Ψ and ϒ. We found that all of the amplitudes are narrower than the asymptotic form, while they deviate from δ function. This indicates that the interaction between the two continent quarks are still important in the mesons consisted of charm and bottom quarks.

  5. Systematic measurements of light vector mesons at RHIC-PHENIX

    SciTech Connect

    Nakamiya, Yoshihide; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri V; Enokizono, Akitomo; Hornback, Donald; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; PHENIX, Collaboration

    2008-01-01

    Relativistic heavy-ion collisions offer a powerful tool to explore the phase transition between normal nuclear matter and strongly interacting matter governed by partonic degree of freedom. Measurement of light vector mesons such as {phi} and {omega} in heavy-ion collision provides important probes to investigate the property of the partonic matter. The Masses, lifetimes and branching ratios of these mesons are expected to change due to the partial restoration of chiral symmetry in extremely high temperature medium. The PHENIX experiment at RHIC is uniquely suitable for this study because PHENIX has a versatile detector with excellent capabilities to measure electrons and photons as well as hadrons in a wide dynamic range. Systematic studies of multiple decay channels for light vector mesons make it possible to extract important information from the complex physics environment of heavy-ion collision. We will report the latest results of light vector meson measurements for multiple decay channels ({phi} {yields} e{sup -}e{sup +}, K{sup +}K{sup -} and {omega} {yields} e{sup -}e{sup +}, {pi}{sup 0}{pi}{sup +}{pi}{sup -}) in various collision systems from proton+proton to Au+Au collisions over several collision energies up to {radical}s{sub NN} = 200 GeV.

  6. The coherent cross section of vector mesons in ultraperipheral PbPb collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Xie, Ya-ping; Chen, Xurong

    2016-06-01

    The coherent cross section of J/ψ , ρ , and φ are computed in the dipole model in the ultraperipheral PbPb collisions. The IP-Sat and IIM model are applied in the calculation of the differential cross section of the dipole scattering off the nucleon, and three kinds of forward vector meson wave functions are used in the overlap. The prediction of J/ψ and ρ is compared with the experimental data of the ALICE collaboration, and the prediction of φ is also given in this paper.

  7. Pion transition form factor in the Regge approach and incomplete vector-meson dominance

    SciTech Connect

    Ruiz Arriola, Enrique; Broniowski, Wojciech

    2010-05-01

    The concept of incomplete vector-meson dominance and Regge models is applied to the transition form factor of the pion. First, we argue that variants of the chiral quark model fulfilling the chiral anomaly may violate the Terazawa-West unitarity bounds, as these bounds are based on unverified assumptions for the real parts of the amplitudes, precluding a possible presence of polynomial terms. A direct consequence is that the transition form factor need not necessarily vanish at large values of the photon virtuality. Moreover, in the range of the BABAR experiment, the Terazawa-West bound is an order of magnitude above the data, thus is of formal rather than practical interest. Then we demonstrate how the experimental data may be properly explained with incomplete vector-meson dominance in a simple model with one state, as well as in more sophisticated Regge models. Generalizations of the simple Regge model along the lines of Dominguez result in a proper description of the data, where one may adjust the parameters in such a way that the Terazawa-West bound is satisfied or violated. We also impose the experimental constraint from the Z{yields}{pi}{sub 0{gamma}} decay. Finally, we point out that the photon momentum asymmetry parameter may noticeably influence the precision analysis.

  8. PQChPT with Staggered Sea and Valence Ginsparg-Wilson Quarks: Vector Meson Masses

    SciTech Connect

    Hovhannes R. Grigoryan; Anthony W. Thomas

    2005-09-16

    We consider partially quenched, mixed chiral perturbation theory with staggered sea and Ginsparg-Wilson valence quarks in order to extract a chiral-continuum extrapolation expression for the vector meson mass up to order O(a{sup 2}), at one-loop level. Based on general principles, we accomplish the task without explicitly constructing a sophisticated, heavy vector meson chiral Lagrangian.

  9. Massive mesons in Weyl-Dirac theory

    NASA Astrophysics Data System (ADS)

    Mirabotalebi, S.; Ahmadi, F.; Salehi, H.

    2008-01-01

    In order to study the mass generation of the vector fields in the framework of a conformal invariant gravitational model, the Weyl-Dirac theory is considered. The mass of the Weyl’s meson fields plays a principal role in this theory, it connects basically the conformal and gauge symmetries. We estimate this mass by using the large-scale characteristics of the observed universe. To do this we firstly specify a preferred conformal frame as a cosmological frame, then in this frame, we introduce an exact possible solution of the theory. We also study the dynamical effect of the massive vector meson fields on the trajectories of an elementary particle. We show that a local change of the cosmological frame leads to a Hamilton-Jacobi equation describing a particle with an adjustable mass. The dynamical effect of the massive vector meson field presents itself in the form of a correction term for the mass of the particle.

  10. Electro- and Photoproduction of Vector Mesons at Jefferson Lab

    SciTech Connect

    Marco Battaglieri

    2002-09-01

    The total and differential cross section for exclusive electro- and photoproduction of vector mesons in the resonance region and above (1.6 < W < 2.9 GeV) was measured at Jefferson Laboratory in a wide kinematic range (0 < Q2 < 4 GeV2 and 0< -t < 5 GeV2). The measurement of the total and differential cross section down to 100 pb/GeV2 with the full kinematic coverage, was possible for the first time thanks to the combination of the 100% duty cycle of CEBAF and the large acceptance of the CLAS detector. The main results from the CLAS Collaboration activity in this field will be presented and discussed.

  11. Renormalization in Chern-Simons Gauge Theories and Vector Meson Theory 2+1 Space

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Suresh

    1991-02-01

    The study of radiative corrections to the topological mass of the photon in Chern-Simons gauge theories and the current coupled vector meson model in 2 + 1 space comprise the major concerns of this thesis. Some general aspects of 2 + 1 dimensional field theories, including CS gauge theories, are reviewed. The photon topological mass is renormalized through the addition of the parity odd part of the current correlation function evaluated at zero external momentum (|Pi(0)). Nontrivial contributions arise from a spinor current. It is argued that the Coleman-Hill theorem, which postulates that the one loop fermion graph constitutes the only correction, is overly restrictive. It is shown by explicit calculation that charged vector mesons also contribute. The topological mass corrections from spin zero, spin one-half and (the finite contribution of) spin one fields are combined into a unified expression, suggestive of generalization to higher spins. The current coupled vector meson model is considered next, utilizing a general formulation. Sum rules are derived for the spectral functions characterizing the propagator. One of the sum rules is found to allow the wave function renormalization constant (Z) to exceed unity. A rescaling of the fields, however, is found to resolve the problem. Such behaviour is shown perturbatively for a coupling to a spinor current, and in a soluble model. The former results also reveal parity violation induced through radiative corrections. A bound state is found to exist near the two fermion threshold, for arbitrarily weak coupling. Chapter V considers Aharonov-Bohm scattering of spinning particles. Known results for spin zero and spin one-half scattering are reviewed. In the case of scattering of spin one particles, the wave equation is found to be too singular for spin effects to survive. In the Galilean limit of the problem, the unboundedness disappears and results parallel those for spin one-half. Cross sections for some pure state

  12. Some New Features in the Pseudoscalar Meson and Vector Meson Photoproductions

    NASA Astrophysics Data System (ADS)

    Yu, Byung Geel; Park, Yong Jae; Choi, Ki-Seok; Nam, Seung-il; Choi, Tae-Keun; Oh, Yongseok

    2013-08-01

    We investigate the role of the t-channel meson exchange in various photoproduction processes to discuss features of the respective production mechanism. For the less model-dependent analysis we work with the t-channel meson pole reggeized in the Born approximation amplitude. With the meson-baryon coupling constants chosen consistently with symmetry prediction we show that the Reggeized pole model could reproduce the experimental data to a good degree in the lower energy region. Numerical consequences show the significance of the tensor meson exchange in the γ p → K +Λ, the dominance of the pseudoscalar meson exchange in the πΔ (and KΣ*) processes, and the sizable role of the vector-meson magnetic moment in the charged ρ (and K*) photoproductions, respectively. These new features from the present analyses could provide a useful guide for future study of the N* resonances in the low energy region.

  13. Form Factors and Wave Functions of Vector Mesons in Holographic QCD

    SciTech Connect

    Hovhannes R. Grigoryan; Anatoly V. Radyushkin

    2007-07-01

    Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states in the Q^2-channel. We calculate electric radius of the \\rho-meson, finding the value < r_\\rho^2>_C = 0.53 fm^2.

  14. High-energy photoproduction of rho and phi vector mesons

    SciTech Connect

    Callahan, P.H.

    1983-01-01

    We have studied the photoproduction of rho and phi vector mesons from hydrogen in the Fermilab broad band neutral beam. Forward going two particle final states were detected in a multiparticle spectrometer consisting of two analyzing magnets, a multiwire-proportional-chamber tracking system and a particle identification system. Recoil protons and target fragments were observed in a recoil detector which surrounded the target. The total elastic cross-sections were measured to be independent of energy at the 10% level from 35 to 225 GeV at 10.6 ..mu..b for the rho and from 35 to 165 GeV at 0.64 ..mu..b for the phi. The elastic differential cross-sections were also measured. Approximately 20% of the diffractive rho and phi events were found to be inelastic from an analysis of the recoil detector. The t-dependence of the fraction of diffractive events which are inelastic for both the phi and the psi are consistent with a universal function determined from the rho data.

  15. Realizing vector meson dominance with transverse charge densities

    SciTech Connect

    Gerald Miller, Mark Strikman, Christian Weiss

    2011-10-01

    The transverse charge density in a fast-moving nucleon is represented as a dispersion integral of the imaginary part of the Dirac form factor in the timelike region (spectral function). At a given transverse distance b the integration effectively extends over energies in a range {radical}t {approx}< 1/b, with exponential suppression of larger values. The transverse charge density at peripheral distances thus acts as a low-pass filter for the spectral function and allows one to select energy regions dominated by specific t-channel states, corresponding to definite exchange mechanisms in the spacelike form factor. We show that distances b {approx} 0.5 - 1.5 fm in the isovector density are maximally sensitive to the {rho} meson region, with only a {approx}10% contribution from higher-mass states. Soft-pion exchange governed by chiral dynamics becomes relevant only at larger distances. In the isoscalar density higher-mass states beyond the {omega} are comparatively more important. The dispersion approach suggests that the positive transverse charge density in the neutron at b {approx} 1 fm, found previously in a Fourier analysis of spacelike form factor data, could serve as a sensitive test of the isoscalar strength in the {approx}1 GeV mass region. In terms of partonic structure, the transverse densities in the vector meson region b {approx} 1 fm support an approximate mean-field picture of the motion of valence quarks in the nucleon.

  16. Light Vector Meson Photoproduction off of H at Jefferson Lab and rho-omega Interference in the Leptonic Decay Channel

    SciTech Connect

    Chaden Djalali

    2011-12-01

    Recent studies of light vector meson production in heavy nuclear targets has generated interest in {rho}-{omega} interference in the leptonic e{sup +}e{sup -} decay channel. An experimental study of the elementary process provides valuable input for theoretical models and calculations. In experiment E04-005 (g12), high statistics photoproduction data has been taken in Jefferson Lab's Hall B with the Cebaf Large Acceptance Spectrometer (CLAS). The invariant mass spectrum is fitted with two interfering relativistic Breit-Wigner functions to determine the interference phase. Preliminary analysis indicate a measurable {rho}-{omega} interference.

  17. Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: a phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Martins, L. A. S.; Sauter, W. K.

    2016-02-01

    The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken- x variable and low values of the hard scale Q^2. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon-hadron and hadron-hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrisations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalisation of the γ h cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small x and low Q^2.

  18. Photoproduction of vector mesons in ultra-peripheral p–Pb and Pb–Pb collisions at the LHC with the ALICE experiment

    SciTech Connect

    Broz, Michal

    2015-04-10

    Vector mesons are copiously produced in ultra-peripheral collisions. In these collisions, the impact parameter is larger than the sum of the radii of the two projectiles, implying that electromagnetic processes become dominant. The cross section of production of vector mesons is expected to be sensitive to the gluon distribution and can therefore probe nuclear gluon shadowing (Pb–Pb) and the gluon structure function in the nucleon (p-Pb). The ALICE Collaboration has performed the first measurements of the production of ρ{sup 0}, J/ψ and ψ/(2S) in Pb–Pb ultra-peripheral collision as well as the cross section for exclusive J/ψ photoproduction off protons in ultra-peripheral proton-lead collisions at the LHC. The results are compared to the STARLIGHT Monte Carlo and to QCD based models.

  19. Glueball enhancements in p(gamma,VV)p through vector meson dominance

    SciTech Connect

    Stephen R. Cotanch; Robert A. Williams

    2004-03-01

    Double vector meson photoproduction, p(gamma, G {yields} VV)p, mediated by a scalar glueball G is investigated. Using vector meson dominance (VMD) and Regge/pomeron phenomenology, a measureable glueball enhancement is predicted in the invariant VV = rho rho and omega omega mass spectra. The scalar glueball is assumed to be the lightest physical state on the daughter pomeron trajectory governing diffractive vector meson photoproduction. In addition to cross sections, calculations for hadronic and electromagnetic glueball decays, G -> V V' (V,V'= rho, omega, phi, gamma), and gamma{sub v} V {yields} G transition form factors are presented based upon flavor universality, VMD and phenomenological couplings from phi photoproduction analyses. The predicted glueball decay widths are similar to an independent theoretical study. A novel signature for glueball detection is also discussed.

  20. Numerical values of the fF,fD , and fS coupling constants in the SU(3) invariant interaction Lagrangian of the vector-meson nonet with 1 /2+ octet baryons

    NASA Astrophysics Data System (ADS)

    Adamuscin, Cyril; Bartos, Erik; Dubnicka, Stanislav; Dubnickova, Anna Zuzana

    2016-05-01

    It is demonstrated how the use of all existing experimental information on electric and magnetic nucleon form factors, described by the unitary and analytic (U&A) nucleon electromagnetic structure model in spacelike and timelike regions simultaneously, can provide numerical values of fF,fD,andfS coupling constants in SU(3) invariant interaction Lagrangian of the vector-meson nonet with 1 /2+ octet baryons. The latter, together with universal vector-meson coupling constants fV, play an essential role in a prediction of 1 /2+ octet hyperon electromagnetic form factor behaviors.

  1. Holographic vector mesons from spectral functions at finite baryon or isospin density

    SciTech Connect

    Erdmenger, Johanna; Kaminski, Matthias; Rust, Felix

    2008-02-15

    We consider gauge/gravity duality with flavor for the finite-temperature field theory dual of the AdS-Schwarzschild black hole background with embedded D7-brane probes. In particular, we investigate spectral functions at finite baryon density in the black hole phase. We determine the resonance frequencies corresponding to meson-mass peaks as function of the quark mass over temperature ratio. We find that these frequencies have a minimum for a finite value of the quark mass. If the quotient of quark mass and temperature is increased further, the peaks move to larger frequencies. At the same time the peaks narrow, in agreement with the formation of nearly stable vector meson states which exactly reproduce the meson-mass spectrum found at zero temperature. We also calculate the diffusion coefficient, which has finite value for all quark mass to temperature ratios, and exhibits a first-order phase transition. Finally we consider an isospin chemical potential and find that the spectral functions display a resonance peak splitting, similar to the isospin meson-mass splitting observed in effective QCD models.

  2. On pseudosupersymmetric oscillators and reality of relativistic energies for vector mesons

    NASA Technical Reports Server (NTRS)

    Beckers, Jules; Debergh, Nathalie

    1995-01-01

    Specific oscillators - hereafter called pseudosupersymmetric oscillators - appear as interesting nonrelativistic concepts in connection with the study of relativistic vector mesons interacting with an external constant magnetic field when the real character of the energy eigenvalues is required as expected. A new pseudosupersymmetric quantum mechanics can then be developed and the corresponding pseudosupersymmetries can be pointed out.

  3. Exclusive Vector Meson Production and Deep Virtual Compton Scattering in Electron-Ion Collisions

    SciTech Connect

    Cazaroto, E. R.; Navarra, F. S.; Carvalho, F.; Kugeratski, M. S.; Goncalves, V. P.

    2010-11-12

    We calculate the nuclear cross section for coherent and incoherent deep virtual Compton scattering as well as for coherent and incoherent vector meson production for the mesons J/{Psi}, {phi} and {rho} within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.

  4. Nonleptonic two-body B decays including axial-vector mesons in the final state

    SciTech Connect

    Calderon, G.; Munoz, J. H.; Vera, C. E.

    2007-11-01

    We present a systematic study of exclusive charmless nonleptonic two-body B decays including axial-vector mesons in the final state. We calculate branching ratios of B{yields}PA, VA, and AA decays, where A, V, and P denote an axial vector, a vector, and a pseudoscalar meson, respectively. We assume a naive factorization hypothesis and use the improved version of the nonrelativistic Isgur-Scora-Grinstein-Wise quark model for form factors in B{yields}A transitions. We include contributions that arise from the effective {delta}B=1 weak Hamiltonian H{sub eff}. The respective factorized amplitudes of these decays are explicitly shown and their penguin contributions are classified. We find that decays B{sup -}{yields}a{sub 1}{sup 0}{pi}{sup -}, B{sup 0}{yields}a{sub 1}{sup {+-}}{pi}{sup {+-}}, B{sup -}{yields}a{sub 1}{sup -}K{sup 0}, B{sup 0}{yields}a{sub 1}{sup +}K{sup -}, B{sup 0}{yields}f{sub 1}K{sup 0}, B{sup -}{yields}f{sub 1}K{sup -}, B{sup -}{yields}K{sub 1}{sup -}(1400){eta}{sup (')}, B{sup -}{yields}b{sub 1}{sup -}K{sup 0}, and B{sup 0}{yields}b{sub 1}{sup +}{pi}{sup -}(K{sup -}) have branching ratios of the order of 10{sup -5}. We also study the dependence of branching ratios for B{yields}K{sub 1}P(V,A) decays [K{sub 1}=K{sub 1}(1270), K{sub 1}(1400)] with respect to the mixing angle between K{sub 1A} and K{sub 1B}.

  5. Double vector meson production in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.

    2016-07-01

    In this paper we analyze the double vector meson production in photon-hadron (γ h) interactions at pp / pA / AA collisions and present predictions for the ρ ρ , J/Ψ J/Ψ , and ρ J/Ψ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in γ γ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS, and LHCb Collaborations. Our results demonstrate that the ρ ρ and J/Ψ J/Ψ production in PbPb collisions is dominated by the double-scattering mechanism, while the two-photon mechanism dominates in pp collisions. Moreover, our results indicate that the analysis of the ρ J/Ψ production at LHC can be useful to constrain the double-scattering mechanism.

  6. Extraction of polarization observables in vector-meson photoproduction using a polarized target at CLAS

    NASA Astrophysics Data System (ADS)

    Roy, P.

    2016-05-01

    Baryon spectroscopy is an indispensable tool for investigating the nature of strong interaction within baryons. The study of vector-meson photoproduction is expected to improve our understanding of the properties of known baryon resonances and also immensely aid in discovering new higher-mass resonances. Polarization observables, in addition to unpolarized cross sections, are required to identify the contributing resonances to these reactions with minimal ambiguities. Preliminary results from the FROST experiment on beam-polarization observables in γ →p →→p ω as well as γ →p →→p π+π- using a linearly-polarized beam and a transversely-polarized FROzen Spin butanol Target will be presented. The latter reaction will provide important information on N* to (broad) ρ vector-meson decay modes, which is difficult to extract directly from the data.

  7. Rotation-Invariant Relations in Vector Meson Decays into Fermion Pairs

    NASA Astrophysics Data System (ADS)

    Faccioli, Pietro; Lourenço, Carlos; Seixas, João

    2010-08-01

    The covariance properties of angular momentum eigenstates imply the existence of a rotation-invariant relation among the parameters of the difermion decay distribution of inclusively observed vector mesons. This relation is a generalization of the Lam-Tung identity, a result specific to Drell-Yan production in perturbative QCD, here shown to be equivalent to the dynamical condition that the dilepton is always produced transversely polarized with respect to quantization axes belonging to the production plane.

  8. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    NASA Technical Reports Server (NTRS)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  9. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider

    SciTech Connect

    Lappi, T.; Venugopalan, R.; Mantysaari, H.

    2015-02-25

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.

  10. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider.

    PubMed

    Lappi, T; Mäntysaari, H; Venugopalan, R

    2015-02-27

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.

  11. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider.

    PubMed

    Lappi, T; Mäntysaari, H; Venugopalan, R

    2015-02-27

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multiparton Fock states in the nuclear wave functions. In particular, the saturation scale that characterizes this multiparton dynamics is significantly larger in central events relative to minimum bias events. As an application, we study the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model. PMID:25768758

  12. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Tang, A. H.; Wang, G.

    2016-08-01

    The electromagnetic (EM) field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system and causes photons emitted in upper and lower hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, owing to the global vorticity, is also possible. In this paper, we lay out a procedure to measure the variation of the circular polarization with respect to the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper and lower hemispheres to identify and quantify such effects.

  13. Measuring nuclear transparency from exclusive vector meson production in lepton-nucleus scattering

    SciTech Connect

    Fang, G.Y.

    1994-04-01

    Preliminary results on the measurement of nuclear transparencies from exclusive {rho}{sup 0} meson production from E665 at Fermilab are reported. The data were collected on hydrogen, deuterium, carbon, calcium, and lead targets with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production channels as the virtuality of the photon increases, as expected of color transparency. Ideas of systematic studies of color transparency in exclusive vector meson production at CEBAF are discussed.

  14. Inclusive production of vector mesons in e/sup +/e/sup minus/ annihilation at. sqrt. s = 29 GeV

    SciTech Connect

    Edberg, T.K.

    1988-08-01

    This thesis describes the measurement of multiplicities and differential cross-sections of the /rho//sup 0/, K*/sup 0/, and /phi/ in e/sup +/e/sup -/ annihilation at ..sqrt..s = 29 GeV, using data collected by the TPC/2..gamma.. Detector Facility at PEP. The number of vector mesons per event is determined to be N(/rho//sup 0/) = 0.77 +- 0.08 +- 0.15, N(K*/sup 0/ + /bar K/*/sup 0/) = 0.58 +- 0.05 +- 0.11, and N(/phi/) = 0.076 +- 0.010 +- 0.012. These multiplicities are used to find that the ratio of strange quarks to up quarks produced in the hadronization process is 0.30 +- 0.07, and that the ratio of light vector mesons to all light mesons produced in the hadronization process is 0.45 +- 0.08. All results agree with previous measurements. Measurements are compared with predictions of the Lund and Webber hadronization models, neither model is particularly favored nor disfavored. 60 refs., 32 figs., 24 tabs.

  15. Production rates of strange vector mesons at the Z{sup 0} resonance

    SciTech Connect

    Dima, M.O.

    1997-05-01

    This dissertation presents a study of strange vector meson production, {open_quotes}leading particle{close_quotes} effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z{sup 0}. The measurements were performed in e{sup +}e{sup -} collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of {phi} and K*{sup 0} and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*{sup 0} production is studied separately in these samples, and the results show evidence for the {open_quotes}leading particle{close_quotes} effect. The difference between K*{sup 0} production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.

  16. Observation of chicJ radiative decays to light vector mesons.

    PubMed

    Bennett, J V; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tan, B J Y; Tomaradze, A; Libby, J; Martin, L; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Tatishvili, G; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J

    2008-10-10

    Using a total of 2.74 x 10(7) decays of the psi(2S) collected with the CLEO-c detector, we present a study of chi(cJ)-->gammaV, where V=rho(0), omega, phi. The transitions chi(c1)-->gammarho(0 and chi(c1)-->gammaomega are observed with B(chi(c1)-->gammarho(0))=(2.43+/-0.19+/-0.22) x 10(-4) and B(chi(c1)-->gammaomega)=(8.3+/-1.5+/-1.2) x 10(-5). In the chi(c1)-->gammarho(0) transition, the final state meson is dominantly longitudinally polarized. Upper limits on the branching fractions of other chi(cJ) states to light vector mesons are presented. PMID:18999588

  17. Vector meson and associated strangeness production using a linearly polarized photon beam at Jefferson Lab

    SciTech Connect

    Philip L. Cole

    2004-09-01

    The set of experiments forming the g8a run took place in the summer of 2001 in Hall B of Jefferson Lab. The g8a run was the commissioning experiment for the linearly-polarized photon beam at CLAS. The aim of these experiments is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. A beam of tagged and collimated linearly polarized photons (energy range 1.8-2.2 GeV) in conjunction with the large solid angle coverage of CLAS make possible the extraction of the differential cross-sections and polarization observables for the photoproduction of vector mesons and kaons. The reaction channels are under investigation to search for possibly missing nucleon resonances. An overview of the experiment and preliminary results on the measurement of the photon asymmetries of the aforementioned reactions will be presented in this paper.

  18. Beyond gauge theory: positivity and causal localization in the presence of vector mesons

    NASA Astrophysics Data System (ADS)

    Schroer, Bert

    2016-07-01

    The Hilbert space formulation of interacting s=1 vector-potentials stands is an interesting contrast with the point-local Krein space setting of gauge theory. Already in the absence of interactions the Wilson loop in a Hilbert space setting has a topological property which is missing in the gauge-theoretic description (Haag duality, Aharonov-Bohm effect); the conceptual differences increase in the presence of interactions. The Hilbert space positivity weakens the causal localization properties of interacting fields, which results in the replacement of the gauge-variant point-local matter fields in Krein space by string-local physical fields in Hilbert space. The gauge invariance of the perturbative S-matrix corresponds to its independence of the space-like string direction of its interpolating fields. In contrast to gauge theory, whose direct physical range is limited to a gauge-invariant perturbative S-matrix and local observables, its Hilbert space string-local counterpart is a full-fledged quantum field theory (QFT). The new setting reveals that the Lie structure of self-coupled vector mesons results from perturbative implementation of the causal localization principles of QFT.

  19. Inclusive vector meson production in nuµD charged current interactions

    SciTech Connect

    Chang, C. C.; Mann, W. A.; Napier, A.

    1980-01-01

    From hadronic systems induced in 3571 charged-current neutrino-deuterium interactions in the FNAL 15-foot diameter bubble chamber, invariant mass distributions (..pi../sup +/..pi../sup -/) and (K/sub s//sup 0/..pi../sup + -/) have been used to study inclusive production of vector meson resonances. Inclusive rates from a pure isoscalar target are determined to be 0.05 +- 0.01 K*/sup +/(890) per charged-current event and 0.19 +- 0.04 rho/sup 0/ per charged-current event. Inclusive K*(890)/sup + -/ production is found to be predominantly K*/sup +/(890) in the current fragmentation region. The ratios (rho/sup 0//event) from neutron targets and from proton targets separately are, respectively, 0.18 +- 0.06 and 0.21 +- 0.08. For deuteron targets, trends in the dependence of (rho/sup 0//event) on variables Y/sub R/, W, p/sub T/, and Q/sup 2/ are found to be similar to those observed in rho/sup 0/ production from anti ..nu../sub ..mu../p collisions.

  20. Double vector meson production in γ γ interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.

    2016-03-01

    In this paper we revisit the double vector meson production in γ γ interactions at heavy ion collisions and present, by the first time, predictions for the ρ ρ and J/Ψ J/Ψ production in proton-nucleus and proton-proton collisions. In order to obtain realistic predictions for rapidity distributions and total cross sections for the double vector production in ultra peripheral hadronic collisions we take into account the description of γ γ → VV cross section at low energies as well as its behavior at large energies, associated to the gluonic interaction between the color dipoles. Our results demonstrate that the double ρ production is dominated by the low energy behavior of the γ γ → VV cross section. In contrast, for the double J/Ψ production, the contribution associated to the description of the QCD dynamics at high energies contributes significantly, mainly in pp collisions. Predictions for the RHIC, LHC, FCC, and CEPC-SPPC energies are shown.

  1. Renormalization of the low-energy constants of chiral perturbation theory from loops with dynamical vector mesons

    NASA Astrophysics Data System (ADS)

    Terschlüsen, Carla; Leupold, Stefan

    2016-07-01

    Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent structures that appear for the effective low-energy action at chiral orders Q2 and Q4 . The corresponding renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined. Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the framework of chiral perturbation theory in the limit of a large number of colors.

  2. LETTER TO THE EDITOR: Massive, topologically massive, models

    NASA Astrophysics Data System (ADS)

    Deser, S.; Tekin, Bayram

    2002-06-01

    In three dimensions, there are two distinct mass-generating mechanisms for gauge fields: adding the usual Proca/Pauli-Fierz, or the more esoteric Chern-Simons (CS), terms. Here, we analyse the three-term models where both types are present and their various limits. Surprisingly, in the tensor case, these seemingly innocuous systems are physically unacceptable. If the sign of the Einstein term is 'wrong', as is in fact required in the CS theory, then the excitation masses are always complex; with the usual sign, there is a (known) region of the two mass parameters where reality is restored, but instead a ghost problem arises, while for the 'pure mass' two-term system without an Einstein action, complex masses are unavoidable. This contrasts with the smooth behaviour of the corresponding vector models. Separately, we show that the 'partial masslessness' exhibited by (plain) massive spin-2 models in de Sitter backgrounds is shared by the three-term system: it also enjoys a reduced local gauge invariance when this mass parameter is tuned to the cosmological constant.

  3. Simulations for an experiment to probe the in-medium properties of photoproduced vector mesons

    SciTech Connect

    Clarisse Tur

    2003-04-01

    The g7 experiment has been devised to measure the modifications of the vector meson properties, such as mass or width, inside nuclear medium, based on the ideas presented in the numerous papers published during the fifteen years that preceded its run. It consisted in sending a bremstrahlung photon beam on a target that contained elements with different densities, a liquid deuterium cell, and seven solid foils: carbon, iron, carbon, lead, carbon, titanium, carbon. The goal of the experiment is to examine the inclusive e{sup +}e{sup -} photoproduction in the incoherent region. The reaction of interest to g7 is {gamma}A {yields} VA{prime} {yields} e{sup +}e{sup -}A{prime} where V could be a {rho} an {omega} or a {phi} meson. The goal of the present thesis was to present the simulation work done prior to the g7 run in the fall of 2002 at Jlab, essential for the choice of the ideal experimental setup and conditions, as well as the test run of June 2002. The simulations needed a particular attention, given the many experimental challenges that awaited the g7 team. First, one had to prove that the resolution of the CLAS detector was sufficient to properly locate the vertices of the events given the multi-segmented target, and the simulations proved that fact. They also provided a rough idea of the systematic errors that one had to expect. Using nuclei bigger than carbon was a first time for CLAS. Given the very small branching ratio for {rho} {yields} e{sup +}e{sup -}, a very intense beam had to be sent on the target containing high-Z material. Thus, a huge background, formed of low energy e{sup +}e{sup -} pairs, was expected around the target and the region I of the drift chambers and which one had to reduce in an efficient way. The simulations showed that using the mini torus with its current set to 75% of its maximum value would give a reduction of about a factor of 3 in the number of hits in the region I of the drift chambers, compared to the case with no mini torus

  4. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive

  5. Spin alignment of leading vector mesons and polarization of {lambda} baryons in multihadronic Z{sup 0} decays at OPAL

    SciTech Connect

    Kress, Thomas H.

    1998-05-29

    Helicity density-matrix elements have been measured for K*{sup 0},{phi}(1020), D* and B* mesons produced inclusively in hadronic Z{sup 0} decays in the OPAL experiment at LEP. Apart from the B*, all show a preference for the helicity-zero state when the meson carries a large fraction of the available energy. The mechanisms which produce such spin alignment in the non-perturbative hadronization of the primary partons to the vector mesons is so far unexplained. Inclusive {lambda} baryons show significant longitudinal polarization at intermediate and high momentum. This may be related to the primary quark and antiquark polarization and the hadronization mechanism which produces the leading baryons.

  6. Towards Realistic Modeling of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Gnedin, O.; Li, H.

    2016-06-01

    Cosmological simulations of galaxy formation are rapidly advancing towards smaller scales. Current models can now resolve giant molecular clouds in galaxies and predict basic properties of star clusters forming within them. I will describe new theoretical simulations of the formation of the Milky Way throughout cosmic time, with the adaptive mesh refinement code ART. However, many challenges - physical and numerical - still remain. I will discuss how observations of massive star clusters and star forming regions can help us overcome some of them. Video of the talk is available at https://goo.gl/ZoZOfX

  7. Vector and axial anomaly in the Thirring-Wess model

    SciTech Connect

    Falco, Pierluigi

    2010-08-15

    We study the two dimensional vector meson model introduced by Thirring and Wess, that is to say the Schwinger model with massive photon and massless fermion. We prove, with a renormalization group approach, that the vector and axial Ward identities are broken by the Adler-Bell-Jackiw anomaly; and we rigorously establish three widely believed consequences: (a) the interacting meson-meson correlation equals a free boson propagator, although the mass is additively renormalized by the anomaly; (b) the anomaly is quadratic in the charge, in agreement with the Adler-Bardeen formula; (c) the fermion-fermion correlation has an anomalous long-distance decay.

  8. Vector Meson Mass Corrections at O(a{sup 2}) in PQChPT with Wilson and Ginsparg-Wilson quarks

    SciTech Connect

    Hovhannes R. Grigoryan; Anthony W. Thomas

    2005-07-01

    We derive the mixed as well as unmixed lattice heavy meson chiral Lagrangian up to order O(a{sup 2}), with Wilson and Ginsparg-Wilson fermions. We consider two flavor partially quenched theory and calculate vector meson mass corrections up to order O(a{sup 2}), including the corrections associated with the violation of O(4) rotational symmetry down to hypercubic group. The chiral extrapolation formula is then compared with that used in numerical simulations.

  9. Population Models for Massive Globular Clusters

    NASA Astrophysics Data System (ADS)

    Lee, Young-Wook; Joo, Seok-Joo; Han, Sang-Il; Na, Chongsam; Lim, Dongwook; Roh, Dong-Goo

    2015-03-01

    Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ω Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y 2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).

  10. Massive Stars: Input Physics and Stellar Models

    NASA Astrophysics Data System (ADS)

    El Eid, M. F.; The, L.-S.; Meyer, B. S.

    2009-10-01

    We present a general overview of the structure and evolution of massive stars of masses ≥12 M ⊙ during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C( α, γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.

  11. Observation of a New Narrow Axial-Vector Meson a1(1420).

    PubMed

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Azevedo, C; Badełek, B; Balestra, F; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Chang, W-C; Chiosso, M; Choi, I; Chung, S U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dünnweber, W; Duic, V; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Gnesi, I; Gorzellik, M; Grabmüller, S; Grasso, A; Grosse-Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; von Harrach, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Horikawa, N; d'Hose, N; Hsieh, C-Yu; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jörg, P; Joosten, R; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Nagaytsev, A; Nagel, T; Nerling, F; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schmeing, S; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schlüter, T; Selyunin, A; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Wallner, S; Weisrock, T; Wilfert, M; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A

    2015-08-21

    The COMPASS Collaboration at CERN has measured diffractive dissociation of 190  GeV/c pions into the π(-)π(-)π(+) final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of 3π mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88 waves. A narrow peak is observed in the f0(980)π channel with spin, parity and C-parity quantum numbers J(PC)=1(++). We present a resonance-model study of a subset of the spin-density matrix selecting 3π states with J(PC)=2(++) and 4(++) decaying into ρ(770)π and with J(PC)=1(++) decaying into f0(980)π. We identify a new a1 meson with mass (1414(-13)(+15))  MeV/c2 and width (153(-23)(+8))  MeV/c2. Within the final states investigated in our analysis, we observe the new a1(1420) decaying only into f0(980)π, suggesting its exotic nature. PMID:26340182

  12. Analysis of heavy spin-3/2 baryon-heavy spin-1/2 baryon-light vector meson vertices in QCD

    SciTech Connect

    Aliev, T. M.; Savci, M.; Azizi, K; Zamiralov, V. S.

    2011-05-01

    The heavy spin-3/2 baryon-heavy spin-1/2 baryon vertices with light vector mesons are studied within the light cone QCD sum rules method. These vertices are parametrized in terms of three coupling constants. These couplings are calculated for all possible transitions. It is shown that correlation functions for these transitions are described by only one invariant function for every Lorenz structure. The obtained relations between the correlation functions of the different transitions are structure independent while explicit expressions of invariant functions depend on the Lorenz structure.

  13. The f{sub 0}(1370), f{sub 0}(1710), f{sub 2}(1270), f{sub 2}{sup '}(1525), and K{sub 2}{sup *}(1430) as dynamically generated states from vector meson-vector meson interaction

    SciTech Connect

    Geng, L. S.; Oset, E.; Molina, R.; Martinez Torres, A.; Branz, T.; Guo, F. K.; Dai, L. R.; Sun, B. X.

    2010-12-28

    We report on some recent developments in understanding the nature of the low-lying mesonic resonances f{sub 0}(1370), f{sub 0}(1710), f{sub 2}(1270), f{sub 2}{sup '}(1525), and K{sub 2}*(1430). In particular we show that these five resonances can be dynamically generated from vector meson-vector meson interaction in a coupled-channel unitary approach, which utilizes the phenomenologically very successful hidden-gauge Lagrangians to produce the interaction kernel between two vector mesons, which is then unitarized by the Bethe-Salpeter-equation method. The data on the strong decay branching ratios, total decay widths, and radiative decay widths of these five states, and on related J/{psi} decay processes can all be well described by such an approach. We also make predictions, compare them with the results of earlier studies, and highlight observables that if measured can be used to distinguish different pictures of these resonances.

  14. Observation of χc1 Decays into Vector Meson Pairs ΦΦ, ωω and, ωΦ

    SciTech Connect

    Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.

    2011-08-22

    Using (106±4)×10⁶ ψ(3686) events accumulated with the BESIII detector at the BEPCII e⁺e⁻ collider, we present the first measurement of decays of χc1 to vector meson pairs ΦΦ, ωω, and ωΦ. The branching fractions are measured to be (4.4±0.3±0.5)×10⁻⁴, (6.0±0.3±0.7)×10⁻⁴, and (2.2±0.6±0.2)×10⁻⁵, for χc1 →ΦΦ, ωω, and ωΦ, respectively, which indicates that the hadron helicity selection rule is significantly violated in χcJ decays. In addition, the measurement of χcJ→ωΦ provides the first indication of the rate of doubly OZI-suppressed χcJ decay. Finally, we present improved measurements for the branching fractions of χc0 and χc2 to vector meson pairs.

  15. Observation of χc1 Decays into Vector Meson Pairs ΦΦ, ωω and, ωΦ

    DOE PAGES

    Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; et al

    2011-08-22

    Using (106±4)×10⁶ ψ(3686) events accumulated with the BESIII detector at the BEPCII e⁺e⁻ collider, we present the first measurement of decays of χc1 to vector meson pairs ΦΦ, ωω, and ωΦ. The branching fractions are measured to be (4.4±0.3±0.5)×10⁻⁴, (6.0±0.3±0.7)×10⁻⁴, and (2.2±0.6±0.2)×10⁻⁵, for χc1 →ΦΦ, ωω, and ωΦ, respectively, which indicates that the hadron helicity selection rule is significantly violated in χcJ decays. In addition, the measurement of χcJ→ωΦ provides the first indication of the rate of doubly OZI-suppressed χcJ decay. Finally, we present improved measurements for the branching fractions of χc0 and χc2 to vector meson pairs.

  16. Periodic ground state for the charged massive Schwinger model

    SciTech Connect

    Nagy, S.; Sailer, K.; Polonyi, J.

    2004-11-15

    It is shown that the charged massive Schwinger model supports a periodic vacuum structure for arbitrary charge density, similar to the common crystalline layout known in solid state physics. The dynamical origin of the inhomogeneity is identified in the framework of the bosonized model and in terms of the original fermionic variables.

  17. Generalized universality in the massive sine-Gordon model

    SciTech Connect

    Nagy, S.; Sailer, K.; Nandori, I.; Polonyi, J.

    2008-01-15

    A nontrivial interplay of the UV and IR scaling laws, a generalization of the universality is demonstrated in the framework of the massive sine-Gordon model, as a result of a detailed study of the global behavior of the renormalization group flow and the phase structure.

  18. Vainshtein mechanism in massive gravity nonlinear sigma models

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Mizuno, Shuntaro

    2016-09-01

    We study the stability of the Vainshtein screening solution of massive gravity/bigravity based on the massive nonlinear sigma model as the effective action inside the Vainshtein radius. The effective action is obtained by taking the Λ2 decoupling limit around a curved spacetime. First we derive a general consequence that any Ricci flat Vainshtein screening solution is unstable when we take into account the excitation of the scalar graviton only. This instability suggests that the nonlinear excitation of the scalar graviton is not sufficient to obtain a successful Vainshtein screening in massive gravity/bigravity. Then to see the role of the excitation of the vector graviton, we study perturbations around the static and spherically symmetric solution obtained in bigravity explicitly. As a result, we find that linear excitations of the vector graviton cannot be helpful and the solution still suffers from a ghost and/or a gradient instability for any parameters of the theory for this background.

  19. Gauge-invariant massive BF models

    NASA Astrophysics Data System (ADS)

    Bizdadea, Constantin; Saliu, Solange-Odile

    2016-02-01

    Consistent interactions that can be added to a free, Abelian gauge theory comprising a BF model and a finite set of massless real scalar fields are constructed from the deformation of the solution to the master equation based on specific cohomological techniques. Under the hypotheses of analyticity in the coupling constant, Lorentz covariance, spacetime locality, and Poincaré invariance, supplemented with the requirement of the preservation of the number of derivatives on each field with respect to the free theory, we see that the deformation procedure leads to two classes of gauge-invariant interacting theories with a mass term for the BF vector field A_{μ } with U(1) gauge invariance. In order to derive this result we have not used the Higgs mechanism based on spontaneous symmetry breaking.

  20. Modeling groundwater flow on massively parallel computers

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  1. The halo model in a massive neutrino cosmology

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  2. Dynamical Models for High-Energy Emission from Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley %FAA(University of Delaware)

    Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the

  3. Adiabatic density perturbations in a cosmological model with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Jaroszynski, M.

    Lifshitz (1946) has investigated the gravitational instability of a Friedmann Universe model. He treated the matter content of the universe as a single perfect fluid. In other studies, a two fluid approach was used to represent neutrinos and other kinds of matter separately. A distribution function was used by Peebles and Yu (1970), and also by Silk and Wilson (1980) to describe photons of the black-body background during and after the recombination of the primeval plasma. The approach used in the present investigation is similar, except for two differences. No collisional term is used in the kinetic equation, and massive particles are considered. A detailed description is provided of the method used to investigate the gravitational instability of a cosmological model with massive neutrinos. It is pointed out that the obtained results are preliminary. The final spectrum of perturbations is similar to those of Peebles and Yu (1970), and Wilson and Silk (1981).

  4. A symmetric approach to the massive nonlinear sigma model

    DOE PAGES

    Ferrari, Ruggero

    2011-09-28

    In the present study we extend to the massive case the procedure of divergences subtraction, previously introduced for the massless nonlinear sigma model (D = 4). Perturbative expansion in the number of loops is successfully constructed. The resulting theory depends on the Spontaneous Symmetry Breaking parameter v, on the mass m and on the radiative correction parameter Λ. Fermions are not considered in the present work. SU(2) Ⓧ SU(2) is the group used.

  5. Massive dark photons in a Higgs portal model

    SciTech Connect

    Hadjimichef, Dimiter

    2015-12-17

    An extension of the Standard Model with a hidden sector which consists of gauge singlets (a Dirac fermion χ and a scalar S) plus a vector boson V{sub μ} (dark massive photon) is studied. The singlet scalar interacts with the Standard Model sector through the triple and quartic scalar interactions, while the singlet fermion and vector boson field interact with the Standard Model only via the singlet scalar. The scalar field generates the vector boson’s mass. Perspectives for future e{sup −}e{sup +} colliders is considered.

