2015-08-01
Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) Software by N Scott Weingarten and James P Larentzos Approved for...Massively Parallel Simulator ( LAMMPS ) Software by N Scott Weingarten Weapons and Materials Research Directorate, ARL James P Larentzos Engility...Shifted Periodic Boundary Conditions in the Large-Scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) Software 5a. CONTRACT NUMBER 5b
The 2nd Symposium on the Frontiers of Massively Parallel Computations
NASA Technical Reports Server (NTRS)
Mills, Ronnie (Editor)
1988-01-01
Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.
A sweep algorithm for massively parallel simulation of circuit-switched networks
NASA Technical Reports Server (NTRS)
Gaujal, Bruno; Greenberg, Albert G.; Nicol, David M.
1992-01-01
A new massively parallel algorithm is presented for simulating large asymmetric circuit-switched networks, controlled by a randomized-routing policy that includes trunk-reservation. A single instruction multiple data (SIMD) implementation is described, and corresponding experiments on a 16384 processor MasPar parallel computer are reported. A multiple instruction multiple data (MIMD) implementation is also described, and corresponding experiments on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting parallelism, our algorithm increases the possible execution rate of such complex simulations by as much as an order of magnitude.
2012-10-01
using the open-source code Large-scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) (http://lammps.sandia.gov) (23). The commercial...parameters are proprietary and cannot be ported to the LAMMPS 4 simulation code. In our molecular dynamics simulations at the atomistic resolution, we...IBI iterative Boltzmann inversion LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator MAPS Materials Processes and Simulations MS
2013-08-01
potential for HMX / RDX (3, 9). ...................................................................................8 1 1. Purpose This work...6 dispersion and electrostatic interactions. Constants for the SB potential are given in table 1. 8 Table 1. SB potential for HMX / RDX (3, 9...modeling dislocations in the energetic molecular crystal RDX using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular
Parallelized direct execution simulation of message-passing parallel programs
NASA Technical Reports Server (NTRS)
Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.
1994-01-01
As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.
Design of a massively parallel computer using bit serial processing elements
NASA Technical Reports Server (NTRS)
Aburdene, Maurice F.; Khouri, Kamal S.; Piatt, Jason E.; Zheng, Jianqing
1995-01-01
A 1-bit serial processor designed for a parallel computer architecture is described. This processor is used to develop a massively parallel computational engine, with a single instruction-multiple data (SIMD) architecture. The computer is simulated and tested to verify its operation and to measure its performance for further development.
Massively parallel multicanonical simulations
NASA Astrophysics Data System (ADS)
Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard
2018-03-01
Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.
Massively parallel quantum computer simulator
NASA Astrophysics Data System (ADS)
De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.
2007-01-01
We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.
NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...
2016-09-18
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.
2011-01-01
We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276
Real-time electron dynamics for massively parallel excited-state simulations
NASA Astrophysics Data System (ADS)
Andrade, Xavier
The simulation of the real-time dynamics of electrons, based on time dependent density functional theory (TDDFT), is a powerful approach to study electronic excited states in molecular and crystalline systems. What makes the method attractive is its flexibility to simulate different kinds of phenomena beyond the linear-response regime, including strongly-perturbed electronic systems and non-adiabatic electron-ion dynamics. Electron-dynamics simulations are also attractive from a computational point of view. They can run efficiently on massively parallel architectures due to the low communication requirements. Our implementations of electron dynamics, based on the codes Octopus (real-space) and Qball (plane-waves), allow us to simulate systems composed of thousands of atoms and to obtain good parallel scaling up to 1.6 million processor cores. Due to the versatility of real-time electron dynamics and its parallel performance, we expect it to become the method of choice to apply the capabilities of exascale supercomputers for the simulation of electronic excited states.
Takano, Yu; Nakata, Kazuto; Yonezawa, Yasushige; Nakamura, Haruki
2016-05-05
A massively parallel program for quantum mechanical-molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc-pVDZ and B3LYP/cc-pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6-31G** calculations. We also performed excited QM/MM-MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH-insensitive and photo-stable ultramarine fluorescent protein. Platypus accelerated on-the-fly excited-state QM/MM-MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50-ps (200,000-step) on-the-fly excited-state QM/MM-MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Reinsch, K. G. (Editor); Schmidt, W. (Editor); Ecer, A. (Editor); Haeuser, Jochem (Editor); Periaux, J. (Editor)
1992-01-01
A conference was held on parallel computational fluid dynamics and produced related papers. Topics discussed in these papers include: parallel implicit and explicit solvers for compressible flow, parallel computational techniques for Euler and Navier-Stokes equations, grid generation techniques for parallel computers, and aerodynamic simulation om massively parallel systems.
Tough2{_}MP: A parallel version of TOUGH2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Wu, Yu-Shu; Ding, Chris
2003-04-09
TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less
A fast ultrasonic simulation tool based on massively parallel implementations
NASA Astrophysics Data System (ADS)
Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain
2014-02-01
This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.
Crystal MD: The massively parallel molecular dynamics software for metal with BCC structure
NASA Astrophysics Data System (ADS)
Hu, Changjun; Bai, He; He, Xinfu; Zhang, Boyao; Nie, Ningming; Wang, Xianmeng; Ren, Yingwen
2017-02-01
Material irradiation effect is one of the most important keys to use nuclear power. However, the lack of high-throughput irradiation facility and knowledge of evolution process, lead to little understanding of the addressed issues. With the help of high-performance computing, we could make a further understanding of micro-level-material. In this paper, a new data structure is proposed for the massively parallel simulation of the evolution of metal materials under irradiation environment. Based on the proposed data structure, we developed the new molecular dynamics software named Crystal MD. The simulation with Crystal MD achieved over 90% parallel efficiency in test cases, and it takes more than 25% less memory on multi-core clusters than LAMMPS and IMD, which are two popular molecular dynamics simulation software. Using Crystal MD, a two trillion particles simulation has been performed on Tianhe-2 cluster.
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
Particle simulation of plasmas on the massively parallel processor
NASA Technical Reports Server (NTRS)
Gledhill, I. M. A.; Storey, L. R. O.
1987-01-01
Particle simulations, in which collective phenomena in plasmas are studied by following the self consistent motions of many discrete particles, involve several highly repetitive sets of calculations that are readily adaptable to SIMD parallel processing. A fully electromagnetic, relativistic plasma simulation for the massively parallel processor is described. The particle motions are followed in 2 1/2 dimensions on a 128 x 128 grid, with periodic boundary conditions. The two dimensional simulation space is mapped directly onto the processor network; a Fast Fourier Transform is used to solve the field equations. Particle data are stored according to an Eulerian scheme, i.e., the information associated with each particle is moved from one local memory to another as the particle moves across the spatial grid. The method is applied to the study of the nonlinear development of the whistler instability in a magnetospheric plasma model, with an anisotropic electron temperature. The wave distribution function is included as a new diagnostic to allow simulation results to be compared with satellite observations.
Efficient, massively parallel eigenvalue computation
NASA Technical Reports Server (NTRS)
Huo, Yan; Schreiber, Robert
1993-01-01
In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.
Grindon, Christina; Harris, Sarah; Evans, Tom; Novik, Keir; Coveney, Peter; Laughton, Charles
2004-07-15
Molecular modelling played a central role in the discovery of the structure of DNA by Watson and Crick. Today, such modelling is done on computers: the more powerful these computers are, the more detailed and extensive can be the study of the dynamics of such biological macromolecules. To fully harness the power of modern massively parallel computers, however, we need to develop and deploy algorithms which can exploit the structure of such hardware. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a scalable molecular dynamics code including long-range Coulomb interactions, which has been specifically designed to function efficiently on parallel platforms. Here we describe the implementation of the AMBER98 force field in LAMMPS and its validation for molecular dynamics investigations of DNA structure and flexibility against the benchmark of results obtained with the long-established code AMBER6 (Assisted Model Building with Energy Refinement, version 6). Extended molecular dynamics simulations on the hydrated DNA dodecamer d(CTTTTGCAAAAG)(2), which has previously been the subject of extensive dynamical analysis using AMBER6, show that it is possible to obtain excellent agreement in terms of static, dynamic and thermodynamic parameters between AMBER6 and LAMMPS. In comparison with AMBER6, LAMMPS shows greatly improved scalability in massively parallel environments, opening up the possibility of efficient simulations of order-of-magnitude larger systems and/or for order-of-magnitude greater simulation times.
A Generic Mesh Data Structure with Parallel Applications
ERIC Educational Resources Information Center
Cochran, William Kenneth, Jr.
2009-01-01
High performance, massively-parallel multi-physics simulations are built on efficient mesh data structures. Most data structures are designed from the bottom up, focusing on the implementation of linear algebra routines. In this thesis, we explore a top-down approach to design, evaluating the various needs of many aspects of simulation, not just…
Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT.
Maruyama, Yutaka; Yoshida, Norio; Tadano, Hiroto; Takahashi, Daisuke; Sato, Mitsuhisa; Hirata, Fumio
2014-07-05
A new three-dimensional reference interaction site model (3D-RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D-FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D-RISM program has a limitation on the number of parallelizations because of the limitations of the slab-type 3D-FFT. The volumetric 3D-FFT relieves this limitation drastically. We tested the 3D-RISM calculation on the large and fine calculation cell (2048(3) grid points) on 16,384 nodes, each having eight CPU cores. The new 3D-RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D-RISM program is effective to analyze the hydration properties of the large biomolecular systems. Copyright © 2014 Wiley Periodicals, Inc.
Parallel Tensor Compression for Large-Scale Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memorymore » parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.« less
Proxy-equation paradigm: A strategy for massively parallel asynchronous computations
NASA Astrophysics Data System (ADS)
Mittal, Ankita; Girimaji, Sharath
2017-09-01
Massively parallel simulations of transport equation systems call for a paradigm change in algorithm development to achieve efficient scalability. Traditional approaches require time synchronization of processing elements (PEs), which severely restricts scalability. Relaxing synchronization requirement introduces error and slows down convergence. In this paper, we propose and develop a novel "proxy equation" concept for a general transport equation that (i) tolerates asynchrony with minimal added error, (ii) preserves convergence order and thus, (iii) expected to scale efficiently on massively parallel machines. The central idea is to modify a priori the transport equation at the PE boundaries to offset asynchrony errors. Proof-of-concept computations are performed using a one-dimensional advection (convection) diffusion equation. The results demonstrate the promise and advantages of the present strategy.
Large-eddy simulations of compressible convection on massively parallel computers. [stellar physics
NASA Technical Reports Server (NTRS)
Xie, Xin; Toomre, Juri
1993-01-01
We report preliminary implementation of the large-eddy simulation (LES) technique in 2D simulations of compressible convection carried out on the CM-2 massively parallel computer. The convective flow fields in our simulations possess structures similar to those found in a number of direct simulations, with roll-like flows coherent across the entire depth of the layer that spans several density scale heights. Our detailed assessment of the effects of various subgrid scale (SGS) terms reveals that they may affect the gross character of convection. Yet, somewhat surprisingly, we find that our LES solutions, and another in which the SGS terms are turned off, only show modest differences. The resulting 2D flows realized here are rather laminar in character, and achieving substantial turbulence may require stronger forcing and less dissipation.
Suppressing correlations in massively parallel simulations of lattice models
NASA Astrophysics Data System (ADS)
Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle
2017-11-01
For lattice Monte Carlo simulations parallelization is crucial to make studies of large systems and long simulation time feasible, while sequential simulations remain the gold-standard for correlation-free dynamics. Here, various domain decomposition schemes are compared, concluding with one which delivers virtually correlation-free simulations on GPUs. Extensive simulations of the octahedron model for 2 + 1 dimensional Kardar-Parisi-Zhang surface growth, which is very sensitive to correlation in the site-selection dynamics, were performed to show self-consistency of the parallel runs and agreement with the sequential algorithm. We present a GPU implementation providing a speedup of about 30 × over a parallel CPU implementation on a single socket and at least 180 × with respect to the sequential reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, William Michael; Plimpton, Steven James; Wang, Peng
2010-03-01
LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.
Fast I/O for Massively Parallel Applications
NASA Technical Reports Server (NTRS)
OKeefe, Matthew T.
1996-01-01
The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.
Scalable isosurface visualization of massive datasets on commodity off-the-shelf clusters
Bajaj, Chandrajit
2009-01-01
Tomographic imaging and computer simulations are increasingly yielding massive datasets. Interactive and exploratory visualizations have rapidly become indispensable tools to study large volumetric imaging and simulation data. Our scalable isosurface visualization framework on commodity off-the-shelf clusters is an end-to-end parallel and progressive platform, from initial data access to the final display. Interactive browsing of extracted isosurfaces is made possible by using parallel isosurface extraction, and rendering in conjunction with a new specialized piece of image compositing hardware called Metabuffer. In this paper, we focus on the back end scalability by introducing a fully parallel and out-of-core isosurface extraction algorithm. It achieves scalability by using both parallel and out-of-core processing and parallel disks. It statically partitions the volume data to parallel disks with a balanced workload spectrum, and builds I/O-optimal external interval trees to minimize the number of I/O operations of loading large data from disk. We also describe an isosurface compression scheme that is efficient for progress extraction, transmission and storage of isosurfaces. PMID:19756231
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng
2016-04-01
With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.
The MasPar MP-1 As a Computer Arithmetic Laboratory
Anuta, Michael A.; Lozier, Daniel W.; Turner, Peter R.
1996-01-01
This paper is a blueprint for the use of a massively parallel SIMD computer architecture for the simulation of various forms of computer arithmetic. The particular system used is a DEC/MasPar MP-1 with 4096 processors in a square array. This architecture has many advantages for such simulations due largely to the simplicity of the individual processors. Arithmetic operations can be spread across the processor array to simulate a hardware chip. Alternatively they may be performed on individual processors to allow simulation of a massively parallel implementation of the arithmetic. Compromises between these extremes permit speed-area tradeoffs to be examined. The paper includes a description of the architecture and its features. It then summarizes some of the arithmetic systems which have been, or are to be, implemented. The implementation of the level-index and symmetric level-index, LI and SLI, systems is described in some detail. An extensive bibliography is included. PMID:27805123
ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems.
Niethammer, Christoph; Becker, Stefan; Bernreuther, Martin; Buchholz, Martin; Eckhardt, Wolfgang; Heinecke, Alexander; Werth, Stephan; Bungartz, Hans-Joachim; Glass, Colin W; Hasse, Hans; Vrabec, Jadran; Horsch, Martin
2014-10-14
The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales that were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, such as fluids at interfaces, as well as nonequilibrium molecular dynamics simulation of heat and mass transfer.
Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S
2017-10-01
An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT, or to design OCT systems with improved performance. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
Liwo, Adam; Ołdziej, Stanisław; Czaplewski, Cezary; Kleinerman, Dana S.; Blood, Philip; Scheraga, Harold A.
2010-01-01
We report the implementation of our united-residue UNRES force field for simulations of protein structure and dynamics with massively parallel architectures. In addition to coarse-grained parallelism already implemented in our previous work, in which each conformation was treated by a different task, we introduce a fine-grained level in which energy and gradient evaluation are split between several tasks. The Message Passing Interface (MPI) libraries have been utilized to construct the parallel code. The parallel performance of the code has been tested on a professional Beowulf cluster (Xeon Quad Core), a Cray XT3 supercomputer, and two IBM BlueGene/P supercomputers with canonical and replica-exchange molecular dynamics. With IBM BlueGene/P, about 50 % efficiency and 120-fold speed-up of the fine-grained part was achieved for a single trajectory of a 767-residue protein with use of 256 processors/trajectory. Because of averaging over the fast degrees of freedom, UNRES provides an effective 1000-fold speed-up compared to the experimental time scale and, therefore, enables us to effectively carry out millisecond-scale simulations of proteins with 500 and more amino-acid residues in days of wall-clock time. PMID:20305729
Simulation of an array-based neural net model
NASA Technical Reports Server (NTRS)
Barnden, John A.
1987-01-01
Research in cognitive science suggests that much of cognition involves the rapid manipulation of complex data structures. However, it is very unclear how this could be realized in neural networks or connectionist systems. A core question is: how could the interconnectivity of items in an abstract-level data structure be neurally encoded? The answer appeals mainly to positional relationships between activity patterns within neural arrays, rather than directly to neural connections in the traditional way. The new method was initially devised to account for abstract symbolic data structures, but it also supports cognitively useful spatial analogue, image-like representations. As the neural model is based on massive, uniform, parallel computations over 2D arrays, the massively parallel processor is a convenient tool for simulation work, although there are complications in using the machine to the fullest advantage. An MPP Pascal simulation program for a small pilot version of the model is running.
NASA Astrophysics Data System (ADS)
Zhao, Feng; Frietman, Edward E. E.; Han, Zhong; Chen, Ray T.
1999-04-01
A characteristic feature of a conventional von Neumann computer is that computing power is delivered by a single processing unit. Although increasing the clock frequency improves the performance of the computer, the switching speed of the semiconductor devices and the finite speed at which electrical signals propagate along the bus set the boundaries. Architectures containing large numbers of nodes can solve this performance dilemma, with the comment that main obstacles in designing such systems are caused by difficulties to come up with solutions that guarantee efficient communications among the nodes. Exchanging data becomes really a bottleneck should al nodes be connected by a shared resource. Only optics, due to its inherent parallelism, could solve that bottleneck. Here, we explore a multi-faceted free space image distributor to be used in optical interconnects in massively parallel processing. In this paper, physical and optical models of the image distributor are focused on from diffraction theory of light wave to optical simulations. the general features and the performance of the image distributor are also described. The new structure of an image distributor and the simulations for it are discussed. From the digital simulation and experiment, it is found that the multi-faceted free space image distributing technique is quite suitable for free space optical interconnection in massively parallel processing and new structure of the multifaceted free space image distributor would perform better.
Automation of a Wave-Optics Simulation and Image Post-Processing Package on Riptide
NASA Astrophysics Data System (ADS)
Werth, M.; Lucas, J.; Thompson, D.; Abercrombie, M.; Holmes, R.; Roggemann, M.
Detailed wave-optics simulations and image post-processing algorithms are computationally expensive and benefit from the massively parallel hardware available at supercomputing facilities. We created an automated system that interfaces with the Maui High Performance Computing Center (MHPCC) Distributed MATLAB® Portal interface to submit massively parallel waveoptics simulations to the IBM iDataPlex (Riptide) supercomputer. This system subsequently postprocesses the output images with an improved version of physically constrained iterative deconvolution (PCID) and analyzes the results using a series of modular algorithms written in Python. With this architecture, a single person can simulate thousands of unique scenarios and produce analyzed, archived, and briefing-compatible output products with very little effort. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Biswas, Rupak
1996-01-01
Solving the hard Satisfiability Problem is time consuming even for modest-sized problem instances. Solving the Random L-SAT Problem is especially difficult due to the ratio of clauses to variables. This report presents a parallel synchronous simulated annealing method for solving the Random L-SAT Problem on a large-scale distributed-memory multiprocessor. In particular, we use a parallel synchronous simulated annealing procedure, called Generalized Speculative Computation, which guarantees the same decision sequence as sequential simulated annealing. To demonstrate the performance of the parallel method, we have selected problem instances varying in size from 100-variables/425-clauses to 5000-variables/21,250-clauses. Experimental results on the AP1000 multiprocessor indicate that our approach can satisfy 99.9 percent of the clauses while giving almost a 70-fold speedup on 500 processors.
cellGPU: Massively parallel simulations of dynamic vertex models
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.
2017-10-01
Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation
Substructured multibody molecular dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
Pronk, Sander; Páll, Szilárd; Schulz, Roland; Larsson, Per; Bjelkmar, Pär; Apostolov, Rossen; Shirts, Michael R.; Smith, Jeremy C.; Kasson, Peter M.; van der Spoel, David; Hess, Berk; Lindahl, Erik
2013-01-01
Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. Availability: GROMACS is an open source and free software available from http://www.gromacs.org. Contact: erik.lindahl@scilifelab.se Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23407358
Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi
2016-08-05
The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
On the suitability of the connection machine for direct particle simulation
NASA Technical Reports Server (NTRS)
Dagum, Leonard
1990-01-01
The algorithmic structure was examined of the vectorizable Stanford particle simulation (SPS) method and the structure is reformulated in data parallel form. Some of the SPS algorithms can be directly translated to data parallel, but several of the vectorizable algorithms have no direct data parallel equivalent. This requires the development of new, strictly data parallel algorithms. In particular, a new sorting algorithm is developed to identify collision candidates in the simulation and a master/slave algorithm is developed to minimize communication cost in large table look up. Validation of the method is undertaken through test calculations for thermal relaxation of a gas, shock wave profiles, and shock reflection from a stationary wall. A qualitative measure is provided of the performance of the Connection Machine for direct particle simulation. The massively parallel architecture of the Connection Machine is found quite suitable for this type of calculation. However, there are difficulties in taking full advantage of this architecture because of lack of a broad based tradition of data parallel programming. An important outcome of this work has been new data parallel algorithms specifically of use for direct particle simulation but which also expand the data parallel diction.
Massively Parallel Simulations of Diffusion in Dense Polymeric Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulon, Jean-Loup, Wilcox, R.T.
1997-11-01
An original computational technique to generate close-to-equilibrium dense polymeric structures is proposed. Diffusion of small gases are studied on the equilibrated structures using massively parallel molecular dynamics simulations running on the Intel Teraflops (9216 Pentium Pro processors) and Intel Paragon(1840 processors). Compared to the current state-of-the-art equilibration methods this new technique appears to be faster by some orders of magnitude.The main advantage of the technique is that one can circumvent the bottlenecks in configuration space that inhibit relaxation in molecular dynamics simulations. The technique is based on the fact that tetravalent atoms (such as carbon and silicon) fit in themore » center of a regular tetrahedron and that regular tetrahedrons can be used to mesh the three-dimensional space. Thus, the problem of polymer equilibration described by continuous equations in molecular dynamics is reduced to a discrete problem where solutions are approximated by simple algorithms. Practical modeling applications include the constructing of butyl rubber and ethylene-propylene-dimer-monomer (EPDM) models for oxygen and water diffusion calculations. Butyl and EPDM are used in O-ring systems and serve as sealing joints in many manufactured objects. Diffusion coefficients of small gases have been measured experimentally on both polymeric systems, and in general the diffusion coefficients in EPDM are an order of magnitude larger than in butyl. In order to better understand the diffusion phenomena, 10, 000 atoms models were generated and equilibrated for butyl and EPDM. The models were submitted to a massively parallel molecular dynamics simulation to monitor the trajectories of the diffusing species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao
2013-12-01
TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporatedmore » into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.« less
Massively Parallel Processing for Fast and Accurate Stamping Simulations
NASA Astrophysics Data System (ADS)
Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu
2005-08-01
The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.
Yang, L. H.; Brooks III, E. D.; Belak, J.
1992-01-01
A molecular dynamics algorithm for performing large-scale simulations using the Parallel C Preprocessor (PCP) programming paradigm on the BBN TC2000, a massively parallel computer, is discussed. The algorithm uses a linked-cell data structure to obtain the near neighbors of each atom as time evoles. Each processor is assigned to a geometric domain containing many subcells and the storage for that domain is private to the processor. Within this scheme, the interdomain (i.e., interprocessor) communication is minimized.
Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo
2014-01-01
The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072
Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo
2014-01-01
Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957
User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earth Sciences Division; Zhang, Keni; Zhang, Keni
TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator ismore » to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.« less
A Massively Parallel Bayesian Approach to Planetary Protection Trajectory Analysis and Design
NASA Technical Reports Server (NTRS)
Wallace, Mark S.
