Sample records for massive wolf-rayet binary

  1. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in themore » lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.« less

  2. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  3. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  4. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    NASA Astrophysics Data System (ADS)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  5. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  6. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  7. WR 20a Is an Eclipsing Binary: Accurate Determination of Parameters for an Extremely Massive Wolf-Rayet System

    NASA Astrophysics Data System (ADS)

    Bonanos, A. Z.; Stanek, K. Z.; Udalski, A.; Wyrzykowski, L.; Żebruń, K.; Kubiak, M.; Szymański, M. K.; Szewczyk, O.; Pietrzyński, G.; Soszyński, I.

    2004-08-01

    We present a high-precision I-band light curve for the Wolf-Rayet binary WR 20a, obtained as a subproject of the Optical Gravitational Lensing Experiment. Rauw et al. have recently presented spectroscopy for this system, strongly suggesting extremely large minimum masses of 70.7+/-4.0 and 68.8+/-3.8 Msolar for the component stars of the system, with the exact values depending strongly on the period of the system. We detect deep eclipses of about 0.4 mag in the light curve of WR 20a, confirming and refining the suspected period of P=3.686 days and deriving an inclination angle of i=74.5d+/-2.0d. Using these photometric data and the radial velocity data of Rauw et al., we derive the masses for the two components of WR 20a to be 83.0+/-5.0 and 82.0+/-5.0 Msolar. Therefore, WR 20a is confirmed to consist of two extremely massive stars and to be the most massive binary known with an accurate mass determination. Based on observations obtained with the 1.3 m Warsaw telescope at Las Campanas Observatory, which is operated by the Carnegie Institute of Washington.

  8. Westerlund 1 is a Galactic Treasure Chest: The Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-01-01

    The Westerlund 1 Galactic cluster hosts an eclectic mix of coeval massive stars. At a modest distance of 4-5 kpc, it offers a unique opportunity to study the resolved stellar content of a young (~5 Myr) high mass (5.104 M ⊙) star cluster. With the aim of testing single-star evolutionary predictions, and revealing any signatures of binary evolution, we discuss on-going analyses of NTT/SOFI near-IR spectroscopy of Wolf-Rayet stars in Westerlund 1. We find that late WN stars are H-poor compared to their counterparts in the Milky Way field, and nearly all are less luminous than predicted by single-star Geneva isochrones at the age of Westerlund 1.

  9. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.

  10. The 155-day X-ray cycle of the very massive Wolf-Rayet star Melnick 34 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Pollock, A. M. T.; Crowther, P. A.; Tehrani, K.; Broos, Patrick S.; Townsley, Leisa K.

    2018-03-01

    The Wolf-Rayet star Mk 34 was observed more than 50 times as part of the deep T-ReX Chandra ACIS-I X-ray imaging survey of the Tarantula Nebula in the Large Magellanic Cloud conducted between 2014 May and 2016 January. Its brightness showed one bright maximum and repeated faint minima which help define an X-ray recurrence time of 155.1 ± 0.1 d that is probably the orbital period of an eccentric binary system. The maximum immediately precedes the minimum in the folded X-ray light curve as confirmed by new Swift XRT observations. Notwithstanding its extreme median luminosity of 1.2 × 1035 erg s-1, which makes it over an order of magnitude brighter than comparable stars in the Milky Way, Mk 34 is almost certainly a colliding-wind binary system. Its spectrum shows phase-related changes of luminosity and absorption that are probably related to the orbital dynamics of two of the most massive stars known.

  11. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  12. The Contribution of Stellar Winds to Cosmic Ray Production

    NASA Astrophysics Data System (ADS)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  13. The Tarantula Massive Binary Monitoring. II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Richardson, N. D.; Sablowski, D. P.; Hainich, R.; Sana, H.; Moffat, A. F. J.; Todt, H.; Hamann, W.-R.; Oskinova, L. M.; Sander, A.; Tramper, F.; Langer, N.; Bonanos, A. Z.; de Mink, S. E.; Gräfener, G.; Crowther, P. A.; Vink, J. S.; Almeida, L. A.; de Koter, A.; Barbá, R.; Herrero, A.; Ulaczyk, K.

    2017-02-01

    We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M⊙, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1sin3I ≈ M2sin3I = 13 ± 2 M⊙, with q = M2/M1 = 1.01 ± 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (I = 39 ± 6°). Our analysis thus implies and , excluding M1 > 300 M⊙. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ≈ 80 M⊙ and initial masses of MI,1 ≈ 105 and MI,2 ≈ 90 M⊙, consistent with the upper limits of our derived orbital masses, and would imply an age of ≈ 2.2 Myr. A copy of the disentangled spectra, as either FITS files or tables are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A85

  14. Multiple rings around Wolf-Rayet evolution

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1995-01-01

    We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.

  15. IC 4663: The First Unambiguous [WN] Wolf-Rayet Central Star of a Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.

    2013-01-01

    Several [WC]-type central stars of planetary nebulae (PNe) are known to mimic the spectroscopic appearance of massive carbon-rich or WC-type Wolf-Rayet stars. In stark contrast, no [WN]-type central stars have yet been identified as clear-cut analogues of the common nitrogen-rich or WN-type Wolf-Rayet stars. We have identified the [WN3] central star of IC 4663 to be the first unambiguous example in PNe. The low luminosity nucleus and an asymptotic giant branch (AGB) halo surrounding the main nebula prove the bona-fide PN nature of IC 4663. Model atmosphere analysis reveals the [WN3] star to have an exotic chemical composition of helium (95%), hydrogen (<2%), nitrogen (0.8%), neon (0.2%) and oxygen (0.05%) by mass. Such an extreme helium-dominated composition cannot be predicted by current evolutionary scenarios for hydrogen deficient [WC]-type central stars. Only with the discovery of IC 4663 and its unusual composition can we now connect [WN] central stars to the O(He) central stars in a second H-deficient and He-rich evolutionary sequence, [WN]→O(He), that exists in parallel to the carbon-rich [WC]→PG1159 sequence. This suggests a simpler mechanism, perhaps a binary merger, can better explain H-deficiency in PNe and potentially other H-deficient/He-rich stars. In this respect IC 4663 is the best supported case for a possible merged binary central star of a PN.

  16. Pinwheel Nebula around WR 98a.

    PubMed

    Monnier; Tuthill; Danchi

    1999-11-10

    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  17. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-01-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  18. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Astrophysics Data System (ADS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-11-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  19. Probing the X-ray Emission from the Massive Star Cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-09-01

    We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.

  20. Hubble View: Wolf-Rayet Stars, Intense and Short-Lived

    NASA Image and Video Library

    2017-12-08

    This NASA/European Space Agency (ESA) Hubble Space Telescope picture shows a galaxy named SBS 1415+437 (also called SDSS CGB 12067.1), located about 45 million light-years from Earth. SBS 1415+437 is a Wolf-Rayet galaxy, a type of star-bursting galaxy with an unusually high number of extremely hot and massive stars known as Wolf-Rayet stars. These stars can be around 20 times as massive as the sun, but seem to be on a mission to shed surplus mass as quickly as possible — they blast substantial winds of particles out into space, causing them to dwindle at a rapid rate. A typical star of this type can lose a mass equal to that of our sun in just 100,000 years! These massive stars are also incredibly hot, with surface temperatures some 10 to 40 times that of the sun, and very luminous, glowing at tens of thousands to several million times the brightness of the sun. Many of the brightest and most massive stars in the Milky Way are Wolf-Rayet stars. Because these stars are so intense they do not last very long, burning up their fuel and blasting their bulk out into the cosmos on very short timescale — only a few hundred thousand years. Because of this it is unusual to find more than a few of these stars per galaxy — except in Wolf-Rayet galaxies, like the one in this image. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Credit: NOAA/NASA GOES Project

  1. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-03-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Credits: NASA/Hubble

  2. The first orbital solution for the massive colliding-wind binary HD 93162 (≡ WR 25)

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Gosset, E.; Morrell, N. I.; Niemela, V. S.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R. H.; Solivella, G. R.

    2008-08-01

    Since the discovery, with EINSTEIN, of strong X-ray emission associated with HD 93162, this object was recurrently predicted by some authors to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have never been found so far. We spectroscopically monitored this object in order to investigate its possible variability and to provide an answer to the above-mentioned discordance. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched for periodicities. For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is actually an eccentric binary system with a probable period of about 208 days.

  3. [WN] central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.

    2017-10-01

    While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.

  4. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-{alpha} EXCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-{alpha} (P{alpha}) emission-line excess, following a narrowband imaging survey of the central 0.{sup 0}65 x 0.{sup 0}25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars ismore » consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong P{alpha} excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.« less

  5. VLTI and KI Interferometric Observations of Massive Evolved Stars and Their Dusty Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Wallace, Debra J.; Danchi, W. C.; Rajagopal, J.; Chesneau, O.; Lopez, B.; Menut, J.; Monnier, J.; Tuthill, P.; Ireland, M.; Barry, R.; Richardson, L. J.

    2007-12-01

    Recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet stars strongly support the theory that dust formation in these objects is a result of colliding winds in binary systems. To explore and quantify this possible explanation, we have conducted a high-resolution interferometric survey of late-type massive stars utilizing the VLTI, KI, IOTA, and FGS1r interferometers. We present here the motivation for this study. We also present the first results from the MIDI instrument on the VLTI, and the KI and IOTA observations. Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. Our IOTA and KI interferometric observations resolve the WR star WR 137 into a dust-producing binary system.

  6. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  7. Probing massive stars around gamma-ray burst progenitors

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Smoot, George F.

    2015-10-01

    Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.

  8. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  9. Quantitative spectroscopy of Wolf-Rayet stars in HD97950 and R136a - the cores of giant HII regions

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Dessart, Luc

    1998-05-01

    We present quantitative analyses of Wolf-Rayet stars in the cores of two giant Hii regions - HD97950 in NGC3603 and R136a in 30 Doradus - based on archive Hubble Space Telescope (HST) spectroscopy. We confirm previous WN6h+abs classifications for components A1, B and C in HD97950, while classifications for R136a1-3 are revised from O3If^*/WN6 to WN5h. From detailed non-local thermodynamic equilibrium analyses, we find that all Wolf-Rayet stars exhibit products of CNO-processed material at their surface since they are rich in both helium (H/He~3-6, by number) and nitrogen (N/He~0.002-0.006). Their luminosities, log(L/Lsolar)=6.0-6.3, are amongst the highest known for Wolf-Rayet stars. Consequently they are very massive stars (M_init>=100Msolar) at a relatively low age (~2Myr), reminiscent of the late WN stars in the Carina Nebula. We obtain a revised distance modulus of 15.03mag (=10.1kpc) to NGC3603 based on available photometry, an updated M_v calibration for early O stars and a reddening of E(B-V)=1.23mag towards its core. From a census of the massive stellar content of the two central clusters we conclude that their global properties are comparable. We evaluate the contribution made by Wolf-Rayet stars to the total Lyman continuum ionizing flux and kinetic energy released into the ISM. We discuss how simple calibrations can be used to estimate stellar luminosities, ionizing fluxes and mass-loss rates of luminous OB stars. Wolf-Rayet stars provide ~20 per cent of the total ionizing flux (~1.3x10^51 Ly photons^-1) within 0.5pc of their cores, and ~60 per cent of the total kinetic energy injected into the ISM (5-6x10^38ergs^-1), despite representing only 10 per cent of the massive stellar population. For the larger R136 cluster in 30 Doradus (r<=10pc), 117 massive stars provide a total ionizing flux of 4x10^51 Ly photons^-1 and release a total kinetic energy of 1.6x10^39 ergs^-1 into the ISM, the latter being dominated by nine WR (43 per cent) and six O3If^*/WN (29 per cent) stars.

  10. Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  11. Physical properties of the WR stars in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.; Clark, J. S.; Negueruela, I.

    The Westerlund 1 (Wd1) cluster hosts a rich and varied collection of massive stars. Its dynamical youth and the absence of ongoing star formation indicate a coeval population. As such, the simultaneous presence of both late-type supergiants and Wolf-Rayet stars has defied explanation in the context of single-star evolution. Observational evidence points to a high binary fraction, hence this stellar population offers a robust test for stellar models accounting for both single-star and binary evolution. We present an optical to near-IR (VLT & NTT) spectroscopic analysis of 22 WR stars in Wd 1, delivering physical properties for the WR stars. We discuss how these differ from the Galactic field population, and how they may be reconciled with the predictions of single and binary evolutionary models.

  12. Scientists Track Collision of Powerful Stellar Winds

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these Wolf-Rayet stars and of the wind-collision region," Dougherty said. The stars in WR 140 complete an orbital cycle in 7.9 years. The astronomers tracked the system for a year and a half, noting dramatic changes in the wind collision region. "People have worked out theoretical models for these collision regions, but the models don't seem to fit what our observations have shown," said Mark Claussen, of the National Radio Astronomy Observatory in Socorro, New Mexico. "The new data on this system should provide the theorists with much better information for refining their models of how Wolf-Rayet stars evolve and how wind-collision regions work," Claussen added. The scientists watched the changes in the stellar system as the star's orbits carried them in paths that bring them nearly as close to each other as Mars is to the Sun and as far as Neptune is from the Sun. Their detailed analysis gave them new information on the Wolf-Rayet star's strong wind. At some points in the orbit, the wind collision region strongly emitted radio waves, and at other points, the scientists could not detect the collison region. Wolf-Rayet stars are giant stars nearing the time when they will explode as supernovae. "No other telescope in the world can see the details revealed by the VLBA," Claussen said. "This unmatched ability allowed us to determine the masses and other properties of the stars, and will help us answer some basic questions about the nature of Wolf-Rayet stars and how they develop." he added. The astronomers plan to continue observing WR 140 to follow the system's changes as the two massive stars continue to circle each other. Dougherty and Claussen worked with Anthony Beasley of the Atacama Large Millimeter Array office, Ashley Zauderer of the University of Maryland and Nick Bolingbroke of the University of Victoria, British Columbia. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. The first orbital solution for the massive colliding-wind binary HD 93162 (≡WR 25)

    NASA Astrophysics Data System (ADS)

    Gamen, R.; Gosset, E.; Morrell, N.; Niemela, V.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R.; Solivella, G.

    2006-12-01

    Context: Since the discovery, with the EINSTEIN satellite, of strong X-ray emission associated with HD 93162 (≡WR 25), this object has been predicted to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have yet to be found. Aims: We spectroscopically monitored this object to investigate its possible variability to address this discordance. Methods: We compiled the largest available radial-velocity data set for this star to look for variations that might be due to binary motion. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched these radial velocities for periodicities using different numerical methods. Results: For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is an eccentric binary system with a probable period of about 208 days.

  14. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  15. The progenitors of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.

    2013-05-01

    The type Ib/c SNe are those explosions which come from massive star populations, but lack hydrogen and helium. These have been proposed to originate in the explosions of massive Wolf-Rayet stars, and we should easily be able to detect the very luminous, young progenitors if they exist. However, there has not been any detection of progenitors so far. I present the study of two extinguished Type Ic SNe 2003jg and 2004cc. In both cases there is no clear evidence of a direct detection of their progenitors in deep pre-explosion images. Upper limits derived by inserting artificial stars of known brightness at random positions around the progenitor positions (M_v>-8.8 and M_v>-9 magnitudes for the progenitors of SN 2003jg and SN 2004cc, respectively) are brighter than those expected for a massive WC (Wolf-Rayet, carbon-rich) or WO (Wolf-Rayet, oxygen-rich) (e.g., approximately between -3 and -6 in the LMC). Therefore, this is perhaps further evidence that the most massive stars may give rise to black-holes forming SNe, or it is an undetected, compact massive star hidden by a thick dust lane. However the extinction toward these SNe is currently one of the largest known. Even if these results do not directly reveal the nature of the type Ic SN progenitors, they can help to characterize the dusty environment which surrounded the progenitor of the stripped-envelope CC-SNe.

  16. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  17. A Large Bubble External to the Wolf-Rayet Ring Nebula NGC 6888

    NASA Astrophysics Data System (ADS)

    Marston, A. P.

    1995-05-01

    We present high spatial resolution IRAS images (HIRES) of a 2° field surrounding the Wolf-Rayet ring nebula NGC 6888. This shows the presence of an elliptical shell 1.7° × 1.4° in size and with a position angle at 45° relative to that of NGC 6888 which is also observed in our images. IRAS fluxes indicate the outer large bubble has a cooler dust temperature than NGC 6888 and has an implied gas mass of approximately 8000 Msun. It is proposed that the outer shell represents the extent of a bubble 19 pc across created in the O star phase of the Wolf-Rayet star WR 136 (HD 192163), presently at the center of NGC 6888. This bubble is estimated as being 1.9 × 106 yr old with an associated O star phase of 1.6-1.9 × 106 yr. The high spatial resolution in our IRAS images has also allowed better fluxes to be determined for the ring nebula NGC 6888 which are consistent with the previous results of Marston & Meaburn (1988). We illustrate how the nebulae around the star WR 136 are consistent with a three phase evolution for Wolf-Rayet stars. With the large mass lost in the ring nebula we suggest that a massive (>40 Msun) O star has evolved through a luminous blue variable phase before becoming the Wolf-Rayet star WR 136.

  18. On the rarity of X-ray binaries with Wolf-Rayet donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linden, T.; Valsecchi, F.; Kalogera, V.

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binarymore » evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.« less

  19. Mid-Infrared Spectrally-Dispersed Visibilities of Massive Stars Observed with the MIDI Instrument on the VLTI

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Rajagopal, J.; Barry, R.; Richardson, L. J.; Lopez, B.; Chesneau, O.; Danchi, W. C.

    The mechanism driving dust production in massive stars remains somewhat mysterious. However, recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet (WR) stars strongly support the theory that dust formation in these objects is a result of colliding winds in binaries. Consistent with this theory, there is also evidence that suggests the prototypical Luminous Blue Variable (LBV) star, Eta Carinae, is a binary. To explore and quantify this possible explanation, we have conducted a high resolution interferometric survey of late-type massive stars utilizing the VLTI, Keck, and IOTA interferometers. We present here the motivation for this study as well as the first results from the MIDI instrument on the VLTI. (Details of the Keck Interferometer and IOTA interferometer observations are discussed in this workshop by Rajagopal et al.). Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. The pectrally-dispersed visibilities obtained with the MIDI observations will provide the first steps towards answering many outstanding issues in our understanding of this critical phase of massive star evolution

  20. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  1. New Galactic Candidate Luminous Blue Variables and Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy S.; Gvaramadze, Vasilii V.; Beletsky, Yuri; Kniazev, Alexei Y.

    2012-04-01

    We have undertaken a near-infrared spectral survey of stars associated with compact mid-IR shells recently revealed by the MIPSGAL (24 μm) and GLIMPSE (8 μm) Spitzer surveys, whose morphologies are typical of circumstellar shells produced by massive evolved stars. Through spectral similarity with known Luminous Blue Variable (LBV) and Wolf-Rayet (WR) stars, a large population of candidate LBVs (cLBVs) and a smaller number of new WR stars are being discovered. This significantly increases the Galactic cLBV population and confirms that nebulae are inherent to most (if not all) objects of this class.

  2. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-05-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Read more: www.nasa.gov/feature/hubble-observes-one-of-a-kind-star-n... Credits: NASA/Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Luminous blue variables and the fates of very massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2017-09-01

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  4. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  5. The Evolutionary Status of WN3/O3 Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Phil; Hillier, D. John; Morrell, Nidia I.

    2017-11-01

    As part of a multi-year survey for Wolf-Rayet stars in the Magellanic Clouds, we have discovered a new type of Wolf-Rayet star with both strong emission and absorption. While one might initially classify these stars as WN3+O3V binaries based on their spectra, such a pairing is unlikely given their faint visual magnitudes. Spectral modeling suggests effective temperatures and bolometric luminosities similar to those of other early-type LMC WNs but with mass-loss rates that are three to five times lower than expected. They additionally retain a significant amount of hydrogen, with nitrogen at its CNO-equilibrium value (10× enhanced). Their evolutionary status remains an open question. Here we discuss why these stars did not evolve through quasi-homogeneous evolution. Instead we suggest that based on a link with long-duration gamma ray bursts, they may form in lower metallicity environments. A new survey in M33, which has a large metallicity gradient, is underway.

  6. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  7. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.

    2015-07-01

    NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.

  8. On the nature of the Wolf-Rayet component in the core of the massive galactic H II region NGC 3603

    NASA Astrophysics Data System (ADS)

    Moffat, A. F. J.; Niemela, V. S.

    1984-09-01

    The optical spectra of HD 97950, the luminous core of NGC 3603, were examined for variability which would indicate the presence of a single supermassive object or a cluster of smaller objects. Seventy spectrograms were made of HD 97950 from 1979-82, covering the 3700-4900 A range. Radial velocities were calculated from the strongest lines viewed. The WN6+O5 spectrum exhibited a 72 km/sec radial velocity variation with about a 3.8 day period. The data could be fitted by a system of two or three Wolf-Rayet stars. Radial oscillations of a very massive star, such as R136 in 30 Dor, are unlikely due to the absence of a stable harmonic mode with a period of 0.5 day. It is concluded that HD 97950 is composed of more than one star.

  9. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  10. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-07-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  11. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that theymore » are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.« less

  12. Colliding stellar winds in the eclipsing Wolf-Rayet binary V444 Cygni

    NASA Technical Reports Server (NTRS)

    Brown, Douglas N.; Shore, Steven N.

    1988-01-01

    High resolution spectra of V444 Cygni have been obtained using the International Ultraviolet Explorer Satellite. These spectra span both eclipses and include one observation at third quadrature. Together with seven archival spectra, they provide reasonably complete phase coverage for the system. The variations in the P Cygni profiles of the He(II) and N(IV) lines, imply the existence of a low density region in the WR wind. This region occupies a relatively narrow range of orbital phase coinciding with the highest terminal velocities observed in C IV. These data are interpreted to be evidence of an interaction region separating the winds of the O-star and Wolf-Rayet star.

  13. Luminous blue variables and the fates of very massive stars.

    PubMed

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40  M ⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  14. X-rays from the colliding wind binary WR 146

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.

    2017-12-01

    The X-ray emission from the massive Wolf-Rayet binary (WR 146 ) is analysed in the framework of the colliding stellar wind (CSW) picture. The theoretical CSW model spectra match well the shape of the observed X-ray spectrum of WR 146, but they overestimate considerably the observed X-ray flux (emission measure). This is valid in the case of both complete temperature equalization and partial electron heating at the shock fronts (different electron and ion temperatures), but there are indications for a better correspondence between model predictions and observations for the latter. To reconcile the model predictions and observations, the mass-loss rate of WR 146 must be reduced by a factor of 8-10 compared to the currently accepted value for this object (the latter already takes clumping into account). No excess X-ray absorption is derived from the CSW modelling.

  15. Wolf-Rayet stars, black holes and the first detected gravitational wave source

    NASA Astrophysics Data System (ADS)

    Bogomazov, A. I.; Cherepashchuk, A. M.; Lipunov, V. M.; Tutukov, A. V.

    2018-01-01

    The recently discovered burst of gravitational waves GW150914 provides a good new chance to verify the current view on the evolution of close binary stars. Modern population synthesis codes help to study this evolution from two main sequence stars up to the formation of two final remnant degenerate dwarfs, neutron stars or black holes (Masevich and Tutukov, 1988). To study the evolution of the GW150914 predecessor we use the ;Scenario Machine; code presented by Lipunov et al. (1996). The scenario modeling conducted in this study allowed to describe the evolution of systems for which the final stage is a massive BH+BH merger. We find that the initial mass of the primary component can be 100÷140M⊙ and the initial separation of the components can be 50÷350R⊙. Our calculations show the plausibility of modern evolutionary scenarios for binary stars and the population synthesis modeling based on it.

  16. An interacting O + O supergiant close binary system: Cygnus OB2-5 (V729 Cyg)

    NASA Astrophysics Data System (ADS)

    Yaşarsoy, B.; Yakut, K.

    2014-08-01

    The massive interacting close binary system V729 Cyg (OIa + O/WN9), plausibly progenitor of a Wolf-Rayet system, is studied using new observations gathered over 65 nights and earlier published data. Radial velocity and five color light curves are analysed simultaneously. Estimated physical parameters of the components are M1=36±3 M, M2=10±1 M, R1=27±1 R, R2=15±0.6 R, log(L1/L⊙)=5.59±0.06, and log(L2/L⊙)=4.65±0.07. We give only the formal 1σ scatter, but we believe systematic errors in the luminosities, of uncertain origin as discussed in the text, are likely to be much bigger. The distance of the Cygnus OB2 association is estimated as 967±48 pc by using our newly obtained parameters.

  17. Supernova remnant S 147 and its associated neutron star(s)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-07-01

    The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  18. The Sixth Catalogue of galactic Wolf-Rayet stars, their past and present

    NASA Technical Reports Server (NTRS)

    Van Der Hucht, K. A.; Conti, P. S.; Lundstrom, I.; Stenholm, B.

    1981-01-01

    This paper presents the Sixth Catalogue of galactic Wolf-Rayet stars (Pop. I), a short history on the five earlier WR catalogues, improved spectral classification, finding charts, a discussion on related objects, and a review of the current status of Wolf-Rayet star research. The appendix presents a bibliography on most of the Wolf-Rayet literature published since 1867.

  19. Multiple Shells Around Wolf-Rayet Stars: Space Based Astrometric Observing

    NASA Technical Reports Server (NTRS)

    Marston, Anthony P.

    1995-01-01

    The completion of a complementary optical emission-line survey of the nebulae associated with Wolf-Rayet stars in the southern sky is reported, along with the completion of a survey the large-scale environments of Wolf-Rayet stars using IRAS Skyflux data. HIRES IRAS maps in the four IRAS wavebands for appoximately half of all galactic Wolf-Rayet stars are created.

  20. Comments on using absolute spectrophotometry of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1986-01-01

    Garmany et al. (1984) have conducted a study involving spectrophotometric scans of 13 Wolf-Rayet stars. They have found that the application of a 'standard' reddening law to the observed data gives spurious results in many cases. They concluded also that previous attempts to determine the intrinsic continua and the effective temperatures of Wolf-Rayet stars are inadequate. In the present study the conclusions of Garmany et al. are evaluated. According to this evaluation, it has not been demonstrated by Garmany et al., beyond a reasonble doubt, that the interstellar extinction law varies greatly from Wolf-Rayet star to Wolf-Rayet star. The procedure followed by Garmany et al. to find the apparent shape of the ultraviolet continuum of a Wolf-Rayet star is unsatisfactory for a number of reasons.

  1. Wolf-Rayet stars of type WN/WC and mixing processes during core helium burning of massive stars

    NASA Technical Reports Server (NTRS)

    Langer, N.

    1991-01-01

    Consequences of the recent finding that most WN/WC spectra probably originate from individual Wolf-Rayet stars for the internal structure of massive stars are discussed. Numerical models including the effect of slow-down or prevention of convective mixing due to molecular weight gradients are presented, in which a transition layer with a composition mixture of H- and He-burning ashes is formed above the convective He-burning core. These models are able to qualitatively account for the observed WN/WC frequency and agree quantitatively with the only WN/WC-composition determination so far. It is argued that the same transition layer may be responsible for the final blue loop which the SN 1987 A progenitor performed some 10,000 yr before explosion. These results indicate that composition barriers may be efficient in restricting convection during central helium burning, in contrast to computations relying on the Schwarzschild criterion for convection, with or without overshooting.

  2. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: nmorrell@lco.cl

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans asmore » they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.« less

  3. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  4. The Wolf-Rayet Content of the Andromeda Galaxy: What Do Massive Stars Really Do When the Metallicity is Above Solar?

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2000-08-01

    We are proposing to survey M 31 for Wolf-Rayet stars (WRs) and red supergiants (RSGs), providing much needed information about how massive stars evolve at greater-than-solar metallicities. Our understanding of massive star evolution is hampered by the effects of mass-loss on these stars; at higher metallicities mass-loss effects become ever more pronounced. Our previous work on other Local Group galaxies (Massey & Johnson 1998) has shown that the number of RSGs to WRs correlates well with metallicity, changing by a factor of 6 from NGC 6822 (log O/H+12=8.3) to the inner parts of M 33 (8.7). Our study of five small regions in M 31 suggests that above this value the ratio of RSGs to WRs doesn't change: does this mean that no massive star that becomes a WR spends any time as a RSG at above solar metallicities? We fear instead that our sample (selected, afterall, for containing WR stars) was not sufficiently well-mixed in age to provide useful global values; the study we propose here will survey all of M 31. Detection of WRs will provide fundamental data not only on massive star evolution, but also act as tracers of the most massive stars, and improve our knowledge of recent star-formation in the Andromeda Galaxy.

  5. The Evolution of Low-Metallicity Massive Stars

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear burning products in the same ratio as observed today in globular clusters stars. Further elaborating the fast rotating TWUIN star models, we predict that some of them will become Wolf-Rayet stars near the end of their lives. From this we show that our models can self-consistently explain both the high ionizing flux and the number of Wolf-Rayet stars in I Zwicky 18. Moreover, some of our models are predicted to explode as long-duration gamma-ray bursts. Thus, we speculate that the high ionizing flux observed can be a signpost for upcoming gamma-ray bursts in dwarf galaxies. Although our models have been applied to interpret observations of globular clusters and dwarf galaxies, we point out that they could also be used in the context of other low-metallicity environments as well. Understanding the early Universe, for example, requires to have a solid knowledge of how massive stars at low-metallicity live and interact with their environments. Thus, we expect that the models and results presented in this thesis will be beneficial for not only the massive star community, but for the broader astronomy and cosmology community as well.

  6. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when stars occur in bound pairs, groups or tight clusters.

  7. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  8. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  9. Erratum: ``X-Ray Emission from Colliding Wind Shocks in the Wolf-Rayet Binary WR 140'' (ApJ, 538, 808 [2000])

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.; Skinner, Stephen L.

    2002-09-01

    There is a typographic error concerning the flux units in Table 3. Footnote e in Table 3 should read: ``Observed value (0.5-10 keV) followed in parentheses by intrinsic (unabsorbed) value. Units are 10-11 ergs cm-2 s-1.''

  10. The evolution of massive stars: bridging the gap in the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Levesque, Emily M.

    2017-09-01

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  11. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  12. Mass loss and stellar superwinds

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2017-09-01

    Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  13. Abundances of Short-Lived Radionuclides and the Implications for the Formation of the Solar System

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Dauphas, N.; Meyer, B. S.; Boyajian, P. H.; Bojazi, M.

    2017-08-01

    Analysis of primordial meteorites shows a high abundance of 26Al, accompanied by low 60Fe. This indicates that our solar system originated within a Wolf-Rayet bubble formed by stellar mass-loss from a massive star that was the main source of 26Al.

  14. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    PubMed

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.

  15. PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  16. Evolution of UV-Irradiated Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bally, J.; Moeckel, N.; Throop, H.

    2005-12-01

    Most stars are born in transient clusters within OB associations. Within the first few million years of birth, stars and their protoplanetary disks can be exposed to intense UV radiation, close-passages of sibling stars, stellar winds, and supernova explosions. Disk photo-ablation may promote the rapid formation of kilometer-scale planetesimals by preferentially removing gas and small grains, and enhancing the relative abundance of centimeter and meter-scale bodies. Disk perturbations produced by close-by passages of sibling stars or binary companions can trigger tidally induced shocks which anneal grains. Close-by supernovae can inject live radioactive species such as 26Al and 60Fe either before or after the formation of a low-mass star and its disk. Intense UV radiation from the pre-supernova blue-supergiant and Wolf-Rayet phases of the most massive stars can result in enhanced disk photo-ablation.

  17. Wolf-Rayet stars in the central region of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans

    2004-09-01

    We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.

  18. A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, B.; Williams, B. F.; Anderson, S. F.

    We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with amore » contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.« less

  19. The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Shenar, Tomer; Roy-Loubier, Olivier; Schaefer, Gail; Moffat, Anthony F. J.; St-Louis, Nicole; Gies, Douglas R.; Farrington, Chris; Hill, Grant M.; Williams, Peredur M.; Gordon, Kathryn; Pablo, Herbert; Ramiaramanantsoa, Tahina

    2016-10-01

    We report on interferometric observations with the CHARA Array of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR,137 = 0.59 ± 0.04; fWR,138 = 0.67 ± 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edge-on. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.

  20. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  1. The evolution of massive stars: bridging the gap in the Local Group.

    PubMed

    Massey, Philip; Neugent, Kathryn F; Levesque, Emily M

    2017-10-28

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  2. Understanding the Unusual X-Ray Emission Properties of the Massive, Close Binary WR 20a: A High Energy Window into the Stellar Wind Initiation Region

    NASA Astrophysics Data System (ADS)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Strickler, Rachel

    2013-11-01

    The problem of explaining the X-ray emission properties of the massive, close binary WR 20a is discussed. Located near the cluster core of Westerlund 2, WR 20a is composed of two nearly identical Wolf-Rayet stars of 82 and 83 solar masses orbiting with a period of only 3.7 days. Although Chandra observations were taken during the secondary optical eclipse, the X-ray light curve shows no signs of a flux decrement. In fact, WR 20a appears slightly more X-ray luminous and softer during the optical eclipse, opposite to what has been observed in other binary systems. To aid in our interpretation of the data, we compare with the results of hydrodynamical simulations using the adaptive mesh refinement code Mezcal which includes radiative cooling and a radiative acceleration force term. It is shown that the X-ray emission can be successfully explained in models where the wind-wind collision interface in this system occurs while the outflowing material is still being accelerated. Consequently, WR 20a serves as a critical test-case for how radiatively driven stellar winds are initiated and how they interact. Our models not only procure a robust description of current Chandra data, which cover the orbital phases between 0.3 and 0.6, but also provide detailed predictions over the entire orbit.

  3. Hubble's Cosmic Bubbles

    NASA Image and Video Library

    2017-12-08

    This entrancing image shows a few of the tenuous threads that comprise Sh2-308, a faint and wispy shell of gas located 5,200 light-years away in the constellation of Canis Major (The Great Dog). Sh2-308 is a large bubble-like structure wrapped around an extremely large, bright type of star known as a Wolf-Rayet Star — this particular star is called EZ Canis Majoris. These type of stars are among the brightest and most massive stars in the Universe, tens of times more massive than our own sun, and they represent the extremes of stellar evolution. Thick winds continually poured off the progenitors of such stars, flooding their surroundings and draining the outer layers of the Wolf-Rayet stars. The fast wind of a Wolf-Rayet star therefore sweeps up the surrounding material to form bubbles of gas. EZ Canis Majoris is responsible for creating the bubble of Sh2-308 — the star threw off its outer layers to create the strands visible here. The intense and ongoing radiation from the star pushes the bubble out farther and farther, blowing it bigger and bigger. Currently the edges of Sh2-308 are some 60 light-years apart! Beautiful as these cosmic bubbles are, they are fleeting. The same stars that form them will also cause their death, eclipsing and subsuming them in violent supernova explosions. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. CSI in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  5. Photometry, polarimetry, spectroscopy, and spectropolarimetry of the enigmatic Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Robert, Carmelle; Moffat, Anthony F. J.; Drissen, Laurent; Lamontagne, Robert; Seggewiss, Wilhelm; Niemela, Virpi S.; Cerruti, Miguel A.; Barrett, Paul; Bailey, Jeremy; Garcia, Jorge

    1992-01-01

    New observations of the peculiar Wolf-Rayet star EZ Canis Majoris collected since 1987 are presented, and photometric, polarimetric, spectroscopic, and spectropolarimetric data are discussed. Linear polarization data are well fitted with an eccentric binary model where an additional free parameter is included to allow for epoch-dependent changes of the geometrical electron distribution in the W-R envelope. This yields a set of basic parameters, including an eccentricity e = 0.39 +/- 0.02 and an orbital inclination i = 114 deg +/- 3 deg. The spectroscopic data show global profile variations for all three observed strong emission lines He II 5412 A, C IV 5807 A, and He I 5876 A. Radial velocities of the lines vary with the 3.766-day period. Radially expanding inhomogeneities are superposed on the line profiles and variable polarization in the lines is observed.

  6. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXIX - The structure of the eclipsing Wolf-Rayet binary V444 Cygni as derived from light curves between 2460 A and 3. 5 microns

    NASA Technical Reports Server (NTRS)

    Cherepashchuk, A. M.; Khaliullin, Kh. F.; Eaton, J. A.

    1984-01-01

    The WN5 component of V444 Cyg is characterized on the basis of light curves constructed using 1971 OAO observations at 425, 332, 298, and 246 nm and the broadband data at 2.2 and 3.5 microns of Hartmann (1978). Data and calculation results are presented in tables and graphs and discussed. Parameters estimated include core radius 2.9 solar radii, surface temperature 90,000 K, surface electron density 9 x 10 to the 12th/cu cm, surface outflow velocity 400 km/s, and terminal velocity (at about 10 solar radii) 2500 km/s, suggesting that the flow is He. These results are found to agree with the model of Wolf-Rayet atmospheres proposed by Beals (1929, 1944).

  7. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  8. An X-ray Study of a Massive Star and its Wind

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Sugawara, Yasuharu; Tsuboi, Yohko; Hamaguchi, Kenji

    2010-10-01

    WR 140 is one of the best known examples of a Wolf-Rayet stars. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The column density at periastron is about 30 times higher than that at pre-periastron, which can be explained as self-absorption by the Wolf-Rayet wind. The spectra are dominated by a line and continuum emission from a optically thin-thermal plasma. The strong Ne-K lines are evidence that the thermal plasma is shock-heated W-R wind materials by the interaction with the wind from the companion O star. We present the parameters of the wind, such as a mass-loss rate, which were calculated with the absorption and line emission in the spectra.

  9. The long period Wolf-Rayet star HD193077

    NASA Astrophysics Data System (ADS)

    Annuk, Kalju

    Radial velocities of HD193077 have been measured on 76 spectra obtained during 1980-1987. It has been found that the period of this WR binary star is about 1538 days. A new derived orbital solution yields an eccentric orbit, e = 0.3, and the mass function, f(m) = 4.54 solar masses, is typical of WR+O binaries. By analysis of radial velocity residuals, no short periodic variations were found, as it was suggested by Lamontagne et al. (1982).

  10. Mass loss and stellar superwinds.

    PubMed

    Vink, Jorick S

    2017-10-28

    Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  11. PSR J0538+2817 as the remnant of the first supernova explosion in a massive binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    It is generally accepted that the radio pulsar PSR J 0538 2817 is associated with the supernova remnant SNR S 147 The only problem for the association is the obvious discrepancy Kramer et al 2003 between the kinematic age of the system of sim 30 kyr estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar s proper motion and the characteristic age of the pulsar of sim 600 kyr To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one Kramer et al 2003 Romani Ng 2003 We propose an alternative explanation of the age discrepancy based on the fact that PSR J 0538 2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion that disrupted the binary system and that a much younger second neutron star not necessarily manifesting itself as a radio pulsar should be associated with S 147 We use the existing observational data on the system PSR J 0538 2817 SNR S 147 to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star so that the supernova explosion occurred within a wind bubble surrounded by a massive shell and to constrain the parameters of the binary system We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector

  12. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  13. Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Chené, A.-N.; Kniazev, A. Y.; Schnurr, O.; Shenar, T.; Sander, A.; Hainich, R.; Langer, N.; Hamann, W.-R.; Chu, Y.-H.; Gruendl, R. A.

    2014-08-01

    We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by ≈2 arcsec (or ≈0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (POWR) code, confirming that the WR component is a very hot (≈90 kK) WN star. For this star, we derived a luminosity of log L/ L⊙ = 5.45 and a mass-loss rate of 10- 5.8 M⊙ yr- 1, and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He III region centred on BAT99 3a and having the same angular radius (≈15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster.

  14. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svirski, Gilad; Nakar, Ehud

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN explodingmore » through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.« less

  15. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  16. The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.

    1977-01-01

    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.

  17. Chandra/ACIS Observations of the 30 Doradus Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa; Broos, Patrick; Feigelson, Eric; Burrows, David; Chu, You-Hua; Garmire, Gordon; Griffiths, Richard; Maeda, Yoshitomo; Pavlov, George; Tsuboi, Yohko

    2002-04-01

    30 Doradus is the archetype giant extragalactic H II region, a massive star-forming complex in the Large Magellanic Cloud. We examine high-spatial-resolution X-ray images and spectra of the essential parts of 30 Doradus, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level, allowing spectral analysis of bright constituents; other OB/Wolf-Rayet binaries and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the composite SNR containing a 16-msec pulsar. The spectrally soft superbubble structures seen by ROSAT are dramatically imaged by Chandra; we explore the spectral differences they exhibit. Taken together, the components of 30 Doradus give us an excellent microscopic view of high-energy phenomena seen on larger scales in more distant galaxies as starbursts and galactic winds.

  18. Understanding the X-ray Flaring from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Moffat, A.F.J.; Corcoran, Michael F.

    2009-01-01

    We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.

  19. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  20. The Wolf-Rayet star population in the most massive giant H II regions of M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.