  6. Density matrix renormalization group approach to the massive Schwinger model

    NASA Astrophysics Data System (ADS)

    Byrnes, T. M.; Sriganesh, P.; Bursill, R. J.; Hamer, C. J.

    2002-07-01

    The massive Schwinger model is studied using a density matrix renormalization group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of ``half-asymptotic'' particles at a background field θ=π is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located and demonstrated to belong in the 2D Ising universality class.

  7. Massive-Scale Tree Modelling from Tls Data

    NASA Astrophysics Data System (ADS)

    Raumonen, P.; Casella, E.; Calders, K.; Murphy, S.; Åkerbloma, , M.; Kaasalainen, M.

    2015-03-01

    This paper presents a method for reconstructing automatically the quantitative structure model of every tree in a forest plot from terrestrial laser scanner data. A new feature is the automatic extraction of individual trees from the point cloud. The method is tested with a 30-m diameter English oak plot and a 80-m diameter Australian eucalyptus plot. For the oak plot the total biomass was overestimated by about 17 %, when compared to allometry (N = 15), and the modelling time was about 100 min with a laptop. For the eucalyptus plot the total biomass was overestimated by about 8.5 %, when compared to a destructive reference (N = 27), and the modelling time was about 160 min. The method provides accurate and fast tree modelling abilities for, e.g., biomass estimation and ground truth data for airborne measurements at a massive ground scale.

  8. Higher derivative massive spin-3 models in D =2 +1

    NASA Astrophysics Data System (ADS)

    Dalmazi, D.; Mendonça, E. L.

    2016-07-01

    We find new higher derivative models describing a parity doublet of massive spin-3 modes in D =2 +1 dimensions. One of them is of fourth order in derivatives while the other one is of sixth order. They are complete, in the sense that they contain the auxiliary scalar field required to remove spurious degrees of freedom. Both of them are obtained through the master action technique starting with the usual (second-order) spin-3 Singh-Hagen model, which guarantees that they are ghost free. The fourth- and sixth-order terms are both invariant under (transverse) Weyl transformations, quite similarly to the fourth-order K -term of the "new massive gravity." The sixth-order term slightly differs from the product of the Schouten by the Einstein tensor, both of third order in derivatives. It is also possible to write down the fourth-order term as a product of a Schouten-like by an Einstein-like tensor (both of second order in derivatives) in close analogy with the K -term.

  9. The Influence of the Enhanced Vector Meson Sector on the Properties of the Matter of Neutron Stars

    PubMed Central

    Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika

    2014-01-01

    This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass. PMID:25188304

  10. The influence of the enhanced vector meson sector on the properties of the matter of neutron stars.

    PubMed

    Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika

    2014-01-01

    This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral SU(3)L x SU(3)R symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass. PMID:25188304

  11. The influence of the enhanced vector meson sector on the properties of the matter of neutron stars.

    PubMed

    Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika

    2014-01-01

    This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral SU(3)L x SU(3)R symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass.

  12. Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Jäger, Benjamin; Meyer, Harvey B.

    2016-03-01

    We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures T /Tc=0.156 , 0.8, 1.0, 1.25 and 1.67 with Tc≃203 MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of ≃270 MeV . Exploiting exact sum rules and applying a phenomenologically motivated Ansatz allows us to determine the spectral function ρ (ω ,T ) via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find evidence for the dissociation of the ρ meson by resolving its spectral weight at the available temperatures. We also apply the Backus-Gilbert method as a model-independent approach to this problem. At any given frequency, it yields a local weighted average of the true spectral function. We use this method to compare kinetic theory predictions and previously published phenomenological spectral functions to our lattice study.

  13. Inclusive production of strange and vector mesons in e/sup +/e/sup -/ annihilation at 29 GeV

    SciTech Connect

    Schellman, H.M.

    1984-11-01

    The Mark II detector is used to measure the inclusive production rates for K/sup 0/, K/sup + -/, rho/sup 0/, K*/sup 0/ and K*/sup + -/ in a sample of 59,489 hadronic events produced in e/sup +/e/sup -/ annihilation at 29 GeV. The inclusive rates for rho/sup 0/ and K*/sup 0/ + anti K*/sup 0/ production for momenta greater than 1 GeV/c are found to be 0.44 +- 0.04 +- 0.06 per event and 0.42 +- 0.05 +- 0.08 per event respectively. The rate for K*/sup + -/ production for momenta greater than 2 GeV/c is found to be 0.26 +- 0.05 +- 0.06 per event. The rate for K/sup 0/ + anti K/sup 0/ production over the full momentum range is found to be 1.27 + 0.03 +- 0.15 per event. The differential production rates for K/sup 0/, rho/sup 0/ and K*/sup + -/ are, in addition, determined as a function of the particle energy. The inclusive rate for K/sup + -/ is also measured for K/sup + -/ momenta less than 900 MeV/c and is found to be 1.31 +- 0.09 +- 0.19 times the K/sup 0/ + anti K/sup 0/ rate in the same momentum region. These production rates are used to determine the particle content of hadronic events at 29 GeV and are compared to the rates predicted by theoretical models of parton fragmentation. 31 references.

  14. Complete Stellar Models: Spectral and Interior Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Schaerer, Daniel

    1995-08-01

    This thesis work presents the first "complete stellar models" for massive stars, which consistently treat the stellar interior, the atmosphere, and the stellar winds. This approach allows to simultaneously predict basic stellar parameters (luminosity, radii, temperatures), nucleosynthesis (abundances), as well as the detailed emergent spectrum through the relevant evolutionary phases (corresponding to OB, LBV and Wolf--Rayet stars). On the other hand, our modelling including the stellar winds also allows to study the influence of the outer layers on the stellar structure and evolution. Conceptually the thesis is divided in two main parts. In the first part we construct the first non-LTE line blanketed hydrodynamic models of spherically expanding atmospheres of hot stars. The entire domain from the optically thick photosphere out to the terminal velocity of the wind is treated. We discuss in detail the effects of line blanketing on the atmospheric structure and on the predicted spectrum. We study the influence of the hydrodynamic structure on the profiles of both photospheric and wind lines. Our results also show that for precise determinations of stellar parameters and abundances of hot luminous stars, the use of plane parallel models may lead to systematic errors. In the second part we develop the "complete stellar models" (CoStar). As a first application we study the main sequence (MS) interior and spectral evolution of massive stars at solar metallicity. The evolutionary tracks and the interior evolution are found to be basically unchanged by the realistic treatment of the outer layers. The main CoStar predictions presented and discussed for the MS are the following: 1. Ejected mass of the most important elements. Deposition of wind momentum and mechanical energy 2. Estimates of mass loss rates due to radiation pressure including multiple scattering and line overlap 3. Continuous spectral energy distribution (EUV to IR) and ionising fluxes 4. UBVRIJHKLMN

  15. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  16. Spin alignment measurements of the K{sup *0}(892) and {sup}{o}(1020) vector mesons in heavy ion collisions at {radical}{ovr s}{sub NN}=200 GeV.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2008-01-01

    We present the first spin alignment measurements for the K*{sup 0}(892) and (1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at {radical}s{sub NN} = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are {rho}{sub 00} = 0.32 {+-} 0.04 (stat) {+-} 0.09 (syst) for the K*{sup 0} (0.8 < p{sub T} < 5.0 GeV/c) and {rho}{sub 00} = 0.34 {+-} 0.02 (stat) {+-} 0.03 (syst) for the {phi} (0.4 < p{sub T} < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K*{sup 0} and {phi} in Au+Au collisions were also measured with respect to the particle's production plane. The {phi} result, {rho}{sub 00} = 0.41 {+-} 0.02 (stat) {+-} 0.04 (syst), is consistent with that in p+p collisions, {rho}{sub 00} = 0.39 {+-} 0.03 (stat) {+-} 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.

  17. Efficiently modeling neural networks on massively parallel computers

    SciTech Connect

    Farber, R.M.

    1992-01-01

    Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper will describe the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SMM computers and can be implemented on computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors. We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can be extend to arbitrarily large networks by merging the memory space of separate processors with fast adjacent processor inter-processor communications. This paper will consider the simulation of only feed forward neural network although this method is extendible to recurrent networks.

  18. Efficiently modeling neural networks on massively parallel computers

    SciTech Connect

    Farber, R.M.

    1992-12-01

    Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper will describe the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SMM computers and can be implemented on computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors. We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can be extend to arbitrarily large networks by merging the memory space of separate processors with fast adjacent processor inter-processor communications. This paper will consider the simulation of only feed forward neural network although this method is extendible to recurrent networks.

  19. Efficiently modeling neural networks on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Farber, Robert M.

    1993-01-01

    Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper describes the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SIMD computers and can be implemented on MIMD computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors (which has a sub-linear runtime growth on the order of O(log(number of processors)). We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can extend to arbitrarily large networks (within memory limitations) by merging the memory space of separate processors with fast adjacent processor interprocessor communications. This paper will consider the simulation of only feed forward neural network although this method is extendable to recurrent networks.

  20. Chronology protection in Galileon models and massive gravity

    SciTech Connect

    Burrage, Clare; Rham, Claudia de; Heisenberg, Lavinia; Tolley, Andrew J. E-mail: claudia.deRham@case.edu E-mail: andrew.j.tolley@case.edu

    2012-07-01

    Galileon models are a class of effective field theories that have recently received much attention. They arise in the decoupling limit of theories of massive gravity, and in some cases they have been treated in their own right as scalar field theories with a specific nonlinearly realized global symmetry (Galilean transformation). It is well known that in the presence of a source, these Galileon theories admit superluminal propagating solutions, implying that as quantum field theories they must admit a different notion of causality than standard local Lorentz invariant theories. We show that in these theories it is easy to construct closed timelike curves (CTCs) within the naive regime of validity of the effective field theory. However, on closer inspection we see that the CTCs could never arise since the Galileon inevitably becomes infinitely strongly coupled at the onset of the formation of a CTC. This implies an infinite amount of backreaction, first on the background for the Galileon field, signaling the break down of the effective field theory, and subsequently on the spacetime geometry, forbidding the formation of the CTC. Furthermore the background solution required to create CTCs becomes unstable with an arbitrarily fast decay time. Thus Galileon theories satisfy a direct analogue of Hawking's chronology protection conjecture.

  1. Modeling and analysing massive star spectra: recent advances

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Oskinova, Lidia

    2013-06-01

    Depending on their mass-loss rate, the spectra of massive stars are more or less formed in the expanding parts of their atmosphere, i.e. in the stellar wind. Over decades we have developed a sophisticated non-LTE code for modeling such spectra adequately. Originally, the "Potsdam WR PoWR" code aimed at Wolf-Rayet stars with their emission-line dominated spectra. Meanwhile we have added a more detailed treatment of the lower, nearly static parts of the atmosphere, including pressure broadening of lines. This extends the applicability of the models to spectra showing both, photospheric absorption lines and stellar wind features, e.g. from O and B-type stars. The ionizing effect of X-rays, which are intrinsically produced in stellar winds, can be taken into account. Instead of a one-temperature plasma, a power-law distribution of the X-ray emission measure can be chosen and gives the best fit of the EUV spectral energy distribution. The effect of rotation on the emergent spectrum can be simulated under suitable assumptions on the angular motions in the wind. When clumping is accounted for in the approximation of optically thin structures, this leads to a reduction of empirical mass-loss rates when determined from recombination lines. A more general, but not fully consistent formalism has been incorporated to account for the effect of "macroclumping" on resonance lines. PoWR calculations were also combined with a 3-D Monte Carlo code for resonance line scattering in a structured stellar wind. A formalism has been developed to establish the hydrodynamically consistent solution for radiation-driven winds, including all multiple-scattering effects that are essential e.g. for WR stars, but this branch of the code is not ready yet for routinely use. PoWR models have been used extensively for analyzing WR stars in the Galaxy and the Magellanic Clouds, and for a couple of OB-type stars and LBVs. An increasing number of models is made available via internet.

  2. Dense molecular cocoons in the massive protocluster W3 IRS5: a test case for models of massive star formation

    NASA Astrophysics Data System (ADS)

    Wang, K.-S.; Bourke, T. L.; Hogerheijde, M. R.; van der Tak, F. F. S.; Benz, A. O.; Megeath, S. T.; Wilson, T. L.

    2013-10-01

    Context. Two competing models describe the formation of massive stars in objects like the Orion Trapezium. In the turbulent core accretion model, the resulting stellar masses are directly related to the mass distribution of the cloud condensations. In the competitive accretion model, the gravitational potential of the protocluster captures gas from the surrounding cloud for which the individual cluster members compete. Aims: With high resolution submillimeter observations of the structure, kinematics, and chemistry of the proto-Trapezium cluster W3 IRS5, we aim to determine which mode of star formation dominates. Methods: We present 354 GHz Submillimeter Array observations at resolutions of 1″-3″ (1800-5400 AU) of W3 IRS5. The dust continuum traces the compact source structure and masses of the individual cores, while molecular lines of CS, SO, SO2, HCN, H2CS, HNCO, and CH3OH (and isotopologues) reveal the gas kinematics, density, and temperature. Results: The observations show five emission peaks (SMM1-5). SMM1 and SMM2 contain massive embedded stars (~20 M⊙); SMM3-5 are starless or contain low-mass stars (<8 M⊙). The inferred densities are high, ≥107 cm-3, but the core masses are small, 0.2-0.6 M⊙. The detected molecular emission reveals four different chemical zones. Abundant (X ~ few 10-7 to 10-6) SO and SO2 are associated with SMM1 and SMM2, indicating active sulfur chemistry. A low abundance (5 × 10-8) of CH3OH concentrated on SMM3/4 suggest the presence of a hot core that is only just turning on, possibly by external feedback from SMM1/2. The gas kinematics are complex with contributions from a near pole-on outflow traced by CS, SO, and HCN; rotation in SO2, and a jet in vibrationally excited HCN. Conclusions: The proto-Trapezium cluster W3 IRS5 is an ideal test case to discriminate between models of massive star formation. Either the massive stars accrete locally from their local cores; in this case the small core masses imply that W3 IRS5 is

  3. Massive quiver matrix models for massive charged particles in AdS

    DOE PAGES

    Asplund, Curtis T.; Denef, Frederik; Dzienkowski, Eric

    2016-01-11

    Here, we present a new class of N = 4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can bemore » obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.« less

  4. Massive Gravity theories and limits of ghost-free bigravity models

    NASA Astrophysics Data System (ADS)

    Paulos, Miguel F.; Tolley, Andrew J.

    2012-09-01

    We construct a class of theories which extend New Massive Gravity to higher orders in curvature in any dimension. The lagrangians arise as limits of a new class of bimetric theories of Lovelock gravity, which are unitary theories free from the Boulware-Deser ghost. These Lovelock bigravity models represent the most general non-chiral ghost-free theories of an interacting massless and massive spin-two field in any dimension. The scaling limit is taken in such a way that unitarity is explicitly broken, but the Boulware-Deser ghost remains absent. This automatically implies the existence of a holographic c-theorem for these theories. We also show that the Born-Infeld extension of New Massive Gravity falls into our class of models demonstrating that this theory is also free of the Boulware-Deser ghost. These results extend existing connections between New Massive Gravity, bigravity theories, Galileon theories and holographic c-theorems.

  5. Network-oriented massive spatio-temporal data model and its applications

    NASA Astrophysics Data System (ADS)

    Liu, Renyi; Liu, Nan; Bao, Weizheng; Zhu, Yan

    2006-10-01

    It is foundation and key of developing GIS platforms of new generation to study the network-oriented massive spatial and spatio-temporal data model. But the research has met many difficulties. The paper combines two models of massive spatial data and spatio-temporal data seemed to be independent to study together in theory and technique. On the base of analyzing the limitations of present geographical spatial data model and spatio-temporal data model, a new model with characteristics of new generation's GIS platform, that is, Feature-Oriented Massive Spatio-temporal Object Tree (FOMSOT) with four-tier architectures is presented. The FOMSOT breaks down the constraint of map layer. It can deal with the massive spatio-temporal data better. The dynamic multi-base state with amendment (DMSA), fast index of base state with amendment in section, storage factors of variable granularity (SFVG) are used in FOMSOT which can manage the massive spatio-temporal data in high efficiency. A prototype "LyranMap" of new generation's GIS platform with the theory and technical method of FOMSOT has been realized, and it has been used in some application systems, for example, the land planning system "LandPlanner", land investigation system "LandExplorer" and land cadastral system "LandReGIS". These verify the correctness and effectiveness of the FOMSOT.

  6. Equivalent bosonic theory for the massive Thirring model with a non-local interaction

    NASA Astrophysics Data System (ADS)

    Li, Kang; Naón, Carlos

    1998-10-01

    We study, through path-integral methods, an extension of the massive Thirring model in which the interaction between currents is non-local. By examining the mass expansion of the partition function we show that this non-local massive Thirring model is equivalent to a certain non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization of the well known Coleman's equivalence. We also discuss some possible applications of this result in the context of one-dimensional strongly correlated systems and finite-size quantum field theories.

  7. Scientific development of a massively parallel ocean climate model. Final report

    SciTech Connect

    Semtner, A.J.; Chervin, R.M.

    1996-09-01

    Over the last three years, very significant advances have been made in refining the grid resolution of ocean models and in improving the physical and numerical treatments of ocean hydrodynamics. Some of these advances have occurred as a result of the successful transition of ocean models onto massively parallel computers, which has been led by Los Alamos investigators. Major progress has been made in simulating global ocean circulation and in understanding various ocean climatic aspects such as the effect of wind driving on heat and freshwater transports. These steps have demonstrated the capability to conduct realistic decadal to century ocean integrations at high resolution on massively parallel computers.

  8. EQUATION OF STATE FOR MASSIVE NEUTRON STARS

    SciTech Connect

    Katayama, Tetsuya; Saito, Koichi; Miyatsu, Tsuyoshi

    2012-12-15

    Using the relativistic Hartree-Fock approximation, we investigate the properties of neutron-star matter in detail. In the present calculation, we consider not only the tensor coupling of vector mesons to octet baryons and the form factors at interaction vertices but also the change in the internal (quark) structure of baryons in dense matter. The relativistic Hartree-Fock calculations are performed in two ways: one with coupling constants determined by SU(6) (quark model) symmetry and the other with coupling constants based on SU(3) (flavor) symmetry. For the latter case, we use the latest Nijmegen (ESC08) model. Then, it is very remarkable that the particle composition of the core matter in SU(3) symmetry is completely different from that in SU(6) symmetry. In SU(6) symmetry, all octet baryons appear in the density region below {approx}1.2 fm{sup -3}, while in the ESC08 model only the {Xi}{sup -} hyperon is produced. Furthermore, the medium modification of the internal baryon structure hardens the equation of state for the core matter. Taking all these effects into account, we can obtain the maximum neutron-star mass which is consistent with the recently observed mass, 1.97 {+-} 0.04 M{sub Sun} (PSR J1614-2230). We therefore conclude that the extension from SU(6) symmetry to SU(3) symmetry in meson-baryon couplings and the internal baryon structure variation in matter considerably enhance the mass of neutron stars. Furthermore, the effects of the form factor at the vertex and the Fock contribution, including the tensor coupling due to vector mesons, are indispensable for describing the core matter.

  9. Main sequence models for massive zero-metal stars

    NASA Technical Reports Server (NTRS)

    Cary, N.

    1974-01-01

    Zero-age main-sequence models for stars of 20, 10, 5, and 2 solar masses with no heavy elements are constructed for three different possible primordial helium abundances: Y=0.00, Y=0.23, and Y=0.30. The latter two values of Y bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20 solar mass models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during premain sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses.

  10. Low Mach Number Modeling of Core Convection in Massive Stars

    NASA Astrophysics Data System (ADS)

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-01

    This work presents three-dimensional simulations of core convection in a 15 M ⊙ star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  11. LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS

    SciTech Connect

    Gilet, C.; Almgren, A. S.; Bell, J. B.; Nonaka, A.; Woosley, S. E.; Zingale, M.

    2013-08-20

    This work presents three-dimensional simulations of core convection in a 15 M{sub Sun} star halfway through its main sequence lifetime. To perform the necessary long-time calculations, we use the low Mach number code MAESTRO, with initial conditions taken from a one-dimensional stellar model. We first identify several key factors that the one-dimensional initial model must satisfy to ensure efficient simulation of the convection process. We then use the three-dimensional simulations to examine the effects of two common modeling choices on the resulting convective flow: using a fixed composition approximation and using a reduced domain size. We find that using a fixed composition model actually increases the computational cost relative to using the full multi-species model because the fixed composition system takes longer to reach convection that is in a quasi-static state. Using a reduced (octant rather than full sphere) simulation domain yields flow with statistical properties that are within a factor of two of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large-scale structure of the flow and thus a more isotropic flow on average.

  12. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  13. A model of massive neutrinos with a conserved lepton number

    NASA Astrophysics Data System (ADS)

    Ecker, G.; Grimus, W.; Gronau, M.

    1987-01-01

    We consider a left-right symmetric model with three generations and with the standard assignments of fermion and scalar fields. The left-right symmetry gives rise to a unique conserved lepton number which is of the Zel'dovich-Konopinski-Mahmoud type. The neutrino mass matrix yields one Dirac and one Majorana neutrino, both in the light and in the heavy sector. Up to small mixings with right-handed neutrinos, the left-handed ν e and ν τ combine to the light Dirac neutrino whereas ν μ is the light Majoranan neutrino. With a right-handed scale in the TeV range all light neutrino lepton masses. Phenomenological consequences of the model are discussed. charged lepton masses. Phenomenological consequences of the model are discussed.

  14. Self-consistent Models of Strong Interaction with Chiral Symmetry

    DOE R&D Accomplishments Database

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  15. On the integrability of Friedmann Robertson Walker models with conformally coupled massive scalar fields

    NASA Astrophysics Data System (ADS)

    Coelho, L. A. A.; Skea, J. E. F.; Stuchi, T. J.

    2008-02-01

    In this paper, we use a nonintegrability theorem by Morales and Ramis to analyse the integrability of Friedmann-Robertson-Walker cosmological models with a conformally coupled massive scalar field. We answer the long-standing question of whether these models with a vanishing cosmological constant and non-self-interacting scalar field are integrable: by applying Kovacic's algorithm to the normal variational equations, we prove analytically and rigorously that these equations and, consequently, the Hamiltonians are nonintegrable. We then address the models with a self-interacting massive scalar field and cosmological constant and show that, with the exception of a set of measure zero, the models are nonintegrable. For the spatially curved cases, we prove that there are no additional integrable cases other than those identified in the previous work based on the non-rigorous Painlevé analysis. In our study of the spatially flat model, we explicitly obtain a new possibly integrable case.

  16. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  17. Massive neutrinos in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Thalapillil, Arun Madhav

    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In the first part of my thesis we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1) F ⊗Z'2 ⊗Z'' 2⊗Z''' 2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector. In the second part of my thesis, the interaction of high energy neutrinos with weak gravitational fields is explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the non-relativistic interpretations of the neutrino gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the neutrino-graviton vertex, we deduce

  18. Local Hamiltonian Monte Carlo study of the massive schwinger model, the decoupling of heavy flavours

    NASA Astrophysics Data System (ADS)

    Ranft, J.

    1983-12-01

    The massive Schwinger model with two flavours is studied using the local hamiltonian lattice Monte Carlo method. Chiral symmetry breaking is studied using the fermion condensate as order parameter. For a small ratio of the two fermion masses, degeneracy of the two flavours is found. For a large ratio of the masses, the heavy flavour decouples and the light fermion behaves like in the one flavour Schwinger model. On leave from Sektion Physik, Karl-Marx-Universität, Leipzig, GDR.

  19. Effect of Turbulence Models on Two Massively-Separated Benchmark Flow Cases

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2003-01-01

    Two massively-separated flow cases (the 2-D hill and the 3-D Ahmed body) were computed with several different turbulence models in the Reynolds-averaged Navier-Stokes code CFL3D as part of participation in a turbulence modeling workshop held in Poitiers, France in October, 2002. Overall, results were disappointing, but were consistent with results from other RANS codes and other turbulence models at the workshop. For the 2-D hill case, those turbulence models that predicted separation location accurately ended up yielding a too-long separation extent downstream. The one model that predicted a shorter separation extent in better agreement with LES data did so only by coincidence: its prediction of earlier reattachment was due to a too-late prediction of the separation location. For the Ahmed body, two slant angles were computed, and CFD performed fairly well for one of the cases (the larger slant angle). Both turbulence models tested in this case were very similar to each other. For the smaller slant angle, CFD predicted massive separation, whereas the experiment showed reattachment about half-way down the center of the face. These test cases serve as reminders that state- of-the-art CFD is currently not a reliable predictor of massively-separated flow physics, and that further validation studies in this area would be beneficial.

  20. A semi-analytical model for exploring Galilean satellites formation from a massive disk

    NASA Astrophysics Data System (ADS)

    Miguel, Yamila; Ida, Shigeru

    2016-03-01

    A better knowledge of jovian satellites' origins will bring light on the environment that surrounded Jupiter during its formation and can help us to understand the characteristics of this unique satellite system. We developed a semi-analytical model to investigate Jupiter's regular satellite formation and present the results of our population synthesis calculations. We performed simulations adopting a massive, static, low-viscosity circumplanetary disk model, in agreement with a current study of magnetorotational instability in a circum-planetary disk. We find that the high gas density leads to very rapid migration of satellitesimals due to gas drag and type II migration of satellites in a faster disk-dominated mode. A large concentration of solids, large building blocks and longer type II migration time-scales favor formation and survival of large satellites. However, bodies as massive as Ganymede and those located far away from Jupiter, such as Callisto, are difficult to form with this scenario.

  1. Non-linear massive gravity as a gravitational σ-model

    NASA Astrophysics Data System (ADS)

    Arraut, Ivan; Chelabi, Kaddour

    2016-08-01

    We show the direct analogy between the ghost-free non-linear formulation of massive gravity and the standard σ-models well understood in the literature. This issue explains why there are two non-trivial family of solutions for the spherically symmetric case inside the non-linear massive gravity formulations with two free parameters α and β. In general, the case β < α2 has a single physical vacuum state. On the other hand, the case β=α2 contains a natural vacuum degeneracy. This is in perfect analogy with the σ-model for scalar fields where depending on the values taken by the parameters of the theory the vacuum can be single or degenerate.

  2. The massive schwinger model on the lattice studied via a local hamiltonian Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Schiller, A.; Ranft, J.

    1983-10-01

    A local hamiltonian Monte Carlo method is used to study the massive Schwinger model. A non-vanishing quark condensate is found and the dependence of the condensate and the string tension on the background field is calculated. These results reproduce well the expected continuum results. We study also the first order phase transition which separates the weak and strong coupling regimes and find evidence for the behaviour conjectured by Coleman.

  3. Light-front description for the theta dependence of meson masses in the massive Schwinger model

    SciTech Connect

    Burkardt, M.; Harada, K.

    1998-05-01

    We present a continuum formulation for {theta} vacua in the massive Schwinger model on the light front, where {theta} enters as a background electric field. The effective coupling of the external field is partially screened due to vacuum polarization processes. For small fermion masses and small {theta}, we calculate the mass of the meson and find agreement with results from bosonization. {copyright} {ital 1998} {ital The American Physical Society}

  4. The Massive Stellar Content in the Starburst NGC 3049: A Test for Hot-Star Models

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Leitherer, Claus; Stasińska, Grażyna; Heckman, Timothy M.

    2002-12-01

    The objective of this work is twofold. First, we seek evidence for or against the depletion of massive stars in metal-rich starbursts. A second, equally important goal is to perform a consistency test of the latest generation of starburst models in such a high-metallicity environment. We have obtained high spatial resolution ultraviolet and optical STIS spectroscopy and imaging of the metal-rich nuclear starburst in NGC 3049. The stellar continuum and the absorption-line spectrum in the ultraviolet are used to constrain the massive stellar population. The strong, blueshifted stellar lines of C IV and Si IV detected in the UV spectra indicate a metal-rich, compact, massive (~106 Msolar) cluster of age 3-4 Myr emitting the UV-optical continuum. We find strong evidence against a depletion of massive stars in this metal-rich cluster. The derived age and the upper mass-limit cutoff of the initial mass function are also consistent with the detection of Wolf-Rayet (W-R) features at optical wavelengths. As a second, independent constraint on the massive stellar content, the nebular emission-line spectrum is modeled with photoionization codes using stellar spectra from evolutionary synthesis models. The morphology of the nuclear starburst of NGC 3049 from the STIS images indicates a simple geometry for the nebular emission-line region. However, the nebular lines are badly reproduced by 3-4 Myr instantaneous bursts, as required by the UV line spectrum, when unblanketed W-R and/or Kurucz stellar atmospheres are used. The corresponding number of photons above 24 and 54 eV in the synthetic models is too high in comparison with values suggested by the observed line ratios. Since the ionizing spectrum in this regime is dominated by emission from W-R stars, this discrepancy between observations and models is most likely the result of incorrect assumptions about the W-R stars. Thus, we conclude that the nebular spectrum of high-metallicity starbursts is poorly reproduced by models

  5. Regression models tolerant to massively missing data: a case study in solar-radiation nowcasting

    NASA Astrophysics Data System (ADS)

    Žliobaitė, I.; Hollmén, J.; Junninen, H.

    2014-12-01

    Statistical models for environmental monitoring strongly rely on automatic data acquisition systems that use various physical sensors. Often, sensor readings are missing for extended periods of time, while model outputs need to be continuously available in real time. With a case study in solar-radiation nowcasting, we investigate how to deal with massively missing data (around 50% of the time some data are unavailable) in such situations. Our goal is to analyze characteristics of missing data and recommend a strategy for deploying regression models which would be robust to missing data in situations where data are massively missing. We are after one model that performs well at all times, with and without data gaps. Due to the need to provide instantaneous outputs with minimum energy consumption for computing in the data streaming setting, we dismiss computationally demanding data imputation methods and resort to a mean replacement, accompanied with a robust regression model. We use an established strategy for assessing different regression models and for determining how many missing sensor readings can be tolerated before model outputs become obsolete. We experimentally analyze the accuracies and robustness to missing data of seven linear regression models. We recommend using the regularized PCA regression with our established guideline in training regression models, which themselves are robust to missing data.

  6. The decay τ → K0K‑ντ in the extended Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Volkov, M. K.; Pivovarov, A. A.

    2016-07-01

    The full and differential widths of the decay τ → K0K‑ν τ are calculated in the framework of the extended Nambu-Jona-Lasinio model.The contributions of the subprocesses with the intermediate vector mesons ρ(770) and ρ(1450) are taken into account. The obtained results are in satisfactory agreement with the experimental data.

  7. The decay τ → K0K-ντ in the extended Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Volkov, M. K.; Pivovarov, A. A.

    2016-07-01

    The full and differential widths of the decay τ → K0K-ν τ are calculated in the framework of the extended Nambu-Jona-Lasinio model.The contributions of the subprocesses with the intermediate vector mesons ρ(770) and ρ(1450) are taken into account. The obtained results are in satisfactory agreement with the experimental data.

  8. Decays of bottom mesons emitting tensor mesons in the final state using the Isgur-Scora-Grinstein-Wise II model

    SciTech Connect

    Sharma, Neelesh; Verma, R. C.; Dhir, Rohit

    2011-01-01

    In this paper, we investigate phenomenologically two-body weak decays of the bottom mesons emitting pseudoscalar/vector meson and a tensor meson. Form factors are obtained using the improved Isgur-Scora-Grinstein-Wise II model. Consequently, branching ratios for the Cabibbo-Kobayashi-Maskawa-favored and Cabibbo-Kobayashi-Maskawa-suppressed decays are calculated.

  9. Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

  10. RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. I. DEPENDENCE ON BASIC CORE PROPERTIES

    SciTech Connect

    Zhang Yichen; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2011-05-20

    Radiative transfer calculations of massive star formation are presented. These are based on the Turbulent Core Model of McKee and Tan and self-consistently included a hydrostatic core, an inside-out expansion wave, a zone of free-falling rotating collapse, wide-angle dust-free outflow cavities, an active accretion disk, and a massive protostar. For the first time for such models, an optically thick inner gas disk extends inside the dust destruction front. This is important to conserve the accretion energy naturally and for its shielding effect on the outer region of the disk and envelope. The simulation of radiation transfer is performed with the Monte Carlo code of Whitney, yielding spectral energy distributions (SEDs) for the model series, from the simplest spherical model to the fiducial one, with the above components each added step by step. Images are also presented in different wavebands of various telescope cameras, including Spitzer IRAC and MIPS, SOFIA FORCAST, and Herschel PACS and SPIRE. The existence of the optically thick inner disk produces higher optical wavelength fluxes but reduces near- and mid-IR emission. The presence of outflow cavities, the inclination angle to the line of sight, and the thickness of the disk all affect the SEDs and images significantly. For the high-mass surface density cores considered here, the mid-IR emission can be dominated by the outflow cavity walls, as has been suggested by De Buizer. The effect of varying the pressure of the environment bounding the surface of the massive core is also studied. With lower surface pressures, the core is larger, has lower extinction and accretion rates, and the observed mid-IR flux from the disk can then be relatively high even though the accretion luminosity is lower. In this case the silicate absorption feature becomes prominent, in contrast to higher density cores forming under higher pressures.

  11. T-ReX: interactive global illumination of massive models on heterogeneous computing resources.

    PubMed

    Kim, Tae-Joon; Sun, Xin; Yoon, Sung-Eui

    2014-03-01

    We propose several interactive global illumination techniques for a diverse set of massive models. We integrate these techniques within a progressive rendering framework that aims to achieve both a high rendering throughput and an interactive responsiveness. To achieve a high rendering throughput, we utilize heterogeneous computing resources consisting of CPU and GPU. To reduce expensive data transmission costs between CPU and GPU, we propose to use separate, decoupled data representations dedicated for each CPU and GPU. Our representations consist of geometric and volumetric parts, provide different levels of resolutions, and support progressive global illumination for massive models. We also propose a novel, augmented volumetric representation that provides additional geometric resolutions within our volumetric representation. In addition, we employ tile-based rendering and propose a tile ordering technique considering visual perception. We have tested our approach with a diverse set of large-scale models including CAD, scanned, simulation models that consist of more than 300 million triangles. By using our methods, we are able to achieve ray processing performances of 3 M~20 M rays per second, while limiting response time to users within 15~67 ms. We also allow dynamic modifications of light, and interactive setting of materials, while efficiently supporting novel view rendering.

  12. T-ReX: Interactive Global Illumination of Massive Models on Heterogeneous Computing Resources.

    PubMed

    Kim, Tae-Joon; Sun, Xin; Yoon, Sung-Eui

    2013-08-01

    We propose several interactive global illumination techniques for a diverse set of massive models. We integrate these techniques within a progressive rendering framework that aims to achieve both a high rendering throughput and an interactive responsiveness. In order to achieve a high rendering throughput, we utilize heterogeneous computing resources consisting of CPU and GPU. To reduce expensive data transmission costs between CPU and GPU, we propose to use separate, decoupled data representations dedicated for each CPU and GPU. Our representations consist of geometric and volumetric parts, provide different levels of resolutions, and support progressive global illumination for massive models. We also propose a novel, augmented volumetric representation that provides additional geometric resolutions within our volumetric representation. In addition, we employ tile-based rendering and propose a tile ordering technique considering visual perception. We have tested our approach with a diverse set of large-scale models including CAD, scanned, simulation models that consist of more than 300 million triangles. By using our methods, we are able to achieve ray processing performances of 3 M~20 M rays per second, while limiting response time to users within 15 ms~67 ms. We also allow dynamic modifications of light, and interactive setting of materials, while efficiently supporting novel view rendering.

  13. Leading logarithms in the massive O(N) nonlinear sigma model

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Carloni, Lisa

    2010-03-01

    We review Büchler and Colangelo's result that leading divergences at any loop order can be calculated using only one-loop calculations and we provide an alternative proof. We then use this method to calculate the leading divergences of and thus the leading logarithmic corrections to the meson mass in the massive O(N) nonlinear sigma model to five-loop order. We also calculate the all-loop result to leading order in the large N expansion by showing that only cactus diagrams contribute and by summing these via a generalized gap equation.

  14. Modeling X-ray emission line profiles from massive star winds - A review

    NASA Astrophysics Data System (ADS)

    Ignace, Richard

    2016-09-01

    The Chandra and XMM-Newton X-ray telescopes have led to numerous advances in the study and understanding of astrophysical X-ray sources. Particularly important has been the much increased spectral resolution of modern X-ray instrumentation. Wind-broadened emission lines have been spectroscopically resolved for many massive stars. This contribution reviews approaches to the modeling of X-ray emission line profile shapes from single stars, including smooth winds, winds with clumping, optically thin versus thick lines, and the effect of a radius-dependent photoabsorption coefficient.

  15. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R., II; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    An unusual feature of VMS deposits is the common association of stratiform "exhalative" deposits precipitated from hydrothermal fluids emanating into bottom waters. These deposits may extend well beyond the margins of massive sulfide and are typically composed of silica, iron, and manganese oxides, carbonates, sulfates, sulfides, and tourmaline.

  16. Explosive nucleosynthesis of N15 in a massive-star model

    NASA Astrophysics Data System (ADS)

    Bojazi, Michael J.; Meyer, Bradley S.

    2014-02-01

    Background: Presolar meteoritic graphite grains from supernovas show spatially correlated excesses in N15 and O18. These excesses signal the helium-rich layers of supernova ejecta as important source material for the grains. Purpose: Elucidate the explosive nucleosynthesis of N15 in massive stars, especially during shock passage through the helium-rich stellar layers. Method: A simple but realistic model of shock passage through the outer layers of exploding massive stars is used to follow the important N15 nucleosynthesis production pathways and their sensitivity to explosion energy and governing reaction rates in a particular stellar model. All calculations are performed with open-source, freely available codes. Results: Recent reaction rate updates tend to decrease by ˜4× the explosive helium-burning yield of N15 relative to some commonly used stellar model outputs. Conclusions: Neutron-capture reactions on F18 play an important role in the explosive production of N15 in helium-rich stellar layers. This neutron-induced nucleosynthesis is likely connected to that of other isotopic signatures in presolar supernova grains. The Supplemental Material provides instructions that interested readers can follow for their own calculations of explosive nucleosynthesis and nuclear reaction rate sensitivities.

  17. R-LODs: fast LOD-based ray tracing of massive models

    SciTech Connect

    Yoon, Sung-Eui; Lauterbach, Christian; Manocha, Dinesh

    2006-08-25

    We present a novel LOD (level-of-detail) algorithm to accelerate ray tracing of massive models. Our approach computes drastic simplifications of the model and the LODs are well integrated with the kd-tree data structure. We introduce a simple and efficient LOD metric to bound the error for primary and secondary rays. The LOD representation has small runtime overhead and our algorithm can be combined with ray coherence techniques and cache-coherent layouts to improve the performance. In practice, the use of LODs can alleviate aliasing artifacts and improve memory coherence. We implement our algorithm on both 32bit and 64bit machines and able to achieve up to 2.20 times improvement in frame rate of rendering models consisting of tens or hundreds of millions of triangles with little loss in image quality.

  18. Massively parallel implementation of the Penn State/NCAR Mesoscale Model

    SciTech Connect

    Foster, I.; Michalakes, J.

    1992-12-01

    Parallel computing promises significant improvements in both the raw speed and cost performance of mesoscale atmospheric models. On distributed-memory massively parallel computers available today, the performance of a mesoscale model will exceed that of conventional supercomputers; on the teraflops machines expected within the next five years, performance will increase by several orders of magnitude. As a result, scientists will be able to consider larger problems, more complex model processes, and finer resolutions. In this paper. we report on a project at Argonne National Laboratory that will allow scientists to take advantage of parallel computing technology. This Massively Parallel Mesoscale Model (MPMM) will be functionally equivalent to the Penn State/NCAR Mesoscale Model (MM). In a prototype study, we produced a parallel version of MM4 using a static (compile-time) coarse-grained ``patch`` decomposition. This code achieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel 1860 microprocessors. The current version of MPMM is based on all MM5 and uses a more fine-grained approach, decomposing the grid as finely as the mesh itself allows so that each horizontal grid cell is a parallel process. This will allow the code to utilize many hundreds of processors. A high-level language for expressing parallel programs is used to implement communication strearns between the processes in a way that permits dynamic remapping to the physical processors of a particular parallel computer. This facilitates load balancing, grid nesting, and coupling with graphical systems and other models.

  19. Massively parallel implementation of the Penn State/NCAR Mesoscale Model

    SciTech Connect

    Foster, I.; Michalakes, J.

    1992-01-01

    Parallel computing promises significant improvements in both the raw speed and cost performance of mesoscale atmospheric models. On distributed-memory massively parallel computers available today, the performance of a mesoscale model will exceed that of conventional supercomputers; on the teraflops machines expected within the next five years, performance will increase by several orders of magnitude. As a result, scientists will be able to consider larger problems, more complex model processes, and finer resolutions. In this paper. we report on a project at Argonne National Laboratory that will allow scientists to take advantage of parallel computing technology. This Massively Parallel Mesoscale Model (MPMM) will be functionally equivalent to the Penn State/NCAR Mesoscale Model (MM). In a prototype study, we produced a parallel version of MM4 using a static (compile-time) coarse-grained patch'' decomposition. This code achieves one-third the performance of a one-processor CRAY Y-MP on twelve Intel 1860 microprocessors. The current version of MPMM is based on all MM5 and uses a more fine-grained approach, decomposing the grid as finely as the mesh itself allows so that each horizontal grid cell is a parallel process. This will allow the code to utilize many hundreds of processors. A high-level language for expressing parallel programs is used to implement communication strearns between the processes in a way that permits dynamic remapping to the physical processors of a particular parallel computer. This facilitates load balancing, grid nesting, and coupling with graphical systems and other models.

  20. Massive perturbation of the SU(2)(K) Wess-Zumino-Witten model

    NASA Astrophysics Data System (ADS)

    Brazhnikov, Vadim A.

    This thesis treats the problem of massive perturbations of the SU(2)k Wess-Zumino-Model. We study the particular perturbation by a multiplet of primary fields of isospin j = 2. We present a semiclassical analysis of spectra of kinks in the model, a general N-kink solution and recursion a formula for the Integrals of Motion (IM). The presence of an infinite number of IM insures that the model is integrable at least on the classical level and only pairwise interactions of solitons occur. The situation is unusual in the sense that among kinks and their bound states there are a lot of unstable ones. They must be excluded from in and out states of the corresponding quantum theory. This makes quantization of the model difficult. To prove the quantum integrability of the model we explicitly construct a few first nontrivial quantum IM and argue that the model possesses an infinite number of quantum IM. Semiclassical scattering amplitudes for the scattering of stable kinks support the conjecture that the quantum theory contains plenty of resonances. The presence of nonzero decay amplitudes is also checked to the leading order of perturbation theory for the scattering of fundamental particles. We also consider interesting models related to the original one. The first of them is obtained as the s/widetilde[o(2]) reduction of the perturbed WZW model. The second model describes the motion of singularities of an N-kink solution.

  1. A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits

    USGS Publications Warehouse

    Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R., II; Schulz, Klaus J.; Slack, John F.; Thurston, Roland

    2009-01-01

    Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.

  2. Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models

    SciTech Connect

    Romero, A. D.; Kepler, S. O.; Córsico, A. H.; Althaus, L. G.

    2013-12-10

    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprises all of the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05 M {sub ☉} known to date. The asteroseismological analysis of a set of 42 stars enables study of the ensemble properties of the massive, pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass that is high enough to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.