2015-01-01
The NASA Planetary Protection Office has levied a requirement that the upper stage of future planetary launches have a less than 10(exp -4) chance of impacting Mars within 50 years after launch. A brute-force approach requires a decade of computer time to demonstrate compliance. By using a Bayesian approach and taking advantage of the demonstrated reliability of the upper stage, the required number of fifty-year propagations can be massively reduced. By spreading the remaining embarrassingly parallel Monte Carlo simulations across multiple computers, compliance can be demonstrated in a reasonable time frame. The method used is described here.
Progress on the Multiphysics Capabilities of the Parallel Electromagnetic ACE3P Simulation Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy
2015-03-26
ACE3P is a 3D parallel simulation suite that is being developed at SLAC National Accelerator Laboratory. Effectively utilizing supercomputer resources, ACE3P has become a key tool for the coupled electromagnetic, thermal and mechanical research and design of particle accelerators. Based on the existing finite-element infrastructure, a massively parallel eigensolver is developed for modal analysis of mechanical structures. It complements a set of the multiphysics tools in ACE3P and, in particular, can be used for the comprehensive study of microphonics in accelerating cavities ensuring the operational reliability of a particle accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-12-17
Grizzly is a simulation tool for assessing the effects of age-related degradation on systems, structures, and components of nuclear power plants. Grizzly is built on the MOOSE framework, and uses a Jacobian-free Newton Krylov method to obtain solutions to tightly coupled thermo-mechanical simulations. Grizzly runs on a wide range of hardware, from a single processor to massively parallel machines.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
NASA Astrophysics Data System (ADS)
Stellmach, Stephan; Hansen, Ulrich
2008-05-01
Numerical simulations of the process of convection and magnetic field generation in planetary cores still fail to reach geophysically realistic control parameter values. Future progress in this field depends crucially on efficient numerical algorithms which are able to take advantage of the newest generation of parallel computers. Desirable features of simulation algorithms include (1) spectral accuracy, (2) an operation count per time step that is small and roughly proportional to the number of grid points, (3) memory requirements that scale linear with resolution, (4) an implicit treatment of all linear terms including the Coriolis force, (5) the ability to treat all kinds of common boundary conditions, and (6) reasonable efficiency on massively parallel machines with tens of thousands of processors. So far, algorithms for fully self-consistent dynamo simulations in spherical shells do not achieve all these criteria simultaneously, resulting in strong restrictions on the possible resolutions. In this paper, we demonstrate that local dynamo models in which the process of convection and magnetic field generation is only simulated for a small part of a planetary core in Cartesian geometry can achieve the above goal. We propose an algorithm that fulfills the first five of the above criteria and demonstrate that a model implementation of our method on an IBM Blue Gene/L system scales impressively well for up to O(104) processors. This allows for numerical simulations at rather extreme parameter values.
Computations on the massively parallel processor at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Strong, James P.
1991-01-01
Described are four significant algorithms implemented on the massively parallel processor (MPP) at the Goddard Space Flight Center. Two are in the area of image analysis. Of the other two, one is a mathematical simulation experiment and the other deals with the efficient transfer of data between distantly separated processors in the MPP array. The first algorithm presented is the automatic determination of elevations from stereo pairs. The second algorithm solves mathematical logistic equations capable of producing both ordered and chaotic (or random) solutions. This work can potentially lead to the simulation of artificial life processes. The third algorithm is the automatic segmentation of images into reasonable regions based on some similarity criterion, while the fourth is an implementation of a bitonic sort of data which significantly overcomes the nearest neighbor interconnection constraints on the MPP for transferring data between distant processors.
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip
2018-01-28
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.
GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations
NASA Astrophysics Data System (ADS)
Nguyen, Trung Dac
2017-03-01
The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers.
Scalable load balancing for massively parallel distributed Monte Carlo particle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, M. J.; Brantley, P. S.; Joy, K. I.
2013-07-01
In order to run computer simulations efficiently on massively parallel computers with hundreds of thousands or millions of processors, care must be taken that the calculation is load balanced across the processors. Examining the workload of every processor leads to an unscalable algorithm, with run time at least as large as O(N), where N is the number of processors. We present a scalable load balancing algorithm, with run time 0(log(N)), that involves iterated processor-pair-wise balancing steps, ultimately leading to a globally balanced workload. We demonstrate scalability of the algorithm up to 2 million processors on the Sequoia supercomputer at Lawrencemore » Livermore National Laboratory. (authors)« less
An Overview of Mesoscale Modeling Software for Energetic Materials Research
2010-03-01
12 2.9 Large-scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ...13 Table 10. LAMMPS summary...extensive reviews, lectures and workshops are available on multiscale modeling of materials applications (76-78). • Multi-phase mixtures of
Parallel VLSI architecture emulation and the organization of APSA/MPP
NASA Technical Reports Server (NTRS)
Odonnell, John T.
1987-01-01
The Applicative Programming System Architecture (APSA) combines an applicative language interpreter with a novel parallel computer architecture that is well suited for Very Large Scale Integration (VLSI) implementation. The Massively Parallel Processor (MPP) can simulate VLSI circuits by allocating one processing element in its square array to an area on a square VLSI chip. As long as there are not too many long data paths, the MPP can simulate a VLSI clock cycle very rapidly. The APSA circuit contains a binary tree with a few long paths and many short ones. A skewed H-tree layout allows every processing element to simulate a leaf cell and up to four tree nodes, with no loss in parallelism. Emulation of a key APSA algorithm on the MPP resulted in performance 16,000 times faster than a Vax. This speed will make it possible for the APSA language interpreter to run fast enough to support research in parallel list processing algorithms.
NASA Technical Reports Server (NTRS)
Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.
1995-01-01
A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.
Dust Dynamics in Protoplanetary Disks: Parallel Computing with PVM
NASA Astrophysics Data System (ADS)
de La Fuente Marcos, Carlos; Barge, Pierre; de La Fuente Marcos, Raúl
2002-03-01
We describe a parallel version of our high-order-accuracy particle-mesh code for the simulation of collisionless protoplanetary disks. We use this code to carry out a massively parallel, two-dimensional, time-dependent, numerical simulation, which includes dust particles, to study the potential role of large-scale, gaseous vortices in protoplanetary disks. This noncollisional problem is easy to parallelize on message-passing multicomputer architectures. We performed the simulations on a cache-coherent nonuniform memory access Origin 2000 machine, using both the parallel virtual machine (PVM) and message-passing interface (MPI) message-passing libraries. Our performance analysis suggests that, for our problem, PVM is about 25% faster than MPI. Using PVM and MPI made it possible to reduce CPU time and increase code performance. This allows for simulations with a large number of particles (N ~ 105-106) in reasonable CPU times. The performances of our implementation of the pa! rallel code on an Origin 2000 supercomputer are presented and discussed. They exhibit very good speedup behavior and low load unbalancing. Our results confirm that giant gaseous vortices can play a dominant role in giant planet formation.
A Fast Algorithm for Massively Parallel, Long-Term, Simulation of Complex Molecular Dynamics Systems
NASA Technical Reports Server (NTRS)
Jaramillo-Botero, Andres; Goddard, William A, III; Fijany, Amir
1997-01-01
The advances in theory and computing technology over the last decade have led to enormous progress in applying atomistic molecular dynamics (MD) methods to the characterization, prediction, and design of chemical, biological, and material systems,.
Branched Polymers for Enhancing Polymer Gel Strength and Toughness
2013-02-01
Molecular Massively Parallel Simulator ( LAMMPS ) program and the stress-strain relations were calculated with varying strain-rates (figure 6). A...Acronyms ARL U.S. Army Research Laboratory D3 hexamethylcyclotrisiloxane FTIR Fourier transform infrared GPC gel permeation chromatography LAMMPS
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
The goal was to perform 3D simulation of GE90 combustor, as part of full turbofan engine simulation. Requirements of high fidelity as well as fast turn-around time require massively parallel code. National Combustion Code (NCC) was chosen for this task as supports up to 999 processors and includes state-of-the-art combustion models. Also required is ability to take inlet conditions from compressor code and give exit conditions to turbine code.
Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
Slażyński, Leszek; Bohte, Sander
2012-01-01
The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.
NASA Astrophysics Data System (ADS)
Ukawa, Akira
1998-05-01
The CP-PACS computer is a massively parallel computer consisting of 2048 processing units and having a peak speed of 614 GFLOPS and 128 GByte of main memory. It was developed over the four years from 1992 to 1996 at the Center for Computational Physics, University of Tsukuba, for large-scale numerical simulations in computational physics, especially those of lattice QCD. The CP-PACS computer has been in full operation for physics computations since October 1996. In this article we describe the chronology of the development, the hardware and software characteristics of the computer, and its performance for lattice QCD simulations.
Free-electron laser simulations on the MPP
NASA Technical Reports Server (NTRS)
Vonlaven, Scott A.; Liebrock, Lorie M.
1987-01-01
Free electron lasers (FELs) are of interest because they provide high power, high efficiency, and broad tunability. FEL simulations can make efficient use of computers of the Massively Parallel Processor (MPP) class because most of the processing consists of applying a simple equation to a set of identical particles. A test version of the KMS Fusion FEL simulation, which resides mainly in the MPPs host computer and only partially in the MPP, has run successfully.
Massive parallel 3D PIC simulation of negative ion extraction
NASA Astrophysics Data System (ADS)
Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu
2017-09-01
The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.
GPAW - massively parallel electronic structure calculations with Python-based software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enkovaara, J.; Romero, N.; Shende, S.
2011-01-01
Electronic structure calculations are a widely used tool in materials science and large consumer of supercomputing resources. Traditionally, the software packages for these kind of simulations have been implemented in compiled languages, where Fortran in its different versions has been the most popular choice. While dynamic, interpreted languages, such as Python, can increase the effciency of programmer, they cannot compete directly with the raw performance of compiled languages. However, by using an interpreted language together with a compiled language, it is possible to have most of the productivity enhancing features together with a good numerical performance. We have used thismore » approach in implementing an electronic structure simulation software GPAW using the combination of Python and C programming languages. While the chosen approach works well in standard workstations and Unix environments, massively parallel supercomputing systems can present some challenges in porting, debugging and profiling the software. In this paper we describe some details of the implementation and discuss the advantages and challenges of the combined Python/C approach. We show that despite the challenges it is possible to obtain good numerical performance and good parallel scalability with Python based software.« less
ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains
Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz
2016-01-01
With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
The Parallel System for Integrating Impact Models and Sectors (pSIMS)
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian
2014-01-01
We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F.; Harger, Matthew; Torabifard, Hedieh; Cisneros, G. Andrés; Schnieders, Michael J.; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y.; Ponder, Jay W.
2017-01-01
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed. PMID:29732110
An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator
Wang, Runchun M.; Thakur, Chetan S.; van Schaik, André
2018-01-01
This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks. PMID:29692702
An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.
Wang, Runchun M; Thakur, Chetan S; van Schaik, André
2018-01-01
This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.
NASA Astrophysics Data System (ADS)
Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves
2009-03-01
This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.
Repartitioning Strategies for Massively Parallel Simulation of Reacting Flow
NASA Astrophysics Data System (ADS)
Pisciuneri, Patrick; Zheng, Angen; Givi, Peyman; Labrinidis, Alexandros; Chrysanthis, Panos
2015-11-01
The majority of parallel CFD simulators partition the domain into equal regions and assign the calculations for a particular region to a unique processor. This type of domain decomposition is vital to the efficiency of the solver. However, as the simulation develops, the workload among the partitions often become uneven (e.g. by adaptive mesh refinement, or chemically reacting regions) and a new partition should be considered. The process of repartitioning adjusts the current partition to evenly distribute the load again. We compare two repartitioning tools: Zoltan, an architecture-agnostic graph repartitioner developed at the Sandia National Laboratories; and Paragon, an architecture-aware graph repartitioner developed at the University of Pittsburgh. The comparative assessment is conducted via simulation of the Taylor-Green vortex flow with chemical reaction.
Stochastic optimization of GeantV code by use of genetic algorithms
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; ...
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less
Stochastic optimization of GeantV code by use of genetic algorithms
NASA Astrophysics Data System (ADS)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.
Stochastic optimization of GeantV code by use of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less
Phase space simulation of collisionless stellar systems on the massively parallel processor
NASA Technical Reports Server (NTRS)
White, Richard L.
1987-01-01
A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem.
NASA Astrophysics Data System (ADS)
Wittek, Peter; Calderaro, Luca
2015-12-01
We extended a parallel and distributed implementation of the Trotter-Suzuki algorithm for simulating quantum systems to study a wider range of physical problems and to make the library easier to use. The new release allows periodic boundary conditions, many-body simulations of non-interacting particles, arbitrary stationary potential functions, and imaginary time evolution to approximate the ground state energy. The new release is more resilient to the computational environment: a wider range of compiler chains and more platforms are supported. To ease development, we provide a more extensive command-line interface, an application programming interface, and wrappers from high-level languages.
Software Engineering for Scientific Computer Simulations
NASA Astrophysics Data System (ADS)
Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.
2004-11-01
Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.
NASA Technical Reports Server (NTRS)
Bruno, John
1984-01-01
The results of an investigation into the feasibility of using the MPP for direct and large eddy simulations of the Navier-Stokes equations is presented. A major part of this study was devoted to the implementation of two of the standard numerical algorithms for CFD. These implementations were not run on the Massively Parallel Processor (MPP) since the machine delivered to NASA Goddard does not have sufficient capacity. Instead, a detailed implementation plan was designed and from these were derived estimates of the time and space requirements of the algorithms on a suitably configured MPP. In addition, other issues related to the practical implementation of these algorithms on an MPP-like architecture were considered; namely, adaptive grid generation, zonal boundary conditions, the table lookup problem, and the software interface. Performance estimates show that the architectural components of the MPP, the Staging Memory and the Array Unit, appear to be well suited to the numerical algorithms of CFD. This combined with the prospect of building a faster and larger MMP-like machine holds the promise of achieving sustained gigaflop rates that are required for the numerical simulations in CFD.
Massively parallel information processing systems for space applications
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1979-01-01
NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.
Explicit finite-difference simulation of optical integrated devices on massive parallel computers.
Sterkenburgh, T; Michels, R M; Dress, P; Franke, H
1997-02-20
An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.
Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, Elia; Obabko, Aleks; Fischer, Paul
Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less
Large-scale large eddy simulation of nuclear reactor flows: Issues and perspectives
Merzari, Elia; Obabko, Aleks; Fischer, Paul; ...
2016-11-03
Numerical simulation has been an intrinsic part of nuclear engineering research since its inception. In recent years a transition is occurring toward predictive, first-principle-based tools such as computational fluid dynamics. Even with the advent of petascale computing, however, such tools still have significant limitations. In the present work some of these issues, and in particular the presence of massive multiscale separation, are discussed, as well as some of the research conducted to mitigate them. Petascale simulations at high fidelity (large eddy simulation/direct numerical simulation) were conducted with the massively parallel spectral element code Nek5000 on a series of representative problems.more » These simulations shed light on the requirements of several types of simulation: (1) axial flow around fuel rods, with particular attention to wall effects; (2) natural convection in the primary vessel; and (3) flow in a rod bundle in the presence of spacing devices. Finally, the focus of the work presented here is on the lessons learned and the requirements to perform these simulations at exascale. Additional physical insight gained from these simulations is also emphasized.« less
Preparation of Entangled Polymer Melts of Various Architecture for Coarse-Grained Models
2011-09-01
Simulator ( LAMMPS ). This report presents a theory overview and a manual how to use the method. 15. SUBJECT TERMS Ammunition, coarse-grained model...polymer builder, LAMMPS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 26 19a. NAME OF RESPONSIBLE PERSON...scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ). Gel is an in house written C program of coarse- grained polymer builder, and LAMMPS is
Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2011-01-01
In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA
NASA Astrophysics Data System (ADS)
Bazow, Dennis; Heinz, Ulrich; Strickland, Michael
2018-04-01
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.
Lagardère, Louis; Lipparini, Filippo; Polack, Étienne; Stamm, Benjamin; Cancès, Éric; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip
2014-02-28
In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations.
Lagardère, Louis; Lipparini, Filippo; Polack, Étienne; Stamm, Benjamin; Cancès, Éric; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip
2015-01-01
In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations. PMID:26512230
Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations.
Dematté, Lorenzo
2012-01-01
Space is a very important aspect in the simulation of biochemical systems; recently, the need for simulation algorithms able to cope with space is becoming more and more compelling. Complex and detailed models of biochemical systems need to deal with the movement of single molecules and particles, taking into consideration localized fluctuations, transportation phenomena, and diffusion. A common drawback of spatial models lies in their complexity: models can become very large, and their simulation could be time consuming, especially if we want to capture the systems behavior in a reliable way using stochastic methods in conjunction with a high spatial resolution. In order to deliver the promise done by systems biology to be able to understand a system as whole, we need to scale up the size of models we are able to simulate, moving from sequential to parallel simulation algorithms. In this paper, we analyze Smoldyn, a widely diffused algorithm for stochastic simulation of chemical reactions with spatial resolution and single molecule detail, and we propose an alternative, innovative implementation that exploits the parallelism of Graphics Processing Units (GPUs). The implementation executes the most computational demanding steps (computation of diffusion, unimolecular, and bimolecular reaction, as well as the most common cases of molecule-surface interaction) on the GPU, computing them in parallel on each molecule of the system. The implementation offers good speed-ups and real time, high quality graphics output
Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.
Bhandarkar, S M; Chirravuri, S; Arnold, J
1996-01-01
Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.
PARALLEL HOP: A SCALABLE HALO FINDER FOR MASSIVE COSMOLOGICAL DATA SETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skory, Stephen; Turk, Matthew J.; Norman, Michael L.
2010-11-15
Modern N-body cosmological simulations contain billions (10{sup 9}) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly employed halo finders, suchmore » that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here, we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes message passing interface and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger data sets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit {sup yt}, an analysis toolkit for adaptive mesh refinement data that include complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and data sets in excess of 2000{sup 3} particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.« less
NASA Astrophysics Data System (ADS)
Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Gadea, R.; Sato, K.
2011-03-01
Presently, dynamic surface-based models are required to contain increasingly larger numbers of points and to propagate them over longer time periods. For large numbers of surface points, the octree data structure can be used as a balance between low memory occupation and relatively rapid access to the stored data. For evolution rules that depend on neighborhood states, extended simulation periods can be obtained by using simplified atomistic propagation models, such as the Cellular Automata (CA). This method, however, has an intrinsic parallel updating nature and the corresponding simulations are highly inefficient when performed on classical Central Processing Units (CPUs), which are designed for the sequential execution of tasks. In this paper, a series of guidelines is presented for the efficient adaptation of octree-based, CA simulations of complex, evolving surfaces into massively parallel computing hardware. A Graphics Processing Unit (GPU) is used as a cost-efficient example of the parallel architectures. For the actual simulations, we consider the surface propagation during anisotropic wet chemical etching of silicon as a computationally challenging process with a wide-spread use in microengineering applications. A continuous CA model that is intrinsically parallel in nature is used for the time evolution. Our study strongly indicates that parallel computations of dynamically evolving surfaces simulated using CA methods are significantly benefited by the incorporation of octrees as support data structures, substantially decreasing the overall computational time and memory usage.
Brian hears: online auditory processing using vectorization over channels.
Fontaine, Bertrand; Goodman, Dan F M; Benichoux, Victor; Brette, Romain
2011-01-01
The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in "Brian Hears," a library for the spiking neural network simulator package "Brian." This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations.
Grace: A cross-platform micromagnetic simulator on graphics processing units
NASA Astrophysics Data System (ADS)
Zhu, Ru
2015-12-01
A micromagnetic simulator running on graphics processing units (GPUs) is presented. Different from GPU implementations of other research groups which are predominantly running on NVidia's CUDA platform, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and is hardware platform independent. It runs on GPUs from venders including NVidia, AMD and Intel, and achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude. The simulator paved the way for running large size micromagnetic simulations on both high-end workstations with dedicated graphics cards and low-end personal computers with integrated graphics cards, and is freely available to download.
Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fijany, A.; Milman, M.; Redding, D.
1994-12-31
In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less
NASA Technical Reports Server (NTRS)
Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.
1995-01-01
The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de
The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less
Multidisciplinary propulsion simulation using NPSS
NASA Technical Reports Server (NTRS)
Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.
1992-01-01
The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, S.; Zacharia, T.; Baltas, N.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less
NASA Technical Reports Server (NTRS)
Hastings, Harold M.; Waner, Stefan
1987-01-01
The Massively Parallel Processor (MPP) is an ideal machine for computer experiments with simulated neural nets as well as more general cellular automata. Experiments using the MPP with a formal model neural network are described. The results on problem mapping and computational efficiency apply equally well to the neural nets of Hopfield, Hinton et al., and Geman and Geman.
Aerodynamic simulation on massively parallel systems
NASA Technical Reports Server (NTRS)
Haeuser, Jochem; Simon, Horst D.
1992-01-01
This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.
RAMA: A file system for massively parallel computers
NASA Technical Reports Server (NTRS)
Miller, Ethan L.; Katz, Randy H.
1993-01-01
This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.
Introduction to a system for implementing neural net connections on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
Introduction to a system for implementing neural net connections on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized elements. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
NASA Astrophysics Data System (ADS)
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named
NASA Astrophysics Data System (ADS)
Calafiura, Paolo; Leggett, Charles; Seuster, Rolf; Tsulaia, Vakhtang; Van Gemmeren, Peter
2015-12-01
AthenaMP is a multi-process version of the ATLAS reconstruction, simulation and data analysis framework Athena. By leveraging Linux fork and copy-on-write mechanisms, it allows for sharing of memory pages between event processors running on the same compute node with little to no change in the application code. Originally targeted to optimize the memory footprint of reconstruction jobs, AthenaMP has demonstrated that it can reduce the memory usage of certain configurations of ATLAS production jobs by a factor of 2. AthenaMP has also evolved to become the parallel event-processing core of the recently developed ATLAS infrastructure for fine-grained event processing (Event Service) which allows the running of AthenaMP inside massively parallel distributed applications on hundreds of compute nodes simultaneously. We present the architecture of AthenaMP, various strategies implemented by AthenaMP for scheduling workload to worker processes (for example: Shared Event Queue and Shared Distributor of Event Tokens) and the usage of AthenaMP in the diversity of ATLAS event processing workloads on various computing resources: Grid, opportunistic resources and HPC.
Towards implementation of cellular automata in Microbial Fuel Cells.
Tsompanas, Michail-Antisthenis I; Adamatzky, Andrew; Sirakoulis, Georgios Ch; Greenman, John; Ieropoulos, Ioannis
2017-01-01
The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway's Game of Life as the 'benchmark' CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions-compared to silicon circuitry-between the different states during computation.
Towards implementation of cellular automata in Microbial Fuel Cells
Adamatzky, Andrew; Sirakoulis, Georgios Ch.; Greenman, John; Ieropoulos, Ioannis
2017-01-01
The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway’s Game of Life as the ‘benchmark’ CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions—compared to silicon circuitry—between the different states during computation. PMID:28498871
(Extreme) Core-collapse Supernova Simulations
NASA Astrophysics Data System (ADS)
Mösta, Philipp
2017-01-01
In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.
Souris, Kevin; Lee, John Aldo; Sterpin, Edmond
2016-04-01
Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.
PARAVT: Parallel Voronoi tessellation code
NASA Astrophysics Data System (ADS)
González, R. E.
2016-10-01
In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.
Parallel Computational Fluid Dynamics: Current Status and Future Requirements
NASA Technical Reports Server (NTRS)
Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)
1994-01-01
One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.