    1990-01-01

    Narrow-band images of NGC 604, NGC 595, and NGC 592, the most massive giant H II regions (GHRs) in M33 have been obtained, in order to study their Wolf-Rayet content. These images reveal the presence of nine candidates in NGC 604 (seven WN, two WC), 10 in NGC 595 (nine WN, one WC), and two in NGC 592 (two WN). Precise positions and estimated magnitudes are given for the candidates, half of which have so far been confirmed spectroscopically as genuine W-R stars. The flux in the emission lines of all candidates is comparable to that of normal Galactic W-R stars of similar subtype. A few of the putative superluminous W-R stars are shown to be close visual double or multiple stars; their newly estimated luminosities are now more compatible with those of normal W-R stars. NGC 595 seems to be overabundant in W-R stars for its mass compared to other GHRs, while NGC 604 is normal. Factors influencing the W-R/O number ratio in GHRs are discussed: metallicity and age appear to be the most important.

  1. Establishing Extreme Dynamic Range with JWST: Decoding Smoke Signals in the Glare of a Wolf-Rayet Binary

    NASA Astrophysics Data System (ADS)

    Lau, Ryan; Hankins, M.; Kasliwal, M.; Sivaramakrishnan, A.; Thatte, D.

    2017-11-01

    Dust is a key ingredient in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are still unclear. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are efficient dust producers in the local Universe, and likely existed in the earliest galaxies. To study these interesting objects, we propose JWST observations of the archetypal colliding-wind binary WR 140 to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS). Our proposed observations will yield high impact scientific results on the dust forming properties WR binaries, and establish a benchmark for key observing modes for imaging bright sources with faint extended emission. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to designing and delivering science-enabling products for the JWST community that address technical issues such as bright source artifacts that will limit the maximum achievable image contrast.

  2. First Visual Orbit for the Prototypical Colliding-wind Binary WR 140

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Zhao, M.; Pedretti, E.; Millan-Gabet, R.; Berger, J.; Schloerb, F.; Traub, W.; ten Brummelaar, T.; McAlister, H.; Ridgway, S.; Turner, N.; Sturmann, L.; Sturmann, J.; Baron, F.; Tannirkulam, A.; Kraus, S.; Williams, P.

    2012-01-01

    Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140 (=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we can estimate the distance to WR 140 with about 2% error and estimate component masses with about 4% error. Our precision orbit yields key parameters with uncertainties about 6 times smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.

  3. The evolution of massive stars including mass loss - Presupernova models and explosion

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.

    1993-01-01

    The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.

  4. Optical spectrophotometry of Wolf-Rayet galaxies

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Conti, Peter S.

    1992-01-01

    We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.

  5. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer during a Roche Lobe overflow stage of the binary after the supernova explosion. In either of these cases the bright optical ring nebulae associated with these three WR stars may signify recent Roche Lobe overflows consistent with spectroscopic abundance analysis.

  6. A Wolf-Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind.

    PubMed

    Gal-Yam, Avishay; Arcavi, I; Ofek, E O; Ben-Ami, S; Cenko, S B; Kasliwal, M M; Cao, Y; Yaron, O; Tal, D; Silverman, J M; Horesh, A; De Cia, A; Taddia, F; Sollerman, J; Perley, D; Vreeswijk, P M; Kulkarni, S R; Nugent, P E; Filippenko, A V; Wheeler, J C

    2014-05-22

    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

  7. A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind

    NASA Technical Reports Server (NTRS)

    Gal-Yam, Avishay; Arcavi, I.; Ofek, E. O.; Ben-Ami, S.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J. M.; hide

    2014-01-01

    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

  8. Spectroscopic studies of Wolf-Rayet stars. III - The WC subclass

    NASA Technical Reports Server (NTRS)

    Torres, A. V.; Conti, P. S.; Massey, P.

    1986-01-01

    Wolf-Rayet (W-R) stars, which are the descendants of massive O-type stars, can be subdivided into three groups depending on their spectral appearance. These groups include the nitrogen class (WN), the carbon class (WC), and the oxygen class (WO). The present paper is concerned with the WC stars. The assignment of WC subtypes has been based on visual inspections of photographic plates. One of the aims of this study is related to the quantification of the visual estimates. The measured ratios of equivalent widths and the FWHM of the 4650 A line for Galactic and LMC stars are presented, and the reclassification of some stars is proposed on this basis. In particular, it is shown that the majority of the LMC WC stars should logically be classified WC4 instead of WC5. Comments on individual stars are provided, and terminal velocities are discussed. It is attempted to give a complete overview of the most important spectroscopic features of the WC stars in the optical region.

  9. A search for ejecta nebulae around Wolf-Rayet stars using the SHS Hα survey

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Barlow, M. J.

    2010-12-01

    Recent large-scale Galactic plane Hα surveys allow a re-examination of the environs of Wolf-Rayet (WR) stars for the presence of a circumstellar nebula. Using the morphologies of WR nebulae known to be composed of stellar ejecta as a guide, we constructed ejecta nebula criteria similar to those of Chu and searched for likely WR ejecta nebulae in the Southern Hα Survey (SHS). A new WR ejecta nebula around WR 8 is found and its morphology is discussed. The fraction of WR stars with ejecta-type nebulae is roughly consistent between the Milky Way (MW) and Large Magellanic Cloud (LMC) at around 5-6 per cent, with the MW sample dominated by nitrogen-rich WR central stars (WN type) and the LMC stars having a higher proportion of carbon-rich WR central stars (WC type). We compare our results with those of previous surveys, including those of Marston and Miller & Chu, and find broad consistency. We investigate several trends in the sample: most of the clear examples of ejecta nebulae have WNh central stars, and very few ejecta nebulae have binary central stars. Finally, the possibly unique evolutionary status of the nebula around the binary star WR 71 is explored.

  10. The variability of the BRITE-est Wolf-Rayet binary, γ2 Velorum-I. Photometric and spectroscopic evidence for colliding winds

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Russell, Christopher M. P.; St-Jean, Lucas; Moffat, Anthony F. J.; St-Louis, Nicole; Shenar, Tomer; Pablo, Herbert; Hill, Grant M.; Ramiaramanantsoa, Tahina; Corcoran, Michael; Hamuguchi, Kenji; Eversberg, Thomas; Miszalski, Brent; Chené, André-Nicolas; Waldron, Wayne; Kotze, Enrico J.; Kotze, Marissa M.; Luckas, Paul; Cacella, Paulo; Heathcote, Bernard; Powles, Jonathan; Bohlsen, Terry; Locke, Malcolm; Handler, Gerald; Kuschnig, Rainer; Pigulski, Andrzej; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.

    2017-11-01

    We report on the first multi-colour precision light curve of the bright Wolf-Rayet binary γ2 Velorum, obtained over six months with the nanosatellites in the BRITE-Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the data sets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analysing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He I λ5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He I to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III λ5696 of the system. These results represent the first in a series of investigations into the winds and properties of γ2 Velorum through multi-technique and multi-wavelength observational campaigns.

  11. Absolute spectrophotometry of Wolf-Rayet stars from 1200 to 7000 A - A cautionary tale

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.; Massey, P.

    1984-01-01

    It is demonstrated that absolute spectrophotometry of the continua of Wolf-Rayet stars may be obtained over the wavelength range 1200-7000 A using IUE and optical measurements. It is shown that the application of a 'standard' reddening law to the observed data gives spurious results in many cases. Additional UV extinction is apparently necessary and may well be circumstellar in origin. In such hot stars, the long-wavelength 'tail' of the emergent stellar continuum are measured. The inadequacy of previous attempts to determine intrinsic continua and effective temperatures of Wolf-Rayet stars is pointed out.

  12. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  13. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  14. Near-infrared variability study of the central 2.3 arcmin × 2.3 arcmin of the Galactic Centre - I. Catalogue of variable sources

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-09-01

    We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.

  15. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  16. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  17. On the optically thick winds of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Owocki, S. P.; Grassitelli, L.; Langer, N.

    2017-12-01

    Context. The classical Wolf-Rayet (WR) phase is believed to mark the end stage of the evolution of massive stars with initial masses higher than 25M⊙. Stars in this phase expose their stripped cores with the products of H- or He-burning at their surface. They develop strong, optically thick stellar winds that are important for the mechanical and chemical feedback of massive stars, and that determine whether the most massive stars end their lives as neutron stars or black holes. The winds of WR stars are currently not well understood, and their inclusion in stellar evolution models relies on uncertain empirical mass-loss relations. Aims: We investigate theoretically the mass-loss properties of H-free WR stars of the nitrogen sequence (WN stars). Methods: We connected stellar structure models for He stars with wind models for optically thick winds and assessed the degree to which these two types of models can simultaneously fulfil their respective sonic-point conditions. Results: Fixing the outer wind law and terminal wind velocity ν∞, we obtain unique solutions for the mass-loss rates of optically thick, radiation-driven winds of WR stars in the phase of core He-burning. The resulting mass-loss relations as a function of stellar parameters agree well with previous empirical relations. Furthermore, we encounter stellar mass limits below which no continuous solutions exist. While these mass limits agree with observations of WR stars in the Galaxy, they contradict observations in the LMC. Conclusions: While our results in particular confirm the slope of often-used empirical mass-loss relations, they imply that only part of the observed WN population can be understood in the framework of the standard assumptions of a smooth transonic flow and compact stellar core. This means that alternative approaches such as a clumped and inflated wind structure or deviations from the diffusion limit at the sonic point may have to be invoked. Qualitatively, the existence of mass limits for the formation of WR-type winds may be relevant for the non-detection of low-mass WR stars in binary systems, which are believed to be progenitors of Type Ib/c supernovae. The sonic-point conditions derived in this work may provide a possibility to include optically thick winds in stellar evolution models in a more physically motivated form than in current models.

  18. High-energy radiation from the relativistic jet of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.

    2010-12-01

    Cygnus X-3 is an accreting high-mass X-ray binary composed of a Wolf-Rayet star and an unknown compact object, possibly a black hole. The gamma-ray space telescope Fermi found definitive evidence that high-energy emission is produced in this system. We propose a scenario to explain the GeV gamma-ray emission in Cygnus X-3. In this model, energetic electron-positron pairs are accelerated at a specific location in the relativistic jet, possibly related to a recollimation shock, and upscatter the stellar photons to high energies. The comparison with Fermi observations shows that the jet should be inclined close to the line of sight and pairs should not be located within the system. Energetically speaking, a massive compact object is favored. We report also on our investigations of the gamma-ray absorption of GeV photons with the radiation emitted by a standard accretion disk in Cygnus X-3. This study shows that the gamma-ray source should not lie too close to the compact object.

  19. Wolf-Rayet spin at low metallicity and its implication for black hole formation channels

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Harries, Tim J.

    2017-07-01

    Context. The spin of Wolf-Rayet (WR) stars at low metallicity (Z) is most relevant for our understanding of gravitational wave sources, such as GW 150914, and of the incidence of long-duration gamma-ray bursts (GRBs). Two scenarios have been suggested for both phenomena: one of them involves rapid rotation and quasi-chemical homogeneous evolution (CHE) and the other invokes classical evolution through mass loss in single and binary systems. Aims: The stellar spin of WR stars might enable us to test these two scenarios. In order to obtain empirical constraints on black hole progenitor spin we infer wind asymmetries in all 12 known WR stars in the Small Magellanic Cloud (SMC) at Z = 1 / 5 Z⊙ and within a significantly enlarged sample of single and binary WR stars in the Large Magellanic Cloud (LMC at Z = 1 / 2 Z⊙), thereby tripling the sample of Vink from 2007. This brings the total LMC sample to 39, making it appropriate for comparison to the Galactic sample. Methods: We measured WR wind asymmetries with VLT-FORS linear spectropolarimetry, a tool that is uniquely poised to perform such tasks in extragalactic environments. Results: We report the detection of new line effects in the LMC WN star BAT99-43 and the WC star BAT99-70, along with the well-known WR LBV HD 5980 in the SMC, which might be undergoing a chemically homogeneous evolution. With the previous reported line effects in the late-type WNL (Ofpe/WN9) objects BAT99-22 and BAT99-33, this brings the total LMC WR sample to four, I.e. a frequency of 10%. Perhaps surprisingly, the incidence of line effects amongst low Z WR stars is not found to be any higher than amongst the Galactic WR sample, challenging the rotationally induced CHE model. Conclusions: As WR mass loss is likely Z-dependent, our Magellanic Cloud line-effect WR stars may maintain their surface rotation and fulfill the basic conditions for producing long GRBs, both via the classical post-red supergiant or luminous blue variable channel, or resulting from CHE due to physics specific to very massive stars.

  20. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a, which confirmed that the system consists of two extremely massive stars and refined the values of the masses. It is the most massive binary known with an accurate mass determination.

  1. A rotating, expanding disk in the Wolf-Rayet star EZ Canis Majoris?

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Nook, M. A.; Magalhaes, A. M.; Taylor, M.

    1990-01-01

    The discovery of linear polarization changes across the extended wings of He II lines, mainly the strong 4-3 transition at 4686 A, in the WN5 star EZ CMa, is reported. When the polarization across the line profiles is plotted in the Stokes parameters plane, it traces loops clockwise from the blue wing through line center to the red, rather than straight lines. Such polarization loops are reminiscent of what is observed in the Balmer lines of Be stars. The continuum polarization in EZ CMa can be understood by an axisymmetric, electron-scattering envelope, with the decrease in polarization in He II being caused by an increase in absorptive opacity in the lines and dilution by unpolarized line emission, while the variations in position angle are due to the Doppler-shifted absorptive opacity and/or scattered line photons. As the sense of rotation in the loops is also independent of phase of this alleged Wolf-Rayet + compact binary, the polarized line profiles are the signature of a rotating, expanding wind geometry around a single star.

  2. Astronomical Data Center Bulletin, volume 1, number 3

    NASA Technical Reports Server (NTRS)

    Mead, J. M.; Warren, W. H., Jr.; Nagy, T. A.

    1983-01-01

    A catalog of galactic O-type stars, a machine-readable version of the bright star catalog, a two-micron sky survey, sky survey sources with problematical Durchmusterung identifications, data retrieval for visual binary stars, faint blue objects, the sixth catalog of galactic Wolf-Rayet stars, declination versus magnitude distribution, the SAO-HD-GC-DM cross index catalog, star cross-identification tables, astronomical sources, bibliographical star index search updates, DO-HD and HD-DO cross indices, and catalogs, are reviewed.

  3. Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era

    NASA Astrophysics Data System (ADS)

    Stark, Daniel

    2017-08-01

    The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.

  4. Celestial paleontology: The legacy of dying stars

    NASA Astrophysics Data System (ADS)

    Hart, Alexa H.

    2013-03-01

    In their death throes, stars dole out their atmospheric material to the interstellar medium in dramatic stellar winds and spectacular explosions. The details of this profound metamorphosis, from star to remnant, play a key role in the next generation of star formation as well as the energetic and chemical evolution of galaxies and the universe as a whole. Dying stars are thought to be the source of all of the nuclei heavier than iron in the universe, as well as more complex molecules, such as carbon chains, which form the backbone of life as we know it. High mass Wolf-Rayet stars are likely progenitors of many types of Supernova, yet due to observational constraints we lack the most basic information about most of them: rather they are part of binary systems. This information is key to the determination of rather or not these stars will go supernova, since depending on its nature the companion can either draw mass off the Wolf-Rayet star, effectively quenching the march to explosion, or feed material onto the Wolf-Rayet star, speeding its demise as a supernova. Models of galactic evolution depend sensitively on the frequency of supernova for several reasons: they inject a great deal of energy into the Interstellar medium, they are the only known producers of nuclei heavier than nickel, and the shock waves that they create can stimulate star formation. In turn, the energy generated by supernova explosions drives the galactic wind, the heavier elements now present in the Interstellar Medium increase the efficiency of star formation, and the groups of new stars formed in the wake of a shock are thought to lead to the development of spiral arms in galaxies. In addition, because high mass stars are so short-lived, they can cycle through hundreds of generations in the time it takes one solar-type star's to evolve. Though intermediate mass stars merely fizzle out in comparison, they are pivotal to the evolution of the universe because they make up over 97% of the stars that have had enough time to evolve off the Main Sequence since the Big Bang. These stars produce more than half of the carbon in the universe as well as much of the nitrogen, oxygen, and more complex molecules such as aromatic rings of carbon. This process, often referred to as chemical enrichment, strongly affects the star formation rates and the characteristics of the next generation of stars. In this work, we explore the contributions of these two classes of stars to our own galaxy: we quantify the nature of the chemical enrichment to the Milky Way from a large sample of intermediate mass stars, and determine the binary status of a sample of Wolf-Rayet stars in the Milky Way.

  5. MOST: A Powerful Tool to Reveal the True Nature of the Mysterious Dust-Forming Wolf-Rayet Binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Moffat, A. F. J.; Chené, A.-N.; MOST Collaboration

    2012-12-01

    The WR + O binary CV Ser has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. However, the first high-precision time-dependent photometric observations obtained with the MOST space telescope in 2009 show two consecutive eclipses over the 29 day orbit, with varying depths. A subsequent MOST run in 2010 showed a somewhat asymmetric eclipse profile. Parallel optical spectroscopy was obtained from the Observatoire du Mont-Mégantic (2009 and 2010) and from the Dominion Astrophysical Observatory (2009).

  6. The Fundamental Physical Properties of Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    Massive stars are the cosmic engines that power the far-infrared luminosities of distant galaxies, and dominate the ionization of nearby HII regions. They are the primary source of carbon and oxygen in the Universe, and their core collapses manufacture all of the elements heavier than Fe. The re-ionization of the early Universe was thanks to Population III massive stars, and the super-massive black holes we find in the cores of galaxies today were seeded as a result of the black holes that formed from the first generations of massive stars. Understanding massive star evolution is the key to unlocking many astrophysical problems. The largest uncertainty in massive star evolution is the question of how Wolf-Rayet (WR) stars form. Our proposal will determine the fundamental physical properties of WRs using four archival NASA data sets for a critical comparison with present day evolution models. It is generally assumed that massive stars spend most of their post-main-sequence lives WRs. For decades we have believed that WRs form as a result of stellar winds stripping off the H-rich outer layers of a star, leaving behind a bare stellar core. In this picture, WRs are a normal stage in the evolution of the most massive stars. Recently, this scenario has been called into question. Stellar wind mass- loss rates are now known to be significantly lower than previously thought, although whether this is a factor of 3 or 10 remains unclear. If the latter is correct, then this poses a serious problem for the formation of WRs. This has created a paradigm shift, with increased importance attached to the role of binary evolution, with Roche-lobe overflow performing the stripping. Attempts to distinguish which scenario is more prevalent is complicated by the possibility of past mergers; i.e., just because a WR is not a binary today does not prove it was not one in the past. We will tackle this question from a fresh perspective, determining reliable fundamental physical properties of WRs and seeing whether they better match the single or binary star evolutionary models. If they agree with the single-star models, that is compelling evidence that WRs are a normal part of the evolution of massive stars. If they disagree, perhaps either binary evolution plays an important role in the formation of WRs or the single star models could be improved. For instance, we know that the mass-loss rates during the Luminous Blue Variable and red supergiant phases are poorly constrained by observations. If higher mass loss rates during these phases were included, could we account for all of the WR physical properties (including chemical abundances) that we find? Either result will help us learn more about the origin of WRs while also testing and helping improve the evolutionary models. For this test to be meaningful, we must have accurate measurements of the fundamental physical properties of WRs (such as effective temperatures, bolometric luminosities, and chemical abundances), as well as having a good understanding of the uncertainties on these quantities. To achieve this, we have a selected a statistically large sample of 27 WRs in the Small and Large Magellanic Clouds which possess excellent UV spectra in the MAST IUE archive. This wavelength is crucial, as it contains key diagnostic resonance lines, such as CIV 1550. To these, we add our own high quality Magellan optical (and, when needed, near-IR) spectrophotometry. Forty percent of our sample has also been observed in the far-UV with FUSE, providing additional diagnostics. Finally, we will incorporate NASA 2MASS and Spitzer IPAC photometry, which extend the spectral energy distribution into the IR. We will model each of these combined data sets using CMFGEN, a stellar atmosphere code that includes the many complications needed to model the spectra of these stars. The use of this combined data set achieves what one could not hope to do from any one of them, consistent with the aims of the ADAP.

  7. The VLT-FLAMES Tarantula Survey. I. Introduction and observational overview

    NASA Astrophysics Data System (ADS)

    Evans, C. J.; Taylor, W. D.; Hénault-Brunet, V.; Sana, H.; de Koter, A.; Simón-Díaz, S.; Carraro, G.; Bagnoli, T.; Bastian, N.; Bestenlehner, J. M.; Bonanos, A. Z.; Bressert, E.; Brott, I.; Campbell, M. A.; Cantiello, M.; Clark, J. S.; Costa, E.; Crowther, P. A.; de Mink, S. E.; Doran, E.; Dufton, P. L.; Dunstall, P. R.; Friedrich, K.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Izzard, R. G.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Ramirez, O. H.; Sabín-Sanjulián, C.; Smartt, S. J.; Stroud, V. E.; van Loon, J. Th.; Vink, J. S.; Walborn, N. R.

    2011-06-01

    The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution. Figures 10-12, Tables 5 and 6, and Appendix A are available in electronic form at http://www.aanda.org

  8. The Wolf-Rayet nebula NGC 3199 - an interstellar snow plough?

    NASA Astrophysics Data System (ADS)

    Dyson, J. E.; Ghanbari, J.

    1989-12-01

    The Wolf-Rayet nebula NGC 3199 has a highly asymmetric morphology, with a very bright hemisphere near the exciting star HD 89358 and a much fainter and more extended other hemisphere. This nebula is modeled in terms of the distorted bubble produced by a moving star blowing a strong stellar wind into a surrounding uniform interstellar medium; this model is fitted to the morphology and observed kinematic data. The exciting star appears to be moving at about 60 km/s into local interstellar gas of density of about 10/cu cm, and has a mass-loss rate of about 0.000027 solar mass/yr. This latter mass-loss rate is in excellent agreement with observed mass-loss rates from Wolf-Rayet stars.

  9. VLT/SINFONI time-resolved spectroscopy of the central, luminous, H-rich WN stars of R136

    NASA Astrophysics Data System (ADS)

    Schnurr, O.; Chené, A.-N.; Casoli, J.; Moffat, A. F. J.; St-Louis, N.

    2009-08-01

    Using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared, we have obtained repeated adaptive-optics-assisted, near-infrared spectroscopy of the six central luminous, Wolf-Rayet (WR) stars in the core of the very young (~1 Myr), massive and dense cluster R136, in the Large Magellanic Cloud (LMC). We also de-archived available images that were obtained with the Hubble Space Telescope's Space Telescope Imaging Spectrograph, and extracted high-quality, differential photometry of our target stars to check for any variability related to binary motion. Previous studies, relying on spatially unresolved, integrated, optical spectroscopy, had reported that one of these stars was likely to be a 4.377-d binary. Our study set out to identify the culprit and any other short-period system among our targets. However, none displays significant photometric variability, and only one star, BAT99-112 (R136c), located on the outer fringe of R136, displays a marginal variability in its radial velocities; we tentatively report an 8.2-d period. The binary status of BAT99-112 is supported by the fact that it is one of the brightest X-ray sources among all known WR stars in the LMC, consistent with it being a colliding wind system. Followup observations have been proposed to confirm the orbital period of this potentially very massive system. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 076.D-0563, and on observations made with the Hubble Space Telescope (HST) obtained from the European Southern Observatory (ESO)/Space Telescope-European Coordinating Facility (ST-ECF) Science Archive. E-mail: o.schnurr@sheffield.ac.uk

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Doi, Mamoru

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parentmore » stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.« less

  11. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity

    NASA Astrophysics Data System (ADS)

    Götberg, Y.; de Mink, S. E.; Groh, J. H.

    2017-11-01

    Understanding ionizing fluxes of stellar populations is crucial for various astrophysical problems including the epoch of reionization. Short-lived massive stars are generally considered as the main stellar sources. We examine the potential role of less massive stars that lose their envelope through interaction with a binary companion. Here, we focus on the role of metallicity (Z). For this purpose we used the evolutionary code MESA and created tailored atmosphere models with the radiative transfer code CMFGEN. We show that typical progenitors, with initial masses of 12 M⊙, produce hot and compact stars ( 4 M⊙, 60-80 kK, 1 R⊙). These stripped stars copiously produce ionizing photons, emitting 60-85% and 30-60% of their energy as HI and HeI ionizing radiation, for Z = 0.0001-0.02, respectively. Their output is comparable to what massive stars emit during their Wolf-Rayet phase, if we account for their longer lifetimes and the favorable slope of the initial mass function. Their relative importance for reionization may be further favored since they emit their photons with a time delay ( 20 Myr after birth in our fiducial model). This allows time for the dispersal of the birth clouds, allowing the ionizing photons to escape into the intergalactic medium. At low Z, we find that Roche stripping fails to fully remove the H-rich envelope, because of the reduced opacity in the subsurface layers. This is in sharp contrast with the assumption of complete stripping that is made in rapid population synthesis simulations, which are widely used to simulate the binary progenitors of supernovae and gravitational waves. Finally, we discuss the urgency to increase the observed sample of stripped stars to test these models and we discuss how our predictions can help to design efficient observational campaigns.

  12. The Two Components of the Evolved Massive Binary LZ Cephei: Testing the Effects of Binarity on Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Mahy, L.; Martins, F.; Donati, J.-F.; Bouret, J.-C.

    2011-01-01

    We present an in-dep(h study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results.LZ Cep is a O9III+ON9.7V binary. It is as a semi-detailed system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 Stellar Mass (primary) and 6.5 Stellar Mass (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain abe observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  13. The two components of the evolved massive binary LZ Cephei. Testing the effects of binarity on stellar evolution

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Martins, F.; Machado, C.; Donati, J.-F.; Bouret, J.-C.

    2011-09-01

    Aims: We present an in-depth study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods: We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results: LZ Cep is a O 9III+ON 9.7V binary. It is as a semi-detached system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 M⊙ (primary) and 6.5 M⊙ (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON 9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain the observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  14. Mass loss from interacting close binary systems

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.

  15. Using MOST to reveal the secrets of the mischievous Wolf-Rayet binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André-Nicolas; Rowe, Jason F.; Lange, Nicholas; Guenther, David B.; Kuschnig, Rainer; Matthews, Jaymie M.; Rucinski, Slavek M.; Sasselov, Dimitar; Weiss, Werner W.

    2012-11-01

    The Wolf-Rayet (WR) binary CV Serpentis (= WR113, WC8d + O8-9IV) has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. The first high-precision time-dependent photometric observations obtained with the Microvariability and Oscillations of STars (MOST) space telescope in 2009 show two consecutive eclipses over the 29-d orbit, with varying depths. A subsequent MOST run in 2010 showed a seemingly asymmetric eclipse profile. In order to help make sense of these observations, parallel optical spectroscopy was obtained from the Mont Megantic Observatory (2009, 2010) and from the Dominion Astrophysical Observatory (2009). Assuming these depth variations are entirely due to electron scattering in a β-law wind, an unprecedented 62 per cent increase in M⊙ is observed over one orbital period. Alternatively, no change in mass-loss rate would be required if a relatively small fraction of the carbon ions in the wind globally recombined and coaggulated to form carbon dust grains. However, it remains a mystery as to how this could occur. There also seems to be evidence for the presence of corotating interaction regions (CIR) in the WR wind: a CIR-like signature is found in the light curves, implying a potential rotation period for the WR star of 1.6 d. Finally, a new circular orbit is derived, along with constraints for the wind collision.

  16. A model for the global Wolf-Rayet population of the Milky Way

    NASA Astrophysics Data System (ADS)

    Rosslowe, Christopher K.; Crowther, Paul A.

    2013-06-01

    Prompted by the rapidly increasing discovery rate of Galactic Wolf-Rayet stars, we have produced a new near-IR absolute magnitude-spectral subtype calibration from Wolf-Rayet stars at known distances (mostly via cluster membership). We combine this with the relative distribution of WR subtypes for the inner disk, solar circle, and outer disk to model the global WR population in the Milky Way. We adopt the observed vertical scale height of known WR stars plus the measured spatial distribution of dust to produce an expected variation in apparent near-IR magnitudes, of relevance to future spectroscopic surveys. Finally, we use our model apparent magnitude distribution to quantify the total Galactic WR population, and compare this total to expectations from various star formation rate indicators.

  17. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  18. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  19. Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Abbott, David C.; Conti, Peter S.

    1987-01-01

    The properties and evolutionary status of WR stars are examined, reviewing the results of recent observational and theoretical investigations. Topics discussed include spectral types and line strengths, magnitudes and colors, intrinsic variability, IR and radio observations, X-ray observations, the Galactic distribution of WR stars, WR stars in other galaxies, and WR binaries. Consideration is given to the inferred masses, composition, and stellar winds of WR stars; model atmospheres; WR stars and the Galactic environment; and WR stars as a phase of stellar evolution. Diagrams, graphs, and tables of numerical data are provided.

  20. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope, the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.

  1. Detectability of Wolf-Rayet stars in M33 and Beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Brocklebank, Aaron J.; Pledger, J. L.; Sansom, A. E.

    2017-11-01

    To understand how complete our surveys of Wolf-Rayet (WR) stars can be with the current generation of telescopes, we study images of M33, a galaxy with a nearly complete WR catalogue, and degrade them to investigate the detectability of WRs out to 30Mpc. We lose almost half of our sample at 4.2Mpc, and at 30Mpc we detect only those WRs in bright regions.

  2. Discovery of a Wolf-Rayet Star through Detection of Its Photometric Variability

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Marion, G. H. Howie; Vinkó, József; McClelland, Colin; Rettig, Terrence; Wheeler, J. Craig

    2012-06-01

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 Å, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 Å line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 ± 0.3 kpc.

  3. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-raymore » spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.« less

  4. The very young resolved stellar populations around stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn R.

    2018-05-01

    The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remain debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within 150 pc of the target Type IIb, Ib, and Ic SNe to be log (t) = 7.20, 7.05, and 6.57, respectively. The Type Ic SNe in the sample are nearly all observed within 100 pc of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with Minit > 30 M⊙ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.

  5. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  6. An IRAS-based search for new Dusty Late-Type WC Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles ('ADDSCANs') and two-dimensional full-resolution images ('FRESCOs'). The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be examined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IRAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for the absolute value of l greater than 30 deg, and to 2.9 kpc even in the innermost Galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  7. A spectroscopic survey of the WNL stars in the Large Magellanic Cloud: General properties and binary status

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier

    2008-09-01

    This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such known binaries, and paves the way for an independent mass determination via Keplerian orbits in further studies, some of which we have already initiated. The results of those studies will be crucial for calibrating stellar models. One of these binaries, R145, is then studied in greater detail, combining previously published and unpublished data with ours, to present, for the first time, a full set of orbital parameters for both components of the binary system. Since we also determine the orbital inclination angle, we are able to derive the absolute masses of this extreme object. It is found that R145 very likely harbors the most massive star known and properly "weighed" so far.

  8. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  9. A Clue to the Extent of Convective Mixing Inside Massive Stars: The Surface Hydrogen Abundances of Luminous Blue Variables and Hydrogen-Poor Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen

    1999-01-01

    Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.

  10. International Ultraviolet Explorer Observations of Wolf-Rayet Binaries: Wind Structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.

    1983-01-01

    Spectra of six WN + OB Wolf-Rayet systems obtained with the IUE are analyzed for phase-dependent variations. Periodic variability at emission-line frequencies is detected in V444 Cyg, HD 90657, HD 211853, HD 186943 and HD 94546 on low dispersion SWP images. No changes in the low dispersion spectra of HD 193077 are apparent. We find the variations in the UV to be similar in nature to those observed in optical spectra of various WR sources. That is, there is a strengthening of absorption components in P Cygni-type features at orbital phases in which the O-star is behind the WR wind. With the aid of a computer code which models this type of variations, and through a comparison with HD 193077, the dominant mechanism producing the variations is shown to be selective atmospheric eclipses of the O-star by the WR wind. Based on this interpretation, a straightforward technique is applied to the line of N IV 1718, by which an optical depth distribution in the WN winds of the form tau varies as r(-1) is derived for 16 r 66 solar radii. Phase-dependent variations in the width of the C IV 1550 absorption component in V444 Cyg, HD 90657 and HD 211853 are interpretated as wind-wind collision effects.

  11. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  12. THE PROPAGATION OF NEUTRINO-DRIVEN JETS IN WOLF-RAYET STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagakura, Hiroki, E-mail: hiroki@heap.phys.waseda.ac.jp; Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555

    We numerically investigate the jet propagation through a rotating collapsing Wolf-Rayet star with detailed central engine physics constructed based on the neutrino-driven collapsar model. The collapsing star determines the evolution of the mass accretion rate, black hole mass, and spin, all of which are important ingredients for determining the jet luminosity. We reveal that neutrino-driven jets in rapidly spinning Wolf-Rayet stars are capable of breaking out from the stellar envelope, while those propagating in slower rotating progenitors fail to break out due to insufficient kinetic power. For progenitor models with successful jet breakouts, the kinetic energy accumulated in the cocoonmore » could be as large as {approx}10{sup 51} erg and might significantly contribute to the luminosity of the afterglow emission or to the kinetic energy of the accompanying supernova if nickel production takes place. We further analyze the post-breakout phase using a simple analytical prescription and conclude that the relativistic jet component could produce events with an isotropic luminosity L {sub p(iso)} {approx} 10{sup 52} erg s{sup -1} and isotropic energy E {sub j(iso)} {approx} 10{sup 54} erg. Our findings support the idea of rapidly rotating Wolf-Rayet stars as plausible progenitors of GRBs, while slowly rotational ones could be responsible for low-luminosity or failed GRBs.« less

  13. Outflow-Induced Dynamical and Radiative Instability in Stellar Envelopes with an Application to Luminous Blue Variables and Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.

  14. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  15. Predicting the nature of supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2017-09-01

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  16. Ring nebulae around Wolf-Rayet stars in M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Shara, Michael M.; Moffat, Anthony F. J.

    1991-01-01

    Results of a systematic search for H II ring nebulae surrounding Wolf-Rayet (WR) stars in M33 are presented. Eleven objects are found to be good candidates, while eight others are classified as possible WR ring nebulae. The WR rings in M33 are larger on average than their Galactic counterparts, but the H-alpha luminosity of most of them is comparable to the bright Galactic wind-blown bubbles. The rings are associated with WC as well as with WN stars.

  17. The Distribution of Wolf-Rayet Stars in NGC 6744

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Bibby, J. L.; Zurek, D.; Crowther, P.

    2013-01-01

    We undertake a survey of the Wolf-Rayet population of NGC 6744, a spiral galaxy located at an estimated distance of 11.6 Mpc, in order to determine whether the distribution of this population is consistent with the distributions of various ccSNe subtypes. 242 Wolf-Rayet candidate sources are identified, 40% of which are only detected in narrow-band helium II imaging, not in broad-band imaging. The spatial distribution of WR candidates is compared to the distributions of ccSNe subtype populations in the broad-band B filter and the narrow-band Hα filter. WR stars appear to follow the Type Ic distribution in the faintest 30% of the galaxy in the B image, but follow the Ib or II distribution in the brightest regions, possibly due to the difficulty of detecting WR stars in the brightest regions. WR candidates are found to be closely associated with HII regions; however, the treatment of the residual background strongly affects the distribution, and this result must be investigated further.

  18. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, Colin; Garnavich, Peter; McClelland, Colin

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocularmore » Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.« less

  19. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications

    NASA Astrophysics Data System (ADS)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2017-06-01

    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  20. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svirski, Gilad; Nakar, Ehud, E-mail: swirskig@post.tau.ac.il

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is foundmore » to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.« less

  1. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.

  2. Detecting a Hot Companion to the Progenitor of the Type Ic Supernova 1994I in M51

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2013-10-01

    Core-collapse supernovae {SNe} are the endpoints of the lives of massive stars {with initial mass > 8 solar masses}. We are reasonably confident that the progenitor stars for most hydrogen-rich Type II SNe are red supergiants, based in part on direct identifications with HST. However, the progenitors of the stripped-envelope He-rich Type Ib and He-poor Type Ic SNe have yet to be directly identified. These SNe are thought to arise from either single, high-mass stars in the Wolf-Rayet phase or, alternatively, from lower-mass stars in interacting binary systems. Both models can account for the required extensive envelope stripping. Until a progenitor is identified for these SN types, our best hope of testing these progenitor models is to detect the companion star to the progenitor, if the binary model holds. This star is predicted to be a hot supergiant. Therefore, it is best detected in the ultraviolet. The only SN which is sufficiently nearby and experienced low enough reddening to be a viable target for this detection is the SN Ic 1994I in M51. Furthermore, the SN was imaged by HST when it was still bright, so we can pinpoint its location. We therefore propose, as part of the UV Initiative in Cycle 21, to image the site in F275W and F336W to levels deep enough to significantly detect a putative progenitor companion, if it exists. The proposed observations will provide an important test of the binary progenitor hypothesis.

  3. X-ray observations of the colliding wind binary WR 25

    NASA Astrophysics Data System (ADS)

    Arora, Bharti; Pandey, Jeewan Chandra

    2018-04-01

    Using the archival data obtained from Chandra and Suzaku spanning over '8 years, we present an analysis of a WN6h+O4f Wolf-Rayet binary, WR 25. The X-ray light curves folded over a period of '208 d in the 0.3 - 10.0 keV energy band showed phase-locked variability where the count rates were found to be maximum near the periastron passage. The X-ray spectra of WR 25 were well explained by a two-temperature plasma model with temperatures of 0.64 ± 0.01 and 2.96 ± 0.05 keV and are consistent with previous results. The orbital phase dependent local hydrogen column density was found to be maximum just after the periastron passage, when the WN type star is in front of the O star. The hard (2.0 - 10.0 keV) X-ray luminosity was linearly dependent on the inverse of binary separation which confirms that WR 25 is a colliding wind binary.

  4. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  5. Family ties of WR to LBV nebulae yielding clues for stellar evolution

    NASA Astrophysics Data System (ADS)

    Weis, K.

    Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.

  6. Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; Marchenko, S. V.; Marston, A. P.; Moffat, A. F. J.; Varricatt, W. P.; Dougherty, S. M.; Kidger, M. R.; Morbidelli, L.; Tapia, M.

    2009-05-01

    We present high-resolution infrared (2-18 μm) images of the archetypal periodic dust-making Wolf-Rayet binary system WR140 (HD 193793) taken between 2001 and 2005, and multi-colour (J - [19.5]) photometry observed between 1989 and 2001. The images resolve the dust cloud formed by WR140 in 2001, allowing us to track its expansion and cooling, while the photometry allows tracking the average temperature and total mass of the dust. The combination of the two data sets constrains the optical properties of the dust, and suggests that they differ from those of the dust made by the WC9 dust-makers, including the classical `pinwheel', WR104. The photometry of individual dust emission features shows them to be significantly redder in (nbL'-[3.99]), but bluer in ([7.9]-[12.5]), than the binary, as expected from the spectra of heated dust and the stellar wind of a Wolf-Rayet star. The most persistent dust features, two concentrations at the ends of a `bar' of emission to the south of the star, were observed to move with constant proper motions of 324 +/- 8 and 243 +/- 7 mas yr-1. Longer wavelength (4.68 and 12.5 μm) images show dust emission from the corresponding features from the previous (1993) periastron passage and dust formation episode, showing that the dust expanded freely in a low-density void for over a decade, with dust features repeating from one cycle to the next. A third persistent dust concentration to the east of the binary (the `arm') was found to have a proper motion ~320 mas yr-1, and a dust mass about one-quarter that of the `bar'. Extrapolation of the motions of the concentrations back to the binary suggests that the eastern `arm' began expansion four to five months earlier than those in the southern `bar', consistent with the projected rotation of the binary axis and wind-collision region (WCR) on the sky. A comparison of model dust images and the observations constrains the intervals when the WCR was producing sufficiently compressed wind for dust nucleation in the WCR, and suggests that the distribution of this material was not uniform about the axis of the WCR, but more abundant in the following edge in the orbital plane.

  7. A Modern Search for Wolf-Rayet Stars in the Magellanic Clouds. III. A Third Year of Discoveries

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia

    2017-03-01

    For the past three years we have been conducting a survey for Wolf-Rayet (WR) stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars have the emission-line properties of a WN3 star (strong N v, but no N IV), plus the absorption-line properties of an O3 star (Balmer hydrogen plus Pickering He II, but no He I). Yet, these stars are 15 times fainter than an O3 V star, ruling out the possibility that WN3/O3s are WN3+O3 binaries. Here we report the discovery of two more members of this class, bringing the total number of these objects to 10, 6.5% of the LMC’s total WR population. The optical spectra of nine of these WN3/O3s are virtually indistinguishable from each other, but one of the newly found stars is significantly different, showing a lower excitation emission and absorption spectrum (WN4/O4-ish). In addition, we have newly classified three unusual Of-type stars, including one with a strong C III λ 4650 line, and two rapidly rotating “Oef” stars. We also “rediscovered” a low mass X-ray binary, RX J0513.9-6951, and demonstrate its spectral variability. Finally, we discuss the spectra of 10 low priority WR candidates that turned out to not have He II emission. These include both a Be star and a B[e] star. This paper includes data gathered with the 1 m Swope and 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. HST FGS1R Results On the Association Between Binary Wolf-Rayet Stars and Non-Thermal Radio Emission

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Gies, D. R.; Nelan, E.; Leitherer, C.