  3. RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. II. EFFECTS OF THE OUTFLOW

    SciTech Connect

    Zhang, Yichen; Tan, Jonathan C.; McKee, Christopher F. E-mail: jt@astro.ufl.edu

    2013-04-01

    We present radiation transfer simulations of a massive (8 M{sub Sun }) protostar forming from a massive (M{sub c} = 60 M{sub Sun }) protostellar core, extending the model developed by Zhang and Tan. The two principal improvements are (1) developing a model for the density and velocity structure of a disk wind that fills the bipolar outflow cavities, based in part on the disk-wind model of Blandford and Payne; and (2) solving for the radially varying accretion rate in the disk due to a supply of mass and angular momentum from the infall envelope and their loss to the disk wind. One consequence of the launching of the disk wind is a reduction in the amount of accretion power that is radiated by the disk. We also include a non-Keplerian potential appropriate for a growing, massive disk. For the transition from dusty to dust-free conditions where gas opacities dominate, we now implement a gradual change as a more realistic approximation of dust destruction. We study how the above effects, especially the outflow, influence the spectral energy distributions (SEDs) and the synthetic images of the protostar. Dust in the outflow cavity significantly affects the SEDs at most viewing angles. It further attenuates the short-wavelength flux from the protostar, controlling how the accretion disk may be viewed, and contributes a significant part of the near- and mid-IR fluxes. These fluxes warm the disk, boosting the mid- and far-IR emission. We find that for near face-on views, i.e., looking down the outflow cavity (although not too close to the axis), the SED from the near-IR to about 60 {mu}m is very flat, which may be used to identify such systems. We show that the near-facing outflow cavity and its walls are still the most significant features in images up to 70 {mu}m, dominating the mid-IR emission and determining its morphology. The thermal emission from the dusty outflow itself dominates the flux at {approx}20 {mu}m. The detailed distribution of the dust in the outflow

  4. Mass loss from evolved massive stars: self-consistent modeling of the wind and photosphere

    NASA Astrophysics Data System (ADS)

    Groh, J. H.

    2007-03-01

    This work analyzes the mass loss phenomenon in evolved massive stars through self-consistent modeling of the wind and photosphere of such stars, using the radiative transfer code CMFGEN. In the first part, fundamental physical parameters of Wolf-Rayet stars of spectral types WN3-w (WR 46 e WR 152) and WN6-s (WR 136) were obtained. The results clearly indicate that hydrogen is present on the surface of those stars in a considerable fraction, defying current evolutionary models. For both WN subtypes, significant difference between the physical parameters obtained here and in previous works were noticed. The 20-year evolution of the luminous blue variable (LBV) AG Carinae was analyzed in detail in the second part of this work. The results indicate unexpected changes in the current paradigm of massive star evolution during the S Dor cycle. In this work, the high rotational velocity obtained during the hot phases, and the transition between the bistability regimes of line-driven winds were detected for the first time in LBVs. Those results need to be considered in future analysis of such massive stars. This Thesis also presents a pioneering study about the impact of the time variability effects on the analysis of the winds of LBVs. The results achieved here are valid for the whole LBV class, and show that the mass-loss rates derived from Hα and radio free-free emission are affected by time-dependent effects. The mass-loss rate evolution during the S Dor cycle, derived using time-dependent models, implies that LBV eruptions begin well before the maximum in the visual lightcurve during this phase. The analysis of the full S Dor cycle of AG Car rule out that the S Dor variability is caused exclusively by an expanding pseudo-photosphere. The AG Car hydrostatic radius was found to vary by a factor of six between cool and hot phases, while the bolometric luminosity is 50% higher during the hot phase. Both results provide observational contraints for the physical mechanism

  5. Modeling Massive Cluster Formation with Stellar Feedback using Flash and AMUSE

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen; Wall, Joshua; Mac Low, Mordecai-Mark

    2015-08-01

    Star cluster formation is a complex astrophysical problem combining multiple competing physical processes in a challenging computational environment, placing stringent demands on both software and hardware. Current simulations still fall short of a realistic description of the physical processes at work in star-forming regions. We are developing a hybrid simulation code to explore the formation and assembly of massive star clusters by combining the magnetohydrodynamics code Flash and the AMUSE software environment. Flash handles gas dynamics and star formation through cloud collapse, while AMUSE manages the dynamics and evolution of stars and binary systems. The gravitational interaction between the gas and the stars is treated via a symplectic gravity bridge between the codes in AMUSE. Radiative, wind, and supernova feedback are followed in FLASH based on information provided by the AMUSE system. We present some early results of this work, focusing on cluster formation and assembly, and including simplified models of feedback to study gas expulsion and cluster survival.

  6. The massive O(N) non-linear sigma model at high orders

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Carloni, Lisa

    2011-02-01

    We extend our earlier work on the massive O(N) non-linear sigma model to other observables. We derive expressions at leading order in the large N expansion at all orders in the loop expansion for the decay constant, vacuum expectation value, meson-meson scattering and the scalar and vector form factors. This is done using cactus diagram resummation using a generalized gap equation and other recursion relations. For general N we derive the expressions for the n-th-loop-order leading logarithms (M/Flog (/M))n, up to five loops for the decay constant and vacuum expectation value (VEV) and up to four loops for meson-meson scattering, the scalar and vector form factors. We also quote our earlier result for the mass. The large N results do not give a good approximation for the case N=3. We use our results to study the convergence of the perturbative series and compare with elastic unitarity.

  7. Damage In Rock Massives, Evidences From Microseismic Monitoring and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Amitrano, D.; Gruber, S.; Girard, L.

    2014-12-01

    Damage is an active process in rock massives that can progressively lead to their collapse. Microseismic monitoring appears as a powerful tool for detecting damage and identifying the parameters controlling its occurrence parameter. In this presentation, we first present results of seismic monitoring performed on different sites and highlighting different control parameters, including freezing/thawing cycling, long term creeping, rainfall. These observations reveal common features as power-law distribution of the seismic event size and of their temporal distribution. The evolution of these distributions can be used for forecasting the failure, as successfully tested on a cliff that undergone macroscopic failure. In a second part we present numerical modelling of damage that successfully reproduce the major part of the in-situ observations. The simulations based on short or long term damage and taking into account the action of fluids, have been applied to realistic cases and show promising results in good agreements with field observation.

  8. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  9. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    NASA Astrophysics Data System (ADS)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  10. Massive separation around bluff bodies: comparisons among different cfd solvers and turbulence models

    NASA Astrophysics Data System (ADS)

    Armenio, Vincenzo; Fakhari, Ahmad; Petronio, Andrea; Padovan, Roberta; Pittaluga, Chiara; Caprino, Giovanni

    2015-11-01

    Massive flow separation is ubiquitous in industrial applications, ruling drag and hydrodynamic noise. In spite of considerable efforts, its numerical prediction still represents a challenge for CFD models in use in engineering. Aside commercial software, over the latter years the opensource software OpenFOAMR (OF) has emerged as a valid tool for prediction of complex industrial flows. In the present work, we simulate two flows representative of a class of situations occurring in industrial problems: the flow around sphere and that around a wall-mounted square cylinder at Re = 10000 . We compare the performance two different tools, namely OF and ANSYS CFX 15.0 (CFX) using different unstructured grids and turbulence models. The grids have been generated using SNAPPYHEXMESH and ANSYS ICEM CFD 15.0 with different near wall resolutions. The codes have been run in a RANS mode using k - ɛ model (OF) and SST - k - ω (CFX) with and without wall-layer models. OF has been also used in LES, WMLES and DES mode. Regarding the sphere, RANS models were not able to catch separation, while good prediction of separation and distribution of stresses over the surface were obtained using LES, WMLES and DES. Results for the second test case are currently under analysis. Financial support from COSMO ``cfd open source per opera mortta'' PAR FSC 2007-2013, Friuli Venezia Giulia.

  11. RADIATION-HYDRODYNAMIC MODELS OF THE EVOLVING CIRCUMSTELLAR MEDIUM AROUND MASSIVE STARS

    SciTech Connect

    Toala, J. A.; Arthur, S. J.

    2011-08-20

    We study the evolution of the interstellar and circumstellar media around massive stars (M {>=} 40 M{sub sun}) from the main sequence (MS) through to the Wolf-Rayet (WR) stage by means of radiation-hydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around WR stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the WR wind bubbles are the duration of the red supergiant (or luminous blue variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that MS bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conduction does not appear to significantly influence the formation of structures in post-MS bubbles. Finally, we study the predicted X-ray emission from the models and compare our results with observations of the WR bubbles S 308, NGC 6888, and RCW 58. We find that bubbles composed primarily of clumps have reduced X-ray luminosity and very soft spectra, while bubbles with shells correspond more closely to observations.

  12. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  13. Volcanogenic Massive Sulfide Deposits of the World - Database and Grade and Tonnage Models

    USGS Publications Warehouse

    Mosier, Dan L.; Berger, Vladimir I.; Singer, Donald A.

    2009-01-01

    Grade and tonnage models are useful in quantitative mineral-resource assessments. The models and database presented in this report are an update of earlier publications about volcanogenic massive sulfide (VMS) deposits. These VMS deposits include what were formerly classified as kuroko, Cyprus, and Besshi deposits. The update was necessary because of new information about some deposits, changes in information in some deposits, such as grades, tonnages, or ages, revised locations of some deposits, and reclassification of subtypes. In this report we have added new VMS deposits and removed a few incorrectly classified deposits. This global compilation of VMS deposits contains 1,090 deposits; however, it was not our intent to include every known deposit in the world. The data was recently used for mineral-deposit density models (Mosier and others, 2007; Singer, 2008). In this paper, 867 deposits were used to construct revised grade and tonnage models. Our new models are based on a reclassification of deposits based on host lithologies: Felsic, Bimodal-Mafic, and Mafic volcanogenic massive sulfide deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types occur in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment and economists to determine the possible economic viability of these resources. Thus, mineral-deposit models play a central role in presenting geoscience

  14. HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Vogelsberger, Mark; Sijacki, Debora; Mazzotta, Pasquale; Kraft, Ralph P.; Jones, Christine; David, Laurence P.; Bourdin, Herve; Gilfanov, Marat; Churazov, Eugene

    2013-08-01

    Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two 'normal' massive spirals, NGC 1961 and NGC 6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to {approx}60 kpc-well beyond their optical radii. The hot gas has a best-fit temperature of kT {approx} 0.6 keV and an abundance of {approx}0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-static gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r{sub 200} region (r{sub 200} is the virial radius) is {approx}6 Multiplication-Sign 10{sup 40} erg s{sup -1} for both galaxies. The baryon mass fractions of NGC 1961 and NGC 6753 are f{sub b,NGC1961} {approx} 0.11 and f{sub b,NGC6753} {approx} 0.09, which values fall short of the cosmic baryon fraction. The hot coronae around NGC 1961 and NGC 6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code AREPO and the smoothed particle hydrodynamics code GADGET. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the AREPO code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by AREPO within {approx}0.5r{sub 200}. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.

  15. Multi-dimensional models of circumstellar shells around evolved massive stars

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Keppens, R.

    2012-11-01

    Context. Massive stars shape their surrounding medium through the force of their stellar winds, which collide with the circumstellar medium. Because the characteristics of these stellar winds vary over the course of the evolution of the star, the circumstellar matter becomes a reflection of the stellar evolution and can be used to determine the characteristics of the progenitor star. In particular, whenever a fast wind phase follows a slow wind phase, the fast wind sweeps up its predecessor in a shell, which is observed as a circumstellar nebula. Aims: We make 2D and 3D numerical simulations of fast stellar winds sweeping up their slow predecessors to investigate whether numerical models of these shells have to be 3D, or whether 2D models are sufficient to reproduce the shells correctly. Methods: We use the MPI-AMRVAC code, using hydrodynamics with optically thin radiative losses included, to make numerical models of circumstellar shells around massive stars in 2D and 3D and compare the results. We focus on those situations where a fast Wolf-Rayet star wind sweeps up the slower wind emitted by its predecessor, being either a red supergiant or a luminous blue variable. Results: As the fast Wolf-Rayet wind expands, it creates a dense shell of swept up material that expands outward, driven by the high pressure of the shocked Wolf-Rayet wind. These shells are subject to a fair variety of hydrodynamic-radiative instabilities. If the Wolf-Rayet wind is expanding into the wind of a luminous blue variable phase, the instabilities will tend to form a fairly small-scale, regular filamentary lattice with thin filaments connecting knotty features. If the Wolf-Rayet wind is sweeping up a red supergiant wind, the instabilities will form larger interconnected structures with less regularity. The numerical resolution must be high enough to resolve the compressed, swept-up shell and the evolving instabilities, which otherwise may not even form. Conclusions: Our results show that 3D

  16. A two-phase thermal model for subsurface transport on massively parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.

    1997-12-01

    Many research activities in subsurface transport require the numerical simulation of multiphase flow in porous media. This capability is critical to research in environmental remediation (e.g. contaminations with dense, non-aqueous-phase liquids), nuclear waste management, reservoir engineering, and to the assessment of the future availability of groundwater in many parts of the world. This paper presents an unstructured grid numerical algorithm for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. Illustrative applications are shown to demonstrate capabilities and performance, one of which is modeling hydrothermal transport at the Yucca Mountain site for a radioactive waste facility.

  17. Exploring Bias and Uncertainty in Gaussian Mixture Models of Young, Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Elrod, Aunna; Clarkson, William I.

    2016-06-01

    Mixture models are important for studies of star clusters observed against a foreground or background field population. By directly estimating both the distribution parameters of the components and the component fractions (and thus the formal membership probabilities), the populations of interest can be fit directly without recourse to binning. Gaussian Mixtures are a highly popular choice when modeling star clusters, and their determination using the Expectation Maximization algorithm, or its extension to cases with strongly varying measurement uncertainty (e.g. Bovy et al.’s Extreme Deconvolution) now appears in some statistics textbooks.Here we describe our Monte Carlo study to estimate the effect of the choice of instrumental setup, particularly different field of views, on parameter recovery for simulated star clusters under a variety of situations. We simulate observations of a Young, Massive Cluster like those near the Galactic Center, focusing mainly on scenarios where the same cluster is observed from ground and from space. We characterize the bias and uncertainty that might be introduced when using this fairly recent yet increasingly popular technique across heterogenous instrumental setups.

  18. Implementation of a Message Passing Interface into a Cloud-Resolving Model for Massively Parallel Computing

    NASA Technical Reports Server (NTRS)

    Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve

    2004-01-01

    The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.

  19. Three-dimensional electromagnetic modeling and inversion on massively parallel computers

    SciTech Connect

    Newman, G.A.; Alumbaugh, D.L.

    1996-03-01

    This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively parallel computer architecture which allows for more realistic solutions that can be achieved with serial machines. While the inversion code has been demonstrated on field data collected at the Richmond field site, techniques for appraising the quality of the reconstructions still need to be developed. Here it is suggested that rather than employing direct matrix inversion to construct the model covariance matrix which would be impossible because of the size of the problem, one can linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to construct it. Using these appraisal and construction tools, it is now necessary to demonstrate 3-D inversion for a variety of EM data sets that span the frequency range from induction sounding to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth`s electrical properties can provide researchers opportunities to infer the flow paths, flow rates and perhaps the chemistry of fluids in geologic mediums. It also offers a means to study the frequency dependence behavior of the properties in situ. This is of significant relevance to the Department of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and gas exploration.

  20. Climate system modeling on massively parallel systems: LDRD Project 95-ERP-47 final report

    SciTech Connect

    Mirin, A.A.; Dannevik, W.P.; Chan, B.; Duffy, P.B.; Eltgroth, P.G.; Wehner, M.F.

    1996-12-01

    Global warming, acid rain, ozone depletion, and biodiversity loss are some of the major climate-related issues presently being addressed by climate and environmental scientists. Because unexpected changes in the climate could have significant effect on our economy, it is vitally important to improve the scientific basis for understanding and predicting the earth`s climate. The impracticality of modeling the earth experimentally in the laboratory together with the fact that the model equations are highly nonlinear has created a unique and vital role for computer-based climate experiments. However, today`s computer models, when run at desired spatial and temporal resolution and physical complexity, severely overtax the capabilities of our most powerful computers. Parallel processing offers significant potential for attaining increased performance and making tractable simulations that cannot be performed today. The principal goals of this project have been to develop and demonstrate the capability to perform large-scale climate simulations on high-performance computing systems (using methodology that scales to the systems of tomorrow), and to carry out leading-edge scientific calculations using parallelized models. The demonstration platform for these studies has been the 256-processor Cray-T3D located at Lawrence Livermore National Laboratory. Our plan was to undertake an ambitious program in optimization, proof-of-principle and scientific study. These goals have been met. We are now regularly using massively parallel processors for scientific study of the ocean and atmosphere, and preliminary parallel coupled ocean/atmosphere calculations are being carried out as well. Furthermore, our work suggests that it should be possible to develop an advanced comprehensive climate system model with performance scalable to the teraflops range. 9 refs., 3 figs.

  1. On the Vainshtein mechanism in the minimal model of massive gravity

    SciTech Connect

    Renaux-Petel, Sébastien

    2014-03-01

    We reinvestigate the fate of the Vainhstein mechanism in the minimal model of dRGT massive gravity. As the latter is characterised by the complete absence of interactions in the decoupling limit, we study their structure at higher energies. We show that in static spherically symmetric configurations, the lowest energy scale of interactions is pushed up to the Planck mass. This fact points towards an absence of Vainshtein mechanism in this framework, but does not prove it. By resorting to the exact vacuum equations of motion, we show that there is indeed an obstruction that precludes any recovery of General Relativity under the conditions of stationarity and spherical symmetry. However, we argue that the latter are too restrictive and might miss some important physical phenomena. Indeed, we point out that in generic non spherically symmetric or time-dependent situations, interactions arising at energies arbitrarily close to the energy scale of the decoupling limit reappear. This leads us to question whether the small degree of spherical symmetry breaking in the solar system can be sufficient to give rise to a successful Vainshtein mechanism.

  2. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in -modified, massive, and einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2015-04-01

    We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.

  3. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model.

    PubMed

    Smith, Robin P; Taher, Leila; Patwardhan, Rupali P; Kim, Mee J; Inoue, Fumitaka; Shendure, Jay; Ovcharenko, Ivan; Ahituv, Nadav

    2013-09-01

    Despite continual progress in the cataloging of vertebrate regulatory elements, little is known about their organization and regulatory architecture. Here we describe a massively parallel experiment to systematically test the impact of copy number, spacing, combination and order of transcription factor binding sites on gene expression. A complex library of ∼5,000 synthetic regulatory elements containing patterns from 12 liver-specific transcription factor binding sites was assayed in mice and in HepG2 cells. We find that certain transcription factors act as direct drivers of gene expression in homotypic clusters of binding sites, independent of spacing between sites, whereas others function only synergistically. Heterotypic enhancers are stronger than their homotypic analogs and favor specific transcription factor binding site combinations, mimicking putative native enhancers. Exhaustive testing of binding site permutations suggests that there is flexibility in binding site order. Our findings provide quantitative support for a flexible model of regulatory element activity and suggest a framework for the design of synthetic tissue-specific enhancers. PMID:23892608

  4. Diagnosis and Modeling of Radiation during Massive Helium Gas Injection Disruption Mitigation on DIII-D

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Jernigan, T. C.; Evans, T. E.; Humphreys, D. A.; Kellman, A. G.; Lee, R. L.; Taylor, P. L.

    1998-11-01

    Disruption mitigation by massive helium gas injection ( ~10^23 He atoms in 9 ms) is studied on DIII-D. Fast XUV and visible spectroscopy are used to diagnose the evolution of the He radiation in the plasma. The signatures of plasma volume recombination in the dense core plasma (n_e ~10^21 m-3) can be used to deduce the ionization/ recombination fraction and electron temperature. Preliminary results show that in ~2--3 ms the core plasma is cooled from T_e>1 keV to T_e ~5 eV, and becomes dominated by recombination. During aVertical Displacment Event (VDE) XUV He spectroscopy can be used to determine T_e, Z_eff and hence resistivity in the halo plasma. This will allow for the first quantitative benchmarking of the inferred resistivity from simulated current quench and halo current time histories. Time-dependent radiation and energy balance modeling will be carried out using the KPRAD numerical code.

  5. Fermion condensate and the spectrum of massive Schwinger model in Bogoliubov transformed vacuum

    SciTech Connect

    Tomachi, T.; Fujita, T. )

    1993-05-01

    The authors calculate the spectrum of the charge zero sector in two-dimensional quantum electrodynamics (massive Schwinger model). The calculations are first done in the rest frame with the perturbative vacuum within given subspaces. This leads to the infrared instability at small fermion mass. Then, the Bogoliubov transformation of the vacuum is made. There, it is found that the quasi-particle states achieve a remarkably good description of the boson mass spectrum. At small fermion mass (m[sub 0][le]0.1(g/[pi][sup 1/2])), the Bogoliubov transformed state predicts the boson mass which agrees with the analytic estimation and thus is better than that calculated by the discretized light cone quantization methods at the same level of matrix dimensions. The fermion condensate of the vacuum is also estimated as the function of the fermion mass. At the massless limit, the right condensate value is reproduced as obtained analytically in the continuum limit. 16 refs., 6 figs.

  6. Galaxy clustering, CMB and supernova data constraints on ϕCDM model with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Xu, Lixin

    2016-01-01

    We investigate a scalar field dark energy model (i.e., ϕCDM model) with massive neutrinos, where the scalar field possesses an inverse power-law potential, i.e., V (ϕ) ∝ϕ-α (α > 0). We find that the sum of neutrino masses Σmν has significant impacts on the CMB temperature power spectrum and on the matter power spectrum. In addition, the parameter α also has slight impacts on the spectra. A joint sample, including CMB data from Planck 2013 and WMAP9, galaxy clustering data from WiggleZ and BOSS DR11, and JLA compilation of Type Ia supernova observations, is adopted to confine the parameters. Within the context of the ϕCDM model under consideration, the joint sample determines the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the Thomson scattering optical depth due to reionization, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ* = (1.0415-0.0011+0.0012) ×10-2, τ =0.0914-0.0242+0.0266, Ωbh2 = 0.0222 ± 0.0005, Ωch2 = 0.1177 ± 0.0036, and ns =0.9644-0.0119+0.0118, respectively, at 95% confidence level (CL). It turns out that α < 4.995 at 95% CL for the ϕCDM model. And yet, the ΛCDM scenario corresponding to α = 0 is not ruled out at 95% CL. Moreover, we get Σmν < 0.262 eV at 95% CL for the ϕCDM model, while the corresponding one for the ΛCDM model is Σmν < 0.293 eV. The allowed scale of Σmν in the ϕCDM model is a bit smaller than that in the ΛCDM model. It is consistent with the qualitative analysis, which reveals that the increases of α and Σmν both can result in the suppression of the matter power spectrum. As a consequence, when α is larger, in order to avoid suppressing the matter power spectrum too much, the value of Σmν should be smaller.

  7. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  8. A Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.; Owocki, S. P.; Ud-Doula, A.

    2007-11-01

    We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large ensemble of field lines to build up a three-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σOriE. Since the flow along each field line can be solved independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment. The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective (gravitational plus centrifugal) potential. However, a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to ~3000kms-1) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.

  9. Modeling the drift of massive icebergs to the subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Condron, A.; Hill, J. C.

    2013-12-01

    New evidence from high-resolution seafloor bathymetry data indicates that massive (>300m thick) icebergs from the Laurentide Ice Sheet (LIS) drifted south to the tip of Florida during the last deglaciation. This finding is particularly exciting as it contradicts evidence from marine sediments that icebergs were mainly confined to the subpolar North Atlantic (50 - 70N) at this time. Indeed, the freshwater released from icebergs melting in the subpolar gyre is repeatedly cited as a main trigger for a slow-down of the Atlantic MOC in the past, and the possible cause of any climate cooling related to the melting of the Greenland Ice Sheet in the future. Using a sophisticated iceberg model (MITberg), coupled to a high (18-km; 1/6 deg.) resolution ocean model (MITgcm), we investigate the ocean circulation dynamics required to allow icebergs to drift to the southern tip of Florida. We find that icebergs only reach this location if they turn right at the Grand Banks of Newfoundland, and stay inshore of the Gulf Stream all the way to Florida. Modern-day circulation dynamics do not readily allow this to happen as cold, southward flowing, Labrador Current Water (important for iceberg survival) has little penetration south of Cape Hatteras. However, when a liquid meltwater flood is released from Hudson Bay at the same time, icebergs are rapidly transported (inshore of the Gulf Stream) in a narrow, buoyant, coastal current all the way to southern Florida. The meltwater and icebergs result in a significant freshening of the subtropical North Atlantic and weaken the strength of the Gulf Stream, suggesting such an event would have a large cooling effect on climate. We are only able to simulate the flow of meltwater and icebergs to the subtropics by modeling ocean circulation at a resolution that is 5 - 10 times higher than the majority of existing paleoclimate models; at lower resolutions the narrow, coastal boundary currents important for iceberg transport to the subtropics are

  10. Stellar evolution with rotation. V. Changes in all the outputs of massive star models

    NASA Astrophysics Data System (ADS)

    Meynet, G.; Maeder, A.

    2000-09-01

    Grids of models for rotating stars are constructed in the range of 9 to 120 Msun at solar metallicity. The following effects of rotation are included: shellular rotation, new structure equations for non-conservative case, surface distortions, increase of mass loss with rotation, meridional circulation and interaction with horizontal turbulence, shear instability and coupling with thermal effects, advection and diffusion of angular momentum treated in the non-stationary regime, transport and diffusion of the chemical elements. Globally we find that for massive stars the effects of rotation have an importance comparable to those of mass loss. Due to meridional circulation the internal rotation law Omega (r) rapidly converges, in 1-2% of the MS lifetime, towards a near equilibrium profile which then slowly evolves during the MS phase. The circulation shows two main cells. In the deep interior, circulation rises along the polar axis and goes down at the equator, while due to the Gratton-Öpik term it is the inverse in outer layers. This external inverse circulation grows in depth as evolution proceeds. We emphasize that a stationary approximation and a diffusive treatment of meridional circulation would be inappropriate. After the MS phase, the effects of core contraction and envelope expansion dominate the evolution of the angular momentum. The surface velocities decrease very much during the MS evolution of the most massive stars, due to their high mass loss, which also removes a lot of angular momentum. This produces some convergence of the velocities, but not necessarily towards the break-up velocities. However, stars with masses below ~ 12 Msun with initially high rotation may easily reach the break-up velocities near the end of the MS phase, which may explain the occurrence of Be-stars. Some other interesting properties of the rotational velocities are pointed out. For an average rotation, the tracks in the HR diagram are modified like a moderate overshoot would

  11. Seismic waves modeling with the Fourier pseudo-spectral method on massively parallel machines.

    NASA Astrophysics Data System (ADS)

    Klin, Peter

    2015-04-01

    The Fourier pseudo-spectral method (FPSM) is an approach for the 3D numerical modeling of the wave propagation, which is based on the discretization of the spatial domain in a structured grid and relies on global spatial differential operators for the solution of the wave equation. This last peculiarity is advantageous from the accuracy point of view but poses difficulties for an efficient implementation of the method to be run on parallel computers with distributed memory architecture. The 1D spatial domain decomposition approach has been so far commonly adopted in the parallel implementations of the FPSM, but it implies an intensive data exchange among all the processors involved in the computation, which can degrade the performance because of communication latencies. Moreover, the scalability of the 1D domain decomposition is limited, since the number of processors can not exceed the number of grid points along the directions in which the domain is partitioned. This limitation inhibits an efficient exploitation of the computational environments with a very large number of processors. In order to overcome the limitations of the 1D domain decomposition we implemented a parallel version of the FPSM based on a 2D domain decomposition, which allows to achieve a higher degree of parallelism and scalability on massively parallel machines with several thousands of processing elements. The parallel programming is essentially achieved using the MPI protocol but OpenMP parts are also included in order to exploit the single processor multi - threading capabilities, when available. The developed tool is aimed at the numerical simulation of the seismic waves propagation and in particular is intended for earthquake ground motion research. We show the scalability tests performed up to 16k processing elements on the IBM Blue Gene/Q computer at CINECA (Italy), as well as the application to the simulation of the earthquake ground motion in the alluvial plain of the Po river (Italy).

  12. Nonresonant Background in Isobaric Models of Photoproduction of η-Mesons on Nucleons

    NASA Astrophysics Data System (ADS)

    Tryasuchev, V. A.; Alekseev, B. A.; Yakovleva, V. S.; Kondratyeva, A. G.

    2016-07-01

    Within the framework of isobaric models of pseudoscalar meson photoproduction, the nonresonant background of photoproduction of η-mesons on nucleons is investigated as a function of energy. A bound on the magnitude of the pseudoscalar coupling constant of the η-meson with a nucleon is obtained: g η NN 2 /4π ≤ 0.01, and a bound on vector meson exchange models is also obtained.

  13. eWaterCycle: real time assimilation of massive data streams into a hyper-resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; Sutanudjaja, Edwin; Drost, Niels; Steele-Dunne, Susan; de Jong, Kor; van Beek, Ludovicus; van de Giesen, Nick; Bierkens, Marc

    2013-04-01

    This research is focused on the ICT challenges involved in assimilating massive remote sensing datasets into a hyper-resolution hydrology model. The development of a hyper-resolution (100m) global hydrological model has recently been put forward as a "Grand Challenge" for the hydrological community. PCR-GLOBWB is a unique hydrological model including lateral flow and groundwater as well as human intervention through water consumption, dams and reservoir operations. Over the past decade, remotely sensed states, parameters and fluxes have become available through satellite observations. Exponential growth can be anticipated in the volume of hydrologically useful remote sensing data given the current plans of JAXA, NASA and ESA with respect to Earth observation satellites. Real time assimilation of these data into a hyper-resolution hydrology model would allow us to constrain the estimated states and fluxes and improve the model forecasts. However, this poses significant hydrological and ICT challenges. This project is a unique collaboration between hydrologists, and the computer scientists of the Netherlands eScience Center. Together, we will explore existing and novel ICT technologies to address the CPU and memory requirements of running the forward model. In addition, we will add data assimilation to this model, requiring streaming, management and processing of massive remote sensing datasets, as well as running the model for large ensembles and performing assimilation on a global scale.

  14. Supersymmetrizing massive gravity

    NASA Astrophysics Data System (ADS)

    Malaeb, O.

    2013-07-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.

  15. Mapping and Modeling the Extended Winds of the Massive Interacting Binary, Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Ted

    2010-01-01

    The combination HST/STIS high spatial and moderate spectral resolutions have revealed the massive interacting wind structure of Eta Carinae by forbidden lines of singly and doubly ionized elements. Throughout the 5.54-year period, lines of Fe++, Ne++, Ar++, S++ and N+ reveal the interacting wind structures, near critical electron densities of 10(exp 5) to 3 x 10(exp 7)cu cm, photoionized by the hot secondary, Eta Car B, Lines of Fe+ and Ni+ trace the denser (>10(exp 7)cu cm. less-ionized (< 8 eV) primary wind of Eta Car A as it wraps around the interacting binary stars. For 5 years of the 5.54 year period, the FUV radiation from Eta Car B escapes the orbital region, ionizing the boundaries of the expanding wind structures. But for three to six months, Eta Car B plunges into the primary wind approaching to within 1 to 2 AU, leading to cutoff of FUV and X-ray fluxes. The interacting wind structure, resolved out to 0.8", drops io ionization and then rebuilds as Eta Car B emerges from the primary wind envelope. Solid Particle Hydrodynamical(SPH) models have been developed extending out to 2000 AU and adapted to include FUV radiation effects of the winds. In turn, synthetic spectroimages of selected forbidden lines have been constructed and compared to the spectroimages recorded by the HST/STIS throughout 1998.0 to 2004.3, extending across the 1998 and 2003.5 minima. By this method, we show that the orbital axis of the binary system must bc within 15 degrees of the Homunculus axis of symmetry and that periastron occurs with Eta Car B passing on the far side of Eta Car B. This result ties the current binary orbit with the bipolar ejection with intervening skirt and leads to implications that the binary system influenced the mass ejection of the l840s and the lesser ejection of the 1890s.

  16. Constraining massive star evolution from massive clusters

    NASA Astrophysics Data System (ADS)

    Chene, Andre-Nicolas; Herve, Anthony; Martins, Fabrice; Bouret, Jean-Claude; Borissova, Jordanka; Ramirez, Sebastian; Kurtev, Radostin; Kumar, Nanda; Amigo, Pia; Fierro, Celia

    2013-06-01

    The exact evolution of massive stars is not accurately known at present. The general trend is that stars with masses above 40 - 60 Mo go from O-type stars to H-rich WN stars, and Luminous Blue Variables (?), before turning into H-poor WN stars and finally WC stars. At lower masses, the H-rich WN and LBV phases are replaced by a blue and a red supergiant phases, respectively. However, what are the details of such evolutionary sequences? The study of massive clusters is a golden opportunity to establish this. Indeed, the turn-off mass of massive clusters can be directly translated into the mass, and hence the nature, of the progenitors of their evolved objects contents. So far, only the Arches, Quintuplet, NGC3603, NGC2244 and central clusters have been studied this way. But 6 newly discovered heavily-obscured clusters in the large survey â"VISTA Variables in the Via Lactea" (VVV) have been found to have Wolf-Rayet stars as well as blue and/or red supergiants, together with many main sequence OB stars. This poster presents our efforts to model the massive star components of these clusters using CMFGEN, bringing new blocks to the pavement of massive stellar evolution and more than doubling the number of clusters in which such evolutionary sequence are established.

  17. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  18. Massively Parallel Linear Stability Analysis with P_ARPACK for 3D Fluid Flow Modeled with MPSalsa

    SciTech Connect

    Lehoucq, R.B.; Salinger, A.G.

    1998-10-13

    We are interested in the stability of three-dimensional fluid flows to small dkturbances. One computational approach is to solve a sequence of large sparse generalized eigenvalue problems for the leading modes that arise from discretizating the differential equations modeling the flow. The modes of interest are the eigenvalues of largest real part and their associated eigenvectors. We discuss our work to develop an effi- cient and reliable eigensolver for use by the massively parallel simulation code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat transfer, and mass transfer with detailed bulk fluid and surface chemical reaction kinetics.

  19. The Global Nonlinear Stability of Minkowski Space for Self-gravitating Massive Fields. The Wave-Klein-Gordon Model

    NASA Astrophysics Data System (ADS)

    LeFloch, Philippe G.; Ma, Yue

    2016-09-01

    The Hyperboloidal Foliation Method (introduced by the authors in 2014) is extended here and applied to the Einstein equations of general relativity. Specifically, we establish the nonlinear stability of Minkowski spacetime for self-gravitating massive scalar fields, while existing methods only apply to massless scalar fields. First of all, by analyzing the structure of the Einstein equations in wave coordinates, we exhibit a nonlinear wave-Klein-Gordon model defined on a curved background, which is the focus of the present paper. For this model, we prove here the existence of global-in-time solutions to the Cauchy problem, when the initial data have sufficiently small Sobolev norms. A major difficulty comes from the fact that the class of conformal Killing fields of Minkowski space is significantly reduced in the presence of a massive scalar field, since the scaling vector field is not conformal Killing for the Klein-Gordon operator. Our method relies on the foliation (of the interior of the light cone) of Minkowski spacetime by hyperboloidal hypersurfaces and uses Lorentz-invariant energy norms. We introduce a frame of vector fields adapted to the hyperboloidal foliation and we establish several key properties: Sobolev and Hardy-type inequalities on hyperboloids, as well as sup-norm estimates, which correspond to the sharp time decay for the wave and the Klein-Gordon equations. These estimates allow us to control interaction terms associated with the curved geometry and the massive field by distinguishing between two levels of regularity and energy growth and by a successive use of our key estimates in order to close a bootstrap argument.

  20. Massive gravity

    NASA Astrophysics Data System (ADS)

    Mukohyama, Shinji

    2013-09-01

    The concept of mass has been central in many areas of physics. Gravitation is not an exception, and it has been one of the long-standing questions whether the graviton, a spin-2 particle that mediates gravity, can have a non-vanishing mass or not. This question is relevant from not only theoretical but also phenomenological viewpoints, since a nonzero graviton mass may lead to late-time acceleration of the universe and thus may be considered as an alternative to dark energy. In 2010, de Rham, Gabadadze and Tolley proposed the first example of a fully nonlinear massive gravity theory and showed that the so called Boulware-Deser ghost, which had been one of the major obstacles against a stable nonlinear theory of massive gravity since 1972, can be removed by construction. Since then, nonlinear massive gravity has been attracting significant interest among physicists and cosmologists. The nonlinear theory of massive gravity provides a theoretical framework in which properties of the remaining five physical degrees of freedom of massive gravity can be studied. As always with any low-energy effective theories, one of the first tasks would be to identify good and bad backgrounds. Depending on the choice of backgrounds, some of the five degrees of freedom may become strongly coupled, may exhibit instantaneous propagation, or may lead to ghost/gradient instabilities. A related subject is to seek interesting solutions such as those relevant for astrophysical objects and those describing self-accelerating cosmology. Those solutions will allow us to study phenomenological and cosmological implications of the theory. Yet another important task would be to seek a possible (partial) UV completion that can be applied beyond the regime of validity of the low-energy effective theory that we currently know of. We invited articles to cover those important subjects in massive gravity. Given the recent rapid developments in the field, however, it must be noted that this focus issue

  1. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Marulli, Federico; Castorina, Emanuele; Sefusatti, Emiliano; Saito, Shun E-mail: federico.marulli3@unibo.it E-mail: branchin@fis.uniroma3.it E-mail: esefusat@ictp.it

    2014-03-01

    By using a suite of large box-size N-body simulations that incorporate massive neutrinos as an extra set of particles, with total masses of 0.15, 0.30, and 0.60 eV, we investigate the impact of neutrino masses on the spatial distribution of dark matter haloes and on the distribution of galaxies within the haloes. We compute the bias between the spatial distribution of dark matter haloes and the overall matter and cold dark matter distributions using statistical tools such as the power spectrum and the two-point correlation function. Overall we find a scale-dependent bias on large scales for the cosmologies with massive neutrinos. In particular, we find that the bias decreases with the scale, being this effect more important for higher neutrino masses and at high redshift. However, our results indicate that the scale-dependence in the bias is reduced if the latter is computed with respect to the cold dark matter distribution only. We find that the value of the bias on large scales is reasonably well reproduced by the Tinker fitting formula once the linear cold dark matter power spectrum is used, instead of the total matter power spectrum. We also investigate whether scale-dependent bias really comes from purely neutrino's effect or from nonlinear gravitational collapse of haloes. For this purpose, we address the Ω{sub ν}-σ{sub 8} degeneracy and find that such degeneracy is not perfect, implying that neutrinos imprint a slight scale dependence on the large-scale bias. Finally, by using a simple halo occupation distribution (HOD) model, we investigate the impact of massive neutrinos on the distribution of galaxies within dark matter haloes. We use the main galaxy sample in the Sloan Digital Sky Survey (SDSS) II Data Release 7 to investigate if the small-scale galaxy clustering alone can be used to discriminate among different cosmological models with different neutrino masses. Our results suggest that different choices of the HOD parameters can reproduce the

  2. Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi; Volansky, Tomer; Wacker, Jay G

    2015-07-10

    A recent proposal is that dark matter could be a thermal relic of 3→2 scatterings in a strongly coupled hidden sector. We present explicit classes of strongly coupled gauge theories that admit this behavior. These are QCD-like theories of dynamical chiral symmetry breaking, where the pions play the role of dark matter. The number-changing 3→2 process, which sets the dark matter relic abundance, arises from the Wess-Zumino-Witten term. The theories give an explicit relationship between the 3→2 annihilation rate and the 2→2 self-scattering rate, which alters predictions for structure formation. This is a simple calculable realization of the strongly interacting massive-particle mechanism.

  3. A model for the non-thermal emission of the very massive colliding-wind binary HD 93129A

    NASA Astrophysics Data System (ADS)

    del Palacio, S.; Romero, G. E.; Bosch-Ramon, V.; Benaglia, P.

    2016-08-01

    Recently, the wind collision region of the system HD 93129A was resolved for the first time using very large baseline interferometry. This system is one of the most massive known binaries in our Galaxy. In this work we develop a broadband radiative model for the wind collision region. The model takes into account the evolution of accelerated particles streaming along the shocked region, their emission through different radiative processes, and the attenuation of the radiation while it propagates across all local fields. We reproduce the available radio data, and analyze the consequent detectability of the source in hard X/gamma-rays. We predict how the emission from the system will evolve in the forthcoming years when the stars come closer, and we also provide synthetic radio maps that allow to interpret the future observations with very large baseline interferometry in 2.3 GHz and 8.6 GHz. According to our results, the non-thermal emission from this system will enhance in the near future. With instruments such as NuSTAR, Fermi, and CTA, it will be possible to determine whether the relativistic particle content is hadron or lepton dominated, and other parameters such as the strength of the magnetic field in the wind collision region and, indirectly, the magnetic field in the surface of the very massive stars.

  4. Inconsistency of topologically massive hypergravity

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Deser, S.

    1985-01-01

    The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.

  5. Large-scale gas dynamics in the adhesion model: implications for the two-phase massive galaxy formation scenario

    NASA Astrophysics Data System (ADS)

    Domínguez-Tenreiro, R.; Oñorbe, J.; Martínez-Serrano, F.; Serna, A.

    2011-06-01

    implications for diffuse or shocked mass elements), as well as on their possible observational implications, these patterns have been confronted with some generic properties of singular flows as described by the adhesion model (i.e. potential character of the velocity field, singular versus regular points, dressing, locality when a spectrum of perturbations is implemented). We have found that the common patterns the simulations show can be interpreted as a natural consequence of flow properties that, moreover, could explain different generic observational results from massive galaxies or their samples. We briefly discuss some of them.

  6. Three-dimensional modeling of ionized gas. II. Spectral energy distributions of massive and very massive stars in stationary and time-dependent modeling of the ionization of metals in H II regions

    NASA Astrophysics Data System (ADS)

    Weber, J. A.; Pauldrach, A. W. A.; Hoffmann, T. L.

    2015-11-01

    Context. H II regions play a crucial role in the measurement of the chemical composition of the interstellar medium and provide fundamental data about element abundances that constrain models of galactic chemical evolution. Discrepancies that still exist between observed emission line strengths and those predicted by nebular models can be partly attributed to the spectral energy distributions (SEDs) of the sources of ionizing radiation used in the models as well as to simplifying assumptions made in nebular modeling. Aims: One of the main influences on the nebular spectra is the metallicity, both nebular and stellar, which shows large variations even among nearby galaxies. Although nebular modeling often involves testing of different nebular metallicities against their influence on the predicted spectra, adequate grids of stellar atmospheres and realistic SEDs for different metallicities are still lacking. This is unfortunate because the influence of stellar metallicity on nebular line strength ratios, via its effect on the SEDs, is of similar importance as variations in the nebular metallicity. To overcome this deficiency we have computed a grid of model atmosphere SEDs for massive and very massive O-type stars covering a range of metallicities from significantly subsolar (0.1 Z⊙) to supersolar (2 Z⊙). Methods: The SEDs have been computed using a state-of-the-art model atmosphere code that takes into account the attenuation of the ionizing flux by the spectral lines of all important elements and the hydrodynamics of the radiatively driven winds and their influence on the SEDs. For the assessment of the SEDs in nebular simulations we have developed a (heretofore not available) 3D radiative transfer code that includes a time-dependent treatment of the metal ionization. Results: Using the SEDs in both 1D and 3D nebular models we explore the relative influence of stellar metallicity, gas metallicity, and inhomogeneity of the gas on the nebular ionization structure

  7. Massive Bleeding and Massive Transfusion

    PubMed Central

    Meißner, Andreas; Schlenke, Peter

    2012-01-01

    Massive bleeding in trauma patients is a serious challenge for all clinicians, and an interdisciplinary diagnostic and therapeutic approach is warranted within a limited time frame. Massive transfusion usually is defined as the transfusion of more than 10 units of packed red blood cells (RBCs) within 24 h or a corresponding blood loss of more than 1- to 1.5-fold of the body's entire blood volume. Especially male trauma patients experience this life-threatening condition within their productive years of life. An important parameter for clinical outcome is to succeed in stopping the bleeding preferentially within the first 12 h of hospital admission. Additional coagulopathy in the initial phase is induced by trauma itself and aggravated by consumption and dilution of clotting factors. Although different aspects have to be taken into consideration when viewing at bleedings induced by trauma compared to those caused by major surgery, the basic strategy is similar. Here, we will focus on trauma-induced massive hemorrhage. Currently there are no definite, worldwide accepted algorithms for blood transfusion and strategies for optimal coagulation management. There is increasing evidence that a higher ratio of plasma and RBCs (e.g. 1:1) endorsed by platelet transfusion might result in a superior survival of patients at risk for trauma-induced coagulopathy. Several strategies have been evolved in the military environment, although not all strategies should be transferred unproven to civilian practice, e.g. the transfusion of whole blood. Several agents have been proposed to support the restoration of coagulation. Some have been used for years without any doubt on their benefit-to-risk profile, whereas great enthusiasm of other products has been discouraged by inefficacy in terms of blood transfusion requirements and mortality or significant severe side effects. This review surveys current literature on fluid resuscitation, blood transfusion, and hemostatic agents currently

  8. Massive Supergravity and Deconstruction

    SciTech Connect

    Gregoire, Thomas; Schwartz, Matthew D.; Shadmi, Yael

    2004-03-23

    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that achiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various quantum effects which generate non-local operators in theory space. As an example, we show that the single massive supergravity multiplet in a 2-site model can serve the function of an extra dimension in anomaly mediation.