Joint Services Electronics Program
1992-03-05
Packaging Considerations M. T. Raghunath (Professor Abhiram Ranade) A central issue in massively parallel computation is the design of the interconnection...programs on promising network architectures. Publications: [1] M. T. Raghunath and A. G. Ranade, A Simulation-Based Compari- son of Interconnection Networks...more difficult analog function approximation task. Network Design Issues for Fast Global Communication Professor A. Ranade with M.T. Raghunath A
PuLP/XtraPuLP : Partitioning Tools for Extreme-Scale Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slota, George M; Rajamanickam, Sivasankaran; Madduri, Kamesh
2017-09-21
PuLP/XtraPulp is software for partitioning graphs from several real-world problems. Graphs occur in several places in real world from road networks, social networks and scientific simulations. For efficient parallel processing these graphs have to be partitioned (split) with respect to metrics such as computation and communication costs. Our software allows such partitioning for massive graphs.
NASA Astrophysics Data System (ADS)
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
Using collective variables to drive molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme
2013-12-01
A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.
Parallel Logic Programming and Parallel Systems Software and Hardware
1989-07-29
Conference, Dallas TX. January 1985. (55) [Rous75] Roussel, P., "PROLOG: Manuel de Reference et d’Uilisation", Group d’ Intelligence Artificielle , Universite d...completed. Tools were provided for software development using artificial intelligence techniques. Al software for massively parallel architectures was...using artificial intelligence tech- niques. Al software for massively parallel architectures was started. 1. Introduction We describe research conducted
A Review of Enhanced Sampling Approaches for Accelerated Molecular Dynamics
NASA Astrophysics Data System (ADS)
Tiwary, Pratyush; van de Walle, Axel
Molecular dynamics (MD) simulations have become a tool of immense use and popularity for simulating a variety of systems. With the advent of massively parallel computer resources, one now routinely sees applications of MD to systems as large as hundreds of thousands to even several million atoms, which is almost the size of most nanomaterials. However, it is not yet possible to reach laboratory timescales of milliseconds and beyond with MD simulations. Due to the essentially sequential nature of time, parallel computers have been of limited use in solving this so-called timescale problem. Instead, over the years a large range of statistical mechanics based enhanced sampling approaches have been proposed for accelerating molecular dynamics, and accessing timescales that are well beyond the reach of the fastest computers. In this review we provide an overview of these approaches, including the underlying theory, typical applications, and publicly available software resources to implement them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett
Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.
Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett; ...
2017-01-01
Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.
Zonal methods for the parallel execution of range-limited N-body simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Kevin J.; Dror, Ron O.; Shaw, David E.
2007-01-20
Particle simulations in fields ranging from biochemistry to astrophysics require the evaluation of interactions between all pairs of particles separated by less than some fixed interaction radius. The applicability of such simulations is often limited by the time required for calculation, but the use of massive parallelism to accelerate these computations is typically limited by inter-processor communication requirements. Recently, Snir [M. Snir, A note on N-body computations with cutoffs, Theor. Comput. Syst. 37 (2004) 295-318] and Shaw [D.E. Shaw, A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions, J. Comput. Chem. 26 (2005) 1318-1328] independently introducedmore » two distinct methods that offer asymptotic reductions in the amount of data transferred between processors. In the present paper, we show that these schemes represent special cases of a more general class of methods, and introduce several new algorithms in this class that offer practical advantages over all previously described methods for a wide range of problem parameters. We also show that several of these algorithms approach an approximate lower bound on inter-processor data transfer.« less
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
Brian Hears: Online Auditory Processing Using Vectorization Over Channels
Fontaine, Bertrand; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain
2011-01-01
The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in “Brian Hears,” a library for the spiking neural network simulator package “Brian.” This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations. PMID:21811453
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary
2015-01-01
Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.
Particle Based Simulations of Complex Systems with MP2C : Hydrodynamics and Electrostatics
NASA Astrophysics Data System (ADS)
Sutmann, Godehard; Westphal, Lidia; Bolten, Matthias
2010-09-01
Particle based simulation methods are well established paths to explore system behavior on microscopic to mesoscopic time and length scales. With the development of new computer architectures it becomes more and more important to concentrate on local algorithms which do not need global data transfer or reorganisation of large arrays of data across processors. This requirement strongly addresses long-range interactions in particle systems, i.e. mainly hydrodynamic and electrostatic contributions. In this article, emphasis is given to the implementation and parallelization of the Multi-Particle Collision Dynamics method for hydrodynamic contributions and a splitting scheme based on Multigrid for electrostatic contributions. Implementations are done for massively parallel architectures and are demonstrated for the IBM Blue Gene/P architecture Jugene in Jülich.
Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalz, Mark S
2011-07-24
Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps that are unlikely to escape the galaxy.
2011-09-01
Structure Evolution During Sintering From [19]. ...................................20 Figure 10. Ising Model Configuration With Eight Nearest Neighbors...INTRODUCTION A. MOTIVATION The ability to fabricate structural components from metals with a fine (micron- sized), controlled grain size is one of the...hallmarks of modern, structural metallurgy. Powder metallurgy, in particular, consists of powder manufacture, powder blending, compacting, and sintering
Efficiently modeling neural networks on massively parallel computers
NASA Technical Reports Server (NTRS)
Farber, Robert M.
1993-01-01
Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper describes the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SIMD computers and can be implemented on MIMD computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors (which has a sub-linear runtime growth on the order of O(log(number of processors)). We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can extend to arbitrarily large networks (within memory limitations) by merging the memory space of separate processors with fast adjacent processor interprocessor communications. This paper will consider the simulation of only feed forward neural network although this method is extendable to recurrent networks.
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
Simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphicalmore » user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.« less
NASA Astrophysics Data System (ADS)
Furuichi, M.; Nishiura, D.
2015-12-01
Fully Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) have been widely used to solve the continuum and particles motions in the computational geodynamics field. These mesh-free methods are suitable for the problems with the complex geometry and boundary. In addition, their Lagrangian nature allows non-diffusive advection useful for tracking history dependent properties (e.g. rheology) of the material. These potential advantages over the mesh-based methods offer effective numerical applications to the geophysical flow and tectonic processes, which are for example, tsunami with free surface and floating body, magma intrusion with fracture of rock, and shear zone pattern generation of granular deformation. In order to investigate such geodynamical problems with the particle based methods, over millions to billion particles are required for the realistic simulation. Parallel computing is therefore important for handling such huge computational cost. An efficient parallel implementation of SPH and DEM methods is however known to be difficult especially for the distributed-memory architecture. Lagrangian methods inherently show workload imbalance problem for parallelization with the fixed domain in space, because particles move around and workloads change during the simulation. Therefore dynamic load balance is key technique to perform the large scale SPH and DEM simulation. In this work, we present the parallel implementation technique of SPH and DEM method utilizing dynamic load balancing algorithms toward the high resolution simulation over large domain using the massively parallel super computer system. Our method utilizes the imbalances of the executed time of each MPI process as the nonlinear term of parallel domain decomposition and minimizes them with the Newton like iteration method. In order to perform flexible domain decomposition in space, the slice-grid algorithm is used. Numerical tests show that our approach is suitable for solving the particles with different calculation costs (e.g. boundary particles) as well as the heterogeneous computer architecture. We analyze the parallel efficiency and scalability on the super computer systems (K-computer, Earth simulator 3, etc.).
The EMCC / DARPA Massively Parallel Electromagnetic Scattering Project
NASA Technical Reports Server (NTRS)
Woo, Alex C.; Hill, Kueichien C.
1996-01-01
The Electromagnetic Code Consortium (EMCC) was sponsored by the Advanced Research Program Agency (ARPA) to demonstrate the effectiveness of massively parallel computing in large scale radar signature predictions. The EMCC/ARPA project consisted of three parts.
Long-time atomistic simulations with the Parallel Replica Dynamics method
NASA Astrophysics Data System (ADS)
Perez, Danny
Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1998-01-01
The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate a radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimization (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behavior by interaction of a large number of very simple models may be an inspiration for the above algorithms, the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should be now, even though the widespread availability of massively parallel processing is still a few years away.
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1999-01-01
The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate. A radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimisation (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behaviour by interaction of a large number of very simple models may be an inspiration for the above algorithms; the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should begin now, even though the widespread availability of massively parallel processing is still a few years away.
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Laflin, Brenda E. Gile; Kemmerly, Guy T.; Campbell, Bryan A.
1999-01-01
The paper identifies speed, agility, human interface, generation of sensitivity information, task decomposition, and data transmission (including storage) as important attributes for a computer environment to have in order to support engineering design effectively. It is argued that when examined in terms of these attributes the presently available environment can be shown to be inadequate. A radical improvement is needed, and it may be achieved by combining new methods that have recently emerged from multidisciplinary design optimisation (MDO) with massively parallel processing computer technology. The caveat is that, for successful use of that technology in engineering computing, new paradigms for computing will have to be developed - specifically, innovative algorithms that are intrinsically parallel so that their performance scales up linearly with the number of processors. It may be speculated that the idea of simulating a complex behaviour by interaction of a large number of very simple models may be an inspiration for the above algorithms; the cellular automata are an example. Because of the long lead time needed to develop and mature new paradigms, development should begin now, even though the widespread availability of massively parallel processing is still a few years away.
Track finding in ATLAS using GPUs
NASA Astrophysics Data System (ADS)
Mattmann, J.; Schmitt, C.
2012-12-01
The reconstruction and simulation of collision events is a major task in modern HEP experiments involving several ten thousands of standard CPUs. On the other hand the graphics processors (GPUs) have become much more powerful and are by far outperforming the standard CPUs in terms of floating point operations due to their massive parallel approach. The usage of these GPUs could therefore significantly reduce the overall reconstruction time per event or allow for the usage of more sophisticated algorithms. In this paper the track finding in the ATLAS experiment will be used as an example on how the GPUs can be used in this context: the implementation on the GPU requires a change in the algorithmic flow to allow the code to work in the rather limited environment on the GPU in terms of memory, cache, and transfer speed from and to the GPU and to make use of the massive parallel computation. Both, the specific implementation of parts of the ATLAS track reconstruction chain and the performance improvements obtained will be discussed.
Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis
Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders; ...
2017-09-01
Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less
Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders
Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less
Topical perspective on massive threading and parallelism.
Farber, Robert M
2011-09-01
Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.
Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue
NASA Astrophysics Data System (ADS)
Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.
2017-11-01
The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Box schemes and their implementation on the iPSC/860
NASA Technical Reports Server (NTRS)
Chattot, J. J.; Merriam, M. L.
1991-01-01
Research on algoriths for efficiently solving fluid flow problems on massively parallel computers is continued in the present paper. Attention is given to the implementation of a box scheme on the iPSC/860, a massively parallel computer with a peak speed of 10 Gflops and a memory of 128 Mwords. A domain decomposition approach to parallelism is used.
Scan line graphics generation on the massively parallel processor
NASA Technical Reports Server (NTRS)
Dorband, John E.
1988-01-01
Described here is how researchers implemented a scan line graphics generation algorithm on the Massively Parallel Processor (MPP). Pixels are computed in parallel and their results are applied to the Z buffer in large groups. To perform pixel value calculations, facilitate load balancing across the processors and apply the results to the Z buffer efficiently in parallel requires special virtual routing (sort computation) techniques developed by the author especially for use on single-instruction multiple-data (SIMD) architectures.
A massively parallel computational approach to coupled thermoelastic/porous gas flow problems
NASA Technical Reports Server (NTRS)
Shia, David; Mcmanus, Hugh L.
1995-01-01
A new computational scheme for coupled thermoelastic/porous gas flow problems is presented. Heat transfer, gas flow, and dynamic thermoelastic governing equations are expressed in fully explicit form, and solved on a massively parallel computer. The transpiration cooling problem is used as an example problem. The numerical solutions have been verified by comparison to available analytical solutions. Transient temperature, pressure, and stress distributions have been obtained. Small spatial oscillations in pressure and stress have been observed, which would be impractical to predict with previously available schemes. Comparisons between serial and massively parallel versions of the scheme have also been made. The results indicate that for small scale problems the serial and parallel versions use practically the same amount of CPU time. However, as the problem size increases the parallel version becomes more efficient than the serial version.
Advances in simulation of wave interactions with extended MHD phenomena
NASA Astrophysics Data System (ADS)
Batchelor, D.; Abla, G.; D'Azevedo, E.; Bateman, G.; Bernholdt, D. E.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Foley, S.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Bit-parallel arithmetic in a massively-parallel associative processor
NASA Technical Reports Server (NTRS)
Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.
1992-01-01
A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.
ALEGRA -- A massively parallel h-adaptive code for solid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, R.M.; Wong, M.K.; Boucheron, E.A.
1997-12-31
ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less
Final Report, DE-FG01-06ER25718 Domain Decomposition and Parallel Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widlund, Olof B.
2015-06-09
The goal of this project is to develop and improve domain decomposition algorithms for a variety of partial differential equations such as those of linear elasticity and electro-magnetics.These iterative methods are designed for massively parallel computing systems and allow the fast solution of the very large systems of algebraic equations that arise in large scale and complicated simulations. A special emphasis is placed on problems arising from Maxwell's equation. The approximate solvers, the preconditioners, are combined with the conjugate gradient method and must always include a solver of a coarse model in order to have a performance which is independentmore » of the number of processors used in the computer simulation. A recent development allows for an adaptive construction of this coarse component of the preconditioner.« less
NASA Astrophysics Data System (ADS)
Kjærgaard, Thomas; Baudin, Pablo; Bykov, Dmytro; Eriksen, Janus Juul; Ettenhuber, Patrick; Kristensen, Kasper; Larkin, Jeff; Liakh, Dmitry; Pawłowski, Filip; Vose, Aaron; Wang, Yang Min; Jørgensen, Poul
2017-03-01
We present a scalable cross-platform hybrid MPI/OpenMP/OpenACC implementation of the Divide-Expand-Consolidate (DEC) formalism with portable performance on heterogeneous HPC architectures. The Divide-Expand-Consolidate formalism is designed to reduce the steep computational scaling of conventional many-body methods employed in electronic structure theory to linear scaling, while providing a simple mechanism for controlling the error introduced by this approximation. Our massively parallel implementation of this general scheme has three levels of parallelism, being a hybrid of the loosely coupled task-based parallelization approach and the conventional MPI +X programming model, where X is either OpenMP or OpenACC. We demonstrate strong and weak scalability of this implementation on heterogeneous HPC systems, namely on the GPU-based Cray XK7 Titan supercomputer at the Oak Ridge National Laboratory. Using the "resolution of the identity second-order Møller-Plesset perturbation theory" (RI-MP2) as the physical model for simulating correlated electron motion, the linear-scaling DEC implementation is applied to 1-aza-adamantane-trione (AAT) supramolecular wires containing up to 40 monomers (2440 atoms, 6800 correlated electrons, 24 440 basis functions and 91 280 auxiliary functions). This represents the largest molecular system treated at the MP2 level of theory, demonstrating an efficient removal of the scaling wall pertinent to conventional quantum many-body methods.
High performance cellular level agent-based simulation with FLAME for the GPU.
Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela
2010-05-01
Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.
Dynamic file-access characteristics of a production parallel scientific workload
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1994-01-01
Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the expected workload, but thus far there have been no comprehensive workload characterizations of multiprocessor file systems. This paper presents the results of a three week tracing study in which all file-related activity on a massively parallel computer was recorded. Our instrumentation differs from previous efforts in that it collects information about every I/O request and about the mix of jobs running in a production environment. We also present the results of a trace-driven caching simulation and recommendations for designers of multiprocessor file systems.
Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary
2015-01-01
Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis. PMID:25806784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo; Sterpin, Edmond
2016-04-15
Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithmmore » of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.« less
Increasing the reach of forensic genetics with massively parallel sequencing.
Budowle, Bruce; Schmedes, Sarah E; Wendt, Frank R
2017-09-01
The field of forensic genetics has made great strides in the analysis of biological evidence related to criminal and civil matters. More so, the discipline has set a standard of performance and quality in the forensic sciences. The advent of massively parallel sequencing will allow the field to expand its capabilities substantially. This review describes the salient features of massively parallel sequencing and how it can impact forensic genetics. The features of this technology offer increased number and types of genetic markers that can be analyzed, higher throughput of samples, and the capability of targeting different organisms, all by one unifying methodology. While there are many applications, three are described where massively parallel sequencing will have immediate impact: molecular autopsy, microbial forensics and differentiation of monozygotic twins. The intent of this review is to expose the forensic science community to the potential enhancements that have or are soon to arrive and demonstrate the continued expansion the field of forensic genetics and its service in the investigation of legal matters.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; Ng, Cho-Kuen; Rivetta, Claudio
2017-10-01
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.
OWL: A scalable Monte Carlo simulation suite for finite-temperature study of materials
NASA Astrophysics Data System (ADS)
Li, Ying Wai; Yuk, Simuck F.; Cooper, Valentino R.; Eisenbach, Markus; Odbadrakh, Khorgolkhuu
The OWL suite is a simulation package for performing large-scale Monte Carlo simulations. Its object-oriented, modular design enables it to interface with various external packages for energy evaluations. It is therefore applicable to study the finite-temperature properties for a wide range of systems: from simple classical spin models to materials where the energy is evaluated by ab initio methods. This scheme not only allows for the study of thermodynamic properties based on first-principles statistical mechanics, it also provides a means for massive, multi-level parallelism to fully exploit the capacity of modern heterogeneous computer architectures. We will demonstrate how improved strong and weak scaling is achieved by employing novel, parallel and scalable Monte Carlo algorithms, as well as the applications of OWL to a few selected frontier materials research problems. This research was supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725.
Parallel computing of a climate model on the dawn 1000 by domain decomposition method
NASA Astrophysics Data System (ADS)
Bi, Xunqiang
1997-12-01
In this paper the parallel computing of a grid-point nine-level atmospheric general circulation model on the Dawn 1000 is introduced. The model was developed by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). The Dawn 1000 is a MIMD massive parallel computer made by National Research Center for Intelligent Computer (NCIC), CAS. A two-dimensional domain decomposition method is adopted to perform the parallel computing. The potential ways to increase the speed-up ratio and exploit more resources of future massively parallel supercomputation are also discussed.
Multi-threading: A new dimension to massively parallel scientific computation
NASA Astrophysics Data System (ADS)
Nielsen, Ida M. B.; Janssen, Curtis L.
2000-06-01
Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.
Neural Parallel Engine: A toolbox for massively parallel neural signal processing.
Tam, Wing-Kin; Yang, Zhi
2018-05-01
Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy-efficient STDP-based learning circuits with memristor synapses
NASA Astrophysics Data System (ADS)
Wu, Xinyu; Saxena, Vishal; Campbell, Kristy A.
2014-05-01
It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex pattern recognition problems. Memristor cross-point arrays, integrated with standard CMOS technology, are expected to result in massively parallel and low-power Neuromorphic computing architectures. Recently, significant progress has been made in spiking neural networks (SNN) which emulate data processing in the cortical brain. These architectures comprise of a dense network of neurons and the synapses formed between the axons and dendrites. Further, unsupervised or supervised competitive learning schemes are being investigated for global training of the network. In contrast to a software implementation, hardware realization of these networks requires massive circuit overhead for addressing and individually updating network weights. Instead, we employ bio-inspired learning rules such as the spike-timing-dependent plasticity (STDP) to efficiently update the network weights locally. To realize SNNs on a chip, we propose to use densely integrating mixed-signal integrate-andfire neurons (IFNs) and cross-point arrays of memristors in back-end-of-the-line (BEOL) of CMOS chips. Novel IFN circuits have been designed to drive memristive synapses in parallel while maintaining overall power efficiency (<1 pJ/spike/synapse), even at spike rate greater than 10 MHz. We present circuit design details and simulation results of the IFN with memristor synapses, its response to incoming spike trains and STDP learning characterization.
Modeling Large Scale Circuits Using Massively Parallel Descrete-Event Simulation
2013-06-01
exascale levels of performance, the smallest elements of a single processor can greatly affect the entire computer system (e.g. its power consumption...grow to exascale levels of performance, the smallest elements of a single processor can greatly affect the entire computer system (e.g. its power...Warp Speed 10.0. 2.0 INTRODUCTION As supercomputer systems approach exascale , the core count will exceed 1024 and number of transistors used in
Ensemble Sampling vs. Time Sampling in Molecular Dynamics Simulations of Thermal Conductivity
Gordiz, Kiarash; Singh, David J.; Henry, Asegun
2015-01-29
In this report we compare time sampling and ensemble averaging as two different methods available for phase space sampling. For the comparison, we calculate thermal conductivities of solid argon and silicon structures, using equilibrium molecular dynamics. We introduce two different schemes for the ensemble averaging approach, and show that both can reduce the total simulation time as compared to time averaging. It is also found that velocity rescaling is an efficient mechanism for phase space exploration. Although our methodology is tested using classical molecular dynamics, the ensemble generation approaches may find their greatest utility in computationally expensive simulations such asmore » first principles molecular dynamics. For such simulations, where each time step is costly, time sampling can require long simulation times because each time step must be evaluated sequentially and therefore phase space averaging is achieved through sequential operations. On the other hand, with ensemble averaging, phase space sampling can be achieved through parallel operations, since each ensemble is independent. For this reason, particularly when using massively parallel architectures, ensemble sampling can result in much shorter simulation times and exhibits similar overall computational effort.« less
The language parallel Pascal and other aspects of the massively parallel processor
NASA Technical Reports Server (NTRS)
Reeves, A. P.; Bruner, J. D.
1982-01-01
A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.
Molecular Dynamics Simulations of an Idealized Shock Tube: N2 in Ar Bath Driven by He
NASA Astrophysics Data System (ADS)
Piskulich, Ezekiel Ashe; Sewell, Thomas D.; Thompson, Donald L.
2015-06-01
The dynamics of 10% N2 in Ar initially at 298 K in an idealized shock tube driven by He was studied using molecular dynamics. The simulations were performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Nitrogen was modeled as a Morse oscillator and non-covalent interactions were approximated by the Buckingham exponential-6 pair potential. The initial pressures in the He driver gas and the driven N2/Ar gas were 1000 atm and 20 atm, respectively. Microcanonical trajectories were followed for 2 ns following release of the driver gas. Results for excitation and subsequent relaxation of the N2, as well as properties of the gas during the simulations, will be reported.
Performance bounds on parallel self-initiating discrete-event
NASA Technical Reports Server (NTRS)
Nicol, David M.
1990-01-01
The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, Edoardo; Kowalski, Karol
The NorthWest Chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers[6, 28, 49]. It contains an umbrella of modules that today includes Self Consistent Field (SCF), second order Mller-Plesset perturbation theory (MP2), Coupled Cluster, multi-conguration selfconsistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics, Car-Parrinello molecular dynamics, classical molecular dynamics (MD), QM/MM,more » AIMD/MM, GIAO NMR, COSMO, COSMO-SMD, and RISM solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities[ 22]. Moreover new capabilities continue to be added with each new release.« less
Implementation of collisions on GPU architecture in the Vorpal code
NASA Astrophysics Data System (ADS)
Leddy, Jarrod; Averkin, Sergey; Cowan, Ben; Sides, Scott; Werner, Greg; Cary, John
2017-10-01
The Vorpal code contains a variety of collision operators allowing for the simulation of plasmas containing multiple charge species interacting with neutrals, background gas, and EM fields. These existing algorithms have been improved and reimplemented to take advantage of the massive parallelization allowed by GPU architecture. The use of GPUs is most effective when algorithms are single-instruction multiple-data, so particle collisions are an ideal candidate for this parallelization technique due to their nature as a series of independent processes with the same underlying operation. This refactoring required data memory reorganization and careful consideration of device/host data allocation to minimize memory access and data communication per operation. Successful implementation has resulted in an order of magnitude increase in simulation speed for a test-case involving multiple binary collisions using the null collision method. Work supported by DARPA under contract W31P4Q-16-C-0009.