    2000-12-01

    Two separate models have been proposed to explain the non-thermal emission detected in some Wolf-Rayet (WR) stars. In models based on single WR stars, this emission is proposed to arise via synchrotron radiative processes in the outer (intrinsically unstable) WR wind (e.g. White & Chen 1995). In models based on WR + O systems, this non-thermal radio emission is suggested to arise from the WR wind colliding with the wind of a companion (e.g. Williams et al. 1990). In order to be observed, the colliding winds region is believed to occur in wide binaries where the interaction zone is outside the WR radio photosphere (≈30 AU based on spherically symmetric uniform wind models). HST FGS1R observations of 9 non-thermal and 9, as a control group, purely thermal radio emitting stars attempted to verify the theory that this non-thermal emission is always a result of binary interactions. If the binary model is correct, then most or all of our non-thermal targets should have companions with projected separations of 0.01″

  9. A new prescription for the mass-loss rates of hydrogen-free WR stars

    NASA Astrophysics Data System (ADS)

    Tramper, Frank; Sana, Hugues; de Koter, Alex

    2017-11-01

    We present a new empirical prescription for the mass-loss rates of hydrogen-free Wolf-Rayet stars based on results of detailed spectral analyses of WC and WO stars. Compared to the prescription of Nugis & Lamers (2000), M⊙ is less sensitive to the surface helium abundance, implying a stronger mass loss at the late stages of Wolf-Rayet evolution. The winds of hydrogen-free WN stars have a strong metallicity dependence, while those of WC and WO stars have a very weak metallicity dependence.

  10. UV and radiofrequency observations of Wolf-Rayet stars.

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1973-01-01

    Available spectrometric and photometric observations of Wolf-Rayet stars by the OAO 2 spacecraft in the UV range are discussed along with radio astronomical observations of W stars with symmetrical nebulae around them. The scanned spectrum of the WN5 star HD 50896 between 1200 and 1900 A is illustrated together with the photometered spectrum of the WN6 star HD 192163 from 1330 to 3320 A. RF observations of NGC 6888 around HD 192163 are examined relative to interpretation of the properties of a WN6 star ejecting mass into a nebular shell.

  11. Subsonic structure and optically thick winds from Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Langer, N.; Grin, N. J.; Mackey, J.; Bestenlehner, J. M.; Gräfener, G.

    2018-06-01

    Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf-Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf-Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that these stars have their winds launched to supersonic velocities by the radiation pressure arising from the iron opacity bump. Conversely, stellar models which do not show transonic flows from the iron opacity bump form low-density extended envelopes. We derive an analytic criterion for the appearance of envelope inflation and of a density inversion in the outer sub-photospheric layers.

  12. A Chandra grating observation of the dusty Wolf-Rayet star WR 48a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhekov, Svetozar A.; Gagné, Marc; Skinner, Stephen L., E-mail: szhekov@space.bas.bg, E-mail: mgagne@wcupa.edu, E-mail: stephen.skinner@colorado.edu

    We present results of a Chandra High-Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR 48a. These are the first high-resolution spectra of this object in X-ray. Blueshifted centroids of the spectral lines of ∼ – 360 km s{sup –1} and line widths of 1000-1500 km s{sup –1} (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarified 10-30 MK plasma forms far from strong sources of far-ultraviolet emission, most likely in a wind collision zone. Global spectralmore » modeling showed that the X-ray spectrum of WR 48a suffered higher absorption in the 2012 October Chandra observation compared with a previous 2008 January XMM-Newton observation. The emission measure of the hot plasma in WR 48a decreased by a factor ∼3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.« less

  13. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less

  14. Winds from stripped low-mass helium stars and Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2017-11-01

    We present mass-loss predictions from Monte Carlo radiative transfer models for helium (He) stars as a function of stellar mass, down to 2 M⊙. Our study includes both massive Wolf-Rayet (WR) stars and low-mass He stars that have lost their envelope through interaction with a companion. For these low-mass He stars we predict mass-loss rates that are an order of magnitude smaller than by extrapolation of empirical WR mass-loss rates. Our lower mass-loss rates make it harder for these elusive stripped stars to be discovered via line emission, and we should attempt to find these stars through alternative methods instead. Moreover, lower mass-loss rates make it less likely that low-mass He stars provide stripped-envelope supernovae (SNe) of type Ibc. We express our mass-loss predictions as a function of L and Z and not as a function of the He abundance, as we do not consider this physically astute given our earlier work. The exponent of the M⊙ versus Z dependence is found to be 0.61, which is less steep than relationships derived from recent empirical atmospheric modelling. Our shallower exponent will make it more challenging to produce "heavy" black holes of order 40 M⊙, as recently discovered in the gravitational wave event GW 150914, making low metallicity for these types of events even more necessary.

  15. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previouslymore » known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.« less

  16. A new ejecta shell surrounding a Wolf-Rayet star in the LMC

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.; Chu, You-Hua

    1994-01-01

    We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.

  17. Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity

    NASA Technical Reports Server (NTRS)

    Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.

    1995-01-01

    We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that potons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identfying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.

  18. Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity

    NASA Astrophysics Data System (ADS)

    Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.

    1995-03-01

    We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that photons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identifying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.

  19. High-precision polarimetry at the Mont-Mégantic Observatory with the new polarimeter POMM

    NASA Astrophysics Data System (ADS)

    Bastien, Pierre; Hernandez, Olivier; Albert, Loïc.; Artigau, Étienne; Doyon, René; Drissen, Laurent; Lafrenière, David; Moffat, Antony F. J.; St-Louis, Nicole

    2014-07-01

    A new polarimeter has been built for the "Observatoire du Mont-Mégantic" (POMM) and is now in commissioning phase. It will allow polarization measurements with a precision of 10-6, an improvement by a factor of 100 over the previous observatory polarimeter. The characteristics of the instrument that allow this goal are briefly discussed and the planned science observations are presented. They include exoplanets near their host star (hot Jupiters), transiting exoplanets, stars with debris disks, young stars with proto-planetary disks, brown dwarfs, massive Wolf-Rayet stars and comets. The details of the optical and mechanical designs are presented in two other papers.

  20. The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.

    2018-04-01

    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.

  1. ELEVEN NEW HEAVILY REDDENED FIELD WOLF-RAYET STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony

    We report the results of a medium-narrowband 2 {mu}m line survey covering 5.8 deg{sup 2} near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as A{sub V} {approx} 40 and as distant as 9 kpc down to modest magnitude limits of K{sub s} {approx} 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A{sub K{sub s}} = 2.5. Over the fields surveyed,more » the density of Wolf-Rayet stars to limiting magnitude K{sub s} {approx} 12.5 was found to be 1.9 deg{sup -2}. We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.« less

  2. Predicting the nature of supernova progenitors.

    PubMed

    Groh, Jose H

    2017-10-28

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  3. Gamma-ray line emission from Al-26 produced by Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Prantzos, N.; Casse, M.; Gros, M.; Doom, C.; Arnould, M.

    1985-01-01

    The recent satellite observations of the 1.8 MeV line from the decay of Al-26 has given a new impetus to the study of the nucleosynthesis of Al-26. The production and ejection of Al-26 by massive mass-losing stars (Of and WR stars) is discussed in the light of recent stellar models. The longitude distribution of the Al-26 gamma ray line emission produced by the galactic collection of WR stars is derived based on various estimates of their radial distribution. This longitude profile provides: (1) a specific signature of massive stars on the background of other potential Al-26 sources, as novae, supernovae, certain red giants and possibly AGB stars; and (2) a possible tool to improve the data analysis of the HEAO 3 and SMM experiments.

  4. In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Vink, J. S.; Gräfener, G.; Harries, T. J.

    2011-12-01

    Long-duration gamma-ray bursts (GRBs) involve the most powerful cosmic explosions since the Big Bang. Whilst it has been established that GRBs are related to the death throes of massive stars, the identification of their elusive progenitors has proved challenging. Theoretical modelling suggests that rotating Wolf-Rayet (WR) stars are the best candidates. Wolf-Rayet stars are thought to be in advanced core burning stages, just prior to explosion, but their strong stellar winds shroud their surfaces, preventing a direct measurement of their rotation. Fortunately, linear spectropolarimetry may be used to probe the flattening of their winds because of stellar spin. Spectropolarimetry surveys have shown that the vast majority of WR stars (80%) have spherically symmetric winds and are therefore rotating slowly, yet a small minority (of 20%) display a spectropolarimetric signature indicative of rotation. Here we find a highly significant correlation between WR objects that carry the signature of stellar rotation and the small subset of WR stars with ejecta nebulae that have only recently transitioned from a previous red sugergiant or luminous blue variable phase. As these youthful WR stars have yet to spin-down because of mass loss, they are the best candidate GRB progenitors identified to date. When we take recently published WR ejecta nebula numbers (of Stock & Barlow 2010, MNRAS, 409, 1429), we find that five out of the six line-effect WR stars are surrounded by ejecta nebulae. The statistics imply that the null hypothesis of no correlation between line-effect WR stars and ejecta nebulae can be rejected at the 0.0004% level. Given that four line-effect and WR ejecta nebula have spectroscopically been confirmed to contain nucleo-synthetic products, we argue that the correlation is both statistically significant and physically convincing. The implication is that we have identified a sub-population of WR stars that fulfils the necessary criteria for making GRBs. Finally, we discuss the potential of identifying GRB progenitors via linear spectropolarimetry with extremely large telescopes.

  5. Black Hole Hunters Set New Distance Record

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance around each other in a diabolic waltz, with a period of about 32 hours. The astronomers also found that the black hole is stripping matter away from the star as they orbit each other. "This is indeed a very 'intimate' couple," notes collaborator Robin Barnard. "How such a tightly bound system has been formed is still a mystery." Only one other system of this type has previously been seen, but other systems comprising a black hole and a companion star are not unknown to astronomers. Based on these systems, the astronomers see a connection between black hole mass and galactic chemistry. "We have noticed that the most massive black holes tend to be found in smaller galaxies that contain less 'heavy' chemical elements," says Crowther [2]. "Bigger galaxies that are richer in heavy elements, such as the Milky Way, only succeed in producing black holes with smaller masses." Astronomers believe that a higher concentration of heavy chemical elements influences how a massive star evolves, increasing how much matter it sheds, resulting in a smaller black hole when the remnant finally collapses. In less than a million years, it will be the Wolf-Rayet star's turn to go supernova and become a black hole. "If the system survives this second explosion, the two black holes will merge, emitting copious amounts of energy in the form of gravitational waves as they combine [3]," concludes Crowther. However, it will take some few billion years until the actual merger, far longer than human timescales. "Our study does however show that such systems might exist, and those that have already evolved into a binary black hole might be detected by probes of gravitational waves, such as LIGO or Virgo [4]." Notes [1] Stellar-mass black holes are the extremely dense, final remnants of the collapse of very massive stars. These black holes have masses up to around twenty times the mass of the Sun, as opposed to supermassive black holes, found in the centre of most galaxies, which can weigh a million to a billion times as much as the Sun. So far, around 20 stellar-mass black holes have been found. [2] In astronomy, heavy chemical elements, or "metals", are any chemical elements heavier than helium. [3] Predicted by Einstein's theory of general relativity, gravitational waves are ripples in the fabric of space and time. Significant gravitational waves are generated whenever there are extreme variations of strong gravitational fields with time, such as during the merger of two black holes. The detection of gravitational waves, never directly observed to date, is one of the major challenges for the next few decades. [4] The LIGO and Virgo experiments have the goal of detecting gravitational waves using sensitive interferometers in Italy and the United States. More information This research was presented in a letter to appear in the Monthly Notices of the Royal Astronomical Society (NGC 300 X-1 is a Wolf-Rayet/Black Hole binary, P.A. Crowther et al.). The team is composed of Paul Crowther and Vik Dhillon (University of Sheffield, UK), Robin Barnard and Simon Clark (The Open University, UK), and Stefania Carpano and Andy Pollock (ESAC, Madrid, Spain). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the largest survey telescope in the world. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. The expected spins of gravitational wave sources with isolated field binary progenitors

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.

    2018-01-01

    We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.

  7. The very massive star content of the nuclear star clusters in NGC 5253

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.; Crowther, Paul A.; Calzetti, Daniela

    2017-11-01

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters. Calzetti et al. (2015) find that the two clusters have an age of 1 Myr, in contradiction to the age of 3-5 Myr inferred from the presence of Wolf-Rayet (W-R) spectral features. We use Hubble Space Telescope (HST) far-ultraviolet (FUV) and ground-based optical spectra to show that the cluster stellar features arise from very massive stars (VMS), with masses greater than 100 M⊙, at an age of 1-2 Myr. We discuss the implications of this and show that the very high ionizing flux can only be explained by VMS. We further discuss our findings in the context of VMS contributing to He ii λ1640 emission in high redshift galaxies, and emphasize that population synthesis models with upper mass cut-offs greater than 100 M⊙ are crucial for future studies of young massive clusters.

  8. Case Study of Data Mining in Observational Astronomy: The Search for New OB Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Larkin, Cormac; Vink, Jorick; Kalari, Venu; Groh, Jose

    2018-01-01

    OB stars are the most luminous and massive stars, living short lives and exerting a disproportionate influence on their environments. They are key to understanding progenitors of gravitational wave sources and reionization of the early Universe. To detect new OB stars, we combine photometric catalog data with TLUSTY and ATLAS9 stellar atmospheres. This method is also believed to be sensitive to elusive “stripped” stars, thought to lose their hydrogen envelope through binary interaction.OB stars are intrinsically luminous, so complete populations are assumed for local group galaxies such as the Small Magellanic Cloud. Our findings challenge this, as we find 26 new OB candidates. Spectroscopy of 7 candidates shows a 100% detection rate. Most interestingly, 5 of our candidates are consistent with “stripped” stars.To date only 5 “stripped” candidates have been found serendipitously (e.g. HD 45166) as current methods are not sensitive to them. Our work doubles the sample of detected candidates, highlighting that our approach is the first to identify them in a targeted, systematic way. The finding of “stripped” stars could rewrite our understanding of the early Universe, offering an alternative hypothesis to Wolf-Rayet driven cosmic reionization.

  9. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  10. C III spectra in WC Wolf-Rayet stars - Does collisional excitation dominate?

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1993-01-01

    A direct comparison of the spectra emitted by an improved collisionally excited C III atomic model, with observations of C III spectra in Wolf-Rayet WC stars, shows agreement for UV, visible, and near-infrared lines including lines usually considered to be recombination lines. The agreement implies high-density and temperature source conditions corresponding to log (Ne Te) is greater than 16 as a lower limit, whereas most current modeling assumes log (Ne Te) is less than 15.5. This raises questions concerning the photoionization/recombination assumptions on which most WR modeling is based. Recent models are discussed from this point of view.

  11. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  12. IUE observations of variability in winds from hot stars

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  13. GHRS observations and theoretical modeling of early type stars in R136a

    NASA Astrophysics Data System (ADS)

    de Koter, A.; Heap, S.; Hubeny, I.; Lanz, T.; Hutchings, J.; Lamers, H. J. G. L. M.; Maran, S.; Schmutz, W.

    1994-05-01

    We present the first spectroscopic observations of individual stars in R136a, the most dense part of the starburst cluster 30 Doradus in the LMC. Spectra of two stars are scheduled to be obtained with the GHRS on board the HST: R136a5, the brightest of the complex and R136a2, a Wolf-Rayet star of type WN. The 30 Doradus cluster is the only starburst region in which individual stars can be studied. Therefore, quantitative knowledge of the basic stellar parameters will yield valuable insight into the formation of massive stars in starbursts and into their subsequent evolution. Detailed modeling of the structure of the atmosphere and wind of these stars will also lead to a better understanding of the mechanism(s) that govern their dynamics. We present the first results of our detailed quantitative spectral analysis using state-of-the-art non-LTE model atmospheres for stars with extended and expanding atmospheres. The models are computed using the Improved-Sobolev Approximation wind code (ISA-WIND) of de Koter, Schmutz & Lamers (1993, A&A 277, 561), which has been extended to include C, N and Si. Our model computations are not based on the core-halo approximation, but use a unified treatment of the photosphere and wind. This approach is essential for Wolf-Rayet stars. Our synthetic spectra, dominated by the P Cygni profiles of the UV resonance lines, also account for the numerous weak metal lines of photospheric origin.

  14. On the chemical homogeneity of the 30 Doradus H II region and a local enrichment by Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Rosa, Michael; Mathis, John S.

    1987-01-01

    Emission-line strengths have been obtained at 10 positions in the outer regions of the 30 Dor nebula and analyzed in the standard way. There are two major results: (1) the elemental abundances for nine of the outer regions are remarkably similar to those previously measured in the core. This result implies the spectra of the cores and halos of giant H II regions (subject to the different ionizing radiation fields) are analyzed correctly by the standard methods. Hence measurements of extragalactic H II regions with poor spatial resolution correctly represent the abundances of the whole nebula. The O/H ratio in 30 Dor, by number, is 0.30 solar. The Ne/O, S/O, Ar/O, and Cl/O are close to solar. The gas-phase Fe/O is about 0.2 solar, which probably implies that most of the iron is within solid grains. The He/H is 0.0810 as shown by each of the three strong lines available. One region is cool and rich in helium and all other heavy elements except nitrogen. The spectrum of the region does not resemble that of a supernova remnant in that the forbidden O I and S II lines are not nearly strong enough. The abundances can be explained fairly well as over 10 solar masses of H-poor material ejected during the evolution of a single massive (about 80 solar masses) star during its late O-star and Wolf-Rayet phases.

  15. The G305 star-forming complex: the central star clusters Danks 1 and Danks 2

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Clark, J. S.; Trombley, Christine; Figer, Donald F.; Najarro, Francisco; Crowther, Paul A.; Kudritzki, Rolf-Peter; Thompson, Mark; Urquhart, James S.; Hindson, Luke

    2012-01-01

    The G305 H II complex (G305.4+0.1) is one of the most massive star-forming structures yet identified within the Galaxy. It is host to many massive stars at all stages of formation and evolution, from embedded molecular cores to post-main-sequence stars. Here, we present a detailed near-infrared analysis of the two central star clusters Danks 1 and Danks 2, using Hubble Space Telescope+NICMOS imaging and Very Large Telescope+ISAAC spectroscopy. We find that the spectrophotometric distance to the clusters is consistent with the kinematic distance to the G305 complex, an average of all measurements giving a distance of 3.8 ± 0.6 kpc. From analysis of the stellar populations and the pre-main-sequence stars, we find that Danks 2 is the elder of the two clusters, with an age of 3+3- 1 Myr. Danks 1 is clearly younger with an age of 1.5+1.5- 0.5 Myr, and is dominated by three very luminous H-rich Wolf-Rayet stars which may have masses ≳100 M⊙. The two clusters have mass functions consistent with the Salpeter slope, and total cluster masses of 8000 ± 1500 and 3000 ± 800 M⊙ for Danks 1 and Danks 2, respectively. Danks 1 is significantly the more compact cluster of the two, and is one of the densest clusters in the Galaxy with log (ρ/M⊙ pc-3) = 5.5+0.5- 0.4. In addition to the clusters, there is a population of apparently isolated Wolf-Rayet stars within the molecular cloud's cavity. Our results suggest that the star-forming history of G305 began with the formation of Danks 2, and subsequently Danks 1, with the origin of the diffuse evolved population currently uncertain. Together, the massive stars at the centre of the G305 region appear to be clearing away what is left of the natal cloud, triggering a further generation of star formation at the cloud's periphery.

  16. N44C nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Resembling the hair in Botticelli's famous portrait of the birth of Venus, an image from NASA's Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula.

    The image, presented by the Hubble Heritage Project, was taken in 1996 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image is available online at

    http://heritage.stsci.edu , http://oposite.stsci.edu/pubinfo/pr/2002/12 orhttp://www.jpl.nasa.gov/images/wfpc .

    On the top right of the image is a source of its artistic likeness, a network of nebulous filaments surrounding the Wolf-Rayet star. This type of rare star is characterized by an exceptionally vigorous 'wind' of charged particles. The shock of the wind colliding with the surrounding gas causes the gas to glow.

    The Wolf-Rayet star is part of N44C, a nebula of glowing hydrogen gas surrounding young stars in the Large Magellanic Cloud. Visible from the Southern Hemisphere, the Large Magellanic Cloud is a small companion galaxy to the Milky Way.

    What makes N44C peculiar is the temperature of the star that illuminates it. The most massive stars -- those that are 10 to 50 times more massive than the Sun -- have maximum temperatures of 30,000 to 50,000 degrees Celsius (54,000 to 90,000 degrees Fahrenheit). The temperature of this star is about 75,000 degrees Celsius (135,000 degrees Fahrenheit). This unusually high temperature may be due to a neutron star or black hole that occasionally produces X-rays but is now inactive.

    N44C is part of a larger complex that includes young, hot, massive stars, nebulae, and a 'superbubble' blown out by multiple supernova explosions. Part of the superbubble is seen in red at the very bottom left of the Hubble image.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency.

  17. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf-Rayet Star

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John; Morrell, Nidia

    2017-05-01

    As part of a search for Wolf-Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He II and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ˜6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those of more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. It is additionally based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations were associated with program GO-13780.

  18. On the origin of the system PSR B 1757-24/SNR G 5.4-1.2

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2004-03-01

    A scenario for the origin of the system PSR B 1757-24/supernova remnant (SNR) G 5.4-1.2 is proposed. It is suggested that both objects are the remnants of a supernova (SN) that exploded within a pre-existing bubble blown-up by a runaway massive star (the SN progenitor) during the final (Wolf-Rayet) phase of its evolution. This suggestion implies that (a) the SN blast centre was significantly offset from the geometric centre of the wind-blown bubble (i.e. from the centre of the future SNR), (b) the bubble was surrounded by a massive wind-driven shell, and (c) the SN blast wave was drastically decelerated by the interaction with the shell. Therefore, one can understand how the relatively young and low-velocity pulsar PSR B 1757-24 was able to escape from the associated SNR G 5.4-1.2 and why the inferred vector of pulsar transverse velocity does not point away from the geometric centre of the SNR. A possible origin of the radio source G 5.27-0.9 (located between PSR B 1757-24 and the SNR G 5.4-1.2) is proposed. It is suggested that G 5.27-0.9 is a lobe of a low Mach number (≃1.7) jet of gas outflowing from the interior of G 5.4-1.2 through the hole bored in the SNR's shell by the escaping pulsar. It is also suggested that the non-thermal emission of the comet-shaped pulsar wind nebula originates in the vicinity of the termination shock and in the cylindric region of subsonically moving shocked pulsar wind. The role of magnetized wind-driven shells (swept-up during the Wolf-Rayet phase from the ambient interstellar medium with the regular magnetic field) in formation of elongated axisymmetric SNRs is discussed.

  19. Searching for Wolf-Rayet Stars Beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Shara, M. M.; Crowther, P. A.; Moffat, A. F. J.

    2012-12-01

    We present preliminary results from our HST/WFC3 F469N narrow-band imaging of the nearby star-forming galaxy M101 in which we search for Wolf-Rayet (WR) stars, possible progenitors of Type Ibc core-collapse supernovae (ccSNe). From analysis of the central pointing of M101 we identify ˜1000 WR candidates from photometric analysis and estimate ˜ 450 using the “blinking” method. From analysis of a sample region we find that 35% of our WR candidates would not be detected in ground-based surveys and 40% of sources are not detected in the HST F435W images, highlighting the importance of high spatial resolution narrow-band imaging.

  20. SN 1985f - Death of a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Begelman, M. C.; Sarazin, C. L.

    1986-01-01

    The optical spectrum of SN 1985f has been analyzed, and the supernova ejecta is shown to contain approximately 5 or more solar masses of oxygen and very little hydrogen. It is suggested that the explosion resulted from the pair instability supernova of a WO Wolf-Rayet star of about 50 solar masses, and that the optical luminosity of the supernova is powered by the radioactive decay of Co-56 synthesized in the explosion. As calculated from the rate of the optical emission decay, the explosion occurred about 350 days before its discovery in February, 1985. It is believed that some of the oxygen-rich supernova remnants may also have been produced by explosions of WO stars.

  1. Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge

    2017-11-01

    We compute the thermal X-ray emission from hydrodynamic simulations of the 30 Wolf-Rayet (WR) stars orbiting within a parsec of Sgr A*, with the aim of interpreting the Chandra X-ray observations of this region. The model well reproduces the spectral shape of the observations, indicating that the shocked WR winds are the dominant source of this thermal emission. The model X-ray flux is tied to the strength of the Sgr A* outflow, which clears out hot gas from the vicinity of Sgr A*. A moderate outflow best fits the present-day observations, even though this supermassive black hole (SMBH) outflow ended ~100 yr ago.

  2. Bursting star formation and the overabundance of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma - fluxes but due to the distance, all of them are beyond the reach of present-day ray detectors, except probably 30 Dor.

  3. A deep survey for Galactic Wolf-Rayet stars. I - Motivation, search technique, and first results

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Smith, Lindsey F.; Potter, Michael; Moffat, Anthony F. J.

    1991-01-01

    Results are presented from a survey of large areas of the southern Milky Way for Wolf-Rayet (WR) stars to 17-18th magnitude, carried out using direct narrowband and broadband Schmidt plates. Thirteen new WR stars were detected in an about 40-deg-sq region in Carina, where 24 WR stars were already known; the new stars were found to be significantly redder, fainter, and farther away than the known stars. Of the new WR stars, 11 are of subtype WN, and two are WC, compared to the 17 WN and seven WC stars among the previously known WR stars in the same area.

  4. Discovery of a new Wolf-Rayet star and its ring nebula in Cygnus

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Fabrika, S.; Hamann, W.-R.; Sholukhova, O.; Valeev, A. F.; Goranskij, V. P.; Cherepashchuk, A. M.; Bomans, D. J.; Oskinova, L. M.

    2009-11-01

    We report the serendipitous discovery of a ring nebula around a candidate Wolf-Rayet (WR) star, HBHA4202-22, in Cygnus using the Spitzer Space Telescope archival data. Our spectroscopic follow-up observations confirmed the WR nature of this star (we named it WR138a) and showed that it belongs to the WN8-9h subtype. We thereby add a new example to the known sample of late WN stars with circumstellar nebulae. We analysed the spectrum of WR138a by using the Potsdam Wolf-Rayet (PoWR) model atmospheres, obtaining a stellar temperature of 40kK. The stellar wind composition is dominated by helium with 20 per cent of hydrogen. The stellar spectrum is highly reddened and absorbed (EB- V = 2.4mag, AV = 7.4mag). Adopting a stellar luminosity of logL/Lsolar = 5.3, the star has a mass-loss rate of 10-4.7Msolaryr-1, and resides in a distance of 4.2 kpc. We measured the proper motion for WR138a and found that it is a runaway star with a peculiar velocity of ~=50kms-1. Implications of the runaway nature of WR138a for constraining the mass of its progenitor star and understanding the origin of its ring nebula are discussed.

  5. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.

  6. Suzaku monitoring of the Wolf-Rayet binary WR140

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji

    2010-07-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ksec. We detected hard X-ray excess in the HXD band (>10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is not absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the stationary cool component with kT ~0.1 keV, one for a dominant high temperature component with kT ~3 keV, and one for the hardest power-low component with Γ~2. The column density at periastron is 30 times higher than that at pre-periastron, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars.

  7. A 3D dynamical model of the colliding winds in binary systems

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  8. Evolution of black holes in the galaxy

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.

    2000-08-01

    In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.

  9. Optical/Near-IR spatially resolved study of the H II galaxy Tol 02★

    NASA Astrophysics Data System (ADS)

    Torres-Campos, A.; Terlevich, E.; Rosa-González, D.; Terlevich, R.; Telles, E.; Díaz, A. I.

    2017-11-01

    The main goal of this study is to characterize the stellar populations in very low-metallicity galaxies. We have obtained broad U, B, R, I, J, H, K, intermediate Strömgren y and narrow H α and [O III] deep images of the Wolf-Rayet, blue compact dwarf, H II galaxy Tol 02. We have analysed the low surface brightness component, the stellar cluster complexes and the H II regions. The stellar populations in the galaxy have been characterized by comparing the observed broad-band colours with those of single stellar population models. The main results are consistent with Tol 02 being formed by a 1.5 Gyr old disc component at the centre of which a group of eight massive (>104 M⊙) stellar cluster clumps is located. Six of these clumps are 10 Myr old and their near-infrared colours suggest that their light is dominated by Red Supergiant (RSG) stars, the other two are young Wolf-Rayet cluster candidates of ages 3 and 5 Myr, respectively. 12 H II regions in the star-forming region of the galaxy are also identified. These are immersed in a diffuse H α and [O III] emission that spreads towards the north and south covering the old stellar disc. Our spatial-temporal analysis shows that star formation is more likely stochastic and simultaneous within short time-scales. The mismatch between observations and models cannot be attributed alone to a mistreat of the RSG phase and still needs to be further investigated.

  10. WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF-RAYET/LUMINOUS BLUE VARIABLE HD 5980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgiev, Leonid; Koenigsberger, Gloria; Hillier, D. John

    Over the past 40 years, the massive luminous blue variable/Wolf-Rayet system HD 5980 in the Small Magellanic Cloud (SMC) has undergone a long-term S Doradus-type variability cycle and two brief and violent eruptions in 1993 and 1994. In this paper we analyze a collection of UV and optical spectra obtained between 1979 and 2009 and perform CMFGEN model fits to spectra of 1994, 2000, 2002, and 2009. The results are as follows: (1) the long-term S Dor-type variability is associated with changes of the hydrostatic radius; (2) the 1994 eruption involved changes in its bolometric luminosity and wind structure; (3)more » the emission-line strength, the wind velocity, and the continuum luminosity underwent correlated variations in the sense that a decreasing V{sub {infinity}} is associated with increasing emission line and continuum levels; and (4) the spectrum of the third star in the system (Star C) is well fit by a T{sub eff} = 32 K model atmosphere with SMC chemical abundances. For all epochs, the wind of the erupting star is optically thick at the sonic point and is thus driven mainly by the continuum opacity. We speculate that the wind switches between two stable regimes driven by the 'hot' (during the eruption) and the 'cool' (post-eruption) iron opacity bumps as defined by Lamers and Nugis and Graefener and Hamann, and thus the wind may undergo a bi-stability jump of a different nature from that which occurs in OB stars.« less

  11. Radiative-transfer models for explosions from rotating and non-rotating single WC stars. Implications for SN 1998bw and LGRB/SNe

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; John Hillier, D.; Yoon, Sung-Chul; Waldman, Roni; Livne, Eli

    2017-07-01

    Using 1D, non-local thermodynamic equilibrium and time-dependent radiative transfer simulations, we study the ejecta properties required to match the early- and late-time photometric and spectroscopic properties of supernovae (SNe) associated with long-duration γ-ray bursts (LGRBs). Matching the short rise time, narrow light curve peak and extremely broad spectral lines of SN 1998bw requires a model with ≲3 M⊙ ejecta but a high explosion energy of a few 1052 erg and 0.5 M⊙ of 56Ni. The relatively high luminosity, presence of narrow spectral lines of intermediate mass elements, and low ionisation at the nebular stage, however, are matched with a more standard C-rich Wolf-Rayet (WR) star explosion, an ejecta of ≳10 M⊙, an explosion energy ≳1051 erg, and only 0.1 M⊙ of 56Ni. As the two models are mutually exclusive, the breaking of spherical symmetry is essential to match the early- and late-time photometric and spectroscopic properties of SN 1998bw. This conclusion confirms the notion that the ejecta of SN 1998bw is highly aspherical on large scales. More generally, with asphericity, the energetics and 56Ni masses of LGRB/SNe are reduced and their ejecta masses are increased, favouring a massive fast-rotating Wolf-Rayet star progenitor. Contrary to persisting claims in favour of the proto-magnetar model for LGRB/SNe, such progenitor/ejecta properties are compatible with collapsar formation. Ejecta properties of LGRB/SNe inferred from 1D radiative-transfer modelling are fundamentally flawed.

  12. Helium stars: Towards an understanding of Wolf-Rayet evolution

    NASA Astrophysics Data System (ADS)

    McClelland, Liam A. S.; Eldridge, J. J.

    2017-11-01

    Recent observational modelling of the atmospheres of hydrogen-free Wolf-Rayet stars have indicated that their stellar surfaces are cooler than those predicted by the latest stellar evolution models. We have created a large grid of pure helium star models to investigate the dependence of the surface temperatures on factors such as the rate of mass loss and the amount of clumping in the outer convection zone. Upon comparing our results with Galactic and LMC WR observations, we find that the outer convection zones should be clumped and that the mass-loss rates need to be slightly reduced. We discuss the implications of these findings in terms of the detectability of Type Ibc supernovae progenitors, and in terms of refining the Conti scenario.

  13. Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Prantzos, N.; Arnould, M.; Arcoragi, J. P.; Casse, M.

    1985-01-01

    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses.

  14. Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Arcoragi, J. P.; Arnould, M.; Casse, M.

    1985-08-01

    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses.

  15. Nongrayness Effects in Wolf-Rayet Wind Momentum Deposition

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2004-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes and optically thick winds. A simple analytic approach that helps to understand the most critical processes is the effecively gray approximation, but this has not been generalized to more realistic nongray opacities. We have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive to the line strengths as well as the wavelength distribution of lines. We determine these statistical parameters for several real line lists, exploring the effects of temperature and density changes on the efficiency of momentum driving relative to gray opacity. We wish to acknowledge NSF grant AST-0098155.

  16. Discovery of a New Wolf-Rayet Star Using SAGE-LMC

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Chené, A.-N.; Kniazev, A. Y.; Schnurr, O.

    2012-12-01

    We report the first-ever discovery of an extragalactic Wolf-Rayet (WR) star with Spitzer. A new WR star in the Large Magellanic Cloud (LMC) was revealed via detection of its circumstellar shell using 24 μm images obtained in the framework of the Spitzer Survey of the Large Magellanic Cloud (SAGE-LMC). Subsequent spectroscopic observations with the Gemini South resolved the central star in two components, one of which is a WN3b+abs star, while the second one is a B0 V star. We consider the lopsided brightness distribution over the circumstellar shell as an indication that the WR star is a runaway and use this interpretation to identify a possible parent cluster of the star.

  17. Estrellas Wolf-Rayet y el medio interestelar: huellas de una fuerte interacción

    NASA Astrophysics Data System (ADS)

    Cichowolski, S.; Arnal, E. M.

    Se presentan resultados observacionales de un estudio de la distribución de hidrógeno neutro en los alrededores de estrellas Wolf-Rayet (WR) galácticas. Los datos de la línea de 21 cm provienen de observaciones de resolución angular intermedia (9') tomadas con el radiotelescopio de Effelsberg. La muestra está compuesta por cuatro WR de la serie del nitrógeno (WN): WR130, WR131, WR155, WR156 y tres WR de la serie del carbono (WC): WR154, WR117 y WR126. Este análisis ha permitido detectar cavidades y envolturas de HI en expansión presumiblemente vinculadas a dichas estrellas.

  18. The Search for Wolf-Rayet Stars in IC10

    NASA Astrophysics Data System (ADS)

    Tehrani, Katie; Crowther, Paul; Archer, Isabelle

    2017-11-01

    We present a deep imaging and spectroscopic survey of the Local Group starburst galaxy IC10 using Gemini North/GMOS to unveil the global Wolf-Rayet population. It has previously been suggested that for IC10 to follow the WC/WN versus metallicity dependence seen in other Local Group galaxies, a large WN population must remain undiscovered. Our search revealed 3 new WN stars, and 5 candidates awaiting confirmation, providing little evidence to support this claim. We also compute an updated nebular derived metallicity of log(O/H)+12=8.40 +/- 0.04 for the galaxy using the direct method. Inspection of IC10 WR average line luminosities show these stars are more similar to their LMC, rather than SMC counterparts.

  19. The Discovery and Analysis of a New Type of Wolf-Rayet Star

    NASA Astrophysics Data System (ADS)

    Nowinski, Matt Clarke

    A massive impact event on (4) Vesta is believed to have created the Vesta family of asteroids (Asphaug, 1997). The rotational characteristics of the Vesta family provide important clues about this event, including its timing, the make-up of the resulting debris, the subsequent migration of members of the family into Earth-crossing orbits, and the deposition of the Howardite-Eucrite-Diogenite meteorites on the Earth's surface. This study conducted lightcurve measurements of ten Vp-type asteroids, drawn from an asteroid taxonomy defined by Carvano et al. (2010) and based on the Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC4). These measurements identified a range of asteroid rotation periods from approximately 2.5 to 9.5 hours, as well as a potential synchronous binary system, (15121) 2000 EN14. The lightcurve results were combined with those of other V/Vp-type asteroids available in LightCurve Database (LCDB; Warner et al., 2009), and matched with both WISE diameter/albedo (J. Masiero et al., 2011) and near-infrared spectroscopic (Hardersen et al., 2014-2018) data. This integrated approach identified a set of Vesta family asteroids with relatively fast spin rates, nearly spherical shapes, and loose aggregate compositions. These findings, combined with the non-Maxwellian shape of this population's spin rate distribution, highlighted the importance of thermal Yarkovsky-YORP effects on the evolution of the Vesta family.

  20. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  1. A Hubble Space Telescope planetary camera view of giant H II regions - The Wolf-Rayet content of NGC 595 and NGC 604 in M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.

    1993-01-01

    We present images of NGC 595 and NGC 604, the most massive giant H II regions in M33, obtained with the Planetary Camera aboard the HST in order to study their WR population. Fourteen WR and/or Of candidates are detected in NGC 604, and eleven in NGC 595. All previously claimed 'superluminous' WR stars are found to be tight (diameter less than 3 pc) stellar aggregates containing one (or sometimes more) normal WR star. As suspected from ground-based data, the WR/O number ratio is significantly higher in NGC 595 (about 0.3) than in NGC 604 (about 0.1). The WR stars may be major contributors to the output of mechanical power and energy into the interstellar medium in both clusters. Over the observable initial mass range, the initial mass functions (IMFs) have similar slopes. These IMFs are somewhat flatter than those generally derived for massive stars in the Galaxy or the Magellanic Clouds.

  2. Near-Infrared Mass Loss Diagnostics for Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J. C.

    2010-01-01

    Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix ismore » a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.« less

  4. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  5. Finally, the Progenitor of the Type Ib iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schulyer

    2017-08-01

    Supernovae (SNe) are among the most powerful events in the Universe and have a profound influence on galaxy evolution. Whereas we have been able to identify the luminous red supergiant progenitor stars of the most common core-collapse explosions, the hydrogen-rich Type II, the progenitors of hydrogen-poor Type Ib and Type Ic have been far more elusive. To strip away a SN Ib/c progenitor's outer layers, theoretical models with either (a) a highly-massive star with prodigious winds during the Wolf-Rayet phase or (b) a somewhat lower-mass star in a close, mass-exchange binary system have been proposed. One example exists so far of a progenitor identification, for the SN Ib iPTF13bvn in NGC 5806. Both models have been invoked to explain this event, although most evidence to date points toward the binary model. Our combined team observed this SN with WFC3 in Cycle 22, about 2 years after explosion, to investigate whether the progenitor had disappeared. As a result, we were able to report that indeed it had. We also attempted to better characterize the nature of the progenitor by subtracting our images from the pre-explosion HST data. Unfortunately, the old SN was apparently still conspicuously present. We therefore propose to reimage the SN site, when the SN should then be well below detectability, to produce high-quality templates of the host galaxy for subtraction. We can then finally fully reveal the progenitor and understand its true nature. iPTF13bvn is one of the most important historical SNe and will most probably be the best available case of a SN Ib progenitor for HST's remaining lifetime. It is imperative to understand the nature of this SN and its progenitor object.

  6. An Extreme Case of a Misaligned Highly Flattened Wind in the Wolf-Rayet Binary CX Cephei

    NASA Astrophysics Data System (ADS)

    Villar-Sbaffi, A.; St-Louis, N.; Moffat, Anthony F. J.; Piirola, Vilppu

    2006-04-01

    CX Cep (WR 151) is the WR+O binary (WN5+O5 V) with the second shortest period known in our Galaxy. To examine the circumstellar matter distribution and to better constraint the orbital parameters and mass-loss rate of the W-R star, we obtained broadband and multiband (i.e., UBVRI) linear polarization observations of the system. Our analysis of the phase-locked polarimetric modulation confirms the high orbital inclination of the system (i.e., i=65deg). Using the orbital solution of Lewis et al. (1993), we obtain masses of 33.9 and 23.9 Msolar for the O and W-R stars, respectively, which agree with their spectral types. A simple polarimetric model accounting for finite stellar size effects allowed us to derive a mass-loss rate for the W-R star of (0.3-0.5)×10-5 Msolar yr-1. This result was remarkably independent of the model's input parameters and favors an earlier spectral type for the W-R component (i.e., WN4). Finally, using our multiband observations, we fitted and subtracted from our data the interstellar polarization. The resulting constant intrinsic polarization of 3%-4% is misaligned in relation to the orbital plane (i.e., θCIP=26deg vs. Ω=75deg) and is the highest intrinsic polarization ever observed for a W-R star. This misalignment points toward a rotational (or magnetic) origin for the asymmetry and contradicts the most recent evolutionary models for massive stars (Meynet & Maeder 2003) that predict spherically symmetric winds during the W-R phase (i.e., CIP=0%).

  7. TORUS: Radiation transport and hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Harries, Tim

    2014-04-01

    TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.

  8. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  9. Machine-learning approaches to select Wolf-Rayet candidates

    NASA Astrophysics Data System (ADS)

    Marston, A. P.; Morello, G.; Morris, P.; van Dyk, S.; Mauerhan, J.