  9. A model for the non-thermal emission of the very massive colliding-wind binary HD 93129A

    NASA Astrophysics Data System (ADS)

    del Palacio, Santiago; Bosch-Ramon, Valentí; Romero, Gustavo E.; Benaglia, Paula

    2016-06-01

    Context. Recently, the colliding-wind region of the binary stellar system HD 93129A was resolved for the first time using Very Large Baseline Interferometry. This system, one of the most massive known binaries in our Galaxy, presents non-thermal emission in the radio band, which can be used to infer the physical conditions in the system, and make predictions for the high-energy band. Aims: We intend to constrain some of the unknown parameters of HD 93129A through modeling the non-thermal emitter. We also aim to analyse the detectability of this source in hard X-rays and γ-rays. Finally, we want to predict how the non-thermal emission will evolve in the future, when the stars approach periastron. Methods: A broadband radiative model for the wind-collision region (WCR) has been developed taking into account the evolution of the accelerated particles streaming along the shocked region, the emission by different radiative processes, and the attenuation of the emission propagating through the local matter and radiation fields. We reproduce the available radio data, and make predictions of the emission in hard X-rays and γ-rays under different assumptions. Results: From the analysis of the radio emission, we find that the binary HD 93129A is more likely to have a low inclination and a high eccentricity, with the more massive star being currently closer to the observer. The minimum energy of the non-thermal electrons seems to be between ~20-100 MeV, depending on the intensity of the magnetic field in the WCR. The latter can be in the range ~20-1500 mG. Conclusions: Our model is able to reproduce the observed radio emission, and predicts that the non-thermal radiation from HD 93129A will increase in the near future. With instruments such as NuSTAR, Fermi, and CTA, it will be possible to constrain the relativistic particle content of the source, and other parameters such as the magnetic field strength in the WCR which, in turn, can be used to obtain upper-limits of the

  10. Resummation of Massive Gravity

    SciTech Connect

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2011-06-10

    We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

  11. Massive and Open

    ERIC Educational Resources Information Center

    Fasimpaur, Karen

    2013-01-01

    MOOCs--massive open online courses--are all the rage these days, with hundreds of thousands of participants signing up and investors plunking down millions to get a piece of the pie. Why is there so much excitement about this new disruptive form of online learning, and how does this model apply to professional learning for teachers? Traditional…

  12. Analysis of Massive Emigration from Poland: The Model-Based Clustering Approach

    NASA Astrophysics Data System (ADS)

    Witek, Ewa

    The model-based approach assumes that data is generated by a finite mixture of probability distributions such as multivariate normal distributions. In finite mixture models, each component of probability distribution corresponds to a cluster. The problem of determining the number of clusters and choosing an appropriate clustering method becomes the problem of statistical model choice. Hence, the model-based approach provides a key advantage over heuristic clustering algorithms, because it selects both the correct model and the number of clusters.

  13. Simulation of the world ocean climate with a massively parallel numerical model

    NASA Astrophysics Data System (ADS)

    Ushakov, K. V.; Ibrayev, R. A.; Kalmykov, V. V.

    2015-07-01

    The INM-IO numerical World Ocean model is verified through the calculation of the model ocean climate. The numerical experiment was conducted for a period of 500 years following the CORE-I protocol. We analyze some basic elements of the large-scale ocean circulation and local and integral characteristics of the model solution. The model limitations and ways they are overcome are described. The results generally fit the level of leading models. This experiment is a necessary step preceding the transition to high-resolution diagnostic and prognostic calculations of the state of the World Ocean and its individual basins.

  14. Model Atmospheres for Massive Gas Giants with Thick Clouds: Application to the HR 8799 Planets and Predictions for Future Detections

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne

    2011-08-01

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 μm modal particle size and (2) clouds made of 1 μm sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 MJ , 6-13 MJ , and 3-11 MJ , respectively, and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.

  15. MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS

    SciTech Connect

    Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne E-mail: burrows@astro.princeton.edu

    2011-08-10

    We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 {mu}m modal particle size and (2) clouds made of 1 {mu}m sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M{sub J} , 6-13 M{sub J} , and 3-11 M{sub J} , respectively, and imply coeval ages between {approx}10 and {approx}150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.

  16. Simulating the formation of massive seed black holes in the early Universe - I. An improved chemical model

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.

    2015-08-01

    The direct collapse model for the formation of massive seed black holes in the early Universe attempts to explain the observed number density of supermassive black holes (SMBHs) at z ˜ 6 by assuming that they grow from seeds with masses M > 104 M⊙ that form by the direct collapse of metal-free gas in atomic cooling haloes in which H2 cooling is suppressed by a strong extragalactic radiation field. The viability of this model depends on the strength of the radiation field required to suppress H2 cooling, Jcrit: if this is too large, then too few seeds will form to explain the observed number density of SMBHs. In order to determine Jcrit reliably, we need to be able to accurately model the formation and destruction of H2 in gas illuminated by an extremely strong radiation field. In this paper, we use a reaction-based reduction technique to analyse the chemistry of H2 in these conditions, allowing us to identify the key chemical reactions that are responsible for determining the value of Jcrit. We construct a reduced network of 26 reactions that allows us to determine Jcrit accurately, and compare it with previous treatments in the literature. We show that previous studies have often omitted one or more important chemical reactions, and that these omissions introduce an uncertainty of up to a factor of 3 into previous determinations of Jcrit.

  17. UNDERSTANDING HOW PLANETS BECOME MASSIVE. I. DESCRIPTION AND VALIDATION OF A NEW TOY MODEL

    SciTech Connect

    Ormel, C. W.; Kobayashi, H. E-mail: hkobayas@nagoya-u.ac.jp

    2012-03-10

    The formation of giant planets requires the accumulation of {approx}10 Earth masses in solids; but how do protoplanets acquire their mass? There are many, often competing, processes that regulate the accretion rate of protoplanets. To assess their effects we present a new, publicly available toy model. The rationale behind the toy model is that it encompasses as many physically relevant processes as possible, but at the same time does not compromise its simplicity, speed, and physical insight. The toy model follows a modular structure, where key features-e.g., planetesimal fragmentation, radial orbital decay, nebula turbulence-can be switched on or off. Our model assumes three discrete components (fragments, planetesimals, and embryos) and is zero dimensional in space. We have tested the outcomes of the toy model against literature results and generally find satisfactory agreement. We include, for the first time, model features that capture the three-way interactions among small particles, gas, and protoplanets. Collisions among planetesimals will result in fragmentation, transferring a substantial amount of the solid mass to small particles, which couple strongly to the gas. Our results indicate that the efficiency of the accretion process then becomes very sensitive to the gas properties-especially to the turbulent state and the magnitude of the disk headwind (the decrease of the orbital velocity of the gas with respect to Keplerian)-as well as to the characteristic fragment size.

  18. Volcanogenic Massive Sulfide Deposit Density

    USGS Publications Warehouse

    Mosier, Dan L.; Singer, Donald A.; Berger, Vladimir I.

    2007-01-01

    A mineral-deposit density model for volcanogenic massive sulfide deposits was constructed from 38 well-explored control areas from around the world. Control areas contain at least one exposed volcanogenic massive sulfide deposit. The control areas used in this study contain 150 kuroko, 14 Urals, and 25 Cyprus massive sulfide subtypes of volcanogenic massive sulfide deposits. For each control area, extent of permissive rock, number of exposed volcanogenic massive sulfide deposits, map scale, deposit age, and deposit density were determined. The frequency distribution of deposit densities in these 38 control areas provides probabilistic estimates of the number of deposits for tracts that are permissive for volcanogenic massive sulfide deposits-90 percent of the control areas have densities of 100 or more deposits per 100,000 square kilometers, 50 percent of the control areas have densities of 700 or more deposits per 100,000 square kilometers, and 10 percent of the control areas have densities of 3,700 or more deposits per 100,000 square kilometers. Both map scale and the size of the control area are shown to be predictors of deposit density. Probabilistic estimates of the number of volcanogenic massive sulfide deposits can be made by conditioning the estimates on sizes of permissive area. The model constructed for this study provides a powerful tool for estimating the number of undiscovered volcanogenic massive sulfide deposits when conducting resource assessments. The value of these deposit densities is due to the consistency of these models with the grade and tonnage and the descriptive models. Mineral-deposit density models combined with grade and tonnage models allow reasonable estimates of the number, size, and grades of volcanogenic massive sulfide deposits to be made.

  19. Modeling cardiovascular hemodynamics using the lattice Boltzmann method on massively parallel supercomputers

    NASA Astrophysics Data System (ADS)

    Randles, Amanda Elizabeth

    Accurate and reliable modeling of cardiovascular hemodynamics has the potential to improve understanding of the localization and progression of heart diseases, which are currently the most common cause of death in Western countries. However, building a detailed, realistic model of human blood flow is a formidable mathematical and computational challenge. The simulation must combine the motion of the fluid, the intricate geometry of the blood vessels, continual changes in flow and pressure driven by the heartbeat, and the behavior of suspended bodies such as red blood cells. Such simulations can provide insight into factors like endothelial shear stress that act as triggers for the complex biomechanical events that can lead to atherosclerotic pathologies. Currently, it is not possible to measure endothelial shear stress in vivo, making these simulations a crucial component to understanding and potentially predicting the progression of cardiovascular disease. In this thesis, an approach for efficiently modeling the fluid movement coupled to the cell dynamics in real-patient geometries while accounting for the additional force from the expansion and contraction of the heart will be presented and examined. First, a novel method to couple a mesoscopic lattice Boltzmann fluid model to the microscopic molecular dynamics model of cell movement is elucidated. A treatment of red blood cells as extended structures, a method to handle highly irregular geometries through topology driven graph partitioning, and an efficient molecular dynamics load balancing scheme are introduced. These result in a large-scale simulation of the cardiovascular system, with a realistic description of the complex human arterial geometry, from centimeters down to the spatial resolution of red-blood cells. The computational methods developed to enable scaling of the application to 294,912 processors are discussed, thus empowering the simulation of a full heartbeat. Second, further extensions to enable

  20. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    PubMed Central

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  1. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data

    PubMed Central

    Ribay, Kathryn; Kim, Marlene T.; Wang, Wenyi; Pinolini, Daniel; Zhu, Hao

    2016-01-01

    Estrogen receptors (ERα) are a critical target for drug design as well as a potential source of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents is critical in both drug discovery and chemical toxicity areas. Using computational tools, e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential ERα binding agents before chemical synthesis. The purpose of this project was to develop enhanced predictive models of ERα binding agents by utilizing advanced cheminformatics tools that can integrate publicly available bioassay data. The initial ERα binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained from the Tox21 Challenge project organized by the NIH Chemical Genomics Center (NCGC). After removing the duplicates and inorganic compounds, this data set was used to create a training set (259 binders and 259 non-binders). This training set was used to develop QSAR models using chemical descriptors. The resulting models were then used to predict the binding activity of 264 external compounds, which were available to us after the models were developed. The cross-validation results of training set [Correct Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all compounds in the training set were used to search PubChem and generate a profile of their biological responses across thousands of bioassays. The most important bioassays were prioritized to generate a similarity index that was used to calculate the biosimilarity score between each two compounds. The nearest neighbors for each compound within the set were then identified and its ERα binding potential was predicted by its nearest neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross validation; CCR = 0.68 for external prediction) showed significant improvement over the original QSAR

  2. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    PubMed Central

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-01-01

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  3. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

    PubMed

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-08-13

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs.

  4. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

    PubMed

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-08-13

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  5. UV-extended E-MILES stellar population models: young components in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Vazdekis, A.; Koleva, M.; Ricciardelli, E.; Röck, B.; Falcón-Barroso, J.

    2016-09-01

    We present UV-extended E-MILES stellar population synthesis models covering the spectral range λλ 1680 - 50000 Å at moderately high resolution. We employ the NGSL space-based stellar library to compute spectra of single-age, single-metallicity stellar populations in the wavelength range from 1680 to 3540 Å. These models represent a significant improvement in resolution and age/metallicity coverage over previous studies based on earlier space-based libraries. These model spectra were joined with those we computed in the visible using MILES, and other empirical libraries for redder wavelengths. The models span the metallicity range -1.79⩽ {[M/H]}}⩽ +0.26 and ages above 30 Myr, for a suite of IMF types with varying slopes. We focus on the behaviour of colours, spectra and line-strength indices in the UV range as a function of relevant stellar population parameters. Whereas some indices strengthen with increasing age and metallicity, as most metallicity indicators in the visible, other indices peak around 3 Gyr for metal-rich stellar populations, such as Mg at 2800 Å. Our models provide reasonably good fits to the integrated colours and most line-strengths of the stellar clusters of the Milky-Way and LMC. Our full-spectrum fits in the UV range for a representative set of ETGs of varying mass yield age and metallicity estimates in very good agreement with those obtained in the optical range. The comparison of UV colours and line-strengths of massive ETGs with our models reveals the presence of young stellar components, with ages in the range 0.1 - 0.5 Gyr and mass fractions 0.1 - 0.5%, on the top of an old stellar population.

  6. A Structural Equation Modelling Approach for Massive Blended Synchronous Teacher Training

    ERIC Educational Resources Information Center

    Kannan, Kalpana; Narayanan, Krishnan

    2015-01-01

    This paper presents a structural equation modelling (SEM) approach for blended synchronous teacher training workshop. It examines the relationship among various factors that influence the Satisfaction (SAT) of participating teachers. Data were collected with the help of a questionnaire from about 500 engineering college teachers. These teachers…

  7. Drilling the Messinian Salinity Crisis as a Model Analogue for Dolomite Deposition at the End of Massive Salt Deposition Events

    NASA Astrophysics Data System (ADS)

    McKenzie, Judith A.; Aloisi, Giovanni; Anjos, Sylvia; Latgé, Ricardo; Matsuda, Nilo; Bontognali, Tomaso; Vasconcelos, Crisogono

    2015-04-01

    Sedimentologic and stratigraphic studies of the Lower Cretaceous sequence, deposited in the economically important Campos Basin, southeast Brazil, document the occurrence of ~20-m-thick dolomite intervals overlying the "massive salt" megasequences of the Lagoa Feia Formation. This stratigaphic succession marks the Aptian/Albian transition from extreme evaporitic conditions of the Lagoa Feia Formation to shallow marine conditions of the Macaé Formation, related to the early opening of the South Atlantic. The facies change from evaporites to dolomite is interpreted as a product of dolomitization resulting from the refuxing of hypersaline fluids from shallow embayments with intense evaporation (Latgé, 2001). Although the reflux model provides a mechanism to produce fluids with geochemical composition favorable for dolomite precipitation, it cannot account for all of the factors required to promote dolomite precipitation. In this study, we propose a different model to explain the post-evaporite deposition of massive dolomite based on the study of sequences deposited at the end Messinian Salinity Crisis, which were recovered from the deep basins of the Mediterranean Sea during DSDP/ODP drilling campaigns. At most of these deep-water sites, the cored interval contained unusual dolomite deposits overlying the uppermost evaporite sections. For example, the upper Messinian sedimentary sequence at DSDP Site 374 comprises non-fossiliferous dolomitic mudstone overlying dolomitic mudstone/gypsum cycles, which in turn overlie anhydrite and halite (Hsü, Montadert et al., 1978). We postulate that the end Messinian dolomite is a product of microbial activity under extreme hypersaline conditions. In the last 20 years, research into the factors controlling dolomite precipitation under Earth surface conditions has led to the development of new models involving the metabolism of microorganisms and associated biofilms to overcome the kinetic inhibitions associated with primary

  8. Preventing Return of Fear in an Animal Model of Anxiety: Additive Effects of Massive Extinction and Extinction in Multiple Contexts

    PubMed Central

    Laborda, Mario A.; Miller, Ralph R.

    2013-01-01

    Fear conditioning and experimental extinction have been presented as models of anxiety disorders and exposure therapy, respectively. Moreover, the return of fear serves as a model of relapse after exposure therapy. Here we present two experiments, with rats as subjects in a lick suppression preparation, in which we assessed the additive effects of two different treatments to attenuate the return of fear. First, we evaluated whether two phenomena known to generate return of fear (i.e., spontaneous recovery and renewal) summate to produce a stronger reappearance of extinguished fear. At test, rats evaluated outside the extinction context following a long delay after extinction (i.e., a delayed context shift) exhibited greater return of extinguished fear than rats evaluated outside the extinction context alone, but return of extinguished fear following a delayed context shift did not significantly differ from the return of fear elicited in rats tested following a long delay after extinction alone. Additionally, extinction in multiple contexts and a massive extinction treatment each attenuated the strong return of fear produced by a delayed context shift. Moreover, the conjoint action of these treatments was significantly more successful in preventing the reappearance of extinguished fear, suggesting that extensive cue exposure administered in several different therapeutic settings has the potential to reduce relapse after therapy for anxiety disorders, more than either manipulation alone. PMID:23611075

  9. Comparative assessment of SAS and DES turbulence modeling for massively separated flows

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Yan, Chao; Liu, Hongkang; Luo, Dahai

    2016-02-01

    Numerical studies of the flow past a circular cylinder at Reynolds number 1.4× 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simulation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is concluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recirculation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity outside the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.

  10. Instability of the Ackerman-Carroll-Wise model, and problems with massive vectors during inflation

    SciTech Connect

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-03-15

    We prove that the anisotropic inflationary background of the Ackerman-Carroll-Wise model, characterized by a fixed-norm vector field, is unstable. We found the instability by explicitly solving the linearized equations for the most general set of perturbations around this background, and by noticing that the solutions diverge close to horizon crossing. This happens because one perturbation becomes a ghost at that moment. A simplified computation, with only the perturbations of the vector field included, shows the same instability, clarifying the origin of the problem. We then discuss several other models, with a particular emphasis on the case of a nonminimal coupling to the curvature, in which vector fields are used either to support an anisotropic expansion, or to generate cosmological perturbations on an isotropic background. In many cases, the mass squared of the vector needs to be negative; we show that, as a consequence, the longitudinal vector mode is a ghost (a field with negative kinetic term, and negative energy, and not simply a tachyon). We comment on problems that arise at the quantum level. In particular, the presence of a ghost can be a serious difficulty for the UV completion that such models require in the subhorizon regime.

  11. Digital relief 3D model of the Khibiny massive (Kola peninsula)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2015-04-01

    On the basis of maps of 1: 50,000 and 1: 200,000 3D model Khibiny massif developed. We used software ARC / INFO v10.2 ESRI. This project will be organised to build background for gas pollution monitoring network. We planned to use the model to estimate local heterogeneities in the composition of the atmosphere at the emanation of greenhouse gases in the area, the construction of models of vertical distribution of the content of trace gases in the rock mass. In addition to the project GIS digital elevation model contains layers of geological and tectonic map that allows us to estimate the area of the output of certain petrographic rock groups characterized by different ratios of emitted hydrocarbons (CH4/ H2). The model allows to construct a classification of fault in the array. At first glance, there are two groups of faults - the ancient associated with the formation of the intrusive phases sequence, and the young - due to recent tectonic shifts. Ancient faults form a common semicircular structure of the pluton cause overall asymmetry Khibin heights with the transition to the border area between the Khibiny and Lovoozero. Modern tectonics mainly represented by radial and chord faults which are formed narrow mountain valleys and troughs. It remains an open question as to which system fault (old or young) is more productive to gas emanations? On the one hand the system characterized by a large old depth, on the other hand a young more active faults. Address these issues require further detailed observations. The essential question is to assess the possibility of maintaining a constant concentration gradient of these impurities in the atmosphere due to gas emanations of fracture zones and areas enriched occluded gases. In the simulation of these processes can be used initially set parameters: 1 the flow rate of the gas impurities 2 the value of wind flows in closed and open valley 3 Assessment of thermal diffusion coefficients determined by the temperature gradient

  12. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  13. Mathematical model of massive dynamics in the neighborhood of disturbance focus

    SciTech Connect

    Alexeeva, Lyudmila A.; Sarsenov, Bakytbek T.

    2015-09-18

    We consider a model problem for the research of Earth’s surface state caused by discharge of tectonic stress on the deep cracks in the earth’s crust. Using the numerical method of bicharacteristics, algorithm is developed and solution of the problem of non-stationary dynamics of a homogeneous isotropic elastic half-space is built under plane strain when one resets the vertical stress on crack. Diffraction of waves on the surface is studied, pictures of wave fields and stress-strain state of the medium and the surface for different moments of time are built.

  14. Weakly-interacting massive particles in non-supersymmetric SO(10) grand unified models

    NASA Astrophysics Data System (ADS)

    Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2015-10-01

    Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting dark matter candidates in terms of their quantum numbers of SU(2) L ⊗ U(1) Y , B - L, and SU(2) R . We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2) L singlets with zero hypercharge or doublets with Y = 1 /2 satisfy all constraints for SU(4) C ⊗ SU(2) L ⊗ SU(2) R and SU(3) C ⊗ SU(2) L ⊗ SU(2) R ⊗ U(1) B- L intermediate scale gauge groups. Among fermion triplets with zero hypercharge, only a triplet in the 45 with intermediate group SU(4) C ⊗ SU(2) L ⊗ SU(2) R leads to solutions with M GUT > M int and a long proton lifetime. We find three models with weak doublets and Y = 1 /2 as dark matter candidates for the SU(4) C ⊗ SU(2) L ⊗ SU(2) R and SU(4) C ⊗ SU(2) L ⊗ U(1) R intermediate scale gauge groups assuming a minimal Higgs content. We also discuss how these models may be tested at accelerators and in dark matter detection experiments.

  15. An open source massively parallel solver for Richards equation: Mechanistic modelling of water fluxes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Orgogozo, L.; Renon, N.; Soulaine, C.; Hénon, F.; Tomer, S. K.; Labat, D.; Pokrovsky, O. S.; Sekhar, M.; Ababou, R.; Quintard, M.

    2014-12-01

    In this paper we present a massively parallel open source solver for Richards equation, named the RichardsFOAM solver. This solver has been developed in the framework of the open source generalist computational fluid dynamics tool box OpenFOAM® and is capable to deal with large scale problems in both space and time. The source code for RichardsFOAM may be downloaded from the CPC program library website. It exhibits good parallel performances (up to ˜90% parallel efficiency with 1024 processors both in strong and weak scaling), and the conditions required for obtaining such performances are analysed and discussed. These performances enable the mechanistic modelling of water fluxes at the scale of experimental watersheds (up to few square kilometres of surface area), and on time scales of decades to a century. Such a solver can be useful in various applications, such as environmental engineering for long term transport of pollutants in soils, water engineering for assessing the impact of land settlement on water resources, or in the study of weathering processes on the watersheds.

  16. The Variable Scale Evacuation Model (VSEM): a new tool for simulating massive evacuation processes during volcanic crises

    NASA Astrophysics Data System (ADS)

    Marrero, J. M.; García, A.; Llinares, A.; Rodríguez-Losada, J. A.; Ortiz, R.

    2010-04-01

    Volcanic eruptions are among the most awesome and powerful displays of nature's force, constituting a major natural hazard for society (a single eruption can claim thousands of lives in an instant). Consequently, assessment and management of volcanic risk have become critically important goals of modern volcanology. Over recent years, numerous tools have been developed to evaluate volcanic risk and support volcanic crisis management: probabilistic analysis of future eruptions, hazard and risk maps, event trees, etc. However, there has been little improvement in the tools that may help Civil Defense officials to prepare Emergency Plans. Here we present a new tool for simulating massive evacuation processes during volcanic crisis: the Variable Scale Evacuation Model (VSEM). The main objective of the VSEM software is to optimize the evacuation process of Emergency Plans during volcanic crisis. For this, the VSEM allows the simulation of an evacuation considering different strategies depending on diverse impact scenarios. VSEM is able to calculate the required time for the complete evacuation taking into account diverse evacuation scenarios (number and type of population, infrastructure, road network, etc.) and to detect high-risk or "blackspots" of the road network. The program is versatile and can work at different scales, thus being capable of simulating the evacuation of small villages as well as huge cities.

  17. Baryon octet electromagnetic form factors in a confining NJL model

    NASA Astrophysics Data System (ADS)

    Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.

    2016-08-01

    Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp < rEΣ+ and | rEn | < | rEΞ0 |, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.

  18. Vector mesons at finite temperature and QCD sum rules

    SciTech Connect

    Kwon, Youngshin; Weise, Wolfram; Sasaki, Chihiro

    2010-06-15

    Finite energy sum rules for vector and axial-vector currents are derived in a thermal medium to provide constraints for the spectral behavior of rho and a{sub 1} mesons at nonvanishing temperature and hence to study the tendency toward chiral symmetry restoration. The parity-mixing ansatz for the rho and a{sub 1} spectra, including finite widths, is investigated as a function of temperature. Characteristic differences between vector and axial-vector channels are discussed with regard to the implementation of the chiral-symmetry-breaking scale, 4pi times the pion decay constant, in the sum-rule approach.

  19. Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II

    DOE R&D Accomplishments Database

    Salam, Abdus; Delbourgo, Robert

    1964-01-01

    The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).

  20. Massive transfusion and massive transfusion protocol

    PubMed Central

    Patil, Vijaya; Shetmahajan, Madhavi

    2014-01-01

    Haemorrhage remains a major cause of potentially preventable deaths. Rapid transfusion of large volumes of blood products is required in patients with haemorrhagic shock which may lead to a unique set of complications. Recently, protocol based management of these patients using massive transfusion protocol have shown improved outcomes. This section discusses in detail both management and complications of massive blood transfusion. PMID:25535421

  1. Massive transfusion and massive transfusion protocol.

    PubMed

    Patil, Vijaya; Shetmahajan, Madhavi

    2014-09-01

    Haemorrhage remains a major cause of potentially preventable deaths. Rapid transfusion of large volumes of blood products is required in patients with haemorrhagic shock which may lead to a unique set of complications. Recently, protocol based management of these patients using massive transfusion protocol have shown improved outcomes. This section discusses in detail both management and complications of massive blood transfusion.

  2. An enhanced model of the contemporary and long-term (200 ka) sublimation of the massive subsurface ice in Beacon Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Sletten, Ronald S.; Hagedorn, Birgit; Hallet, Bernard; McKay, Christopher P.; Stone, John O.

    2015-08-01

    A massive ice body buried under several decimeters of dry regolith in Beacon Valley, Antarctica, is believed to be more than 1 Ma old and perhaps over 8.1 Ma; however, vapor diffusion models suggest that subsurface ice in this region is not stable under current climate conditions. To better understand the controls on sublimation rates and stability of this massive ice, we have modeled vapor diffusion using 12 years of climate and soil temperature data from 1999 to 2011, including field measurements of episodic snow cover and snowmelt events that have not been represented in previous models of ground ice sublimation. The model is then extended to reconstruct the sublimation history over the last 200 ka using paleotemperatures estimated from ice core data from nearby Taylor Dome and a relationship between atmospheric temperature and humidity derived from our meteorological records. The model quantifies the impact of episodic snow events; they account for a nearly 30% reduction in the massive ice loss. The sublimation rate of ground ice averages 0.11 mm a-1 between 1999 and 2011 in Beacon Valley. Parameterized with past environmental conditions and assuming the same regolith thickness, the modeled sublimation rate of ground ice in Beacon Valley averages 0.09 mm a-1 for the last 200 ka, comparable to the long-term average rate estimated independently from various studies based on cosmogenic isotopes. This study provides a realistic estimate of the long-term sublimation history and supports the inference that the buried ice in Beacon Valley is older than 1 Ma.

  3. Massive violent death and contested national mourning in post-authoritarian Chile and Argentina: a sociocultural application of the dual process model.

    PubMed

    Robben, Antonius C G M

    2014-01-01

    This article uses the dual process model (DPM) in an analysis of the national mourning of tens of thousands of disappeared in Chile and Argentina by adapting the model from the individual to the collective level where society as a whole is bereaved. Perpetrators are also involved in the national mourning process as members of a bereaved society. This article aims to (a) demonstrate the DPMs significance for the analysis of national mourning in post-conflict societies and (b) explain oscillations between loss orientation and restoration orientation in coping with massive losses that seem contradictory from a grief work perspective. PMID:24593012

  4. Massively Parallel Assimilation of TOGA/TAO and Topex/Poseidon Measurements into a Quasi Isopycnal Ocean General Circulation Model Using an Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max

    1999-01-01

    A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.

  5. A comprehensive comparative test of seven widely used spectral synthesis models against multi-band photometry of young massive-star clusters

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Charlot, S.; Bruzual, G.; Eldridge, J. J.; Calzetti, D.; Adamo, A.; Cignoni, M.; de Mink, S. E.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Lee, J. C.; Östlin, G.; Smith, L. J.; Ubeda, L.; Zackrisson, E.

    2016-04-01

    We test the predictions of spectral synthesis models based on seven different massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS) observations of eight young massive clusters in two local galaxies, NGC 1566 and NGC 5253, chosen because predictions of all seven models are available at the published galactic metallicities. The high angular resolution, extensive cluster inventory, and full near-ultraviolet to near-infrared photometric coverage make the LEGUS data set excellent for this study. We account for both stellar and nebular emission in the models and try two different prescriptions for attenuation by dust. From Bayesian fits of model libraries to the observations, we find remarkably low dispersion in the median E(B - V) (˜0.03 mag), stellar masses (˜104 M⊙), and ages (˜1 Myr) derived for individual clusters using different models, although maximum discrepancies in these quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is for ranges in median properties of 0.05-0.54 mag, 1.8-10 × 104 M⊙, and 1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the observations are slightly better reproduced by models with interacting binaries and least well reproduced by models with single rotating stars. Our study provides a first quantitative estimate of the accuracies and uncertainties of the most recent spectral synthesis models of young stellar populations, demonstrates the good progress of models in fitting high-quality observations, and highlights the needs for a larger cluster sample and more extensive tests of the model parameter space.

  6. Scientific development of a massively parallel ocean climate model. Progress report for 1992--1993 and Continuing request for 1993--1994 to CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics)

    SciTech Connect

    Semtner, A.J. Jr.; Chervin, R.M.

    1993-05-01

    During the second year of CHAMMP funding to the principal investigators, progress has been made in the proposed areas of research, as follows: investigation of the physics of the thermohaline circulation; examination of resolution effects on ocean general circulation; and development of a massively parallel ocean climate model.

  7. An investigation of the stability of the Bondi-Hoyle model of accretion flow. [onto massive astronomical bodies at high Mach number

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.

    1977-01-01

    The Bondi-Hoyle-Lyttleton (1944) accretion model is considered which involves accretion onto a massive body moving at a high Mach number with respect to the ambient medium and the production of a high-density accretion column along the axis where particle orbits intersect. The stability of steady-state solutions with respect to short-wavelength perturbations is analyzed using the WKB approximation, and the accretion column is shown to be unstable toward such perturbations. It is noted that this instability is not affected by the position of the stagnation point in the steady-state solution.

  8. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  9. Dearth of dark matter or massive dark halo? Mass-shape-anisotropy degeneracies revealed by NMAGIC dynamical models of the elliptical galaxy NGC 3379

    NASA Astrophysics Data System (ADS)

    de Lorenzi, F.; Gerhard, O.; Coccato, L.; Arnaboldi, M.; Capaccioli, M.; Douglas, N. G.; Freeman, K. C.; Kuijken, K.; Merrifield, M. R.; Napolitano, N. R.; Noordermeer, E.; Romanowsky, A. J.; Debattista, V. P.

    2009-05-01

    Recent results from the Planetary Nebula Spectrograph (PNS) survey have revealed a rapidly falling velocity dispersion profile in the nearby elliptical galaxy NGC 3379, casting doubts on whether this intermediate-luminosity galaxy has the kind of dark matter (DM) halo expected in Λ cold dark matter (ΛCDM) cosmology. We present a detailed dynamical study of this galaxy, combining ground based long-slit spectroscopy, integral-field data from the Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) instrument and PNS data reaching to more than seven effective radii. We construct dynamical models with the flexible χ2-made-to-measure (χ2M2M) particle method implemented in the NMAGIC code. We fit spherical, axisymmetric and some triaxial models to the photometric and combined kinematic data in a sequence of gravitational potentials whose circular velocity curves at large radii vary between a near-Keplerian decline and the nearly flat shapes generated by massive haloes. We find that models with a range of halo masses, anisotropies, shapes and inclinations are good representations of the data. In particular, the data are consistent both with near-isotropic systems dominated by the stellar mass and with models in moderately massive haloes with strongly radially anisotropic outer parts (β >~ 0.8 at 7Re). Formal likelihood limits would exclude (at 1σ) the model with stars only, as well as halo models with vcirc(7Re) >~ 250kms-1. All valid models fitting all the data are dynamically stable over gigayears, including the most anisotropic ones. Overall the kinematic data for NGC 3379 out to 7Re are consistent with a range of mass distributions in this galaxy. NGC 3379 may well have a DM halo as predicted by recent merger models within ΛCDM cosmology, provided its outer envelope is strongly radially anisotropic.

  10. Higher dimensional massive bigravity

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2016-08-01

    We study higher-dimensional scenarios of massive bigravity, which is a very interesting extension of nonlinear massive gravity since its reference metric is assumed to be fully dynamical. In particular, the Einstein field equations along with the following constraint equations for both physical and reference metrics of a five-dimensional massive bigravity will be addressed. Then, we study some well-known cosmological spacetimes such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini metrics for the five-dimensional massive bigravity. As a result, we find that massive graviton terms will serve as effective cosmological constants in both physical and reference sectors if a special scenario, in which reference metrics are chosen to be proportional to physical ones, is considered for all mentioned metrics. Thanks to the constancy property of massive graviton terms, consistent cosmological solutions will be figured out accordingly.

  11. Measurements of [gamma][gamma] collisions with the OPAL detector at LEP and comparison with QCD models

    SciTech Connect

    Layter, J.G. )

    1992-02-01

    Samples of muon pairs, tau pairs, and hadrons produced in single tagged two-photon collisions have been obtained with the OPAL detector. The tagging electron is detected in the Forward Detector. A variety of triggers select the remainder of the event. From the muon pair sample the QED structure function [ital F][sub 2] has been extracted. Measured event distributions from the tau pair sample agree with QED calculations. Distributions of [ital Q][sup 2], [ital W], and [ital x] obtained from the hadron sample agree well with a Monte Carlo model with contributions from QCD, Vector Meson Dominance, and the production of charmed quarks and tau leptons.

  12. Massive gauge-flation

    NASA Astrophysics Data System (ADS)

    Nieto, Carlos M.; Rodríguez, Yeinzon

    2016-06-01

    Gauge-flation model at zeroth-order in cosmological perturbation theory offers an interesting scenario for realizing inflation within a particle physics context, allowing us to investigate interesting possible connections between inflation and the subsequent evolution of the Universe. Difficulties, however, arise at the perturbative level, thus motivating a modification of the original model. In order to agree with the latest Planck observations, we modify the model such that the new dynamics can produce a relation between the spectral index ns and the tensor-to-scalar ratio r allowed by the data. By including an identical mass term for each of the fields of the system, we find interesting dynamics leading to slow-roll inflation of the right length. The presence of the mass term has the potential to modify the ns versus r relation so as to agree with the data. As a first step, we study the model at zeroth-order in cosmological perturbation theory, finding the conditions required for slow-roll inflation and the number of e-foldings of inflation. Numerical solutions are used to explore the impact of the mass term. We conclude that the massive version of gauge-flation offers a viable inflationary model.

  13. Quark fragmentation functions in NJL-jet model

    NASA Astrophysics Data System (ADS)

    Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony

    2014-09-01

    We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.

  14. Octonic Massive Field Equations

    NASA Astrophysics Data System (ADS)

    Demir, Süleyman; Kekeç, Seray

    2016-07-01

    In the present paper we propose the octonic form of massive field equations based on the analogy with electromagnetism and linear gravity. Using the advantages of octon algebra the Maxwell-Dirac-Proca equations have been reformulated in compact and elegant way. The energy-momentum relations for massive field are discussed.

  15. Logistics of massive transfusions.

    PubMed

    DeLoughery, Thomas G

    2010-01-01

    Care of the patient with massive bleeding involves more than aggressive surgery and infusion of large amounts of blood products. The proper management of massive transfusions-whether they are in trauma patients or other bleeding patients-requires coordination of the personnel in the surgical suite or the emergency department, the blood bank, and laboratory.

  16. Massive sulfide exploration models of the Iberian Pyrite Belt Neves Corvo mine region, based in a 3D geological, geophysical and geochemical ProMine study

    NASA Astrophysics Data System (ADS)

    Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Mário Castelo-Branco, José; Granado, Isabel; Carvalho, João; João Baptista, Maria; Represas, Patrícia; Pereira, Zélia; Oliveira, Tomás; Araujo, Vitor

    2013-04-01

    The Iberian Pyrite Belt (IPB) hosts one of the largest concentrations of massive sulfides in the Earth's crust. This highly productive VMS belt contains more than 85 massive sulfide deposits, totalling an estimate of 1600 Mt of massive ore and about 250 Mt of stockwork ore (Leistel et al., 1998; Oliveira et al., 2005; Tornos, 2006). Included in the South Portuguese Zone the IPB is represented by the Phyllite-Quartzite Group (PQG) composed of shales and quartzites of late Devonian age followed by the Volcanic-Sedimentary Complex (VSC) a submarine succession of sediments and felsic and basic volcanic rocks (late Famennian-late Viséan age). Above the IPB a turbidite sedimentary unit occurs being represented by the Baixo Alentejo Flysch Group (BAFG). The ore deposits are hosted by felsic volcanic rocks and sediments that are dominant in the lower part of the VSC succession. The Neves Corvo (ProMine, EU FP7) project area is focused on the Neves Corvo deposit, an active copper mine. The project area is located between the Messejana Fault and the Portuguese/Spanish border which has been selected for the 3D geological and geophysical modelling study, based on high exploration potential of the Neves Corvo area (Oliveira et al. 2006, Relvas et al. 2006, Pereira et al. 2008, Rosa et al. 2008, Matos et al. 2011, Oliveira et al. 2013). In this study existing LNEG and AGC geological, geophysical and geochemistry databases were considered. New surveys were done: i) - A physical volcanology and palynostratigraphic age data study and log of the Cotovio drill-hole core (1,888 m, drilled by AGC). ii) - Interpretation of 280 km of Squid TEM performed by AGC. Based on the TEM data, significant conductors have been identified related with: shallow conductive cover, graphitic shale, black shale and sulphide mineralizations. The most important TEM conductors are related with the Neves Corvo massive sulphides lenses (1-10 Ωm). iii) - Ground and residual gravimetry studies including

  17. The processes e+e-→ K±(K∗∓(892),K∗∓(1410)) and e+e-→ (η,η‧(958))(ϕ(1020),ϕ(1680)) in the extended Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Volkov, M. K.; Pivovarov, A. A.

    2016-09-01

    The processes e+e-→ K±K∗∓(892) and e+e-→ ηϕ(1020) are calculated in the framework of the extended Nambu-Jona-Lasinio model. The intermediate vector mesons ρ(770), ω(782), ϕ(1020) and their first radially excited states are taken into account. The obtained results are in satisfactory agreement with the experimental data. The predictions for the cross-sections of the reactions e+e-→ K±K∗∓(1410), e+e-→ η‧(958)ϕ(1020) and e+e-→ ηϕ(1680) were made.

  18. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  19. Accretion Disks in Massive Binary Systems

    NASA Astrophysics Data System (ADS)

    Djurašević, G. R.; Vince, I.; Atanacković, O.

    2010-12-01

    The results of our investigations of some massive close binaries (CB) (RY Sct, V448 Cyg, UU Cas and V455 Cyg), based on the photometric and spectroscopic observations indicate the existance of the accretion disk around the more massive component, located deep inside the Roche lobe. The light curve shapes of some of this systems are similar to the ones of the overcontact systems like W UMa, but the nature of these massive CBs is completely different. Here we present the models of these systems and their basic elements.

  20. Numerical prediction of heat-flux to massive calorimeters engulfed in regulatory fires with the cask analysis fire environment (CAFE) model

    SciTech Connect

    KOSKI,JORMAN A.; SUO-ANTITLA,AHTI; KRAMER,M. ALEX; GREINER,MILES

    2000-05-11

    Recent observations show that the thermal boundary conditions within large-scale fires are significantly affected by the presence of thermally massive objects. These objects cool the soot and gas near their surfaces, and these effects reduce the incoming radiant heat-flux to values lower than the levels expected from simple {sigma}T{sub fire}{sup 4} models. They also affect the flow and temperature fields in the fire far from their surfaces. The Cask Analysis Fire Environment (CAFE) code has been developed at Sandia National Laboratories to provide an enhanced fire boundary condition for the design of radioactive material packages. CAFE is a set of computer subroutines that use computational fluid mechanics methods to predict convective heat transfer and mixing. It also includes models for fuel and oxygen transport, chemical reaction, and participating-media radiation heat transfer. This code uses two-dimensional computational models so that it has reasonably short turnaround times on standard workstations and is well suited for design and risk studies. In this paper, CAFE is coupled with a commercial finite-element program to model a large cylindrical calorimeter fully engulfed in a pool fire. The time-dependent heat-flux to the calorimeter and the calorimeter surface temperature are determined for several locations around the calorimeter circumference. The variation of heat-flux with location is determined for calorimeters with different diameters and wall thickness, and the observed effects discussed.

  1. Voids in massive neutrino cosmologies

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it

    2015-11-01

    Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

  2. Rapid comparison and correlation analysis among massive number of microbial community samples based on MDV data model.

    PubMed

    Su, Xiaoquan; Hu, Jianqiang; Huang, Shi; Ning, Kang

    2014-01-01

    The research in microbial communities would potentially impact a vast number of applications in "bio"-related disciplines. Large-scale analyses became a clear trend in microbial community studies, thus it is increasingly important to perform efficient and in-depth data mining for insightful biological principles from large number of samples. However, as microbial communities are from different sources and of different structures, comparison and data-mining from large number of samples become quite difficult. In this work, we have proposed a data model to represent large-scale comparison of microbial community samples, namely the "Multi-Dimensional View" data model (the MDV model) that should at least include 3 aspects: samples profile (S), taxa profile (T) and meta-data profile (V). We have also proposed a method for rapid data analysis based on the MDV model and applied it on the case studies with samples from various environmental conditions. Results have shown that though sampling environments usually define key variables, the analysis could detect bio-makers and even subtle variables based on large number of samples, which might be used to discover novel principles that drive the development of communities. The efficiency and effectiveness of data analysis method based on the MDV model have been validated by the results. PMID:25227622

  3. Modeling the Backscatter and Transmitted Light of High Power Smoothed Beams with pF3D, a Massively Parallel Laser Plasma Interaction Code

    SciTech Connect

    Berger, R.L.; Divol, L.; Glenzer, S.; Hinkel, D.E.; Kirkwood, R.K.; Langdon, A.B.; Moody, J.D.; Still, C.H.; Suter, L.; Williams, E.A.; Young, P.E.