LAMMPS strong scaling performance optimization on Blue Gene/Q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffman, Paul; Jiang, Wei; Romero, Nichols A.
2014-11-12
LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using anmore » 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.« less
Supercomputer simulations of structure formation in the Universe
NASA Astrophysics Data System (ADS)
Ishiyama, Tomoaki
2017-06-01
We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan
2004-01-01
Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335
Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Zhong, Y. P.; Deng, Y. F.
2013-12-21
Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.
Algorithmic commonalities in the parallel environment
NASA Technical Reports Server (NTRS)
Mcanulty, Michael A.; Wainer, Michael S.
1987-01-01
The ultimate aim of this project was to analyze procedures from substantially different application areas to discover what is either common or peculiar in the process of conversion to the Massively Parallel Processor (MPP). Three areas were identified: molecular dynamic simulation, production systems (rule systems), and various graphics and vision algorithms. To date, only selected graphics procedures have been investigated. They are the most readily available, and produce the most visible results. These include simple polygon patch rendering, raycasting against a constructive solid geometric model, and stochastic or fractal based textured surface algorithms. Only the simplest of conversion strategies, mapping a major loop to the array, has been investigated so far. It is not entirely satisfactory.
Zwier, Matthew C.; Adelman, Joshua L.; Kaus, Joseph W.; Pratt, Adam J.; Wong, Kim F.; Rego, Nicholas B.; Suárez, Ernesto; Lettieri, Steven; Wang, David W.; Grabe, Michael; Zuckerman, Daniel M.; Chong, Lillian T.
2015-01-01
The weighted ensemble (WE) path sampling approach orchestrates an ensemble of parallel calculations with intermittent communication to enhance the sampling of rare events, such as molecular associations or conformational changes in proteins or peptides. Trajectories are replicated and pruned in a way that focuses computational effort on under-explored regions of configuration space while maintaining rigorous kinetics. To enable the simulation of rare events at any scale (e.g. atomistic, cellular), we have developed an open-source, interoperable, and highly scalable software package for the execution and analysis of WE simulations: WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and Analysis). WESTPA scales to thousands of CPU cores and includes a suite of analysis tools that have been implemented in a massively parallel fashion. The software has been designed to interface conveniently with any dynamics engine and has already been used with a variety of molecular dynamics (e.g. GROMACS, NAMD, OpenMM, AMBER) and cell-modeling packages (e.g. BioNetGen, MCell). WESTPA has been in production use for over a year, and its utility has been demonstrated for a broad set of problems, ranging from atomically detailed host-guest associations to non-spatial chemical kinetics of cellular signaling networks. The following describes the design and features of WESTPA, including the facilities it provides for running WE simulations, storing and analyzing WE simulation data, as well as examples of input and output. PMID:26392815
The factorization of large composite numbers on the MPP
NASA Technical Reports Server (NTRS)
Mckurdy, Kathy J.; Wunderlich, Marvin C.
1987-01-01
The continued fraction method for factoring large integers (CFRAC) was an ideal algorithm to be implemented on a massively parallel computer such as the Massively Parallel Processor (MPP). After much effort, the first 60 digit number was factored on the MPP using about 6 1/2 hours of array time. Although this result added about 10 digits to the size number that could be factored using CFRAC on a serial machine, it was already badly beaten by the implementation of Davis and Holdridge on the CRAY-1 using the quadratic sieve, an algorithm which is clearly superior to CFRAC for large numbers. An algorithm is illustrated which is ideally suited to the single instruction multiple data (SIMD) massively parallel architecture and some of the modifications which were needed in order to make the parallel implementation effective and efficient are described.
NASA Astrophysics Data System (ADS)
Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo
2016-10-01
Laser-driven accelerators gained an increased attention over the past decades. Typical modeling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) simulations. PIC simulations, however, are very computationally expensive due to the disparity of the relevant scales ranging from the laser wavelength, in the micrometer range, to the acceleration length, currently beyond the ten centimeter range. To minimize the gap between these despair scales the ponderomotive guiding center (PGC) algorithm is a promising approach. By describing the evolution of the laser pulse envelope separately, only the scales larger than the plasma wavelength are required to be resolved in the PGC algorithm, leading to speedups in several orders of magnitude. Previous work was limited to two dimensions. Here we present the implementation of the 3D version of a PGC solver into the massively parallel, fully relativistic PIC code OSIRIS. We extended the solver to include periodic boundary conditions and parallelization in all spatial dimensions. We present benchmarks for distributed and shared memory parallelization. We also discuss the stability of the PGC solver.
MPI parallelization of Vlasov codes for the simulation of nonlinear laser-plasma interactions
NASA Astrophysics Data System (ADS)
Savchenko, V.; Won, K.; Afeyan, B.; Decyk, V.; Albrecht-Marc, M.; Ghizzo, A.; Bertrand, P.
2003-10-01
The simulation of optical mixing driven KEEN waves [1] and electron plasma waves [1] in laser-produced plasmas require nonlinear kinetic models and massive parallelization. We use Massage Passing Interface (MPI) libraries and Appleseed [2] to solve the Vlasov Poisson system of equations on an 8 node dual processor MAC G4 cluster. We use the semi-Lagrangian time splitting method [3]. It requires only row-column exchanges in the global data redistribution, minimizing the total number of communications between processors. Recurrent communication patterns for 2D FFTs involves global transposition. In the Vlasov-Maxwell case, we use splitting into two 1D spatial advections and a 2D momentum advection [4]. Discretized momentum advection equations have a double loop structure with the outer index being assigned to different processors. We adhere to a code structure with separate routines for calculations and data management for parallel computations. [1] B. Afeyan et al., IFSA 2003 Conference Proceedings, Monterey, CA [2] V. K. Decyk, Computers in Physics, 7, 418 (1993) [3] Sonnendrucker et al., JCP 149, 201 (1998) [4] Begue et al., JCP 151, 458 (1999)
Matthew Parks; Richard Cronn; Aaron Liston
2009-01-01
We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome) generated using multiplexed massively parallel sequencing. We found that 30/33 ingroup nodes resolved wlth > 95-percent bootstrap support; this is a substantial improvement relative...
Fast, Massively Parallel Data Processors
NASA Technical Reports Server (NTRS)
Heaton, Robert A.; Blevins, Donald W.; Davis, ED
1994-01-01
Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.
Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures
NASA Technical Reports Server (NTRS)
Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.
1998-01-01
In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.
Kjaergaard, Thomas; Baudin, Pablo; Bykov, Dmytro; ...
2016-11-16
Here, we present a scalable cross-platform hybrid MPI/OpenMP/OpenACC implementation of the Divide–Expand–Consolidate (DEC) formalism with portable performance on heterogeneous HPC architectures. The Divide–Expand–Consolidate formalism is designed to reduce the steep computational scaling of conventional many-body methods employed in electronic structure theory to linear scaling, while providing a simple mechanism for controlling the error introduced by this approximation. Our massively parallel implementation of this general scheme has three levels of parallelism, being a hybrid of the loosely coupled task-based parallelization approach and the conventional MPI +X programming model, where X is either OpenMP or OpenACC. We demonstrate strong and weak scalabilitymore » of this implementation on heterogeneous HPC systems, namely on the GPU-based Cray XK7 Titan supercomputer at the Oak Ridge National Laboratory. Using the “resolution of the identity second-order Moller–Plesset perturbation theory” (RI-MP2) as the physical model for simulating correlated electron motion, the linear-scaling DEC implementation is applied to 1-aza-adamantane-trione (AAT) supramolecular wires containing up to 40 monomers (2440 atoms, 6800 correlated electrons, 24 440 basis functions and 91 280 auxiliary functions). This represents the largest molecular system treated at the MP2 level of theory, demonstrating an efficient removal of the scaling wall pertinent to conventional quantum many-body methods.« less
Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Liu, Nan-Suey
2005-01-01
The three-dimensional, viscous, turbulent, reacting and non-reacting flow characteristics of a model gas turbine combustor operating on air/methane are simulated via an unstructured and massively parallel Reynolds-Averaged Navier-Stokes (RANS) code. This serves to demonstrate the capabilities of the code for design and analysis of real combustor engines. The effects of some design features of combustors are examined. In addition, the computed results are validated against experimental data.
Electromagnetic Simulations for Aerospace Application Final Report CRADA No. TC-0376-92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, N.; Meredith, S.
Electromagnetic (EM) simulation tools play an important role in the design cycle, allowing optimization of a design before it is fabricated for testing. The purpose of this cooperative project was to provide Lockheed with state-of-the-art electromagnetic (EM) simulation software that will enable the optimal design of the next generation of low-observable (LO) military aircraft through the VHF regime. More particularly, the project was principally code development and validation, its goal to produce a 3-D, conforming grid,time-domain (TD) EM simulation tool, consisting of a mesh generator, a DS13D-based simulation kernel, and an RCS postprocessor, which was useful in the optimization ofmore » LO aircraft, both for full-aircraft simulations run on a massively parallel computer and for small scale problems run on a UNIX workstation.« less
The build up of the correlation between halo spin and the large-scale structure
NASA Astrophysics Data System (ADS)
Wang, Peng; Kang, Xi
2018-01-01
Both simulations and observations have confirmed that the spin of haloes/galaxies is correlated with the large-scale structure (LSS) with a mass dependence such that the spin of low-mass haloes/galaxies tend to be parallel with the LSS, while that of massive haloes/galaxies tend to be perpendicular with the LSS. It is still unclear how this mass dependence is built up over time. We use N-body simulations to trace the evolution of the halo spin-LSS correlation and find that at early times the spin of all halo progenitors is parallel with the LSS. As time goes on, mass collapsing around massive halo is more isotropic, especially the recent mass accretion along the slowest collapsing direction is significant and it brings the halo spin to be perpendicular with the LSS. Adopting the fractional anisotropy (FA) parameter to describe the degree of anisotropy of the large-scale environment, we find that the spin-LSS correlation is a strong function of the environment such that a higher FA (more anisotropic environment) leads to an aligned signal, and a lower anisotropy leads to a misaligned signal. In general, our results show that the spin-LSS correlation is a combined consequence of mass flow and halo growth within the cosmic web. Our predicted environmental dependence between spin and large-scale structure can be further tested using galaxy surveys.
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
NASA Astrophysics Data System (ADS)
Barnes, Brian C.; Leiter, Kenneth W.; Becker, Richard; Knap, Jaroslaw; Brennan, John K.
2017-07-01
We describe the development, accuracy, and efficiency of an automation package for molecular simulation, the large-scale atomic/molecular massively parallel simulator (LAMMPS) integrated materials engine (LIME). Heuristics and algorithms employed for equation of state (EOS) calculation using a particle-based model of a molecular crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX), are described in detail. The simulation method for the particle-based model is energy-conserving dissipative particle dynamics, but the techniques used in LIME are generally applicable to molecular dynamics simulations with a variety of particle-based models. The newly created tool set is tested through use of its EOS data in plate impact and Taylor anvil impact continuum simulations of solid RDX. The coarse-grain model results from LIME provide an approach to bridge the scales from atomistic simulations to continuum simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang
2015-01-15
This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less
Massively Parallel Real-Time TDDFT Simulations of Electronic Stopping Processes
NASA Astrophysics Data System (ADS)
Yost, Dillon; Lee, Cheng-Wei; Draeger, Erik; Correa, Alfredo; Schleife, Andre; Kanai, Yosuke
Electronic stopping describes transfer of kinetic energy from fast-moving charged particles to electrons, producing massive electronic excitations in condensed matter. Understanding this phenomenon for ion irradiation has implications in modern technologies, ranging from nuclear reactors, to semiconductor devices for aerospace missions, to proton-based cancer therapy. Recent advances in high-performance computing allow us to achieve an accurate parameter-free description of these phenomena through numerical simulations. Here we discuss results from our recently-developed large-scale real-time TDDFT implementation for electronic stopping processes in important example materials such as metals, semiconductors, liquid water, and DNA. We will illustrate important insight into the physics underlying electronic stopping and we discuss current limitations of our approach both regarding physical and numerical approximations. This work is supported by the DOE through the INCITE awards and by the NSF. Part of this work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
A transient FETI methodology for large-scale parallel implicit computations in structural mechanics
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier
1992-01-01
Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.
Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul
2014-09-01
This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projectedmore » on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.« less
NASA Technical Reports Server (NTRS)
Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)
1990-01-01
Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; ...
2017-10-10
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres
NASA Astrophysics Data System (ADS)
Egel, Amos; Pattelli, Lorenzo; Mazzamuto, Giacomo; Wiersma, Diederik S.; Lemmer, Uli
2017-09-01
CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles. Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing units using the CUDA computing platform. The combination of these techniques allows to efficiently address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper, we validate near- and far-field distributions against the well-established multi-sphere T-matrix (MSTM) code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system comprising 105 particles.
NASA Astrophysics Data System (ADS)
Featherstone, N. A.; Aurnou, J. M.; Yadav, R. K.; Heimpel, M. H.; Soderlund, K. M.; Matsui, H.; Stanley, S.; Brown, B. P.; Glatzmaier, G.; Olson, P.; Buffett, B. A.; Hwang, L.; Kellogg, L. H.
2017-12-01
In the past three years, CIG's Dynamo Working Group has successfully ported the Rayleigh Code to the Argonne Leadership Computer Facility's Mira BG/Q device. In this poster, we present some our first results, showing simulations of 1) convection in the solar convection zone; 2) dynamo action in Earth's core and 3) convection in the jovian deep atmosphere. These simulations have made efficient use of 131 thousand cores, 131 thousand cores and 232 thousand cores, respectively, on Mira. In addition to our novel results, the joys and logistical challenges of carrying out such large runs will also be discussed.
Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans
2008-04-28
Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.
pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott
2016-10-01
We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.
Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations
NASA Astrophysics Data System (ADS)
Labadens, M.; Chapon, D.; Pomaréde, D.; Teyssier, R.
2012-09-01
Computer simulations are important in current cosmological research. Those simulations run in parallel on thousands of processors, and produce huge amount of data. Adaptive mesh refinement is used to reduce the computing cost while keeping good numerical accuracy in regions of interest. RAMSES is a cosmological code developed by the Commissariat à l'énergie atomique et aux énergies alternatives (English: Atomic Energy and Alternative Energies Commission) which uses Octree adaptive mesh refinement. Compared to grid based AMR, the Octree AMR has the advantage to fit very precisely the adaptive resolution of the grid to the local problem complexity. However, this specific octree data type need some specific software to be visualized, as generic visualization tools works on Cartesian grid data type. This is why the PYMSES software has been also developed by our team. It relies on the python scripting language to ensure a modular and easy access to explore those specific data. In order to take advantage of the High Performance Computer which runs the RAMSES simulation, it also uses MPI and multiprocessing to run some parallel code. We would like to present with more details our PYMSES software with some performance benchmarks. PYMSES has currently two visualization techniques which work directly on the AMR. The first one is a splatting technique, and the second one is a custom ray tracing technique. Both have their own advantages and drawbacks. We have also compared two parallel programming techniques with the python multiprocessing library versus the use of MPI run. The load balancing strategy has to be smartly defined in order to achieve a good speed up in our computation. Results obtained with this software are illustrated in the context of a massive, 9000-processor parallel simulation of a Milky Way-like galaxy.
Collisionless stellar hydrodynamics as an efficient alternative to N-body methods
NASA Astrophysics Data System (ADS)
Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard
2013-01-01
The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.
Enhanced sampling techniques in biomolecular simulations.
Spiwok, Vojtech; Sucur, Zoran; Hosek, Petr
2015-11-01
Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules. Several approaches have been developed to overcome this obstacle, including application of massively parallel and special purpose computers or non-conventional hardware. Methodological approaches are represented by coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new simulation approaches, the theory behind enhanced sampling methods and success stories of their applications with a direct impact on biotechnology or drug design. Copyright © 2014 Elsevier Inc. All rights reserved.
High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.
1997-01-01
Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarashvili, Vakhtang; Merzari, Elia; Obabko, Aleksandr
We analyze the potential performance benefits of estimating expected quantities in large eddy simulations of turbulent flows using true ensembles rather than ergodic time averaging. Multiple realizations of the same flow are simulated in parallel, using slightly perturbed initial conditions to create unique instantaneous evolutions of the flow field. Each realization is then used to calculate statistical quantities. Provided each instance is sufficiently de-correlated, this approach potentially allows considerable reduction in the time to solution beyond the strong scaling limit for a given accuracy. This study focuses on the theory and implementation of the methodology in Nek5000, a massively parallelmore » open-source spectral element code.« less
Makarashvili, Vakhtang; Merzari, Elia; Obabko, Aleksandr; ...
2017-06-07
We analyze the potential performance benefits of estimating expected quantities in large eddy simulations of turbulent flows using true ensembles rather than ergodic time averaging. Multiple realizations of the same flow are simulated in parallel, using slightly perturbed initial conditions to create unique instantaneous evolutions of the flow field. Each realization is then used to calculate statistical quantities. Provided each instance is sufficiently de-correlated, this approach potentially allows considerable reduction in the time to solution beyond the strong scaling limit for a given accuracy. This study focuses on the theory and implementation of the methodology in Nek5000, a massively parallelmore » open-source spectral element code.« less
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce
Pratx, Guillem; Xing, Lei
2011-01-01
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100 billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program. The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s. The distributed simulation produced the same output as the original implementation and was resilient to hardware failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. PMID:22191916
Parallel Evolutionary Optimization for Neuromorphic Network Training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, Catherine D; Disney, Adam; Singh, Susheela
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impactmore » the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.« less
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
NASA Technical Reports Server (NTRS)
Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen
1987-01-01
NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.
Component Framework for Loosely Coupled High Performance Integrated Plasma Simulations
NASA Astrophysics Data System (ADS)
Elwasif, W. R.; Bernholdt, D. E.; Shet, A. G.; Batchelor, D. B.; Foley, S.
2010-11-01
We present the design and implementation of a component-based simulation framework for the execution of coupled time-dependent plasma modeling codes. The Integrated Plasma Simulator (IPS) provides a flexible lightweight component model that streamlines the integration of stand alone codes into coupled simulations. Standalone codes are adapted to the IPS component interface specification using a thin wrapping layer implemented in the Python programming language. The framework provides services for inter-component method invocation, configuration, task, and data management, asynchronous event management, simulation monitoring, and checkpoint/restart capabilities. Services are invoked, as needed, by the computational components to coordinate the execution of different aspects of coupled simulations on Massive parallel Processing (MPP) machines. A common plasma state layer serves as the foundation for inter-component, file-based data exchange. The IPS design principles, implementation details, and execution model will be presented, along with an overview of several use cases.
Computing the apparent centroid of radar targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.E.
1996-12-31
A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based onmore » a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.« less
Algorithms and programming tools for image processing on the MPP
NASA Technical Reports Server (NTRS)
Reeves, A. P.
1985-01-01
Topics addressed include: data mapping and rotational algorithms for the Massively Parallel Processor (MPP); Parallel Pascal language; documentation for the Parallel Pascal Development system; and a description of the Parallel Pascal language used on the MPP.
The architecture of tomorrow's massively parallel computer
NASA Technical Reports Server (NTRS)
Batcher, Ken
1987-01-01
Goodyear Aerospace delivered the Massively Parallel Processor (MPP) to NASA/Goddard in May 1983, over three years ago. Ever since then, Goodyear has tried to look in a forward direction. There is always some debate as to which way is forward when it comes to supercomputer architecture. Improvements to the MPP's massively parallel architecture are discussed in the areas of data I/O, memory capacity, connectivity, and indirect (or local) addressing. In I/O, transfer rates up to 640 megabytes per second can be achieved. There are devices that can supply the data and accept it at this rate. The memory capacity can be increased up to 128 megabytes in the ARU and over a gigabyte in the staging memory. For connectivity, there are several different kinds of multistage networks that should be considered.
GPU-completeness: theory and implications
NASA Astrophysics Data System (ADS)
Lin, I.-Jong
2011-01-01
This paper formalizes a major insight into a class of algorithms that relate parallelism and performance. The purpose of this paper is to define a class of algorithms that trades off parallelism for quality of result (e.g. visual quality, compression rate), and we propose a similar method for algorithmic classification based on NP-Completeness techniques, applied toward parallel acceleration. We will define this class of algorithm as "GPU-Complete" and will postulate the necessary properties of the algorithms for admission into this class. We will also formally relate his algorithmic space and imaging algorithms space. This concept is based upon our experience in the print production area where GPUs (Graphic Processing Units) have shown a substantial cost/performance advantage within the context of HPdelivered enterprise services and commercial printing infrastructure. While CPUs and GPUs are converging in their underlying hardware and functional blocks, their system behaviors are clearly distinct in many ways: memory system design, programming paradigms, and massively parallel SIMD architecture. There are applications that are clearly suited to each architecture: for CPU: language compilation, word processing, operating systems, and other applications that are highly sequential in nature; for GPU: video rendering, particle simulation, pixel color conversion, and other problems clearly amenable to massive parallelization. While GPUs establishing themselves as a second, distinct computing architecture from CPUs, their end-to-end system cost/performance advantage in certain parts of computation inform the structure of algorithms and their efficient parallel implementations. While GPUs are merely one type of architecture for parallelization, we show that their introduction into the design space of printing systems demonstrate the trade-offs against competing multi-core, FPGA, and ASIC architectures. While each architecture has its own optimal application, we believe that the selection of architecture can be defined in terms of properties of GPU-Completeness. For a welldefined subset of algorithms, GPU-Completeness is intended to connect the parallelism, algorithms and efficient architectures into a unified framework to show that multiple layers of parallel implementation are guided by the same underlying trade-off.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
NASA Astrophysics Data System (ADS)
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-12-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-12-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-01-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520
GPU COMPUTING FOR PARTICLE TRACKING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiroshi; Song, Kai; Muriki, Krishna
2011-03-25
This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculationmore » of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.« less
Parallel simulation of tsunami inundation on a large-scale supercomputer
NASA Astrophysics Data System (ADS)
Oishi, Y.; Imamura, F.; Sugawara, D.
2013-12-01
An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the finite difference calculation, (2) communication between adjacent layers for the calculations to connect each layer, and (3) global communication to obtain the time step which satisfies the CFL condition in the whole domain. A preliminary test on the K computer showed the parallel efficiency on 1024 cores was 57% relative to 64 cores. We estimate that the parallel efficiency will be considerably improved by applying a 2-D domain decomposition instead of the present 1-D domain decomposition in future work. The present parallel tsunami model was applied to the 2011 Great Tohoku tsunami. The coarsest resolution layer covers a 758 km × 1155 km region with a 405 m grid spacing. A nesting of five layers was used with the resolution ratio of 1/3 between nested layers. The finest resolution region has 5 m resolution and covers most of the coastal region of Sendai city. To complete 2 hours of simulation time, the serial (non-parallel) computation took approximately 4 days on a workstation. To complete the same simulation on 1024 cores of the K computer, it took 45 minutes which is more than two times faster than real-time. This presentation discusses the updated parallel computational performance and the efficient use of the K computer when considering the characteristics of the tsunami inundation simulation model in relation to the characteristics and capabilities of the K computer.