    2017-11-01

    The WR stellar population can be distinguished, at least partially, from other stellar populations by broad-band IR colour selection. We present the use of a machine learning classifier to quantitatively improve the selection of Galactic Wolf-Rayet (WR) candidates. These methods are used to separate the other stellar populations which have similar IR colours. We show the results of the classifications obtained by using the 2MASS J, H and K photometric bands, and the Spitzer/IRAC bands at 3.6, 4.5, 5.8 and 8.0μm. The k-Nearest Neighbour method has been used to select Galactic WR candidates for observational follow-up. A few candidates have been spectroscopically observed. Preliminary observations suggest that a detection rate of 50% can easily be achieved.

  10. Wolf-Rayet nebulae - Chemical enrichment and effective temperatures of the exciting stars

    NASA Technical Reports Server (NTRS)

    Rosa, Michael R.; Mathis, John S.

    1990-01-01

    Extensive new spectrophotometric observations of five Wolf-Rayet nebulas are analyzed by means of models photoionized by plane-parallel and also WR atmosphere models. Abundance ratios O/H and Ne, S, Cl, and Ar relative to O are close to solar. N/H is enriched relative to solar and variable over the faces of the nebulas. He/H varies from one to three times solar. The O(+)/O - S(+)/S(2+) diagram is used in estimating T(eff) for the exciting stars. It indicates that S 308, NGC 3199, NGC 6888, and NGC 2359 are ionized by hot stars. RCW 58, RCW 104, MR 26, and MR 100 have such low-excitation spectra that their stellar T(eff) and nebular He/H cannot be reliably determined.

  11. The Results of the 2013 Pro-Am Wolf-Rayet Campaign

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; World-Wide WR Pro-Am Campaign Team

    Professional and amateur astronomers around the world contributed to a 4-month long campaign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of ˜ 40 days (half-life of ˜ 20 days).

  12. The 'Baldwin Effect' in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria

    1993-01-01

    The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.

  13. The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star

    NASA Technical Reports Server (NTRS)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.; hide

    2014-01-01

    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r'-band luminosity is not consistent with predictions based on the expected oxygen nucleosynthesis in very massive stars. Conclusions. We find that our bolometric light curve of iPTF13bvn is not consistent with the previously proposed single massive WR-star progenitor scenario. The total ejecta mass and, in particular, the late-time oxygen emission are both significantly lower than what would be expected from a single WR progenitor with a main-sequence mass of at least 30 solar mass.

  14. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes sixmore » WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.« less

  15. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-03-01

    We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf-Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (˜40 pc half-width at half-maximum) between Galactocentric radii 3.5-10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ˜ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS ≃ 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars. We anticipate that ESA's Gaia mission will make few additional WR star discoveries via low-resolution spectroscopy, though will significantly refine existing distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature scheme.

  16. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Louis, N., E-mail: stlouis@astro.umontreal.ca

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenariomore » in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.« less

  17. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  18. The variable X-ray spectrum of the Wolf-Rayet binary WR140 with Suzaku

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji; Corcoran, Michael; Pollock, Andy; Moffat, Anthony; Williams, Peredur; Dougherty, Sean; Pittard, Julian

    2011-01-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is less absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the cool component with kT=0.1--0.6 keV, one for a dominant high-temperature component with kT ˜3 keV, and one for the hardest power-law component with the photon index of ˜2. As periastron approached, the column density of the high-temperature component increased, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high-temperature component is not inversely proportional to the distance between the two stars.

  19. The planetary nebula IC 4776 and its post-common-envelope binary central star

    NASA Astrophysics Data System (ADS)

    Sowicka, Paulina; Jones, David; Corradi, Romano L. M.; Wesson, Roger; García-Rojas, Jorge; Santander-García, Miguel; Boffin, Henri M. J.; Rodríguez-Gil, Pablo

    2017-11-01

    We present a detailed analysis of IC 4776, a planetary nebula displaying a morphology believed to be typical of central star binarity. The nebula is shown to comprise a compact hourglass-shaped central region and a pair of precessing jet-like structures. Time-resolved spectroscopy of its central star reveals a periodic radial velocity variability consistent with a binary system. Whilst the data are insufficient to accurately determine the parameters of the binary, the most likely solutions indicate that the secondary is probably a low-mass main-sequence star. An empirical analysis of the chemical abundances in IC 4776 indicates that the common-envelope phase may have cut short the asymptotic giant branch evolution of the progenitor. Abundances calculated from recombination lines are found to be discrepant by a factor of approximately 2 relative to those calculated using collisionally excited lines, suggesting a possible correlation between low-abundance discrepancy factors and intermediate-period post-common-envelope central stars and/or Wolf-Rayet central stars. The detection of a radial velocity variability associated with the binarity of the central star of IC 4776 may be indicative of a significant population of (intermediate-period) post-common-envelope binary central stars that would be undetected by classic photometric monitoring techniques.

  20. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence

    NASA Astrophysics Data System (ADS)

    Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.

    2014-10-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and shaping their environments. Appendices are available in electronic form at http://www.aanda.org

  1. Probing the Dragonfish star-forming complex: the ionizing population of the young massive cluster Mercer 30

    NASA Astrophysics Data System (ADS)

    de la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M. M.; Trombley, C.; Figer, D. F.; Davies, B.; Garcia, M.; Kurtev, R.; Urbaneja, M. A.; Smith, L. C.; Lucas, P. W.; Herrero, A.

    2016-05-01

    It has recently been claimed that the nebula, Dragonfish, is powered by a superluminous but elusive OB association. However, systematic searches in near-infrared photometric surveys have found many other cluster candidates in this region of the sky. Among these, the first confirmed young massive cluster was Mercer 30, where Wolf-Rayet stars were found.We perform a new characterization of Mercer 30 with unprecedented accuracy, combining NICMOS/HST and VVV photometric data with multi-epoch ISAAC/VLT H- and K-band spectra. Stellar parameters for most of spectroscopically observed cluster members are found through precise non-LTE atmosphere modeling with the CMFGEN code. Our spectrophotometric study for this cluster yields a new, revised distance of d = (12.4 ± 1.7) kpc and a total of QHMc30 ≈ 6.70 × 1050 s-1 Lyman ionizing photons. A cluster age of (4.0 ± 0.8) Myr is found through isochrone fitting, and a total mass of (1.6 ± 0.6) × 104M⊙ is estimated, thanks to our extensive knowledge of the post-main-sequence population. As a consequence, membership of Mercer 30 to the Dragonfish star-forming complex is confirmed, allowing us to use this cluster as a probe for the whole complex, which turns out to be extremely large (~400 pc across) and located at the outer edge of the Sagittarius-Carina spiral arm (~11 kpc from the Galactic center). The Dragonfish complex hosts 19 young clusters or cluster candidates (including Mercer 30 and a new candidate presented in this work) and an estimated minimum of nine field Wolf-Rayet stars. All these contributions account for, at least 73% of the ionization of the Dragonfish nebula and leaves little or no room for the alleged superluminous OB association; alternative explanations are discussed. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs IDs 179.B-2002, 081.D-0471, 083.D-0765, 087.D-0957, and 089.D-0989.

  2. Outflow-driven Transients from the Birth of Binary Black Holes. II. Primary-induced Accretion Transients

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    2017-12-01

    We discuss the electromagnetic radiation from newborn binary black holes (BBHs). As a consequence of the evolution of massive stellar binaries, a binary consisting of a primary black hole (BH) and a secondary Wolf–Rayet star is expected as a BBH progenitor system. We investigate optical transients from the birth of BBHs powered by the Bondi–Hoyle–Lyttleton accretion onto the primary BH, which occur ∼1–10 Gyr earlier than gravitational-wave signals at the BH–BH merger. When the secondary massive star collapses into a BH, it may eject a fraction of its outer material and may form a disk around the primary BH and induces a powerful disk wind. These primary-induced winds can lead to optical transients with a kinetic energy of ∼1047–3 × 1048 erg, an ejecta velocity of 108–109 cm s‑1, a duration of a few days, and an absolute magnitude ranging from about ‑11 to ‑14. The light curves and late-time spectra of these transients are distinctive from those of ordinary supernovae, and detection of this type of transient is possible by future optical transient surveys if the event rate of this transient is comparable to the merger rate of BBHs. This paper focuses on the emissions from disk-driven transients induced by the primary BH, different from Paper I, which focuses on wind-driven transients from the tidally locked secondary massive star.

  3. Wolf-Rayet content of the Milky Way

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.

    An overview of the known Wolf-Rayet (WR) population of the Milky Way is presented, including a brief overview of historical catalogues and recent advances based on infrared photometric and spectroscopic observations resulting in the current census of 642 (vl.13 online catalogue). The observed distribution of WR stars is considered with respect to known star clusters, given that ≤20% of WR stars in the disk are located in clusters. WN stars outnumber WC stars at all galactocentric radii, while early-type WC stars are strongly biased against the inner Milky Way. Finally, recent estimates of the global WR population in the Milky Way are reassessed, with 1,200±100 estimated, such that the current census may be 50% complete. A characteristic WR lifetime of 0.25 Myr is inferred for an initial mass threshold of 25 M⊙.

  4. The first linear polarization spectra of Wolf-Rayet stars in the ultraviolet - EZ Canis Majoris and Theta Muscae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Shepherd, D.

    1992-01-01

    During the 1990 December Astro-1 Space Shuttle mission, spectropolarimetry was conducted in the wavelength region from 1400 to 3200 A of the Wolf-Rayet stars EZ CMa (WN5) and Theta Mus (WC6 + O9.5I) with the Wisconsin Ultraviolet Photo-Polarimeter Experiment. The UV polarization of EZ CMa displays features which correspond to emission lines. This indicates a large, about 0.8 percent, intrinsic UV-continuum polarization, and provides further evidence that the wind of EZ CMa is highly distorted. The polarization of Theta Mus does not change across emission lines, or the strong interstellar 2200 A feature. The polarization decreases smoothly to shorter wavelengths, at constant position angle. The combined UV-optical polarization spectrum of Theta Mus can be described well with interstellar polarization following a Serkowski law.

  5. Propierties of dust in circumstellar gas around Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Jiménez-Hernández, P.; Arthur, S. J.; Toalá, J. A.

    2017-11-01

    Using archive photometric observations from Herschel (70μm, 100μm, 160μm and 250μm), Spitzer (24μm) and WISE (22μm and 12μm) we obtained infrared SED's of nebulae around the Wolf-Rayet stars WR 124, WR 16 and WR 7. We used the photoionization code Cloudy to construct models of the nebulae, taking into account the spectrum of the central star and varying the density and distance of the photoionized shell as well as the size distribution and chemical composition of the dust grains mixed with the gas, and we compared the resulting SEDs with the observations in order to study the properties of the dust in these objects. We discuss whether the dust properties depend on the spectral type of the central star and the age of the nebulae.

  6. Line formation in winds with enhanced equatorial mass-loss rates and its application to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Rumpl, W. M.

    1980-01-01

    A model having a spherically symmetric velocity distribution with a higher density at the equatorial region was developed to simulate the UV spectrum of the Wolf-Rayet star HD 50896. The spectrum showed P Cygni-shaped profiles whose emissions are stronger than expected in a spherically symmetric stellar wind. The model was studied varying the inclination angle of the star-wind system and the polar to equatorial density ratios; it was shown that HD 50896 could possess a nonspherically symmetric wind and that its symmetry axis is inclined between 60 and 90 deg. It is possible that the velocity distribution of the wind could include an inner constant velocity plateau beyond which the wind accelerates to its terminal velocity as indicated by infrared continuum investigations.

  7. Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    DePew, K.; Parker, Q. A.; Miszalski, B.; De Marco, O.; Frew, D. J.; Acker, A.; Kovacevic, A. V.; Sharp, R. G.

    2011-07-01

    We present the spectra of 32 previously unpublished confirmed and candidate Wolf-Rayet ([WR]) and weak emission-line (WELS) central stars of planetary nebulae (CSPNe). 18 stars have been discovered in the Macquarie/AAO/Strasbourg Hα (MASH) PN survey sample, and we have also uncovered 14 confirmed and candidate [WR]s and WELS among the CSPNe of previously known PNe. Spectral classifications have been undertaken using both Acker & Neiner and Crowther, De Marco & Barlow schemes. 22 members in this sample are identified as probable [WR]s; the remaining 10 appear to be WELS. Observations undertaken as part of the MASH spectroscopic survey have now increased the number of known [WR]s by ˜30 per cent. This will permit a better analysis of [WR] subclass distribution, metallicity effects and evolutionary sequences in these uncommon objects.

  8. A temperature correction method for expanding atmospheres

    NASA Astrophysics Data System (ADS)

    Hamann, W.-R.; Gräfener, G.

    2003-11-01

    Model atmospheres form the basis for the interpretation of stellar spectra. A major problem in those model calculations is to establish the temperature stratification from the condition of radiative equilibrium. Dealing with non-LTE models for spherically expanding atmospheres of Wolf-Rayet stars, we developed a new temperature correction method. Its basic idea dates back to 1955 when it was proposed by Unsöld for grey, static and plane-parallel atmospheres in LTE. The equations were later generalized to the non-grey case by Lucy. In the present paper we furthermore drop the Eddington approximation, proceed to spherical geometry and allow for expansion of the atmosphere. Finally the concept of an ``approximate lambda operator'' is employed to speed up the convergence. Tests for Wolf-Rayet type models demonstrate that the method works fine even in situations of strong non-LTE.

  9. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    NASA Astrophysics Data System (ADS)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  10. Dynamics and stellar population of the Galactic Center (French Title: Étude de la cinématique et de la population stellaire du Centre Galactique)

    NASA Astrophysics Data System (ADS)

    Paumard, Thibaut

    2003-09-01

    The central parsec of the Galaxy has been observed using BEAR spectroimagery at high spectral resolution (up to 21 km/s) and medium spatial resolution (0.5"), in Bracket gamma (2.16 microns) and He I (2.06 microns), and high resolution imaging. These data were used to study the young, massive stars of the central parsec, and the structure and dynamics of ionized gas in Sgr A West. The stellar population has been separated into two groups: the IRS 16 complex of 6 LBVs, and at least 20 Wolf-Rayets. The IRS 13E complex has been identified as a cluster of at least 6 massive stars. All this is consistent with the young stars being born in a massive cluster a few tens of parsecs from the Galactic Centre. Providing a deep insight into the morphology of Sgr A West, our data allowed us to derive a kinematic model for the Northern Arm. Our results are in agreement with the idea that the Minispiral is made of ionisation fronts of wider neutral clouds, gravitationally stretched, coming from the CND.

  11. A Rare Encounter with Very Massive Stars in NGC~3125-A1

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Leitherer, C.; Chandar, R.; Bouret, J. C.

    2014-09-01

    Super star cluster A1 in the nearby starburst galaxy NGC~3125 shows broad He II λ1640 emission (FWHM ~ 1200 km/s) of unprecedented strength (equivalent width, EW = 7.1+/-0.4 angstroms). Previous attempts to characterize A1's massive star content were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to derive the ages, reddenings, masses, and Wolf-Rayet (WR) to O star ratios of three compact clusters in the galaxy. We rule out that the extraordinary HeII lambda 1640 emission and OV lambda 1371 absorption in A1 are due to an extremely flat upper Initial Mass Function (IMF), and suggest that they originate in the winds of Very Massive Stars ( > 120 Msun, VMS). In order to reproduce the properties of peculiar clusters such as A1, the stellar evolution tracks implemented in Starburst99 need to be extended to masses >120 Msun.

  12. Why Evolved Massive Single Stars Create X-rays: Analysis of XMM Observations of WR 6 (EZ CMa)

    NASA Astrophysics Data System (ADS)

    Gayley, Kenneth

    The proposers are US Co-Is on an XMM-Newton proposal that has been awarded a 400 ksec exposure of the Wolf-Rayet star EZ CMa (WR 6). The XMM observations do not currently come with funding for data analysis, so the US Co-Is need separate funding from NASA to be able to carry out the analysis of this important and unique dataset. The reason the data is so important is that it is the longest and highest-resolution X-ray spectrum that has ever been taken of a single Wolf-Rayet star, and it will provide large photon counts as a function of time (to study variability), as a function of phase within the rotation period (to study longitudinal structure), and within each spectral line (to study line shapes and f/i/r ratios). Thus the dataset represents a treasure trove of information about how X-rays are formed in the winds of single Wolf-Rayet stars, which is important to understand because the winds of these stars so completely shroud the underlying hydrostatic object that the only way to study the characteristics and evolution of this important class of supernova and GRB progenitor is by studying its winds. X-rays provide a window into the processes that generate shocks and hot gas in these winds, which in turn may couple to the stellar rotation, pulsations, magnetic fields, and wind acceleration mechanisms, all currently poorly understood for this type of star. Our data analysis will focus on identifying the basic physical processes most likely to be responsible for the X-ray emission. Starting from issues like the total fluxes in lines and continua, we will constrain the energetics involved, and then by considering the details of the line shapes, we can use the line widths, asymmetries, and f/i/r ratios (where applicable) to obtain robust constraints on the location of the hot gas in the wind. Then by considering the temporal variability of the emission, we can distinguish the emission from numerous stochastically distributed shocks, such as from the line-driven instability, from a smaller number of largely coherent structures, perhaps due to magnetic loops or other magnetically induced phenomena. Also, by binning the data by phase over the 3.77 day rotational period of the star, we can probe quasiperiodic longitudinal structure, reminiscent of corotating interaction regions (CIRs) on our own Sun. We will also be able to conclusively verify expectations from previous lower-resolution and lower-photon-count observations, such as that the X-rays will exhibit lines and a thermal continuum suggestive of local shock heating more so than a predominantly nonthermal spectrum. Less certain are the degree of rotational modulation, as opposed to a more constant stochastic background, and whether there will be temporal variability suggestive of features that either come and go on the several-day flow time in the wind, or persist longer over multiple rotations. We need a sustained year-long analysis effort to obtain answers to these questions. The Co-Investigators of this proposal have significant experience analyzing radiative processes in hot-star winds, including Wolf-Rayet winds, and the hydrodynamical and magnetic phenomena that can give rise to shocked X-ray plasma. This was their expected role as Co-Is for the XMM observation, so NASA funding will help make the most of the observing resources already committed.

  13. Young massive star clusters in the era of HST and integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Grebel, Eva K.; Pasquali, Anna

    2018-01-01

    With an age of 1 – 2 Myr at a distance of 4 kpc and a total stellar mass of 3.7×104 M⊙, Westerlund 2 (Wd2) is one of the most massive young star clusters in the Milky Way. We present a detailed analysis of its prominent pre-main-sequence population using the data of a high-resolution multi-band survey in the optical and near-infrared with the Hubble Space Telescope (HST), in combination with our spectroscopic survey, observed with the VLT/MUSE integral field unit. With our derived high-resolution extinction map of the region, which is absolutely essential giving the dominating presences of the gas and dust, we derived the spatial dependence of the mass function and quantify the degree of mass segregation down to 0.65 M⊙ with a completeness level better than 50%. Studying the radial dependence of the mass function of Wd2 and quantifying the degree of mass segregation in this young massive star cluster showed that it consists of two sub-clumps, namely the main cluster and the northern clump. From the MUSE data, we can extract individual stellar spectra and spectral energy distributions of the stars, based on the astrometry, provided by our high-resolution HST photometric catalog. This data will provide us with an almost complete spectral classification of a young massive star cluster down to 1.0 M⊙. The combination of the MUSE data, together with 3 more years of approved HST data will allow us to obtain, for the first time, the 3D motions of the stars with an accuracy of 1-2 km s-2 to determine the stellar velocity dispersion in order to study the fate of Wd2. This information is of great importance to adjust the initial conditions in cluster evolution models in order to connect these young massive star clusters and the old globular cluster population. Additionally, the combination of the photometric and spectroscopic datasets allows us to study the stars and their feedback onto the surrounding HII region simultaneously, as well as peculiar objects such as the massive, eclipsing Wolf-Rayet binary, WR20a or a possible Herbig-Haro object in the northern clump.

  14. A Chandra ACIS Study of 30 Doradus. II. X-Ray Point Sources in the Massive Star Cluster R136 and Beyond

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Feigelson, Eric D.; Garmire, Gordon P.; Getman, Konstantin V.

    2006-04-01

    We have studied the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud using high spatial resolution X-ray images and spatially resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Here we describe the X-ray sources in a 17'×17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. The cluster R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources previously reported. Over 2 orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value LX/Lbol~=10-7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed.

  15. Revealing the Location of the Mixing Layer in a Hot Bubble

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.

    2017-10-01

    The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.

  16. Cosmic ray electrons and positrons from supernova explosions of massive stars.

    PubMed

    Biermann, P L; Becker, J K; Meli, A; Rhode, W; Seo, E S; Stanev, T

    2009-08-07

    We attribute the recently discovered cosmic ray electron and cosmic ray positron excess components and their cutoffs to the acceleration in the supernova shock in the polar cap of exploding Wolf-Rayet and red supergiant stars. Considering a spherical surface at some radius around such a star, the magnetic field is radial in the polar cap as opposed to most of 4pi (the full solid angle), where the magnetic field is nearly tangential. This difference yields a flatter spectrum, and also an enhanced positron injection for the cosmic rays accelerated in the polar cap. This reasoning naturally explains the observations. Precise spectral measurements will be the test, as this predicts a simple E;{-2} spectrum for the new components in the source, steepened to E;{-3} in observations with an E;{-4} cutoff.

  17. The wind geometry of the Wolf-Rayet star HD 191765

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. F.; Nordsieck, K. H.; Taylor, M.; Bjorkman, K. S.; Magalhaes, A. M.; Wolff, M. J.

    1992-01-01

    A time-dependent spectropolarimetric data set of HD 191765 in the wavelength range 3159-7593 A is presented. At all epochs the present observations display a large and strongly wavelength-dependent continuum polarization and reduced levels of polarization across the emission lines. The data imply a significant intrinsic continuum polarization which requires a general deviation of the electron distribution from spherical symmetry. The global shape is quite stable as a function of time; small fluctuations may arise from localized density/temperature changes. The line polarizations are consistent with an axisymmetric wind geometry and ionization stratification. A qualitative model for polarization in a Wolf-Rayet atmosphere is developed. It is argued that the blueward rise of the continuum polarization in HD 191765 can be explained if the density in the wind is high, resulting in a competition of thermal and electron-scattering continuum opacity in the vertical.

  18. On the wind geometry of the Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Taylor, M.; Nook, M. A.; Bjorkman, K. S.; Magalhaes, A. M.; Anderson, C. M.

    1991-01-01

    Recent models of Wolf-Rayet star winds have been tailored to EZ CMa, and make predictions of the envelope structure and location of line-emitting regions. It is discussed how the wind structure of EZ CMa can be probed observationally through electron distribution integrals as measured by spectropolarimetry, and then present, analyze, and interpret a time-dependent spectropolarimetric data set of EZ CMa. The observations further the view of an electron-scattering wind that is axisymmetric, rotating, and expanding, with a variable mass-loss rate being responsible for the quasi-periodic polarimetric variability. It is demonstrated that the emission lines of EZ CMa are partially polarized, indicating that line photons are electron-scattered in the wind. The polarization in N V lambda 4945 and N IV lambda 4058 is observed to be larger than that of He II lambda 4686 and He I lambda 5876, as expected from ionization stratification.

  19. A New Probe of Dust Attenuation in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2017-08-01

    We propose to develop, calibrate and test a new technique to measure dust attenuation in star-forming galaxies. The technique utilizes the strong stellar-wind emission lines in Wolf-Rayet stars, which are routinely observed in galaxy spectra locally and up to redshift 3. The He II 1640 and 4686 features are recombination lines whose intrinsic ratio is almost exclusively determined by atomic physics. Therefore it can serve as a stellar dust probe in the same way as the nebular hydrogen-line ratio can be used to measure the reddening of the gas phase. Archival spectra of Wolf-Rayet stars will be analyzed to calibrate the method, and panchromatic FOS and STIS spectra of nearby star-forming galaxies will be used as a first application. The new technique allows us to study stellar and nebular attenuation in galaxies separately and to test its effects at different stellar age and mass regimes.

  20. Copernicus observations of distant unreddened stars. II - Line of sight to HD 50896

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1977-01-01

    Copernicus UV data on interstellar lines toward HD 50896, a Wolf-Rayet star, are analyzed to study abundances and physical conditions in the line of sight. About 20% of the low-velocity neutral gas is contained in a dense cloud with 10% to 50% of its hydrogen in molecular form; the atomic abundances show typical interstellar depletions. The low-velocity H II gas may be associated with the high ionizing flux of the Wolf-Rayet star or with H II regions along the line of sight. Si III exhibits strong absorption shortward of the low-velocity H II gas, characteristic of a collisionally ionized component at 30,000 to 80,000 K; the possible connections with an unobserved supernova remnant or stellar mass loss are discussed. High-velocity features at 78 and -96 km/sec, in which Fe and Si are near their cosmic abundances, are also indicative of strong shocks.

  1. Effects of Nongray Opacity on Radiatively Driven Wolf-Rayet Winds

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2002-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes, and simulations of radiation driving have been increasingly successful in modeling these winds. Simple analytic approaches that help understand the most critical processes for copious momentum deposition already exist in the effectively gray approximation, but these have not been extended to more realistic nongray opacities. With this in mind, we have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive not only to the strength but also the wavelength distribution of lines, incorporating as a free parameter the rate of photon frequency redistribution. We label the resulting flux-weighted opacity the statistical Sobolev- Rosseland (SSR) mean, and explore how changing these various statistical parameters affects the flux/opacity interaction. We wish to acknowledge NSF grant AST-0098155

  2. The first optical spectra of Wolf-Rayet stars in M101 revealed with Gemini/GMOS

    NASA Astrophysics Data System (ADS)

    Pledger, J. L.; Shara, M. M.; Wilde, M.; Crowther, P. A.; Long, K. S.; Zurek, D.; Moffat, A. F. J.

    2018-01-01

    Deep narrow-band Hubble Space Telescope (HST) imaging of the iconic spiral galaxy M101 has revealed over a thousand new Wolf-Rayet (WR) candidates. We report spectrographic confirmation of 10 He II-emission line sources hosting 15 WR stars. We find WR stars present at both sub- and super-solar metallicities with WC stars favouring more metal-rich regions compared to WN stars. We investigate the association of WR stars with H II regions using archival HST imaging and conclude that the majority of WR stars are in or associated with H II regions. Of the 10 emission lines sources, only one appears to be unassociated with a star-forming region. Our spectroscopic survey provides confidence that our narrow-band photometric candidates are in fact bona fide WR stars, which will allow us to characterize the progenitors of any core-collapse supernovae that erupt in the future in M101.

  3. Linear Relation for Wind-blown Bubble Sizes of Main-sequence OB Stars in a Molecular Environment and Implication for Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhou, Ping; Chu, You-Hua

    2013-05-01

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R b ≈ 1.22 M/M ⊙ - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M ⊙ will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  4. Vents stellaires chauds et nébuleuses éjectées des étoiles chaudes: nécessaire inclusion des phénomènes radiatifs dans les simulations hydrodynamiques

    NASA Astrophysics Data System (ADS)

    Grosdidier, Y.; Garcia-Segura, G.; Acker, A.; Moffat, A. F. J.

    Nous décrivons, à l'instar de la formation et de l'évolution des nébuleuses planétaires, comment l'histoire des vents stellaires issus d'une même étoile chaude (massive ou non) détermine la morphologie des nébuleuses éjectées. Ensuite, nous présentons sommairement la structure et la dynamique des vents accélérés radiativement au sein des étoiles massives (O, Wolf-Rayet) et des étoiles centrales de nébuleuses planétaires de type [WC]. Enfin, nous tâchong d'illustrer en quoi la prise en compte des phénomènes radiatifs est nécessaire pour effectuer toute simulation hydrodynamique sensée reproduire les observations dans les deux contextes, i.e. les vents stellaires chauds eux-mêmes, la persistance de surdensités en leur sein, et les nébuleuses éjectées qui en résultent.

  5. GRO source candidates: (A) Nearby modest-size molecular clouds; (B) Pulsar with Wolf-Rayet companion that has lost its H-envelope

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Murphy, Ronald J.

    1989-01-01

    Within 100 pc of the sun there are over a hundred cirrus clouds with masses of approx. 60 solar mass and dense molecular clouds with masses of approx. 4 solar mass. If the local interstellar density of cosmic rays is also present in these clouds, the flux of neutral pion from the decay of gamma rays from the core of a cloud at a distance of 20 pc is approx. 13 x 10(exp -8) photons/sq cm/s. The flux from the more extensive cirrus cloud is approx 4 x 10(exp -7) photons/sq cm/s. A relativistic beam of particles generated by a compact stellar object and incident upon a large, close companion can be a strong gamma ray line source if more of the beam energy is used in interactions with C and O and heavier nuclei and less with H and He. This would be the case if the companion has lost its hydrogen envelope and nucleosynthesized much of its He into C, O, and Ne. Such objects are Wolf-Rayet stars and it is believed that some Wolf-Rayet stars do, in fact, have compact companions. For a beam of protons of 10(exp 37) erg/s, the flux at 1 kpc of the 4.4 MeV C-12 line could be as high as 5 x 10(exp -6) photons/sq cm/s. The fluxes of the deexcitation lines from the spallation products of O-16 are also presented.

  6. A MODERN SEARCH FOR WOLF–RAYET STARS IN THE MAGELLANIC CLOUDS. II. A SECOND YEAR OF DISCOVERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia, E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: nmorrell@lco.cl

    The numbers and types of evolved massive stars found in nearby galaxies provide an exacting test of stellar evolution models. Because of their proximity and rich massive star populations, the Magellanic Clouds have long served as the linchpins for such studies. Yet the continued accidental discoveries of Wolf–Rayet (WR) stars in these systems demonstrate that our knowledge is not as complete as usually assumed. Therefore, we undertook a multi-year survey for WRs in the Magellanic Clouds. Our results from our first year (reported previously) confirmed nine new LMC WRs. Of these, six were of a type never before recognized, withmore » WN3-type emission combined with O3-type absorption features. Yet these stars are 2–3 mag too faint to be WN3+O3 V binaries. Here we report on the second year of our survey, including the discovery of four more WRs, two of which are also WN3/O3s, plus two “slash” WRs. This brings the total of known LMC WRs to 152, 13 (8.2%) of which were found by our survey, which is now ∼60% complete. We find that the spatial distribution of the WN3/O3s is similar to that of other WRs in the LMC, suggesting that they are descended from the same progenitors. We call attention to the fact that 5 of the 12 known SMC WRs may in fact be similar WN3/O3s rather than the binaries they have often assumed to be. We also discuss our other discoveries: a newly discovered Onfp-type star, and a peculiar emission-line object. Finally, we consider the completeness limits of our survey.« less

  7. Evolution and fate of very massive stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges; Crowther, Paul A.; Ekström, Sylvia; Frischknecht, Urs; Georgy, Cyril; Abu Kassim, Hasan; Schnurr, Olivier

    2013-08-01

    There is observational evidence that supports the existence of very massive stars (VMS) in the local universe. First, VMS (Mini ≲ 320 M⊙) have been observed in the Large Magellanic Clouds (LMC). Secondly, there are observed supernovae (SNe) that bear the characteristics of pair creation supernovae (PCSNe, also referred to as pair instability SN) which have VMS as progenitors. The most promising candidate to date is SN 2007bi. In order to investigate the evolution and fate of nearby VMS, we calculated a new grid of models for such objects, for solar, LMC and Small Magellanic Clouds (SMC) metallicities, which covers the initial mass range from 120 to 500 M⊙. Both rotating and non-rotating models were calculated using the GENEVA stellar evolution code and evolved until at least the end of helium burning and for most models until oxygen burning. Since VMS have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All the VMS, at all the metallicities studied here, end their life as WC(WO)-type Wolf-Rayet stars. Because of very important mass losses through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M⊙. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses would be the enhanced abundances of Ne and Mg at the surface of WC stars. This feature is however not always apparent depending on the history of mass loss. At solar metallicity, none of our models is expected to explode as a PCSN. At the metallicity of the LMC, only stars more massive than 300 M⊙ are expected to explode as PCSNe. At the SMC metallicity, the mass range for the PCSN progenitors is much larger and comprises stars with initial masses between about 100 and 290 M⊙. All VMS in the metallicity range studied here produce either a Type Ib SN or a Type Ic SN but not a Type II SN. We estimate that the progenitor of SN 2007bi, assuming a SMC metallicity, had an initial mass between 160 and 175 M⊙. None of models presented in this grid produces gamma-ray bursts or magnetars. They lose too much angular momentum by mass loss or avoid the formation of a black hole by producing a completely disruptive PCSN.

  8. Hydrodynamical simulations of Pinwheel nebula WR 104

    NASA Astrophysics Data System (ADS)

    Lamberts, A.; Fromang, S.; Dubus, G.

    2010-12-01

    The interaction of stellar winds from two companion stars leads to the formation of a shocked structure. Several analytic solutions have been developped to model this phenomenon. We compare our 2D and 3D hydrodynamical simulations to these results and highlight their shortcomings. Analytic solutions do not take orbital motion into account although this drastically changes the structure at large distances, turning it into a spiral. This is observed in Pinwheel Nebulae, binaries composed of a Wolf-Rayet star and an early-type star. Their infrared emission is due to dust whose origin is stil poorly constrained. We perform large scale 2D simulations of one particular system, WR 104. Including the orbital motion, we follow the flow up to a few steps of the spiral. This is made possible using adaptive mesh refinement. We determine the properties of the gas in the winds and confirm the flow in the spiral has a ballistic motion.

  9. Point and Condensed Hα Sources in the Interior of M33

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Hintz, Eric G.; Roming, Peter; Joner, Michael D.; Bucklein, Brian

    2017-01-01

    A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebula, x-ray binaries, etc. can be discovered as point or condensed sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.5' of the nearby galaxy M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than 1 x 10-15 erg cm-2sec-1. We have identified 152 unresolved point sources and 122 marginally resolved condensed sources, 38 of which have not been previously cataloged. We present a map of these sources and discuss their probable identifications.

  10. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  11. Spectral Identification of New Galactic cLBV and WR Stars

    NASA Astrophysics Data System (ADS)

    Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.

    2012-12-01

    We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.

  12. The mystery of a supposed massive star exploding in a brightest cluster galaxy

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2017-08-01

    Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.

  13. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    NASA Astrophysics Data System (ADS)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages < 6 Myr are ideal tools for mapping the current chemical abundances in the Galactic disk for several reasons. First of all, the locations of these clusters can be known through spectrophotometric distances. Secondly, their young ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  14. Pinwheels in the sky, with dust: 3D modelling of the Wolf-Rayet 98a environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Tom; Keppens, Rony; van Marle, Allard Jan; Camps, Peter; Baes, Maarten; Meliani, Zakaria

    2016-08-01

    The Wolf-Rayet 98a (WR 98a) system is a prime target for interferometric surveys, since its identification as a `rotating pinwheel nebulae', where infrared images display a spiral dust lane revolving with a 1.4 yr periodicity. WR 98a hosts a WC9+OB star, and the presence of dust is puzzling given the extreme luminosities of Wolf-Rayet stars. We present 3D hydrodynamic models for WR 98a, where dust creation and redistribution are self-consistently incorporated. Our grid-adaptive simulations resolve details in the wind collision region at scales below one percent of the orbital separation (˜4 au), while simulating up to 1300 au. We cover several orbital periods under conditions where the gas component alone behaves adiabatic, or is subject to effective radiative cooling. In the adiabatic case, mixing between stellar winds is effective in a well-defined spiral pattern, where optimal conditions for dust creation are met. When radiative cooling is incorporated, the interaction gets dominated by thermal instabilities along the wind collision region, and dust concentrates in clumps and filaments in a volume-filling fashion, so WR 98a must obey close to adiabatic evolutions to demonstrate the rotating pinwheel structure. We mimic Keck, ALMA or future E-ELT observations and confront photometric long-term monitoring. We predict an asymmetry in the dust distribution between leading and trailing edge of the spiral, show that ALMA and E-ELT would be able to detect fine-structure in the spiral indicative of Kelvin-Helmholtz development, and confirm the variation in photometry due to the orientation. Historic Keck images are reproduced, but their resolution is insufficient to detect the details we predict.

  15. RED EYES ON WOLF-RAYET STARS: 60 NEW DISCOVERIES VIA INFRARED COLOR SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W., E-mail: mauerhan@ipac.caltech.edu

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of {approx}20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution ofmore » all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to {approx}40%; 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of {approx}6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003] 179. This work brings the total number of known Galactic WRs to 476, or {approx}7%-8% of the total empirically estimated population. An examination of their Galactic distribution reveals an approximate tracing of the spiral arms and an enhanced WR surface density toward several massive-star formation sites.« less

  16. Red Eyes on Wolf-Rayet Stars: 60 New Discoveries via Infrared Color Selection

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W.

    2011-08-01

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of ≈20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to ≈40% 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of ≈6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003] 179. This work brings the total number of known Galactic WRs to 476, or ≈7%-8% of the total empirically estimated population. An examination of their Galactic distribution reveals an approximate tracing of the spiral arms and an enhanced WR surface density toward several massive-star formation sites.

  17. First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA

    NASA Astrophysics Data System (ADS)

    Miralles-Caballero, D.; Díaz, A. I.; López-Sánchez, Á. R.; Rosales-Ortega, F. F.; Monreal-Ibero, A.; Pérez-Montero, E.; Kehrig, C.; García-Benito, R.; Sánchez, S. F.; Walcher, C. J.; Galbany, L.; Iglesias-Páramo, J.; Vílchez, J. M.; González Delgado, R. M.; van de Ven, G.; Barrera-Ballesteros, J.; Lyubenova, M.; Meidt, S.; Falcon-Barroso, J.; Mast, D.; Mendoza, M. A.; Califa Collaboration

    2016-08-01

    The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task owing to the difficulty in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This procedure has been applied to a sample of nearby galaxies spanning a wide range of physical, morphological, and environmental properties. This technique allowed us to build the first catalogue of regions rich in WR stars with spatially resolved information, and enabled us to study the properties of these complexes in a two-dimensional (2D) context. The detection technique is based on the identification of the blue WR bump (around He IIλ4686 Å, mainly associated with nitrogen-rich WR stars; WN) and the red WR bump (around C ivλ5808 Å, mainly associated with carbon-rich WR stars; WC) using a pixel-by-pixel analysis that maximizes the number of independent regions within a given galaxy. We identified 44 WR-rich regions with blue bumps distributed in 25 out of a total of 558 galaxies. The red WR bump was identified only in 5 of those regions. Most of the WR regions are located within one effective radius from the galaxy centre, and around one-third are located within ~1 kpc or less from the centre. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, such as potential candidates to the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as binary star channel (which could extend theWR phase up to 10 Myr), fast rotation, or other physical processes that cause the loss of observed Lyman continuum photons, very likely affect the derived WR properties, and hence should be considered when modelling the evolution of massive stars. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  18. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A., E-mail: sergey.marchenko@ssaihq.co, E-mail: moffat@astro.umontreal.c, E-mail: Paul.Crowther@sheffield.ac.u

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected formore » stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.« less

  19. The Statistical Sobolev-Rosseland Mean and the Effects of Frequency Redistribution on Wolf-Rayet Wind Driving

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2003-06-01

    The optically thick character of Wolf-Rayet winds implies that stellar continuum photons are multiply scattered, as a result of both free electron opacity and overlapping wind-broadened spectral lines. This allows the wind to accumulate a substantial excess in momentum flux relative to the driving radiation field, as is observationally required. Nevertheless, sustaining such a high degree of multiple scattering requires not only a large optical depth spatially but also substantial spectral blanketing. The latter is difficult to maintain when redistribution during scattering allows radiative flux to shift preferentially into spectral regions with fewer lines, since then the channels carrying much of the flux are also the least well blanketed. This paper parameterizes the potential severity of this effect in simple terms, using a generalization of the Rosseland mean treated in the Sobolev approximation. We show that our approach provides an informative starting point for characterizing and conceptualizing nongray effects in optically thick supersonic flows.

  20. EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corsi, A.; Ofek, E. O.; Gal-Yam, A.

    We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R {approx}< 4.5 R{sub Sun} (R {approx}< 1 R{sub Sun }) on themore » radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R {approx}< 1/4 R{sub Sun} for the progenitor radius of this SN.« less

  1. Chandra Observations of Associates of η Carinae. II. Spectra

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Schlegel, Eric M.; Waldron, Wayne L.; Seward, Frederick D.; Krauss, Miriam I.; Nichols, Joy; Wolk, Scott J.

    2004-09-01

    The low-resolution X-ray spectra around η Car covering Trumpler 16 and part of Trumpler 14 have been extracted from a Chandra CCD ACIS image. Various analysis techniques have been applied to the spectra based on their count rates. The spectra with the greatest number of counts (HD 93162 = WR 25, HD 93129 AB, and HD 93250) have been fitted with a wind model, which uses several components with different temperatures and depths in the wind. Weaker spectra have been fitted with Raymond-Smith models. The weakest spectra are simply intercompared with strong spectra. In general, fits produce reasonable parameters based on knowledge of the extinction from optical studies and on the range of temperatures for high- and low-mass stars. Direct comparisons of spectra confirm the consistency of the fitting results and also hardness ratios for cases of unusually large extinction in the clusters. The spectra of the low-mass stars are harder than the more massive stars. Stars in the sequence evolving from the main sequence (HD 93250) through the system containing the O supergiant (HD 93129 AB) and then through the Wolf-Rayet stage (HD 93162), presumably ending in the extreme example of η Car, share the property of being unusually luminous and hard in X-rays. For these X-ray-luminous stars, their high mass and evolutionary status (from the very last stages of the main sequence and beyond) is the common feature. Their binary status is mixed, and their magnetic status is still uncertain. Based on observations made with the Chandra X-Ray Observatory.