    2000-06-01

    Using the three-dimensional wave propagation code, F3D[Berger et al., Phys. Fluids B 5,2243 (1993), Berger et al., Phys. Plasmas 5,4337(1998)], and the massively parallel version pF3D, [Still et al. Phys. Plasmas 7 (2000)], we have computed the transmitted and reflected light for laser and plasma conditions in experiments that simulated ignition hohlraum conditions. The frequency spectrum and the wavenumber spectrum of the transmitted light are calculated and used to identify the relative contributions of stimulated forward Brillouin and self-focusing in hydrocarbon-filled balloons, commonly called gasbags. The effect of beam smoothing, smoothing by spectral dispersion (SSD) and polarization smoothing (PS), on the stimulated Brillouin backscatter (SBS) from Scale-1 NOVA hohlraums was simulated with the use nonlinear saturation models that limit the amplitude of the driven acoustic waves. Other experiments on CO{sub 2} gasbags simultaneously measure at a range of intensities the SBS reflectivity and the Thomson scatter from the SBS-driven acoustic waves that provide a more detailed test of the modeling. These calculations also predict that the backscattered light will be very nonuniform in the nearfield (the focusing system optics) which is important for specifying the backscatter intensities be tolerated by the National Ignition Facility laser system.

  4. Massively parallel multiple interacting continua formulation for modeling flow in fractured porous media using the subsurface reactive flow and transport code PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Mills, R. T.; Lichtner, P. C.; Hammond, G. E.

    2010-12-01

    Fracture dominated flows occur in numerous subsurface geochemical processes and at many different scales in rock pore structures, micro-fractures, fracture networks and faults. Fractured porous media can be modeled as multiple interacting continua which are connected to each other through transfer terms that capture the flow of mass and energy in response to pressure, temperature and concentration gradients. However, the analysis of large-scale transient problems using the multiple interacting continuum approach presents an algorithmic and computational challenge for problems with very large numbers of degrees of freedom. A generalized dual porosity model based on the Dual Continuum Disconnected Matrix approach has been implemented within a massively parallel multiphysics-multicomponent-multiphase subsurface reactive flow and transport code PFLOTRAN. Developed as part of the Department of Energy's SciDAC-2 program, PFLOTRAN provides subsurface simulation capabilities that can scale from laptops to ultrascale supercomputers, and utilizes the PETSc framework to solve the large, sparse algebraic systems that arises in complex subsurface reactive flow and transport problems. It has been successfully applied to the solution of problems composed of more than two billions degrees of freedom, utilizing up to 131,072 processor cores on Jaguar, the Cray XT5 system at Oak Ridge National Laboratory that is the world’s fastest supercomputer. Building upon the capabilities and computational efficiency of PFLOTRAN, we will present an implementation of the multiple interacting continua formulation for fractured porous media along with an application case study.

  5. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to

  6. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers.

    PubMed

    Wienke, B R; O'Leary, T R

    2008-05-01

    Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application. PMID:18371945

  7. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers.

    PubMed

    Wienke, B R; O'Leary, T R

    2008-05-01

    Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.

  8. A cosmological study in massive gravity theory

    SciTech Connect

    Pan, Supriya Chakraborty, Subenoy

    2015-09-15

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  9. A strict test of stellar evolution models: The absolute dimensions of the massive benchmark eclipsing binary V578 Mon

    SciTech Connect

    Garcia, E. V.; Stassun, Keivan G.; Pavlovski, K.; Hensberge, H.; Chew, Y. Gómez Maqueo; Claret, A.

    2014-09-01

    We determine the absolute dimensions of the eclipsing binary V578 Mon, a detached system of two early B-type stars (B0V + B1V, P = 2.40848 days) in the star-forming region NGC 2244 of the Rosette Nebula. From the light curve analysis of 40 yr of photometry and the analysis of HERMES spectra, we find radii of 5.41 ± 0.04 R{sub ☉} and 4.29 ± 0.05 R{sub ☉}, and temperatures of 30,000 ± 500 K and 25,750 ± 435 K, respectively. We find that our disentangled component spectra for V578 Mon agree well with previous spectral disentangling from the literature. We also reconfirm the previous spectroscopic orbit of V578 Mon finding that masses of 14.54 ± 0.08 M{sub ☉} and 10.29 ± 0.06 M{sub ☉} are fully compatible with the new analysis. We compare the absolute dimensions to the rotating models of the Geneva and Utrecht groups and the models of the Granada group. We find that all three sets of models marginally reproduce the absolute dimensions of both stars with a common age within the uncertainty for gravity-effective temperature isochrones. However, there are some apparent age discrepancies for the corresponding mass-radius isochrones. Models with larger convective overshoot, >0.35, worked best. Combined with our previously determined apsidal motion of 0.07089{sub −0.00013}{sup +0.00021} deg cycle{sup –1}, we compute the internal structure constants (tidal Love number) for the Newtonian and general relativistic contribution to the apsidal motion as log k {sub 2} = –1.975 ± 0.017 and log k {sub 2} = –3.412 ± 0.018, respectively. We find the relativistic contribution to the apsidal motion to be small, <4%. We find that the prediction of log k {sub 2,theo} = –2.005 ± 0.025 of the Granada models fully agrees with our observed log k {sub 2}.

  10. Peering to the Heart of Massive Star Birth - V. Highest Priority Massive Protostars

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2015-10-01

    As part of an on-going, multi-year program to build up a sample of massive and intermediate-mass protostars that are observed across MIR and FIR bands to test theoretical models of massive star formation, we propose to observe about 15 highest priority massive protostar targets with SOFIA-FORCAST with this Regular Program proposal. Especially the unique 37 micron imaging can help reveal thermal emission from outflow cavities and the relative fluxes from the near and far-facing sides probes the amount of dense gas in the immediate vicinity of the protostar. Core Accretion models generally involve larger quantities of such gas than Competitive Accretion models. We will compare observational results against specific predictions of a grid of radiative transfer simulations developed for the Turbulent Core Model of massive star formation.

  11. Two bi-stability jumps in theoretical wind models for massive stars and the implications for luminous blue variable supernovae

    NASA Astrophysics Data System (ADS)

    Petrov, Blagovest; Vink, Jorick S.; Gräfener, Götz

    2016-05-01

    Luminous blue variables (LBVs) have been suggested to be the direct progenitors of supernova Types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-local thermodynamic equilibrium model atmosphere code over an effective temperature range between 30 000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink et al. However, they are found to occur at somewhat lower Teff (20 000 and 9000 K, respectively) than found previously, which would imply that stars may evolve towards lower Teff before strong mass loss is induced by the bi-stability jumps. When the combined effects of the second bi-stability jump and the proximity to Eddington limit are accounted for, we find a dramatic increase in the mass-loss rate by up to a factor of 30. Further investigation of both bi-stability jumps is expected to lead to a better understanding of discrepancies between empirical modelling and theoretical mass-loss rates reported in the literature, and to provide key inputs for the evolution of both normal AB supergiants and LBVs, as well as their subsequent supernova Type II explosions.

  12. The growth history of the Lago Della Vacca (Southern Adamello Massive, Italy) intrusion from field observations, thermal and rheological modelling

    NASA Astrophysics Data System (ADS)

    Rust, A.; Annen, C.; Blundy, J. D.; Caricchi, L.

    2010-12-01

    The Lago Della Vacca granitoid is an intrusive body emplaced at about 4-6 km in up to 1 My. The core of the body is characterised by the presence of dyke-like structures, enclave-swarms and randomly distributed enclaves, which appear undeformed. Enclaves become oblate with the short axis perpendicular to the foliation, which, in turn follows the margin of the plutonic body (John and Blundy, 1993). Geothermometry and experimental data have been used to constrain the temperature of injection of the mafic component (1273-1323 K), the temperature of the host granitic magma (1173-1223), and to characterise the evolution of crystallinity with temperature for both magmas (Blundy and Sparks, 1992). Based on these data thermal and rheological modelling have been combined to interpret the growth and deformation history of the Lago della Vacca intrusive body. The pluton was modeled as a series of incrementally emplaced nested cylinders with 1D-cylindrical conductive heat transfer. The evolution of temperature and melt fraction distribution in the pluton and country rock were determined and used as input parameters for the rheological modelling. The rheology of each magma depends on the viscosity of the melt and, more importantly, on crystallinity. Field observations suggest that the mafic magma was injected as dykes. Their partial or total disaggregation produced mafic enclaves. The presence of randomly distributed enclaves in the core of Lago Della Vacca body indicates that convection was active in this portion of the intrusion. The undeformed nature of the enclaves in this region also implies that the contrast in temperature between host magma and mafic material produced a sudden (hours) rheological inversion with the mafic magma becoming more viscous than the felsic end-member. In these conditions, the enclaves would be transported passively by the felsic-host without suffering any substantial deformation. Thermal modelling indicates that to maintain the core of the pluton

  13. Massively Parallel Boundary Integral Element Method Modeling of Particles in a Low Reynolds Number Mewtonian Fluid Flow

    SciTech Connect

    INGBER,M.S.; SUBIA,SAMUEL R.; MONDY,LISA ANN

    2000-01-18

    The analysis of many complex multiphase fluid flow systems is based on a scale decoupling procedure. At the macroscale continuum models are used to perform large-scale simulations. At the mesoscale statistical homogenization theory is used to derive continuum models based on representative volume elements (RVEs). At the microscale small-scale features, such as interfacial properties, are analyzed to be incorporated into mesoscale simulations. In this research mesoscopic simulations of hard particles suspended in a Newtonian fluid undergoing nonlinear shear flow are performed using a boundary element method. To obtain an RVE at higher concentrations, several hundred particles are included in the simulations, putting considerable demands on the computational resources both in terms of CPU and memory. Parallel computing provides a viable platform to study these large multiphase systems. The implementation of a portable, parallel computer code based on the boundary element method using a block-block data distribution is discussed in this paper. The code employs updated direct-solver technologies that make use of dual-processor compute nodes.

  14. A Massively Parallel Hybrid Dusty-Gasdynamics and Kinetic Direct Simulation Monte Carlo Model for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic (MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important. At the University of Michigan we have an established base of experience and expertise in numerical simulations based on particle codes which address these physical regimes. The Principal Investigator, Dr. Michael Combi, has over 20 years of experience in the development of particle-kinetic and hybrid kinetichydrodynamics models and their direct use in data analysis. He has also worked in ground-based and space-based remote observational work and on spacecraft instrument teams. His research has involved studies of cometary atmospheres and ionospheres and their interaction with the solar wind, the neutral gas clouds escaping from Jupiter s moon Io, the interaction of the atmospheres/ionospheres of Io and Europa with Jupiter s corotating magnetosphere, as well as Earth s ionosphere. This report describes our progress during the year. The contained in section 2 of this report will serve as the basis of a paper describing the method and its application to the cometary coma that will be continued under a research and analysis grant that supports various applications of theoretical comet models to understanding the

  15. Massive Magnetic Core

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The massive magnetic core of the Space Radiation Effects Laboratory's Synchrocyclotron at NASA's Langley Research Center. The 3000 ton (6 million pound), 36' x 21'x 19.5' assembly of forged steel serves as the heart of the 600 million electron volt, high energy proton accelerator.

  16. Supertwistors and massive particles

    SciTech Connect

    Mezincescu, Luca; Routh, Alasdair J.; Townsend, Paul K.

    2014-07-15

    In the (super)twistor formulation of massless (super)particle mechanics, the mass-shell constraint is replaced by a “spin-shell” constraint from which the spin content can be read off. We extend this formalism to massive (super)particles (with N-extended space–time supersymmetry) in three and four space–time dimensions, explaining how the spin-shell constraints are related to spin, and we use it to prove equivalence of the massive N=1 and BPS-saturated N=2 superparticle actions. We also find the supertwistor form of the action for “spinning particles” with N-extended worldline supersymmetry, massless in four dimensions and massive in three dimensions, and we show how this simplifies special features of the N=2 case. -- Highlights: •Spin-shell constraints are related to Poincaré Casimirs. •Twistor form of 4D spinning particle for spin N/2. •Twistor proof of scalar/antisymmetric tensor equivalence for 4D spin 0. •Twistor form of 3D particle with arbitrary spin. •Proof of equivalence of N=1 and N=2 BPS massive 4D superparticles.

  17. Update on massive transfusion.

    PubMed

    Pham, H P; Shaz, B H

    2013-12-01

    Massive haemorrhage requires massive transfusion (MT) to maintain adequate circulation and haemostasis. For optimal management of massively bleeding patients, regardless of aetiology (trauma, obstetrical, surgical), effective preparation and communication between transfusion and other laboratory services and clinical teams are essential. A well-defined MT protocol is a valuable tool to delineate how blood products are ordered, prepared, and delivered; determine laboratory algorithms to use as transfusion guidelines; and outline duties and facilitate communication between involved personnel. In MT patients, it is crucial to practice damage control resuscitation and to administer blood products early in the resuscitation. Trauma patients are often admitted with early trauma-induced coagulopathy (ETIC), which is associated with mortality; the aetiology of ETIC is likely multifactorial. Current data support that trauma patients treated with higher ratios of plasma and platelet to red blood cell transfusions have improved outcomes, but further clinical investigation is needed. Additionally, tranexamic acid has been shown to decrease the mortality in trauma patients requiring MT. Greater use of cryoprecipitate or fibrinogen concentrate might be beneficial in MT patients from obstetrical causes. The risks and benefits for other therapies (prothrombin complex concentrate, recombinant activated factor VII, or whole blood) are not clearly defined in MT patients. Throughout the resuscitation, the patient should be closely monitored and both metabolic and coagulation abnormalities corrected. Further studies are needed to clarify the optimal ratios of blood products, treatment based on underlying clinical disorder, use of alternative therapies, and integration of laboratory testing results in the management of massively bleeding patients.

  18. GALAXY FORMATION WITH SELF-CONSISTENTLY MODELED STARS AND MASSIVE BLACK HOLES. I. FEEDBACK-REGULATED STAR FORMATION AND BLACK HOLE GROWTH

    SciTech Connect

    Kim, Ji-hoon; Abel, Tom; Wise, John H.; Alvarez, Marcelo A.

    2011-09-01

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M{sub sun} galactic halo and its 10{sup 5} M{sub sun} embedded MBH at redshift 3 in a cosmological {Lambda}CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  19. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    SciTech Connect

    Kim, Ji-hoon; Wise, John H.; Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  20. Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis

    PubMed Central

    Gonzalez-Castillo, Javier; Saad, Ziad S.; Handwerker, Daniel A.; Inati, Souheil J.; Brenowitz, Noah; Bandettini, Peter A.

    2012-01-01

    The brain is the body's largest energy consumer, even in the absence of demanding tasks. Electrophysiologists report on-going neuronal firing during stimulation or task in regions beyond those of primary relationship to the perturbation. Although the biological origin of consciousness remains elusive, it is argued that it emerges from complex, continuous whole-brain neuronal collaboration. Despite converging evidence suggesting the whole brain is continuously working and adapting to anticipate and actuate in response to the environment, over the last 20 y, task-based functional MRI (fMRI) have emphasized a localizationist view of brain function, with fMRI showing only a handful of activated regions in response to task/stimulation. Here, we challenge that view with evidence that under optimal noise conditions, fMRI activations extend well beyond areas of primary relationship to the task; and blood-oxygen level-dependent signal changes correlated with task-timing appear in over 95% of the brain for a simple visual stimulation plus attention control task. Moreover, we show that response shape varies substantially across regions, and that whole-brain parcellations based on those differences produce distributed clusters that are anatomically and functionally meaningful, symmetrical across hemispheres, and reproducible across subjects. These findings highlight the exquisite detail lying in fMRI signals beyond what is normally examined, and emphasize both the pervasiveness of false negatives, and how the sparseness of fMRI maps is not a result of localized brain function, but a consequence of high noise and overly strict predictive response models. PMID:22431587

  1. Transplantation of Achilles Tendon Treated With Bone Morphogenetic Protein 7 Promotes Meniscus Regeneration in a Rat Model of Massive Meniscal Defect

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Koga, Hideyuki; Katagiri, Hiroki; Otabe, Koji; Okuno, Makiko; Tsuji, Kunikazu; Kobayashi, Eiji; Matsumoto, Kenji; Saito, Hirohisa; Saito, Tomoyuki; Sekiya, Ichiro

    2013-01-01

    Objective This study was undertaken to examine whether bone morphogenetic protein 7 (BMP-7) induces ectopic cartilage formation in the rat tendon, and whether transplantation of tendon treated with BMP-7 promotes meniscal regeneration. Additionally, we analyzed the relative contributions of host and donor cells on the healing process after tendon transplantation in a rat model. Methods BMP-7 was injected in situ into the Achilles tendon of rats, and the histologic findings and gene profile were evaluated. Achilles tendon injected with 1 μg of BMP-7 was transplanted into a meniscal defect in rats. The regenerated meniscus and articular cartilage were evaluated at 4, 8, and 12 weeks. Achilles tendon from LacZ-transgenic rats was transplanted into the meniscal defect in wild-type rats, and vice versa. Results Injection of BMP-7 into the rat Achilles tendon induced the fibrochondrocyte differentiation of tendon cells and changed the collagen gene profile of tendon tissue to more closely approximate meniscal tissue. Transplantation of the rat Achilles tendon into a meniscal defect increased meniscal size. The rats that received the tendon treated with BMP-7 had a meniscus matrix that exhibited increased Safranin O and type II collagen staining, and showed a delay in articular cartilage degradation. Using LacZ-transgenic rats, we determined that the regeneration of the meniscus resulted from contribution from both donor and host cells. Conclusion Our findings indicate that BMP-7 induces ectopic cartilage formation in rat tendons. Transplantation of Achilles tendon treated with BMP-7 promotes meniscus regeneration and prevents cartilage degeneration in a rat model of massive meniscal defect. Native cells in the rat Achilles tendon contribute to meniscal regeneration. PMID:23897174

  2. Formation of Massive Stars in Massive Young Clusters

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    2004-12-01

    There are two scenarios for the formation of massive stars: the ``accretion'' and the ``coalescence'' scenario. Here we discuss the conditions for coalescence (mergers) to occur in very dense young star clusters. We also ask whether the observed multiplicity of tight massive stars in young clusters is consistent with failed mergers and tidal capture. Finally, we propose some ideas for the origin of many massive stars in the heart of the 30 Doradus cluster and other extragalactic starburst clusters. We believe that all massive star formation is triggered and propose a 4-stage process of massive star birth in dense clusters.

  3. Proper Motions of Massive Stars in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel

    2013-10-01

    We propose an ambitious proper motion survey of massive stars in the 30 Doradus region of the Large Magellanic Cloud using the unique capabilities of HST. We will derive the directions of motion of massive runaway stars, searching in particular for massive stars which have been ejected from the central very massive cluster R136. These data will be combined with radial velocities from the VLT-FLAMES Survey of the Tarantula Nebula and with atmospheric analyses and stellar evolution models to constrain their origins. We will also search for very young isolated massive stars to test models of single-star formation. This work is highly relevant to star formation, cluster dynamics, the origin of field WR stars and GRBs, the creation of very massive stars by runaway mergers, and the possible formation of intermediate-mass black holes.

  4. New improved massive gravity

    NASA Astrophysics Data System (ADS)

    Dereli, T.; Yetişmişoğlu, C.

    2016-06-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.

  5. Massive Transfusion in Children.

    PubMed

    Karam, Oliver; Tucci, Marisa

    2016-10-01

    Massive transfusions occur frequently in pediatric trauma patients, among some children undergoing surgery, or in children with critical illness. Over the last years, many authors have studied different aspects of massive transfusions, starting with an operative definition. Some information is available on transfusion strategies and adjunctive treatments. Areas that require additional investigation include: studies to assess which children benefit from transfusion protocols based on fixed ratios of blood components vs transfusion strategies based on biophysical parameters and laboratory tests; whether goal-directed therapies that are personalized to the recipient will improve outcomes; or which laboratory tests best define the risk of bleeding and what clinical indicators should prompt the start and stop of massive transfusion protocols. In addition, critical issues that require further study include transfusion support with whole blood vs reconstituted whole blood prepared from packed red blood cells, plasma, and platelets; and the generation of high quality evidence that would lead to treatments which decrease adverse consequences of transfusion and improve outcomes.

  6. Massive stars in the galaxies of the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2013-07-01

    The star-forming galaxies of the Local Group act as our laboratories for testing massive star evolutionary models. In this review, I briefly summarize what we believe we know about massive star evolution, and the connection between OB stars, Luminous Blue Variables, yellow supergiants, red supergiants, and Wolf-Rayet stars. The difficulties and recent successes in identifying these various types of massive stars in the neighboring galaxies of the Local Group will be discussed.

  7. Clarifying Massive Protostellar Evolution and Circumstellar Processing

    NASA Astrophysics Data System (ADS)

    Indebetouw, Remy; Brogan, Crystal; Hoare, Melvin; Lumsden, Stuart; Robitaille, Thomas; Sewilo, Marta; Urquhart, James; Viti, Serena; Whitney, Barbara

    2008-03-01

    Massive stars dominate the evolution of galaxies and even as protostars, their feedback can affect their own formation and that of their host clusters. We propose a systematic study of massive protostars through the stages of their early evolution, to derive a clearer evolutionary sequence and a better link between the state of the central source and physical conditions in circumstellar material. This experiment will improve over existing work by careful source selection to systematically span evolutionary parameter space, resulting in a more uniform and comprehensive sample. Sophisticated radiative transfer, ionization, and chemical modeling will be used to extract the full riches of each IRS spectrum and find trends in how massive stars form and process their natal material: We will be able to determine the temperature, density, and chemical state (heating history) of circumstellar dust and ice in the accretion disk and envelope, and at later evolutionary stages the ionizing and soft (PAH-exciting) ultraviolet radiation emitted by the protostars and how that radiation is quenched and shadowed by circumstellar material. This investigation is the key to realizing the full potential of previous infrared imaging surveys like MSX and Spitzer's GLIMPSE and MIPSGAL to study massive star formation. These surveys have provided a basis for us to select a large relatively unbiased sample spanning evolutionary state. In return, revealing the spectroscopic signature of massive YSOs will greatly clarify the modeling and interpretation of the thousands of other protostars in these imaging survey data.

  8. Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models.

    PubMed

    Andrews, T D; Whittle, B; Field, M A; Balakishnan, B; Zhang, Y; Shao, Y; Cho, V; Kirk, M; Singh, M; Xia, Y; Hager, J; Winslade, S; Sjollema, G; Beutler, B; Enders, A; Goodnow, C C

    2012-05-01

    Accurate identification of sparse heterozygous single-nucleotide variants (SNVs) is a critical challenge for identifying the causative mutations in mouse genetic screens, human genetic diseases and cancer. When seeking to identify causal DNA variants that occur at such low rates, they are overwhelmed by false-positive calls that arise from a range of technical and biological sources. We describe a strategy using whole-exome capture, massively parallel DNA sequencing and computational analysis, which identifies with a low false-positive rate the majority of heterozygous and homozygous SNVs arising de novo with a frequency of one nucleotide substitution per megabase in progeny of N-ethyl-N-nitrosourea (ENU)-mutated C57BL/6j mice. We found that by applying a strategy of filtering raw SNV calls against known and platform-specific variants we could call true SNVs with a false-positive rate of 19.4 per cent and an estimated false-negative rate of 21.3 per cent. These error rates are small enough to enable calling a causative mutation from both homozygous and heterozygous candidate mutation lists with little or no further experimental validation. The efficacy of this approach is demonstrated by identifying the causative mutation in the Ptprc gene in a lymphocyte-deficient strain and in 11 other strains with immune disorders or obesity, without the need for meiotic mapping. Exome sequencing of first-generation mutant mice revealed hundreds of unphenotyped protein-changing mutations, 52 per cent of which are predicted to be deleterious, which now become available for breeding and experimental analysis. We show that exome sequencing data alone are sufficient to identify induced mutations. This approach transforms genetic screens in mice, establishes a general strategy for analysing rare DNA variants and opens up a large new source for experimental models of human disease.

  9. The simultaneous formation of massive stars and stellar clusters

    NASA Astrophysics Data System (ADS)

    Smith, Rowan J.; Longmore, Steven; Bonnell, Ian

    2009-12-01

    We show that massive stars and stellar clusters are formed simultaneously, the global evolution of the forming cluster is what allows the central stars to become massive. We predict that massive star-forming clumps, such as those observed in Motte et al., contract and grow in mass leading to the formation of massive stars. This occurs as mass is continually channelled from large radii on to the central protostars, which can become massive through accretion. Using smoothed particle hydrodynamic simulations of massive star-forming clumps in a giant molecular cloud, we show that clumps are initially diffuse and filamentary, and become more concentrated as they collapse. Simulated interferometry observations of our data provide an explanation as to why young massive star-forming regions show more substructure than older ones. The most massive stars in our model are found within the most bound cluster. Most of the mass accreted by the massive stars was originally distributed throughout the clump at low densities and was later funnelled to the star due to global infall. Even with radiative feedback no massive pre-stellar cores are formed. The original cores are of intermediate mass and gain their additional mass in the protostellar stage. We also find that cores which form low-mass stars exist within the volume from which the high-mass stars accrete, but are largely unaffected by this process.

  10. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    NASA Astrophysics Data System (ADS)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  11. Massive gravity acausality redux

    NASA Astrophysics Data System (ADS)

    Deser, S.; Izumi, K.; Ong, Y. C.; Waldron, A.

    2013-10-01

    Massive gravity (mGR) is a 5(=2s+1) degree of freedom, finite range extension of GR. However, amongst other problems, it is plagued by superluminal propagation, first uncovered via a second order shock analysis. First order mGR shock structures have also been studied, but the existence of superluminal propagation in that context was left open. We present here a concordance of these methods, by an explicit (first order) characteristic matrix computation, which confirms mGR's superluminal propagation as well as acausality.

  12. THE RELATION BETWEEN DYNAMICAL MASS-TO-LIGHT RATIO AND COLOR FOR MASSIVE QUIESCENT GALAXIES OUT TO z ∼ 2 AND COMPARISON WITH STELLAR POPULATION SYNTHESIS MODELS

    SciTech Connect

    Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska; Bezanson, Rachel; Van Dokkum, Pieter G.

    2015-02-01

    We explore the relation between the dynamical mass-to-light ratio (M/L) and rest-frame color of massive quiescent galaxies out to z ∼ 2. We use a galaxy sample with measured stellar velocity dispersions in combination with Hubble Space Telescope and ground-based multi-band photometry. Our sample spans a large range in log M {sub dyn}/L {sub g} (of 1.6 dex) and log M {sub dyn}/L {sub K} (of 1.3 dex). There is a strong, approximately linear correlation between the M/L for different wavebands and rest-frame color. The root-mean-square scatter in log M {sub dyn}/L residuals implies that it is possible to estimate the M/L with an accuracy of ∼0.25 dex from a single rest-frame optical color. Stellar population synthesis (SPS) models with a Salpeter stellar initial mass function (IMF) cannot simultaneously match M {sub dyn}/L {sub g} versus (g – z){sub rest-frame} and M {sub dyn}/L {sub K} versus (g – K){sub rest-frame}. By changing the slope of the IMF we are still unable to explain the M/L of the bluest and reddest galaxies. We find that an IMF with a slope between α = 2.35 and α = 1.35 provides the best match. We also explore a broken IMF with a Salpeter slope at M < 1 M {sub ☉} and M > 4 M {sub ☉} and a slope α in the intermediate region. The data favor a slope of α = 1.35 over α = 2.35. Nonetheless, our results show that variations between different SPS models are comparable to the IMF variations. In our analysis we assume that the variation in M/L and color is driven by differences in age, and that other contributions (e.g., metallicity evolution, dark matter) are small. These assumptions may be an important source of uncertainty as galaxies evolve in more complex ways.

  13. Massively Parallel QCD

    SciTech Connect

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-04-11

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.

  14. Massively Parallel MRI Detector Arrays

    PubMed Central

    Keil, Boris; Wald, Lawrence L

    2013-01-01

    Originally proposed as a method to increase sensitivity by extending the locally high-sensitivity of small surface coil elements to larger areas, the term parallel imaging now includes the use of array coils to perform image encoding. This methodology has impacted clinical imaging to the point where many examinations are performed with an array comprising multiple smaller surface coil elements as the detector of the MR signal. This article reviews the theoretical and experimental basis for the trend towards higher channel counts relying on insights gained from modeling and experimental studies as well as the theoretical analysis of the so-called “ultimate” SNR and g-factor. We also review the methods for optimally combining array data and changes in RF methodology needed to construct massively parallel MRI detector arrays and show some examples of state-of-the-art for highly accelerated imaging with the resulting highly parallel arrays. PMID:23453758

  15. Embeddings of the "New Massive Gravity"

    NASA Astrophysics Data System (ADS)

    Dalmazi, D.; Mendonça, E. L.

    2016-07-01

    Here we apply different types of embeddings of the equations of motion of the linearized "New Massive Gravity" in order to generate alternative and even higher-order (in derivatives) massive gravity theories in D=2+1. In the first part of the work we use the Weyl symmetry as a guiding principle for the embeddings. First we show that a Noether gauge embedding of the Weyl symmetry leads to a sixth-order model in derivatives with either a massive or a massless ghost, according to the chosen overall sign of the theory. On the other hand, if the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost-free and Weyl invariant at the linearized level around Minkowski space. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. In the second part of the work we prove to all orders in derivatives that there is no local, ghost-free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in the latter case we can replace the Einstein-Hilbert action by specific f(R,Box R) generalizations and still keep the theory ghost-free at the linearized level.

  16. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    NASA Technical Reports Server (NTRS)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  17. Higher dimensional nonlinear massive gravity

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2016-05-01

    Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.

  18. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  19. How I treat patients with massive hemorrhage.

    PubMed

    Johansson, Pär I; Stensballe, Jakob; Oliveri, Roberto; Wade, Charles E; Ostrowski, Sisse R; Holcomb, John B

    2014-11-13

    Massive hemorrhage is associated with coagulopathy and high mortality. The transfusion guidelines up to 2006 recommended that resuscitation of massive hemorrhage should occur in successive steps using crystalloids, colloids, and red blood cells (RBCs) in the early phase and plasma and platelets in the late phase. With the introduction of the cell-based model of hemostasis in the mid-1990s, our understanding of the hemostatic process and of coagulopathy has improved. This has contributed to a change in resuscitation strategy and transfusion therapy of massive hemorrhage along with an acceptance of the adequacy of whole blood hemostatic tests to monitor these patients. Thus, in 2005, a strategy aiming at avoiding coagulopathy by proactive resuscitation with blood products in a balanced ratio of RBC:plasma:platelets was introduced, and this has been reported to be associated with reduced mortality in observational studies. Concurrently, whole blood viscoelastic hemostatic assays have gained acceptance by allowing a rapid and timely identification of coagulopathy along with enabling an individualized, goal-directed transfusion therapy. These strategies joined together seem beneficial for patient outcome, although final evidence on outcome from randomized controlled trials are lacking. We present how we in Copenhagen and Houston, today, manage patients with massive hemorrhage.

  20. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  1. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  2. Massive soliton stars

    SciTech Connect

    Chiu, Hongyee )

    1990-05-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers. 27 refs.

  3. Massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Fung, L. W. (Inventor)

    1983-01-01

    An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.

  4. Superspace gauge-invariant formulation of a massive tridimensional 2-form field

    NASA Astrophysics Data System (ADS)

    Gomes, M. A.; Landim, R. R.; Almeida, C. A.

    2001-01-01

    By dimensional reduction of a massive supersymmetric B∧F theory, a manifestly N=1 supersymmetric completion of a massive antisymmetric tensor gauge theory is constructed in 2+1 dimensions. In N=1-D=3 superspace, a new topological term is used to give mass to the Kalb-Ramond field. We introduce a massive gauge invariant model using the Stückelberg formalism and an Abelian topologically massive theory for the Kalb-Ramond superfield. An equivalence of both massive models is suggested. Further, a component field analysis is performed, showing a second supersymmetry in the model.

  5. Two-dimensional thermofield bosonization II: Massive fermions

    SciTech Connect

    Amaral, R.L.P.G.

    2008-11-15

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model.

  6. Pion electromagnetic form factor, perturbative QCD, and large-N{sub c} Regge models

    SciTech Connect

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2008-08-01

    We present a construction of the pion electromagnetic form factor where the transition from large-N{sub c} Regge vector-meson dominance models with infinitely many resonances to perturbative QCD is built in explicitly. The construction is based on an appropriate assignment of residues to the Regge poles, which fulfills the constraints of the parton-hadron duality and perturbative QCD. The model contains a slowly falling off nonperturbative contribution, which dominates over the perturbative QCD radiative corrections for the experimentally accessible momenta. The leading order and next-to-leading order calculations show a converging pattern that describes the available data within uncertainties, while the onset of asymptotic QCD takes place at extremely high momenta Q{approx}10{sup 3}-10{sup 4} GeV. The method can be straightforwardly extended to study other form factors where the perturbative QCD result is available.

  7. Isospin Mixing of Quark Cluster Diybaryon Resonances in the Bag Model*

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2000-10-01

    Calculations of isospin mixing of dibaryon resonaces composed of color magentic six quark states using the quark cluster bag model are shown to result in a low lying J=2 dibaryon at 1913 MeV. The 1913 MeV resonance can only transition into NN states and a low energy (29-35 MeV) isoscaler meson multiplet, the sigma mesons (J=0,1,2). The J=1 axial-vector meson may already have been discovered at the Rutherford ISIS Facility, detected as a neutrino time anomaly known as the KARMEN particle. The predicted J=0 meson has the long sought after properties of the sigma meson or Higgs particle required for the Chiral Symmetry Breaking partner of the pion and light mass hadron generation. The influence of this predicted isoscaler multiplet in QCD and QFD is interpreted using the effective low energy model of Chiral Perturbation Theory.

  8. Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature

    SciTech Connect

    Evans, Nick; Threlfall, Ed

    2008-06-15

    We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by finding the quasinormal frequencies of the supergravity dual. If flavor is added using D8-D8 branes there exist embeddings where the D-brane world volume contains a black hole. For these embeddings (the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and vector mesons arising from the world volume Dirac-Born-Infeld (DBI) action of the D-brane. We stress the importance of a coordinate change that makes the infalling quasinormal modes regular at the horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite spatial momentum on quasinormal spectra.

  9. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  10. LIMITING ACCRETION ONTO MASSIVE STARS BY FRAGMENTATION-INDUCED STARVATION

    SciTech Connect

    Peters, Thomas; Klessen, Ralf S.; Banerjee, Robi; Low, Mordecai-Mark Mac

    2010-12-10

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform and analyze simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive-mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  11. An extraordinary mass invariant and an obstruction in a massive superspin one half model made with a chiral dotted spinor superfield

    NASA Astrophysics Data System (ADS)

    Dixon, John A.

    2015-10-01

    An action for a complex irreducible massive superspin 1/2 multiplet can be constructed out of two chiral dotted spinor and two chiral undotted spinor superfields. To make this action a sensible one, additional 'reality constraints' are needed, and the notion of BRST recycling is needed to find the supersymmetry transformations of the theory with these additional constraints. This theory possesses three possible mass terms. An earlier paper examined the theory with the first mass term. This paper adds a second mass term and examines the consequences of that. This second mass invariant is 'extraordinary', which means that it is intrinsically dependent on the Zinn sources ('antifields') of the theory. This in turn implies that the action needs to be 'completed' so that it yields zero for the relevant Poisson Bracket. This 'Completion' meets an 'Obstruction', which is a ghost charge one object in the BRST cohomology space. Usually Obstructions arise from a one loop calculation, in which case they form anomalies of the theory. However this Obstruction arises at tree level from the completion. The coefficient of the Obstruction needs to be set to zero. This restores the complex irreducible massive superspin 1/2 multiplet to its usual structure, except that the mass is constructed out of the two mass parameters. The construction suggests interesting possibilities for related interacting theories.

  12. Fragmentation in massive star formation.

    PubMed

    Beuther, Henrik; Schilke, Peter

    2004-02-20

    Studies of evolved massive stars indicate that they form in a clustered mode. During the earliest evolutionary stages, these regions are embedded within their natal cores. Here we present high-spatial-resolution interferometric dust continuum observations disentangling the cluster-like structure of a young massive star-forming region. The derived protocluster mass distribution is consistent with the stellar initial mass function. Thus, fragmentation of the initial massive cores may determine the initial mass function and the masses of the final stars. This implies that stars of all masses can form via accretion processes, and coalescence of intermediate-mass protostars appears not to be necessary.

  13. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  14. Comments on the Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    El Eid, M. F.; The, L.-S.; Meyer, B. S.

    We describe in a brief form present results we have obtained from a careful and up to date study of the evolution of massive stars including their advanced evolutionary phases beyond the oxygen burning phase. We describe the effects of mass loss, treatment of convection in inhomogeneous stellar layers and the rate of the 12C(α,γ)16O reaction on the properties of stellar models in the interesting case of a 25 M⊙ star of solar-like initial metallicity.

  15. Reconstructing the massive black hole cosmic history through gravitational waves

    SciTech Connect

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-02-15

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  16. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where < {E}ν > ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.

  17. A massive early atmosphere on Triton

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Nolan, Michael C.

    1992-01-01

    The idea of an early greenhouse atmosphere for Triton is presented and the conditions under which it may have been sustained are quantified. The volatile content of primordial Triton is modeled, and tidal heating rates are assessed to set bounds on the available energy. The atmospheric model formalism is presented, and it is shown how a massive atmosphere could have been raised by modest tidal heating fluxes. The implications of the model atmospheres for the atmospheric escape rates, the chemical evolution, and the cratering record are addressed.

  18. Massive gravity with mass term in three dimensions

    SciTech Connect

    Nakasone, Masashi; Oda, Ichiro

    2009-05-15

    We analyze the effect of the Pauli-Fierz mass term on a recently established, new massive gravity theory in three space-time dimensions. We show that the Pauli-Fierz mass term makes the new massive gravity theory nonunitary. Moreover, although we add the gravitational Chern-Simons term to this model, the situation remains unchanged and the theory stays nonunitary despite that the structure of the graviton propagator is greatly changed. Thus, the Pauli-Fierz mass term is not allowed to coexist with mass-generating higher-derivative terms in the new massive gravity.

  19. Large N phase transitions in massive N = 2 gauge theories

    SciTech Connect

    Russo, J. G.

    2014-07-23

    Using exact results obtained from localization on S{sup 4}, we explore the large N limit of N = 2 super Yang-Mills theories with massive matter multiplets. In this talk we discuss two cases: N = 2* theory, describing a massive hypermultiplet in the adjoint representation, and super QCD with massive quarks. When the radius of the four-sphere is sent to infinity these theories are described by solvable matrix models, which exhibit a number of interesting phenomena including quantum phase transitions at finite 't Hooft coupling.

  20. Fundamental Parameters of 4 Massive Eclipsing Binaries in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Z.; Koumpia, E.

    2011-05-01

    We present fundamental parameters of 4 massive eclipsing binaries in the young massive cluster Westerlund 1. The goal is to measure accurate masses and radii of their component stars, which provide much needed constraints for evolutionary models of massive stars. Accurate parameters can further be used to determine a dynamical lower limit for the magnetar progenitor and to obtain an independent distance to the cluster. Our results confirm and extend the evidence for a high mass for the progenitor of the magnetar. The authors acknowledge research and travel support from the European Commission Framework Program Seven under the Marie Curie International Reintegration Grant PIRG04-GA-2008-239335.

  1. On General Relativity with Massive Graviton

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha

    We begin this thesis by studying the properties of horizons in the de Rham-Gabadadze-Tolley model of massive GR. In massive gravity the generic black hole (BH) solutions on Minkowski space happen to convert horizons into a certain type of singularities. Here we explore whether these singularities can be avoided if space-time is not asymptotically Minkowskian. We find an exact analytic BH solution which evades the above problem by a transition at large scales to self-induced de Sitter (dS) space-time, with the curvature scale set by the graviton mass. The solution demonstrates that in massive GR, in the Schwarzschild coordinate system, a BH metric has to be accompanied by the Stückelberg fields with nontrivial backgrounds to prevent the horizons to convert into the singularities. We also find an analogous solution for a Reissner-Nordström BH on dS space. The second part concerns with the geometrical construction of massive gravity. Namely, the theory of gravity with an auxiliary extra dimension is known to give a ghost-free cubic completion of the Fierz-Pauli mass term in the decoupling limit. Yet, the theory propagates ghost in quartic order and beyond. Our work proposes a completion of the boundary condition in the auxiliary dimension that avoids ghosts order-by-order in the decoupling limit. Furthermore, we show that the multi-dimensional extension, with the rotationally invariant boundaries of the bulk, is equivalent to the model with a single auxiliary dimension. Therefore, all these constructions require the appropriate adjustment of the boundary condition. The other possible extension of the original model, by the Gauss-Bonnet term, is studied as well. In the last part we analyze the models known as "gravitational Higgs theories" against instabilities. We show that these models, although seemingly different from the effective field theories of massive gravity, are in fact equivalent to them. We also show the equivalence between the non-covariant mode

  2. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  3. Massive to gauge field reduction and gravitational wave zone information

    NASA Astrophysics Data System (ADS)

    Deser, S.

    2016-07-01

    I analyze the possible relevance of LIGO's gravitational wave detection to the viability of massive gravity models. In GR, a wave zone, where the linearized approximation holds, is guaranteed to exist and the observed wave's amplitude profile can be sufficiently related to the emitting strong field interior to verify that, in this case, it was due to an inspiraling black hole merger. After an excursion to massive spin 1's massless limit, linear massive tensor theory is shown explicitly to propagate only (retarded) maximal, helicity 2, modes to O( m) as m→ 0; however, we don't know if the full theory has a similar "wave zone" governed by the linear model. Even if it does, a much more serious obstacle for massive gravity is to construct a time-varying strong field event to compare with the strong field footprint of LIGO's observed signals.

  4. Finite temperature effect in infrared-improved AdS/QCD model with back reaction of bulk vacuum

    NASA Astrophysics Data System (ADS)

    Cui, Ling-Xiao; Fang, Zhen; Wu, Yue-Liang

    2016-06-01

    Based on an IR-improved soft-wall AdS/QCD model for mesons, which provides a consistent prediction for the mass spectra of resonance scalar, pseudoscalar, vector and axial-vector mesons, we investigate its finite temperature effect. By analyzing the spectral function of mesons and fitting it with a Breit-Wigner form, we perform an analysis for the critical temperature of mesons. The back-reaction effects of bulk vacuum are considered and the thermal mass spectral function of resonance mesons is calculated based on the back-reaction improved action. A reasonable melting temperature is found to be T c ≈ 150 ± 7 MeV, which is consistent with the recent results from lattice QCD simulations. Supported by National Nature Science Foundation of China (NSFC)(10975170, 10905084, 10821504), and Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Science

  5. MASSIVE STAR FORMATION IN NGC 2074

    SciTech Connect

    Fleener, Christine E.; Chu, Y.-H.; Gruendl, Robert A.; Payne, James T.; Chen, C.-H. Rosie

    2010-01-15

    Spitzer observations of the Large Magellanic Cloud (LMC) have revealed a large population of young stellar objects (YSOs), but complementary high-resolution images in the optical or near-IR wavelengths are still needed to resolve the multiplicity and immediate environments of the YSOs. The Hubble Space Telescope imaged the star-forming region NGC 2074 in the LMC during its 100,000th orbit, providing an opportunity to more closely examine the YSOs and their environments in this region. We have studied the 10 YSO candidates identified from Spitzer observations, confirming their nature and determining their physical parameters by modeling their spectral energy distributions. The majority of the YSOs and central stars of ultracompact H II regions in NGC 2074 have masses consistent with spectral types of early B to late O. The co-existence of massive early-type O stars and the less massive YSOs indicates that their formation may have started at a similar time, a few 10{sup 5} yr ago. NGC 2074 provides an opportunity to study the evolution of massive stars at their infancy.