NASA Technical Reports Server (NTRS)
Barnden, John; Srinivas, Kankanahalli
1990-01-01
Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net researchers for being excessively inflexible and sequential. On the other hand, the application of neural net techniques to the types of high-level cognitive processing studied in traditional artificial intelligence presents major problems as well. A promising way out of this impasse is to build neural net models that accomplish massively parallel case-based reasoning. Case-based reasoning, which has received much attention recently, is essentially the same as analogy-based reasoning, and avoids many of the problems leveled at traditional artificial intelligence. Further problems are avoided by doing many strands of case-based reasoning in parallel, and by implementing the whole system as a neural net. In addition, such a system provides an approach to some aspects of the problems of noise, uncertainty and novelty in reasoning systems. The current neural net system (Conposit), which performs standard rule-based reasoning, is being modified into a massively parallel case-based reasoning version.
Argonne simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-04-01
A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically tomore » reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.« less
Thermo-elastic wave model of the photothermal and photoacoustic signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meja, P.; Steiger, B.; Delsanto, P.P.
1996-12-31
By means of the thermo-elastic wave equation the dynamical propagation of mechanical stress and temperature can be described and applied to model the photothermal and photoacoustic signal. Analytical solutions exist only in particular cases. Using massively parallel computers it is possible to simulate the photothermal and photoacoustic signal in a most sufficient way. In this paper the method of local interaction simulation approach (LISA) is presented and selected examples of its application are given. The advantages of this method, which is particularly suitable for parallel processing, consist in reduced computation time and simple description of the photoacoustic signal in opticalmore » materials. The present contribution introduces the authors model, the formalism and some results in the 1 D case for homogeneous nonattenuative materials. The photoacoustic wave can be understood as a wave with locally limited displacement. This displacement corresponds to a temperature variation. Both variables are usually measured in photoacoustics and photothermal measurements. Therefore the temperature and displacement dependence on optical, elastic and thermal constants is analysed.« less
Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2017-11-01
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.
NASA Technical Reports Server (NTRS)
Keppenne, C. L.; Rienecker, M.; Borovikov, A. Y.
1999-01-01
Two massively parallel data assimilation systems in which the model forecast-error covariances are estimated from the distribution of an ensemble of model integrations are applied to the assimilation of 97-98 TOPEX/POSEIDON altimetry and TOGA/TAO temperature data into a Pacific basin version the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. in the first system, ensemble of model runs forced by an ensemble of atmospheric model simulations is used to calculate asymptotic error statistics. The data assimilation then occurs in the reduced phase space spanned by the corresponding leading empirical orthogonal functions. The second system is an ensemble Kalman filter in which new error statistics are computed during each assimilation cycle from the time-dependent ensemble distribution. The data assimilation experiments are conducted on NSIPP's 512-processor CRAY T3E. The two data assimilation systems are validated by withholding part of the data and quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The pros and cons of each system are discussed.
Toward Petascale Biologically Plausible Neural Networks
NASA Astrophysics Data System (ADS)
Long, Lyle
This talk will describe an approach to achieving petascale neural networks. Artificial intelligence has been oversold for many decades. Computers in the beginning could only do about 16,000 operations per second. Computer processing power, however, has been doubling every two years thanks to Moore's law, and growing even faster due to massively parallel architectures. Finally, 60 years after the first AI conference we have computers on the order of the performance of the human brain (1016 operations per second). The main issues now are algorithms, software, and learning. We have excellent models of neurons, such as the Hodgkin-Huxley model, but we do not know how the human neurons are wired together. With careful attention to efficient parallel computing, event-driven programming, table lookups, and memory minimization massive scale simulations can be performed. The code that will be described was written in C + + and uses the Message Passing Interface (MPI). It uses the full Hodgkin-Huxley neuron model, not a simplified model. It also allows arbitrary network structures (deep, recurrent, convolutional, all-to-all, etc.). The code is scalable, and has, so far, been tested on up to 2,048 processor cores using 107 neurons and 109 synapses.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
RISC-type microprocessors may revolutionize aerospace simulation
NASA Astrophysics Data System (ADS)
Jackson, Albert S.
The author explores the application of RISC (reduced instruction set computer) processors in massively parallel computer (MPC) designs for aerospace simulation. The MPC approach is shown to be well adapted to the needs of aerospace simulation. It is shown that any of the three common types of interconnection schemes used with MPCs are effective for general-purpose simulation, although the bus-or switch-oriented machines are somewhat easier to use. For partial differential equation models, the hypercube approach at first glance appears more efficient because the nearest-neighbor connections required for three-dimensional models are hardwired in a hypercube machine. However, the data broadcast ability of a bus system, combined with the fact that data can be transmitted over a bus as soon as it has been updated, makes the bus approach very competitive with the hypercube approach even for these types of models.
Research in Parallel Algorithms and Software for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Domel, Neal D.
1996-01-01
Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.
Research in Parallel Algorithms and Software for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Domel, Neal D.
1996-01-01
Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.
Three-dimensional wideband electromagnetic modeling on massively parallel computers
NASA Astrophysics Data System (ADS)
Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.
1996-01-01
A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.
Performance of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC
NASA Astrophysics Data System (ADS)
Alruwaili, Manal
With the growing technology, the number of the processors is becoming massive. Current supercomputer processing will be available on desktops in the next decade. For mass scale application software development on massive parallel computing available on desktops, existing popular languages with large libraries have to be augmented with new constructs and paradigms that exploit massive parallel computing and distributed memory models while retaining the user-friendliness. Currently, available object oriented languages for massive parallel computing such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing and thread-parallelism at the process level in the PGAS (Partitioned Global Address Space) memory model. However, they do not incorporate: 1) any extension at for object distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or cloning an object between places to exploit load balancing; and 3) lack the programming paradigms that will result from the integration of data and thread-level parallelism and object distribution. In the proposed thesis, I compare different languages in PGAS model; propose new constructs that extend C++ with object distribution and object migration; and integrate PGAS based process constructs with these extensions on distributed objects. Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation Distributed Data) is presented when different copies of the same class can be invoked, and work on different elements of a distributed data concurrently using remote method invocations. I present new constructs, their grammar and their behavior. The new constructs have been explained using simple programs utilizing these constructs.
High performance computing applications in neurobiological research
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Cheng, Rei; Doshay, David G.; Linton, Samuel W.; Montgomery, Kevin; Parnas, Bruce R.
1994-01-01
The human nervous system is a massively parallel processor of information. The vast numbers of neurons, synapses and circuits is daunting to those seeking to understand the neural basis of consciousness and intellect. Pervading obstacles are lack of knowledge of the detailed, three-dimensional (3-D) organization of even a simple neural system and the paucity of large scale, biologically relevant computer simulations. We use high performance graphics workstations and supercomputers to study the 3-D organization of gravity sensors as a prototype architecture foreshadowing more complex systems. Scaled-down simulations run on a Silicon Graphics workstation and scale-up, three-dimensional versions run on the Cray Y-MP and CM5 supercomputers.
SIERRA Low Mach Module: Fuego User Manual Version 4.46.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
2017-09-01
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
SIERRA Low Mach Module: Fuego Theory Manual Version 4.44
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
2017-04-01
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
SIERRA Low Mach Module: Fuego Theory Manual Version 4.46.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
Role of APOE Isoforms in the Pathogenesis of TBI induced Alzheimer’s Disease
2016-10-01
deletion, APOE targeted replacement, complex breeding, CCI model optimization, mRNA library generation, high throughput massive parallel sequencing...demonstrate that the lack of Abca1 increases amyloid plaques and decreased APOE protein levels in AD-model mice. In this proposal we will test the hypothesis...injury, inflammatory reaction, transcriptome, high throughput massive parallel sequencing, mRNA-seq., behavioral testing, memory impairment, recovery 3
2010-10-14
High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing...Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV...Smith JM, Schmaljohn CS (2010) High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and
Implementation of ADI: Schemes on MIMD parallel computers
NASA Technical Reports Server (NTRS)
Vanderwijngaart, Rob F.
1993-01-01
In order to simulate the effects of the impingement of hot exhaust jets of High Performance Aircraft on landing surfaces a multi-disciplinary computation coupling flow dynamics to heat conduction in the runway needs to be carried out. Such simulations, which are essentially unsteady, require very large computational power in order to be completed within a reasonable time frame of the order of an hour. Such power can be furnished by the latest generation of massively parallel computers. These remove the bottleneck of ever more congested data paths to one or a few highly specialized central processing units (CPU's) by having many off-the-shelf CPU's work independently on their own data, and exchange information only when needed. During the past year the first phase of this project was completed, in which the optimal strategy for mapping an ADI-algorithm for the three dimensional unsteady heat equation to a MIMD parallel computer was identified. This was done by implementing and comparing three different domain decomposition techniques that define the tasks for the CPU's in the parallel machine. These implementations were done for a Cartesian grid and Dirichlet boundary conditions. The most promising technique was then used to implement the heat equation solver on a general curvilinear grid with a suite of nontrivial boundary conditions. Finally, this technique was also used to implement the Scalar Penta-diagonal (SP) benchmark, which was taken from the NAS Parallel Benchmarks report. All implementations were done in the programming language C on the Intel iPSC/860 computer.
4P: fast computing of population genetics statistics from large DNA polymorphism panels
Benazzo, Andrea; Panziera, Alex; Bertorelle, Giorgio
2015-01-01
Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand-alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations. PMID:25628874
Designing Next Generation Massively Multithreaded Architectures for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Secchi, Simone; Villa, Oreste
Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory referencemore » aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.« less
Massively parallel GPU-accelerated minimization of classical density functional theory
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2017-08-01
In this paper, we discuss the ability to numerically minimize the grand potential of hard disks in two-dimensional and of hard spheres in three-dimensional space within the framework of classical density functional and fundamental measure theory on modern graphics cards. Our main finding is that a massively parallel minimization leads to an enormous performance gain in comparison to standard sequential minimization schemes. Furthermore, the results indicate that in complex multi-dimensional situations, a heavy parallel minimization of the grand potential seems to be mandatory in order to reach a reasonable balance between accuracy and computational cost.
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
Template based parallel checkpointing in a massively parallel computer system
Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN
2009-01-13
A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less
Reconstructing evolutionary trees in parallel for massive sequences.
Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam
2017-12-14
Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .
Massively parallel algorithms for trace-driven cache simulations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Greenberg, Albert G.; Lubachevsky, Boris D.
1991-01-01
Trace driven cache simulation is central to computer design. A trace is a very long sequence of reference lines from main memory. At the t(exp th) instant, reference x sub t is hashed into a set of cache locations, the contents of which are then compared with x sub t. If at the t sup th instant x sub t is not present in the cache, then it is said to be a miss, and is loaded into the cache set, possibly forcing the replacement of some other memory line, and making x sub t present for the (t+1) sup st instant. The problem of parallel simulation of a subtrace of N references directed to a C line cache set is considered, with the aim of determining which references are misses and related statistics. A simulation method is presented for the Least Recently Used (LRU) policy, which regradless of the set size C runs in time O(log N) using N processors on the exclusive read, exclusive write (EREW) parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N processors. Timings are presented of the second algorithm's implementation on the MasPar MP-1, a machine with 16384 processors. A broad class of reference based line replacement policies are considered, which includes LRU as well as the Least Frequently Used and Random replacement policies. A simulation method is presented for any such policy that on any trace of length N directed to a C line set runs in the O(C log N) time with high probability using N processors on the EREW model. The algorithms are simple, have very little space overhead, and are well suited for SIMD implementation.
The CP-PACS Project and Lattice QCD Results
NASA Astrophysics Data System (ADS)
Iwasaki, Y.
The aim of the CP-PACS project was to develop a massively parallel computer for performing numerical research in computational physics with primary emphasis on lattice QCD. The CP-PACS computer with a peak speed of 614 GFLOPS with 2048 processors was completed in September 1996, and has been in full operation since October 1996. We present an overview of the CP-PACS project and describe characteristics of the CP-PACS computer. The CP-PACS has been mainly used for hadron spectroscopy studies in lattice QCD. Main results in lattice QCD simulations are given.
NASA Astrophysics Data System (ADS)
Favata, Antonino; Micheletti, Andrea; Ryu, Seunghwa; Pugno, Nicola M.
2016-10-01
An analytical benchmark and a simple consistent Mathematica program are proposed for graphene and carbon nanotubes, that may serve to test any molecular dynamics code implemented with REBO potentials. By exploiting the benchmark, we checked results produced by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) when adopting the second generation Brenner potential, we made evident that this code in its current implementation produces results which are offset from those of the benchmark by a significant amount, and provide evidence of the reason.
NASA Astrophysics Data System (ADS)
Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.
2017-12-01
As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.
New Parallel Algorithms for Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Load balancing for massively-parallel soft-real-time systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hailperin, M.
1988-09-01
Global load balancing, if practical, would allow the effective use of massively-parallel ensemble architectures for large soft-real-problems. The challenge is to replace quick global communications, which is impractical in a massively-parallel system, with statistical techniques. In this vein, the author proposes a novel approach to decentralized load balancing based on statistical time-series analysis. Each site estimates the system-wide average load using information about past loads of individual sites and attempts to equal that average. This estimation process is practical because the soft-real-time systems of interest naturally exhibit loads that are periodic, in a statistical sense akin to seasonality in econometrics.more » It is shown how this load-characterization technique can be the foundation for a load-balancing system in an architecture employing cut-through routing and an efficient multicast protocol.« less
Evaluation of massively parallel sequencing for forensic DNA methylation profiling.
Richards, Rebecca; Patel, Jayshree; Stevenson, Kate; Harbison, SallyAnn
2018-05-11
Epigenetics is an emerging area of interest in forensic science. DNA methylation, a type of epigenetic modification, can be applied to chronological age estimation, identical twin differentiation and body fluid identification. However, there is not yet an agreed, established methodology for targeted detection and analysis of DNA methylation markers in forensic research. Recently a massively parallel sequencing-based approach has been suggested. The use of massively parallel sequencing is well established in clinical epigenetics and is emerging as a new technology in the forensic field. This review investigates the potential benefits, limitations and considerations of this technique for the analysis of DNA methylation in a forensic context. The importance of a robust protocol, regardless of the methodology used, that minimises potential sources of bias is highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Logan, Terry G.
1994-01-01
The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up
Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less
Supercomputing on massively parallel bit-serial architectures
NASA Technical Reports Server (NTRS)
Iobst, Ken
1985-01-01
Research on the Goodyear Massively Parallel Processor (MPP) suggests that high-level parallel languages are practical and can be designed with powerful new semantics that allow algorithms to be efficiently mapped to the real machines. For the MPP these semantics include parallel/associative array selection for both dense and sparse matrices, variable precision arithmetic to trade accuracy for speed, micro-pipelined train broadcast, and conditional branching at the processing element (PE) control unit level. The preliminary design of a FORTRAN-like parallel language for the MPP has been completed and is being used to write programs to perform sparse matrix array selection, min/max search, matrix multiplication, Gaussian elimination on single bit arrays and other generic algorithms. A description is given of the MPP design. Features of the system and its operation are illustrated in the form of charts and diagrams.
Large Scale Document Inversion using a Multi-threaded Computing System
Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won
2018-01-01
Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. CCS Concepts •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations. PMID:29861701
Large Scale Document Inversion using a Multi-threaded Computing System.
Jung, Sungbo; Chang, Dar-Jen; Park, Juw Won
2017-06-01
Current microprocessor architecture is moving towards multi-core/multi-threaded systems. This trend has led to a surge of interest in using multi-threaded computing devices, such as the Graphics Processing Unit (GPU), for general purpose computing. We can utilize the GPU in computation as a massive parallel coprocessor because the GPU consists of multiple cores. The GPU is also an affordable, attractive, and user-programmable commodity. Nowadays a lot of information has been flooded into the digital domain around the world. Huge volume of data, such as digital libraries, social networking services, e-commerce product data, and reviews, etc., is produced or collected every moment with dramatic growth in size. Although the inverted index is a useful data structure that can be used for full text searches or document retrieval, a large number of documents will require a tremendous amount of time to create the index. The performance of document inversion can be improved by multi-thread or multi-core GPU. Our approach is to implement a linear-time, hash-based, single program multiple data (SPMD), document inversion algorithm on the NVIDIA GPU/CUDA programming platform utilizing the huge computational power of the GPU, to develop high performance solutions for document indexing. Our proposed parallel document inversion system shows 2-3 times faster performance than a sequential system on two different test datasets from PubMed abstract and e-commerce product reviews. •Information systems➝Information retrieval • Computing methodologies➝Massively parallel and high-performance simulations.
Zhang, Hong; Zapol, Peter; Dixon, David A.; ...
2015-11-17
The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Zapol, Peter; Dixon, David A.
The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less
A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport
NASA Astrophysics Data System (ADS)
Robinson, P. B.; Peterson, J. D. L.
2005-12-01
The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48
3D simulation of floral oil storage in the scopa of South American insects
NASA Astrophysics Data System (ADS)
Ruettgers, Alexander; Griebel, Michael; Pastrik, Lars; Schmied, Heiko; Wittmann, Dieter; Scherrieble, Andreas; Dinkelmann, Albrecht; Stegmaier, Thomas; InstituteNumerical Simulation Team; Institute of Crop Science; Resource Conservation Team; Institute of Textile Technology; Process Engineering Team
2014-11-01
Several species of bees in South America possess structures to store and transport floral oils. By using closely spaced hairs at their back legs, the so called scopa, these bees can absorb and release oil droplets without loss. The high efficiency of this process is a matter of ongoing research. Basing on recent x-ray microtomography scans from the scopa of these bees at the Institute of Textile Technology and Process Engineering Denkendorf, we build a three-dimensional computer model. Using NaSt3DGPF, a two-phase flow solver developed at the Institute for Numerical Simulation of the University of Bonn, we perform massively parallel flow simulations with the complex micro-CT data. In this talk, we discuss the results of our simulations and the transfer of the x-ray measurement into a computer model. This research was funded under GR 1144/18-1 by the Deutsche Forschungsgemeinschaft (DFG).
NASA Astrophysics Data System (ADS)
Heister, Timo; Dannberg, Juliane; Gassmöller, Rene; Bangerth, Wolfgang
2017-08-01
Computations have helped elucidate the dynamics of Earth's mantle for several decades already. The numerical methods that underlie these simulations have greatly evolved within this time span, and today include dynamically changing and adaptively refined meshes, sophisticated and efficient solvers, and parallelization to large clusters of computers. At the same time, many of the methods - discussed in detail in a previous paper in this series - were developed and tested primarily using model problems that lack many of the complexities that are common to the realistic models our community wants to solve today. With several years of experience solving complex and realistic models, we here revisit some of the algorithm designs of the earlier paper and discuss the incorporation of more complex physics. In particular, we re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate compressibility, and discuss dealing with strongly varying material coefficients, latent heat, and how to track chemical compositions and heterogeneities. Taken together and implemented in a high-performance, massively parallel code, the techniques discussed in this paper then allow for high resolution, 3-D, compressible, global mantle convection simulations with phase transitions, strongly temperature dependent viscosity and realistic material properties based on mineral physics data.
Using CLIPS in the domain of knowledge-based massively parallel programming
NASA Technical Reports Server (NTRS)
Dvorak, Jiri J.
1994-01-01
The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pingenot, J; Rieben, R; White, D
2004-12-06
We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less
Research in Computational Astrobiology
NASA Technical Reports Server (NTRS)
Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.
2002-01-01
We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.
Trinity Phase 2 Open Science: CTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggirello, Kevin Patrick; Vogler, Tracy
CTH is an Eulerian hydrocode developed by Sandia National Laboratories (SNL) to solve a wide range of shock wave propagation and material deformation problems. Adaptive mesh refinement is also used to improve efficiency for problems with a wide range of spatial scales. The code has a history of running on a variety of computing platforms ranging from desktops to massively parallel distributed-data systems. For the Trinity Phase 2 Open Science campaign, CTH was used to study mesoscale simulations of the hypervelocity penetration of granular SiC powders. The simulations were compared to experimental data. A scaling study of CTH up tomore » 8192 KNL nodes was also performed, and several improvements were made to the code to improve the scalability.« less
A domain specific language for performance portable molecular dynamics algorithms
NASA Astrophysics Data System (ADS)
Saunders, William Robert; Grant, James; Müller, Eike Hermann
2018-03-01
Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.
Massively parallel sparse matrix function calculations with NTPoly
NASA Astrophysics Data System (ADS)
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max
1999-01-01
A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.
Constructing Neuronal Network Models in Massively Parallel Environments.
Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.
Constructing Neuronal Network Models in Massively Parallel Environments
Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808
GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes
NASA Astrophysics Data System (ADS)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
2013-11-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.
Atlas : A library for numerical weather prediction and climate modelling
NASA Astrophysics Data System (ADS)
Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.
2017-11-01
The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.
A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less
Transitioning NWChem to the Next Generation of Manycore Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bylaska, Eric J.; Apra, E; Kowalski, Karol
The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less
Dynamic modeling of Tampa Bay urban development using parallel computing
Xian, G.; Crane, M.; Steinwand, D.
2005-01-01
Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively.
NASA Astrophysics Data System (ADS)
Kumari, Komal; Donzis, Diego
2017-11-01
Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Sripathi, Vamsi; Mills, Richard T
2013-01-01
Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting themore » I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less
Stochastic simulation of uranium migration at the Hanford 300 Area.
Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L
2011-03-01
This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.
A Simulation and Modeling Framework for Space Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S S
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less
Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1991-01-01
The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.
O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; ...
1995-01-01
Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus
We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.
NASA Astrophysics Data System (ADS)
Marzari, Nicola
The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.
Analysis of multigrid methods on massively parallel computers: Architectural implications
NASA Technical Reports Server (NTRS)
Matheson, Lesley R.; Tarjan, Robert E.
1993-01-01
We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.
Statistical evaluation of synchronous spike patterns extracted by frequent item set mining
Torre, Emiliano; Picado-Muiño, David; Denker, Michael; Borgelt, Christian; Grün, Sonja
2013-01-01
We recently proposed frequent itemset mining (FIM) as a method to perform an optimized search for patterns of synchronous spikes (item sets) in massively parallel spike trains. This search outputs the occurrence count (support) of individual patterns that are not trivially explained by the counts of any superset (closed frequent item sets). The number of patterns found by FIM makes direct statistical tests infeasible due to severe multiple testing. To overcome this issue, we proposed to test the significance not of individual patterns, but instead of their signatures, defined as the pairs of pattern size z and support c. Here, we derive in detail a statistical test for the significance of the signatures under the null hypothesis of full independence (pattern spectrum filtering, PSF) by means of surrogate data. As a result, injected spike patterns that mimic assembly activity are well detected, yielding a low false negative rate. However, this approach is prone to additionally classify patterns resulting from chance overlap of real assembly activity and background spiking as significant. These patterns represent false positives with respect to the null hypothesis of having one assembly of given signature embedded in otherwise independent spiking activity. We propose the additional method of pattern set reduction (PSR) to remove these false positives by conditional filtering. By employing stochastic simulations of parallel spike trains with correlated activity in form of injected spike synchrony in subsets of the neurons, we demonstrate for a range of parameter settings that the analysis scheme composed of FIM, PSF and PSR allows to reliably detect active assemblies in massively parallel spike trains. PMID:24167487
Application of CHAD hydrodynamics to shock-wave problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.
1997-12-31
CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, itmore » is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.« less
High-performance computing — an overview
NASA Astrophysics Data System (ADS)
Marksteiner, Peter
1996-08-01
An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.
Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows
NASA Technical Reports Server (NTRS)
West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan
2012-01-01
The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for second-order time-stepping scheme, (c) a novel cloud-of-points interpolation method (based on a fast parallel kd-tree search algorithm) for interfaces between turbomachinery components in relative motion which is demonstrated to be highly scalable, and (d) demonstrated accuracy and parallel scalability on large grids (approx 250 million cells) in full turbomachinery geometries.
NASA Technical Reports Server (NTRS)
Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos
1996-01-01
An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.