  2. Intense and short-lived

    NASA Image and Video Library

    2015-06-29

    This NASA/ESA Hubble Space Telescope picture shows a galaxy named SBS 1415+437 or SDSS CGB 12067.1, located about 45 million light-years from Earth. SBS 1415+437 is a Wolf–Rayet galaxy, a type of starbursting galaxy with an unusually high number of extremely hot and massive stars known as Wolf–Rayet stars. These stars can be around 20 times as massive as the Sun, but seem to be on a mission to shed surplus mass as quickly as possible — they blast substantial winds of particles out into space, causing them to dwindle at a rapid rate. A typical star of this type can lose a mass equal to that of our Sun in just 100 000 years! These massive stars are also incredibly hot, with surface temperatures some 10 to 40 times that of the Sun, and very luminous, glowing at tens of thousands to several million times the brightness of the Sun. Many of the brightest and most massive stars in the Milky Way are Wolf–Rayet stars. Because these stars are so intense they do not last very long, burning up their fuel and blasting their bulk out into the cosmos on very short timescale ‒ only a few hundred thousand years. Because of this it is unusual to find more than a few of these stars per galaxy — except in Wolf–Rayet galaxies, like the one in this image.

  3. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-04

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

  4. The metallicity dependence of WR winds

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Shenar, T.; Sander, A.; Hamann, W.-R.; Todt, H.

    2017-11-01

    Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.

  5. X-ray Properties of the Young Open Clusters HM1 and IC 2944-2948

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Rauw, G.; Sana, H.; Corcoran, Michael F.

    2013-01-01

    Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or foreground objects. Most massive stars in both clusters display the usual high-energy properties of that type of objects, though with log [L(sub X)/L(sub BOL)] apparently lower in HM1 than in IC2944/2948. Compared with studies of other clusters, it seems that a low signal-to-noise ratio at soft energies, due to the high extinction, may be the main cause of this difference. In HM1, the two Wolf-Rayet stars show contrasting behaviors:WR89 is extremely bright, but much softer than WR87. It remains to be seen whether wind-wind collisions or magnetically confined winds can explain these emissions. In IC 2944/2948, the X-ray sources concentrate around HD 101205; a group of massive stars to the north of this object is isolated, suggesting that there exist two subclusters in the field-of-view.

  6. The low-metallicity starburst NGC346: massive-star population and feedback

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  7. A catalogue of potentially bright close binary gravitational wave sources

    NASA Technical Reports Server (NTRS)

    Webbink, Ronald F.

    1985-01-01

    This is a current print-out of results of a survey, undertaken in the spring of 1985, to identify those known binary stars which might produce significant gravitational wave amplitudes at earth, either dimensionless strain amplitudes exceeding a threshold h = 10(exp -21), or energy fluxes exceeding F = 10(exp -12) erg cm(exp -2) s(exp -1). All real or putative binaries brighter than a certain limiting magnitude (calculated as a function of primary spectral type, orbital period, orbital eccentricity, and bandpass) are included. All double degenerate binaries and Wolf-Rayet binaries with known or suspected orbital periods have also been included. The catalog consists of two parts: a listing of objects in ascending order of Right Ascension (Equinox B1950), followed by an index, listing of objects by identification number according to all major stellar catalogs. The object listing is a print-out of the spreadsheets on which the catalog is currently maintained. It should be noted that the use of this spreadsheet program imposes some limitations on the display of entries. Text entries which exceed the cell size may appear in truncated form, or may run into adjacent columns. Greek characters are not available; they are represented here by the first two or three letters of their Roman names, the first letter appearing as a capital or lower-case letter according to whether the capital or lower-case Greek character is represented. Neither superscripts nor subscripts are available; they appear here in normal position and type-face. The index provides the Right Ascension and Declination of objects sorted by catalogue number.

  8. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Amaro-Seoane, Pau, E-mail: Xian.Chen@aei.mpg.de, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we proposemore » that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.« less

  9. FOC Imaging of the Dusty Envelopes of Mass-Losing Supergiants

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    1996-07-01

    Stars more massive than 10 M_odot are destined to explode as supernovae {SN}. Pre-SN mass loss can prolong core buildup, and the rate and duration of mass loss therefore largely determines a massive star's post-main sequence evolution and its position in the H-R diagram prior to SN detonation. The envelope ejected by a mass-losing supergiant also plays an important role in the formation and evolution of a SN remnant. We propose to investigate these processes with HST. We will use the FOC to image two massive stars that are in different stages of post-main sequence evolution: VY CMa, the prototype for a class of heavily mass-losing OH/IR supergiants, and HD 179821, a post-red supergiant that is likely in transition to the Wolf-Rayet phase. Both are known to possess compact reflection nebulae, but ground-based techniques are unable to separate the inner nebulosities from the PSF of the central stars. We will use the unparalleled resolution of the FOC to probe the structure of these nebulae at subarcsecond scales. These data will yield the mass loss histories of the central stars and will demonstrate the presence or absence of axisymmetric mass loss and circumstellar disks. In so doing, our HST/FOC program will define the role of mass loss in determining the fates of SN progenitors and SN remnants.

  10. Undergraduate Research Possibilities with a 0.6m Telescope

    NASA Astrophysics Data System (ADS)

    Carini, M. T.; Barnaby, D.; Gelderman, R.; Marchenko, S.; McGruder, C. H., III; Strolger, L.

    2005-12-01

    We present a discussion of the research projects that are being carried out by undergraduate students with the 0.6m telescope at the Bell Observatory, operated by Western Kentucky University. As a primarily undergraduate institution, our goal is to provide a meaningful undergraduate educational experience through both quality instruction and engagement of students in mentored research activities. Such activities not only enhance the student's educational experience, but also prepare them to be competitive in graduate school and/or the workplace. Using our modernized 0.6m telescope, our students pursue research projects which investigate a variety of astrophysically interesting problems: variability of Blazars, eclipsing binary stars, Gamma-ray burst identifications and follow up, photometric searches for extra-solar planets, supernova monitoring and survey programs, the relationship between morphological disturbances and activity in Seyfert nuclei, and variability in Wolf Rayet stars. We discuss the instrumentation, projects and results obtained by our undergraduate students, and the impact this has had on their undergraduate experience.

  11. The violent interstellar environment around the Wolf-Rayet star HD 192163

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, Joy; Fesen, Robert A.

    1993-01-01

    IRAS Skyflux IR images, high-dispersion IUE UV spectra, optical spectra, and optical interference filter images are used to investigate the nature of the interstellar environment around the Wolf-Rayet star HD 192163. IRAS images show an apparent 1.5 x 1.8 deg IR emission shell very nearly centered on HD 192163, which is designated G75.5+2.4. It is suggested that this shell is a possible unrecognized SNR with an estimated age of not less than 100,000 yr if at the assumed 1.8-kpc distance of HD 192163. A well-defined 2 x 4.5 deg region of weak IR emission lying to the southeast of HD 192163 appears to be the IR signature of the Cyg OB1 superbubble. Analysis of IUE spectra shows that high-velocity components of UV interstellar absorption lines are present for both high and low ionization lines in 18 of 22 stars located in the Cyg OB1/OB3 direction with a velocity range of +/- 90 km/s. A possible evolutionary history for this region is outlined.

  12. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  13. The Complete Redistribution Approximation in Optically Thick Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Gayley, K. G.; Onifer, A. J.

    2001-05-01

    Wolf-Rayet winds are thought to exhibit large momentum fluxes, which has in part been explained by ionization stratification in the wind. However, it the cause of high mass loss, not high momentum flux, that remains largely a mystery, because standard models fail to achieve sufficient acceleration near the surface where the mass-loss rate is set. We consider a radiative transfer approximation that allows for the dynamics of optically thick Wolf-Rayet winds to be modeled without detailed treatment of the radiation field, called the complete redistribution approximation. In it, it is assumed that thermalization processes cause the photon frequencies to be completely randomized over the course of propagating through the wind, which allows the radiation field to be treated statistically rather than in detail. Thus the approach is similar to the statistical treatment of the line list used in the celebrated CAK approach. The results differ from the effectively gray treatment in that the radiation field is influenced by the line distribution, and the role of gaps in the line distribution is enhanced. The ramifications for the driving of large mass-loss rates is explored.

  14. Revealing Large-Scale Asymetries in the Winds of Hot, Luminous Stars Using Spectroscopy and Polarimetry

    NASA Astrophysics Data System (ADS)

    St-Louis, Nicole

    2015-08-01

    The winds of hot, luminous stars are known to show small but also large scale density structures. Ultimately, these departures from spherical symmetry are important for the understanding of the loss of angular momentum from the star and are crucial in determining its rotation rate. There are many observational signatures of these departures from a uniform and spherically symmetric outflow. This poster will present results from spectroscopic and polarimetric observations of Wolf-Rayet stars, the descendants of massive O stars, that reveal large-scale asymmetries in their winds and discuss what can be learned about the structure of these winds and about the the physical mechanism responsible for generating them. Very little is known about the rotation rates of these small, He-burning stars which are the direct progenitors of at least some supernova explosions. If enough angular momentum is retained in the core, some may also very well be the progenitors of long gamma-ray bursts.

  15. SN 2015bh: an LBV becomes NGC 2770s fourth SN. . . or not?

    NASA Astrophysics Data System (ADS)

    Thöne, Christina C.; de Ugarte Postigo, Antonio; Leloudas, Giorgos

    2017-11-01

    Massive stars in the final phases of their lives frequently expel large amounts of material. An interesting example is SN 2009ip that varied in brightness years before its possible core-collapse. Here we present SN 2015bh in NGC 2770 that shows striking similarities to SN 2009ip. It experienced frequent variabilities for 21 years before a smaller precursor and the ``main event'' in May 2015. Its spectra are consistent with an LBV during the outburst phase and show a complex P-Cygni profile during the main event. Both SN 2009ip and 2015bh were always situated red-wards of LBVs in outburst in the HR diagram. Their final fate is currently still uncertain, SN 2009ip, however, is now fainter than in pre-explosion observations. If the star survives this event it is undoubtedly altered, and we suggest that these ``zombie stars'' could be LBVs evolving into a Wolf-Rayet (WR) star over a very short timescale.

  16. Fast luminous blue transients from newborn black holes

    NASA Astrophysics Data System (ADS)

    Kashiyama, Kazumi; Quataert, Eliot

    2015-08-01

    Newborn black holes in collapsing massive stars can be accompanied by a fallback disc. The accretion rate is typically super-Eddington and strong disc outflows are expected. Such outflows could be directly observed in some failed explosions of compact (blue supergiants or Wolf-Rayet stars) progenitors, and may be more common than long-duration gamma-ray bursts. Using an analytical model, we show that the fallback disc outflows produce blue UV-optical transients with a peak bolometric luminosity of ˜ 1042-43 erg s- 1 (peak R-band absolute AB magnitudes of -16 to -18) and an emission duration of ˜ a few to ˜10 d. The spectra are likely dominated intermediate mass elements, but will lack much radioactive nuclei and iron-group elements. The above properties are broadly consistent with some of the rapid blue transients detected by Panoramic Survey Telescope & Rapid Response System and Palomar Transient Factory. This scenario can be distinguished from alternative models using radio observations within a few years after the optical peak.

  17. Emission-line diagnostics of nearby H II regions including interacting binary populations

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  18. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  19. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  20. Outflow-driven Transients from the Birth of Binary Black Holes. I. Tidally Locked Secondary Supernovae

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    2017-12-01

    We propose a new type of electromagnetic transient associated with the birth of binary black holes (BBHs), which may lead to merger events accompanied by gravitational waves in ∼ 0.1{--}1 {Gyr}. We consider the newborn BBHs formed through the evolution of isolated massive stellar binaries. For a close massive binary, consisting of a primary black hole (BH) and a secondary Wolf–Rayet (WR) star that are orbiting around each other, the spin period of the WR star can be tidally synchronized to its orbital period. Then the angular momentum of the outer material of the WR star is large enough to form an accretion disk around a newborn, secondary BH, following its core-collapse. This disk may produce an energetic outflow with a kinetic energy of ∼ {10}50{--}{10}52 {erg} and an outflow velocity of ∼ {10}10 {cm} {{{s}}}-1, resulting in an optical transient with an absolute magnitude from approximately ‑14 to approximatley ‑17 with a duration of around a day. This type of transient also produces detectable radio signals ∼ 1{--}10 years after the birth of BBHs, via synchrotron emission from nonthermal electrons accelerated at external shocks. The predicted optical transients have a shorter duration than ordinary core-collapse supernovae. Dedicated optical transient surveys can detect them and distinguish them from ordinary SNe using the different features of its light curve and late-time spectrum. In this paper (Paper I), we investigate disk-driven outflows from the secondary BH, whereas possible signals from the primary BH will be discussed in Paper II.

  1. Variability survey of brightest stars in selected OB associations

    NASA Astrophysics Data System (ADS)

    Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits

    2017-02-01

    Context. The stellar evolution theory of massive stars remains uncalibrated with high-precision photometric observational data mainly due to a small number of luminous stars that are monitored from space. Automated all-sky surveys have revealed numerous variable stars but most of the luminous stars are often overexposed. Targeted campaigns can improve the time base of photometric data for those objects. Aims: The aim of this investigation is to study the variability of luminous stars at different timescales in young open clusters and OB associations. Methods: We monitored 22 open clusters and associations from 2011 to 2013 using a 0.25-m telescope. Variable stars were detected by comparing the overall light-curve scatter with measurement uncertainties. Variability was analysed by the light curve feature extraction tool FATS. Periods of pulsating stars were determined using the discrete Fourier transform code SigSpec. We then classified the variable stars based on their pulsation periods and available spectral information. Results: We obtained light curves for more than 20 000 sources of which 354 were found to be variable. Amongst them we find 80 eclipsing binaries, 31 α Cyg, 13 β Cep, 62 Be, 16 slowly pulsating B, 7 Cepheid, 1 γ Doradus, 3 Wolf-Rayet and 63 late-type variable stars. Up to 55% of these stars are potential new discoveries as they are not present in the Variable Star Index (VSX) database. We find the cluster membership fraction for variable stars to be 13% with an upper limit of 35%. Variable star catalogue (Tables A.1-A.10) and light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A108

  2. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Keiichi; Katsuda, Satoru; Bamba, Aya

    2014-04-20

    Type IIb supernova (SN) 2011dh, with conclusive detection of an unprecedented yellow supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosion. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ∼500 days after the explosion on Chandra archival data, providing a solidly derived mass-loss rate of a YSG progenitor for the first time. We find that the circumstellar media should be dense, more than that expected from a Wolf-Rayet (W-R) star by one order of magnitude.more » The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a W-R progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact W-R star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass-loss rate is ∼3 × 10{sup –6} M {sub ☉} yr{sup –1} for the mass-loss velocity of ∼20 km s{sup –1} in the final ∼1300 yr before the explosion. The derived mass-loss properties are largely consistent with the standard wind mass-loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at ≳ 1300 yr before the explosion, is a likely scenario to produce the YSG progenitor.« less

  3. On the Evolutionary Phase and Mass Loss of the Wolf-Rayet--like Stars in R136a

    NASA Astrophysics Data System (ADS)

    de Koter, Alex; Heap, Sara R.; Hubeny, Ivan

    1997-03-01

    We report on a systematic study of the most massive stars, in which we analyzed the spectra of four very luminous stars in the Large Magellanic Cloud. The stars lie in the 30 Doradus complex, three of which are located in the core of the compact cluster, R136a (R136a1, R136a3, and R136a5), and the fourth (Melnick 42), located about 8" north of R136a. Low-resolution spectra (<200 km s-1) of these four stars were obtained with the GHRS and FOS spectrographs on the Hubble Space Telescope. The GHRS spectra cover the spectral range from 1200 to 1750 A, and the FOS spectra from 3200 to 6700 A. We derived the fundamental parameters of these stars by fitting the observations by model spectra calculated with the "ISA-WIND" code of de Koter et al. We find that all four stars are very hot (~45 kK), luminous, and rich in hydrogen. Their positions on the HR-diagram imply that they are stars with masses in the range 60--90 M⊙ that are 2 million years old at most, and hence, they are O-type main-sequence stars still in the core H-burning phase of evolution. Nevertheless, the spectra of two of the stars (R136a1, R136a3) mimic those of Wolf-Rayet stars in showing very strong He II emission lines. According to our calculations, this emission is a natural consequence of a very high mass-loss rate. We conjecture that the most massive stars in R136a---those with initial masses of ~100 M⊙ or more---are born as WR-like stars and that the high mass loss may perhaps be connected to the actual stellar formation process. Because the observed mass-loss rates are up to 3 times higher than assumed by evolutionary models, the main-sequence and post--main-sequence tracks of these stars will be qualitatively different from current models. The mass-loss rate is 3.5--8 times that predicted by the analytical solutions for radiation-driven winds of Kudritzki et al. (1989). However, using sophisticated Monte Carlo calculations of radiative driving in unified model atmospheres, we show that---while we cannot say for sure what initiates the wind---radiation pressure is probably sufficient to accelerate the wind to its observed terminal velocity, if one accounts for the effects of multiple photon scattering in the dense winds of the investigated stars.

  4. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy ofmore » #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.« less

  5. WR 120bb and WR 120bc: a pair of WN9h stars with possibly interacting circumstellar shells

    NASA Astrophysics Data System (ADS)

    Burgemeister, S.; Gvaramadze, V. V.; Stringfellow, G. S.; Kniazev, A. Y.; Todt, H.; Hamann, W.-R.

    2013-03-01

    Two optically obscured Wolf-Rayet (WR) stars have been recently discovered by means of their infrared (IR) circumstellar shells, which show signatures of interaction with each other. Following the systematics of the WR star catalogues, these stars obtain the names WR 120bb and WR 120bc. In this paper, we present and analyse new near-IR, J-, H- and K-band spectra using the Potsdam Wolf-Rayet model atmosphere code. For that purpose, the atomic data base of the code has been extended in order to include all significant lines in the near-IR bands. The spectra of both stars are classified as WN9h. As their spectra are very similar the parameters that we obtained by the spectral analyses hardly differ. Despite their late spectral subtype, we found relatively high stellar temperatures of 63 kK. The wind composition is dominated by helium, while hydrogen is depleted to 25 per cent by mass. Because of their location in the Scutum-Centaurus Arm, WR 120bb and WR 120bc appear highly reddened, A_{K_s} ≈ 2 mag. We adopt a common distance of 5.8 kpc to both stars, which complies with the typical absolute K-band magnitude for the WN9h subtype of -6.5 mag, is consistent with their observed extinction based on comparison with other massive stars in the region, and allows for the possibility that their shells are interacting with each other. This leads to luminosities of log ({textit {L}/L}_{odot }) = 5.66 and 5.54 for WR 120bb and WR 120bc, with large uncertainties due to the adopted distance. The values of the luminosities of WR 120bb and WR 120bc imply that the immediate precursors of both stars were red supergiants (RSG). This implies in turn that the circumstellar shells associated with WR 120bb and WR 120bc were formed by interaction between the WR wind and the dense material shed during the preceding RSG phase.

  6. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  7. A cosmic couple

    NASA Image and Video Library

    2015-08-17

    Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15 000 light-years away. The star Hen 2-427 shines brightly at the very centre of this explosive image and around the hot clumps of gas are ejected into space at over 150 000 kilometres per hour. Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterised by a fierce ejection of mass. The nebula M1-67 is estimated to be no more than 10 000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes. A version of this image was released in 1998, but has now been re-reduced with the latest software.

  8. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    NASA Astrophysics Data System (ADS)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible, since they strongly depend on the observationally indeterminate frequency of primordial binaries with extreme mass ratios in long-period orbits.

  9. X-ray emission from the Wolf-Rayet bubble NGC 6888 - II. XMM-Newton EPIC observations

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Arthur, S. J.; Tafoya, D.; Gruendl, R. A.

    2016-03-01

    We present deep XMM-Newton European Photon Imaging Camera observations of the Wolf-Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s-1 in the 0.3-1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm-3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.

  10. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43more » keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.« less

  11. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  12. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  13. Supernova 2010as: The Lowest-velocity Member of a Family of Flat-velocity Type IIb Supernovae

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón; Bersten, Melina C.; Kuncarayakti, Hanindyo; Olivares Estay, Felipe; Anderson, Joseph P.; Holmbo, Simon; Maeda, Keiichi; Morrell, Nidia; Nomoto, Ken'ichi; Pignata, Giuliano; Stritzinger, Maximilian; Contreras, Carlos; Förster, Francisco; Hamuy, Mario; Phillips, Mark M.; Prieto, José Luis; Valenti, Stefano; Afonso, Paulo; Altenmüller, Konrad; Elliott, Jonny; Greiner, Jochen; Updike, Adria; Haislip, Joshua B.; LaCluyze, Aaron P.; Moore, Justin P.; Reichart, Daniel E.

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name "flat-velocity Type IIb. The flat-velocity evolution—which occurs at different levels between 6000 and 8000 km s-1 for different SNe—suggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ≈6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ≈4 M ⊙. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor. This paper includes data gathered with the following facilities in Chile: the 6.5 m Magellan Telescopes located at Las Campanas Observatory, the Gemini Observatory, Cerro Pachón (Gemini Program GS-2008B-Q-56), and the European Organisation for Astronomical Research in the Southern Hemisphere (ESO Programmes 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526). We have also used data from the ESO Science Archive Facility under request number gfolatelli74580 and from the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA), and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  14. Point and Compact Hα Sources in the Interior of M33

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Hintz, Eric G.; Joner, Michael D.; Roming, Peter W. A.; Hintz, Maureen L.

    2017-12-01

    A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebulae, X-ray binaries, etc., can be discovered as point or compact sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.‧5 × 6.‧5 of M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than approximately 10-15 erg cm-2s-1. We have effectively recovered previously mapped H II regions and have identified 152 unresolved point sources and 122 marginally resolved compact sources, of which 39 have not been previously identified in any archive. An additional 99 Hα sources were found to have sufficient archival flux values to generate a Spectral Energy Distribution. Using the SED, flux values, Hα flux value, and compactness, we classified 67 of these sources.

  15. A recent time of minimum for and atmospheric-eclipse in the ultraviolet spectrum of the Wolf-Rayet eclipsing binary V444 Cygni

    NASA Technical Reports Server (NTRS)

    Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.

    1982-01-01

    The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.

  16. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70-140 {\\text{}}{M}⊙ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s-1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf-Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}⊙ are expected from stellar evolution in close binaries.

  17. UV and radiofrequency observations of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1971-01-01

    Observations of W stars in the ultraviolet by OAO 2 and at 750 and 1400 MHz with the Green Bank telescopes are discussed. The emphasis is on the Green Bank observations of W stars with symmetric nebulae around them, their interpretation, and comparisons with other data. The implications regarding mass distribution, internal motion, flux density, ejected mass, velocity dispersion, and expanding envelopes are considered in detail.

  18. Ultraviolet observations of clusters of Wolf-Rayet stars in the SBm3 galaxy NGC 4214 and Ultraviolet and optical observations of LINER's

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.

    1992-01-01

    The purpose of the grant was to obtain and analyze IUE (UV) and ground-based (optical) spectra of the central bar of NGC 4214, which contains several bright H II regions, in order to further explore the properties of the Wolf-Rayet stars in this galaxy. Several spatially distinct regions, with widely different equivalent widths of optical Wolf-Rayet lines, could be sampled by the large IUE entrance aperture. By using newly developed extraction techniques, the spectra of these H II regions could be isolated, and differences in their stellar populations would be systematically studied. Data were obtained with IUE in late February and early March, 1992. Some of the shifts were successful, but a few were not -- apparently the blind offset from the nearby star did not work equally well in all cases. Thus, the signal-to-noise ratio is somewhat lower than we had hoped. This necessitated a more careful extraction of the spectra of individual H II regions from the two-dimensional spectra. (A program that models the point spread function in the spatial direction was used to deblend the distinct H II regions.) The IUE data are currently being analyzed in conjunction with ground-based optical spectra. There appear to be obvious variations in the stellar population over angular scales of only a few arc seconds. The second part of the research performed under this grant was a continuation of a project that uses IUE (UV) and ground-based (optical) spectra to infer the physical conditions in Low-Ionization Nuclear Emission-Line Regions (LINER's). We have obtained spectra of a few key objects that cover a representative range in LINER continuum and emission-line properties. The overall goals are to (1) separate the emission into spatially distinct components, (2) establish whether the observed nuclear ultraviolet continua indicate sufficient photoionizing fluxes to account for the emission lines, (3) determine whether the nuclear emission can be explained by hot stars alone, (4) detect and measure the strengths of UV emission lines, and (5) search for systematic differences in the UV spectra of LINER's whose other properties differ in some respects.

  19. First Spectra of O Stars in R136A

    NASA Astrophysics Data System (ADS)

    Heap, Sara

    1994-01-01

    Hubble images of the cluster, R136a, in the LMC indicate that the cluster contains 3 Wolf-Rayet stars, R136a1,-a2, and a3 (Campbell et al. 1992) and numerous O and B-type stars. Although models for WR stars are not well enough developed to infer the basic parameters of the 3 WR stars in R136a, models for O stars are well well established, and they suggest that the O stars in R136a are relatively normal, having initial masses no higher than 60 Msun (Heap et al. 1992, Malumuth & Heap 1992, di Marchi et al. 1993); there are no unusual "super-massive" stars in R136a. With HST/GHRS/CoSTAR, it will be possible to obtain spectra of an O star in R136a without contam- ination by WR stars. These spectra will be able to confirm or invalidate the photometric results. Thus, these spectra will have implications both for the population of R136a and for the validity of stellar population studies of giant extragalactic HII regions and starbursts that are based entirely on photometry.

  20. The Astronomical Zoo in MIPSGAL I and II

    NASA Astrophysics Data System (ADS)

    Kuchar, Thomas A.; Mizuno, D.; Shenoy, S.; Paladini, R.; Kraemer, K.; Price, S.; Marleau, F.; Padgett, D.; Indebetouw, R.; Ingalls, J.; Ali, B.; Berriman, B.; Boulanger, F.; Cutri, R.; Latter, W.; Miville-Deschenes, M.; Molinari, S.; Rebull, L.; Testi, L.; Shipman, R.; Martin, P.; Carey, S.; Noriega-Crespo, A.

    2006-12-01

    The view of the Galactic Plane at 24 µm is breathtaking. A great part of this beauty arises from the complexity of the Interstellar Medium shaped by endless energetic events driven by HII regions, supernova explosions, Wolf-Rayets, Luminous Blue Variables, and evolved and new born massive stars. A sample of these objects is presented in this poster, gathered from the Multiband Imaging Photometer for Spitzer (MIPS) Survey of the Galactic Plane I and II (MIPSGAL; see Carey et al. 2006, this meeting). The global color properties of these objects are derived by combining the data at 24 and 70um with that from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), and following similar schemes as those used in the Spitzer Surveys of the Magellanic Clouds (Bolatto et al. 2006, astroph-0608561; Meixner et al. 2006, astroph-0606356). This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA in part through an award issued by JPL/Caltech.

  1. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  2. Location of WR stars in NGC 6744

    NASA Astrophysics Data System (ADS)

    Bibby, Joanne; Crowther, Paul; Sandford, Emily

    2013-06-01

    Following our recent survey of Wolf-Rayet (WR) stars in NGC 6744 we present a preliminary investigation into the location of these stars. Using high spatial resolution Hα images we find that the majority of WR stars are associated with nebular emission, albeit faint in many cases. We can use this HII association to constrain the lifetime and mass of the WR star since HII regions are such short-lived.

  3. Detached dust shell around Wolf-Rayet star WR60-6 in the young stellar cluster VVV CL036

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissova, J.; Amigo, P.; Kurtev, R.

    The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular {sup 12}CO(3 → 2) emission of –45.7 ± 2.3 km s{sup –1}; an expansion velocity of the gas of 16.3more » ± 1 km s{sup –1}; the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 10{sup 4} yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20.« less

  4. POX 4 and Tol 35: Two Peculiar Wolf-Rayet Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Méndez, David I.; Esteban, César

    1999-12-01

    We present results of narrowband (Hα and adjacent continuum) and broadband (U, B, and V) optical CCD imaging together with high-resolution Hα spectroscopy of the blue compact Wolf-Rayet dwarf galaxies POX 4 and Tol 35. POX 4 has a fainter, irregular, and diffuse companion located 20.5" (4.7 kpc) along the minor axis of the galaxy, which is visible also in the Hα emission. The difference in recession velocity between the galaxy and the companion is about 130 km s-1. The observational results lead us to propose that POX 4 could be interpreted as a low-mass ring galaxy, produced by a head-on intrusion of the fainter companion. Regarding the other object, a spectrum taken along the major axis of Tol 35 shows the coexistence of systems of motion with a velocity difference of about 50 km s-1. Moreover, the deep continuum-subtracted Hα image of the galaxy shows very faint features that resemble the beginning of crossed tidal tails or gaseous filaments powered by the mechanical action of the young stellar population. In this sense, Tol 35 could be interpreted either as an object in an intermediate-stage merging process between two gas-rich dwarf galaxies or as an object suffering the effect of a galactic wind.

  5. An atlas of Copernicus ultraviolet spectra of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1978-01-01

    An atlas of Copernicus UV scans is presented, and line identifications are tabulated, for the Wolf-Rayet stars Gamma-2 Vel (WC 8 + O7), HD 50896 (= EZ CMa; WN 5), and HD 92740 (WN 7). The atlas covers the wavelength ranges from 946.8 to 3182 A for Gamma-2 Vel, from 1012 to 1294 A for HD 50896, and from 1051 to 1243 A for HD 92740. The wavelengths include corrections for components of satellite velocity, earth velocity, and stellar heliocentric velocity; each spectral feature is classified as interstellar, photospheric, emission, UV-displaced P Cygni line absorption, or P Cygni line emission. UV-edge velocities of the P Cygni profiles are estimated, P Cygni profile types are discussed, and the results are compared with Copernicus scans of OB stars exhibiting UV P Cygni profiles. It is noted that: (1) the line-strength ratio of molecular hydrogen to atomic species appears to be substantially greater in the scans of the WN stars than in the Gamma-2 Vel scans; (2) some of the P Cygni profiles in Gamma-2 Vel differ significantly from the corresponding profiles in OB stars; and (3) there may be a slight inverse correlation between ejection velocities and excitation potentials in Gamma-2 Vel.

  6. VizieR Online Data Catalog: Rotating Wolf-Rayet stars in post RSG/LBV phase (Graefener+, 2012)

    NASA Astrophysics Data System (ADS)

    Graefener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2013-01-01

    Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km/s have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. (2 data files).

  7. Brilliant Star in a Colourful Neighbourhood

    NASA Astrophysics Data System (ADS)

    2010-07-01

    A spectacular new image from ESO's Wide Field Imager at the La Silla Observatory in Chile shows the brilliant and unusual star WR 22 and its colourful surroundings. WR 22 is a very hot and bright star that is shedding its atmosphere into space at a rate many millions of times faster than the Sun. It lies in the outer part of the dramatic Carina Nebula from which it formed. Very massive stars live fast and die young. Some of these stellar beacons have such intense radiation passing through their thick atmospheres late in their lives that they shed material into space many millions of times more quickly than relatively sedate stars such as the Sun. These rare, very hot and massive objects are known as Wolf-Rayet stars [1], after the two French astronomers who first identified them in the mid-nineteenth century, and one of the most massive ones yet measured is known as WR 22. It appears at the centre of this picture, which was created from images taken through red, green and blue filters with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. WR 22 is a member of a double star system and has been measured to have a mass at least 70 times that of the Sun. WR 22 lies in the southern constellation of Carina, the keel of Jason's ship Argo in Greek mythology. Although the star lies over 5000 light-years from the Earth it is so bright that it can just be faintly seen with the unaided eye under good conditions. WR 22 is one of many exceptionally brilliant stars associated with the beautiful Carina Nebula (also known as NGC 3372) and the outer part of this huge region of star formation in the southern Milky Way forms the colourful backdrop to this image. The subtle colours of the rich background tapestry are a result of the interactions between the intense ultraviolet radiation coming from hot massive stars, including WR 22, and the vast gas clouds, mostly hydrogen, from which they formed. The central part of this enormous complex of gas and dust lies off the left side of this picture as can be seen in image eso1031b. This area includes the remarkable star Eta Carinae and was featured in an earlier press release (eso0905). Notes [1] More information about Wolf-Rayet stars More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Large-scale Periodic Variability of the Wind of the Wolf-Rayet Star WR 1 (HD 4004)

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; St-Louis, N.

    2010-06-01

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9+0.6 -0.3 days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v rot = 6.5, 40, 70, and 275 km s-1 for WR 1, WR 6, WR 134, and WR 137, respectively. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Also based on observations obtained at the Observatoire du Mont Mégantic with is operated by the Centre de Recherche en Astrophysique du Québec and the Observatoire de Haute-Provence which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.

  9. Massive Stars in the MCs: What They Tell Us about the IMF, Stellar Evolution, and Upper Mass "Cutoffs"

    NASA Astrophysics Data System (ADS)

    Massey, P.

    Massive stars in the Magellanic Clouds provide an instantaneous "snapshot" of star-formation. In this talk I will review what we have learned both about star formation, and stellar evolution. Studies over the past decade have shown that the initial mass function (IMF) is the same for massive stars born in OB associations in the LMC and SMC as in associations and clusters in the Milky Way; the slope of the IMF is essentially Salpeter (Gamma ~ -1.3), despite the factor of 10 difference in metallicity between these systems. Recent work on the R136 cluster (described in Hunter's review talk) suggest that there is no such thing as an upper mass cutoff to the IMF, at least not one that has been found observationally: for the youngest clusters (2 Myr and younger), the mass of the highest mass star present is simply dependent upon how populous the cluster is; i.e., the IMF is truncated by statistics, not physics. There does appear to be a significant population of massive stars that are born in the "field" (not part of a large OB association or cluster); the IMF of these stars is quite a bit steeper (Gamma ~ -4), although stars as massive as those found in associations are also found in the field. The mixed-age population of the MCs as a whole can be used to test stellar evolutionary models; the agreement with the work of the Geneva group is found to be excellent, for stars with masses >25 Mo, although the youngest stars may be missing in the HRD. The discovery that clusters born in associations are quite coeval (Delta tau <1-2 Myr) allows us to use the "turn-off masses" to determine what mass objects become Wolf-Rayet stars of various types, and new results will be reviewed.

  10. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This event was a complete surprise," added Alex Filippenko, leader of the UC Berkeley/Keck supernova group and a member of NASA'S Swift team. "It opens up a fascinating new window on how some kinds of stars die." All the observations suggest that the supernova's blast wave took only a few weeks to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. The Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility. "You don't need a lot of mass in the ejecta to produce a lot of X-rays," notes Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to his team's mass determination. But he adds that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray Telescope. "We could not have made this measurement without Chandra," says Immler, who will submit his team's paper next week to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results." Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly evolved stars that have shed their outer envelopes. Swift XRT Image Swift XRT Image (Credit: NASA / GSFC / CXC /S.Immler) Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists. "It challenges some aspects of our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova." "SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about." SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli. See also NASA Goddard press release at: http://www.nasa.gov/centers/goddard/news/topstory/ 2007/supernova_imposter.html

  11. Evolved massive stars in W33 and in GMC 23.3-0.3

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Menten, Karl M.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, Michael; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, Rosie; Davies, Ben; MacKenty, John W.

    2015-08-01

    We have conducted an infrared spectroscopic survey for massive evolved stars and/or clusters in the Galactic giant molecular clouds G23.3-0.3 and W33. A large number of extraordinary sub-clumps/clusters of massive stars were detected. The spatial and temporal distribution of these massive stars yields information on the star formation history of the clouds.In G23.3-0.3, we discovered a dozen massive O-type stars, one candidate luminous blue variable, and several red supergiants. The O-type stars have masses from 25 to 50 Msun and ages of 5-8 Myr, while the RSGs belong to a burst that occurred 20-30 Myr ago. Therefore, GMC G23.3-0.3 has had one of the longest known histories of star formation (20-30 Myr). GMC G23.3-0.3 is rich in HII regions and supernova remnants; we detected massive stars in the cores of SNR W41 and of SNR G22.7-0.2.In W33, we detected a few evolved O-type stars and one Wolf-Rayet star, but none of the late-type objects has the luminosity of a red supergiant. W33 is characterized by discrete sources and has had at least 3-5 Myr of star formation history, which is now propagating from west to east. While our detections of massive evolved stars in W33 are made on the west side of the cloud, several dense molecular cores that may harbor proto clusters have recently been detected on the east side of the cloud by Immer et al. (2014).Messineo, Maria; Menten, Karl M.; Figer, Donald F.; Davies, Ben; Clark, J. Simon; Ivanov, Valentin D.Kudritzki, Rolf-Peter; Rich, R. Michael; MacKenty, John W.; Trombley, Christine 2014A&A...569A..20MMessineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Francisco, Najarro; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.H. Rosie; Davies, Ben; submitted to ApJ.

  12. JWST DD ERS Team Update: Decoding Smoke Signals from WR140 using NIRISS+AMI and MIRI/MRS

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Hankins, Matt; WR DustERS Team

    2018-06-01

    Dust is a key component of the interstellar medium and plays and important role in the formation of stars and planets. However, the dominant channels of dust production throughout cosmic time are uncertain. With its unprecedented sensitivity and spatial resolution in the mid-IR, the James Webb Space Telescope (JWST) is the ideal platform to address this issue by investigating the dust abundance, composition, and production rates of various dusty sources. In particular, colliding-wind Wolf-Rayet (WR) binaries are known to be efficient dust producers in the local Universe and likely existed in the earliest galaxies. In our Early Release Science (ERS) program, we will use JWST to observe the archetypal colliding-wind binary, WR 140, to study its dust composition, abundance, and formation mechanisms. We will utilize two key JWST observing modes with the medium-resolution spectrometer (MRS) on the Mid-Infrared Instrument (MIRI) and the Aperture Masking Interferometry (AMI) mode with the Near Infrared Imager and Slitless Spectrograph (NIRISS).Our planned observations will establish a benchmark for key observing modes for imaging bright sources with faint extended emission at high spatial resolutions. This will be valuable in various astrophysical contexts including mass-loss from evolved stars, dusty tori around active galactic nuclei, and protoplanetary disks. We are committed to delivering science-enabling products for the JWST community that include high-level pipeline tools to mitigate bright source artifacts and image reconstruction tools compatible with NIRISS+AMI data.

  13. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  14. The Origin Of Cosmic Rays And The Stars Of Berkeley 87

    NASA Astrophysics Data System (ADS)

    Turner, David G.; Majaess, D. J.; Lane, D. J.; Balam, D. D.

    2010-01-01

    Spectroscopic observations and the results of photometric monitoring are presented for members of the heavily-reddened, young, 1.2 kpc-distant, open cluster Berkeley 87, which is spatially coincident with the strongest source of cosmic rays in the northern sky. Many cluster members exhibit evidence for extreme loss of mass over their lifetimes: the M3 Ia supergiant BC Cyg has an evolutionary mass half that of stars at the main-sequence turnoff, the B2 Iabe emission-line supergiant HDE 229059 also has an evolutionary mass smaller than that of the main-sequence turnoff, the WO2 star WR 142, the only example of an oxygen sequence Wolf-Rayet star in an open cluster, displays evidence for variable, high velocity winds in its spectrum, the curious object V439 Cyg (B0: Vnne) appears to be an example of a recent binary merger, and Vatican Emission Star VES 203 (B0.5 Ve) displays a strong P Cygni signature in its Balmer line emission. It appears that heavy mass loss is a common factor associated with cluster stars. Could that be associated with the location of a cosmic ray production factory from the vicinity of Berkeley 87?