  6. Cosmology in general massive gravity theories

    SciTech Connect

    Comelli, D.; Nesti, F.; Pilo, L. E-mail: fabrizio.nesti@aquila.infn.it

    2014-05-01

    We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w{sub eff} has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w{sub eff} from -1. Taking into account current limits on w{sub eff} and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w{sub eff} form -1 in a weakly coupled massive gravity theory.

  7. Diffractive vector meson production at COMPASS and plans for GPDs measurements

    SciTech Connect

    Sandacz, Andrzej

    2006-07-11

    Preliminary results on the spin dependence of exclusive {rho}0 muoproduction at COMPASS are discussed. The Q2 dependence of several spin density matrix elements and of R = {sigma}L/{sigma}T is presented. The data are consistent with a substantial increase of R with Q2 and a weak violation of SCHC. Next, the longitudinal double-spin asymmetry A{sub 1}{sup {rho}} for {rho}0 production on polarized deuterons is shown as a function of Q2 and xBj. The asymmetry is compatible with zero in the whole kinematical range. Finally, we discuss the prospects for measuring DVCS and exclusive meson production at COMPASS in order to investigate GPDs.

  8. Positive signs in massive gravity

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2016-04-01

    Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less

  9. Positive signs in massive gravity

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.

    2016-04-01

    We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.

  10. Massive Black Hole Binary Evolution

    NASA Astrophysics Data System (ADS)

    Merritt, David; Milosavljević, Milos

    2005-11-01

    Coalescence of binary supermassive black holes (SBHs) would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers) are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, "diffusive" refilling of the binary's loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the "damage" inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  11. Massive Gravitons on Bohmian Congruences

    NASA Astrophysics Data System (ADS)

    Fathi, Mohsen; Mohseni, Morteza

    2016-08-01

    Taking a quantum corrected form of Raychaudhuri equation in a geometric background described by a Lorentz-violating massive theory of gravity, we go through investigating a time-like congruence of massive gravitons affected by a Bohmian quantum potential. We find some definite conditions upon which these gravitons are confined to diverging Bohmian trajectories. The respective behaviour of those quantum potentials are also derived and discussed. Additionally, and through a relativistic quantum treatment of a typical wave function, we demonstrate schematic conditions on the associated frequency to the gravitons, in order to satisfy the necessity of divergence.

  12. Broadbeam for Massive MIMO Systems

    NASA Astrophysics Data System (ADS)

    Qiao, Deli; Qian, Haifeng; Li, Geoffrey Ye

    2016-05-01

    Massive MIMO has been identified as one of the promising disruptive air interface techniques to address the huge capacity requirement demanded by 5G wireless communications. For practical deployment of such systems, the control message need to be broadcast to all users reliably in the cell using broadbeam. A broadbeam is expected to have the same radiated power in all directions to cover users in any place in a cell. In this paper, we will show that there is no perfect broadbeam. Therefore, we develop a method for generating broadbeam that can allow tiny fluctuations in radiated power. Overall, this can serve as an ingredient for practical deployment of the massive MIMO systems.

  13. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    SciTech Connect

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong E-mail: zkc@itp.ac.cn

    2013-08-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''.

  14. Hydrodynamical simulations of realistic massive cluster populations

    NASA Astrophysics Data System (ADS)

    Barnes, David J.; Henson, Monique A.; Kay, Scott T.; McCarthy, Ian G.; Bahe, Yannick M.; Eagle Collaboration

    2015-09-01

    Galaxy clusters are seeded by density fluctuations in the early Universe and grow via hierarchical collapse to become the most massive virialised objects we observed today. They are powerful probes that study both cosmology and astrophysical processes. Their internal structure at the current epoch is the result of a non-trivial interplay between gravitational collapse and the energy fed into the intra-cluster medium (ICM) by star formation and active galactic nuclei (AGN). These processes shape the ICM during its formation at high redshift, but current observations of galaxy clusters are limited to z<0.5. The resolution and sensitivity of textit{Athena+} will allow it to study galaxy clusters in unprecedented detail. It will constrain cluster properties, such as its entropy, temperature and gas fraction, out to z˜2, enabling it to investigate the progenitors of today's massive clusters and observing the evolution of the properties of the ICM for the first time. Athena+ will produce a significant change in our understanding of the formation of galaxy clusters. Recently the theoretical modelling of clusters has advanced significantly and issues, such as the 'cooling catastophea', have been overcome by including feedback from star formation and AGN. We present the MAssive ClusterS and Intercluster Structures (MACSIS) project. The MACSIS project is a representative sample of 390 of galaxy clusters, with M_{FOF} > 10(15} M_{⊙) , re-simulated using the cosmo-OWLS model (Le Brun et al. 2014, McCarthy et al. in prep.) to extend it to the most massive and rarest objects. We demonstrate that this sample reproduces the scaling relations, with intrinsic scatter, observed with current instruments at low redshift. Under the hierarchical paradigm, the progenitors of these systems will be the first objects to collapse at high redshift and we examine to z=2 how the scaling relations of these massive objects evolve with redshift. Finally, we investigate methods of defining a

  15. Reconstruction of the 1997/1998 El Nino from TOPEX/POSEIDON and TOGA/TAO Data Using a Massively Parallel Pacific-Ocean Model and Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.

    1999-01-01

    Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.

  16. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  17. Planckian Interacting Massive Particles as Dark Matter.

    PubMed

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  18. Planckian Interacting Massive Particles as Dark Matter.

    PubMed

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter. PMID:27015472

  19. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia E-mail: laviniah@kth.se

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  20. Planckian Interacting Massive Particles as Dark Matter

    NASA Astrophysics Data System (ADS)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-03-01

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01 Mp is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  1. Understanding massively open online courses.

    PubMed

    Billings, Diane M

    2014-02-01

    Massively open online courses (MOOCs) are an innovative delivery system for educational offerings. MOOCs have been hailed with optimism for making education accessible to many, but at the same time, they have been criticized for poor participant completion rates. Nurse educators are considering whether and how to use MOOCs; this column explains MOOCs and their advantages and disadvantages for nurse educators. PMID:24494660

  2. Massively parallel visualization: Parallel rendering

    SciTech Connect

    Hansen, C.D.; Krogh, M.; White, W.

    1995-12-01

    This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume renderer use a MIMD approach. Implementations for these algorithms are presented for the Thinking Machines Corporation CM-5 MPP.

  3. Massive large-bowel haemorrhage.

    PubMed Central

    Roberts, P.; Thomas, P. A.

    1981-01-01

    Operative intervention for massive colonic haemorrhage is fortunately rarely necessary, but planned, low-risk segmental resections can only be performed if the bleeding site is known. This information can most frequently be obtained by using a combination of sigmoidoscopy, barium enema examination, and selective mesenteric angiography. PMID:6972724

  4. Mass loss of massive stars

    NASA Astrophysics Data System (ADS)

    Martins, F.

    2015-12-01

    In this contribution we review the properties of the winds of massive stars. We focus on OB stars, red supergiants, Luminous Blue Variables (LBVs) and Wolf-Rayet stars. For each type of star, we summarize the main wind properties and we give a brief description of the physical mechanism(s) responsible for mass loss.

  5. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future

  6. Massive Stars in the Quintuplet Cluster

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; McLean, Ian S.; Morris, Mark

    1999-03-01

    We present near-infrared photometry and K-band spectra of newly identified massive stars in the Quintuplet cluster, one of the three massive clusters projected within 50 pc of the Galactic center. We find that the cluster contains a variety of massive stars, including more unambiguously identified Wolf-Rayet stars than any cluster in the Galaxy, and over a dozen stars in earlier stages of evolution, i.e., luminous blue variables (LBVs), Ofpe/WN9, and OB supergiants. One newly identified star is the second luminous blue variable in the cluster, after the ``Pistol star.'' Although we are unable to provide certain spectral classifications for the five enigmatic Quintuplet-proper members, we tentatively propose that they are extremely dusty versions of the WC stars found elsewhere in the cluster and similar to the dozen or so known examples in the Galaxy. Although the cluster parameters are uncertain because of photometric errors and uncertainties in stellar models, i.e., extrapolating initial masses and estimating ionizing fluxes, we have the following conclusions. Given the evolutionary stages of the identified stars, the cluster appears to be about 4+/-1 Myr old, assuming coeval formation. The total mass in observed stars is ~103 Msolar, and the implied mass is ~104 Msolar, assuming a lower mass cutoff of 1 Msolar and a Salpeter initial mass function. The implied mass density in stars is greater than or similar to a few thousand Msolar pc-3. The newly identified stars increase the estimated ionizing flux from this cluster by about an order of magnitude with respect to earlier estimates, to 1050.9 photons s-1, or roughly what is required to ionize the nearby ``Sickle'' H II region (G0.18-0.04). The total luminosity from the massive cluster stars is ~107.5 Lsolar, enough to account for the heating of the nearby molecular cloud, M0.20-0.033. We propose a picture that integrates most of the major features in this part of the sky, excepting the nonthermal filaments. We

  7. Investigations in massive 3D gravity

    SciTech Connect

    Accioly, Antonio; Helayeel-Neto, Jose; Morais, Jefferson; Turcati, Rodrigo; Scatena, Eslley

    2011-05-15

    Some interesting gravitational properties of the Bergshoeff-Hohm-Townsend model (massive 3D gravity), such as the presence of a short-range gravitational force in the nonrelativistic limit and the existence of an impact-parameter-dependent gravitational deflection angle, are studied. Interestingly enough, these phenomena have no counterpart in the usual Einstein 3D gravity. In order to better understand the two aforementioned gravitational properties, they are also analyzed in the framework of 3D higher-derivative gravity with the Einstein-Hilbert term with the 'wrong sign'.

  8. Early massive clusters and the bouncing coupled dark energy

    NASA Astrophysics Data System (ADS)

    Baldi, Marco

    2012-02-01

    The abundance of the most massive objects in the Universe at different epochs is a very sensitive probe of the cosmic background evolution and of the growth history of density perturbations, and could provide a powerful tool to distinguish between a cosmological constant and a dynamical dark energy field. In particular, the recent detection of very massive clusters of galaxies at high redshifts has attracted significant interest as a possible indication of a failure of the standard Λ cold dark matter model. Several attempts have been made in order to explain such detections in the context of non-Gaussian scenarios or interacting dark energy models, showing that both these alternative cosmologies predict an enhanced number density of massive clusters at high redshifts, possibly alleviating the tension. However, all the models proposed so far also overpredict the abundance of massive clusters at the present epoch, and are therefore in contrast with observational bounds on the low-redshift halo mass function. In this paper we present for the first time a new class of interacting dark energy models that simultaneously account for an enhanced number density of massive clusters at high redshifts and for both the standard cluster abundance at the present time and the standard power spectrum normalization at cosmic microwave background (CMB). The key feature of this new class of models is the 'bounce' of the dark energy scalar field on the cosmological constant barrier at relatively recent epochs. We present the background and linear perturbations evolution of the model, showing that the standard amplitude of density perturbations is recovered both at CMB and at the present time, and we demonstrate by means of large N-body simulations that our scenario predicts an enhanced number of massive clusters at high redshifts without affecting the present halo abundance. Such behaviour could not arise in non-Gaussian models, and is therefore a characteristic feature of the

  9. Massive Late Noachian South Polar/Southern Upland Ice Deposits: Predictions and Tests of the Late Noachian "Cold and Icy Highlands" Model

    NASA Astrophysics Data System (ADS)

    Head, J. W.

    2016-09-01

    New Noachian climate models predict a "cold and icy highlands": glacial ice dominates the southern highlands around a huge south polar ice deposit. We document the predicted nature of these polar/circumpolar deposits and test it with observations.

  10. The Application of a Massively Parallel Computer to the Simulation of Electrical Wave Propagation Phenomena in the Heart Muscle Using Simplified Models

    NASA Technical Reports Server (NTRS)

    Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.

    1995-01-01

    The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.

  11. Massive stars. A chemical signature of first-generation very massive stars.

    PubMed

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger. PMID:25146286

  12. Massive stars. A chemical signature of first-generation very massive stars.

    PubMed

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger.

  13. Sinus histiocytosis with massive lymphadenopathy.

    PubMed

    Foucar, E; Rosai, J; Dorfman, R F

    1978-12-01

    Sinus histiocytosis with massive lymphadenopathy (SHML) is a newly recognized, distinct, pseudolymphomatous benign entity with very characteristic microscopic features. Most patients are children or young adults with massive painless cervical adenopathy, although other node groups and extranodal sites often are involved. Sixteen patients with SHML involving the upper respiratory tract and/ or salivary gland are presented. Nine of the patients had ear, nose, and throat (ENT) manifestations at the time of presentation. In most cases the ENT involvement resulted in prominent clinical symptoms. Treatment included surgery, antibiotics, irradiation, chemotherapy, and steroids, frequently in combination, but no consistent pattern of response emerged from the study. These 16 patients were very similar clinically to patients with SHML who did not have ENT disease, indicating that extranodal involvement is not associated with more aggressive disease.

  14. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  15. Massive Science with VO and Grids

    NASA Astrophysics Data System (ADS)

    Nichol, R.; Smith, G.; Miller, C.; Freeman, P.; Genovese, C.; Wasserman, L.; Bryan, B.; Gray, A.; Schneider, J.; Moore, A.

    2006-07-01

    There is a growing need for massive computational resources for the analysis of new astronomical datasets. To tackle this problem, we present here our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, AstroGrid) and the computational grid (e.g. TeraGrid, COSMOS etc.). We discuss the construction of VOTechBroker, which is a modular software tool designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We discuss our planned usages of the VOTechBroker in computing a huge number of n--point correlation functions from the SDSS data and massive model-fitting of millions of CMBfast models to WMAP data. We also discuss other applications including the determination of the XMM Cluster Survey selection function and the construction of new WMAP maps.

  16. Circumstellar bubble created by two massive stars

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; van Marle, A. J.; Marcowith, A.

    2013-11-01

    The massive stars are formed in clusters then numerical models of wind-blown bubble should evolve bubble created by several stars. Aims. We develop a two-dimensional (2D) model of the circumstellar bubble created by two massive stars, a 40 M_{odot} star and a 25 M_{odot} star, and follow its evolution with MPI-AMRVAC hydrodynamics code until the end of the stellar evolution and he supernova explosion of each star. The stars are separated by approximately 16 pc and surrounded by a cold medium with a density of 20 particles per cm3. The simulations showed that the evolution of a wind-blown bubble created by two stars deviates from that of the bubbles around single stars. In particular, once one of the stars has exploded, the bubble is too large for the wind of the remaining star to maintain and the outer shell starts to disintegrate. The lack of thermal pressure inside the bubble also changes the behavior of circumstellar features close to the remaining star. The supernovae are contained inside the bubble, which reflects part of the energy back into the circumstellar medium.

  17. Analytics for massive heat maps

    NASA Astrophysics Data System (ADS)

    Bohn, Shawn J.; Payne, Deborah; Nakamura, Grant; Love, Douglass

    2009-01-01

    High throughput instrumentation for genomics is producing data orders of magnitude greater than even a decade before. Biologists often visualize the data of these experiments through the use of heat maps. For large datasets, heat map visualizations do not scale. These visualizations are only capable of displaying a portion of the data, making it difficult for scientists to find and detect patterns that span more than a subsection of the data. We present a novel method that provides an interactive visual display for massive heat maps [O(108)]. Our process shows how a massive heat map can be decomposed into multiple levels of abstraction to represent the underlying macrostructures. We aggregate these abstractions into a framework that can allow near real-time navigation of the space. To further assist pattern discovery, we ground our system on the principle of focus+context. Our framework also addresses the issue of balancing the memory and display resolution and heat map size. We will show that this technique for biologists provides a powerful new visual metaphor for analyzing massive datasets.

  18. Analytics for Massive Heat Maps

    SciTech Connect

    Bohn, Shawn J.; Payne, Deborah A.; Nakamura, Grant C.; Love, Douglas V.

    2009-01-19

    High throughput instrumentation for genomics is producing data orders of magnitude greater than even a decade before. Biologists often visualize the data of these experiments through the use of heat maps. For large datasets, heat map visualizations do not scale. These visualizations are only capable of displaying a portion of the data, making it difficult for scientists to find and detect patterns that span more than a subsection of the data. We present a novel method that provides an interactive visual display for massive heat maps [O(108)]. Our process shows how a massive heat map can be decomposed into multiple levels of abstraction to represent the underlying macrostructures. We aggregate these abstractions into a framework that can allow real-time navigation of the space. To further assist pattern discovery, we ground our system on the principle of focus+context. Our framework also addresses the issue of balancing the memory and display resolution and heat map size. We will show that this technique for biologists provides a powerful new visual metaphor for analyzing massive datasets.

  19. Extinction in young massive clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  20. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    NASA Astrophysics Data System (ADS)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  1. Testing gravity at the second post-Newtonian level through gravitational deflection of massive particles

    SciTech Connect

    Bhadra, A.; Sarkar, K.; Nandi, K. K.

    2007-06-15

    Expression for second post-Newtonian level gravitational deflection angle of massive particles is obtained in a model independent framework. Comparison of theoretical values with the observationally constructed values of post-Newtonian parameters for massive particles offers the future possibility of testing at that level competing gravitational theories as well as the equivalence principle. Advantage of studying gravitational deflection of massive particles over that of massless particles in testing gravity is discussed.

  2. Massive Stars in Colliding Wind Systems: the GLAST Perspective

    SciTech Connect

    Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-29

    Colliding winds of massive stars in binary systems are considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory. The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems.

  3. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  4. Properties of Massive Stars in VVV Clusters

    NASA Astrophysics Data System (ADS)

    Hervé, A.; Martins, F.; Chené, A.-N.; Bouret, J.-C.; Borrissova, J.

    2015-12-01

    The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey VISTA Variables in the Via Lactea (VVV) discovered several new clusters hosting massive stars (Borrissova et al. [1]). We derive the stellar parameters of all targets as well as surface abundances for a subset of them. For the cluster with the largest number of objects, we establish firmly that the WN and WC stars were initially more massive than the O stars still present in the cluster.

  5. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing

  6. The Evolution and Stability of Massive Stars

    NASA Astrophysics Data System (ADS)

    Shiode, Joshua Hajime

    Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the

  7. Ionizing feedback from massive stars in massive clusters - II. Disruption of bound clusters by photoionization

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2012-07-01

    We present a smoothed particle hydrodynamics parameter study of the dynamical effect of photoionization from O-type stars on star-forming clouds of a range of masses and sizes during the time window before supernovae explode. Our model clouds all have the same degree of turbulent support initially, the ratio of turbulent kinetic energy to gravitational potential energy being set to Ekin/|Epot|= 0.7. We allow the clouds to form stars and study the dynamical effects of the ionizing radiation from the massive stars or clusters born within them. We find that dense filamentary structures and accretion flows limit the quantities of gas that can be ionized, particularly in the higher density clusters. More importantly, the higher escape velocities in our more massive (106 M⊙) clouds prevent the H II regions from sweeping up and expelling significant quantities of gas, so that the most massive clouds are largely dynamically unaffected by ionizing feedback. However, feedback has a profound effect on the lower density 104 and 105 M⊙ clouds in our study, creating vast evacuated bubbles and expelling tens of per cent of the neutral gas in the 3-Myr time-scale before the first supernovae are expected to detonate, resulting in clouds highly porous to both photons and supernova ejecta.

  8. Hadronic production of massive lepton pairs

    SciTech Connect

    Berger, E.L.

    1982-12-01

    A review is presented of recent experimental and theoretical progress in studies of the production of massive lepton pairs in hadronic collisions. I begin with the classical Drell-Yan annihilation model and its predictions. Subsequently, I discuss deviations from scaling, the status of the proofs of factorization in the parton model, higher-order terms in the perturbative QCD expansion, the discrepancy between measured and predicted yields (K factor), high-twist terms, soft gluon effects, transverse-momentum distributions, implications for weak vector boson (W/sup + -/ and Z/sup 0/) yields and production properties, nuclear A dependence effects, correlations of the lepton pair with hadrons in the final state, and angular distributions in the lepton-pair rest frame.

  9. Awareness-based communication management in the MASSIVE systems

    NASA Astrophysics Data System (ADS)

    Greenhalgh, Chris

    1998-09-01

    The MASSIVE-1 and MASSIVE-2 distributed virtual environment systems are based on an explicit model of user communication requirements known as the spatial model of interaction; this model addresses the general issue of managing communication in large space-based systems such as DVEs. The goals of the spatial model are to guide the distribution and presentation of information in a way which facilitates collaboration between participants (based on observed patterns of interaction in real-world environments) and which is also efficient and appropriate. The MASSIVE-1 system emphasized the spatial model's `aura' concept as the basis for a distinct shared service in an otherwise wholly unicast peer-to-peer system. This approach was effective for relatively small systems but could not be extended to make general use of multicast communication (to reduce total bandwidth requirements). The MASSIVE-2 system added the concept of `third-party objects' which support the definition and management of multiple multicast groups for updates and continuous media distribution.

  10. Massive Star Formation: The Role of Disks

    NASA Astrophysics Data System (ADS)

    Fallscheer, Cassandra L.; Beuther, H.; Sauter, J.; Wolf, S.; Zhang, Q.; Keto, E.; Sridharan, T. K.

    2011-01-01

    We have obtained multiple data sets from the SMA, PdBI, and IRAM 30m telescope of the Infrared Dark Cloud IRDC18223-3, the High-Mass Protostellar Object IRAS18151-1208, and the hot core source IRAS18507+0121 in order to search for clues regarding the role of rotation and disks in high mass star formation. These three objects allow us to compare the central-most regions surrounding the embedded continuum source at three different evolutionary stages of the formation process. Toward all three regions we see rotational or elongated structures perpendicular to the molecular outflows. Similarities and differences in the evolutionary sequence are discussed in the context of core and disk evolution. We have also carried out continuum and line radiative transfer modeling of the disk-like structures. Having a more complete picture of the evolutionary process that a massive star experiences will contribute significantly to the future of massive star formation research. Support for this project comes from the Deutsche Forschungsgemeinschaft and the International Max-Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg.

  11. The outer haloes of massive, elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Das, Payel; Gerhard, Ortwin; de Lorenzi, Flavio; McNeil, Emily; Churazov, Eugene; Coccato, Lodovico

    2010-11-01

    The outer haloes of massive elliptical galaxies are dark-matter dominated regions where stellar orbits have longer dynamical timescales than the central regions and therefore better preserve their formation history. Dynamical models out to large radii suffer from a degeneracy between mass and orbital structure, as the outer kinematics are unable to resolve higher moments of the line-of-sight velocity distribution. We mitigate this degeneracy for a sample of quiescent, massive, nearby ellipticals by determining their mass distributions independently using a non-parametric method on X-ray observations of the surrounding hot interstellar medium. We then create dynamical models using photometric and kinematic constraints consisting of integral-eld, long-slit and planetary nebulae (PNe) data extending to ~50 kpc. The rst two galaxies of our sample, NGC 5846 and NGC 1399, were found to have very shallow pro jected light distributions with a power law index of ~1.5 and a dark matter content of 70-80% at 50 kpc. Spherical Jeans models of the data show that, in the outer haloes of both galaxies, the pro jected velocity dispersions are almost inde- pendent of the anisotropy and that the PNe prefer the lower end of the range of mass distributions consistent with the X-ray data. Using the N-body code NMAGIC, we cre- ated axisymmetric models of NGC 5846 using the individual PNe radial velocities in a likelihood method and found them to be more constraining than the binned velocity dispersions. Characterising the orbital structure in terms of spherically averaged proles of the velocity dispersions we nd σψ > σr > σθ.

  12. Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome

    PubMed Central

    Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.

    2013-01-01

    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509

  13. Combining magnetic and seismic studies to constrain processes in massive stars

    NASA Astrophysics Data System (ADS)

    Neiner, Coralie; Degroote, Pieter; Coste, Blanche; Briquet, Maryline; Mathis, Stéphane

    2014-08-01

    The presence of pulsations influences the local parameters at the surface of massive stars and thus it modifies the Zeeman magnetic signatures. Therefore it makes the characterisation of a magnetic field in pulsating stars more difficult and the characterisation of pulsations is thus required for the study of magnetic massive stars. Conversely, the presence of a magnetic field can inhibit differential rotation and mixing in massive stars and thus provides important constraints for seismic modelling based on pulsation studies. As a consequence, it is necessary to combine spectropolarimetric and seismic studies for all massive classical pulsators. Below we show examples of such combined studies and the interplay between physical processes.

  14. Detecting weakly interacting massive particles.

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Gelmini, G. B.

    The growing synergy between astrophysics, particle physics, and low background experiments strengthens the possibility of detecting astrophysical non-baryonic matter. The idea of direct detection is that an incident, massive weakly interacting particle could collide with a nucleus and transfer an energy that could be measured. The present low levels of background achieved by the PNL/USC Ge detector represent a new technology which yields interesting bounds on Galactic cold dark matter and on light bosons emitted from the Sun. Further improvements require the development of cryogenic detectors. The authors analyse the practicality of such detectors, their optimalization and background suppression using the "annual modulation effect".

  15. Hidden ghost in massive gravity

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Mukhanov, Viatcheslav

    2013-03-01

    The Hessian's determinant for a version of massive gravity given by an infinite expansion of a square root function of the induced metric, vanishes. We show that it allows us to eliminate one of four scalar fields used to generate the graviton mass. This, however, gives rise to the appearance of extra terms in the action with the squared time derivative of the metric, thus signaling that a nonlinear ghost survives. We demonstrate this phenomenon considering a simple system with constraint, which is supposed to reduce the number of physical degrees of freedom, however, we explicitly show how the constraint forces the metric to propagate an extra tachyonic state.

  16. Cosmological stability bound in massive gravity and bigravity

    SciTech Connect

    Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu

    2013-12-01

    We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity.

  17. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    SciTech Connect

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-04-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  18. Globular cluster abundance anomalies and the massive binary polluter scenario

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya; González-Jímenez, Nicolas; Langer, Norbert

    2014-09-01

    Observations of globular cluster stars indicate that their material has been polluted with the nucleosynthetically processed matter of a previous generation of massive stars, but not with supernova products. The nature of the polluter is still being debated: either hot-bottom-burning AGB stars or rapidly rotating massive stars could be responsible, although both scenarios face major challenges to explain the observed abundance patterns and require fine-tuning of the most relevant parameters. An alternative scenario involves massive binary polluters: nucleosynthetically processed gas is expelled during highly non-conservative mass transfer in interacting massive binary systems. It has been shown that such systems could return enough material to form a chemically enriched second generation. However, for a detailed comparison of the chemical predictions of this scenario, binary models for a range of masses and orbital periods are needed. We have carried out detailed calculations of interacting massive binaries with various mass ratios and orbital periods. The evolution of these systems is presented. Constraints on the initial parameters are analyzed, observed abundances are compared to theoretical yields, and advantages and disadvantages of this scenario are discussed.

  19. LaMEM: a Massively Parallel Staggered-Grid Finite-Difference Code for Thermo-Mechanical Modeling of Lithospheric Deformation with Visco-Elasto-Plastic Rheologies

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Popov, A.

    2014-12-01

    The complexity of lithospheric rheology and the necessity to resolve the deformation patterns near the free surface (faults and folds) sufficiently well places a great demand on a stable and scalable modeling tool that is capable of efficiently handling nonlinearities. Our code LaMEM (Lithosphere and Mantle Evolution Model) is an attempt to satisfy this demand. The code utilizes a stable and numerically inexpensive finite difference discretization with the spatial staggering of velocity, pressure, and temperature unknowns (a so-called staggered grid). As a time discretization method the forward Euler, or a combination of the predictor-corrector and the fourth-order Runge-Kutta can be chosen. Elastic stresses are rotated on the markers, which are also used to track all relevant material properties and solution history fields. The Newtonian nonlinear iteration, however, is handled at the level of the grid points to avoid spurious averaging between markers and grid. Such an arrangement required us to develop a non-standard discretization of the effective strain-rate second invariant. Important feature of the code is its ability to handle stress-free and open-box boundary conditions, in which empty cells are simply eliminated from the discretization, which also solves the biggest problem of the sticky-air approach - namely large viscosity jumps near the free surface. We currently support an arbitrary combination of linear elastic, nonlinear viscous with multiple creep mechanisms, and plastic rheologies based on either a depth-dependent von Mises or pressure-dependent Drucker-Prager yield criteria.LaMEM is being developed as an inherently parallel code. Structurally all its parts are based on the building blocks provided by PETSc library. These include Jacobian-Free Newton-Krylov nonlinear solvers with convergence globalization techniques (line search), equipped with different linear preconditioners. We have also implemented the coupled velocity-pressure multigrid

  20. Plasma levels of liver-specific miR-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia.

    PubMed

    Andersson, Patrik; Gidlöf, Olof; Braun, Oscar O; Götberg, Matthias; van der Pals, Jesper; Olde, Björn; Erlinge, David

    2012-02-01

    Tissue-specific circulating micro-RNAs (miRNAs) are released into the blood after organ injury. In an ischemic porcine cardiogenic shock model, we investigated the release pattern of cardiac-specific miR-208b and liver-specific miR-122 and assessed the effect of therapeutic hypothermia on their respective plasma levels. Pigs were anesthetized, and cardiogenic shock was induced by inflation of a percutaneous coronary intervention balloon in the proximal left anterior descending artery for 40 min followed by reperfusion. After fulfillment of the predefined shock criteria, the pigs were randomized to hypothermia (33°C, n = 6) or normothermia (38°C, n = 6). Circulating miRNAs were extracted from plasma and measured with quantitative real-time polymerase chain reaction (PCR). Tissue specificity was assessed by miRNA extraction from porcine tissues followed by quantitative real-time PCR. In vitro, the release of miR-122 from a cultured hepatocyte cell line exposed to either hypoxia or acidosis was assessed by real-time PCR. miR-122 was found to be highly liver specific, whereas miR-208b was expressed exclusively in the heart. In the control group, ischemic cardiogenic shock induced a 460,000-fold and a 63,000-fold increase in plasma levels of miR-122 (P < 0.05) and miR-208b (P < 0.05), respectively. Therapeutic hypothermia significantly diminished the increase in miR-122 compared with the normothermic group (P < 0.005). In our model, hypothermia was initiated after coronary reperfusion and did not affect either myocardial damage as previously assessed by magnetic resonance imaging or the plasma level of miR-208b. Our results indicate that liver-specific miR-122 is released into the circulation in the setting of cardiogenic shock and that therapeutic hypothermia significantly reduces the levels of miR-122.

  1. Massive General Relativity: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory

    The Universe, at very large scales, is expanding with acceleration. The fundamental reason for the accelerated expansion is not understood. One way to model such an expansion is to postulate a small cosmological constant in the Einstein equations. However, it could also be that Nature made a different choice: The acceleration could be a first observational evidence of a new scale at which laws of gravity itself are modified, and if so, the acceleration could have a purely gravitational origin. To account for the observed expansion, the new scale should roughly be equal to 1/H0 ~ 10^28 cm -- the present-day value of the Hubble length. Theories that may modify gravity consistently at these scales present a great challenge, and this has been a topic of an active research for the past decade or so. Furthermore, modified gravity models make predictions that could be distinguished from those of more conventional frameworks, e.g., from the scenario with a small cosmological constant. Moreover, the case for modified gravity is strengthened by a long-standing Cosmological Constant Problem (CCP). According to a well- known theorem, the CCP cannot be solved as long as one remains in a conventional framework of General Relativity (GR), or in other theory that reduces to GR at large scales. Contrary to this, theories that truly modify GR at large scales, can evade this theorem, and thus offer a hope for solving the CCP. The Principal Investigator (PI) is proposing to address the cosmic acceleration, and related to it CCP, in the framework of massive extension of GR. Construction of massive GR began as early as in 1939, however, for the last 40 years or so the theory was tabooed by no-go theorems. Only very recently, PI and his collaborators were able to show that there is a class of theories to which the no-go theorems do not apply, and proposed a candidate covariant theory for massive GR, that passes all the initial consistency tests. Moreover, PI with his collaborators found

  2. Massive neutrinos and the pancake theory of galaxy formation

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    Three problems encountered by the pancake theory of galaxy formation in a massive neutrino-dominated universe are discussed. A nonlinear model for pancakes is shown to reconcile the data with the predicted coherence length and velocity field, and minimal predictions are given of the contribution from the large-scale matter distribution.

  3. A New Framework for Massive Open Online Courses (MOOCs)

    ERIC Educational Resources Information Center

    Schoenack, Lindsie

    2013-01-01

    The challenges that massive open online courses (MOOCs) bring to the learning arena spur adult educators to improve delivery. A framework for a new type of MOOC is presented to address some of the challenges presented by earlier models. This new MOOC, called a mesoMOOC, can bridge several challenges that hinder current effective delivery of MOOCs…

  4. Effective matter cosmologies of massive gravity: Physical fluids

    NASA Astrophysics Data System (ADS)

    Yılmaz, Nejat Tevfik

    2014-12-01

    We derive new cosmological solutions of the ghost-free massive gravity with a general background metric in which the contribution of the mass sector to the metric one is modeled by an effective cosmological constant and an ideal fluid which obeys the first law of thermodynamics; thus, it satisfies the ordinary energy-momentum conservation or continuity equation.

  5. Consistent quantization of massive chiral electrodynamics in four dimensions

    SciTech Connect

    Andrianov, A. ); Bassetto, A.; Soldati, R.

    1989-10-09

    We discuss the quantization of a four-dimensional model in which a massive Abelian vector field interacts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable unitary {ital S} matrix can be obtained in a suitably defined Hilbert space of physical states.

  6. Massive star evolution: luminous blue variables as unexpected supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, J. H.; Meynet, G.; Ekström, S.

    2013-02-01

    Stars more massive than about 8 M⊙ end their lives as a supernova (SN), an event of fundamental importance Universe-wide. Theoretically, these stars have been expected to be either at the red supergiant, blue supergiant, or Wolf-Rayet stage before the explosion. We performed coupled stellar evolution and atmospheric modeling of stars with initial masses between 20 M⊙ and 120 M⊙. We found that the 20 M⊙ and 25 M⊙ rotating models, before exploding as SN, have spectra that do not resemble any of the aforementioned classes of massive stars. Rather, they have remarkable similarities with rare, unstable massive stars known as luminous blue variables (LBV). While observations show that some SNe seem to have had LBVs as progenitors, no theoretical model had yet predicted that a star could explode at this stage. Our models provide theoretical support for relatively low-luminosity LBVs exploding as SN in the framework of single stellar evolution. This is a significant shift in paradigm, meaning that a fraction of LBVs could be the end stage of massive star evolution, rather than a transitory evolutionary phase. We suggest that type IIb SN could have LBV as progenitors, and a prime example could be SN 2008ax.

  7. Massive vectors and loop observables: the g - 2 case

    NASA Astrophysics Data System (ADS)

    Biggio, Carla; Bordone, Marzia; Di Luzio, Luca; Ridolfi, Giovanni

    2016-10-01

    We discuss the use of massive vectors for the interpretation of some recent experimental anomalies, with special attention to the muon g-2. We restrict our discussion to the case where the massive vector is embedded into a spontaneously broken gauge symmetry, so that the predictions are not affected by the choice of an arbitrary energy cut-off. Extended gauge symmetries, however, typically impose strong constraints on the mass of the new vector boson and for the muon g - 2 they basically rule out, barring the case of abelian gauge extensions, the explanation of the discrepancy in terms of a single vector extension of the standard model. We finally comment on the use of massive vectors for B-meson decay and di-photon anomalies.

  8. The Deuteration Clock for Massive Starless Cores

    NASA Astrophysics Data System (ADS)

    Kong, S.; Tan, J. C.; Caselli, P.; Fontani, F.

    2016-05-01

    To understand massive star formation requires study of its initial conditions. Two massive starless core candidates, C1-N & C1-S, have been detected in IRDC G028.37+00.07 in N2D+(3-2) with ALMA. From their line widths, either the cores are subvirial and are thus young structures on the verge of near free-fall collapse, or they are threaded by ˜1 mG B-fields that help support them in near virial equilibrium and potentially have older ages. We modeled the deuteration rate of N2H+ to constrain collapse rates of the cores. First, to measure their current deuterium fraction, D≡ [N2D+]/[N2H+], we observed multiple transitions of N2H+ and N2D+ with CARMA, SMA, JCMT, NRO 45 m and IRAM 30 m, to complement the ALMA data. For both cores we derived D ˜ 0.3, several orders of magnitude above the cosmic [D]/[H] ratio. We then carried out chemodynamical modeling, exploring how collapse rate relative to free-fall, αff, affects the level of D that is achieved from a given initial condition. To reach the observed D, most models require slow collapse with αff˜0.1, i.e., ˜1/10th of free-fall. This makes it more likely that the cores have been able to reach a near virial equilibrium state and we predict that strong B-fields will eventually be detected. The methods developed here will be useful for measurement of the pre-stellar core mass function.

  9. Rb and Zr abundances in massive Galactic AGB stars revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; Zamora, O.; García-Hernández, D. A.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2016-07-01

    We report new abundances of Rb and Zr in a sample of massive Galactic asymptotic giant branch (AGB) stars that were previously studied with hydrostatic models by using more realistic dynamical model atmospheres. We use a modified version of the spectral synthesis code Turbospectrum, and consider the presence of a circumstellar envelope and a radial wind in the modelling of these Galactic AGB stars. The Rb and Zr are determined from the 7800 Å Rb I resonant line and the 6474 Å ZrO bandhead, respectively, and they are compared with the AGB nucleosynthesis theoretical predictions. The derived Rb abundances are much lower (∼⃒1-2 dex) with the new dynamical models, while the Zr abundances, however, are closer to the hydrostatic values. The new model atmospheres can help to resolve the problem of the mismatch between the observations and the nucleosynthesis theoretical predictions of massive AGB stars.

  10. Massive Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Figer, D. F.; Kim, S. S.

    We review the status of massive-star interaction research in the Galactic center (GC). Given the short lifetimes of massive stars, massive binaries will necessarily be located near their formation sites in starburst clusters. The GC contains three recently formed clusters having a very high stellar density, as high as 106 stars pc-3. We discuss these extreme environments, and possible massive binaries therein. In addition, we argue that they may host the products of massive stellar mergers and collisions. In particular, we predict that at least one massive star in the Arches cluster has already experienced stellar merger events in its short lifetime. Further, the Pistol Star, in the nearby Quintuplet cluster, might owe its apparent relative youth to a rejuvinating stellar merger. Finally, the apparently young stars in the central arcsecond could be products of either collisions, inducing atmospheric stripping, or mergers.

  11. Massive Open Online Courses in Public Health

    PubMed Central

    Gooding, Ira; Klaas, Brian; Yager, James D.; Kanchanaraksa, Sukon

    2013-01-01

    Massive open online courses (MOOCs) represent a new and potentially transformative model for providing educational opportunities to learners not enrolled in a formal educational program. The authors describe the experience of developing and offering eight MOOCs on a variety of public health topics. Existing institutional infrastructure and experience with both for-credit online education and open educational resources mitigated the institutional risk and resource requirements. Although learners are able to enroll easily and freely and do so in large numbers, there is considerable variety in the level of participation and engagement among enrollees. As a result, comprehensive and accurate assessment of meaningful learning progress remains a major challenge for evaluating the effectiveness of MOOCs for providing public health education. PMID:24350228

  12. The Massive Star Population in M101

    NASA Astrophysics Data System (ADS)

    Grammer, Skyler H.

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. Very little is known about the origin of these giant eruptions and their progenitors which are presumably very-massive, evolved stars such as luminous blue variables, hypergiants, and supergiants. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the luminous and evolved massive star populations in several nearby galaxies. We aim to identify the likely progenitors of the giant eruptions, study the spatial variations in the stellar populations, and examine the relationship between massive star populations and their environment. The work presented here is focused on stellar populations in the relatively nearby, giant, spiral galaxy M101 from sixteen archival BVI HST/ACS images. We create a catalog of stars in the direction to M101 with photometric errors < 10% for V < 24.5 and 50% completeness down to V ˜ 26.5 even in regions of high stellar crowding. Using color and magnitude criteria we have identified candidate luminous OB type stars and blue supergiants, yellow supergiants, and red supergiants for future observation. We examine their spatial distributions across the face of M101 and find that the ratio of blue to red supergiants decreases by two orders of magnitude over the radial extent. From our catalog, we derive the star formation history (SFH) for the stellar populations in five 2' wide annuli by fitting the color-magnitude diagrams. Binning the SFH into time frames corresponding to populations traced by Halpha, far ultraviolet (FUV), and near ultraviolet (NUV) emission, we show that the fraction of stellar populations young enough to contribute in Halpha is 15% " 35% in the inner regions, compared to less than 5% in the outer regions. This provides a sufficient explanation for the lack of Halpha emission at large radii. We also model the blue to red supergiant ratio in our

  13. Cosmic expansion in extended quasidilaton massive gravity

    NASA Astrophysics Data System (ADS)

    Kahniashvili, Tina; Kar, Arjun; Lavrelashvili, George; Agarwal, Nishant; Heisenberg, Lavinia; Kosowsky, Arthur

    2015-02-01

    Quasidilaton massive gravity offers a physically well-defined gravitational theory with nonzero graviton mass. We present the full set of dynamical equations governing the expansion history of the Universe, valid during radiation domination, matter domination, and a late-time self-accelerating epoch related to the graviton mass. The existence of self-consistent solutions constrains the amplitude of the quasidilaton field and the graviton mass, as well as other model parameters. We point out that the effective mass of gravitational waves can be significantly larger than the graviton mass, opening the possibility that a single theory can explain both the late-time acceleration of cosmic expansion and modifications of structure growth leading to the suppression of large-angle correlations observed in the cosmic microwave background.

  14. Energetic Supernovae of Very Massive Primordial Stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, Stan

    2015-08-01

    Current models of the formation of the first stars in the universe suggest that these stars were very massive, having a typical mass scale of hundreds of solar masses. Some of them would die as pair instability supernovae (PSNe) which might be the biggest explosions of the universe. We present the results from multidimensional numerical studies of PSNe with a new radiation-hydrodynamics code, CASTRO and with realistic nuclear reaction networks. We simulate the fluid instabilities that occur in multiple spatial dimensions and discuss how the resulting mixing affects the explosion, mixing, and nucleosynthesis of these supernovae. Our simulations provide useful predictions for the observational signatures of PSNe, which might soon be examined by the James Webb Space Telescope.

  15. Orbifold symmetry reductions of massive boson-fermion degeneracy

    NASA Astrophysics Data System (ADS)

    Florakis, Ioannis; Kounnas, Costas

    2009-10-01

    We investigate the existence of string vacua with Massive Spectrum Degeneracy Symmetry ( MSDS) in Heterotic and Type II orbifold constructions. We present a classification of all possible Z2N-orbifolds with MSDS symmetry that can be constructed in the formalism of the 2d free fermionic construction. We explicitly construct several two-dimensional models whose Reduced Massive Spectrum Degeneracy Symmetry ( RMSDS) is due to a set of Z-orbifold projections induced naturally in the framework of the free fermionic construction. In all proposed models the massive boson and fermion degrees of freedom exhibit Massive Spectrum Degeneracy Symmetry while the number of massless bosons n(b) and massless fermions n(f) are different; n(b)≠n(f). This property distinguishes the MSDSZ-twisted theories from ordinary supersymmetric ones. Some comments are stated concerning the large marginal JJ¯-deformations of the proposed models connecting them to higher-dimensional gauged-supergravity theories with non-trivial geometrical fluxes.