NASA Astrophysics Data System (ADS)
Gassmöller, Rene; Bangerth, Wolfgang
2016-04-01
Particle-in-cell methods have a long history and many applications in geodynamic modelling of mantle convection, lithospheric deformation and crustal dynamics. They are primarily used to track material information, the strain a material has undergone, the pressure-temperature history a certain material region has experienced, or the amount of volatiles or partial melt present in a region. However, their efficient parallel implementation - in particular combined with adaptive finite-element meshes - is complicated due to the complex communication patterns and frequent reassignment of particles to cells. Consequently, many current scientific software packages accomplish this efficient implementation by specifically designing particle methods for a single purpose, like the advection of scalar material properties that do not evolve over time (e.g., for chemical heterogeneities). Design choices for particle integration, data storage, and parallel communication are then optimized for this single purpose, making the code relatively rigid to changing requirements. Here, we present the implementation of a flexible, scalable and efficient particle-in-cell method for massively parallel finite-element codes with adaptively changing meshes. Using a modular plugin structure, we allow maximum flexibility of the generation of particles, the carried tracer properties, the advection and output algorithms, and the projection of properties to the finite-element mesh. We present scaling tests ranging up to tens of thousands of cores and tens of billions of particles. Additionally, we discuss efficient load-balancing strategies for particles in adaptive meshes with their strengths and weaknesses, local particle-transfer between parallel subdomains utilizing existing communication patterns from the finite element mesh, and the use of established parallel output algorithms like the HDF5 library. Finally, we show some relevant particle application cases, compare our implementation to a modern advection-field approach, and demonstrate under which conditions which method is more efficient. We implemented the presented methods in ASPECT (aspect.dealii.org), a freely available open-source community code for geodynamic simulations. The structure of the particle code is highly modular, and segregated from the PDE solver, and can thus be easily transferred to other programs, or adapted for various application cases.
LDRD final report on massively-parallel linear programming : the parPCx system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar
2005-02-01
This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Yamamoto, Hajime; Pruess, Karsten
2008-02-15
TMVOC-MP is a massively parallel version of the TMVOC code (Pruess and Battistelli, 2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous/fractured media. TMVOC-MP was developed by introducing massively parallel computing techniques into TMVOC. It retains the physical process model of TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP can model contaminant behavior under 'natural' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted sourcemore » remediation. With its sophisticated parallel computing techniques, TMVOC-MP can handle much larger problems than TMVOC, and can be much more computationally efficient. TMVOC-MP models multiphase fluid systems containing variable proportions of water, non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). The user can specify the number and nature of NCGs and VOCs. There are no intrinsic limitations to the number of NCGs or VOCs, although the arrays for fluid components are currently dimensioned as 20, accommodating water plus 19 components that may be either NCGs or VOCs. Among them, NCG arrays are dimensioned as 10. The user may select NCGs from a data bank provided in the software. The currently available choices include O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, ethane, ethylene, acetylene, and air (a pseudo-component treated with properties averaged from N{sub 2} and O{sub 2}). Thermophysical property data of VOCs can be selected from a chemical data bank, included with TMVOC-MP, that provides parameters for 26 commonly encountered chemicals. Users also can input their own data for other fluids. The fluid components may partition (volatilize and/or dissolve) among gas, aqueous, and NAPL phases. Any combination of the three phases may present, and phases may appear and disappear in the course of a simulation. In addition, VOCs may be adsorbed by the porous medium, and may biodegrade according to a simple half-life model. Detailed discussion of physical processes, assumptions, and fluid properties used in TMVOC-MP can be found in the TMVOC user's guide (Pruess and Battistelli, 2002). TMVOC-MP was developed based on the parallel framework of the TOUGH2-MP code (Zhang et al. 2001, Wu et al. 2002). It uses the MPI (Message Passing Forum, 1994) for parallel implementation. A domain decomposition approach is adopted for the parallelization. The code partitions a simulation domain, defined by an unstructured grid, using partitioning algorithm from the METIS software package (Karypsis and Kumar, 1998). In parallel simulation, each processor is in charge of one part of the simulation domain for assembling mass and energy balance equations, solving linear equation systems, updating thermophysical properties, and performing other local computations. The local linear-equation systems are solved in parallel by multiple processors with the Aztec linear solver package (Tuminaro et al., 1999). Although each processor solves the linearized equations of subdomains independently, the entire linear equation system is solved together by all processors collaboratively via communication between neighboring processors during each iteration. Detailed discussion of the prototype of the data-exchange scheme can be found in Elmroth et al. (2001). In addition, FORTRAN 90 features are introduced to TMVOC-MP, such as dynamic memory allocation, array operation, matrix manipulation, and replacing 'common blocks' (used in the original TMVOC) with modules. All new subroutines are written in FORTRAN 90. Program units imported from the original TMVOC remain in standard FORTRAN 77. This report provides a quick starting guide for using the TMVOC-MP program. We suppose that the users have basic knowledge of using the original TMVOC code. The users can find the detailed technical description of the physical processes modeled, and the mathematical and numerical methods in the user's guide for TMVOC (Pruess and Battistelli, 2002).« less
Computational Fluid Dynamics of Whole-Body Aircraft
NASA Astrophysics Data System (ADS)
Agarwal, Ramesh
1999-01-01
The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.
NASA Astrophysics Data System (ADS)
Swinburne, Thomas D.; Perez, Danny
2018-05-01
A massively parallel method to build large transition rate matrices from temperature-accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.
APRON: A Cellular Processor Array Simulation and Hardware Design Tool
NASA Astrophysics Data System (ADS)
Barr, David R. W.; Dudek, Piotr
2009-12-01
We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz-Olaf; Sesterhenn, Jörn
2018-02-01
High resolution direct numerical simulations of rotating and flapping bumblebee wings are presented and their aerodynamics is studied focusing on the role of leading edge vortices and the associated helicity production. We first study the flow generated by only one rotating bumblebee wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed generic motion. The inflow condition of the wind varies from laminar to strongly turbulent regimes. Massively parallel simulations show that inflow turbulence does not significantly alter the wings’ leading edge vortex, which enhances lift production. Finally, we focus on studying the helicity of the generated vortices and analyze their contribution at different scales using orthogonal wavelets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonelli, Perry Edward
A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface willmore » also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services alsomore » allow the development of coupled mechanics analysis software for a massively parallel computing environment. In the definitions of the commands that follow, the term Real_Max denotes the largest floating point value that can be represented on a given computer. Int_Max is the largest such integer value.« less
Block iterative restoration of astronomical images with the massively parallel processor
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, Don J.
1987-01-01
A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.
A Massively Parallel Code for Polarization Calculations
NASA Astrophysics Data System (ADS)
Akiyama, Shizuka; Höflich, Peter
2001-03-01
We present an implementation of our Monte-Carlo radiation transport method for rapidly expanding, NLTE atmospheres for massively parallel computers which utilizes both the distributed and shared memory models. This allows us to take full advantage of the fast communication and low latency inherent to nodes with multiple CPUs, and to stretch the limits of scalability with the number of nodes compared to a version which is based on the shared memory model. Test calculations on a local 20-node Beowulf cluster with dual CPUs showed an improved scalability by about 40%.
Routing performance analysis and optimization within a massively parallel computer
Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen
2013-04-16
An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.
NASA Technical Reports Server (NTRS)
Manohar, Mareboyana; Tilton, James C.
1994-01-01
A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method.
MHD code using multi graphical processing units: SMAUG+
NASA Astrophysics Data System (ADS)
Gyenge, N.; Griffiths, M. K.; Erdélyi, R.
2018-01-01
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.
Regional-scale calculation of the LS factor using parallel processing
NASA Astrophysics Data System (ADS)
Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong
2015-05-01
With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.
Massively parallel processor computer
NASA Technical Reports Server (NTRS)
Fung, L. W. (Inventor)
1983-01-01
An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.
Compact holographic optical neural network system for real-time pattern recognition
NASA Astrophysics Data System (ADS)
Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.
1996-08-01
One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian; Brightwell, Ronald B.; Grant, Ryan
This report presents a specification for the Portals 4 networ k programming interface. Portals 4 is intended to allow scalable, high-performance network communication betwee n nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded syste ms. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platfor ms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is tarmore » geted to the next generation of machines employing advanced network interface architectures that support enh anced offload capabilities.« less
The Portals 4.0 network programming interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin
2012-11-01
This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.
1997-12-31
The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle.more » The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.« less
Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secchi, Simone; Tumeo, Antonino; Villa, Oreste
Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy inmore » reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.« less
NASA Technical Reports Server (NTRS)
Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.
1994-01-01
Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.
High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.
1996-01-01
This research program dealt with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in January 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled three-component problem were developed during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor tor parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability tor the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the 1196 Computational Aeroscience meeting.
Computational study of noise in a large signal transduction network.
Intosalmi, Jukka; Manninen, Tiina; Ruohonen, Keijo; Linne, Marja-Leena
2011-06-21
Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies. © 2011 Intosalmi et al; licensee BioMed Central Ltd.
Petascale computation of multi-physics seismic simulations
NASA Astrophysics Data System (ADS)
Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie; Duru, Kenneth C.
2017-04-01
Capturing the observed complexity of earthquake sources in concurrence with seismic wave propagation simulations is an inherently multi-scale, multi-physics problem. In this presentation, we present simulations of earthquake scenarios resolving high-detail dynamic rupture evolution and high frequency ground motion. The simulations combine a multitude of representations of model complexity; such as non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure to capture dynamic rupture behavior at the source; and seismic wave attenuation, 3D subsurface structure and bathymetry impacting seismic wave propagation. Performing such scenarios at the necessary spatio-temporal resolution requires highly optimized and massively parallel simulation tools which can efficiently exploit HPC facilities. Our up to multi-PetaFLOP simulations are performed with SeisSol (www.seissol.org), an open-source software package based on an ADER-Discontinuous Galerkin (DG) scheme solving the seismic wave equations in velocity-stress formulation in elastic, viscoelastic, and viscoplastic media with high-order accuracy in time and space. Our flux-based implementation of frictional failure remains free of spurious oscillations. Tetrahedral unstructured meshes allow for complicated model geometry. SeisSol has been optimized on all software levels, including: assembler-level DG kernels which obtain 50% peak performance on some of the largest supercomputers worldwide; an overlapping MPI-OpenMP parallelization shadowing the multiphysics computations; usage of local time stepping; parallel input and output schemes and direct interfaces to community standard data formats. All these factors enable aim to minimise the time-to-solution. The results presented highlight the fact that modern numerical methods and hardware-aware optimization for modern supercomputers are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis. Lastly, we will conclude with an outlook on future exascale ADER-DG solvers for seismological applications.
NASA Astrophysics Data System (ADS)
Montoliu, C.; Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Colom, R. J.
2013-10-01
The use of atomistic methods, such as the Continuous Cellular Automaton (CCA), is currently regarded as a computationally efficient and experimentally accurate approach for the simulation of anisotropic etching of various substrates in the manufacture of Micro-electro-mechanical Systems (MEMS). However, when the features of the chemical process are modified, a time-consuming calibration process needs to be used to transform the new macroscopic etch rates into a corresponding set of atomistic rates. Furthermore, changing the substrate requires a labor-intensive effort to reclassify most atomistic neighborhoods. In this context, the Level Set (LS) method provides an alternative approach where the macroscopic forces affecting the front evolution are directly applied at the discrete level, thus avoiding the need for reclassification and/or calibration. Correspondingly, we present a fully-operational Sparse Field Method (SFM) implementation of the LS approach, discussing in detail the algorithm and providing a thorough characterization of the computational cost and simulation accuracy, including a comparison to the performance by the most recent CCA model. We conclude that the SFM implementation achieves similar accuracy as the CCA method with less fluctuations in the etch front and requiring roughly 4 times less memory. Although SFM can be up to 2 times slower than CCA for the simulation of anisotropic etchants, it can also be up to 10 times faster than CCA for isotropic etchants. In addition, we present a parallel, GPU-based implementation (gSFM) and compare it to an optimized, multicore CPU version (cSFM), demonstrating that the SFM algorithm can be successfully parallelized and the simulation times consequently reduced, while keeping the accuracy of the simulations. Although modern multicore CPUs provide an acceptable option, the massively parallel architecture of modern GPUs is more suitable, as reflected by computational times for gSFM up to 7.4 times faster than for cSFM.
Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.
2008-01-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850
Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J
2008-12-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.
Parallel group independent component analysis for massive fMRI data sets.
Chen, Shaojie; Huang, Lei; Qiu, Huitong; Nebel, Mary Beth; Mostofsky, Stewart H; Pekar, James J; Lindquist, Martin A; Eloyan, Ani; Caffo, Brian S
2017-01-01
Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.
3D brain tumor localization and parameter estimation using thermographic approach on GPU.
Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi
2018-01-01
The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thought Leaders during Crises in Massive Social Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Courtney D.; Farber, Robert M.; Reynolds, William
The vast amount of social media data that can be gathered from the internet coupled with workflows that utilize both commodity systems and massively parallel supercomputers, such as the Cray XMT, open new vistas for research to support health, defense, and national security. Computer technology now enables the analysis of graph structures containing more than 4 billion vertices joined by 34 billion edges along with metrics and massively parallel algorithms that exhibit near-linear scalability according to number of processors. The challenge lies in making this massive data and analysis comprehensible to an analyst and end-users that require actionable knowledge tomore » carry out their duties. Simply stated, we have developed language and content agnostic techniques to reduce large graphs built from vast media corpora into forms people can understand. Specifically, our tools and metrics act as a survey tool to identify thought leaders' -- those members that lead or reflect the thoughts and opinions of an online community, independent of the source language.« less
Badal, Andreu; Badano, Aldo
2009-11-01
It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDATM programming model (NVIDIA Corporation, Santa Clara, CA). An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.
Roever, Stefan
2012-01-01
A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wylie, Brian Neil; Moreland, Kenneth D.
Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphsmore » from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.« less
GPU-based Branchless Distance-Driven Projection and Backprojection
Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong
2017-01-01
Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm. PMID:29333480
GPU-based Branchless Distance-Driven Projection and Backprojection.
Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong
2017-12-01
Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm.
GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparingmore » theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.« less
Lattice dynamics calculations based on density-functional perturbation theory in real space
NASA Astrophysics Data System (ADS)
Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias
2017-06-01
A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.
1991-01-01
Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.
Effects of the interaction range on structural phases of flexible polymers.
Gross, J; Neuhaus, T; Vogel, T; Bachmann, M
2013-02-21
We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.
The portals 4.0.1 network programming interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin
2013-04-01
This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities. 3« less
Merlin - Massively parallel heterogeneous computing
NASA Technical Reports Server (NTRS)
Wittie, Larry; Maples, Creve
1989-01-01
Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.
ALFIL: A Crowd Simulation Serious Game for Massive Evacuation Training and Awareness
ERIC Educational Resources Information Center
García-García, César; Fernández-Robles, José Luis; Larios-Rosillo, Victor; Luga, Hervé
2012-01-01
This article presents the current development of a serious game for the simulation of massive evacuations. The purpose of this project is to promote self-protection through awareness of the procedures and different possible scenarios during the evacuation of a massive event. Sophisticated behaviors require massive computational power and it has…
Archer, Charles Jens [Rochester, MN; Musselman, Roy Glenn [Rochester, MN; Peters, Amanda [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Swartz, Brent Allen [Chippewa Falls, WI; Wallenfelt, Brian Paul [Eden Prairie, MN
2011-10-04
A massively parallel nodal computer system periodically collects and broadcasts usage data for an internal communications network. A node sending data over the network makes a global routing determination using the network usage data. Preferably, network usage data comprises an N-bit usage value for each output buffer associated with a network link. An optimum routing is determined by summing the N-bit values associated with each link through which a data packet must pass, and comparing the sums associated with different possible routes.
Scalable Visual Analytics of Massive Textual Datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Manoj Kumar; Bohn, Shawn J.; Cowley, Wendy E.
2007-04-01
This paper describes the first scalable implementation of text processing engine used in Visual Analytics tools. These tools aid information analysts in interacting with and understanding large textual information content through visual interfaces. By developing parallel implementation of the text processing engine, we enabled visual analytics tools to exploit cluster architectures and handle massive dataset. The paper describes key elements of our parallelization approach and demonstrates virtually linear scaling when processing multi-gigabyte data sets such as Pubmed. This approach enables interactive analysis of large datasets beyond capabilities of existing state-of-the art visual analytics tools.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-03-16
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Each node implements a respective routing strategy for routing data through the network, the routing strategies not necessarily being the same in every node. The routing strategies implemented in the nodes are dynamically adjusted during application execution to shift network workload as required. Preferably, adjustment of routing policies in selective nodes is performed at synchronization points. The network may be dynamically monitored, and routing strategies adjusted according to detected network conditions.
Enhanced calculation of eigen-stress field and elastic energy in atomistic interdiffusion of alloys
NASA Astrophysics Data System (ADS)
Cecilia, José M.; Hernández-Díaz, A. M.; Castrillo, Pedro; Jiménez-Alonso, J. F.
2017-02-01
The structural evolution of alloys is affected by the elastic energy associated to eigen-stress fields. However, efficient calculations of the elastic energy in evolving geometries are actually a great challenge in promising atomistic simulation techniques such as Kinetic Monte Carlo (KMC) methods. In this paper, we report two complementary algorithms to calculate the eigen-stress field by linear superposition (a.k.a. LSA, Lineal Superposition Algorithm) and the elastic energy modification in atomistic interdiffusion of alloys (the Atom Exchange Elastic Energy Evaluation (AE4) Algorithm). LSA is shown to be appropriated for fast incremental stress calculation in highly nanostructured materials, whereas AE4 provides the required input for KMC and, additionally, it can be used to evaluate the accuracy of the eigen-stress field calculated by LSA. Consequently, they are suitable to be used on-the-fly with KMC. Both algorithms are massively parallel by their definition and thus well-suited for their parallelization on modern Graphics Processing Units (GPUs). Our computational studies confirm that we can obtain significant improvements compared to conventional Finite Element Methods, and the utilization of GPUs opens up new possibilities for the development of these methods in atomistic simulation of materials.
Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution
NASA Astrophysics Data System (ADS)
Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.
2017-10-01
Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.
Parallel processing architecture for H.264 deblocking filter on multi-core platforms
NASA Astrophysics Data System (ADS)
Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao
2012-03-01
Massively parallel computing (multi-core) chips offer outstanding new solutions that satisfy the increasing demand for high resolution and high quality video compression technologies such as H.264. Such solutions not only provide exceptional quality but also efficiency, low power, and low latency, previously unattainable in software based designs. While custom hardware and Application Specific Integrated Circuit (ASIC) technologies may achieve lowlatency, low power, and real-time performance in some consumer devices, many applications require a flexible and scalable software-defined solution. The deblocking filter in H.264 encoder/decoder poses difficult implementation challenges because of heavy data dependencies and the conditional nature of the computations. Deblocking filter implementations tend to be fixed and difficult to reconfigure for different needs. The ability to scale up for higher quality requirements such as 10-bit pixel depth or a 4:2:2 chroma format often reduces the throughput of a parallel architecture designed for lower feature set. A scalable architecture for deblocking filtering, created with a massively parallel processor based solution, means that the same encoder or decoder will be deployed in a variety of applications, at different video resolutions, for different power requirements, and at higher bit-depths and better color sub sampling patterns like YUV, 4:2:2, or 4:4:4 formats. Low power, software-defined encoders/decoders may be implemented using a massively parallel processor array, like that found in HyperX technology, with 100 or more cores and distributed memory. The large number of processor elements allows the silicon device to operate more efficiently than conventional DSP or CPU technology. This software programing model for massively parallel processors offers a flexible implementation and a power efficiency close to that of ASIC solutions. This work describes a scalable parallel architecture for an H.264 compliant deblocking filter for multi core platforms such as HyperX technology. Parallel techniques such as parallel processing of independent macroblocks, sub blocks, and pixel row level are examined in this work. The deblocking architecture consists of a basic cell called deblocking filter unit (DFU) and dependent data buffer manager (DFM). The DFU can be used in several instances, catering to different performance needs the DFM serves the data required for the different number of DFUs, and also manages all the neighboring data required for future data processing of DFUs. This approach achieves the scalability, flexibility, and performance excellence required in deblocking filters.
Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2016-11-01
Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.
Menzies, Kevin
2014-08-13
The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations
NASA Astrophysics Data System (ADS)
Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish
2010-11-01
The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.
Gyrokinetic Simulations of Transport Scaling and Structure
NASA Astrophysics Data System (ADS)
Hahm, Taik Soo
2001-10-01
There is accumulating evidence from global gyrokinetic particle simulations with profile variations and experimental fluctuation measurements that microturbulence, with its time-averaged eddy size which scales with the ion gyroradius, can cause ion thermal transport which deviates from the gyro-Bohm scaling. The physics here can be best addressed by large scale (rho* = rho_i/a = 0.001) full torus gyrokinetic particle-in-cell turbulence simulations using our massively parallel, general geometry gyrokinetic toroidal code with field-aligned mesh. Simulation results from device-size scans for realistic parameters show that ``wave transport'' mechanism is not the dominant contribution for this Bohm-like transport and that transport is mostly diffusive driven by microscopic scale fluctuations in the presence of self-generated zonal flows. In this work, we analyze the turbulence and zonal flow statistics from simulations and compare to nonlinear theoretical predictions including the radial decorrelation of the transport events by zonal flows and the resulting probability distribution function (PDF). In particular, possible deviation of the characteristic radial size of transport processes from the time-averaged radial size of the density fluctuation eddys will be critically examined.
NASA Astrophysics Data System (ADS)
Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo
2017-08-01
We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU data processing time)
Integration of Modelling and Graphics to Create an Infrared Signal Processing Test Bed
NASA Astrophysics Data System (ADS)
Sethi, H. R.; Ralph, John E.
1989-03-01
The work reported in this paper was carried out as part of a contract with MoD (PE) UK. It considers the problems associated with realistic modelling of a passive infrared system in an operational environment. Ideally all aspects of the system and environment should be integrated into a complete end-to-end simulation but in the past limited computing power has prevented this. Recent developments in workstation technology and the increasing availability of parallel processing techniques makes the end-to-end simulation possible. However the complexity and speed of such simulations means difficulties for the operator in controlling the software and understanding the results. These difficulties can be greatly reduced by providing an extremely user friendly interface and a very flexible, high power, high resolution colour graphics capability. Most system modelling is based on separate software simulation of the individual components of the system itself and its environment. These component models may have their own characteristic inbuilt assumptions and approximations, may be written in the language favoured by the originator and may have a wide variety of input and output conventions and requirements. The models and their limitations need to be matched to the range of conditions appropriate to the operational scenerio. A comprehensive set of data bases needs to be generated by the component models and these data bases must be made readily available to the investigator. Performance measures need to be defined and displayed in some convenient graphics form. Some options are presented for combining available hardware and software to create an environment within which the models can be integrated, and which provide the required man-machine interface, graphics and computing power. The impact of massively parallel processing and artificial intelligence will be discussed. Parallel processing will make real time end-to-end simulation possible and will greatly improve the graphical visualisation of the model output data. Artificial intelligence should help to enhance the man-machine interface.
NASA Astrophysics Data System (ADS)
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.
2012-06-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L
2012-06-13
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
NASA Astrophysics Data System (ADS)
Neff, John A.