  15. The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Stritzinger, M. D.; Bersten, M.; Baron, E.; Burns, C.; Contreras, C.; Holmbo, S.; Hsiao, E. Y.; Morrell, N.; Phillips, M. M.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    Stripped-envelope (SE) supernovae (SNe) include H-poor (Type IIb), H-free (Type Ib), and He-free (Type Ic) events thought to be associated with the deaths of massive stars. The exact nature of their progenitors is a matter of debate with several lines of evidence pointing towards intermediate mass (Minit< 20 M⊙) stars in binary systems, while in other cases they may be linked to single massive Wolf-Rayet stars. Here we present the analysis of the light curves of 34 SE SNe published by the Carnegie Supernova Project (CSP-I) that are unparalleled in terms of photometric accuracy and wavelength range. Light-curve parameters are estimated through the fits of an analytical function and trends are searched for among the resulting fit parameters. Detailed inspection of the dataset suggests a tentative correlation between the peak absolute B-band magnitude and Δm15(B), while the post maximum light curves reveals a correlation between the late-time linear slope and Δm15. Making use of the full set of optical and near-IR photometry, combined with robust host-galaxy extinction corrections, comprehensive bolometric light curves are constructed and compared to both analytic and hydrodynamical models. This analysis finds consistent results among the two different modeling techniques and from the hydrodynamical models we obtained ejecta masses of 1.1-6.2M⊙, 56Ni masses of 0.03-0.35M⊙, and explosion energies (excluding two SNe Ic-BL) of 0.25-3.0 × 1051 erg. Our analysis indicates that adopting κ = 0.07 cm2 g-1 as the mean opacity serves to be a suitable assumption when comparing Arnett-model results to those obtained from hydrodynamical calculations. We also find that adopting He I and O I line velocities to infer the expansion velocity in He-rich and He-poor SNe, respectively, provides ejecta masses relatively similar to those obtained by using the Fe II line velocities, although the use of Fe II as a diagnostic does imply higher explosion energies. The inferred range of ejecta masses are compatible with intermediate mass (MZAMS ≤ 20M⊙) progenitor stars in binary systems for the majority of SE SNe. Furthermore, our hydrodynamical modeling of the bolometric light curves suggests a significant fraction of the sample may have experienced significant mixing of 56Ni, particularly in the case of SNe Ic. Based on observations collected at Las Campanas Observatory.Bolometric light curve tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A136

  16. El medio interestelar alrededor de estrellas Of

    NASA Astrophysics Data System (ADS)

    Caballero, N.; Cappa, C.

    Se analiza la distribución del hidrógeno neutro interestelar en la vecindad de algunas estrellas Of con el fin de investigar la presencia de burbujas de H I vinculadas a las estrellas. Se determinan los parámetros físicos de las burbujas de H I encontradas y se comparan con estructuras similares vinculadas a estrellas Wolf-Rayet. El estudio se lleva a cabo en base a datos pertenecientes al relevamiento de Weaver y Willians (1973).

  17. The first transition Wolf-Rayet WN/C star in M31

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Mikołajewska, Joanna; Caldwell, Nelson; Iłkiewicz, Krystian; Drozd, Katarzyna; Zurek, David

    2016-02-01

    Three decades of searches have revealed 154 Wolf-Rayet (WR) stars in M31, with 62 of WC type, 92 of WN type and zero of transition-type WN/C or WC/N. In apparent contrast, about two per cent of the WR stars in the Galaxy, the LMC and M33 simultaneously display strong lines of carbon and nitrogen, I.e. they are transition-type WN/C or WC/N stars. We report here the serendipitous discovery of M31 WR 84-1, the first transition star in M31, located at RA = 00h43m43{^s.}61 Dec. = +41°45'27{^''.}95 (J2000). We present its spectrum, classify it as WN5/WC6, and compare it with other known transition stars. The star is unresolved in Hubble Space Telescope narrow-band and broad-band images, while its spectrum displays strong, narrow emission lines of hydrogen, [N II], [S II] and [O III]; this indicates a nebula surrounding the star. The radial velocity of the nebular lines is consistent with that of gas at the same position in the disc of M31. The metallicity at the 11.8 kpc galactocentric distance of M31 WR 84-1 is approximately solar, consistent with other known transition stars. We suggest that modest numbers of reddened WR stars remain to be found in M31.

  18. Broad Low-Intensity Wings in the Emission-Line Profiles of Four Wolf-Rayet Galaxies

    NASA Astrophysics Data System (ADS)

    Méndez, David I.; Esteban, César

    1997-10-01

    High-resolution spectroscopic observations have been obtained for the Wolf-Rayet galaxies He 2-10, II Zw 40, POX 4, and Tol 35. Several subregions have been selected in each slit position in order to investigate possible spatial variations in the line profiles, radial velocities, and ionization conditions of the gas. The most remarkable feature of the spectra is the presence of asymmetric broad low-intensity wings in the profiles of the brightest emission lines. These spectral features are detected farther out from the star-forming knots, showing linear dimensions between 300 pc and 4.1 kpc. The maximum expansion velocity measured for this gas is between 120 and 340 km s-1 and appears to be quite constant along the slit for all the objects. Additional general properties of the spectra are (1) the quoted emission-line ratios are similar in the narrow and broad components, (2) no systematic differences of the behavior of the broad and narrow components have been found along the major and minor axis of the galaxies, and (3) the spatial distribution of the ionized gas is peaked centrally. Different mechanisms capable of producing the observed broad spectral features are discussed: cloud-cloud collisions in virialized gas, ``academic'' superbubbles, champagne flows, and superbubble blowout. It is concluded that superbubble blowout expanding over a cloudy medium can explain the observational properties in a reasonable manner.

  19. Eclipses and dust formation by WC9 type Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Williams, P. M.

    2014-12-01

    Visual photometry of 16 WC8-9 dust-making Wolf-Rayet (WR) stars during 2001-2009 was extracted from the All-Sky Automated Survey All Star Catalogue (ASAS-3) to search for eclipses attributable to extinction by dust formed in clumps in our line of sight. Data for a comparable number of dust-free WC6-9 stars were also examined to help characterize the data set. Frequent eclipses were observed from WR 104, and several from WR 106, extending the 1994-2001 studies by Kato et al., but not supporting their phasing the variations in WR 104 with its `pinwheel' rotation period. Only four other stars showed eclipses, WR 50 (one of the dust-free stars), WR 69, WR 95 and WR 117, and there may have been an eclipse by WR 121, which had shown two eclipses in the past. No dust eclipses were shown by the `historic' eclipsers WR 103 and WR 113. The atmospheric eclipses of the latter were observed but the suggestion by David-Uraz et al. that dust may be partly responsible for these is not supported. Despite its frequent eclipses, there is no evidence in the infrared images of WR 104 for dust made in its eclipses, demonstrating that any dust formed in this process is not a significant contributor to its circumstellar dust cloud and suggesting that the same applies to the other stars showing fewer eclipses.

  20. Revealing the nebular properties and Wolf-Rayet population of IC10 with Gemini/GMOS

    NASA Astrophysics Data System (ADS)

    Tehrani, Katie; Crowther, Paul A.; Archer, I.

    2017-12-01

    We present a deep imaging and spectroscopic survey of the Local Group irregular galaxy IC10 using Gemini North and GMOS to unveil its global Wolf-Rayet (WR) population. We obtain a star formation rate (SFR) of 0.045 ± 0.023 M⊙ yr-1, for IC10 from the nebular H α luminosity, which is comparable to the Small Magellanic Cloud. We also present a revised nebular oxygen abundance of log(O/H) + 12 = 8.40 ± 0.04, comparable to the LMC. It has previously been suggested that for IC10 to follow the WR subtype-metallicity dependance seen in other Local Group galaxies, a large WN population awaits discovery. Our search revealed three new WN stars, and six candidates awaiting confirmation, providing little evidence to support this claim. The new global WR star total of 29 stars is consistent with the Large Magellanic Cloud population when scaled to the reduced SFR of IC10. For spectroscopically confirmed WR stars, the WC/WN ratio is lowered to 1.0; however, including all potential candidates, and assuming those unconfirmed to be WN stars, would reduce the ratio to ∼0.7. We attribute the high WC/WN ratio to the high star formation surface density of IC10 relative to the Magellanic Clouds, which enhances the frequency of high-mass stars capable of producing WC stars.

  1. Constraining the weak-wind problem: an XMM-HST campaign for the magnetic O9.7 V star HD 54879

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2018-01-01

    Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates Ṁ of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (O9.7 V), one of a few O-type stars with a detected atmospheric magnetic field (Bd ≳ 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 M⊙yr-1. Since the wind is partially trapped within the Alfvén radius rA ≳ 12 R*, the true mass-loss rate of HD 54879 is log Ṁ ≲ -10.2 M⊙yr-1. Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log TX = 6.7 K and an X-ray luminosity of log LX = 32 erg s-1. The latter implies a significant X-ray excess (log LX/LBol ≈ -6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P ≈ 5 yr is derived from variability of the Hα line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars.

  2. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.

  3. Abell 48 - a rare WN-type central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  4. Study of supernovae and massive stars and prospects with the 4m International Liquid Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh

    2014-11-01

    Massive stars are the progenitors of the most energetic explosions in the Universe such as core-collapse supernovae (CCSNe) and gamma ray bursts. During their life time they follow various evolutionary phases (e.g. supergiant, luminous blue variable and Wolf-Rayet). They strongly influence their environments through their energetic ionization radiation and powerful stellar winds. Furthermore, the formation of low and intermediate-mass stars are also being regulated by them. The Carina nebula region, which hosts a large population of massive stars and several young star clusters, provides an ideal target for studying the feedback of massive stars. In this thesis, we investigated a wide field (32' × 31') region located in the west of the Carina nebula and centered on the massive binary WR 22. For our study, we used new optical photometry (UBVRI H-alpha), along with some low resolution spectroscopy, archival near infra-red (2MASS), and X-ray (Chandra, XMM-Newton) data. We estimated several parameters such as reddening, reddening law, etc. and also identified young stellar objects located in the region under study (Kumar et al., 2014b). Among the various types of CCSNe, Type IIb are recognized with their typical observational properties. Some of them show clear indication of double peaks in their light curves. The spectral features of these SNe show a transition between Type II and Type Ib/c events at early and later epochs, respectively. It has been noticed that the occurrence of these events is not common in volume limited surveys. In this thesis we have studied the properties of the light curve and spectral evolution of the Type IIb supernova 2011fu. The observational properties of this object show resemblance to those of SN 1993J with a possible signature of the adiabatic cooling phase (Kumar et al., 2013). When light passes through the expanding ejecta of the SNe, it retains information about the orientation of the ejected layers. In general, CCSNe exhibit a significant level of polarization during various phases of their evolution at different wavelengths. We have investigated the broad band polarimetric properties of a Type II plateau SN 2012aw and compared it with other well studied CCSNe of similar kinds (Kumar et al., 2014a). In the framework of the present thesis, we have also contributed to the development of the 4m International Liquid Mirror Telescope (ILMT) project which is a joint collaborative effort among different universities and research institutes in Belgium, India, Canada and Poland. We performed various experiments including the spin casting of the primary mirror, optical quality tests of the mercury surface, mylar film experiments, etc. The possible scientific capabilities and future contributions of this telescope are also discussed. We propose our plans to identify the transients (specially supernovae) with the ILMT and their further follow-up scheme. The installation of the ILMT will start very soon at the Devasthal observatory, ARIES Nainital, India.

  5. HUBBLE WATCHES STAR TEAR APART ITS NEIGHBORHOOD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a view of a stellar demolition zone in our Milky Way Galaxy: a massive star, nearing the end of its life, tearing apart the shell of surrounding material it blew off 250,000 years ago with its strong stellar wind. The shell of material, dubbed the Crescent Nebula (NGC 6888), surrounds the 'hefty,' aging star WR 136, an extremely rare and short-lived class of super-hot star called a Wolf-Rayet. Hubble's multicolored picture reveals with unprecedented clarity that the shell of matter is a network of filaments and dense knots, all enshrouded in a thin 'skin' of gas [seen in blue]. The whole structure looks like oatmeal trapped inside a balloon. The skin is glowing because it is being blasted by ultraviolet light from WR 136. Hubble's view covers a small region at the northeast tip of the structure, which is roughly three light-years across. A picture taken by a ground-based telescope [lower right] shows almost the entire nebula. The whole structure is about 16 light-years wide and 25 light-years long. The bright dot near the center of NGC 6888 is WR 136. The white outline in the upper left-hand corner represents Hubble's view. Hubble's sharp vision is allowing scientists to probe the intricate details of this complex system, which is crucial to understanding the life cycle of stars and their impact on the evolution of our galaxy. The results of this study appear in the June issue of the Astronomical Journal. WR 136 created this web of luminous material during the late stages of its life. As a bloated, red super-giant, WR 136 gently puffed away some of its bulk, which settled around it. When the star passed from a super-giant to a Wolf-Rayet, it developed a fierce stellar wind - a stream of charged particles released from its surface - and began expelling mass at a furious rate. The star began ejecting material at a speed of 3.8 million mph (6.1 million kilometers per hour), losing matter equal to that of our Sun's every 10,000 years. Then the stellar wind collided with the material around the star and swept it up into a thin shell. That shell broke apart into the network of bright clumps seen in the image. The present-day strong wind of the Wolf-Rayet star has only now caught up with the outer edge of the shell, and is stripping away matter as it flows past [the tongue-shaped material in the upper right of the Hubble image]. The stellar wind continues moving outside the shell, slamming into more material and creating a shock wave. This powerful force produces an extremely hot, glowing skin [seen in blue], which envelops the bright nebula. A shock wave is analogous to the sonic boom produced by a jet plane that exceeds the speed of sound; in a cosmic setting, this boom is seen rather than heard. The outer material is too thin to see in the image until the shock wave hits it. The cosmic collision and subsequent shock wave implies that a large amount of matter resides outside the visible shell. The discovery of this material may explain the discrepancy between the mass of the entire shell (four solar masses) and the amount of matter the star lost when it was a red super-giant (15 solar masses). The nebula's short-term fate is less spectacular. As the stellar wind muscles past the clumps of material, the pressure around them drops. A decrease in pressure means that the clumps expand, leading to a steady decline in brightness and fading perhaps to invisibility. Later, the shell may be compressed and begin glowing again, this time as the powerful blast wave of the Wolf-Rayet star completely destroys itself in a powerful supernova explosion. The nebula resides in the constellation Cygnus, 4,700 light-years from Earth. If the nebula were visible to the naked eye, it would appear in the sky as an ellipse one-quarter the size of the full moon. The observations were taken in June 1995 with the Wide Field and Planetary Camera 2. Scientists selected the colors in this composite image to correspond with the ionization (the process of stripping electrons from atoms) state of the gases, with blue representing the highest and red the lowest observed ionization. Credits: NASA, Brian D. Moore, Jeff Hester, Paul Scowen (Arizona State University), Reginald Dufour (Rice University)

  6. Observations of Nonthermal Radio Emission from Early-type Stars

    NASA Technical Reports Server (NTRS)

    Abbott, D. C.; Bieging, J. H.; Churchwell, E.

    1985-01-01

    As a part of a wider survey of radio emission from O, B, and Wolf-Rayet (WR) stars, five new stars whose radio emission is dominated by a nonthermal mechanism of unknown origin were discovered. From statistics of distance-limited samples of stars, it is estimated that the minimum fraction of stars which are nonthermal emitters is 25% for the OB stars and 10% for the WR stars. The characteristics of this new class of nonthermal radio emitter are investigated.

  7. A Rare Encounter with Very Massive Stars in NGC 3125-A1

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Chandar, Rupali; Bouret, Jean-Claude

    2014-02-01

    Super star cluster A1 in the nearby starburst galaxy NGC 3125 is characterized by broad He II λ1640 emission (FWHM ~ 1200 km s-1) of unprecedented strength (equivalent width, EW = 7.1 ± 0.4 Å). Previous attempts to characterize the massive star content in NGC 3125-A1 were hampered by the low resolution of the UV spectrum and the lack of co-spatial panchromatic data. We obtained far-UV to near-IR spectroscopy of the two principal emitting regions in the galaxy with the Space Telescope Imaging Spectrograph and the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We use these data to study three clusters in the galaxy, A1, B1, and B2. We derive cluster ages of 3-4 Myr, intrinsic reddenings of E(B - V) = 0.13, 0.15, and 0.13, and cluster masses of 1.7 × 105, 1.4 × 105, and 1.1 × 105 M ⊙, respectively. A1 and B2 show O V λ1371 absorption from massive stars, which is rarely seen in star-forming galaxies, and have Wolf-Rayet (WR) to O star ratios of N(WN5-6)/N(O) = 0.23 and 0.10, respectively. The high N(WN5-6)/N(O) ratio of A1 cannot be reproduced by models that use a normal initial mass function (IMF) and generic WR star line luminosities. We rule out that the extraordinary He II λ1640 emission and O V λ1371 absorption of A1 are due to an extremely flat upper IMF exponent, and suggest that they originate in the winds of very massive (>120 M ⊙) stars. In order to reproduce the properties of peculiar clusters such as A1, the present grid of stellar evolution tracks implemented in Starburst99 needs to be extended to masses >120 M ⊙.

  8. Revealing evolved massive stars with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  9. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less

  10. The Vast Population of Wolf-Rayet and Red Supergiant Stars in M101. I. Motivation and First Results

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David; Crowther, Paul A.; Moffat, Anthony F. J.; Drissen, Laurent

    2013-12-01

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.

  11. Hot Gas in the Wolf-Rayet Nebula NGC 3199

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Marston, A. P.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.

    2017-09-01

    The Wolf-Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (I) regions close to the optical arc present nitrogen-rich gas enhanced by the stellar wind from WR 18 and (II) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 106 K and n e = 0.3 cm-3 with an X-ray luminosity in the 0.3-3.0 keV energy range of L X = 2.6 × 1034 erg s-1. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.

  12. The vast population of Wolf-Rayet and red supergiant stars in M101. I. Motivation and first results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extentmore » of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.« less

  13. Mass ejection in failed supernovae: variation with stellar progenitor

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  14. Stationary hydrodynamic models of Wolf-Rayet stars with optically thick winds.

    NASA Astrophysics Data System (ADS)

    Heger, A.; Langer, N.

    1996-11-01

    We investigate the influence of a grey, optically thick wind on the surface and internal structure of Wolf-Rayet (WR) stars. We calculate hydrodynamic models of chemically homogeneous helium stars with stationary outflows, solving the full set of stellar structure equations from the stellar center up to well beyond the sonic point of the wind, including the line force originating from absorption lines in a parameterized way. For specific assumptions about mass loss rate and wind opacity above our outer boundary, we find that the iron opacity peak may lead to local super-Eddington luminosities at the sonic point. By varying the stellar wind parameters over the whole physically plausible range, we show that the radius of the sonic point of the wind flow is always very close to the hydrostatic stellar radius obtained in WR star models which ignore the wind. However, our models confirm the possibility of large values for observable WR radii and correspondingly small effective temperatures found in earlier models. We show further that the energy which is contained in a typical WR wind can not be neglected. The stellar luminosity may be reduced by several 10%, which has a pronounced effect on the mass-luminosity relation, i. e., the WR masses derived for a given luminosity may be considerably larger. Thereby, also the momentum problem of WR winds is considerably reduced, as well as the scatter in the ˙(M) vs. M diagram for observed hydrogen-free WN stars.

  15. A Hubble Cosmic Couple

    NASA Image and Video Library

    2017-12-08

    Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15,000 light-years away. The star Hen 2-427 shines brightly at the very center of this explosive image and around the hot clumps of surrounding gas that are being ejected into space at over 93,210 miles (150,000 km) per hour. Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterized by a fierce ejection of mass. The nebula M1-67 is estimated to be no more than 10,000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    The ESO Very Large Telescope Interferometer, which allows astronomers to scrutinise objects with a precision equivalent to that of a 130-m telescope, is proving itself an unequalled success every day. One of the latest instruments installed, AMBER, has led to a flurry of scientific results, an anthology of which is being published this week as special features in the research journal Astronomy & Astrophysics. ESO PR Photo 06a/07 ESO PR Photo 06a/07 The AMBER Instrument "With its unique capabilities, the VLT Interferometer (VLTI) has created itself a niche in which it provide answers to many astronomical questions, from the shape of stars, to discs around stars, to the surroundings of the supermassive black holes in active galaxies," says Jorge Melnick (ESO), the VLT Project Scientist. The VLTI has led to 55 scientific papers already and is in fact producing more than half of the interferometric results worldwide. "With the capability of AMBER to combine up to three of the 8.2-m VLT Unit Telescopes, we can really achieve what nobody else can do," added Fabien Malbet, from the LAOG (France) and the AMBER Project Scientist. Eleven articles will appear this week in Astronomy & Astrophysics' special AMBER section. Three of them describe the unique instrument, while the other eight reveal completely new results about the early and late stages in the life of stars. ESO PR Photo 06b/07 ESO PR Photo 06b/07 The Inner Winds of Eta Carinae The first results presented in this issue cover various fields of stellar and circumstellar physics. Two papers deal with very young solar-like stars, offering new information about the geometry of the surrounding discs and associated outflowing winds. Other articles are devoted to the study of hot active stars of particular interest: Alpha Arae, Kappa Canis Majoris, and CPD -57o2874. They provide new, precise information about their rotating gas envelopes. An important new result concerns the enigmatic object Eta Carinae. Using AMBER with its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave coming from the nova. The stream of results from the VLTI and AMBER is no doubt going to increase in the coming years with the availability of new functionalities. "In addition to the 8.2-m Unit Telescopes, the VLTI can also combine the light from up to 4 movable 1.8-m Auxiliary Telescopes. AMBER fed by three of these AT's will be offered to the user community as of April this year, and from October we will also make FINITO available," said Melnick. "This 'fringe-tracking' device allows us to stabilise changes in the atmospheric conditions and thus to substantially improve the efficiency of the observations. By effectively 'freezing' the interferometric fringes, FINITO allows astronomers to significantly increase the exposure times." The Astronomy & Astrophysics special feature (volume 464 - March II 2007) on AMBER first results includes 11 articles. They are freely available on the A&A web site.

  17. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  18. Investigating the diversity of supernovae type Iax: a MUSE and NOT spectroscopic study of their environments

    NASA Astrophysics Data System (ADS)

    Lyman, J. D.; Taddia, F.; Stritzinger, M. D.; Galbany, L.; Leloudas, G.; Anderson, J. P.; Eldridge, J. J.; James, P. A.; Krühler, T.; Levan, A. J.; Pignata, G.; Stanway, E. R.

    2018-01-01

    SN 2002cx-like Type Ia supernovae (also known as SNe Iax) represent one of the most numerous peculiar SN classes. They differ from normal SNe Ia by having fainter peak magnitudes, faster decline rates and lower photospheric velocities, displaying a wide diversity in these properties. We present both integral-field and long-slit visual-wavelength spectroscopy of the host galaxies and explosion sites of SNe Iax to provide constraints on their progenitor formation scenarios. The SN Iax explosion-site metallicity distribution is similar to that of core-collapse SNe and metal poor compared to either normal SNe Ia or SN 1991T-like events. Fainter members, speculated to form distinctly from brighter SN Iax, are found at a range of metallicities, extending to very metal poor environments. Although the SN Iax explosion-sites' ages and star formation rates are comparatively older and less intense than the distribution of star-forming regions across their host galaxies, we confirm the presence of young stellar populations (SPs) at explosion environments for most SNe Iax, expanded here to a larger sample. Ages of the young SPs (several × 107 to 108 yr) are consistent with predictions for young thermonuclear and electron-capture SN progenitors. The lack of extremely young SPs at the explosion sites disfavours very massive progenitors such as Wolf-Rayet explosions with significant fallback. We find weak ionized gas in the only SN Iax host without obvious signs of star formation. The source of the ionization remains ambiguous but appears unlikely to be mainly due to young, massive stars.

  19. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles

    2007-09-01

    We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.

  20. PTF11mnb: First analog of supernova 2005bf: Long-rising, double-peaked supernova Ic from a massive progenitor*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddia, F.; Sollerman, J.; Fremling, C.

    The aim is to study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods. Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analyticmore » models. Results. The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until ~50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at ~20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (M ej = 7.8 M ⊙ ), He-poor star characterized by a double-peaked 56 Ni distribution, a total 56 Ni mass of 0.59 M ⊙ , and an explosion energy of 2.2 × 10 51 erg. Alternatively, a normal SN Ib/c explosion (M( 56Ni) = 0.11 M ⊙ , E K = 0.2 × 10 51 erg, M ej = 1 M ⊙ ) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 10 14 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R ⊙ is obtained. Conclusions. We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass (~85 M ⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward.« less

  1. The nature of ULX source M101 X-1: optically thick outflow from a stellar mass black hole

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Barniol Duran, Rodolfo; Nakar, Ehud; Piran, Tsvi

    2015-02-01

    The nature of ultraluminous X-ray sources (ULXs) has long been plagued by an ambiguity about whether the central compact objects are intermediate-mass (IMBH, ≳103 M⊙) or stellar-mass (a few tens M⊙) black holes (BHs). The high-luminosity (≃1039 erg s-1) and supersoft spectrum (T ≃ 0.1 keV) during the high state of the ULX source X-1 in the galaxy M101 suggest a large emission radius (≳109 cm), consistent with being an IMBH accreting at a sub-Eddington rate. However, recent kinematic measurement of the binary orbit of this source and identification of the secondary as a Wolf-Rayet star suggest a stellar-mass BH primary with a super-Eddington accretion. If that is the case, a hot, optically thick outflow from the BH can account for the large emission radius and the soft spectrum. By considering the interplay of photons' absorption and scattering opacities, we determine the radius and mass density of the emission region of the outflow and constrain the outflow mass-loss rate. The analysis presented here can be potentially applied to other ULXs with thermally dominated spectra, and to other super-Eddington accreting sources.

  2. Luminous clusters of Wolf-Rayet stars in the SBmIII galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Sargent, Wallace L. W.; Filippenko, Alexei V.

    1991-01-01

    Observations are reported of strong broad emission lines attributed to WR stars in the spectra of several bright knots in the nearby Magellanic irregular galaxy NGC 4214 (classified as type SBmIII), in addition to the emission produced by the more prevalent WN stars). Data are presented on measurements of the line fluxes, the line equivalent widths, and continuum flux densities in the four observed knots, showing that the strongest WR lines generally appear in knots having the most luminous stellar continuum. The significance of this observation is discussed.

  3. An atlas of optical spectrophotometry of Wolf-Rayet carbon and oxygen stars

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.; Massey, Philip

    1987-01-01

    The atlas contains a homogeneous set of optical spectrophotometric observations (3300-7300 A) at moderate resolution (about 10 A) of almost all WC and WO stars in the Galaxy, the LMC, and the SMC. The data are presented in the form of spectral tracings (in magnitude units) arranged by subtype, with no correction for interstellar reddening. A montage of prototype stars of each spectral class is also shown. Comprehensive line identifications are given for the optical lines of WC and WO spectra, with major contributions tabulated and unidentified lines noted.

  4. Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22

    NASA Astrophysics Data System (ADS)

    Paswan, A.; Omar, A.; Jaiswal, S.

    2018-02-01

    The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.

  5. Shock break-out: how a GRB revealed the beginnings of a supernova.

    PubMed

    Blustin, Alexander J

    2007-05-15

    In February 2006, Swift caught a gamma-ray burst (GRB) in the act of turning into a supernova, and made the first ever direct observations of the break-out and early expansion of a supernova shock wave. GRB 060218 began with an exceptionally long burst of non-thermal gamma-rays, lasting over 2000s, as a jet erupted through the surface of the star. While this was in progress, an optically-thick thermal component from the shock wave of the supernova explosion grew to prominence, and we were able to track the mildly relativistic expansion of this shell as the blackbody peak moved from the X-rays into the UV and optical bands. The initial radius of the shock implied that it was a blue supergiant that had exploded, but the lack of hydrogen emission lines in the supernova spectrum indicated a more compact star. The most likely scenario is that the shock ploughed into the massive stellar wind of a Wolf-Rayet progenitor, with the shock breaking-out and becoming visible to us once it reached the radius where the wind became optically-thin. I present the Swift observations of this landmark event, and discuss the new questions and answers it leaves us with.

  6. Cosmic Ray Observation at Mount Chacaltaya for beyond the Knee Region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Y.; Kakimoto, F.; Furuhata, F.; Matsumoto, H.; Sugawara, T.; Wakamatsu, H.; Gotoh, E.; Nakatani, H.; Nishi, K.; Tajima, N.; Yamada, Y.; Shimoda, S.; Yoshii, H.; Kaneko, T.; Ogio, S.; Matsubara, Y.; Kadota, K.; Tokuno, H.; Mizumoto, Y.; Shirasaki, Y.; Toyoda, Y.; Burgoa, O.; Flores, V.; Miranda, P.; Salinas, J.; Velarde, A.

    We have installed a new air shower array at Mount Chacaltaya (5,200m above sea level) to observe primary cosmic rays with energies greater than 1015 eV. In our previous experiments, we measured energy spectrum and nuclear composition of primary cosmic rays around the knee region. Above all, we obtained the cosmic ray composition with three independent techniques, namely from the equi-intensity cuts, the arrival time distributions of Cherenkov lights associated with air showers, and the lateral distributions of Cherenkov photons around the shower axis. All the results from these experiments are in agreement and show that the average mass of cosmic ray nuclei increases with energies below and above the knee, and dominated by heavier nuclei as iron at 1016 eV. This result is consistent with the confinement and rigidity dependent acceleration models, and suggests that the cosmic ray origins are supernova remnants of massive population as Wolf-Rayet stars. It is of quite interest whether the mass of cosmic ray nuclei continues to increase with energies, or decreases by contributions of lighter components expected from the extra-galactic cosmic ray models. In this paper, we describe the characteristics of the new array and preliminary results from the first observation.

  7. Towards a better understanding of the evolution of Wolf-Rayet stars and Type Ib/Ic supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul

    2017-10-01

    Hydrogen-deficient Wolf-Rayet (WR) stars are potential candidates of Type Ib/Ic supernova (SN Ib/Ic) progenitors and their evolution is governed by mass-loss. Stellar evolution models with the most popular prescription for WR mass-loss rates given by Nugis & Lamers have difficulties in explaining the luminosity distribution of WR stars of WC and WO types and the SN Ic progenitor properties. Here, we suggest some improvements in the WR mass-loss rate prescription and discuss its implications for the evolution of WR stars and SN Ib/Ic progenitors. Recent studies on Galactic WR stars clearly indicate that the mass-loss rates of WC stars are systematically higher than those of WNE stars for a given luminosity. The luminosity and initial metallicity dependences of WNE mass-loss rates are also significantly different from those of WC stars. These factors have not been adequately considered together in previous stellar evolution models. We also find that an overall increase of WR mass-loss rates by about 60 per cent compared to the empirical values obtained with a clumping factor of 10 is needed to explain the most faint WC/WO stars. This moderate increase with our new WR mass-loss rate prescription results in SN Ib/Ic progenitor models more consistent with observations than those given by the Nugis & Lamers prescription. In particular, our new models predict that the properties of SN Ib and SN Ic progenitors are distinctively different, rather than they form a continuous sequence.

  8. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.

    2017-07-01

    Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.

  9. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  10. Polarization cancellation in the two-component winds from Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Taylor, M.; Cassinelli, J. P.

    1992-01-01

    In this paper we explore the possibility that there can be at least partial cancellation of the equatorial disk polarization as a result of scattering from the electrons that are present in the strong polar wind of WR stars. In order to achieve the cancellation necessary to explain the wavelength-dependent polarization, the polar wind must have a mass-loss rate that is near the maximum that is supported by radiation-driven wind theory. In addition, we find that it is possible to derive important new information regarding the relative column masses of the polar and equatorial winds.

  11. Spectroscopic studies of Wolf-Rayet stars with absorption lines. VIII - HD 193793

    NASA Astrophysics Data System (ADS)

    Conti, P. S.; Dupre, D. Roussel; Massey, P.; Rensing, M.

    1984-07-01

    The authors present absorption-line velocities for the O type star spanning over 16 years and emission-line velocities for the WC star covering 10 years. They find no periodicities in either of these sets of data. In particular, they are unable to confirm the claim of Lamontagne, Moffat, and Seggewiss that the two stars are in orbit about one another. Rather, it seems that a generic relationship between the two components has not been established and one is dealing with a situation in which two stars are in the same line of sight.

  12. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  13. Kupier prize lecture: Sources of solar-system carbon

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  14. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However,more » recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.« less

  15. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Guerrero, M. A.; Gruendl, R. A.

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ∼1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ∼ 1.4 × 10{sup 6} K, T {sub 2} ∼ 7.4 × 10{sup 6} K). Wemore » confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ≳ 0.4 cm{sup –3} for a total mass ≳ 1.2 M {sub ☉}.« less

  16. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faherty, Jacqueline K.; Shara, Michael M.; Zurek, David

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints tomore » a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.« less

  17. A modern search for Wolf-Rayet stars in the Magellanic Clouds: First results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia

    Over the years, directed surveys and incidental spectroscopy have identified 12 Wolf-Rayet (WR) stars in the Small Magellanic Cloud (SMC) and 139 in the Large Magellanic Cloud (LMC), numbers which are often described as 'essentially complete'. Yet, new WRs are discovered in the LMC almost yearly. We have therefore initiated a new survey of both Magellanic Clouds using the same interference-filter imaging technique previously applied to M31 and M33. We report on our first observing season, in which we have successfully surveyed ∼15% of our intended area of the SMC and LMC. Spectroscopy has confirmed nine newly found WRs inmore » the LMC (a 6% increase), including one of WO-type, only the third known in that galaxy and the second to be discovered recently. The other eight are WN3 stars that include an absorption component. In two, the absorption is likely from an O-type companion, but the other six are quite unusual. Five would be classified naively as 'WN3+O3 V', but such a pairing is unlikely given the rarity of O3 stars, the short duration of this phase (which is incommensurate with the evolution of a companion to a WN star), and because these stars are considerably fainter than O3 V stars. The sixth star may also fall into this category. CMFGEN modeling suggests these stars are hot, bolometrically luminous, and N-rich like other WN3 stars, but lack the strong winds that characterize WNs. Finally, we discuss two rare Of?p stars and four Of supergiants we found, and propose that the B[e] star HD 38489 may have a WN companion.« less

  18. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J.

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. Wemore » also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.« less

  19. X-Ray Emission from the Wolf-Rayet Bubble S 308

    NASA Technical Reports Server (NTRS)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  20. An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.

    2016-08-01

    During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He II λ5411 emission line, the previously identified period was refined to P = 2.255 ± 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 d, or ˜18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Δφ ≃ 90° was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and He I λ5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I λ5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.

  1. RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: amarble@nso.edu

    We present new MMT spectroscopic observations of four dwarf galaxies representative of a larger sample observed by the Sloan Digital Sky Survey and identified by Peeples et al. as low-mass, high oxygen abundance outliers from the mass-metallicity relation. Peeples showed that these four objects (with metallicity estimates of 8.5 {<=} 12 + log(O/H) {<=} 8.8) have oxygen abundance offsets of 0.4-0.6 dex from the M{sub B} luminosity-metallicity relation. Our new observations extend the wavelength coverage to include the [O II] {lambda}{lambda}3726, 3729 doublet, which adds leverage in oxygen abundance estimates and allows measurements of N/O ratios. All four spectra aremore » low excitation, with relatively high N/O ratios (N/O {approx}> 0.10), each of which tend to bias estimates based on strong emission lines toward high oxygen abundances. These spectra all fall in a regime where the 'standard' strong-line methods for metallicity determinations are not well calibrated either empirically or by photoionization modeling. By comparing our spectra directly to photoionization models, we estimate oxygen abundances in the range of 7.9 {<=} 12 + log (O/H) {<=} 8.4, consistent with the scatter of the mass-metallicity relation. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the 'Wolf-Rayet galaxy' phase. We compare our results to the 'main' sample of Peeples and conclude that they are outliers primarily due to enrichment of nitrogen relative to oxygen and not due to unusually high oxygen abundances for their masses or luminosities.« less

  2. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.

  3. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Feng; Bregman, Joel N.; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-01

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 1039 erg s-1. They could be intermediate-mass black holes (more than 100-1,000 solar masses, ) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 1039 erg s-1 and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5, and more probably a mass of 20-30, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  4. Research on the Orbital Period of Massive Binaries

    NASA Astrophysics Data System (ADS)

    Zhao, E.; Qain, S.

    2011-12-01

    Massive binary is the kind of binary, whose spectral type is earlier than B5. Research on massive binary plays an important role in the mass and angular momentum transfer or loss between the components, and the evolution of binary. Some massive binaries are observed and analyzed, including O-type binary LY Aur, B-type contact binary RZ Pyx and B-type semi-detached binary AI Cru. It is found that all of their periods have a long-term increasing, which indicates that the system is undergoing a Case A slow mass transfer stage on the nuclear time-scale of the secondary. Moreover, analysis show a cyclic change of orbital period, which can be explained by the light-travel effect time of the third body.

  5. Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio; Ross, Kevin

    2009-01-01

    Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.

  6. A Chandra X-ray Mosaic of the Onsala 2 Star-Forming Region

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Sokal, Kimberly; Guedel, Manuel

    2018-01-01

    Multiple lines of evidence for active high-mass star-formation in the Onsala 2 (ON2) complex in Cygnus include masers, compact HII (cHII) regions, and massive outflows. ON2 is thought to be physically associated with the young stellar cluster Berkeley 87 which contains several optically-identified OB stars and the rare oxygen-type (WO) Wolf-Rayet star WR 142. WO stars are undergoing advanced nuclear core burning as they approach the end of their lives as supernovae, and only a few are known in the Galaxy. We present results of a sensitive 70 ks Chandra ACIS-I observation of the northern half of ON2 obtained in 2016. This new observation, when combined with our previous 70 ks ACIS-I observation of the southern half in 2009, provides a complete X-ray mosaic of ON2 at arcsecond spatial resolution and reveals several hundred X-ray sources. We will summarize key results emerging from our ongoing analysis including the detection of an embedded population of young stars revealed as a tight grouping of X-ray sources surrounding the cHII region G75.77+0.34, possible diffuse X-ray emission (or unresolved faint point sources) near the cHII region G75.84+0.40, and confirmation of hard heavily-absorbed X-ray emission from WR 142 that was seen in the previous 2009 Chandra observation.

  7. Canada's Little Space Telescope That Could: Another Year of Scientific Surprises From the MOST Microsatellite

    NASA Astrophysics Data System (ADS)

    Matthews, Jaymie

    2005-08-01

    At CASCA 2004 in Winnipeg, I announced the first scientific results from the MOST (Microvariability & Oscillations of STars) mission, launched in summer 2003. These included the controversial null detection of acoustic oscillations in the light output of Procyon, at odds with theory and groundbased spectroscopy, and the first direct measurement of differential rotation in a star other than the Sun, kappa 1 Ceti. A year later, by CASCA 2005 in Montreal, I'll be able to share even more exciting astrophysics, including: ultraprecise photometric studies of exoplanetary systems like 51 Pegasi, tau Bootis, and HD 209458; new perspectives on massive stars like zeta Oph and the Wolf-Rayet star WR 123; the definitive eigenfrequency spectrum of a pulsating chemically peculiar star (HR 1217), which provides an acid test for theories of magneto-acoustic coupling; and seismology of pulsating protostars in the open cluster NGC 2264. I'll also return to Procyon, shedding more light on the oscillation controversy by showing how MOST observations compare to 3-D hydrodynamical simulations of granulation in that star. And between February and May, MOST will monitor a G dwarf and a K dwarf to search for true analogues of the solar 5-min oscillations. Too much to fit into 50 minutes, but I'll try to convey a broad flavour of the diverse MOST science (and, as usual, I'll talk really, really fast).

  8. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Fremling, C.; Karamehmetoglu, E.; Quimby, R. M.; Gal-Yam, A.; Yaron, O.; Kasliwal, M. M.; Kulkarni, S. R.; Nugent, P. E.; Smadja, G.; Tao, C.

    2018-01-01

    Aims: We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods: Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results: The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions: We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni distribution. In this case, the ejecta mass and the absence of He imply a large ZAMS mass ( 85 M⊙) for the progenitor, which most likely was a Wolf-Rayet star, surrounded by an extended envelope formed either by a pre-SN eruption or due to a binary configuration. Alternatively, PTF11mnb could be powered by a SE SN with a less massive progenitor during the first peak and by a magnetar afterward. Photometric tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A106

  9. Massive, wide binaries as tracers of massive star formation

    NASA Astrophysics Data System (ADS)

    Griffiths, Daniel W.; Goodwin, Simon P.; Caballero-Nieves, Saida M.

    2018-05-01

    Massive stars can be found in wide (hundreds to thousands au) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially, and probably only one will survive if more than one is present initially. Therefore, any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74), which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass initial mass function (IMF) for its total mass suggests that however massive stars form, they `randomly sample' the IMF (as the massive stars did not `know' about each other).

  10. The global structure of hot star winds: Constraints from spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Eversberg, Thomas

    2000-11-01

    Chapter 1. We present time-series of ultra-high S/N, high resolution spectra of the He II λ 4686 Å emission line in the O4I(n)f supergiant ζ Puppis, the brightest early-type O-star in the sky. These reveal stochastic, variable substructures in the line, which tend to move away from the line-center with time. Similar scaled-up features are well established in the strong winds of Wolf-Rayet stars (the presumed descendants of O stars), where they are explained by outward moving inhomogeneities (e.g., blobs, clumps, shocks) in the winds. If all hot-star winds are clumped like that of ζ Pup, as is plausible, then mass-low rates based on recombination-line intensities will have to be revised downwards. Using a standard `β' velocity law we deduce a value of β = 1.0-1.2 to account for the kinematics of these structures in the wind of ζ Pup. In addition to the small-scale stochastic variations we also find a slow systematic variation of the mean central absorption reversal. Chapter 2. We introduce a new polarimeter unit which, mounted at the Cassegrain focus of any telescope and fiber-connected to a fixed CCD spectrograph, is able to measure all Stokes parameters I, Q, U and V across spectral lines of bright stellar targets and other point sources in a quasi-simultaneous manner. Applying standard reduction techniques for linearly and circularly polarized light we are able to obtain photon-noise limited line polarization. We briefly outline the technical design of the polarimeter unit and the linear algebraic Mueller calculus for obtaining polarization parameters of any point source. In addition, practical limitations of the optical elements are outlined. We present first results obtained with our spectropolarimeter for four bright, hot-star targets: We confirm previous results for Hα in the bright Be star γ Cas and find linear depolarization features across the emission line complex C III/C IV (λ 5696/λ 5808 Å) of the WR+O binary γ2 Vel. We also find circular line polarization in the strongly magnetic Ap star 53 Cam across its Hα absorption line. No obvious line polarization features are seen across Hα in the variable O star θ1 Ori C above the σ ~ 0.2% instrumental level. Chapter 3. We present low resolution (~6 Å), high signal-to noise spectropolarimetric observations obtained with the new William-Wehlau spectropolarimeter for the apparently brightest Wolf-Rayet star in the sky, the 78.5d WR+O binary γ2 Velorum. Quasi- simultaneous monitoring of all four Stokes parameters I(λ), q(λ), u(λ) and v(λ) was carried out over an interval of 31 nights centered on periastron. All emission lines in our observed wavelength interval (5200-6000 Å) show highly stochastic variations over the whole run. The phase-dependent behavior of the excess emission in the C III λ 5696 line can be related to the wind-wind collision phenomenon. Varying features of Stokes q and u are seen across the strong lines, probably as a result of variable electron scattering of mainly continuum light. The spherical symmetry of the WR wind is thus broken by the presence of the O companion and clumping in the WR wind. Similar features in the extended red wing of the C III λ 5696 emission line remain unexplained. No obvious circular line polarization features are seen across any emission line above the 3σ ~ 0.03% instrumental level.