  16. Megaloblastic anemia presenting with massive reversible splenomegaly.

    PubMed

    Behera, Vineet; Randive, Makarand; Sharma, Praveen; Nair, Velu

    2015-06-01

    Megaloblastic anemia (MA) is a common disorder with varied manifestations. It generally results in mild to moderate splenomegaly which is due to sequestration of macrocytic erythrocytes in spleen. Massive splenomegaly is generally seen in infections, myeloproliferative diseases, neoplasms, storage disorders or hematological conditions; but is not heard of and has rarely been reported in MA. We discuss a case of massive splenomegaly who presented with symptomatic anemia and was found to have MA. He was extensive evaluated for all other causes of massive splenomegaly which was normal. Further, after a therapeutic trial of MA he showed a regression in spleen size confirming that the massive splenomegaly was attributable to MA. PMID:25825577

  17. Interferometric Radio Observations of the Interactive Winds of Massive Stars

    NASA Astrophysics Data System (ADS)

    Brookes, Diane Patricia

    2016-06-01

    Massive stars have very strong stellar winds which interact with their environment. This work has involved the study of these interactive winds at radio and other wavelengths. Radio observations have been made of the massive runaway star BD+43 3654 and its bow shock which is interacting with the inter-stellar medium. These observations, together with archive data at other wavelengths, have revealed stratified dust and turbulent gas in this interaction zone. Further radio studies have been undertaken of the interaction zones of the colliding winds of massive binary systems. Observations of the colliding wind binary WR 147 at 5GHz have revealed a curved collision zone, suggestive of simple interactive models. Measurements of the flux from the Wolf-Rayet component of this massive binary system has allowed a mass-loss rate to be derived and though the companion O-star is not detected, an upper flux limit has allowed upper limits on the mass-loss rate and limits on the terminal velocity to be inferred. Also revealed is a curious ’bridge’ feature previously observed in WR 147 which occurs between the two binary components. One mechanism is suggested to explain this anomalous feature, the ionising flux of one binary component, the O-star, may be ionising the wind of the other, the WR component. Modelling of the ionisation structure of the stellar winds has been undertaken to verify that this may be occurring. Radio observations of massive stars made at low-frequency have produced detections of WR 147 and the brighter colliding wind binary, WR 146. These detections have allowed modelling of the non-thermal emission in order to deduce where the non-thermal absorption turn-over occurs in these systems. The resultant modelling has illustrated that these colliding wind regions are complex, with multiple absorption regions best describing their nature.

  18. Merlin - Massively parallel heterogeneous computing

    NASA Technical Reports Server (NTRS)

    Wittie, Larry; Maples, Creve

    1989-01-01

    Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.

  19. PRISM Polarimetry of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.

    2016-01-01

    We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.

  20. Stability and Coalescence of Massive Twin Binaries

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Lombardi, J. C., Jr.; Rasio, F. A.; Kalogera, V.

    2015-06-01

    Massive stars are usually found in binaries, and binaries with periods less than 10 days may have a preference for near equal component masses (“twins”). In this paper we investigate the evolution of massive twin binaries all the way to contact and the possibility that these systems can be progenitors of double neutron star binaries. The small orbital separations of observed double neutron star binaries suggest that the progenitor systems underwent a common envelope phase at least once during their evolution. Bethe & Brown proposed that massive binary twins will undergo a common envelope evolution while both components are ascending the red giant branch (RGB) or asymptotic giant branch (AGB) simultaneously, also known as double-core evolution. Using models generated from the stellar evolution code EZ (evolve zero-age main sequence), we determine the range of mass ratios resulting in a contact binary with both components simultaneously ascending the RGB or AGB as a function of the difference in birth times, Δτ. We find that, even for a generous Δτ = 5 Myr, the minimum mass ratio {{q}min }=0.933 for an 8 {{M}⊙ } primary and increases for larger mass primaries. We use a smoothed particle hydrodynamics code, StarSmasher, to study specifically the evolution of q = 1 common envelope systems as a function of initial component mass, age, and orbital separation. We also consider a q = 0.997 system to test the effect of relaxing the constraint of strictly identical components. We find the dynamical stability limit, the largest orbital separation where the binary becomes dynamically unstable, as a function of the component mass and age. Finally, we calculate the efficiency of ejecting matter during the inspiral phase to extrapolate the properties of the remnant binary from our numerical results, assuming the common envelope is completely ejected. We find that for the nominal core masses, there is a minimum orbital separation for a given component mass such that the

  1. Completing Lorentz violating massive gravity at high energies

    SciTech Connect

    Blas, D.; Sibiryakov, S.

    2015-03-15

    Theories with massive gravitons are interesting for a variety of physical applications, ranging from cosmological phenomena to holographic modeling of condensed matter systems. To date, they have been formulated as effective field theories with a cutoff proportional to a positive power of the graviton mass m{sub g} and much smaller than that of the massless theory (M{sub P} ≈ 10{sup 19} GeV in the case of general relativity). In this paper, we present an ultraviolet completion for massive gravity valid up to a high energy scale independent of the graviton mass. The construction is based on the existence of a preferred time foliation combined with spontaneous condensation of vector fields. The perturbations of these fields are massive and below their mass, the theory reduces to a model of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose consistent quantization we discuss in detail. We briefly study some modifications to gravitational phenomenology at low-energies. The homogeneous cosmological solutions are the same as in the standard cosmology. The gravitational potential of point sources agrees with the Newtonian one at distances small with respect to m{sub g}{sup −1}. Interestingly, it becomes repulsive at larger distances.

  2. The Brief Lives of Massive Stars as Witnessed by Interferometry

    NASA Astrophysics Data System (ADS)

    Hummel, C.

    2014-09-01

    Massive stars present the newest and perhaps most challenging opportunity for long baseline interferometry to excel. Large distances require high angular resolution both to study the means of accreting enough mass in a short time and to split new-born multiples into their components for the determination of their fundamental parameters. Dust obscuration of young stellar objects requires interferometry in the mid-infrared, while post-main-sequence stellar phases require high-precision measurements to challenge stellar evolution models. I will summarize my recent work on modeling mid-IR observations of a massive YSO in NGC 3603, and on the derivation of masses and luminosities of a massive hot supergiant star in another star-forming region in Orion. Challenges presented themselves when constraining the geometry of a hypothetical accretion disk as well as obtaining spectroscopy matching the interferometric precision when working with only a few photospheric lines. As a rapidly evolving application of interferometry, massive stars have a bright future.

  3. The brief lives of massive stars as witnessed by interferometry}

    NASA Astrophysics Data System (ADS)

    Hummel, Christian

    2013-06-01

    Massive stars present the newest and perhaps most challenging opportunity for long baseline interferometry to excel. Large distances require high angular resolution both to study the means of accreting enough mass in a short time and to split new-born multiples into their components for the determination of their fundamental parameters. Dust obscuration of young stellar objects require interferometry in the infrared, while post-mainsequence stellar phases require high-precision measurements to challenge stellar evolution models. I will summarize our work on a massive YSO in NGC 3603 including modeling mid-IR interferometric observations, as well as recent sub-mm imaging and spectroscopy with APEX. We find some evidence for a disk in the MIR, resolve multiple cores in the sub-mm with emission line spectra untypical for hot cores. I also report on the derivation of masses and luminosities of a massive O-type supergiant (ζ Orionis) in another star forming region in Orion. The small radial velocity semi-amplitudes coupled with few usable (i.e. wind-free) lines have made this work very challenging and forced us to base the mass determination on a photometric distance estimate. As a rapidly evolving application of interferometry, massive stars have a bright future.

  4. Evolution and fate of very massive stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges; Crowther, Paul A.; Ekström, Sylvia; Frischknecht, Urs; Georgy, Cyril; Abu Kassim, Hasan; Schnurr, Olivier

    2013-08-01

    There is observational evidence that supports the existence of very massive stars (VMS) in the local universe. First, VMS (Mini ≲ 320 M⊙) have been observed in the Large Magellanic Clouds (LMC). Secondly, there are observed supernovae (SNe) that bear the characteristics of pair creation supernovae (PCSNe, also referred to as pair instability SN) which have VMS as progenitors. The most promising candidate to date is SN 2007bi. In order to investigate the evolution and fate of nearby VMS, we calculated a new grid of models for such objects, for solar, LMC and Small Magellanic Clouds (SMC) metallicities, which covers the initial mass range from 120 to 500 M⊙. Both rotating and non-rotating models were calculated using the GENEVA stellar evolution code and evolved until at least the end of helium burning and for most models until oxygen burning. Since VMS have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All the VMS, at all the metallicities studied here, end their life as WC(WO)-type Wolf-Rayet stars. Because of very important mass losses through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M⊙. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses would be the enhanced abundances of Ne and Mg at the surface of WC stars. This feature is however not always apparent depending on the history of mass loss. At solar metallicity, none of our models is expected to explode as a PCSN. At the metallicity of the LMC, only stars more massive than 300 M⊙ are expected to explode as PCSNe. At the SMC metallicity, the mass range for the PCSN progenitors is much larger and

  5. Evolution and Nucleosynthesis of Very Massive Stars

    NASA Astrophysics Data System (ADS)

    Hirschi, Raphael

    In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: M > 100 M_{odot } ) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M_{odot } . A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses is the enhanced abundances of neon and magnesium at the surface of WC stars. At solar metallicity, mass loss is so strong that even if a star is born with several hundred solar masses, it will end its life with less than 50 M_{odot } (using current mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand, mass loss is weaker and might enable stars to undergo pair-instability supernovae.

  6. Stefan-Boltzmann Law for Massive Photons

    NASA Astrophysics Data System (ADS)

    Moreira, E. S.; Ribeiro, T. G.

    2016-08-01

    This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.

  7. LaMEM: a massively parallel 3D staggered-grid finite-difference code for coupled nonlinear themo-mechanical modeling of lithospheric deformation with visco-elasto-plastic rheology

    NASA Astrophysics Data System (ADS)

    Popov, Anton; Kaus, Boris

    2015-04-01

    This software project aims at bringing the 3D lithospheric deformation modeling to a qualitatively different level. Our code LaMEM (Lithosphere and Mantle Evolution Model) is based on the following building blocks: * Massively-parallel data-distributed implementation model based on PETSc library * Light, stable and accurate staggered-grid finite difference spatial discretization * Marker-in-Cell pedictor-corector time discretization with Runge-Kutta 4-th order * Elastic stress rotation algorithm based on the time integration of the vorticity pseudo-vector * Staircase-type internal free surface boundary condition without artificial viscosity contrast * Geodynamically relevant visco-elasto-plastic rheology * Global velocity-pressure-temperature Newton-Raphson nonlinear solver * Local nonlinear solver based on FZERO algorithm * Coupled velocity-pressure geometric multigrid preconditioner with Galerkin coarsening Staggered grid finite difference, being inherently Eulerian and rather complicated discretization method, provides no natural treatment of free surface boundary condition. The solution based on the quasi-viscous sticky-air phase introduces significant viscosity contrasts and spoils the convergence of the iterative solvers. In LaMEM we are currently implementing an approximate stair-case type of the free surface boundary condition which excludes the empty cells and restores the solver convergence. Because of the mutual dependence of the stress and strain-rate tensor components, and their different spatial locations in the grid, there is no straightforward way of implementing the nonlinear rheology. In LaMEM we have developed and implemented an efficient interpolation scheme for the second invariant of the strain-rate tensor, that solves this problem. Scalable efficient linear solvers are the key components of the successful nonlinear problem solution. In LaMEM we have a range of PETSc-based preconditioning techniques that either employ a block factorization of

  8. Lagrangians for massive Dirac chiral superfields

    NASA Astrophysics Data System (ADS)

    Jiménez, Enrique; Vaquera-Araujo, C. A.

    2016-06-01

    A variant for the superspin one-half massive superparticle in 4D, N = 1, based on Dirac superfields, is offered. As opposed to the current known models that use spinor chiral superfields, the propagating fields of the supermultiplet are those of the lowest mass dimensions possible: scalar, Dirac and vector fields. Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained, allowing a very straightforward implementation of the path-integral method. The corresponding superpropagators are presented. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, is given in terms of their component fields. The model is first presented for the case of two superspin one-half superparticles related by the charged conjugation operator, but in order to treat the case of neutral superparticles, the Majorana condition on the Dirac superfields is also studied. We compare our proposal with the known models of spinor superfields for the one-half superparticle and show that it is equivalent to them.

  9. The formation of massive, quiescent galaxies at cosmic noon

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2016-05-01

    The cosmic noon (z ˜ 1.5-3) marked a period of vigorous star formation for most galaxies. However, about a third of the more massive galaxies at those times were quiescent in the sense that their observed stellar populations are inconsistent with rapid star formation. The reduced star formation activity is often attributed to gaseous outflows driven by feedback from supermassive black holes, but the impact of black hole feedback on galaxies in the young Universe is not yet definitively established. We analyse the origin of quiescent galaxies with the help of ultrahigh resolution, cosmological simulations that include feedback from stars but do not model the uncertain consequences of black hole feedback. We show that dark matter haloes with specific accretion rates below ˜0.25-0.4 Gyr-1 preferentially host galaxies with reduced star formation rates and red broad-band colours. The fraction of such haloes in large dark matter only simulations matches the observed fraction of massive quiescent galaxies (˜1010-1011 M⊙). This strongly suggests that halo accretion rate is the key parameter determining which massive galaxies at z ˜ 1.5-3 become quiescent. Empirical models that connect galaxy and halo evolution, such as halo occupation distribution or abundance matching models, assume a tight link between galaxy properties and the masses of their parent haloes. These models will benefit from adding the specific accretion rate of haloes as a second model parameter.

  10. The Clustering of Massive Galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Overzier, R. A.; Röttgering, H. J. A.; Wilman, R. J.; Rengelink, R. B.

    2003-05-01

    We use the angular two-point correlation function to estimate the spatial correlation length of radio sources taken from the large-area 1.4 GHz NVSS radio survey. At the median survey redshift of z ~ 1, r0 is found to be increasing with flux density. This is consistent with a scenario in which powerful (i.e. FRII) radio galaxies probe significantly more massive spatial structures than less powerful radio galaxies. The large spatial correlation length that we derive for FRIIs is remarkably close to that of extremely red objects (EROs). This implies that powerful radio galaxies and EROs trace equally massive structures at z ~ 1. Moreover, because powerful radio galaxies and EROs are both associated with luminous early-type galaxies we propose that they could be the same objects seen at different evolutionary stages. The correlation length of massive, luminous galaxies at z ~ 1 is comparable to that of bright ellipticals locally, suggesting that r0 (comoving) of these massive galaxies has changed little from z ~ 1 to z ~ 0. This is in excellent agreement with current ΛCDM hierarchical model predictions.

  11. Massive accretion disks: ATCA's potential for deep impact

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Longmore, Steven; Walsh, Andrew; Fallscheer, Cassandra

    2008-04-01

    The understanding of accretion processes and in particular of massive accretion disks is one of the most important topics in high-mass star formation. Based on our successful ATCA disk-pilot study of IRAS18089-1732 (Beuther & Walsh, ApJL in press), we now propose to investigate a larger sample of eleven disk candidates at high angular resolution (<1'') in the highly excited NH3(4,4)/(5,5) lines. These lines trace the densest and warmest regions and are hence well suited to isolate the accretion disks from their envelopes. The observation will reveal the kinematics of the rotating structures and allow us to differentiate whether the expected disks are in Keplerian rotation like their low-mass counterparts or not. Furthermore, the chosen line pair is well suited to investigate the temperature structure of the regions. Combining the kinematic and temperature information, we will derive detailed physical models of the rotation structures in young massive star-forming regions. Investigating a larger sample is the only way to characterize massive disks in a general way important for a comprehensive understanding of massive star formation. The ATCA with its excellent spatial resolution and sensitivity has the potential to make considerable impact in this field.

  12. Classical and quantum cosmology of minimal massive bigravity

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Mousavi, M.

    2016-10-01

    In a Friedmann-Robertson-Walker (FRW) space-time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger-Wheeler-DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle-Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  13. A massively asynchronous, parallel brain.

    PubMed

    Zeki, Semir

    2015-05-19

    Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain. PMID:25823871

  14. Massively parallel femtosecond laser processing.

    PubMed

    Hasegawa, Satoshi; Ito, Haruyasu; Toyoda, Haruyoshi; Hayasaki, Yoshio

    2016-08-01

    Massively parallel femtosecond laser processing with more than 1000 beams was demonstrated. Parallel beams were generated by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The key to this technique is to optimize the CGH in the laser processing system using a scheme called in-system optimization. It was analytically demonstrated that the number of beams is determined by the horizontal number of pixels in the SLM NSLM that is imaged at the pupil plane of an objective lens and a distance parameter pd obtained by dividing the distance between adjacent beams by the diffraction-limited beam diameter. A performance limitation of parallel laser processing in our system was estimated at NSLM of 250 and pd of 7.0. Based on these parameters, the maximum number of beams in a hexagonal close-packed structure was calculated to be 1189 by using an analytical equation. PMID:27505815

  15. Massive pneumoperitoneum after scuba diving.

    PubMed

    Oh, Seung-Tak; Kim, Wook; Jeon, Hae-Myung; Kim, Jeong-Soo; Kim, Kee-Whan; Yoo, Seung-Jin; Kim, Eung-Kuk

    2003-04-01

    Pneumoperitoneum usually indicates rupture of a hollow viscus and considered a surgical emergency. But air may also enter the peritoneum from the lung or the genital organs in female without visceral perforation. While scuba diving, the rapid ascent is usually controlled by placing in a decompression chamber and the excess gas volume is exhaled. Failure to allow this excess gas to escape will result in overdistension of air passage, which may rupture resulting in pulmonary interstitial emphysema or, if air enters the circulation, air embolus can occur. Pneumo-peritoneum is a rare complication of diving accidents. While the majority of cases are not related to an intraabdominal catastrophy, more than 20% have been the result of gastric rupture. We report a 42-yr-old male patient with massive pneumoperitoneum after scuba diving, who presented himself with dyspnea and abdominal distension. Knowledge of this rare condition and its benign course may allow the emergency physician and surgeon to order appropriate studies to help avoid unnecessary surgical treatment. It is important to determine promptly whether the air emanated from a ruptured viscus or was introduced from an extraperitoneal source. Free air in the abdomen does not always indicate a ruptured intra-abdominal viscus.

  16. Massive Galaxies at z>4

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy G.; Mobasher, B.

    2008-03-01

    Combining observational data from optical to mid-infrared wavelengths, it has become possible to search for galaxies at look-back times of 12-13 Gyrs. The expectation is to find small and actively star forming systems. While these type of galaxies are indeed seen, a different type of galaxies are also found. These are characterized by having a stellar population which is old, relative to the age of the universe at that epoch, formation redshifts are in the range z=9-15, and to have a large stellar mass, in excess of (5-10) 10^10 Mo. In addition, these stellar systems are extra-odinarily compact, with half-ligth radii of just a few kpc. No counterpart to these objects can be identified in the local universe. In a recent study, we searched for such galaxies at redshifts zɱ in the GOODS South field, finding 11 candidates. Here we extend the search to include old and massive galaxies in the redshift range 4

  17. Mixing in massive stellar mergers

    NASA Astrophysics Data System (ADS)

    Gaburov, E.; Lombardi, J. C.; Portegies Zwart, S.

    2008-01-01

    The early evolution of dense star clusters is possibly dominated by close interactions between stars, and physical collisions between stars may occur quite frequently. Simulating a stellar collision event can be an intensive numerical task, as detailed calculations of this process require hydrodynamic simulations in three dimensions. We present a computationally inexpensive method in which we approximate the merger process, including shock heating, hydrodynamic mixing and mass loss, with a simple algorithm based on conservation laws and a basic qualitative understanding of the hydrodynamics of stellar mergers. The algorithm relies on Archimedes' principle to dictate the distribution of the fluid in the stable equilibrium situation. We calibrate and apply the method to mergers of massive stars, as these are expected to occur in young and dense star clusters. We find that without the effects of microscopic mixing, the temperature and chemical composition profiles in a collision product can become double-valued functions of enclosed mass. Such an unphysical situation is mended by simulating microscopic mixing as a post-collision effect. In this way we find that head-on collisions between stars of the same spectral type result in substantial mixing, while mergers between stars of different spectral type, such as type B and O stars (~10 and ~40Msolar respectively), are subject to relatively little hydrodynamic mixing. Our algorithm has been implemented in an easy-to-use software package, which we have made publicly available for download.1

  18. FAST TRACK COMMUNICATION The Bel-Robinson tensor for topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Deser, S.; Franklin, J.

    2011-02-01

    We construct, and establish the (covariant) conservation of, a 4-index 'super stress tensor' for topologically massive gravity. Separately, we discuss its invalidity in quadratic curvature models and suggest a generalization.

  19. THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS

    SciTech Connect

    Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil

    2015-01-20

    The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ∼10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ☉} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.

  20. Chemical Evolution of Collapsing Clouds in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Oman, Kris; Doty, S.; Krumholz, M.

    2011-01-01

    The process of massive star formation is not well understood. Recent work in large scale radiation hydrodynamical simulations have strongly suggested that radiation pressure can play an important role in opening cavities through which energy can be released, thus avoiding the problems of high radiation pressure supressing massive star formation. As a result, this pressure valve allows for the direct accretion of matter, and formation of massive stars. While these models include significant microphysics, it is important that predictions be made that allow the models to be compared with observations. Toward that end, we have undertaken a study of the chemistry in one of these collapsing cloud models. The chemical model involves the application of a large gas-phase and grain surface chemistry to the dynamical structure, including the effects of density, temperature, and radiation field. We present maps of H2, CO, and other molecular abundances as functions of space and time, as well as consider the resulting observational consequences of these results.

  1. Linear growth of structure in massive bigravity

    SciTech Connect

    Solomon, Adam R.; Akrami, Yashar; Koivisto, Tomi S. E-mail: yashar.akrami@astro.uio.no

    2014-10-01

    The ghost-free theory of massive gravity with two dynamical metrics has been shown to produce viable cosmological expansion, where the late-time acceleration of the Universe is due to the finite range of the gravitational interaction rather than a nonzero cosmological constant. Here the cosmological perturbations are studied in this theory. The full perturbation equations are presented in a general gauge and analyzed, focusing on subhorizon scales in the quasistatic limit during the matter-dominated era. An evolution equation for the matter inhomogeneities and the parameters quantifying the deviations from general relativistic structure formation are expressed in terms of five functions whose forms are determined directly by the coupling parameters in the theory. The evolution equation has a similar structure to Horndeski-type scalar-tensor theories, exhibiting a modified growth rate and scale-dependence at intermediate wavenumbers. Predictions of the theory are confronted with observational data on both background expansion and large-scale structure, although care must be taken to ensure a model is stable. It is found that while the stable models fit the data well, they feature deviations from the standard cosmology that could be detected or ruled out by near-future experiments.

  2. The dynamics of massive starless cores with ALMA

    SciTech Connect

    Tan, Jonathan C.; Kong, Shuo; Butler, Michael J.; Caselli, Paola; Fontani, Francesco

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  3. Microscopically constrained mean-field models from chiral nuclear thermodynamics

    NASA Astrophysics Data System (ADS)

    Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.

    2016-06-01

    We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.

  4. No hair theorem in quasi-dilaton massive gravity

    NASA Astrophysics Data System (ADS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-06-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  5. Morganella morganii sepsis with massive hemolysis.

    PubMed

    Kim, Jong Hoon; Cho, Chong Rae; Um, Tae Hyun; Rhu, Ji Yoon; Kim, Eu Suk; Jeong, Jae Won; Lee, Hye Ran

    2007-12-01

    Morganella morganii is a facultative gram-negative and anaerobic rod. It may be a cause of devastating infections in neonates and immunocompromised hosts. Some bacterial infections such as Clostridium and Vibrio are associated with hemolysis. However, massive hemolysis caused by M. morganii sepsis has not yet been reported. We observed a 59-yr-old man who had chemotherapy-induced neutropenia and was found to have massive hemolysis and metabolic acidosis due to sepsis. He died 6 hr after admission in spite of aggressive treatment. Two sets of blood cultures revealed the growth of M. morganii. We report here that M. morganii sepsis can cause fatal massive hemolysis leading to death.

  6. Topologically massive gravity with extended supersymmetry

    NASA Astrophysics Data System (ADS)

    Lauf, Frederik; Sachs, Ivo

    2016-09-01

    We describe the construction of 2 +1 -dimensional toplogically massive anti-de Sitter gravity with N -extended supersymmetry in superspace by means of introducing a compensating hypermultiplet for the super-Weyl invariance. For N ≥3 , the scalar multiplet must be on shell and the potential for the scalar compensator is completely determined by the geometry. As a consequence, the resulting massive theory has no free parameter for N ≥4 . For N =4 , we show that this leads to topologically massive gravity at the chiral point and construct the corresponding off-shell component action.

  7. Venus - Volcano With Massive Landslides

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Magellan full-resolution mosaic which covers an area 143 by 146 kilometers (89 by 91 miles) is centered at 55 degrees north latitude, 266 degrees east longitude. The bright feature, slightly south of center is interpreted to be a volcano, 15-20 kilometers (9.3 to 12.4 miles) in diameter with a large apron of blocky debris to its right and some smaller aprons to its left. A preferred explanation is that several massive catastrophic landslides dropped down steep slopes and were carried by their momentum out into the smooth, dark lava plains. At the base of the east-facing or largest scallop on the volcano is what appears to be a large block of coherent rock, 8 to 10 kilometers (5 to 6 miles) in length. The similar margin of both the scallop and block and the shape in general is typical of terrestrial slumped blocks (masses of rock which slide and rotate down a slope instead of breaking apart and tumbling). The bright lobe to the south of the volcano may either be a lava flow or finer debris from other landslides. This volcanic feature, characterized by its scalloped flanks is part of a class of volcanoes called scalloped or collapsed domes of which there are more than 80 on Venus. Based on the chute-like shapes of the scallops and the existence of a spectrum of intermediate to well defined examples, it is hypothesized that all of the scallops are remnants of landslides even though the landslide debris is often not visible. Possible explanations for the missing debris are that it may have been covered by lava flows, the debris may have weathered or that the radar may not be recognizing it because the individual blocks are too small

  8. Constraints on massive gravity theory from big bang nucleosynthesis

    SciTech Connect

    Lambiase, G.

    2012-10-01

    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.

  9. Massive-Star Magnetospheres: Now in 3-D!

    NASA Astrophysics Data System (ADS)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  10. Massive tongue necrosis secondary to temporal arteritis.

    PubMed

    Roseman, B B; Granite, E

    1984-10-01

    A case of unusually massive necrosis of the tongue secondary to temporal arteritis is presented. The clinician must include temporal arteritis in the differential diagnosis of patients presenting with signs and symptoms of tongue ischemia.

  11. Magnetic monopole solutions with a massive dilaton

    NASA Astrophysics Data System (ADS)

    Forgács, P.; Gyürüsi, J.

    1998-11-01

    Static, spherically symmetric monopole solutions of a spontaneously broken SU(2) gauge theory coupled to a massive dilaton field are studied in detail in function of the dilaton coupling strength and of the dilaton mass.

  12. Management of massive and nonmassive pulmonary embolism

    PubMed Central

    Sekhri, Vishal; Mehta, Nimeshkumar; Rawat, Naveen; Lehrman, Stuart G.

    2012-01-01

    Massive pulmonary embolism (PE) is characterized by systemic hypotension (defined as a systolic arterial pressure < 90 mm Hg or a drop in systolic arterial pressure of at least 40 mm Hg for at least 15 min which is not caused by new onset arrhythmias) or shock (manifested by evidence of tissue hypoperfusion and hypoxia, including an altered level of consciousness, oliguria, or cool, clammy extremities). Massive pulmonary embolism has a high mortality rate despite advances in diagnosis and therapy. A subgroup of patients with nonmassive PE who are hemodynamically stable but with right ventricular (RV) dysfunction or hypokinesis confirmed by echocardiography is classified as submassive PE. Their prognosis is different from that of others with non-massive PE and normal RV function. This article attempts to review the evidence-based risk stratification, diagnosis, initial stabilization, and management of massive and nonmassive pulmonary embolism. PMID:23319967

  13. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  14. Massive obstetric haemorrhage with disseminated intravascular coagulopathy.

    PubMed

    Su, Lin Lin; Chong, Yap Seng

    2012-02-01

    Massive obstetric haemorrhage is a major contributor towards maternal morbidity and mortality. The main causes are abruptio placentae, placenta praevia and postpartum haemorrhage. Clinicians managing pregnant women should be equipped with the knowledge and skills for managing massive obstetric haemorrhage to institute timely and appropriate life-saving treatment. Prompt resuscitation and reversal of coagulopathy are critical while definitive measures are carried out to arrest the bleeding. Massive antepartum haemorrhage necessitates deliveries whereas interventions for postpartum haemorrhage range from medical to surgical measures. Algorithms such as haemostasis are useful aids to the systematic and stepwise management of postpartum haemorrhage. Surgical measures used to avoid peripartum haemorrhage include uterine compression sutures, uterine balloon tamponade, uterine artery, and internal iliac artery ligation. Tranexamic acid and recombinant factor VII are more recent medical interventions in massive postpartum haemorrhage. Education, regular drills and adherence to guidelines and protocols are important to reduce haemorrhage-related maternal deaths. PMID:22101177

  15. Recovering General Relativity from Massive Gravity

    SciTech Connect

    Babichev, E.; Deffayet, C.; Ziour, R.

    2009-11-13

    We obtain static, spherically symmetric, and asymptotically flat numerical solutions of massive gravity with a source. Those solutions show, for the first time explicitly, a recovery of the Schwarzschild solution of general relativity via the so-called Vainshtein mechanism.

  16. Self-protection of massive cosmological gravitons

    SciTech Connect

    Berkhahn, Felix; Dietrich, Dennis D.; Hofmann, Stefan E-mail: dietrich@cp3.sdu.dk

    2010-11-01

    Relevant deformations of gravity present an exciting window of opportunity to probe the rigidity of gravity on cosmological scales. For a single-graviton theory, the leading relevant deformation constitutes a graviton mass term. In this paper, we investigate the classical and quantum stability of massive cosmological gravitons on generic Friedman backgrounds. For a Universe expanding towards a de Sitter epoch, we find that massive cosmological gravitons are self-protected against unitarity violations by a strong coupling phenomenon.

  17. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  18. Measuring Massive Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  19. MASSIVE HYBRID PARALLELISM FOR FULLY IMPLICIT MULTIPHYSICS

    SciTech Connect

    Cody J. Permann; David Andrs; John W. Peterson; Derek R. Gaston

    2013-05-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided.

  20. Progress in the Physics of Massive Neutrinos

    NASA Astrophysics Data System (ADS)

    BARGER, V.; MARFATIA, D.; WHISNANT, K.

    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of νμ→νe oscillations and the hierarchy of the neutrino mass spectrum; the detection of CP violation in the neutrino sector depends on these and on an unknown phase. The estimated neutrino parameter sensitivities at future facilities (reactors, superbeams, neutrino factories) are given. The overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.

  1. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    SciTech Connect

    Volonteri, Marta; Ciotti, Luca

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  2. Dark aspects of massive spinor electrodynamics

    NASA Astrophysics Data System (ADS)

    Kim, Edward J.; Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung

    2014-07-01

    We investigate the cosmology of massive spinor electrodynamics when torsion is non-vanishing. A non-minimal interaction is introduced between the torsion and the vector field and the coupling constant between them plays an important role in subsequential cosmology. It is shown that the mass of the vector field and torsion conspire to generate dark energy and pressureless dark matter, and for generic values of the coupling constant, the theory effectively provides an interacting model between them with an additional energy density of the form ~ 1/a6. The evolution equations mimic ΛCDM behavior up to 1/a3 term and the additional term represents a deviation from ΛCDM. We show that the deviation is compatible with the observational data, if it is very small. We find that the non-minimal interaction is responsible for generating an effective cosmological constant which is directly proportional to the mass squared of the vector field and the mass of the photon within its current observational limit could be the source of the dark energy.

  3. Massive hybrid parallelism for fully implicit multiphysics

    SciTech Connect

    Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W.

    2013-07-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)

  4. Dark aspects of massive spinor electrodynamics

    SciTech Connect

    Kim, Edward J.; Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung E-mail: seyen@ewha.ac.kr E-mail: parkc@jbnu.ac.kr

    2014-07-01

    We investigate the cosmology of massive spinor electrodynamics when torsion is non-vanishing. A non-minimal interaction is introduced between the torsion and the vector field and the coupling constant between them plays an important role in subsequential cosmology. It is shown that the mass of the vector field and torsion conspire to generate dark energy and pressureless dark matter, and for generic values of the coupling constant, the theory effectively provides an interacting model between them with an additional energy density of the form ∼ 1/a{sup 6}. The evolution equations mimic ΛCDM behavior up to 1/a{sup 3} term and the additional term represents a deviation from ΛCDM. We show that the deviation is compatible with the observational data, if it is very small. We find that the non-minimal interaction is responsible for generating an effective cosmological constant which is directly proportional to the mass squared of the vector field and the mass of the photon within its current observational limit could be the source of the dark energy.

  5. Massive spin-2 fields of geometric origin in curved spacetimes

    SciTech Connect

    Nair, V. P.; Randjbar-Daemi, S.; Rubakov, V.

    2009-11-15

    We study the consistency of a model which includes torsion as well as the metric as dynamical fields and has massive spin-2 particle in its spectrum. It is known that this model is tachyon free and ghost free in Minkowski background. We show that this property remains valid and no other pathologies emerge in de Sitter and anti-de Sitter backgrounds, with some of our results extending to arbitrary Einstein space backgrounds. This suggests that the model is consistent, at least at the classical level, unlike, e.g., the Fierz-Pauli theory.

  6. VizieR Online Data Catalog: Fermi sources with massive YSO associations (Munar-Adrover+, 2011)

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Romero, G. E.

    2011-09-01

    Massive protostars have associated bipolar outflows that can produce strong shocks when they interact with the surrounding medium. At these shocks, particles can be accelerated up to relativistic energies. Relativistic electrons and protons can then produce gamma-ray emission, as some theoretical models predict. To identify young galactic objects that may emit gamma rays, we crossed the Fermi First Year Catalog with some catalogs of known massive young stellar objects (MYSOs), early type stars, and OB associations, and we implemented Monte Carlo simulations to find the probability of chance coincidences. We obtained a list of massive MYSOs that are spatially coincident with Fermi sources. (4 data files).

  7. Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.

    NASA Astrophysics Data System (ADS)

    Namgung, Wuk

    Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton

  8. Apsidal motion in the massive binary HD 152218

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Rosu, S.; Noels, A.; Mahy, L.; Schmitt, J. H. M. M.; Godart, M.; Dupret, M.-A.; Gosset, E.

    2016-10-01

    Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a disentangling code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of (19.8 ± 1.5) and (15.0 ± 1.1) M⊙. Combining radial velocity measurements from over 60 yr, we show that the system displays apsidal motion at a rate of (2.04+ .23-.24)° yr-1. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting.

  9. Shifting from Stewardship to Analytics of Massive Science Data

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Doyle, R.; Law, E.; Hughes, S.; Huang, T.; Mahabal, A.

    2015-12-01

    Currently, the analysis of large data collections is executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Data collection, archiving and analysis from future remote sensing missions, be it from earth science satellites, planetary robotic missions, or massive radio observatories may not scale as more capable instruments stress existing architectural approaches and systems due to more continuous data streams, data from multiple observational platforms, and measurements and models from different agencies. A new paradigm is needed in order to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural choices, data processing, management, analysis, etc are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections. Future observational systems, including satellite and airborne experiments, and research in climate modeling will significantly increase the size of the data requiring new methodological approaches towards data analytics where users can more effectively interact with the data and apply automated mechanisms for data reduction, reduction and fusion across these massive data repositories. This presentation will discuss architecture, use cases, and approaches for developing a big data analytics strategy across multiple science disciplines.

  10. Cosmic Ray Generation by Massive Binary Black Hole in AGN

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav I.

    A model of nonstationary giant bow shocks produced by a supersonic orbital motion of a gravitationally bound massive binary black hole in the dense and highly inhomegeneous environment of the central Broad line Region (BLR) of AGN is proposed. The environment necessary for shocks generation is provided by numerous short-living clouds of dense plasma which are continuously reproduced by destructive collissions of fast moving stars in a very compact central stellar cluster of AGN. Some part of the gravitational energy of supersonically orbiting massive binary black hole transforms into the shock wave and then into the broad -range electromagnetic radiation up to the high -energy gamma radiation and the energetic cosmic ray particles. The orbit of a binary is evolutionary contracting due to a frictional drag in a dense plasma until the gravitational radiation becomes more influential. The model provide also the suitable conditions for the acceleration of cosmic ray protons up to the ultra-high energies under the realistic parameters of a massive binary black hole and the BLR in AGN.

  11. Cosmological perturbations in massive gravity and the Higuchi bound

    SciTech Connect

    Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu

    2012-11-01

    In de Sitter spacetime there exists an absolute minimum for the mass of a spin-2 field set by the Higuchi bound m{sup 2} ≥ 2H{sup 2}. We generalize this bound to arbitrary spatially flat FRW geometries in the context of the recently proposed ghost-free models of Massive Gravity with an FRW reference metric, by performing a Hamiltonian analysis for cosmological perturbations. We find that the bound generically indicates that spatially flat FRW solutions in FRW massive gravity, which exhibit a Vainshtein mechanism in the background as required by consistency with observations, imply that the helicity zero mode is a ghost. In contradistinction to previous works, the tension between the Higuchi bound and the Vainshtein mechanism is equally strong regardless of the equation of state for matter.

  12. The evolution of high-redshift massive black holes

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Habouzit, Melanie; Pacucci, Fabio; Tremmel, Michael

    Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their host galaxies point to a strong interplay between MBHs and galaxies. MBHs must form in the first galaxies and be fed by gas in these galaxies, with continuous or intermittent inflows that, at times, can be larger than the Eddington rate. Feedback from supernovae and from the MBHs themselves modulates the growth of the first MBHs. While current observational data only probe the most massive and luminous MBHs, the tip of the iceberg, we will soon be able to test theoretical models of MBH evolution on more ``normal'' MBHs: the MBHs that are indeed relevant in building the population that we observe in local galaxies, including our own Milky Way.

  13. UH cosmic rays: Possible origin in massive stars

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.

    1977-01-01

    The origin of the Z greater than 28, ultraheavy, cosmic rays in supernova explosions of massive stars is considered. For Z greater than 70, the UH data is dominated by an r-process source distribution, but for the elements just beyond iron, 29 or = Z less than 36, the data cannot be explained by any single process of nucleosynthesis. This problem is solved naturally in a massive star model by secondary neutron capture reactions occuring during core helium burning and during explosive carbon burning. Interstellar propagation calculations were performed with these episodes of synthesis as source distributions, and the results offer an explanation for the current UH cosmic-ray data. The heavy element synthesis during explosive carbon burning is reexamined using more realistic initial conditions given by the post-helium-burning configuration of the star. Effects of preferential acceleration are considered, and experimental tests are discussed.

  14. Massively Parallel Functional Analysis of BRCA1 RING Domain Variants

    PubMed Central

    Starita, Lea M.; Young, David L.; Islam, Muhtadi; Kitzman, Jacob O.; Gullingsrud, Justin; Hause, Ronald J.; Fowler, Douglas M.; Parvin, Jeffrey D.; Shendure, Jay; Fields, Stanley

    2015-01-01

    Interpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low throughput. Here we use massively parallel assays to measure the effects of nearly 2000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain. From the resulting scores, we generate a model to predict the capacities of full-length BRCA1 variants to support homology-directed DNA repair, the essential role of BRCA1 in tumor suppression, and show that it outperforms widely used biological-effect prediction algorithms. We envision that massively parallel functional assays may facilitate the prospective interpretation of variants observed in clinical sequencing. PMID:25823446

  15. Solving mazes with memristors: A massively parallel approach

    NASA Astrophysics Data System (ADS)

    Pershin, Yuriy V.; di Ventra, Massimiliano

    2011-10-01

    Solving mazes is not just a fun pastime: They are prototype models in several areas of science and technology. However, when maze complexity increases, their solution becomes cumbersome and very time consuming. Here, we show that a network of memristors—resistors with memory—can solve such a nontrivial problem quite easily. In particular, maze solving by the network of memristors occurs in a massively parallel fashion since all memristors in the network participate simultaneously in the calculation. The result of the calculation is then recorded into the memristors’ states and can be used and/or recovered at a later time. Furthermore, the network of memristors finds all possible solutions in multiple-solution mazes and sorts out the solution paths according to their length. Our results demonstrate not only the application of memristive networks to the field of massively parallel computing, but also an algorithm to solve mazes, which could find applications in different fields.

  16. Relativistic stars in de Rham-Gabadadze-Tolley massive gravity

    NASA Astrophysics Data System (ADS)

    Katsuragawa, Taishi; Nojiri, Shin'ichi; Odintsov, Sergei D.; Yamazaki, Masashi

    2016-06-01

    We study relativistic stars in the simplest model of the de Rham-Gabadadze-Tolley massive gravity which describes the massive graviton without a ghost propagating mode. We consider the hydrostatic equilibrium and obtain the modified Tolman-Oppenheimer-Volkoff equation and the constraint equation coming from the potential terms in the gravitational action. We give analytical and numerical results for quark and neutron stars and discuss the deviations compared with general relativity and F (R ) gravity. It is shown that the theory under investigation leads to a small deviation from general relativity in terms of density profiles and mass-radius relation. Nevertheless, such a deviation may be observable in future astrophysical probes.

  17. Circumstellar medium around rotating massive stars at solar metallicity

    NASA Astrophysics Data System (ADS)

    Georgy, Cyril; Walder, Rolf; Folini, Doris; Bykov, Andrei; Marcowith, Alexandre; Favre, Jean M.

    2013-11-01

    Aims: Observations show nebulae around some massive stars but not around others. If observed, their chemical composition is far from homogeneous. Our goal is to put these observational features into the context of the evolution of massive stars and their circumstellar medium (CSM) and, more generally, to quantify the role of massive stars for the chemical and dynamical evolution of the ISM. Methods: Using the A-MAZE code, we perform 2d-axisymmetric hydrodynamical simulations of the evolution of the CSM, shaped by stellar winds, for a whole grid of massive stellar models from 15 to 120 M⊙ and following the stellar evolution from the zero-age main-sequence to the time of supernova explosion. In addition to the usual quantities, we also follow five chemical species: H, He, C, N, and O. Results: We show how various quantities evolve as a function of time: size of the bubble, position of the wind termination shock, chemical composition of the bubble, etc. The chemical composition of the bubble changes considerably compared to the initial composition, particularly during the red-supergiant (RSG) and Wolf-Rayet (WR) phases. In some extreme cases, the inner region of the bubble can be completely depleted in hydrogen and nitrogen, and is mainly composed of carbon, helium, and oxygen. We argue why the bubble typically expands at a lower rate than predicted by self-similarity theory. In particular, the size of the bubble is very sensitive to the density of the ISM, decreasing by a factor of ~2.5 for each additional dex in ISM density. The bubble size also decreases with the metallicity of the central star, because low-metallicity stars have weaker winds. Our models qualitatively fit the observations of WR ejecta nebulae.

  18. The massive star population of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas J.; Drew, Janet E.; Mohr-Smith, Michael

    2015-05-01

    We have compiled a significantly updated and comprehensive census of massive stars in the nearby Cygnus OB2 association by gathering and homogenizing data from across the literature. The census contains 169 primary OB stars, including 52 O-type stars and 3 Wolf-Rayet stars. Spectral types and photometry are used to place the stars in a Hertzsprung-Russell diagram, which is compared to both non-rotating and rotating stellar evolution models, from which stellar masses and ages are calculated. The star formation history and mass function of the association are assessed, and both are found to be heavily influenced by the evolution of the most massive stars to their end states. We find that the mass function of the most massive stars is consistent with a `universal' power-law slope of Γ = 1.3. The age distribution inferred from stellar evolutionary models with rotation and the mass function suggest the majority of star formation occurred more or less continuously between 1 and 7 Myr ago, in agreement with studies of low- and intermediate-mass stars in the association. We identify a nearby young pulsar and runaway O-type star that may have originated in Cyg OB2 and suggest that the association has already seen its first supernova. Finally we use the census and mass function to calculate the total mass of the association of 16 500^{+3800}_{-2800} M⊙, at the low end, but consistent with, previous estimates of the total mass of Cyg OB2. Despite this Cyg OB2 is still one of the most massive groups of young stars known in our Galaxy making it a prime target for studies of star formation on the largest scales.