1989-12-01
Experiments originating from Gestalt psychology have shown that representing information in a symbolic form provides a more effective means to understanding. Computer scientists have been struggling for the last two decades to determine how best to create, manipulate, and store collections of symbolic structures. In the past, much of this struggling led to software innovations because that was the path of least resistance. For example, the development of heuristics for organizing the searching through knowledge bases was much less expensive than building massively parallel machines that could search in parallel. That is now beginning to change with the emergence of parallel architectures which are showing the potential for handling symbolic structures. This paper will review the relationships between symbolic computing and parallel computing architectures, and will identify opportunities for optics to significantly impact the performance of such computing machines. Although neural networks are an exciting subset of massively parallel computing structures, this paper will not touch on this area since it is receiving a great deal of attention in the literature. That is, the concepts presented herein do not consider the distributed representation of knowledge.
Petascale Simulation Initiative Tech Base: FY2007 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, J; Chen, R; Jefferson, D
The Petascale Simulation Initiative began as an LDRD project in the middle of Fiscal Year 2004. The goal of the project was to develop techniques to allow large-scale scientific simulation applications to better exploit the massive parallelism that will come with computers running at petaflops per second. One of the major products of this work was the design and prototype implementation of a programming model and a runtime system that lets applications extend data-parallel applications to use task parallelism. By adopting task parallelism, applications can use processing resources more flexibly, exploit multiple forms of parallelism, and support more sophisticated multiscalemore » and multiphysics models. Our programming model was originally called the Symponents Architecture but is now known as Cooperative Parallelism, and the runtime software that supports it is called Coop. (However, we sometimes refer to the programming model as Coop for brevity.) We have documented the programming model and runtime system in a submitted conference paper [1]. This report focuses on the specific accomplishments of the Cooperative Parallelism project (as we now call it) under Tech Base funding in FY2007. Development and implementation of the model under LDRD funding alone proceeded to the point of demonstrating a large-scale materials modeling application using Coop on more than 1300 processors by the end of FY2006. Beginning in FY2007, the project received funding from both LDRD and the Computation Directorate Tech Base program. Later in the year, after the three-year term of the LDRD funding ended, the ASC program supported the project with additional funds. The goal of the Tech Base effort was to bring Coop from a prototype to a production-ready system that a variety of LLNL users could work with. Specifically, the major tasks that we planned for the project were: (1) Port SARS [former name of the Coop runtime system] to another LLNL platform, probably Thunder or Peloton (depending on when Peloton becomes available); (2) Improve SARS's robustness and ease-of-use, and develop user documentation; and (3) Work with LLNL code teams to help them determine how Symponents could benefit their applications. The original funding request was $296,000 for the year, and we eventually received $252,000. The remainder of this report describes our efforts and accomplishments for each of the goals listed above.« less
Massively Parallel DNA Sequencing Facilitates Diagnosis of Patients with Usher Syndrome Type 1
Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-ichi
2014-01-01
Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance. PMID:24618850
Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.
Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi
2014-01-01
Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.
Implementation of highly parallel and large scale GW calculations within the OpenAtom software
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab
The need to describe electronic excitations with better accuracy than provided by band structures produced by Density Functional Theory (DFT) has been a long-term enterprise for the computational condensed matter and materials theory communities. In some cases, appropriate theoretical frameworks have existed for some time but have been difficult to apply widely due to computational cost. For example, the GW approximation incorporates a great deal of important non-local and dynamical electronic interaction effects but has been too computationally expensive for routine use in large materials simulations. OpenAtom is an open source massively parallel ab initiodensity functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/) that takes advantage of the Charm + + parallel framework. At present, it is developed via a three-way collaboration, funded by an NSF SI2-SSI grant (ACI-1339804), between Yale (Ismail-Beigi), IBM T. J. Watson (Glenn Martyna) and the University of Illinois at Urbana Champaign (Laxmikant Kale). We will describe the project and our current approach towards implementing large scale GW calculations with OpenAtom. Potential applications of large scale parallel GW software for problems involving electronic excitations in semiconductor and/or metal oxide systems will be also be pointed out.
Fully parallel write/read in resistive synaptic array for accelerating on-chip learning
NASA Astrophysics Data System (ADS)
Gao, Ligang; Wang, I.-Ting; Chen, Pai-Yu; Vrudhula, Sarma; Seo, Jae-sun; Cao, Yu; Hou, Tuo-Hung; Yu, Shimeng
2015-11-01
A neuro-inspired computing paradigm beyond the von Neumann architecture is emerging and it generally takes advantage of massive parallelism and is aimed at complex tasks that involve intelligence and learning. The cross-point array architecture with synaptic devices has been proposed for on-chip implementation of the weighted sum and weight update in the learning algorithms. In this work, forming-free, silicon-process-compatible Ta/TaO x /TiO2/Ti synaptic devices are fabricated, in which >200 levels of conductance states could be continuously tuned by identical programming pulses. In order to demonstrate the advantages of parallelism of the cross-point array architecture, a novel fully parallel write scheme is designed and experimentally demonstrated in a small-scale crossbar array to accelerate the weight update in the training process, at a speed that is independent of the array size. Compared to the conventional row-by-row write scheme, it achieves >30× speed-up and >30× improvement in energy efficiency as projected in a large-scale array. If realistic synaptic device characteristics such as device variations are taken into an array-level simulation, the proposed array architecture is able to achieve ∼95% recognition accuracy of MNIST handwritten digits, which is close to the accuracy achieved by software using the ideal sparse coding algorithm.
Simulating cosmic ray physics on a moving mesh
NASA Astrophysics Data System (ADS)
Pfrommer, C.; Pakmor, R.; Schaal, K.; Simpson, C. M.; Springel, V.
2017-03-01
We discuss new methods to integrate the cosmic ray (CR) evolution equations coupled to magnetohydrodynamics on an unstructured moving mesh, as realized in the massively parallel AREPO code for cosmological simulations. We account for diffusive shock acceleration of CRs at resolved shocks and at supernova remnants in the interstellar medium (ISM) and follow the advective CR transport within the magnetized plasma, as well as anisotropic diffusive transport of CRs along the local magnetic field. CR losses are included in terms of Coulomb and hadronic interactions with the thermal plasma. We demonstrate the accuracy of our formalism for CR acceleration at shocks through simulations of plane-parallel shock tubes that are compared to newly derived exact solutions of the Riemann shock-tube problem with CR acceleration. We find that the increased compressibility of the post-shock plasma due to the produced CRs decreases the shock speed. However, CR acceleration at spherically expanding blast waves does not significantly break the self-similarity of the Sedov-Taylor solution; the resulting modifications can be approximated by a suitably adjusted, but constant adiabatic index. In first applications of the new CR formalism to simulations of isolated galaxies and cosmic structure formation, we find that CRs add an important pressure component to the ISM that increases the vertical scaleheight of disc galaxies and thus reduces the star formation rate. Strong external structure formation shocks inject CRs into the gas, but the relative pressure of this component decreases towards halo centres as adiabatic compression favours the thermal over the CR pressure.
A hierarchical, automated target recognition algorithm for a parallel analog processor
NASA Technical Reports Server (NTRS)
Woodward, Gail; Padgett, Curtis
1997-01-01
A hierarchical approach is described for an automated target recognition (ATR) system, VIGILANTE, that uses a massively parallel, analog processor (3DANN). The 3DANN processor is capable of performing 64 concurrent inner products of size 1x4096 every 250 nanoseconds.
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals formore » the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. In conclusion, the chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.« less
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe; ...
2017-11-14
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals formore » the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. In conclusion, the chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.« less
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
NASA Astrophysics Data System (ADS)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe; Gagliardi, Laura; de Jong, Wibe A.
2017-11-01
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number of batches that can be distributed to the available cores. Massively parallel CI calculations with large active spaces can be performed. The new parallel MCSCF implementation is tested for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals for the pentacene systems were performed and a single CI iteration calculation with an active space of 24 electrons in 24 orbitals for the chromium tetramer was possible. The chromium tetramer corresponds to a CI expansion of one trillion Slater determinants (914 058 513 424) and is the largest conventional CI calculation attempted up to date.
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
A cost-effective methodology for the design of massively-parallel VLSI functional units
NASA Technical Reports Server (NTRS)
Venkateswaran, N.; Sriram, G.; Desouza, J.
1993-01-01
In this paper we propose a generalized methodology for the design of cost-effective massively-parallel VLSI Functional Units. This methodology is based on a technique of generating and reducing a massive bit-array on the mask-programmable PAcube VLSI array. This methodology unifies (maintains identical data flow and control) the execution of complex arithmetic functions on PAcube arrays. It is highly regular, expandable and uniform with respect to problem-size and wordlength, thereby reducing the communication complexity. The memory-functional unit interface is regular and expandable. Using this technique functional units of dedicated processors can be mask-programmed on the naked PAcube arrays, reducing the turn-around time. The production cost of such dedicated processors can be drastically reduced since the naked PAcube arrays can be mass-produced. Analysis of the the performance of functional units designed by our method yields promising results.
Parallel computing on Unix workstation arrays
NASA Astrophysics Data System (ADS)
Reale, F.; Bocchino, F.; Sciortino, S.
1994-12-01
We have tested arrays of general-purpose Unix workstations used as MIMD systems for massive parallel computations. In particular we have solved numerically a demanding test problem with a 2D hydrodynamic code, generally developed to study astrophysical flows, by exucuting it on arrays either of DECstations 5000/200 on Ethernet LAN, or of DECstations 3000/400, equipped with powerful Alpha processors, on FDDI LAN. The code is appropriate for data-domain decomposition, and we have used a library for parallelization previously developed in our Institute, and easily extended to work on Unix workstation arrays by using the PVM software toolset. We have compared the parallel efficiencies obtained on arrays of several processors to those obtained on a dedicated MIMD parallel system, namely a Meiko Computing Surface (CS-1), equipped with Intel i860 processors. We discuss the feasibility of using non-dedicated parallel systems and conclude that the convenience depends essentially on the size of the computational domain as compared to the relative processor power and network bandwidth. We point out that for future perspectives a parallel development of processor and network technology is important, and that the software still offers great opportunities of improvement, especially in terms of latency times in the message-passing protocols. In conditions of significant gain in terms of speedup, such workstation arrays represent a cost-effective approach to massive parallel computations.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-04-27
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a final destination. The default routing strategy is altered responsive to detection of overutilization of a particular path of one or more links, and at least some traffic is re-routed by distributing the traffic among multiple paths (which may include the default path). An alternative path may require a greater number of link traversals to reach the destination node.
Systems and methods for rapid processing and storage of data
Stalzer, Mark A.
2017-01-24
Systems and methods of building massively parallel computing systems using low power computing complexes in accordance with embodiments of the invention are disclosed. A massively parallel computing system in accordance with one embodiment of the invention includes at least one Solid State Blade configured to communicate via a high performance network fabric. In addition, each Solid State Blade includes a processor configured to communicate with a plurality of low power computing complexes interconnected by a router, and each low power computing complex includes at least one general processing core, an accelerator, an I/O interface, and cache memory and is configured to communicate with non-volatile solid state memory.
Neupauerová, Jana; Grečmalová, Dagmar; Seeman, Pavel; Laššuthová, Petra
2016-05-01
We describe a patient with early onset severe axonal Charcot-Marie-Tooth disease (CMT2) with dominant inheritance, in whom Sanger sequencing failed to detect a mutation in the mitofusin 2 (MFN2) gene because of a single nucleotide polymorphism (rs2236057) under the PCR primer sequence. The severe early onset phenotype and the family history with severely affected mother (died after delivery) was very suggestive of CMT2A and this suspicion was finally confirmed by a MFN2 mutation. The mutation p.His361Tyr was later detected in the patient by massively parallel sequencing with a gene panel for hereditary neuropathies. According to this information, new primers for amplification and sequencing were designed which bind away from the polymorphic sites of the patient's DNA. Sanger sequencing with these new primers then confirmed the heterozygous mutation in the MFN2 gene in this patient. This case report shows that massively parallel sequencing may in some rare cases be more sensitive than Sanger sequencing and highlights the importance of accurate primer design which requires special attention. © 2016 John Wiley & Sons Ltd/University College London.
Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko
2017-07-12
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Ashish Kumar, E-mail: ashish.memech@gmail.com; Singh, Akhileshwar; Mokhalingam, A.
Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for themore » interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young’s modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young’s modulus of the Al matrix up to 77 % as compared to pure Al.« less
AP-IO: asynchronous pipeline I/O for hiding periodic output cost in CFD simulation.
Xiaoguang, Ren; Xinhai, Xu
2014-01-01
Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%.
Inexact hardware for modelling weather & climate
NASA Astrophysics Data System (ADS)
Düben, Peter D.; McNamara, Hugh; Palmer, Tim
2014-05-01
The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing exact calculations in exchange for improvements in performance and potentially accuracy and a reduction in power consumption. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud resolving atmospheric modelling. The impact of both, hardware induced faults and low precision arithmetic is tested in the dynamical core of a global atmosphere model. Our simulations show that both approaches to inexact calculations do not substantially affect the quality of the model simulations, provided they are restricted to act only on smaller scales. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations.
Near-surface coherent structures explored by large eddy simulation of entire tropical cyclones.
Ito, Junshi; Oizumi, Tsutao; Niino, Hiroshi
2017-06-19
Taking advantage of the huge computational power of a massive parallel supercomputer (K-supercomputer), this study conducts large eddy simulations of entire tropical cyclones by employing a numerical weather prediction model, and explores near-surface coherent structures. The maximum of the near-surface wind changes little from that simulated based on coarse-resolution runs. Three kinds of coherent structures appeared inside the boundary layer. The first is a Type-A roll, which is caused by an inflection-point instability of the radial flow and prevails outside the radius of maximum wind. The second is a Type-B roll that also appears to be caused by an inflection-point instability but of both radial and tangential winds. Its roll axis is almost orthogonal to the Type-A roll. The third is a Type-C roll, which occurs inside the radius of maximum wind and only near the surface. It transports horizontal momentum in an up-gradient sense and causes the largest gusts.
PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation
NASA Astrophysics Data System (ADS)
Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long
2018-06-01
We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.
AP-IO: Asynchronous Pipeline I/O for Hiding Periodic Output Cost in CFD Simulation
Xiaoguang, Ren; Xinhai, Xu
2014-01-01
Computational fluid dynamics (CFD) simulation often needs to periodically output intermediate results to files in the form of snapshots for visualization or restart, which seriously impacts the performance. In this paper, we present asynchronous pipeline I/O (AP-IO) optimization scheme for the periodically snapshot output on the basis of asynchronous I/O and CFD application characteristics. In AP-IO, dedicated background I/O processes or threads are in charge of handling the file write in pipeline mode, therefore the write overhead can be hidden with more calculation than classic asynchronous I/O. We design the framework of AP-IO and implement it in OpenFOAM, providing CFD users with a user-friendly interface. Experimental results on the Tianhe-2 supercomputer demonstrate that AP-IO can achieve a good optimization effect for the periodical snapshot output in CFD application, and the effect is especially better for massively parallel CFD simulations, which can reduce the total execution time up to about 40%. PMID:24955390
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2013-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.
Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation
NASA Astrophysics Data System (ADS)
Rajkumar, V. B.; Chen, Sinn-wen
2017-04-01
Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.
Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Roland; Lindner, Benjamin; Petridis, Loukas
2009-01-01
A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors,more » other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million atom biological systems scale well up to 30k cores, producing 30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.« less
Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
Schulz, Roland; Lindner, Benjamin; Petridis, Loukas; Smith, Jeremy C
2009-10-13
A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to ∼30k cores, producing ∼30 ns/day. Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F; Perez, Danny
2017-10-21
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
NASA Astrophysics Data System (ADS)
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F.; Perez, Danny
2017-10-01
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
NASA Astrophysics Data System (ADS)
Steinke, R. C.; Ogden, F. L.; Lai, W.; Moreno, H. A.; Pureza, L. G.
2014-12-01
Physics-based watershed models are useful tools for hydrologic studies, water resources management and economic analyses in the contexts of climate, land-use, and water-use changes. This poster presents a parallel implementation of a quasi 3-dimensional, physics-based, high-resolution, distributed water resources model suitable for simulating large watersheds in a massively parallel computing environment. Developing this model is one of the objectives of the NSF EPSCoR RII Track II CI-WATER project, which is joint between Wyoming and Utah EPSCoR jurisdictions. The model, which we call ADHydro, is aimed at simulating important processes in the Rocky Mountain west, including: rainfall and infiltration, snowfall and snowmelt in complex terrain, vegetation and evapotranspiration, soil heat flux and freezing, overland flow, channel flow, groundwater flow, water management and irrigation. Model forcing is provided by the Weather Research and Forecasting (WRF) model, and ADHydro is coupled with the NOAH-MP land-surface scheme for calculating fluxes between the land and atmosphere. The ADHydro implementation uses the Charm++ parallel run time system. Charm++ is based on location transparent message passing between migrateable C++ objects. Each object represents an entity in the model such as a mesh element. These objects can be migrated between processors or serialized to disk allowing the Charm++ system to automatically provide capabilities such as load balancing and checkpointing. Objects interact with each other by passing messages that the Charm++ system routes to the correct destination object regardless of its current location. This poster discusses the algorithms, communication patterns, and caching strategies used to implement ADHydro with Charm++. The ADHydro model code will be released to the hydrologic community in late 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badal, Andreu; Badano, Aldo
Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-raymore » imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.« less
FBIS report. Science and technology: Europe/International, March 29, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-29
;Partial Contents: Advanced Materials (EU Project to Improve Production in Metal Matrix Compounds Noted, Germany: Extremely Hard Carbon Coating Development, Italy: Director of CNR Metallic Materials Institute Interviewed); Aerospace (ESA Considers Delays, Reductions as Result of Budget Cuts, Italy: Space Agency`s Director on Restructuring, Future Plans); Automotive, Transportation (EU: Clean Diesel Engine Technology Research Reviewed); Biotechnology (Germany`s Problems, Successes in Biotechnology Discussed); Computers (EU Europort Parallel Computing Project Concluded, Italy: PQE 2000 Project on Massively Parallel Systems Viewed); Defense R&D (France: Future Tasks of `Brevel` Military Intelligence Drone Noted); Energy, Environment (German Scientist Tests Elimination of Phosphates); Advanced Manufacturing (France:more » Advanced Rapid Prototyping System Presented); Lasers, Sensors, Optics (France: Strategy of Cilas Laser Company Detailed); Microelectronics (France: Simulation Company to Develop Microelectronic Manufacturing Application); Nuclear R&D (France: Megajoule Laser Plan, Cooperation with Livermore Lab Noted); S&T Policy (EU Efforts to Aid Small Companies` Research Viewed); Telecommunications (France Telecom`s Way to Internet).« less
Acceleration of Particles Near Earth's Bow Shock
NASA Astrophysics Data System (ADS)
Sandroos, A.
2012-12-01
Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).
NASA Astrophysics Data System (ADS)
Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.
2015-03-01
We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.
Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.
Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou
2016-01-01
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.
Optimizing ion channel models using a parallel genetic algorithm on graphical processors.
Ben-Shalom, Roy; Aviv, Amit; Razon, Benjamin; Korngreen, Alon
2012-01-01
We have recently shown that we can semi-automatically constrain models of voltage-gated ion channels by combining a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols. Although numerically successful, this approach is highly demanding computationally, with optimization on a high performance Linux cluster typically lasting several days. To solve this computational bottleneck we converted our optimization algorithm for work on a graphical processing unit (GPU) using NVIDIA's CUDA. Parallelizing the process on a Fermi graphic computing engine from NVIDIA increased the speed ∼180 times over an application running on an 80 node Linux cluster, considerably reducing simulation times. This application allows users to optimize models for ion channel kinetics on a single, inexpensive, desktop "super computer," greatly reducing the time and cost of building models relevant to neuronal physiology. We also demonstrate that the point of algorithm parallelization is crucial to its performance. We substantially reduced computing time by solving the ODEs (Ordinary Differential Equations) so as to massively reduce memory transfers to and from the GPU. This approach may be applied to speed up other data intensive applications requiring iterative solutions of ODEs. Copyright © 2012 Elsevier B.V. All rights reserved.
Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids
NASA Astrophysics Data System (ADS)
Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2013-01-01
Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.
Hardware and software status of QCDOC
NASA Astrophysics Data System (ADS)
Boyle, P. A.; Chen, D.; Christ, N. H.; Clark, M.; Cohen, S. D.; Cristian, C.; Dong, Z.; Gara, A.; Joó, B.; Jung, C.; Kim, C.; Levkova, L.; Liao, X.; Liu, G.; Mawhinney, R. D.; Ohta, S.; Petrov, K.; Wettig, T.; Yamaguchi, A.
2004-03-01
QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation.
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code
NASA Astrophysics Data System (ADS)
Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun
2017-12-01
Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Pengchen; Settgast, Randolph R.; Johnson, Scott M.
2014-12-17
GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that hasmore » leveraged existing code capabilities and sta expertise to design new computational geosciences software.« less
A Survey of Parallel Computing
1988-07-01
Evaluating Two Massively Parallel Machines. Communications of the ACM .9, , , 176 BIBLIOGRAPHY 29, 8 (August), pp. 752-758. Gajski , D.D., Padua, D.A., Kuck...Computer Architecture, edited by Gajski , D. D., Milutinovic, V. M. Siegel, H. J. and Furht, B. P. IEEE Computer Society Press, Washington, D.C., pp. 387-407
NASA Astrophysics Data System (ADS)
Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.
2012-12-01
The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.
Progress on 3-D ICF simulations and Ray-Traced Power Deposition Method
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.; Fyfe, David E.
2016-10-01
We have performed 3D simulations of Omega-scale and NIF-scale spherical direct-drive targets with the massively parallel
Direct Large-Scale N-Body Simulations of Planetesimal Dynamics
NASA Astrophysics Data System (ADS)
Richardson, Derek C.; Quinn, Thomas; Stadel, Joachim; Lake, George
2000-01-01
We describe a new direct numerical method for simulating planetesimal dynamics in which N˜10 6 or more bodies can be evolved simultaneously in three spatial dimensions over hundreds of dynamical times. This represents several orders of magnitude improvement in resolution over previous studies. The advance is made possible through modification of a stable and tested cosmological code optimized for massively parallel computers. However, owing to the excellent scalability and portability of the code, modest clusters of workstations can treat problems with N˜10 5 particles in a practical fashion. The code features algorithms for detection and resolution of collisions and takes into account the strong central force field and flattened Keplerian disk geometry of planetesimal systems. We demonstrate the range of problems that can be addressed by presenting simulations that illustrate oligarchic growth of protoplanets, planet formation in the presence of giant planet perturbations, the formation of the jovian moons, and orbital migration via planetesimal scattering. We also describe methods under development for increasing the timescale of the simulations by several orders of magnitude.
A Petascale Non-Hydrostatic Atmospheric Dynamical Core in the HOMME Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tufo, Henry
The High-Order Method Modeling Environment (HOMME) is a framework for building scalable, conserva- tive atmospheric models for climate simulation and general atmospheric-modeling applications. Its spatial discretizations are based on Spectral-Element (SE) and Discontinuous Galerkin (DG) methods. These are local methods employing high-order accurate spectral basis-functions that have been shown to perform well on massively parallel supercomputers at any resolution and scale particularly well at high resolutions. HOMME provides the framework upon which the CAM-SE community atmosphere model dynamical-core is constructed. In its current incarnation, CAM-SE employs the hydrostatic primitive-equations (PE) of motion, which limits its resolution to simulations coarser thanmore » 0.1 per grid cell. The primary objective of this project is to remove this resolution limitation by providing HOMME with the capabilities needed to build nonhydrostatic models that solve the compressible Euler/Navier-Stokes equations.« less
Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles
Cruz, F.; Alves, E. P.; Bamford, R. A.; ...