  11. Very massive runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  12. The light curve of CV Serpentis, the sometimes-eclipsing Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Schild, R.; Liller, W.

    1975-01-01

    New photoelectric observations of the B-magnitude of CV Ser made in 1973 and 1974 show no clear evidence of an eclipse, but they establish night-to-night variability of several percent, a systematic brightness change of 0.035 mag during a portion of the single orbit observed in 1973, and irregular flaring in 1974. We made iris photometer measurements of Harvard patrol plates taken between 1905 June and 1953 July, and find no evidence of a very deep eclipse such as observed by Hjellming and Hiltner. We present several new light curves and discuss then in the light of the recent results of Cowley et al.

  13. The violent interstellar medium in Messier 31

    NASA Technical Reports Server (NTRS)

    Brinks, Elias; Braun, Robert; Unger, Stephen W.

    1990-01-01

    Taurus observations in the line of H alpha and Very Large Array (VLA) HI mapping of the HII complex No. 722 in M31, reveal what seems to be a spherical cavity 330 pc in diameter blown out by a stellar association of over 20(exp 6) years old. Evidence of induced star formation which was initiated less than 5(exp 6) years ago is present in the form of bright HII emission and numerous O, B and Wolf-Rayet stars which are found within the shell surrounding the cavity. The energy necessary to create the HI shell is estimated to be about 5(exp 51) erg.

  14. Searching for X-ray variability/periodicity in HD 4004.

    NASA Astrophysics Data System (ADS)

    Wessolowski, U.; Niedzielski, A.

    1996-02-01

    The authors present preliminary results of a combined X-ray and optical search for variability/periodicity in HD 4004 (WR 1, WN5-s), an apparently single Wolf-Rayet star known to show radial velocity variations (Lamontagne 1983) and some variability both in photometry (Moffat and Shara 1986) and in optical line profiles (Niedzielski 1995). The two ROSAT PSPC pointed observations of HD 4004 (total effective exposure time of 35 ks) do not provide significant evidence for variability in X-rays. Line profile variations present in newly obtained optical spectra are similar to those of EZ CMa (WR 6, WN5-s+c?), the banner WR+compact companion candidate.

  15. Massive star formation in Wolf-Rayet galaxies. IV. Colours, chemical-composition analysis and metallicity-luminosity relations

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Esteban, C.

    2010-07-01

    Aims: We have performed a comprehensive multiwavelength analysis of a sample of 20 starburst galaxies that show a substantial population of very young massive stars, most of them classified as Wolf-Rayet (WR) galaxies. In this paper, the forth of the series, we present the global analysis of the derived photometric and chemical properties. Methods: We compare optical/NIR colours and the physical properties (reddening coefficient, equivalent widths of the emission and underlying absorption lines, ionization degree, electron density, and electron temperature) and chemical properties (oxygen abundances and N/O, S/O, Ne/O, Ar/O, and Fe/O ratios) with previous observations and galaxy evolution models. We compile 41 independent star-forming regions - with oxygen abundances between 12 + log(O/H) = 7.58 and 8.75 - , of which 31 have a direct estimate of the electron temperature of the ionized gas. Results: According to their absolute B-magnitude, many of them are not dwarf galaxies, but they should be during their quiescent phase. We found that both c(Hβ) and Wabs increase with increasing metallicity. The differences in the N/O ratio is explained assuming differences in the star formation histories. We detected a high N/O ratio in objects showing strong WR features (HCG 31 AC, UM 420, IRAS 0828+2816, III Zw 107, ESO 566-8 and NGC 5253). The ejecta of the WR stars may be the origin of the N enrichment in these galaxies. We compared the abundances provided by the direct method with those obtained through empirical calibrations, finding that (i) the Pilyugin method is the best suited empirical calibration for these star-forming galaxies; (ii) the relations provided by Pettini & Pagel (2004, MNRAS, 348, 59) give acceptable results for objects with 12 + log(O/H) > 8.0; and (iii) the results provided by empirical calibrations based on photoionization models are systematically 0.2-0.3 dex higher than the values derived from the direct method. The O and N abundances and the N/O ratios are clearly related to the optical/NIR luminosity; the dispersion of the data is a consequence of the differences in the star-formation histories. The L-Z relations tend to be tighter when using NIR luminosities, which facilitates distinguishing tidal dwarf galaxies candidates and pre-existing dwarf objects. Galaxies with redder colours tend to have higher oxygen and nitrogen abundances. Conclusions: Our detailed analysis is fundamental to understand the nature of galaxies that show strong starbursts, as well as to know their star formation history and the relationships with the environment. This study is complementary -but usually more powerful- to the less detailed analysis of large galaxy samples that are very common nowadays. Based on observations made with NOT (Nordic Optical Telescope), INT (Isaac Newton Telescope) and WHT (William Herschel Telescope) operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden (NOT) or the Isaac Newton Group (INT, WHT) in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. Based on observations made at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Appendices are only available in electronic form at http://www.aanda.org

  16. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If confirmed by future Hubble observations, this finding will have a far-reaching impact on stellar evolutionary models," says Heydari-Malayeri. "That's because the Wolf-Rayet candidate is fainter than other such stars in that galaxy, in contrast with the predictions of these models." Hubble's resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter -- slightly more than twice the distance between Earth and the nearest star to our sun. The closest pair of stars is only one-third of a light-year apart. Before the Hubble observations, N81 was simply dubbed, "The Blob" because its features were indistinguishable by other telescopes. The Hubble observations of N81 were conducted by the European astronomers Mohammed Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Hans Zinnecker (Astrophysics Institute, Potsdam, Germany), Lise Deharveng (Marseille Observatory, France), and Vassilis Charmandaris (Paris Observatory). Their work will be shortly submitted for publication in the European journal Astronomy and Astrophysics. The Hubble Space Telescope is a project of international cooperation between ESA and NASA. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract with NASA's Goddard Space Flight Center, Greenbelt, MD. Note to editors: A photo and caption associated with this release are available via the World-Wide Web at: http://oposite.stsci.edu/1998/25 or via links in: http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. Further information is available from: Mohammad Heydari-Malayeri Paris Observatory, Paris, France (Phone: 33-1-40-51-20-76)

  17. The onset of Wolf-Rayet wind outflow and the nature of the hot component in the symbiotic nova PU Vulpecula

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Shore, Steven N.; Ready, Christian J.; Scheible, Maureen P.

    1993-01-01

    We have analyzed temporal variations in the far ultraviolet He II (1640), Si IV (1393, 1402), and C IV (1548, 1550) line profiles in eight high dispersion, International Ultraviolet Explorer Short Wavelength Prime spectra of the symbiotic nova PU Vul by comparatively examining these profiles on a common velocity scale. We see clear evidence of the onset of a Wolf-Rayet-like wind outflow from the bloated, contracting white dwarf hot component with terminal velocity of approximately equals -550 to -600 km/s. We have quantitatively analyzed the complicated He II (1640) emission region for the first time and show that the discrete absorption features seen in the He II region occur at precisely the same velocites in each spectrum, thus demonstrating that the absorbing source is steady and not affected by any orbital motion. We demonstrate that there is an underlying He II wind emission feature whose true shape is hidden by superposed absorption due to the foreground red giant wind flowing in front of the white dwarf and abscuring the white dwarf's wind outflow. We present synthetic spectra of He II emission behind an absorbing slab with u = 20 km/s, T = 5000 K, and column densities in the range N = 1 x 10(exp 22) and 1 x 10(exp 23)/sq cm which explain these absorptions. Our analysis of the Si IV and C IV resonance doublets, in velocity space, reveal temporal variations in the profile between 1987 and 1991 with the emergence of clear P Cygni profiles in Si IV by 1990. A nebular emission feature in C III 1909 also appears in the most recent spectra (e.g., SW42538H) while it was absent or extremely weak in the earliest spectra (e.g., SW36332H), thus strengthening evidence that the nebular emission, as seen in permitted and semiforbidden lines, intensities in step with the onset of the hot, fast, wind outflow. We also report the first detection of narrow interstellar (circumbinary shell?) absorption lines near -1 km/s, most strongly in Al III (1854, 1862) and Si IV (1392, 1402). We have carried out a rough quantitative analysis of the He II wind emission by using the theoretical He II Wolf-Rayet profiles of Hamann & Schmutz (1987). We obtain a lower limit to the He II net emission equivalent width of approximately 1 A, a hot component temperature in the range 25,000 to 35,000 K, a hot component radius in the range 5 solar radius to 30 solar radius, a maximum wind velocity of approximately equals -600 km/s and a rough upper limit to the mass-loss rate of less than 1 x 10(exp -5) solar mass/yr. To our knowledge, this is the first quantitative wind analysis, albeit crude, to be carried out for the hot component of a symbiotic nova or symbiotic variable.

  18. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.

  19. Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Meliani, Z.; Marcowith, A.

    2015-12-01

    Context. The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. Aims: We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. Methods: We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 μG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 μG interstellar magnetic field and a warm (10 000 K) interstellar medium (ISM) and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Results: Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with an ISM that is both warm and high density the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble such as Wolf-Rayet ring nebulae. Conclusions: The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble. Appendices and movies associated to Figs. A.1-A.12 are available in electronic form at http://www.aanda.org

  20. The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek

    2014-07-01

    If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  1. Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Martín-Gordón, D.; Vílchez, J. M.; Pérez Montero, E.; Riera, A.; Sánchez, S. F.

    2012-05-01

    Context. The study of nebulae around Wolf-Rayet (WR) stars gives us clues about the mass-loss history of massive stars, as well as about the chemical enrichment of the interstellar medium (ISM). Aims: This work aims to search for the observational footprints of the interactions between the ISM and stellar winds in the WR nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. Methods: We have collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the northeast part of NGC 6888, we have generated maps of the extinction structure and electron density. We produced statistical frequency distributions of the radial velocity and diagnostic diagrams. Furthermore, we performed a thorough study of integrated spectra in nine regions over the whole nebula. Results: The 2D study has revealed two main behaviours. We have found that the spectra of a localized region to the southwest of this pointing can be represented well by shock models assuming n = 1000 cm-3, twice solar abundances, and shock velocities from 250 to 400 km s-1. With the 1D analysis we derived electron densities ranging from <100 to 360 cm-3. The electron temperature varies from ~7700 K to ~10 200 K. A strong variation of up to a factor 10 between different regions in the nitrogen abundance has been found: N/H appears lower than the solar abundance in those positions observed at the edges and very enhanced in the observed inner parts. Oxygen appears slightly underabundant with respect to solar value, whereas the helium abundance is found to be above it. We propose a scenario for the evolution of NGC 6888 to explain the features observed. This scheme consists of a structure of multiple shells: i) an inner and broken shell with material from the interaction between the supergiant and WR shells, presenting an overabundance in N/H and a slight underabundance in O/H; ii) an outer shell very intense in [OIII]λ5007 Å corresponding to the main sequence bubble broken up as a consequence of the collision between supergiant and WR shells. Nitrogen and oxygen do not appear enhanced here, but helium appears enriched; iii) and finally it includes an external and faint shell that surrounds the whole nebula like a thin skin representing the early interaction between the winds from the main sequence star with the ISM for which typical circumstellar abundances are derived. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Table 3 is available in electronic form at http://www.aanda.org

  2. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z 1 to 2 which are estimated to have Z 0.5 Z⊙. The log of observations and RV measurements for all targets are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A84

  3. The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Doran, E. I.; Crowther, P. A.; de Koter, A.; Evans, C. J.; McEvoy, C.; Walborn, N. R.; Bastian, N.; Bestenlehner, J. M.; Gräfener, G.; Herrero, A.; Köhler, K.; Maíz Apellániz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F. R. N.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.

    2013-10-01

    Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims: The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods: Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results: Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~40% and ~50%, respectively. Similarly, stars with Minit > 100 M⊙ (mostly H-rich WN stars) also showed high contributions to the global feedback, ~25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~2 and the wind luminosity by a factor ~9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M⊙ yr-1. This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6+55-6 % of the ionising photons escape the region. Conclusions: When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for. Based on observations collected at the European Southern Observatory under programme ID 182.D-0222.Appendices are available in electronic form at http://www.aanda.orgFull Tables D1 and D2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A134

  4. A 2007 photometric study and UV spectral analysis of the Wolf-Rayet binary V444 Cyg

    NASA Astrophysics Data System (ADS)

    Eriş, F. Z.; Ekmekçi, F.

    2011-07-01

    Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson-Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR=10.64 M⊙, MO=24.68 M⊙, RWR=7.19 R⊙, RO=6.85 R⊙, TWR=31 000 K, and TO=40 000 K , respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The O-C analysis of the system revealed a period lengthening of 0.139±0.018 s yr-1, implying a mass loss rate of (6.76 ± 0.39) × 10-6 M⊙ yr-1 for the WR component. Moreover, 106 IUE-NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200-2000 \\rA) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s-1. Tables 2 and 3 and Figs. 4 and 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr or via http:://cdsweb.u-strasbg.fr/AN/332/616

  5. Coupling hydrodynamics with comoving frame radiative transfer. II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.

    2018-02-01

    Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.

  6. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less

  7. The formation and gravitational-wave detection of massive stellar black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less

  8. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of itsmore » counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.« less

  9. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chene, A.-N.; St-Louis, N., E-mail: achene@astro-udec.cl, E-mail: stlouis@astro.umontreal.ca

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its variability level usingmore » the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.« less

  10. The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Mesa-Delgado, A.; López-Martín, L.; Esteban, C.

    2011-03-01

    We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5-m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the centre of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1 × 1 arcsec2= 3.9× 3.9 pc2 of different emission lines and analysed the extinction, physical conditions, nature of the ionization and chemical abundances of the ionized gas, as well determined locally the age of the most recent star formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He IIλ4686 emission line, this feature seems to be produced by a single late-type WN star. We also report a probable N and He enrichment in the precise spaxels where the Wolf-Rayet (WR) features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (˜2 arcsec ˜7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree. Based on observations collected at the Centro Astrónomico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Plank Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Visiting Astronomer at the Instituto de Astrofísica de Canarias.

  11. On the origin of the hypervelocity runaway star HD 271791

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  12. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  13. VizieR Online Data Catalog: Wolf-Rayet population in NGC 5068 (Bibby+, 2012)

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Crowther, P. A.

    2012-10-01

    NGC 5068 has been imaged with the ESO VLT and Focal Reduced Low-dispersion Spectrograph #1 (FORS1) covering a field of view of 6.8x6.8arcmin2 with a plate scale of 0.25arcsec/pixel. Both broad- and narrow-band imaging were obtained on 2008 April 7 under program ID 081.B-0289 (P.I. Crowther). In addition, the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope was used to obtain follow-up spectroscopy in 2009 March-April under program ID GS-2009A-Q-20 (P.I. Crowther). The R150 grating was placed at a central wavelength of 510 and 530nm with a dispersion of ~3.5Å/pix. (2 data files).

  14. High-velocity interstellar gas in the line of sight to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, J.; Fesen, R. A.

    1986-01-01

    The large shell of interstellar gas (IG) discovered toward HD 50896 by Heckathorn and Fesen (1984) is characterized on the basis of high-dispersion IUE SWP and LWR spectra of 19 objects located within 4 deg of HD 50896 (but outside the optical ring nebula S308) at distances 0.6-2.9 kpc (compared to 1.5 kpc for HD 50896). The IG is found to have two components (at velocities -80 and -125 km/s), diameter 90 pc or greater, and distance 1.0 + or - 0.2 kpc, demonstrating that it is not related to HD 50896 and suggesting that it is a highly evolved supernova remnant associated with cluster Cr 121.

  15. New scientific results with SpIOMM: a testbed for CFHT's imaging Fourier transform spectrometer SITELLE

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Lagrois, D.; Rousseau-Nepton, L.; Bilodeau, A.; Robert, C.; Joncas, G.; Iglesias-Páramo, J.

    2012-09-01

    We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Québec. Recent technical and data reduction improvements have significantly increased SpIOMM's capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.

  16. On the Evolution of O(He)-Type Stars

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.; Reindl, N.; Rauch, T.; Werner, K.

    2012-01-01

    O(He) stars represent a small group of four very hot post-AGB stars whose atmospheres are composed of almost pure helium. Their evolution deviates from the hydrogen-deficient post-AGO evolutionary sequence of carbon-dominated stars like e.g. PG 1159 or Wolf- Rayet stars. While (very) late thermal pulse evolutionary models can explain the observed He/C/O abundances in these objects, they do not reproduce He-dominated surface abundances. Currently it seems most likely that the O(He) stars originate from a double helium white dwarf merger and so they could be the successors of the luminous helium-rich sdO-stars. An other possibility is that O(He)-stars could be successors of RCB or EHe stars.

  17. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  18. Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Howard E., E-mail: heb11@psu.edu

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates,more » 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.« less

  20. Puzzling accretion onto a black hole in the ultraluminous X-ray source M 101 ULX-1.

    PubMed

    Liu, Ji-Feng; Bregman, Joel N; Bai, Yu; Justham, Stephen; Crowther, Paul

    2013-11-28

    There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates. On its discovery, M 101 ULX-1 had a luminosity of 3 × 10(39) erg s(-1) and a supersoft thermal disk spectrum with an exceptionally low temperature--uncomplicated by photons energized by a corona of hot electrons--more consistent with the expected appearance of an accreting intermediate-mass black hole. Here we report optical spectroscopic monitoring of M 101 ULX-1. We confirm the previous suggestion that the system contains a Wolf-Rayet star, and reveal that the orbital period is 8.2 days. The black hole has a minimum mass of 5 M sun symbol, and more probably a mass of 20 M sun symbol-30 M sun symbol, but we argue that it is very unlikely to be an intermediate-mass black hole. Therefore, its exceptionally soft spectra at high Eddington ratios violate the expectations for accretion onto stellar-mass black holes. Accretion must occur from captured stellar wind, which has hitherto been thought to be so inefficient that it could not power an ultraluminous source.

  1. A Dark Energy Camera Search for Missing Supergiants in the LMC After the Advanced LIGO Gravitational-Wave Event GW150914

    NASA Technical Reports Server (NTRS)

    Annis, J.; Soares-Santos, M.; Berger, E.; Brout, D.; Chen, H.; Chornock, R.; Cowperthwaite, P. S.; Diehl, H. T.; Doctor, Z.; Cenko, S. B.

    2016-01-01

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(exp.2) of the localization area,including 38 deg(exp. 2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates:less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.

  2. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  3. Wolf 1130: A Nearby Triple System Containing a Cool, Ultramassive White Dwarf

    NASA Astrophysics Data System (ADS)

    Mace, Gregory N.; Mann, Andrew W.; Skiff, Brian A.; Sneden, Christopher; Kirkpatrick, J. Davy; Schneider, Adam C.; Kidder, Benjamin; Gosnell, Natalie M.; Kim, Hwihyun; Mulligan, Brian W.; Prato, L.; Jaffe, Daniel

    2018-02-01

    Following the discovery of the T8 subdwarf WISE J200520.38+542433.9 (Wolf 1130C), which has a proper motion in common with a binary (Wolf 1130AB) consisting of an M subdwarf and a white dwarf, we set out to learn more about the old binary in the system. We find that the A and B components of Wolf 1130 are tidally locked, which is revealed by the coherence of more than a year of V-band photometry phase-folded to the derived orbital period of 0.4967 days. Forty new high-resolution, near-infrared spectra obtained with the Immersion Grating Infrared Spectrometer provide radial velocities and a projected rotational velocity (v sin i) of 14.7 ± 0.7 {km} {{{s}}}-1 for the M subdwarf. In tandem with a Gaia parallax-derived radius and verified tidal locking, we calculate an inclination of i = 29° ± 2°. From the single-lined orbital solution and the inclination we derive an absolute mass for the unseen primary ({1.24}-0.15+0.19 M ⊙). Its non-detection between 0.2 and 2.5 μm implies that it is an old (>3.7 Gyr) and cool (T eff < 7000 K) ONe white dwarf. This is the first ultramassive white dwarf within 25 pc. The evolution of Wolf 1130AB into a cataclysmic variable is inevitable, making it a potential SN Ia progenitor. The formation of a triple system with a primary mass >100 times the tertiary mass and the survival of the system through the common-envelope phase, where ∼80% of the system mass was lost, is remarkable. Our analysis of Wolf 1130 allows us to infer its formation and evolutionary history, which has unique implications for understanding low-mass star and brown dwarf formation around intermediate-mass stars.

  4. Pan-STARRS1 Discovery of Two Ultraluminous Supernovae at z ≈ 0.9

    NASA Astrophysics Data System (ADS)

    Chomiuk, L.; Chornock, R.; Soderberg, A. M.; Berger, E.; Chevalier, R. A.; Foley, R. J.; Huber, M. E.; Narayan, G.; Rest, A.; Gezari, S.; Kirshner, R. P.; Riess, A.; Rodney, S. A.; Smartt, S. J.; Stubbs, C. W.; Tonry, J. L.; Wood-Vasey, W. M.; Burgett, W. S.; Chambers, K. C.; Czekala, I.; Flewelling, H.; Forster, K.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Martin, D. C.; Morgan, J. S.; Neill, J. D.; Price, P. A.; Roth, K. C.; Sanders, N. E.; Wainscoat, R. J.

    2011-12-01

    We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M bol ≈ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 1051 erg. We find photospheric velocities of 12,000-19,000 km s-1 with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.

  5. OT2_nflagey_2: Capturing missing evolved stars in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2011-09-01

    We discovered more than 400 compact shells in the MIPSGAL 24 microns survey of the Galactic plane. About 15% of all these objects were already known as planetary nebulae, supernova remnants, Wolf-Rayet stars, and luminous blue variables. The unknown bubbles are expected to be envelopes of evolved stars that could account for the ``missing massive stars in the Galaxy. Indeed, recent spectroscopic follow-ups in the near-IR and mid-IR have revealed several dust-free planetary nebulae with very hot central white dwarf and significantly increased the number of WR and LBV candidates. Our OT1 Priority 1 proposal just provided us with a first observation in the PACS-SED B2A mode of one object, revealing only a strong [N II] 122 microns line. Without further spectral information, identification and modeling of the target are impossible. However, analysis of the PACS and SPIRE data from the HiGal survey has recently enabled us to measure much higher detection rates of the shells in the far-IR than with MIPS 70 microns. We are thus very confident that dust features and/or gas lines can be detected with the PACS and SPIRE spectrometers. Therefore, we request complementary PACS-SED B2B and SPIRE-FTS observations on our OT1 sample. The complete far-IR/submm spectrum of each target will allow its unequivocal identification thanks to comparison with spectra of known evolved stars from the MESS key program. We will also model with much detail the different phases of the envelopes, thanks to our expertise in circumstellar envelopes, dust models and photoionization codes.

  6. The emission-line regions in the nucleus of NGC 1313 probed with GMOS-IFU: a supergiant/hypergiant candidate and a kinematically cold nucleus

    NASA Astrophysics Data System (ADS)

    Menezes, R. B.; Steiner, J. E.

    2017-04-01

    NGC 1313 is a bulgeless nearby galaxy, classified as SB(s)d. Its proximity allows high spatial resolution observations. We performed the first detailed analysis of the emission-line properties in the nuclear region of NGC 1313, using an optical data cube obtained with the Gemini Multi-object Spectrograph. We detected four main emitting areas, three of them (regions 1, 2 and 3) having spectra typical of H II regions. Region 1 is located very close to the stellar nucleus and shows broad spectral features characteristic of Wolf-Rayet stars. Our analysis revealed the presence of one or two WC4-5 stars in this region, which is compatible with results obtained by previous studies. Region 4 shows spectral features (as a strong Hα emission line, with a broad component) typical of a massive emission-line star, such as a luminous blue variable, a B[e] supergiant or a B hypergiant. The radial velocity map of the ionized gas shows a pattern consistent with rotation. A significant drop in the values of the gas velocity dispersion was detected very close to region 1, which suggests that the young stars there were formed from this cold gas, possibly keeping low values of velocity dispersion. Therefore, although detailed measurements of the stellar kinematics were not possible (due to the weak stellar absorption spectrum of this galaxy), we predict that NGC 1313 may also show a drop in the values of the stellar velocity dispersion in its nuclear region.

  7. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).

  8. Forming spectroscopic massive protobinaries by disc fragmentation

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Kuiper, R.; Kley, W.; Johnston, K. G.; Vorobyov, E.

    2018-01-01

    The surroundings of massive protostars constitute an accretion disc which has numerically been shown to be subject to fragmentation and responsible for luminous accretion-driven outbursts. Moreover, it is suspected to produce close binary companions which will later strongly influence the star's future evolution in the Hertzsprung-Russel diagram. We present three-dimensional gravitation-radiation-hydrodynamic numerical simulations of 100 M⊙ pre-stellar cores. We find that accretion discs of young massive stars violently fragment without preventing the (highly variable) accretion of gaseous clumps on to the protostars. While acquiring the characteristics of a nascent low-mass companion, some disc fragments migrate on to the central massive protostar with dynamical properties showing that its final Keplerian orbit is close enough to constitute a close massive protobinary system, having a young high- and a low-mass components. We conclude on the viability of the disc fragmentation channel for the formation of such short-period binaries, and that both processes - close massive binary formation and accretion bursts - may happen at the same time. FU-Orionis-type bursts, such as observed in the young high-mass star S255IR-NIRS3, may not only indicate ongoing disc fragmentation, but also be considered as a tracer for the formation of close massive binaries - progenitors of the subsequent massive spectroscopic binaries - once the high-mass component of the system will enter the main-sequence phase of its evolution. Finally, we investigate the Atacama Large (sub-)Millimeter Array observability of the disc fragments.

  9. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  10. IPHAS and the symbiotic stars . II. New discoveries and a sample of the most common mimics

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Valentini, M.; Munari, U.; Drew, J. E.; Rodríguez-Flores, E. R.; Viironen, K.; Greimel, R.; Santander-García, M.; Sabin, L.; Mampaso, A.; Parker, Q.; DePew, K.; Sale, S. E.; Unruh, Y. C.; Vink, J. S.; Rodríguez-Gil, P.; Barlow, M. J.; Lennon, D. J.; Groot, P. J.; Giammanco, C.; Zijlstra, A. A.; Walton, N. A.

    2010-01-01

    Context. Knowledge of the total population of symbiotic stars in the Galaxy is important for understanding basic aspects of stellar evolution in interacting binaries and the relevance of this class of objects in the formation of supernovae of type Ia. Aims: In a previous paper, we presented the selection criteria needed to search for symbiotic stars in IPHAS, the INT Hα survey of the Northern Galactic plane. IPHAS gives us the opportunity to make a systematic, complete search for symbiotic stars in a magnitude-limited volume. Methods: Follow-up spectroscopy at different telescopes worldwide of a sample of sixty two symbiotic star candidates is presented. Results: Seven out of nineteen S-type candidates observed spectroscopically are confirmed to be genuine symbiotic stars. The spectral type of their red giant components, as well as reddening and distance, were computed by modelling the spectra. Only one new D-type symbiotic system, out of forty-three candidates observed, was found. This was as expected (see discussion in our paper on the selection criteria). The object shows evidence for a high density outflow expanding at a speed ≥65 km s-1. Most of the other candidates are lightly reddened classical T Tauri stars and more highly reddened young stellar objects that may be either more massive young stars of HAeBe type or classical Be stars. In addition, a few notable objects have been found, such as three new Wolf-Rayet stars and two relatively high-luminosity evolved massive stars. We also found a helium-rich source, possibly a dense ejecta hiding a WR star, which is surrounded by a large ionized nebula. Conclusions: These spectroscopic data allow us to refine the selection criteria for symbiotic stars in the IPHAS survey and, more generally, to better understand the behaviour of different Hα emitters in the IPHAS and 2MASS colour-colour diagrams. Based on observations obtained at; the 2.6 m Nordic Optical Telescope operated by NOTSA; the 2.5 m INT and 4.2 m WHT telescopes of the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias; the 2.3 m ANU telescope at Siding Spring Observatory, Australia; the Asiago 1.82 m telescope of the INAF Astronomical Observatory of Padova, Italy; and the 2.1 m telescope at San Pedro Martir, Mexico. Some of the INT spectra incorporated into this paper were obtained as part of a CCI International Time Programme awarded to the IPHAS collaboration. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France.

  11. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  12. Temporal intensity interferometry for characterization of very narrow spectral lines

    NASA Astrophysics Data System (ADS)

    Tan, P. K.; Kurtsiefer, C.

    2017-08-01

    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  13. A 2dF survey of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Evans, Christopher J.; Howarth, Ian D.; Irwin, Michael J.; Burnley, Adam W.; Harries, Timothy J.

    2004-09-01

    We present a catalogue of new spectral types for hot, luminous stars in the Small Magellanic Cloud (SMC). The catalogue contains 4161 objects, giving an order-of-magnitude increase in the number of SMC stars with published spectroscopic classifications. The targets are primarily B- and A-type stars (2862 and 853 objects respectively), with one Wolf-Rayet, 139 O-type and 306 FG stars, sampling the main sequence to ~mid-B. The selection and classification criteria are described, and objects of particular interest are discussed, including UV-selected targets from the Ultraviolet Imaging Telescope (UIT) experiment, Be and B[e] stars, `anomalous A supergiants' and composite-spectrum systems. We examine the incidence of Balmer-line emission, and the relationship between Hγ equivalent width and absolute magnitude for BA stars.

  14. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  15. Stellar population of the superbubble N 206 in the LMC. I. Analysis of the Of-type stars

    NASA Astrophysics Data System (ADS)

    Ramachandran, Varsha; Hainich, R.; Hamann, W.-R.; Oskinova, L. M.; Shenar, T.; Sander, A. A. C.; Todt, H.; Gallagher, J. S.

    2018-01-01

    Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N 206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims: We aim to estimate stellar and wind parameters of all OB stars in N 206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods: We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results: The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum - luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N 206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions: The mechanical energy input from the Of stars alone is comparable to the energy stored in the N 206 superbubble as measured from the observed X-ray and Hα emission.

  16. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Wang, J.-J.; Liu, L.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less

  17. How Wolf-Rayet winds are driven by starlight and spectral lines

    NASA Astrophysics Data System (ADS)

    Onifer, Andrew Joseph, III

    Finding the cause of the enormous increase in the mass- loss rate of a Wolf-Rayet (W-R) star, as compared to its O star progenitor, has remained a challenge for many years. This thesis explores the hypothesis that line driving causes the large observed W-R mass-loss rates. Frequency redistribution can cause the photons to filter into gaps in the line spectrum, reducing the efficiency of line driving. Therefore, the role that frequency redistribution plays in lowering the predicted mass-loss rate is explored, both via simple two-domain idealizations of the line list and via a real W-R line list. A simple analytic theory, called the Statistical Sobolev Rosseland (SSR) theory, is developed that calculates the local efficiency of line driving in a completely redistributing wind. In the process a conceptual language is developed to explain the key issues in W-R wind line driving. The results are that with no redistribution, the reduction in radius, and corresponding increase in temperature, of an O star as it evolves into a W-R star causes roughly a six-fold increase in the mass-loss rate. However, with large amounts of redistribution, the efficiency of the wind drops greatly in the presence of spectral gaps. In the most extreme case of SSR, the mass- loss rate drops by a factor of up to an order of magnitude relative to the gray value. To avoid this it is necessary to fill the gaps in the spectrum, and the effect that ionization stratification has in filling the gaps globally over the wind is explored. It is found that with the current line list ionization changes can only fill the gaps sufficiently to cause about a factor of two increase over the SSR value. The conclusion is that in order for line driving to explain the mass-loss rates of W-R winds, more opacity needs to be discovered to fill the gaps, either locally, or globally over a realistic range of ionization strata.

  18. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  19. Integrated Sachs-Wolfe effect in massive bigravity

    NASA Astrophysics Data System (ADS)

    Enander, Jonas; Akrami, Yashar; Mörtsell, Edvard; Renneby, Malin; Solomon, Adam R.

    2015-04-01

    We study the integrated Sachs-Wolfe (ISW) effect in ghost-free, massive bigravity. We focus on the infinite-branch bigravity (IBB) model which exhibits viable cosmic expansion histories and stable linear perturbations, while the cosmological constant is set to zero and the late-time accelerated expansion of the Universe is due solely to the gravitational interaction terms. The ISW contribution to the CMB auto-correlation power spectrum is predicted, as well as the cross-correlation between the CMB temperature anisotropies and large-scale structure. We use ISW amplitudes as inferred from the WMAP 9-year temperature data together with galaxy and AGN data provided by the WISE mission in order to compare the theoretical predictions to the observations. The ISW amplitudes in IBB are found to be larger than the corresponding ones in the standard Λ CDM model by roughly a factor of 1.5, but are still consistent with the observations.

  20. The Geometry of the Stellar Winds and Shock Structure in V444 Cyg

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer

    Given the importance of mass loss in the evolution of massive stars, it is imperative that we improve our understanding of the processes by which the outer layers of a star may be lost to its environment. The eclipsing nature of the Wolf-Rayet binary star V444 Cyg provides us with a unique opportunity to study the detailed characteristics of the radiatively driven mass loss in colliding-wind systems. Our multi-technique study combines X-ray spectroscopic and optical spectropolarimetric methods to describe the three-dimensional nature of the shock and wind structure in V444 Cyg. In support of this project, we have won new X-ray observations of V444 Cyg using the XMM-Newton telescope through the Guest Observer program in AO-11 (proposal ID #069281). We will combine these new data with six archival XMM-Newton observations and with optical spectropolarimetry obtained with the newly refurbished Half-Wave Spectropolarimeter (HPOL) at Ritter Observatory in Toledo, OH and archival data from both HPOL and the ESPaDOnS instrument at CFHT. Detailed X-ray light curve analysis and modeling of the X-ray spectra will constrain the location of the wind collision region and the mass-loss properties of the system. Polarized light curves in optical broad bands and emission lines combined with spectropolarimetric line profile analysis and radiative transfer simulations will trace the geometrical structure of various emission and scattering regions within the winds. Joint analysis of these two data sets will allow us to construct a self-consistent, physically realistic three-dimensional model of the complex winds in V444 Cyg and quantify its mass loss characteristics. We request support for data analysis and interpretation of our four new XMM-Newton observations. This will consist primarily of salaries for program personnel, who will analyze the new data in conjunction with previous X-ray results, carry out detailed radiation-hydrodynamic simulations to investigate the effect of radiative braking and other complex effects on the X-ray characteristics of V444 Cyg, and construct a new three-dimensional model of the system incorporating information from both X-ray and spectropolarimetric studies. We also request travel funding to enable collaboration among co-investigators at different institutions and to professional meetings to publicize results, as well as nominal support for the complementary ground-based spectropolarimetric observations (this amount comprises < 25% of the total, in accordance with NASA ADAP program limitations).

  1. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najarro, F.; Geballe, T. R.; Figer, D. F.

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of eachmore » of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.« less

  2. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M {sub ☉}.« less

  3. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  4. Cas A and the Crab were not stellar binaries at death

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2018-01-01

    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.

  5. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  6. Problems and programming for analysis of IUE high resolution data for variability

    NASA Technical Reports Server (NTRS)

    Grady, C. A.

    1981-01-01

    Observations of variability in stellar winds provide an important probe of their dynamics. It is crucial however to know that any variability seen in a data set can be clearly attributed to the star and not to instrumental or data processing effects. In the course of analysis of IUE high resolution data of alpha Cam and other O, B and Wolf-Rayet stars several effects were found which cause spurious variability or spurious spectral features in our data. Programming was developed to partially compensate for these effects using the Interactive Data language (IDL) on the LASP PDP 11/34. Use of an interactive language such as IDL is particularly suited to analysis of variability data as it permits use of efficient programs coupled with the judgement of the scientist at each stage of processing.

  7. The Unusual Wolf-Rayet Star EZ CMa

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2002-01-01

    The XMM-Newton observations were obtained on 29 - 30 October 2001 during the AO-1 Guest Observer program. Our X-ray analysis focused on data from the European Photon Imaging Camera (EPIC). The VLA observations were obtained during a 3.5 hour interval on 1999 Oct. 19 with the array in hybrid BnA configuration. Radio continuum data were acquired at five different frequencies 1.42 GHz (21 cm), 4.86 GHz (6 cm), 8.44 GHz (3.6 cm), 14.94 GHz (2 cm), and 22.46 GHz (1.3 cm). These radio data are unique since they provide an excellent snapshot picture of the dependence of the radio flux on frequency obtained over a short time interval and are thus immune to the variability effects which can distort results obtained from non-contemporaneous observations at different frequencies.

  8. The ultraviolet extinction properties of the 30 Dor Nebula

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2018-01-01

    Recent investigation of the extinction law in 30 Dor and the Tarantula Nebula, at optical and near infrared wavelengths, has revealed a ratio of total to selective extinction RV=AV/E(B-V) of about 4.5. This indicates a larger proportion of large grains than in the Galactic diffuse interstellar medium. Possible origins include coalescence of small grains, grain growth, selective destruction of small grains, and fresh injection of large grains. From a study of the ultraviolet extinction properties of three Wolf-Rayet stars in 30 Dor (R 139, R 140, R 145), observed with the International Ultraviolet Explorer, we show that the excess of large grains does not come at the expense of small grains, which are still present. Fresh injection of large grains by supernova explosions appears to be the dominant mechanism.

  9. IRAS 17380 - 3031 - A new dusty late WC-type Wolf-Rayet star

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; van der Hucht, K. A.; Williams, P. M.; The, P. S.

    1991-09-01

    Infrared photometry is presented of IRAS 17380 - 3031 and of IRAS 18405 - 0448, two of the proposed candidates for late WC-type stars suggested by Vok and Cohen (1989). Systematic 12-micron flux-limited surveys of the complete IRAS low-resolution spectrometer (LSR) data base show that late-type WC (WCL) stars with circumstellar dust emission have unique midinfrared spectra, suggesting a novel method for detecting such stars. It is confirmed through optical spectroscopy that IRAS 17380 - 3031, a prime LRS-selected WCL candidate, is a very red WCL star. It is classified as WC8 - 9, with a probable distance of 3 + or - 1 kpc, and a total extinction of about 12.5 mag. The confirmation demonstrates the power of the LRS technique for discovery of dusty WCL stars with IRAS.

  10. iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor

    DOE PAGES

    Taddia, Francesco; Fremling, C.; Sollerman, J.; ...

    2016-08-04

    Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10-15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Here, we have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess inmore » the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods. Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M ⊙) and strong 56Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R ⊙), low-mass (≳0.045 M ⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. In conclusion, the large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M ⊙) WR star that experienced strong mass loss.« less

  11. A New Paradigm for Creating Amino Acid Chirality

    NASA Astrophysics Data System (ADS)

    Boyd, Richard N.; Famiano, Michael A.; Kajino, Toshitaka; Onaka, Takashi

    2018-06-01

    The Supernova Neutrino Amino Acid Processing (SNAAP) model (1) selects left-handed amino acids via the interaction of electron anti-neutrinos with the N nuclei that have been oriented by the strong magnetic field. Within the amino acid molecules, the shielding tensor alters the local magnetic field, and this tensor is sensitive to the molecular chirality. The astrophysical object (2) that might supply the magnetic field and the neutrinos could be a core-collapse supernova, although there are problems with that site. A more likely candidate would be a close binary system consisting of a Wolf-Rayet star with a neutron star companion. The accretion disk that would form around the neutron star could enable dust formation, as well as meteoroids and planets, and the temperatures in the outer portions would accommodate amino acid formation. When the WR star explodes it provides the intense anti-neutrino flux, while the neutron star and the WR star provide the magnetic field. Quantum molecular calculations that included perturbation effects on the shielding tensor for nitrogen from the reorientation of the molecular electric dipole have been performed. They have found the amino acids moving in an external magnetic field to be physically distinct, so the anti-neutrinos from the WR star interacting with the N nuclei can perform a chirality dependent selection. An enantiomeric excess of a few percent has been found for isovaline in an aqueous environment. Alanine was found to have a comparable, but slightly lower, enantiomeric excess. This model suggests that our Solar System might have been created by a system such as this, as has also been suggested by recent measurements of unstable nuclides in our local environment.M.A. Famiano et al., Astrobiology 18, 190 (2018)R.N. Boyd et al., Astrophys. J. (in press), arXiv.org/abs/a802.08285

  12. Episodic Mass Loss from the Hydrogen-deficient Central Star of the Planetary Nebula Longmore 4

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ~5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found. Based on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Juncheng; Wang, Xiaofeng; Li, Junzheng

    We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocitymore » of ∼19,000 km s{sup –1}). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (∼8-9 M{sub ☉}) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.« less

  14. Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z Almost-Equal-To 0.9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chomiuk, L.; Chornock, R.; Soderberg, A. M.