  19. Massive relic galaxies prefer dense environments

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc

    2016-09-01

    We study the preferred environments of z ˜ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ˜ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ˜ 2 is ˜0.04 per cent for the whole massive galaxy population with M⋆ > 1010 M⊙. This fraction rises to ˜0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  20. Heavy element abundances and massive star formation

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  1. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    SciTech Connect

    Hernaski, C. A.; Vargas-Paredes, A. A.; Helayeel-Neto, J. A.

    2009-12-15

    In this paper, we reassess a particular R{sup 2}-type gravity action in D dimensions, recently studied by Nakasone and Oda, now taking torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is nonpropagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions.

  2. Cosmic expansion histories in massive bigravity with symmetric matter coupling

    SciTech Connect

    Enander, Jonas; Mörtsell, Edvard; Solomon, Adam R.; Akrami, Yashar E-mail: a.r.solomon@damtp.cam.ac.uk E-mail: edvard@fysik.su.se

    2015-01-01

    We study the cosmic expansion history of massive bigravity with a viable matter coupling which treats both metrics on equal footing. We derive the Friedmann equation for the effective metric through which matter couples to the two metrics, and study its solutions. For certain parameter choices, the background cosmology is identical to that of ΛCDM. More general parameters yield dynamical dark energy, which can still be in agreement with observations of the expansion history. We study specific parameter choices of interest, including minimal models, maximally-symmetric models, and a candidate partially-massless theory.

  3. Massive main-sequence stars evolving at the Eddington limit

    NASA Astrophysics Data System (ADS)

    Sanyal, D.; Grassitelli, L.; Langer, N.; Bestenlehner, J. M.

    2015-08-01

    Context. Massive stars play a vital role in the Universe, however, their evolution even on the main-sequence is not yet well understood. Aims: Because of the steep mass-luminosity relation, massive main-sequence stars become extremely luminous. This brings their envelopes very close to the Eddington limit. We analyse stellar evolutionary models in which the Eddington limit is reached and exceeded, explore the rich diversity of physical phenomena that take place in their envelopes, and investigate their observational consequences. Methods: We use published grids of detailed stellar models, computed with a state-of-the-art, one-dimensional hydrodynamic stellar evolution code using LMC composition, to investigate the envelope properties of core hydrogen burning massive stars. Results: We find that the Eddington limit is almost never reached at the stellar surface, even for stars up to 500 M⊙. When we define an appropriate Eddington limit locally in the stellar envelope, we can show that most stars more massive than ~40 M⊙ actually exceed this limit, in particular, in the partial ionisation zones of iron, helium, or hydrogen. While most models adjust their structure such that the local Eddington limit is exceeded at most by a few per cent, our most extreme models do so by a factor of more than seven. We find that the local violation of the Eddington limit has severe consequences for the envelope structure, as it leads to envelope inflation, convection, density inversions, and, possibly to, pulsations. We find that all models with luminosities higher than 4 × 105L⊙, i.e. stars above ~40 M⊙ show inflation, with a radius increase of up to a factor of about 40. We find that the hot edge of the S Dor variability region coincides with a line beyond which our models are inflated by more than a factor of two, indicating a possible connection between S Dor variability and inflation. Furthermore, our coolest models show highly inflated envelopes with masses of up to

  4. Gravitational and higher-order form factors of the pion in chiral quark models

    SciTech Connect

    Broniowski, Wojciech; Arriola, Enrique Ruiz

    2008-11-01

    The gravitational form factor of the pion is evaluated in two chiral quark models and confronted with the recent full-QCD lattice data. We find good agreement for the case of the spectral quark model, which builds in the vector-meson dominance for the charge form factor. We derive a simple relation between the gravitational and electromagnetic form factors, holding in the considered quark models in the chiral limit. The relation implies that the gravitational mean squared radius is half the electromagnetic one. We also analyze higher-order quark generalized form factors of the pion, related to higher moments in the symmetric Bjorken X variable of the generalized parton distribution functions, and discuss their perturbative QCD evolution, which is needed to relate the quark-model predictions to the lattice data. The values of the higher-order quark form factors at t=0, computed on the lattice, also agree with our quark-model results within the statistical and method uncertainties.

  5. Analysis of multigrid methods on massively parallel computers: Architectural implications

    NASA Technical Reports Server (NTRS)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  6. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2003-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass loss; lowering the effective gravity; altering the evolutionary track on the Hertzsprung-Russel Diagram (HRD); extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the Small Magellanic Cloud (SMC), a low-metallicity galaxy (Z=0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE+STIS+optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C=0.085 solar C and N=0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe. This study was supported in part by grants from NASA's ADP, HST GO-7437, and FUSE B134.

  7. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2002-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass-loss; lowering the effective gravity; altering the evolutionary track on the HRD; extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the SMC, a low-metallicity galaxy (Z= 0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE + STIS + optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C = 0.085 solar C and N = 0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe.

  8. Gravitational Rocket from the Merging Massive Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Choi, Dale

    2006-01-01

    Coalescing massive black hole binaries are expected to be among the most fascinating gravitational wave sources, observable by the NASA/ESA LISA detector. Not only will the merger events reveal the rich phenomenology of extremely strong and dynamical gravity deep inside the potential wells at the centers of galaxies (thus providing an excellent testing ground for general relativity), it will also make important contributions to the astrophysics of massive black hole evolutions. Typical black hole mergers involve asymmetric radiation of gravitational waves and lose linear momentum as well as energy and angular momentum. As a result, the merger remnant receives a kick from the GW emission: a gravitational rocket effect. High kick velocities (higher than the escape velocities of the host structure) would have a strong impact on our understanding of how massive black holes have evolved over time and, in particular, on the estimates of the merger rate for LISA. The main difficulties in calculations of the kick velocities has been in the last moments of the merger where the full theory of general relativity must be employed to accurately model the black hole dynamics. I describe a recent calculation of the kick velocities from numerical relativity simulations of the merging black hole binaries.

  9. Dwarf Galaxies with Optical Signatures of Accreting Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy; Greene, J.; Geha, M.

    2014-07-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. Observations of high-redshift quasars demonstrate that supermassive BHs must start out with masses considerably in excess of normal stellar-mass BHs. However, we do not know how the initial ``seed'' BHs formed in the early Universe, how massive they were originally, or what types of galaxies they formed in. While direct observations of distant seed BHs and their hosts in the infant Universe are unobtainable with current capabilities, models of BH growth in a cosmological context indicate that present-day dwarf galaxies can place valuable constraints on seed masses and distinguish between various seed formation mechanisms at early times. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting AGN to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known. I will present results from this study and discuss our ongoing efforts to find additional examples of AGN in dwarfs and help constrain theories for the formation of the first seed BHs at high redshift.

  10. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  11. Gravitational Rocket from the Merging Massive Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Choi, D.

    2005-12-01

    Coalescing massive black hole binaries are expected to be among the most fascinating gravitational wave sources, observable by the NASA/ESA LISA detector. Not only will the merger events reveal the rich phenomenology of extremely strong and dynamical gravity deep inside the potential wells at the centers of galaxies (thus providing an excellent testing ground for general relativity), it will also make important contributions to the astrophysics of massive black hole evolutions. Typical black hole mergers involve asymmetric radiation of gravitational waves and lose linear momentum as well as energy and angular momentum. As a result, the merger remnant receives a kick from the GW emission: a gravitational rocket effect. High kick velocities (higher than the escape velocites of the host structure) would have a strong impact on our understanding of how massive black holes have evolved over time and, in particular, on the estimates of the merger rate for LISA. The main difficulties in calculations of the kick velocities has been in the last moments of the merger where the full theory of general relativity must be employed to accurately model the black hole dynamics. I describe a recent calculation of the kick velocities from numerical relativity simulations of the merging black hole binaries. Support from NASA ATP#02-0043-0056 is greatly appreciated.

  12. The evolutionary tracks of young massive star clusters

    SciTech Connect

    Pfalzner, S.; Steinhausen, M.; Vincke, K.; Menten, K.; Parmentier, G.

    2014-10-20

    Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

  13. Kinematics of a Massive Star Cluster in Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2014-10-01

    We propose to measure the proper motion stellar kinematics of a massive (~10^4Msun), forming proto-star-cluster to test basic theoretical models of formation. This will be the first time such a measurement has been performed. It requires HST-WFC3/IR and is beyond the practical capabilities of ground-based adaptive optics (AO) observations. In contrast to previously-studied massive, young (<10 Myr-old), already-formed clusters, such as NGC3603, Westerlund 1 or the Arches, our target protocluster, G286.21+0.17 (hereafter G286), is still gas-dominated and undergoing active star formation. It has been carefully selected from a complete survey of ~300 dense molecular gas clumps in a 120 sq. deg. region of the Galactic plane. The cluster is also relatively nearby (~2.5 kpc), but not too close that it would span a prohibitively large angular area or suffer from significant saturation problems. Such massive systems are rare and indeed we are unaware of any equivalent, early-stage (i.e., gas dominated) cluster that is closer. Given the depth of its gravitational potential based on its mass and size, the expected proper motions of many independent sub-clusters of stars are detectable at the ~5 sigma level over a 2-year baseline and global contraction of the cluster can be seen if it is happening even at just ~10% of the free-fall rate.

  14. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    SciTech Connect

    Bressert, E.; Longmore, S.; Testi, L.; Ginsburg, A.; Bally, J.; Battersby, C.

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that will allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.

  15. Primordial inhomogeneities from massive defects during inflation

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  16. Massive Particle Reflection from Moving Mirrors

    NASA Astrophysics Data System (ADS)

    Sfarti, Adrian

    2016-09-01

    We investigate the reflection of massive particles from moving mirrors. The adoption of the formalism based on the energy-momentum allowed us to derive the most general set of formulas, valid for massive and, in the limit, also for massless particles. We show that the momentum change of the reflecting particle always lies along the normal to the mirror, independent of the mirror speed. The subject is interesting not only to physicists designing concentrators for fascicles of massive particles and electron microscopes but also to computer scientists working in raytracing operating in the photon sector. The paper, far from being only theoretical, has profound and novel practical applications in both domains of engineering design and computer science.

  17. Eruptive outflow phases of massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2011-07-01

    I review recent progress on understanding eruptions of unstable massive stars, with particular attention to the diversity of observed behavior in extragalatic optical transient sources that are generally associated with giant eruptions of luminous blue variables (LBVs). These eruptions are thought to represent key mass loss episodes in the lives of massive stars. I discuss the possibility of dormant LBVs and implications for the duration of the greater LBV phase and its role in stellar evolution. These eruptive variables show a wide range of peak luminosity, decay time, expansion speeds, and progenitor luminosity, and in some cases they have been observed to suffer multiple eruptions. This broadens our view of massive star eruptions compared to prototypical sources like Eta Carinae, and provides important clues for the nature of the outbursts. I will also review and discuss some implications about the possible physical mechanisms involved, although the cause of the eruptions is not yet understood.

  18. Massive Ovarian Oedema- A Case Report.

    PubMed

    Harke, Arun B; Sigamani, Karthik; Thukkaram, Chitra; Ramamurthy, Madhumittha; Sekar, Manjani

    2016-08-01

    Massive ovarian oedema is defined by WHO as formation of tumour like enlargement of one or both ovaries by oedema fluid. We report a case of a 18-year-old unmarried girl who presented with three months amenorrhoea and left sided lower abdominal pain with clinical and radiological diagnosis of cystic ovarian neoplasm. Patient underwent lapratomy with left salpingo-oophorectomy. A definitive diagnosis of Massive Ovarian Oedema (MOE) was offered on histopathological examination. The MOE should be differentiated from ovarian fibromatosis, ovarian fibroma, sclerosing stromal tumour and ovarian myxoma. The usual management of massive oedema of ovary is unilateral salpingo-oophorectomy, as the lesion is mistaken for primary ovarian neoplasm at laparotomy. Recognition of MOE is of great importance to prevent unnecessary oophorectomy in young patients and can be managed conservatively. We report this case of MOE for its rarity. PMID:27656451

  19. The holographic fermions dual to massive gravity

    NASA Astrophysics Data System (ADS)

    Fang, Li-Qing; Kuang, Xiao-Mei; Wu, Jian-Pin

    2016-10-01

    We investigate the properties of the spectral function of the fermionic operator in the field theory which is dual to a 4-dimensional massive gravity. We first study the Fermi surface and the dispersion relation in the dual boundary theory. We find that as the massive parameters is decreased, the Fermi momentum becomes lower and the low energy excitation near Fermi surface behaves more like non-Fermi liquid. Then, we introduce a dipole coupling in the bulk theory and explore the emergence of a gap in the fermionic spectral function. It is found that larger critical dipole coupling is needed to open the gap than that in Einstein gravity. Accordingly, in the field theory dual to massive gravity, it requires stronger negative dipole coupling to generate the marginal Fermi liquid.

  20. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  1. Primordial Li abundance and massive particles

    SciTech Connect

    Latin-Capital-Letter-Eth apo, H.

    2012-10-20

    The problem of the observed lithium abundance coming from the Big Bang Nucleosynthesis is as of yet unsolved. One of the proposed solutions is including relic massive particles into the Big Bang Nucleosynthesis. We investigated the effects of such particles on {sup 4}HeX{sup -}+{sup 2}H{yields}{sup 6}Li+X{sup -}, where the X{sup -} is the negatively charged massive particle. We demonstrate the dominance of long-range part of the potential on the cross-section.

  2. Discovering Event Evidence Amid Massive, Dynamic Datasets

    SciTech Connect

    Patton, Robert M; Potok, Thomas E

    2007-01-01

    Automated event extraction remains a very difficult challenge requiring information analysts to manually identify key events of interest within massive, dynamic data. Many techniques for extracting events rely on domain specific natural language processing or information retrieval techniques. As an alternative, this work focuses on detecting events based on identifying event characteristics of interest to an analyst. An evolutionary algorithm is developed as a proof of concept to demonstrate this approach. Initial results indicate that this approach represents a feasible approach to identifying critical event information in a massive data set with no apriori knowledgeof the data set.

  3. Physics of Mass Loss in Massive Stars

    NASA Astrophysics Data System (ADS)

    Puls, Joachim; Sundqvist, Jon O.; Markova, Nevena

    2015-01-01

    We review potential mass-loss mechanisms in the various evolutionary stages of massive stars, from the well-known line-driven winds of O-stars and BA-supergiants to the less-understood winds of Red Supergiants. We discuss optically thick winds from Wolf-Rayet stars and Very Massive Stars, and the hypothesis of porosity-moderated, continuum-driven mass loss from stars formally exceeding the Eddington limit, which might explain the giant outbursts from Luminous Blue Variables. We finish this review with a glance on the impact of rapid rotation, magnetic fields and small-scale inhomogeneities in line-driven winds.

  4. Olivier Chesneau's Work on Massive Stars

    NASA Astrophysics Data System (ADS)

    Millour, F.

    2015-12-01

    Olivier Chesneau challenged several fields of observational stellar astrophysics with bright ideas and an impressive amount of work to make them real in the span of his career, from his first paper on P Cygni in 2000, up to his last one on V838 Mon in 2014. He was using all the so-called high-angular resolution techniques since it helped his science to be made, namely study in details the inner structure of the environments around stars, be it small mass (AGBs), more massive (supergiant stars), or explosives (Novae). I will focus here on his work on massive stars.

  5. Influence of binary fraction on the fragmentation of young massive clusters—a Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanuka; Sinha, Abisa; Chattopadhyay, Asis Kumar

    2016-04-01

    A stochastic model has been developed to study the hierarchical fragmentation process of young massive clusters in external galaxies considering close binary components along with individual ones. Stellar masses for individual ones have been generated from truncated Pareto distribution and stellar masses for close binary components have been generated from a truncated Bi-variate Gumbel Exponential distribution. The above distribution is identified by fitting the observed bi-variate distribution of masses of eclipsing binary stars computed from the light curves catalogued in the package Binary Maker 3.0. The resulting mass spectra computed at different projected distances, show signature of mass segregation. Degree of mass segregation becomes reduced due to the inclusion of binary fraction. This might be due to the reduction of massive stars and inclusion of less massive stars rather than inclusion of single massive stars and the effect of line of sight length projected to an observer.

  6. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  7. Empirical measurements of massive galaxy and active galaxy evolution

    NASA Astrophysics Data System (ADS)

    Cool, Richard Jacob

    Using new wide-area galaxy redshift surveys, we explore the evolution of the most massive galaxies and the most luminous quasars in the universe over much of cosmic history. Quasars and massive red galaxies both are extremes; the most luminous high redshift quasars likely play a key role in shaping their nearby environment and the universe as a whole. The most massive galaxies represent the end points of galaxy evolution and contain a fossil record of the galaxy evolution process. Using the AGES redshift survey completed with the MMT and the Hectospec multi- object spectrograph as well as new z -band observations of the NOAO Deep Wide- Field Survey Bootes field, we report the discovery of three new quasars at z > 5. We explore new mid-infrared selection in light of these three new quasars and place constraints on the slope of the high-redshift quasar luminosity function. At lower redshift (0.1< z <0.4) we measure the scatter in red galaxy colors around the optical red-sequence using imaging and spectroscopy from the Sloan Digital Sky Survey. With our sample of nearly 20,000 massive early-type galaxies ( L [Special characters omitted.] 2.2 L *), we find that the scatter around the color-magnitude relation is quite small in colors studied. Each of three model star formation histories can reproduce the scatter we measure, none of the models produce color distributions matching those observed. We measure the evolution of the LRG luminosity function in the redshift range 0.1< z <0.9. We find that the LRG population has evolved little beyond the passive fading of its stellar populations since z ~ 0.9. The most massive (L > 3 L *) red galaxies have grown by less than 50% (at 99% confidence) since z = 0.9 in stark contrast to the factor of 2 to 4 growth observed in the L * red galaxy population over the same epoch. Finally, we introduce the PRIsm MUlti-object Survey (PRIMUS), a new redshift survey aimed at collecting ~300,000 galaxy spectra over 10 deg 2 to z ~ 1. We

  8. The massive stellar population of W49: A spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea

    2016-05-01

    Context. Massive stars form on different scales that range from large, dispersed OB associations to compact, dense starburst clusters. The complex structure of regions of massive star formation and the involved short timescales provide a challenge for our understanding of their birth and early evolution. As one of the most massive and luminous star-forming region in our Galaxy, W49 is the ideal place to study the formation of the most massive stars. Aims: By classifying the massive young stars that are deeply embedded in the molecular cloud of W49, we aim to investigate and trace the star formation history of this region. Methods: We analyse near-infrared K-band spectroscopic observations of W49 from LBT/LUCI combined with JHK images obtained with NTT/SOFI and LBT/LUCI. Based on JHK-band photometry and K-band spectroscopy, the massive stars are placed in a Hertzsprung Russell diagram. By comparison with evolutionary models, their age and hence the star formation history of W49 can be investigated. Results: Fourteen O-type stars, as well as two young stellar objects (YSOs), are identified by our spectroscopic survey. Eleven O stars are main sequence stars with subtypes ranging from O3 to O9.5 and masses ranging from ~20 M⊙ to ~120 M⊙. Three of the O stars show strong wind features and are considered to be Of-type supergiants with masses beyond 100 M⊙. The two YSOs show CO emission, which is indicative of the presence of circumstellar disks in the central region of the massive cluster. The age of the cluster is estimated as ~1.5 Myr, with star formation continuing in different parts of the region. The ionising photons from the central massive stars have not yet cleared the molecular cocoon surrounding the cluster. W49 is comparable to extragalactic star-forming regions, and it provides us with a unique chance to study a starburst in detail. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among

  9. Tracing the Formation and Evolution of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh

    Massive galaxies at higher redshift, z > 2, show different characteristics than their local counterparts. They are compact and most likely have a disk. Understanding the evolutionary path of these massive galaxies can give us some clues on how the universe has been behaving in the last 10 billion years. How well can we measure the bulge and disk properties of these systems? We perform two sets of comprehensive simulations in order to systematically quantify the effects of non-homology in structures and the methods employed. For the first set of simulations, by accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. For the second set of simulations, we employ empirical scaling relations to produce realistic-looking two-component local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the first set of simulations for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T . We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≥ 0.2. The disk component, by contrast, can be measured with little difficulty. Next, we trace back the evolution of local massive galaxies but performing detailed morphological analysis: namely, single Swrsic fitting and bulge+disk decomposition. CANDELS images and catalogues offer an ideal dataset for this study. We

  10. A high abundance of massive galaxies 3-6 billion years after the Big Bang.

    PubMed

    Glazebrook, Karl; Abraham, Roberto G; McCarthy, Patrick J; Savaglio, Sandra; Chen, Hsiao-Wen; Crampton, David; Murowinski, Rick; Jørgensen, Inger; Roth, Kathy; Hook, Isobel; Marzke, Ronald O; Carlberg, R G

    2004-07-01

    Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

  11. Molecular Line Emission from Massive Protostellar Disks: Predictions for ALMA and the EVLA

    SciTech Connect

    Krumholz, M R; Klein, R I; McKee, C F

    2007-05-07

    We compute the molecular line emission of massive protostellar disks by solving the equation of radiative transfer through the cores and disks produced by the recent radiation-hydrodynamic simulations of Krumholz, Klein, & McKee. We find that in several representative lines the disks show brightness temperatures of hundreds of Kelvin over velocity channels {approx} 10 km s{sup -1} wide, extending over regions hundreds of AU in size. We process the computed intensities to model the performance of next-generation radio and submillimeter telescopes. Our calculations show that observations using facilities such as the EVLA and ALMA should be able to detect massive protostellar disks and measure their rotation curves, at least in the nearest massive star-forming regions. They should also detect significant sub-structure and non-axisymmetry in the disks, and in some cases may be able to detect star-disk velocity offsets of a few km s{sup -1}, both of which are the result of strong gravitational instability in massive disks. We use our simulations to explore the strengths and weaknesses of different observational techniques, and we also discuss how observations of massive protostellar disks may be used to distinguish between alternative models of massive star formation.

  12. The Physics and Chemistry of Massive Starless Cores

    NASA Astrophysics Data System (ADS)

    Kong, Shuo; Tan, Jonathan C.; Caselli, Paola; Fontani, Francesco; Goodson, Matthew D.

    2016-01-01

    Better characterization of the initial conditions is crucial to understanding massive star formation. Whether or not high-mass stars form in a similar way as low-mass stars can be tested by massive starless cores (MSCs), which are invoked as the initial condition in the Core Accretion model, but not in the Competitive Accretion model. We first searched for MSC candidates in the densest regions of Infrared Dark Clouds with the deuterated species N2D+, which has been found to be one of the best tracers of the cold, dense conditions of low-mass pre-stellar cores. Two candidates (C1-N & S) were revealed by our ALMA Cycle 0 observation. In particular, C1-S has ~ 60 M⊙. Our dynamical study found that ~mG magnetic fields need to be present if the cores are virialized. Next we developed astrochemical modeling to understand how high levels of deuteration arise in these cores, especially tracking the deuteration fraction DfracN2H+(≡ [N2D+]/[N2H+]), which can rise by several orders of magnitude above the cosmic [D]/[H] ratio. Our models show that high levels of DfracN2H+ ≥ 0.1 generally require at least several local free-fall times to be established under typical core conditions and this is the basis of a "deuteration clock" that can measure the chemical age and thus collapse rates of MSCs. We have begun work to implement the astrochemical network into full (M)HD simulations of these structures. A detailed observational study to measure [N2D+], [N2H+] and thus DfracN2H+ in the C1-N and C1-S cores have been carried out, utilizing multi-transition data observed with ALMA, CARMA, SMA, JCMT, IRAM 30m and NRO 45m telescopes. We find high levels of DfracN2H+ ≈ 0.2 - 0.7. Comparing with the theoretical chemodynamical models indicates that C1-N and C1-S have been contracting at rates ~10 times slower than free-fall, which may be consistent with the presence of strong magnetic fields in the cores. Using ALMA, we have also extended our search for more MSCs, using N2D+(3

  13. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel

    2016-05-01

    We study the effects that initial conditions of star clusters and their massive star population have on dynamical ejections of massive stars from star clusters up to an age of 3 Myr. We use a large set of direct N-body calculations for moderately massive star clusters (Mecl ≈ 103.5 M⊙). We vary the initial conditions of the calculations, such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius rh(0) of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average, while initially larger (rh(0) = 0.8 pc) clusters, that is, lower density clusters, eject hardly any OB stars (at most ≈ 4.5%). When the binaries are composed of two stars of similar mass, the ejections are most effective. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters that are efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars that remain in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models agree well with the mean mass function of young intermediate-mass clusters in M 31, as reported previously. This implies that the IMF of the observed young clusters is the canonical IMF. We show that the multiplicity fraction of the ejected massive stars can be as high as ≈ 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. We also discuss binary populations of the ejected massive systems. Clusters that are initially not mass-segregated begin ejecting massive stars after a time delay that is caused by mass

  14. Complete recovery after massive ethylene glycol ingestion.

    PubMed

    Curtin, L; Kraner, J; Wine, H; Savitt, D; Abuelo, J G

    1992-06-01

    We treated a 64-year-old man who recovered completely from a massive antifreeze ingestion with ethylene glycol levels well above those of previously described survivors. Rapid and aggressive treatment of the patient with recognized methods, including hemodialysis, resulted in the favorable outcome.

  15. A Taxonomy of Massive Open Online Courses

    ERIC Educational Resources Information Center

    Pilli, Olga; Admiraal, Wilfried

    2016-01-01

    Massive Open Online Courses (MOOCs) as a new approach to distance education, which originated from the open education resources (OER) movement, are becoming widespread throughout the world. Over time, early versions of cMOOCs have undergone changes in terms of use, name and structure. In their short life, MOOCs have been categorized into different…

  16. Massive Open Online Courses and Economic Sustainability

    ERIC Educational Resources Information Center

    Liyanagunawardena, Tharindu R.; Lundqvist, Karsten O.; Williams, Shirley A.

    2015-01-01

    Millions of users around the world have registered on Massive Open Online Courses (MOOCs) offered by hundreds of universities (and other organizations) worldwide. Creating and offering these courses costs thousands of pounds. However, at present, revenue generated by MOOCs is not sufficient to offset these costs. The sustainability of MOOCs is a…

  17. Assessment in Massive Open Online Courses

    ERIC Educational Resources Information Center

    Admiraal, Wilfried; Huisman, Bart; Pilli, Olga

    2015-01-01

    Open online distance learning in higher education has quickly gained popularity, expanded, and evolved, with Massive Open Online Courses (MOOCs) as the most recent development. New web technologies allow for scalable ways to deliver video lecture content, implement social forums and track student progress in MOOCs. However, we remain limited in…

  18. Some correlations for massive MS stars.

    NASA Astrophysics Data System (ADS)

    Angelov, T.

    1994-11-01

    Criteria are derived for estimating the values of photospheric density, of the core mass and of the energy-generation rate for massive main-sequence stars. Based on the observational material concerning M, L and Te the demarcation lines are determined for the domain of values expected for these quantities in cor relation with measured Mb.

  19. Young Massive Clusters in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Figer, D. F.

    2004-12-01

    The three young clusters in the Galactic Center represent the closest examples of massive starbursts and they define the upper mass limit of the Galactic cluster mass functions. In this review, I describe the characteristics and content of the Arches, Quintuplet, and Central clusters. They each are more massive than any other cluster in the Galaxy, and the Arches cluster, in particular, has a mass and age that make it ideal for studies of massive stellar evolution and dense stellar systems. A preliminary measurement indicates that the initial mass function in the Galactic center is top-heavy, suggesting an environmental effect that has otherwise been absent in similar observations for Galactic clusters. Given the relatively more evolved nature of the Quintuplet and Central clusters, these clusters contain stars in a wide range of evolutionary states, including Luminous Blue Variables and Wolf-Rayet stars. The Quintuplet cluster provides a particularly interesting view of the most massive stars that are known, the Pistol Star and FMM362. An analysis of the mass spectrum in the Arches cluster suggests an upper mass cutoff of ˜150-200 M⊙.

  20. State of the art: massive transfusion.

    PubMed

    McDaniel, L M; Etchill, E W; Raval, J S; Neal, M D

    2014-06-01

    The aim of this article was to review recent developments in the resuscitation of both trauma and non-trauma patients in haemorrhagic shock. Strategies for the resuscitation of massively haemorrhaging patients and the use of massive transfusion protocols (MTPs) have been a major focus of the trauma literature over the past several years. The application of haemostatic resuscitation practices and MTPs to non-trauma populations has long been in practice, but has only recently been the subject of active research. Medline and PubMed were reviewed for 'massive transfusion' (MT) from 2012 to present. Non-English and paediatric articles were excluded. Articles were systematically reviewed for their relevance to MT. There were eight major areas of development identified. In recent MT literature, there was an increased focus on massively haemorrhaging non-trauma patients, the role of acute traumatic coagulopathy, the use of thromboelastography (TEG), and the impact of MTPs on blood product waste and efficiency of product delivery. Other developments included additional MT prediction tools and The PRospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study. There was also interest in re-evaluating the clinical relevance of the current MT definition and identifying new foci for MT. These recent developments reflect efforts to better understand and manage non-traumatic haemorrhage and to address prior limitations in the trauma literature. Inevitably, new questions have been raised, which will likely direct ongoing and future research in MT.

  1. Distant Massive Clusters and Cosmology

    NASA Technical Reports Server (NTRS)

    Donahue, Megan

    1999-01-01

    We present a status report of our X-ray study and analysis of a complete sample of distant (z=0.5-0.8), X-ray luminous clusters of galaxies. We have obtained ASCA and ROSAT observations of the five brightest Extended Medium Sensitivity (EMSS) clusters with z > 0.5. We have constructed an observed temperature function for these clusters, and measured iron abundances for all of these clusters. We have developed an analytic expression for the behavior of the mass-temperature relation in a low-density universe. We use this mass-temperature relation together with a Press-Schechter-based model to derive the expected temperature function for different values of Omega-M. We combine this analysis with the observed temperature functions at redshifts from 0 - 0.8 to derive maximum likelihood estimates for the value of Omega-M. We report preliminary results of this analysis.

  2. Effects of Ionization Feedback in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Peters, Thomas; Banerjee, R.; Klessen, R. S.; Mac Low, M.

    2009-01-01

    We present 3D high-resolution radiation-hydrodynamical simulations of massive star formation. We model the collapse of a massive molecular cloud core forming a high-mass star in its center. We use a version of the FLASH code that has been extended by including sink particles which are a source of both ionizing and non-ionizing radiation. The sink particles evolve according to a prestellar model which determines the stellar and accretion luminosities. Radiation transfer is done using the hybrid characteristics raytracing approach on the adaptive mesh developed by Rijkhorst et al. (2006). The radiative transfer module has been augmented to allow simulations with arbitrarily high resolution. Our highest resolution models resolve the disk scale height by at least 16 zones. Opacities for non-ionizing radiation have been added to account for the accretion heating, which is expected to be strong at the initial stage of star formation and believed to prevent fragmentation. Studies of collapsing massive cores show the formation of a gravitationally highly unstable disk. The accretion heating is not strong enough to suppress this instability. The ionizing radiation builds up an H II region around the protostar, which destroys the accretion disk close to it. We describe preliminary results, with a focus on how long the H II region remains confined by the accretion flow, and whether it can ever cut off accretion entirely. Thomas Peters acknowledges support from a Kade Fellowship for his visit to the American Museum of Natural History. He is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg and the Heidelberg Graduate School of Fundamental Physics. We also thank the DFG for support via the Emmy Noether Grant BA 3607/1 and the individual grant KL1358/5.

  3. Topical perspective on massive threading and parallelism.

    PubMed

    Farber, Robert M

    2011-09-01

    Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. PMID:21764615

  4. Interaction of massive stars with the interstellar medium

    NASA Astrophysics Data System (ADS)

    de Geus, E. J.

    This paper reviews observations and theory regarding the interaction between massive stars in open clusters and OB associations and the interstellar medium. The results of a systematic study of the gas and dust surrounding a large sample of open clusters are described. Different models for the bubbles blown by stellar winds of O-type stars are discussed, and the effects of subsequent supernova are investigated. The effects of correlated supernovae on the morphology of the interstellar gas and on the communication of the disk with the halo of a galaxy are presented.

  5. Supersymmetric solutions of N = (2, 0) topologically massive supergravity

    NASA Astrophysics Data System (ADS)

    Sadik Deger, Nihat; Moutsopoulos, George

    2016-08-01

    We first make a Killing spinor analysis for a general three-dimensional off-shell N=(2,0) supergravity and find conditions for a bosonic background to preserve at least one real supercharge. We then consider a particular model, namely N=(2,0) topologically massive supergravity and impose its field equations. By making a suitable ansatz on metric functions we find a large class of solutions that include spacelike, timelike and null warped AdS 3 among others. Isometric quotients of spacelike and timelike squashed AdS 3 solutions yield extremal black holes without closed causal curves.

  6. The formation and gravitational-wave detection of massive stellar black hole binaries

    SciTech Connect

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  7. Ultraminimal technicolor and its dark matter technicolor interacting massive particles

    SciTech Connect

    Ryttov, Thomas A.; Sannino, Francesco

    2008-12-01

    We introduce an explicit model with technifermion matter transforming according to multiple representations of the underlying technicolor gauge group. The model features simultaneously the smallest possible value of the naive S parameter and the smallest possible number of technifermions. The chiral dynamics is extremely rich. We construct the low-energy effective Lagrangian. We provide both the linearly and nonlinearly realized ones. We then embed, in a natural way, the standard model (SM) interactions within the global symmetries of the underlying gauge theory. Several low-energy composite particles are SM singlets. One of these technicolor interacting massive particles (TIMP)s is a natural cold dark matter (DM) candidate. We estimate the fraction of the mass in the universe constituted by our DM candidate over the baryon one. We show that the new TIMP, differently from earlier models, can be sufficiently light to be directly produced and studied at the Large Hadron Collider (LHC)

  8. Nucleosynthesis of Short-lived Radioactivities in Massive Stars

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.

    2004-01-01

    A leading model for the source of many of the short-lived radioactivities in the early solar nebula is direct incorporation from a massive star [1]. A recent and promising incarnation of this model includes an injection mass cut, which is a boundary between the stellar ejecta that become incorporated into the solar cloud and those ejecta that do not [2-4]. This model also includes a delay time between ejection from the star and incorporation into early solar system solid bodies. While largely successful, this model requires further validation and comparison against data. Such evaluation becomes easier if we have a better sense of the nature of the synthesis of the various radioactivities in the star. That is the goal of this brief abstract.

  9. The role of massive stars in young starburst galaxies

    NASA Astrophysics Data System (ADS)

    Norris, Richard Paul Furber

    Starburst galaxies are defined as those galaxies undergoing violent star formation over relatively short periods of time (10 to 100 Myr). These objects may form stellar populations of > 106 Msun, containing massive stars with masses > 100 Msun. Although most starburst galaxies are observed at relatively low redshift, recent evidence suggests that these types of galaxies were far more important in the high redshift past. It is believed that the chemical evolution of the Universe has been strongly influenced by this mode of star formation through the dense winds from massive stars and supernovae ejecta. Our understanding of starbursts is still relatively poor, since most are too distant to be resolved. We can gain some understanding of starbursts indirectly through the modelling of associated nebulae via the calculation of theoretical spectral energy distributions (SEDs) and photoionization modelling. This technique heavily relies upon the accuracy of the predicted far UV continuum of the massive star population. This thesis presents a new grid of SEDs for O stars, early B supergiants and Wolf-Rayet stars which have been incorporated into the evolutionary synthesis code Starburst99 (Leitherer et al. 1999). A total of 285 expanding, non-LTE, line-blanketed model atmospheres have been calculated to replace old, inaccurate LTE models for O stars, and pure helium, unblanketed models for W-R stars. These new grids cover five metallicities and the wind parameters are scaled with metallicity. We find that the new models yield significantly less ionizing flux below the He 0 ionizing edge at early phases and as a consequence, nebular He II lambda4686 will not be observable in young starbursts. We use the photoionization code CLOUDY to test the accuracy of the predicted ionizing fluxes from our new models. We find that they are in much better agreement with observed optical and IR nebular line diagnostics than any previous models. The new W-R atmospheres are used in

  10. The performance realities of massively parallel processors: A case study

    SciTech Connect

    Lubeck, O.M.; Simmons, M.L.; Wasserman, H.J.

    1992-07-01

    This paper presents the results of an architectural comparison of SIMD massive parallelism, as implemented in the Thinking Machines Corp. CM-2 computer, and vector or concurrent-vector processing, as implemented in the Cray Research Inc. Y-MP/8. The comparison is based primarily upon three application codes that represent Los Alamos production computing. Tests were run by porting optimized CM Fortran codes to the Y-MP, so that the same level of optimization was obtained on both machines. The results for fully-configured systems, using measured data rather than scaled data from smaller configurations, show that the Y-MP/8 is faster than the 64k CM-2 for all three codes. A simple model that accounts for the relative characteristic computational speeds of the two machines, and reduction in overall CM-2 performance due to communication or SIMD conditional execution, is included. The model predicts the performance of two codes well, but fails for the third code, because the proportion of communications in this code is very high. Other factors, such as memory bandwidth and compiler effects, are also discussed. Finally, the paper attempts to show the equivalence of the CM-2 and Y-MP programming models, and also comments on selected future massively parallel processor designs.

  11. A distance-limited sample of massive molecular outflows

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.

    2015-10-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

  12. Massive stars and expanding shells within the violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Thilker, David Allan

    Massive stars have a tremendous impact on their surroundings, largely due to a prodigious production rate of Lyman continuum photons and their inevitable termination in a supernova explosion. A single OB star may ionize a sufficiently luminous HII region to remain detectable out to distances of many Mpc. By concentrating the mechanical power of many high mass stars in a limited volume over a short time period, OB associations are known to produce large expanding bubbles in the interstellar medium (ISM). Aperture synthesis observations of HI in nearby galaxies clearly reveal the bubbly character of the diffuse ISM and highlight the connection with massive stars. In this dissertation I close the loop between theory and observations regarding massive stars, their incipient HII regions, and related expanding shells, all in the hope of learning more about the diffuse ISM. The research described herein has three main components: (1)object recognition in the context of HI datacubes and hydrodynamic shell models, (2)automated photometry of HII regions in crowded narrowband images, and (3)population synthesis modeling of stellar clusters and expanding shells in disk galaxies. I have created efficient procedures for conducting a census of HI superbubbles and young massive star clusters in nearby galaxies, plus a modeling framework allowing one to check these databases for relative agreement. My population synthesis algorithm predicts ensemble characteristics: of a disk-galaxy shell population, given details of the stellar cluster formation process and global properties of the galaxy in question. My automated HI object recognition method has made possible the Las Cruces/Dwingeloo Supershell Survey (LCDSS) of 21 nearby disk galaxies. In this dissertation I present early LCDSS results for NGC 300, NGC 2403, M81, and M101. Furthermore, I demonstrate the technique for photometry of HII regions by analyzing a small sample of 11 prominent spirals. The photometric measurements are

  13. Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds

    NASA Astrophysics Data System (ADS)

    Dale, J. E.; Ercolano, B.; Bonnell, I. A.

    2013-03-01

    We extend our previous smoothed particle hydrodynamics parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range 104-106 M⊙ with initial virial ratios Ekin/Epot = 2.3, allow them to form stars and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3 Myr time-scale before supernovae are expected to begin detonating, the fraction of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while low-mass clouds have large fractions of their gas reserves expelled on this time-scale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.

  14. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  15. Astronomers Gain Important Insight on How Massive Stars Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form. Young Star Graphic Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for larger graphic file (JPEG, 129K) "We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain. Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature. Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars. "When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?" One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows. "If this model is correct, there should be material falling inward, rushing outward and rotating

  16. [Implementation of a massive transfusion protocol in an emergency department].

    PubMed

    Tonglet, M; Minon, J M; Damas, F; Clanet, M; Vergnion, M

    2014-02-01

    We present here the massive transfusion protocol implemented in our institution in 2013. It will improve our management of critical massive bleeding, a situation which is rare in in our hospital, but carries a high mortality risk.

  17. Reproducing the assembly of massive galaxies within the hierarchical cosmogony

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Monaco, Pierluigi; Silva, Laura; Grazian, Andrea

    2007-12-01

    In order to gain insight into the physical mechanisms leading to the formation of stars and their assembly in galaxies, we compare the predictions of the MOdel for the Rise of GAlaxies aNd Active nuclei (MORGANA) to the properties of K- and 850-μm-selected galaxies (such as number counts, redshift distributions and luminosity functions) by combining MORGANA with the spectrophotometric model GRASIL. We find that it is possible to reproduce the K- and 850-μm-band data sets at the same time and with a standard Salpeter initial mass function, and ascribe this success to our improved modelling of cooling in DM haloes. We then predict that massively star-forming discs are common at z ~ 2 and dominate the star formation rate, but most of them merge with other galaxies within ~100 Myr. Our preferred model produces an overabundance of bright galaxies at z < 1; this overabundance might be connected to the build-up of the diffuse stellar component in galaxy clusters, as suggested by Monaco et al., but a naive implementation of the mechanism suggested in that paper does not produce a sufficient slowdown of the evolution of these objects. Moreover, our model overpredicts the number of 1010-1011Msolar galaxies at z ~ 1; this is a common behaviour of theoretical models as shown by Fontana et al.. These findings show that, while the overall build-up of the stellar mass is correctly reproduced by galaxy formation models, the `downsizing' trend of galaxies is not fully reproduced yet. This hints to some missing feedback mechanism in order to reproduce at the same time the formation of both the massive and the small galaxies.

  18. Massive nonplanar two-loop maximal unitarity

    NASA Astrophysics Data System (ADS)

    Søgaard, Mads; Zhang, Yang

    2014-12-01

    We explore maximal unitarity for nonplanar two-loop integrals with up to four massive external legs. In this framework, the amplitude is reduced to a basis of master integrals whose coefficients are extracted from maximal cuts. The hepta-cut of the nonplanar double box defines a nodal algebraic curve associated with a multiply pinched genus-3 Riemann surface. All possible configurations of external masses are covered by two distinct topological pictures in which the curve decomposes into either six or eight Riemann spheres. The procedure relies on consistency equations based on vanishing of integrals of total derivatives and Levi-Civita contractions. Our analysis indicates that these constraints are governed by the global structure of the maximal cut. Lastly, we present an algorithm for computing generalized cuts of massive integrals with higher powers of propagators based on the Bezoutian matrix method.

  19. Superdense Massive Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Cenarro, A. Javier; de Lorenzo-Cáceres, Adriana; Vazdekis, Alexandre; de la Rosa, Ignacio G.; Cava, Antonio

    2009-02-01

    Superdense massive galaxies (re ~ 1 kpc; M ~ 1011 M sun) were common in the early universe (z gsim 1.5). Within some hierarchical merging scenarios, a non-negligible fraction (1%-10%) of these galaxies is expected to survive since that epoch, retaining their compactness and presenting old stellar populations in the present universe. Using the NYU Value-Added Galaxy Catalog from the Sloan Digital Sky Survey Data Release 6, we find only a tiny fraction of galaxies (~0.03%) with re lsim 1.5 kpc and M sstarf gsim 8 × 1010 M sun in the local universe (z < 0.2). Surprisingly, they are relatively young (~2 Gyr) and metal-rich ([Z/H] ~0.2). The consequences of these findings within the current two competing size evolution scenarios for the most massive galaxies ("dry" mergers vs. "puffing up" due to quasar activity) are discussed.

  20. The initial conditions of massive star evolution

    NASA Astrophysics Data System (ADS)

    Sana, Hugues

    2016-07-01

    Massive stars are some of the most energetic building blocks of galaxies. They are the progenitors of supernovae and of neutrons stars and black holes, the coallescence of which is one of the most likely detectable sources of gravitational waves. Yet their formation remains poorly understood. As a consequence, the mechanisms that set initial parameters such as rotation rates, multiplicity and orbital distributions are also ill constrained. These quantities are however critical as they affect the internal mixing, the rate and nature of the interactions, the stars final fates and their end-of-life products. In this presentation, I will review existing and new observations that allow us to better constraints these parameters, hence the initial conditions for massive star evolution.