    We present the discovery of two ultraluminous supernovae (SNe) at z Almost-Equal-To 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M{sub bol} Almost-Equal-To -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time seriesmore » spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) Multiplication-Sign 10{sup 51} erg. We find photospheric velocities of 12,000-19,000 km s{sup -1} with no evidence for deceleration measured across {approx}3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.« less

  15. Could a multi-PeV neutrino event have as origin the internal shocks inside the GRB progenitor star?

    NASA Astrophysics Data System (ADS)

    Fraija, N.

    2016-03-01

    The IceCube Collaboration initially reported the detection of 37 extraterrestrial neutrinos in the TeV-PeV energy range. The reconstructed neutrino events were obtained during three consecutive years of data taking, from 2010 to 2013. Although these events have been discussed to have an extragalactic origin, they have not been correlated to any known source. Recently, the IceCube Collaboration reported a neutrino-induced muon event with energy of 2.6 ± 0.3 PeV which corresponds to the highest event ever detected. Neither the reconstructed direction of this event (J2000.0), detected on June 11 2014 at R.A. = 110 ° . 34, Dec. = 11 ° . 48 matches with any familiar source. Long gamma-ray bursts (lGRBs) are usually associated with the core collapse of massive stars leading relativistic-collimated jets inside stars with high-energy neutrino production. These neutrinos have been linked to the 37 events previously detected by IceCube experiment. In this work, we explore the conditions and values of parameters so that the highest neutrino recently detected could be generated by proton-photon and proton-hadron interactions at internal shocks inside lGRB progenitor star and then detected in IceCube experiment. Considering that internal shocks take place in a relativistic collimated jet, whose (half) opening angle is θ0 ∼ 0.1, we found that lGRBs with total luminosity L ≲1048 erg/s and internal shocks on the surface of progenitors such as Wolf-Rayet (WR) and blue super giant (BSG) stars favor this multi-PeV neutrino production, although this neutrino could be associated with L ∼1050.5 (∼1050) erg/s provided that the internal shocks occur at ∼109 (∼1010.2) cm for a WR (BSG).

  16. SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.

    2018-05-01

    We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.

  17. The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Crowther, Paul A.; Beasor, Emma R.

    2018-05-01

    The empirical upper luminosity boundary Lmax of cool supergiants, often referred to as the Humphreys-Davidson limit, is thought to encode information on the general mass-loss behaviour of massive stars. Further, it delineates the boundary at which single stars will end their lives stripped of their hydrogen-rich envelope, which in turn is a key factor in the relative rates of Type-II to Type-Ibc supernovae from single star channels. In this paper we have revisited the issue of Lmax by studying the luminosity distributions of cool supergiants (SGs) in the Large and Small Magellanic Clouds (LMC/SMC). We assemble samples of cool SGs in each galaxy which are highly-complete above log L/L⊙=5.0, and determine their spectral energy distributions from the optical to the mid-infrared using modern multi-wavelength survey data. We show that in both cases Lmax appears to be lower than previously quoted, and is in the region of log L/L⊙=5.5. There is no evidence for Lmax being higher in the SMC than in the LMC, as would be expected if metallicity-dependent winds were the dominant factor in the stripping of stellar envelopes. We also show that Lmax aligns with the lowest luminosity of single nitrogen-rich Wolf-Rayet stars, indicating of a change in evolutionary sequence for stars above a critical mass. From population synthesis analysis we show that the Geneva evolutionary models greatly over-predict the numbers of cool SGs in the SMC. We also argue that the trend of earlier average spectral types of cool SGs in lower metallicity environments represents a genuine shift to hotter temperatures. Finally, we use our new bolometric luminosity measurements to provide updated bolometric corrections for cool supergiants.

  18. 360-degree video and X-ray modeling of the Galactic center's inner parsec

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post; Wang, Daniel; Cuadra, Jorge

    2017-08-01

    360-degree videos, which render an image over all 4pi steradian, provide a unique and immersive way to visualize astrophysical simulations. Video sharing sites such as YouTube allow these videos to be shared with the masses; they can be viewed in their 360° nature on computer screens, with smartphones, or, best of all, in virtual-reality (VR) goggles. We present the first such 360° video of an astrophysical simulation: a hydrodynamics calculation of the Wolf-Rayet stars and their ejected winds in the inner parsec of the Galactic center. Viewed from the perspective of the super-massive black hole (SMBH), the most striking aspect of the video, which renders column density, is the inspiraling and stretching of clumps of WR-wind material as they makes their way towards the SMBH. We will brielfy describe how to make 360° videos and how to publish them online in their desired 360° format. Additionally we discuss computing the thermal X-ray emission from a suite of Galactic-center hydrodynamic simulations that have various SMBH feedback mechanisms, which are compared to Chandra X-ray Visionary Program observations of the region. Over a 2-5” ring centered on Sgr A*, the spectral shape is well matched, indicating that the WR winds are the dominant source of the thermal X-ray emission. Furthermore, the X-ray flux depends on the SMBH feedback due to the feedback's ability to clear out material from the central parsec. A moderate outburst is necessary to explain the current thermal X-ray flux, even though the outburst ended ˜100 yr ago.

  19. VLT/SINFONI Observations of SPITZER/MIPSGAL 24 μm Circumstellar Shells: Revealing the Natures of Their Central Sources

    NASA Astrophysics Data System (ADS)

    Silva, K. M.; Flagey, N.; Noriega-Crespo, A.; Carey, S.; Ingallinera, A.

    2017-03-01

    We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8″-by-8″ regions of 55 MIPSGAL “bubbles” (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf-Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells’ morphologies in the mid-IR and central sources spectral types.

  20. High-mass X-ray binary populations. 1: Galactic modeling

    NASA Technical Reports Server (NTRS)

    Dalton, William W.; Sarazin, Craig L.

    1995-01-01

    Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.

  1. THE EXEMPLAR T8 SUBDWARF COMPANION OF WOLF 1130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Gregory N.; McLean, Ian S.; Logsdon, Sarah E.

    We have discovered a wide separation (188.''5) T8 subdwarf companion to the sdM1.5+WD binary Wolf 1130. Companionship of WISE J200520.38+542433.9 is verified through common proper motion over a ∼3 yr baseline. Wolf 1130 is located 15.83 ± 0.96 pc from the Sun, placing the brown dwarf at a projected separation of ∼3000 AU. Near-infrared colors and medium resolution (R ≈ 2000-4000) spectroscopy establish the uniqueness of this system as a high-gravity, low-metallicity benchmark. Although there are a number of low-metallicity T dwarfs in the literature, WISE J200520.38+542433.9 has the most extreme inferred metallicity to date with [Fe/H] = –0.64 ±more » 0.17 based on Wolf 1130. Model comparisons to this exemplar late-type subdwarf support it having an old age, a low metallicity, and a small radius. However, the spectroscopic peculiarities of WISE J200520.38+542433.9 underscore the importance of developing the low-metallicity parameter space of the most current atmospheric models.« less

  2. Binary stars in the Galactic thick disc

    NASA Astrophysics Data System (ADS)

    Izzard, Robert G.; Preece, Holly; Jofre, Paula; Halabi, Ghina M.; Masseron, Thomas; Tout, Christopher A.

    2018-01-01

    The combination of asteroseismologically measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime corresponding to an initial stellar mass of about 1.2 M⊙. So why do the masses of a sizeable fraction of thick-disc stars exceed 1.3 M⊙, with some as massive as 2.3 M⊙? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than 1.3 M⊙. Of these stars, most are single because they are merged binaries. Some stars more massive than 1.3 M⊙ form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than 1.3 M⊙. This problem is resolved by the use of a logarithmically flat orbital-period distribution and a large binary fraction.

  3. High-velocity runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  4. Massive binaries in R136 using Hubble

    NASA Astrophysics Data System (ADS)

    Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus

    2014-09-01

    We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.

  5. Cygnus X-3 Returns to an Active State

    NASA Astrophysics Data System (ADS)

    McCollough, Michael L.; Koljonen, Karri; Gurwell, Mark A.; Trushkin, Sergei; Pooley, Guy G.

    2017-08-01

    Cygnus X-3 is a well-known microquasar composed of a mass-donating Wolf-Rayet star and a compact object. Recently, Cygnus X-3 has been in a quiescent state for an extended period of time (2011-2016) but returned to an active state on two occasions during 2016/2017 including quenched/hypersoft states, gamma-ray emission, and major radio flares. During these two periods of activity, we undertook multi-wavelength observing campaigns with observations in the radio (RATAN-600, AMI-LA, Metsähovi), submillimeter (SMA, EHT), X-ray (Swift/XRT, MAXI), hard X-ray (Swift/BAT, NuSTAR), and gamma-ray (AGILE, Fermi, VERITAS). At the peak of the major radio flare in April 2017 observations were made with VERITAS (TeV), NuSTAR (hard X-ray), and the Event Horizon Telescope (submillimeter). In this presentation, I will review these observing campaigns and the insights they provide about Cygnus X-3.

  6. Advanced ab initio relativistic calculations of transition probabilities for some O I and O III emission lines

    NASA Astrophysics Data System (ADS)

    Nguyen, T. V. B.; Chantler, C. T.; Lowe, J. A.; Grant, I. P.

    2014-06-01

    This work presents new ab initio relativistic calculations using the multiconfiguration Dirac-Hartree-Fock method of some O I and O III transition lines detected in B-type and Wolf-Rayet stars. Our results are the first able to be presented in both the length and velocity gauges, with excellent gauge convergence. Compared to previous experimental and theoretical uncertainties of up to 50 per cent, our accuracies appear to be in the range of 0.33-5.60 per cent, with gauge convergence up to 0.6 per cent. Similar impressive convergence of the calculated energies is also shown. Two sets of theoretical computations are compared with earlier tabulated measurements. Excellent agreement is obtained with one set of transitions but an interesting and consistent discrepancy exists between the current work and the prior literature, deserving of future experimental studies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, N.R.

    The blue-shifted absorption component of the P-Cygni profile at He I lambda 5876 in HD 152408 (O8: Iafpe) has been found to be extremely broad, extending -1000 km sec$sup -1$ from the emission maximum. This unusual profile is probably due to overpopulation of the lower level of lambda 5876, which permits it to form throughout a greater extent of the expanding atmosphere than most other lines. This observation confirms Hutchings' identification of very large velocities in the blue-violet spectrum of HD 152408, and in particular his interpretation of a similar feature at He I lambda 3889, which is metastable. Themore » lambda 5876 profile in HD 152408 is compared to those in the similar but less extreme P-Cygni star HD 151804 (O8 Iaf), and in the Wolf-Rayet star HD 151932 (WN7-A). The similarity between the absorption components in HD 152408 and the WN star is striking. (auth)« less

  8. Stellar wind variations in HD 45166: The continuing story. [Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Willis, Allan J.; Stickland, David J.; Heap, Sara R.

    1988-01-01

    High resolution SWP IUE spectra of HD 45166 (qWR+B8V) obtained over a 36 hr continuous run, together with earlier observations, reveal 2 distinct modes of UV variability in this object. Gross, epoch-linked changes are seen in the strengths of the qWR emission lines, accompanied by large changes in its highly ionized photospheric absorption spectrum. Rapid (hours) variability in strong, multiple, high velocity, wind discrete absorption components (DAC), in the CIV lambda 1550 resonance lines, which superpose to give the appearance of a broad P Cygni absorption profile at many epochs is also observed. These multiple DAC's (often at least 3 are seen) propagate in velocity, from 0.6 to 1.0 v inf, on a timescale of 1 day, implying an acceleration of 180 cm/s comparable to that seen in O-type stars.

  9. The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds

    NASA Astrophysics Data System (ADS)

    Gayley, K. G.; Onifer, A. J.

    2003-01-01

    Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.

  10. Observations of two peculiar emission objects in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.

    1983-01-01

    Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.

  11. The Massive Star Content of NGC 3603

    NASA Astrophysics Data System (ADS)

    Melena, Nicholas W.; Massey, Philip; Morrell, Nidia I.; Zangari, Amanda M.

    2008-03-01

    We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5 m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST Advanced Camera for Surveys/High-Resolution Camera images. The total number of stars that have been spectroscopically classified in NGC 3603 now stands at 38. The sample is dominated by very early O-type stars (O3); there are also several (previously identified) H-rich WN+abs stars. We derive E(B - V) = 1.39, and find that there is very little variation in reddening across the cluster core, in agreement with previous studies. Our spectroscopic parallax is consistent with the kinematic distance only if the ratio of total to selective extinction is anomalously high within the cluster, as argued by Pandey et al. Adopting their reddening, we derive a distance of 7.6 kpc. We discuss the various distance estimates to the cluster, and note that although there has been a wide range of values in the recent literature (6.3-10.1 kpc) there is actually good agreement with the apparent distance modulus of the cluster—the disagreement has been the result of the uncertain reddening correction. We construct our H-R diagram using the apparent distance modulus with a correction for the slight difference in differential reddening from star to star. The resulting H-R diagram reveals that the most massive stars are highly coeval, with an age of 1-2 Myr, and of very high masses (120 Msun). The three stars with Wolf-Rayet features are the most luminous and massive, and are coeval with the non-WRs, in accord with what was found in the R136 cluster. There may be a larger age spread (1-4 Myr) for the lower mass objects (20-40 Msun). Two supergiants (an OC9.7 I and the B1 I star Sher 25) both have an age of about 4 Myr. We compare the stellar content of this cluster to that of R136, finding that the number of very high luminosity (Mbol <= -10) stars is only about 1.1-2.4× smaller in NGC 3603. The most luminous members in both clusters are H-rich WN+abs stars, basically "Of stars on steroids," relatively unevolved stars whose high luminosities results in high-mass loss rates, and hence spectra that mimic that of evolved WNs. To derive an initial-mass function for the massive stars in NGC 3603 requires considerably more spectroscopy; we estimate from a color-magnitude diagram that less than a third of the stars with masses above 20 Msun have spectral types known. This paper is based on data gathered with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile.

  12. The nightmare scenario: measuring the stochastic gravitational wave background from stalling massive black hole binaries with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Barausse, Enrico

    2017-10-01

    Massive black hole binaries, formed when galaxies merge, are among the primary sources of gravitational waves targeted by ongoing pulsar timing array (PTA) experiments and the upcoming space-based Laser Interferometer Space Antenna (LISA) interferometer. However, their formation and merger rates are still highly uncertain. Recent upper limits on the stochastic gravitational wave background obtained by PTAs are starting to be in marginal tension with theoretical models for the pairing and orbital evolution of these systems. This tension can be resolved by assuming that these binaries are more eccentric or interact more strongly with the environment (gas and stars) than expected, or by accounting for possible selection biases in the construction of the theoretical models. However, another (pessimistic) possibility is that these binaries do not merge at all, but stall at large (˜pc) separations. We explore this extreme scenario by using a semi-analytic galaxy formation model including massive black holes (isolated and in binaries), and show that future generations of PTAs will detect the stochastic gravitational wave background from the massive black hole binary population within 10-15 yr of observations, even in the `nightmare scenario' in which all binaries stall at the hardening radius. Moreover, we argue that this scenario is too pessimistic, because our model predicts the existence of a subpopulation of binaries with small mass ratios (q ≲ 10-3) that should merge within a Hubble time simply as a result of gravitational wave emission. This subpopulation will be observable with large signal-to-noise ratios by future PTAs thanks to next-generation radio telescopes such as Square Kilometre Array or Five-hundred-meter Aperture Spherical Telescope, and possibly by LISA.

  13. The Evolution and Physical Parameters of WN3/O3s: A New Type of Wolf–Rayet Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Hillier, D. John

    As part of a search for Wolf–Rayet (WR) stars in the Magellanic Clouds, we have discovered a new type of WR star in the Large Magellanic Cloud (LMC). These stars have both strong emission lines, as well as He ii and Balmer absorption lines and spectroscopically resemble a WN3 and O3V binary pair. However, they are visually too faint to be WN3+O3V binary systems. We have found nine of these WN3/O3s, making up ∼6% of the population of LMC WRs. Using cmfgen, we have successfully modeled their spectra as single stars and have compared the physical parameters with those ofmore » more typical LMC WNs. Their temperatures are around 100,000 K, a bit hotter than the majority of WN stars (by around 10,000 K), though a few hotter WNs are known. The abundances are what you would expect for CNO equilibrium. However, most anomalous are their mass-loss rates, which are more like that of an O-type star than a WN star. While their evolutionary status is uncertain, their low mass-loss rates and wind velocities suggest that they are not products of homogeneous evolution. It is possible instead that these stars represent an intermediate stage between O stars and WNs. Since WN3/O3 stars are unknown in the Milky Way, we suspect that their formation depends upon metallicity, and we are investigating this further by a deep survey in M33, which possesses a metallicity gradient.« less

  14. Separation in 5 Msun Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  15. Formation of Thorne-Żytkow objects in close binaries

    NASA Astrophysics Data System (ADS)

    Hutilukejiang, Bumareyamu; Zhu, Chunhua; Wang, Zhaojun; Lü, Guoliang

    2018-04-01

    Thorne-Żytkow objects (TŻOs), originally proposed by Thorne and Żytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of TŻOs in close binary stars. The Galactic birth rate of TŻOs is about 1.5× 10^{-4} yr^{-1}. Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of TŻOs via the above different progenitors are 1.7× 10^{-5}, 1.2× 10^{-4}, 0.7× 10^{-5}, 0.6× 10^{-5} yr^{-1}, respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.

  16. Hubble Space Telescope STIS Observations of the Wolf-Rayet Star HD 5980 in the Small Magellanic Cloud. II. The Interstellar Medium Components

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina

    2001-01-01

    Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  17. Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Vílchez, J. M.; Pérez-Montero, E.; Candian, A.; Sánchez, S. F.; Martín-Gordón, D.; Riera, A.

    2013-06-01

    Aims: This work aims to disentangle the morphological, kinematic, and chemical components of the nebula M1-67 to shed light on its process of formation around the central Wolf-Rayet (WR) star WR124. Methods: We have carried out integral field spectroscopy observations over two regions of M1-67, covering most of the nebula in the optical range. Maps of electron density, line ratios, and radial velocity were created to perform a detailed analysis of the two-dimensional structure. We studied the physical and chemical properties by means of integrated spectra selected over the whole nebula. Photoionization models were performed to confirm the empirical chemical results theoretically. In addition, we obtained and analysed infrared spectroscopic data and the MIPS 24 μm image of M1-67 from Spitzer. Results: We find that the ionized gas of M1-67 is condensed in knots aligned in a preferred axis along the NE-SW direction, like a bipolar structure. Both electron density and radial velocity decrease in this direction when moving away from the central star. From the derived electron temperature, Te ~ 8200 K, we have estimated chemical abundances, obtaining that nitrogen appears strongly enriched and oxygen depleted. From the last two results, we infer that this bipolarity is the consequence of an ejection of an evolved stage of WR124 with material processed in the CNO cycle. Furthermore, we find two regions placed outside of the bipolar structure with different spectral and chemical properties. The infrared study has revealed that the bipolar axis is composed of ionized gas with a low ionization degree that is well mixed with warm dust and of a spherical bubble surrounding the ejection at 24 μm. Taking the evolution of a 60 M⊙ star and the temporal scale of the bipolar ejection into account, we propose that the observed gas was ejected during an eruption in the luminous blue variable stage. The star has entered the WR phase recently without apparent signs of interaction between WR-winds and interstellar material. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  18. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  19. The little-studied cluster Berkeley 90. I. LS III +46 11: a very massive O3.5 If* + O3.5 If* binary

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Negueruela, I.; Barbá, R. H.; Walborn, N. R.; Pellerin, A.; Simón-Díaz, S.; Sota, A.; Marco, A.; Alonso-Santiago, J.; Sanchez Bermudez, J.; Gamen, R. C.; Lorenzo, J.

    2015-07-01

    Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims: We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods: Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results: LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.

  20. Acceleration of aircraft-level Traffic Flow Management

    NASA Astrophysics Data System (ADS)

    Rios, Joseph Lucio

    This dissertation describes novel approaches to solving large-scale, high fidelity, aircraft-level Traffic Flow Management scheduling problems. Depending on the methods employed, solving these problems to optimality can take longer than the length of the planning horizon in question. Research in this domain typically focuses on the quality of the modeling used to describe the problem and the benefits achieved from the optimized solution, often treating computational aspects as secondary or tertiary. The work presented here takes the complementary view and considers the computational aspect as the primary concern. To this end, a previously published model for solving this Traffic Flow Management scheduling problem is used as starting point for this study. The model proposed by Bertsimas and Stock-Patterson is a binary integer program taking into account all major resource capacities and the trajectories of each flight to decide which flights should be held in which resource for what amount of time in order to satisfy all capacity requirements. For large instances, the solve time using state-of-the-art solvers is prohibitive for use within a potential decision support tool. With this dissertation, however, it will be shown that solving can be achieved in reasonable time for instances of real-world size. Five other techniques developed and tested for this dissertation will be described in detail. These are heuristic methods that provide good results. Performance is measured in terms of runtime and "optimality gap." We then describe the most successful method presented in this dissertation: Dantzig-Wolfe Decomposition. Results indicate that a parallel implementation of Dantzig-Wolfe Decomposition optimally solves the original problem in much reduced time and with better integrality and smaller optimality gap than any of the heuristic methods or state-of-the-art, commercial solvers. The solution quality improves in every measureable way as the number of subproblems solved in parallel increases. A maximal decomposition provides the best results of any method tested. The convergence qualities of Dantzig-Wolfe Decomposition have been criticized in the past, so we examine what makes the Bertsimas-Stock Patterson model so amenable to use of this method. These mathematical qualities of the model are generalized to provide guidance on other problems that may benefit from massively parallel Dantzig-Wolfe Decomposition. This result, together with the development of the software, and the experimental results indicating the feasibility of real-time, nationwide Traffic Flow Management scheduling represent the major contributions of this dissertation.

  1. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  2. Measuring Parameters of Massive Black Hole Binaries with Partially-Aligned Spins

    NASA Technical Reports Server (NTRS)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2010-01-01

    It is important to understand how well the gravitational-wave observatory LISA can measure parameters of massive black hole binaries. It has been shown that including spin precession in the waveform breaks degeneracies and produces smaller expected parameter errors than a simpler, precession-free analysis. However, recent work has shown that gas in binaries can partially align the spins with the orbital angular momentum, thus reducing the precession effect. We show how this degrades the earlier results, producing more pessimistic errors in gaseous mergers. However, we then add higher harmonics to the signal model; these also break degeneracies, but they are not affected by the presence of gas. The harmonics often restore the errors in partially-aligned binaries to the same as, or better than/ those that are obtained for fully precessing binaries with no harmonics. Finally, we investigate what LISA measurements of spin alignment can tell us about the nature of gas around a binary,

  3. Periodic self-lensing from accreting massive black hole binaries

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  4. Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO

    NASA Astrophysics Data System (ADS)

    O'Leary, Ryan M.; Meiron, Yohai; Kocsis, Bence

    2016-06-01

    The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as \\propto {M}{{tot}}β , with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO’s greater sensitivity to massive black hole binaries with M tot ≲ 80 {M}⊙ . We find that for power-law BH mass functions dN/dM ∝ M -α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ˜5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.

  5. Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan

    2018-05-01

    This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in current surveys, and indeed, we expect many candidates recently identified to be true binaries - though a significant fraction are likely false positives. Overall, this thesis finds the science of MBH binaries at an exciting cusp: just before incredible breakthroughs in observations, both electromagnetically and in the new age of gravitational wave astrophysics.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Kent; Tanaka, Takahiro; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502

    We calculate how strongly one can put constraints on alternative theories of gravity such as Brans-Dicke and massive graviton theories with LISA. We consider inspiral gravitational waves from a compact binary composed of a neutron star and an intermediate mass black hole in Brans-Dicke (BD) theory and that composed of a super massive black hole in massive graviton theories. We use the restricted second post-Newtonian waveforms including the effects of spins. We also take both precession and eccentricity of the orbit into account. For simplicity, we set the fiducial value for the spin of one of the binary constituents tomore » zero so that we can apply the approximation called simple precession. We perform the Monte Carlo simulations of 10{sup 4} binaries, estimating the determination accuracy of binary parameters including the BD parameter {omega}{sub BD} and the Compton wavelength of graviton {lambda}{sub g} for each binary using the Fisher matrix method. We find that including both the spin-spin coupling {sigma} and the eccentricity e into the binary parameters reduces the determination accuracy by an order of magnitude for the Brans-Dicke case, while it has less influence on massive graviton theories. On the other hand, including precession enhances the constraint on {omega}{sub BD} only 20% but it increases the constraint on {lambda}{sub g} by several factors. Using a (1.4+1000)M{sub {center_dot}}neutron star/black hole binary of SNR={radical}(200), one can put a constraint {omega}{sub BD}>6944, while using a (10{sup 7}+10{sup 6})M{sub {center_dot}}black hole/black hole binary at 3 Gpc, one can put {lambda}{sub g}>3.10x10{sup 21} cm, on average. The latter is 4 orders of magnitude stronger than the one obtained from the solar system experiment. These results are consistent with previous results within uncontrolled errors and indicate that the effects of precession and eccentricity must be taken carefully in the parameter estimation analysis.« less

  7. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vastmore » majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.« less

  8. BD+43° 3654 - a blue straggler?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-07-01

    The astrometric data on the runaway star BD+43° 3654 are consistent with the origin of this O4If star in the center of the Cyg OB2 association, while BD+43° 3654 is younger than the association. To reconcile this discrepancy, we suggest that BD+43° 3654 is a blue straggler formed via a close encounter between two tight massive binaries in the core of Cyg OB2. A possible implication of this suggestion is that the very massive (and therefore apparently very young) stars in Cyg OB2 could be blue stragglers as well. We also suggest that the binary-binary encounter producing BD+43° 3654 might be responsible for ejection of two high-velocity stars (the stripped helium cores of massive stars) - the progenitors of the pulsars B2020+28 and B2021+51.

  9. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  10. Massive close binaries with early-type components

    NASA Astrophysics Data System (ADS)

    Polushina, T. S.

    A brief review of the study of massive close binaries system with the hot components carried out in Kourovka astronomical observatory is presented including such systems as CC Cas, SZ Cam, UU Cas, V368 Cas, BH Cen, SV Cen, LY Aur, V701 Sco. An attempt to explain the results of observations by the presence of circumstellar matter has been made. Some estimates of the circumstellar matter parameters are obtained.

  11. Young and Exotic Stellar Zoo

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Summary Super star clusters are groups of hundreds of thousands of very young stars packed into an unbelievably small volume. They represent the most extreme environments in which stars and planets can form. Until now, super star clusters were only known to exist very far away, mostly in pairs or groups of interacting galaxies. Now, however, a team of European astronomers [1] have used ESO's telescopes to uncover such a monster object within our own Galaxy, the Milky Way, almost, but not quite, in our own backyard! The newly found massive structure is hidden behind a large cloud of dust and gas and this is why it took so long to unveil its true nature. It is known as "Westerlund 1" and is a thousand times closer than any other super star cluster known so far. It is close enough that astronomers may now probe its structure in some detail. Westerlund 1 contains hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two-thousand times larger than the Sun (as large as the orbit of Saturn)! Indeed, if the Sun were located at the heart of this remarkable cluster, our sky would be full of hundreds of stars as bright as the full Moon. Westerlund 1 is a most unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Galaxy live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100,000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way Galaxy. PR Photo 09a/05: The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) PR Photo 09b/05: Properties of Young Massive Clusters Super Star Clusters Stars are generally born in small groups, mostly in so-called "open clusters" that typically contain a few hundred stars. From a wide range of observations, astronomers infer that the Sun itself was born in one such cluster, some 4,500 million years ago. In some active ("starburst") galaxies, scientists have observed violent episodes of star formation (see, for example, ESO Press Photo 31/04), leading to the development of super star clusters, each containing several million stars. Such events were obviously common during the Milky Way's childhood, more than 12,000 million years ago: the many galactic globular clusters - which are nearly as old as our Galaxy (e.g. ESO PR 20/04) - are indeed thought to be the remnants of early super star clusters. All super star clusters so far observed in starburst galaxies are very distant. It is not possible to distinguish their individual stars, even with the most advanced technology. This dramatically complicates their study and astronomers have therefore long been eager to find such clusters in our neighbourhood in order to probe their structure in much more detail. Now, a team of European astronomers [1] has finally succeeded in doing so, using several of ESO's telescopes at the La Silla observatory (Chile). Westerlund 1 ESO PR Photo 09a/05 ESO PR Photo 09a/05 The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) [Preview - JPEG: 400 x 472 pix - 58k] [Normal - JPEG: 800 x 943 pix - 986k] [Full Res - JPEG: 1261 x 1486 pix - 2.4M] Caption: ESO PR Photo 09a/05 is a composite image of the super star cluster "Westerlund 1" from 2.2-m MPG/ESO Wide-Field Imager (WFI) observations. The image covers a 5 x 5 arcmin sky region and is based on observations made in the V-band (550 nm, 2 min exposure time, associated to the blue channel), R-band (650nm, 1 min, green channel) and I-band (784nm, 18 sec, red channel). Only the central CCD of WFI was used, as the entire cluster fits comfortably inside it. The foreground stars appear blue, while the hot massive members of the cluster look orange, and the cool massive ones come out red. The open cluster Westerlund 1 is located in the Southern constellation Ara (the Altar). It was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970 - 74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100,000 - and this is why it has taken so long to uncover the true nature of this particular cluster. In 2001, the team of astronomers identified more than a dozen extremely hot and peculiar massive stars in the cluster, so-called "Wolf-Rayet" stars. They have since studied Westerlund 1 extensively with various ESO telescopes. They used images from the Wide Field Imager (WFI) attached to the 2.2-m ESO/MPG as well as from the SUperb Seeing Imager 2 (SuSI2) camera on the ESO 3.5-m New Technology Telescope (NTT). From these observations, they were able to identify about 200 cluster member stars. To establish the true nature of these stars, the astronomers then performed spectroscopic observations of about one quarter of them. For this, they used the Boller & Chivens spectrograph on the ESO 1.52-m telescope and the ESO Multi-Mode Instrument (EMMI) on the NTT. An Exotic Zoo These observations have revealed a large population of very bright and massive, quite extreme stars. Some would fill the solar system space within the orbit of Saturn (about 2,000 times larger than the Sun!), others are as bright as a million Suns. Westerlund 1 is obviously a fantastic stellar zoo, with a most exotic population and a true astronomical bonanza. All stars identified are evolved and very massive, spanning the full range of stellar oddities from Wolf-Rayet stars, OB supergiants, Yellow Hypergiants (nearly as bright as a million Suns) and Luminous Blue Variables (similar to the exceptional Eta Carinae object - see ESO PR 31/03). All stars so far analysed in Westerlund 1 weigh at least 30-40 times more than the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our Galaxy! The Most Massive Cluster ESO PR Photo 09b/05 ESO PR Photo 09b/05 Properties of Young Massive Clusters [Preview - JPEG: 400 x 511 pix - 20k] [Normal - JPEG: 800 x 1021 pix - 122k] Caption: ESO PR Photo 09b/05 shows the properties of young massive clusters in our Galaxy and in the Large Magellanic Clouds, as well as of Super Star Clusters in star-forming galaxies. The diagram shows the mass and radius of these clusters and also the position of Westerlund 1 (indicated Wd 1). Westerlund 1 is incredibly rich in monster stars - just as one example, it contains as many Yellow Hypergiants as were hitherto known in the entire Milky Way! "If the Sun were located at the heart of Westerlund 1, the sky would be full of stars, many of them brighter than the full Moon", comments Ignacio Negueruela of the Universidad de Alicante in Spain and member of the team. The large quantity of very massive stars implies that Westerlund 1 must contain a huge number of stars. "In our Galaxy, explains Simon Clark of the University College London (UK) and one of the authors of this study, "there are more than 100 solar-like stars for every star weighing 10 times as much as the Sun. The fact that we see hundreds of massive stars in Westerlund 1 means that it probably contains close to half a million stars, but most of these are not bright enough to peer through the obscuring cloud of gas and dust". This is ten times more than any other known young clusterin the Milky Way. Westerlund 1 is presumably much more massive than the dense clusters of heavy stars present in the central region of our Galaxy, like the Arches and Quintuplet clusters. Further deep infrared observations will be required to confirm this. This super star cluster now provides astronomers with a unique perspective towards one of the most extreme environments in the Universe. Westerlund 1 will certainly provide new opportunities in the long-standing quest for more and finer details about how stars, and especially massive ones, do form. ... and the Most Dense The large number of stars in Westerlund 1 was not the only surprise awaiting Clark and his colleagues. From their observations, the team members also found that all these stars are packed into an amazingly small volume of space, indeed less than 6 light-years across. In fact, this is more or less comparable to the 4 light-year distance to the star nearest to the Sun, Proxima Centauri! It is incredible: the concentration in Westerlund 1 is so high that the mean separation between stars is quite similar to the extent of the Solar System. "With so many stars in such a small volume, some of them may collide", envisages Simon Clark. "This could lead to the formation of an intermediate-mass black hole more massive than 100 solar masses. It may well be that such a monster has already formed at the core of Westerlund 1." The huge population of massive stars in Westerlund 1 suggests that it will have a very significant impact on its surroundings. The cluster contains so many massive stars that in a time span of less than 40 million years, it will be the site of more than 1,500 supernovae. A gigantic firework that may drive a fountain of galactic material! Because Westerlund 1 is at a distance of only about 10,000 light-years, high-resolution cameras such as NAOS/CONICA on ESO's Very Large Telescope can resolve its individual stars. Such observations are now starting to reveal smaller stars in Westerlund 1, including some that are less massive than the Sun. Astronomers will thus soon be able to study this exotic galactic zoo in great depth. More information The research presented in this ESO Press Release will soon appear in the leading research journal Astronomy and Astrophysics ("On the massive stellar population of the Super Star Cluster Westerlund 1" by J.S. Clark and colleagues). The PDF file is available at the A&A web site. A second paper ("Further Wolf-Rayet stars in the starburst cluster Westerlund 1", by Ignacio Negueruela and Simon Clark) will also soon be published in Astronomy and Astrophysics. It is available as astro-ph/0503303. A Spanish press release issued by Universidad de Alicante is available on the web site of Ignacio Negueruela.

  12. Eta Carinae in the Context of the Most Massive Stars

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Damineli, Augusto

    2009-01-01

    Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future directions) The Science Organizing Committee: Co-chairs: Augusto Damineli (Brazil) & Theodore R. Gull (USA). Members: D. John Hillier (USA), Gloria Koenigsberger (Mexico), Georges Meynet (Switzerland), Nidia Morrell (Chile), Atsuo T. Okazaki (Japan), Stanley P. Owocki (USA), Andy M.T. Pol- lock (Spain), Nathan Smith (USA), Christiaan L. Sterken (Belgium), Nicole St Louis (Canada), Karel A. van der Hucht (Netherlands), Roberto Viotti (Italy) and GerdWeigelt (Germany)

  13. WW Geminorum: An Early B-type Eclipsing Binary Evolving into the Contact Phase

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Yang, Y.; Dai, H.-F.; Yin, X.-G.

    2014-11-01

    WW Gem is a B-type eclipsing binary with a period of 1.2378 days. The CCD photometry of this binary was performed in 2013 December using the 85 cm telescope at the Xinglong Stations of the National Astronomical Observatories of China. Using the updated W-D program, the photometric model was deduced from the VRI light curves. The results imply that WW Gem is a near-contact eclipsing binary whose primary component almost fills its Roche lobe. The photometric mass ratio is q ph = 0.48(± 0.05). All collected times of minimum light, including two new ones, were used for the period studies. The orbital period changes of WW Gem could be described by an upward parabola, possibly overlaid by a light-time orbit with a period of P mod = 7.41(± 0.04) yr and a semi-amplitude of A = 0.0079 days(± 0.0005 days), respectively. This kind of cyclic oscillation may be attributed to the light-travel time effect via the third body. The long-term period increases at a rate of dP/dt = +3.47(±0.04) × 10-8 day yr-1, which may be explained by the conserved mass transfer from the less massive component to the more massive one. With mass transfer, the massive binary WW Gem may be evolving into a contact binary.

  14. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  15. VizieR Online Data Catalog: NIR spectrum of NGC1705-1 (Martins+, 2012)

    NASA Astrophysics Data System (ADS)

    Martins, F.; Foerster Schreiber, N. M.; Eisenhauer, F.; Lutz, D.

    2012-10-01

    We used adaptive-optics assisted integral field spectroscopy with SINFONI on the Very Large Telescope. We estimated the spatial extent of the cluster and extracted its K-band spectrum from which we constrained the age of the dominant stellar population. Results. Our observations have an angular resolution of about 0.11", providing an upper limit on the cluster radius of 2.85+/-0.50pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age. (2 data files).

  16. The association of GRB 060218 with a supernova and the evolution of the shock wave.

    PubMed

    Campana, S; Mangano, V; Blustin, A J; Brown, P; Burrows, D N; Chincarini, G; Cummings, J R; Cusumano, G; Della Valle, M; Malesani, D; Mészáros, P; Nousek, J A; Page, M; Sakamoto, T; Waxman, E; Zhang, B; Dai, Z G; Gehrels, N; Immler, S; Marshall, F E; Mason, K O; Moretti, A; O'Brien, P T; Osborne, J P; Page, K L; Romano, P; Roming, P W A; Tagliaferri, G; Cominsky, L R; Giommi, P; Godet, O; Kennea, J A; Krimm, H; Angelini, L; Barthelmy, S D; Boyd, P T; Palmer, D M; Wells, A A; White, N E

    2006-08-31

    Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

  17. MONET, HET and SALT and asteroseismological observations and theory in Göttingen

    NASA Astrophysics Data System (ADS)

    Schuh, S.; Hessman, F. V.; Dreizler, S.; Kollatschny, W.; Glatzel, W.

    2007-06-01

    The Göttingen stellar astrophysics group, headed by Stefan Dreizler, conducts research on extrasolar planets and their host stars, on lower-main sequence stars, and on evolved compact objects, in particular hot white dwarfs (including PG 1159 objects, magnetic WDs and cataclysmic variables), and subdwarf B stars. In addition to sophisticated NLTE spectral analyses of these stars, which draw on the extensive stellar atmosphere modelling experience of the group, we actively develop and apply a variety of photometric monitoring and time-resolved spectroscopic techniques to address time-dependent phenomena. With the new instrumentational developments described below, we plan to continue the study of variable white dwarfs (GW Vir, DB and ZZ Ceti variables) and in particular sdB EC 14026 and PG 1617 pulsators which already constitute a main focus, partly within the Whole Earth Telescope (WET/DARC), http://www.physics.udel.edu/~jlp/darc/) collaboration, on a new level. Additional interest is directed towards strange mode instabilities in Wolf Rayet stars.

  18. A 12CO J = 4-->3 High-Velocity Cloud in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Walsh, Wilfred; Xiao, Kecheng; Lane, Adair P.

    2005-10-01

    We present Antarctic Submillimeter Telescope and Remote Observatory observations of 12CO J=4-->3 and 12[C I] emission in the 30 Doradus complex in the Large Magellanic Cloud. We detected strong 12CO J=4-->3 emission toward R140, a multiple system of Wolf-Rayet stars located on the rim of the expanding H II shell surrounding the R136 cluster. We also detected a high-velocity gas component as a separate feature in the 12CO J=4-->3 spectrum. This component probably originates from molecular material accelerated as a result of the combined motion induced by the stellar winds and explosions of supernovae, including several fast-expanding H II shells in the complex. The lower limit on the total kinetic energy of the atomic and molecular gas component is ~2×1051 ergs, suggesting that this comprises only 20% of the total kinetic energy contained in the H II complex structure.

  19. Chandra/ACIS Spectra of the 30 Doradus Star Forming Region

    NASA Astrophysics Data System (ADS)

    Townsley, L.; Broos, P.; Feigelson, E.; Burrows, D.; Chu, Y.-H.; Garmire, G.; Griffiths, R.; Maeda, Y.; Tsuboi, Y.

    2000-12-01

    We present the first high-spatial-resolution X-ray spectra of constituents of the 30 Doradus star-forming region in the Large Magellanic Cloud, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Our continuing efforts to remove the spectral effects of CCD charge transfer inefficiency (CTI) due to radiation damage are described. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level by ACIS, allowing spectral analysis of several constituents. Other Wolf-Rayet stars and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the plerion SNR recently shown by X-ray observations to contain a 16-msec pulsar (Marshall et al., ApJ 499, L179). The spectrally soft superbubble structures seen by ROSAT are visible in the Chandra image; a composite spectrum, improved with CTI correction, is presented. Support for this effort was provided by NASA contract NAS8-38252 to Gordon Garmire, the ACIS Principal Investigator.

  20. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

Top