2017-02-06
We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. Here we find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shockmore » in small-scale structures. We also study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pingenot, J; Rieben, R; White, D
2005-10-31
We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
Parallel Preconditioning for CFD Problems on the CM-5
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Kremenetsky, Mark D.; Richardson, John; Lasinski, T. A. (Technical Monitor)
1994-01-01
Up to today, preconditioning methods on massively parallel systems have faced a major difficulty. The most successful preconditioning methods in terms of accelerating the convergence of the iterative solver such as incomplete LU factorizations are notoriously difficult to implement on parallel machines for two reasons: (1) the actual computation of the preconditioner is not very floating-point intensive, but requires a large amount of unstructured communication, and (2) the application of the preconditioning matrix in the iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive nature of the computation. Here we present a new approach to preconditioning for very large, sparse, unsymmetric, linear systems, which avoids both difficulties. We explicitly compute an approximate inverse to our original matrix. This new preconditioning matrix can be applied most efficiently for iterative methods on massively parallel machines, since the preconditioning phase involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore the actual computation of the preconditioning matrix has natural parallelism. For a problem of size n, the preconditioning matrix can be computed by solving n independent small least squares problems. The algorithm and its implementation on the Connection Machine CM-5 are discussed in detail and supported by extensive timings obtained from real problem data.
A biconjugate gradient type algorithm on massively parallel architectures
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Hochbruck, Marlis
1991-01-01
The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine.
Massive parallelization of serial inference algorithms for a complex generalized linear model
Suchard, Marc A.; Simpson, Shawn E.; Zorych, Ivan; Ryan, Patrick; Madigan, David
2014-01-01
Following a series of high-profile drug safety disasters in recent years, many countries are redoubling their efforts to ensure the safety of licensed medical products. Large-scale observational databases such as claims databases or electronic health record systems are attracting particular attention in this regard, but present significant methodological and computational concerns. In this paper we show how high-performance statistical computation, including graphics processing units, relatively inexpensive highly parallel computing devices, can enable complex methods in large databases. We focus on optimization and massive parallelization of cyclic coordinate descent approaches to fit a conditioned generalized linear model involving tens of millions of observations and thousands of predictors in a Bayesian context. We find orders-of-magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in high-dimensional statistics and the algorithms we propose open up exciting new methodological possibilities with the potential to significantly improve drug safety. PMID:25328363
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less
The metal enrichment of passive galaxies in cosmological simulations of galaxy formation
NASA Astrophysics Data System (ADS)
Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.
2017-02-01
Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.
NASA Astrophysics Data System (ADS)
McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.
2017-12-01
In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Pitman, Michael C; Rice, John J
2011-06-01
We present the orthogonal recursive bisection algorithm that hierarchically segments the anatomical model structure into subvolumes that are distributed to cores. The anatomy is derived from the Visible Human Project, with electrophysiology based on the FitzHugh-Nagumo (FHN) and ten Tusscher (TT04) models with monodomain diffusion. Benchmark simulations with up to 16,384 and 32,768 cores on IBM Blue Gene/P and L supercomputers for both FHN and TT04 results show good load balancing with almost perfect speedup factors that are close to linear with the number of cores. Hence, strong scaling is demonstrated. With 32,768 cores, a 1000 ms simulation of full heart beat requires about 6.5 min of wall clock time for a simulation of the FHN model. For the largest machine partitions, the simulations execute at a rate of 0.548 s (BG/P) and 0.394 s (BG/L) of wall clock time per 1 ms of simulation time. To our knowledge, these simulations show strong scaling to substantially higher numbers of cores than reported previously for organ-level simulation of the heart, thus significantly reducing run times. The ability to reduce runtimes could play a critical role in enabling wider use of cardiac models in research and clinical applications.
NASA Astrophysics Data System (ADS)
Hayano, Akira; Ishii, Eiichi
2016-10-01
This study investigates the mechanical relationship between bedding-parallel and bedding-oblique faults in a Neogene massive siliceous mudstone at the site of the Horonobe Underground Research Laboratory (URL) in Hokkaido, Japan, on the basis of observations of drill-core recovered from pilot boreholes and fracture mapping on shaft and gallery walls. Four bedding-parallel faults with visible fault gouge, named respectively the MM Fault, the Last MM Fault, the S1 Fault, and the S2 Fault (stratigraphically, from the highest to the lowest), were observed in two pilot boreholes (PB-V01 and SAB-1). The distribution of the bedding-parallel faults at 350 m depth in the Horonobe URL indicates that these faults are spread over at least several tens of meters in parallel along a bedding plane. The observation that the bedding-oblique fault displaces the Last MM fault is consistent with the previous interpretation that the bedding- oblique faults formed after the bedding-parallel faults. In addition, the bedding-parallel faults terminate near the MM and S1 faults, indicating that the bedding-parallel faults with visible fault gouge act to terminate the propagation of younger bedding-oblique faults. In particular, the MM and S1 faults, which have a relatively thick fault gouge, appear to have had a stronger control on the propagation of bedding-oblique faults than did the Last MM fault, which has a relatively thin fault gouge.
Neural dynamics in reconfigurable silicon.
Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E
2010-10-01
A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).
3-D readout-electronics packaging for high-bandwidth massively paralleled imager
Kwiatkowski, Kris; Lyke, James
2007-12-18
Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.
Gooding, Thomas Michael; McCarthy, Patrick Joseph
2010-03-02
A data collector for a massively parallel computer system obtains call-return stack traceback data for multiple nodes by retrieving partial call-return stack traceback data from each node, grouping the nodes in subsets according to the partial traceback data, and obtaining further call-return stack traceback data from a representative node or nodes of each subset. Preferably, the partial data is a respective instruction address from each node, nodes having identical instruction address being grouped together in the same subset. Preferably, a single node of each subset is chosen and full stack traceback data is retrieved from the call-return stack within the chosen node.
Gooding, Thomas Michael [Rochester, MN
2011-04-19
An analytical mechanism for a massively parallel computer system automatically analyzes data retrieved from the system, and identifies nodes which exhibit anomalous behavior in comparison to their immediate neighbors. Preferably, anomalous behavior is determined by comparing call-return stack tracebacks for each node, grouping like nodes together, and identifying neighboring nodes which do not themselves belong to the group. A node, not itself in the group, having a large number of neighbors in the group, is a likely locality of error. The analyzer preferably presents this information to the user by sorting the neighbors according to number of adjoining members of the group.
Estimating water flow through a hillslope using the massively parallel processor
NASA Technical Reports Server (NTRS)
Devaney, Judy E.; Camillo, P. J.; Gurney, R. J.
1988-01-01
A new two-dimensional model of water flow in a hillslope has been implemented on the Massively Parallel Processor at the Goddard Space Flight Center. Flow in the soil both in the saturated and unsaturated zones, evaporation and overland flow are all modelled, and the rainfall rates are allowed to vary spatially. Previous models of this type had always been very limited computationally. This model takes less than a minute to model all the components of the hillslope water flow for a day. The model can now be used in sensitivity studies to specify which measurements should be taken and how accurate they should be to describe such flows for environmental studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Patrick
2014-01-31
The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.
De novo assembly of human genomes with massively parallel short read sequencing.
Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue; Qian, Wubin; Fang, Xiaodong; Shi, Zhongbin; Li, Yingrui; Li, Shengting; Shan, Gao; Kristiansen, Karsten; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun
2010-02-01
Next-generation massively parallel DNA sequencing technologies provide ultrahigh throughput at a substantially lower unit data cost; however, the data are very short read length sequences, making de novo assembly extremely challenging. Here, we describe a novel method for de novo assembly of large genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhr, L.
1987-01-01
This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.
DICE/ColDICE: 6D collisionless phase space hydrodynamics using a lagrangian tesselation
NASA Astrophysics Data System (ADS)
Sousbie, Thierry
2018-01-01
DICE is a C++ template library designed to solve collisionless fluid dynamics in 6D phase space using massively parallel supercomputers via an hybrid OpenMP/MPI parallelization. ColDICE, based on DICE, implements a cosmological and physical VLASOV-POISSON solver for cold systems such as dark matter (CDM) dynamics.
A Review of Lightweight Thread Approaches for High Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castello, Adrian; Pena, Antonio J.; Seo, Sangmin
High-level, directive-based solutions are becoming the programming models (PMs) of the multi/many-core architectures. Several solutions relying on operating system (OS) threads perfectly work with a moderate number of cores. However, exascale systems will spawn hundreds of thousands of threads in order to exploit their massive parallel architectures and thus conventional OS threads are too heavy for that purpose. Several lightweight thread (LWT) libraries have recently appeared offering lighter mechanisms to tackle massive concurrency. In order to examine the suitability of LWTs in high-level runtimes, we develop a set of microbenchmarks consisting of commonlyfound patterns in current parallel codes. Moreover, wemore » study the semantics offered by some LWT libraries in order to expose the similarities between different LWT application programming interfaces. This study reveals that a reduced set of LWT functions can be sufficient to cover the common parallel code patterns and that those LWT libraries perform better than OS threads-based solutions in cases where task and nested parallelism are becoming more popular with new architectures.« less
NASA Astrophysics Data System (ADS)
Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.
2015-12-01
During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to explore processes across a wide range of temporal and spatial scales. The presentation will provide insights (& many animations) illustrating river morphodynamics & resulting landscapes formed as a result of sea level oscillations. [Image: The incised 3.2e6 km^2 Sundaland domain @ 431ka
Molecular Dynamics of Hot Dense Plasmas: New Horizons
NASA Astrophysics Data System (ADS)
Graziani, Frank
2011-10-01
We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Zelements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Zelements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Reif, John H.
1987-01-01
A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
The Destructive Birth of Massive Stars and Massive Star Clusters
NASA Astrophysics Data System (ADS)
Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico
2017-01-01
Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.
A framework for plasticity implementation on the SpiNNaker neural architecture.
Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A; Furber, Steve B; Benosman, Ryad B
2014-01-01
Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system.
A framework for plasticity implementation on the SpiNNaker neural architecture
Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A.; Furber, Steve B.; Benosman, Ryad B.
2015-01-01
Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system. PMID:25653580
NASA Technical Reports Server (NTRS)
Kramer, Williams T. C.; Simon, Horst D.
1994-01-01
This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.
NASA Astrophysics Data System (ADS)
Pickl, Kristina; Pande, Jayant; Köstler, Harald; Rüde, Ulrich; Smith, Ana-Sunčana
2017-03-01
Propulsion at low Reynolds numbers is often studied by defining artificial microswimmers which exhibit a particular stroke. The disadvantage of such an approach is that the stroke does not adjust to the environment, in particular the fluid flow, which can diminish the effect of hydrodynamic interactions. To overcome this limitation, we simulate a microswimmer consisting of three beads connected by springs and dampers, using the self-developed waLBerla and pe framework based on the lattice Boltzmann method and the discrete element method. In our approach, the swimming stroke of a swimmer emerges as a balance of the drag, the driving and the elastic internal forces. We validate the simulations by comparing the obtained swimming velocity to the velocity found analytically using a perturbative method where the bead oscillations are taken to be small. Including higher-order terms in the hydrodynamic interactions between the beads improves the agreement to the simulations in parts of the parameter space. Encouraged by the agreement between the theory and the simulations and aided by the massively parallel capabilities of the waLBerla-pe framework, we simulate more than ten thousand such swimmers together, thus presenting the first fully resolved simulations of large swarms with active responsive components.
An enhanced lumped element electrical model of a double barrier memristive device
NASA Astrophysics Data System (ADS)
Solan, Enver; Dirkmann, Sven; Hansen, Mirko; Schroeder, Dietmar; Kohlstedt, Hermann; Ziegler, Martin; Mussenbrock, Thomas; Ochs, Karlheinz
2017-05-01
The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model.
NASA Astrophysics Data System (ADS)
Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2008-02-01
A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo
Four Japan Atomic Energy Agency (JAEA) researchers visited Pacific Northwest National Laboratory (PNNL) for seven working days and have evaluated the suitability and adaptability of FLESCOT to a JAEA’s supercomputer system to effectively simulate cesium behavior in dam reservoirs, river mouths, and coastal areas in Fukushima contaminated by the Fukushima Daiichi nuclear accident. PNNL showed the following to JAEA visitors during the seven-working day period: FLESCOT source code; User’s manual; FLESCOT description – Program structure – Algorism – Solver – Boundary condition handling – Data definition – Input and output methods – How to run. During the visit, JAEA hadmore » access to FLESCOT to run with an input data set to evaluate the capacity and feasibility of adapting it to a JAEA super computer with massive parallel processors. As a part of this evaluation, PNNL ran FLESCOT for sample cases of the contaminant migration simulation to further describe FLESCOT in action. JAEA and PNNL researchers also evaluated time spent for each subroutine of FLESCOT, and the JAEA researcher implemented some initial parallelization schemes to FLESCOT. Based on this code evaluation, JAEA and PNNL determined that FLESCOT is: applicable to Fukushima lakes/dam reservoirs, river mouth areas, and coastal water; and feasible to implement parallelization for the JAEA supercomputer. In addition, PNNL and JAEA researchers discussed molecular modeling approaches on cesium adsorption mechanisms to enhance the JAEA molecular modeling activities. PNNL and JAEA also discussed specific collaboration of molecular and computational modeling activities.« less
NASA Astrophysics Data System (ADS)
Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald
2017-04-01
With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
CMOS VLSI Layout and Verification of a SIMD Computer
NASA Technical Reports Server (NTRS)
Zheng, Jianqing
1996-01-01
A CMOS VLSI layout and verification of a 3 x 3 processor parallel computer has been completed. The layout was done using the MAGIC tool and the verification using HSPICE. Suggestions for expanding the computer into a million processor network are presented. Many problems that might be encountered when implementing a massively parallel computer are discussed.
Real time animation of space plasma phenomena
NASA Technical Reports Server (NTRS)
Jordan, K. F.; Greenstadt, E. W.
1987-01-01
In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.
NASA Technical Reports Server (NTRS)
Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)
1993-01-01
The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.
The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzo, V. A.
Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less
Hyper-Systolic Processing on APE100/QUADRICS:. n2-LOOP Computations
NASA Astrophysics Data System (ADS)
Lippert, Thomas; Ritzenhöfer, Gero; Glaessner, Uwe; Hoeber, Henning; Seyfried, Armin; Schilling, Klaus
We investigate the performance gains from hyper-systolic implementations of n2-loop problems on the massively parallel computer Quadrics, exploiting its three-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions. We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as three on the Q4 and eight on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasible to investigate the thermodynamics of a full gravitating n-body problem with O(16.000) particles using the new method on a QH4 system.
Genetically Engineered Microelectronic Infrared Filters
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
1998-01-01
A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.
The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D
Izzo, V. A.
2017-02-27
Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less
Highly multiplexed subcellular RNA sequencing in situ
Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Yang, Joyce L.; Terry, Richard; Jeanty, Sauveur S. F.; Li, Chao; Amamoto, Ryoji; Peters, Derek T.; Turczyk, Brian M.; Marblestone, Adam H.; Inverso, Samuel A.; Bernard, Amy; Mali, Prashant; Rios, Xavier; Aach, John; Church, George M.
2014-01-01
Understanding the spatial organization of gene expression with single nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked cDNA amplicons are sequenced within a biological sample. Using 30-base reads from 8,742 genes in situ, we examined RNA expression and localization in human primary fibroblasts using a simulated wound healing assay. FISSEQ is compatible with tissue sections and whole mount embryos, and reduces the limitations of optical resolution and noisy signals on single molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ. PMID:24578530
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-16
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.
Parallel design patterns for a low-power, software-defined compressed video encoder
NASA Astrophysics Data System (ADS)
Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar
2011-06-01
Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.
Ordered fast fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1989-01-01
Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.
Optimisation of a parallel ocean general circulation model
NASA Astrophysics Data System (ADS)
Beare, M. I.; Stevens, D. P.
1997-10-01
This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.
Advanced Techniques for Simulating the Behavior of Sand
NASA Astrophysics Data System (ADS)
Clothier, M.; Bailey, M.
2009-12-01
Computer graphics and visualization techniques continue to provide untapped research opportunities, particularly when working with earth science disciplines. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs we are developing new techniques for simulating sand. In addition, through collaboration with the Oregon Space Grant, we’ve been communicating with the Jet Propulsion Laboratory (JPL) to exchange ideas and gain feedback on our work. More specifically, JPL’s DARTS Laboratory specializes in planetary vehicle simulation, such as the Mars rovers. This simulation utilizes a virtual "sand box" to test how planetary rovers respond to different terrains while traversing them. Unfortunately, this simulation is unable to fully mimic the harsh, sandy environments of those found on Mars. Ideally, these simulations should allow a rover to interact with the sand beneath it, particularly for different sand granularities and densities. In particular, there may be situations where a rover may become stuck in sand due to lack of friction between the sand and wheels. In fact, in May 2009, the Spirit rover became stuck in the Martian sand and has provided additional motivation for this research. In order to develop a new sand simulation model, high performance computing will play a very important role in this work. More specifically, graphics processing units (GPUs) are useful due to their ability to run general purpose algorithms and ability to perform massively parallel computations. In prior research, simulating vast quantities of sand has been difficult to compute in real-time due to the computational complexity of many colliding particles. With the use of GPUs however, each particle collision will be parallelized, allowing for a dramatic performance increase. In addition, spatial partitioning will also provide a speed boost as this will help limit the number of particle collision calculations. However, since the goal of this research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.
GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training.
Keelan, Robert; Shimada, Kenji; Rabin, Yoed
2017-02-01
This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze-thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface.
GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training
Keelan, Robert; Shimada, Kenji
2016-01-01
This study presents an efficient computational technique for the simulation of ultrasound imaging artifacts associated with cryosurgery based on nonlinear ray tracing. This study is part of an ongoing effort to develop computerized training tools for cryosurgery, with prostate cryosurgery as a development model. The capability of performing virtual cryosurgical procedures on a variety of test cases is essential for effective surgical training. Simulated ultrasound imaging artifacts include reverberation and reflection of the cryoprobes in the unfrozen tissue, reflections caused by the freezing front, shadowing caused by the frozen region, and tissue property changes in repeated freeze–thaw cycles procedures. The simulated artifacts appear to preserve the key features observed in a clinical setting. This study displays an example of how training may benefit from toggling between the undisturbed ultrasound image, the simulated temperature field, the simulated imaging artifacts, and an augmented hybrid presentation of the temperature field superimposed on the ultrasound image. The proposed method is demonstrated on a graphic processing unit at 100 frames per second, on a mid-range personal workstation, at two orders of magnitude faster than a typical cryoprocedure. This performance is based on computation with C++ accelerated massive parallelism and its interoperability with the DirectX-rendering application programming interface. PMID:26818026
Simulations of the Formation and Evolution of X-ray Clusters
NASA Astrophysics Data System (ADS)
Bryan, G. L.; Klypin, A.; Norman, M. L.
1994-05-01
We describe results from a set of Omega = 1 Cold plus Hot Dark Matter (CHDM) and Cold Dark Matter (CDM) simulations. We examine the formation and evolution of X-ray clusters in a cosmological setting with sufficient numbers to perform statistical analysis. We find that CDM, normalized to COBE, seems to produce too many large clusters, both in terms of the luminosity (dn/dL) and temperature (dn/dT) functions. The CHDM simulation produces fewer clusters and the temperature distribution (our numerically most secure result) matches observations where they overlap. The computed cluster luminosity function drops below observations, but we are almost surely underestimating the X-ray luminosity. Because of the lower fluctuations in CHDM, there are only a small number of bright clusters in our simulation volume; however we can use the simulated clusters to fix the relation between temperature and velocity dispersion, allowing us to use collisionless N-body codes to probe larger length scales with correspondingly brighter clusters. The hydrodynamic simulations have been performed with a hybrid particle-mesh scheme for the dark matter and a high resolution grid-based piecewise parabolic method for the adiabatic gas dynamics. This combination has been implemented for massively parallel computers, allowing us to achive grids as large as 512(3) .
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; McDougal, Matthew; Russell, Sam
2012-01-01
Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.
A Massively Parallel Computational Method of Reading Index Files for SOAPsnv.
Zhu, Xiaoqian; Peng, Shaoliang; Liu, Shaojie; Cui, Yingbo; Gu, Xiang; Gao, Ming; Fang, Lin; Fang, Xiaodong
2015-12-01
SOAPsnv is the software used for identifying the single nucleotide variation in cancer genes. However, its performance is yet to match the massive amount of data to be processed. Experiments reveal that the main performance bottleneck of SOAPsnv software is the pileup algorithm. The original pileup algorithm's I/O process is time-consuming and inefficient to read input files. Moreover, the scalability of the pileup algorithm is also poor. Therefore, we designed a new algorithm, named BamPileup, aiming to improve the performance of sequential read, and the new pileup algorithm implemented a parallel read mode based on index. Using this method, each thread can directly read the data start from a specific position. The results of experiments on the Tianhe-2 supercomputer show that, when reading data in a multi-threaded parallel I/O way, the processing time of algorithm is reduced to 3.9 s and the application program can achieve a speedup up to 100×. Moreover, the scalability of the new algorithm is also satisfying.
Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.
Fernandes, Kyle D; Renison, C Alicia; Naidoo, Kevin J
2015-07-05
We present here a set of algorithms that completely rewrites the Hartree-Fock (HF) computations common to many legacy electronic structure packages (such as GAMESS-US, GAMESS-UK, and NWChem) into a massively parallel compute scheme that takes advantage of hardware accelerators such as Graphical Processing Units (GPUs). The HF compute algorithm is core to a library of routines that we name the Quantum Supercharger Library (QSL). We briefly evaluate the QSL's performance and report that it accelerates a HF 6-31G Self-Consistent Field (SCF) computation by up to 20 times for medium sized molecules (such as a buckyball) when compared with mature Central Processing Unit algorithms available in the legacy codes in regular use by researchers. It achieves this acceleration by massive parallelization of the one- and two-electron integrals and optimization of the SCF and Direct Inversion in the Iterative Subspace routines through the use of GPU linear algebra libraries. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos
NASA Astrophysics Data System (ADS)
Liu, Li-li
2017-04-01
Based on the cosmological hydrodynamic simulations, we investigate the correlations between the spin, velocity shear and vorticity in dark matter halos, as well as the relationship between the baryonic matter and the dark matter. We find that (1) the difference between the vorticity of baryonic matter and that of dark matter is evident on the scales of < 0.2 h-1 Mpc; (2) the vorticity of baryonic matter exhibits a stronger correlation with the tensor of velocity shear than the vorticity of dark matter does; and (3) the spinning direction of small-mass dark matter halos tends to be parallel to the direction of their host filaments, while the spinning direction of massive dark matter halos tends to be perpendicular to the direction of their host filaments, and the intensity of this kind correlation depends on the size of simulation box, and the simulation accuracy. These factors may cause the relationship between the the spins of dark matter halos and those of galaxies to be complicated, and affect the correlation between the galaxy spins and the nearby large-scale structures.
Linking Chaotic Advection with Subsurface Biogeochemical Processes
NASA Astrophysics Data System (ADS)
Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.
2017-12-01
This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.
Molecular dynamics study of mechanical properties of carbon nanotube reinforced aluminum composites
NASA Astrophysics Data System (ADS)
Srivastava, Ashish Kumar; Mokhalingam, A.; Singh, Akhileshwar; Kumar, Dinesh
2016-05-01
Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for the interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young's modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young's modulus of the Al matrix up to 77 % as compared to pure Al.
Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Moortgat, J.
2017-12-01
We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.
Flexbar 3.0 - SIMD and multicore parallelization.
Roehr, Johannes T; Dieterich, Christoph; Reinert, Knut
2017-09-15
High-throughput sequencing machines can process many samples in a single run. For Illumina systems, sequencing reads are barcoded with an additional DNA tag that is contained in the respective sequencing adapters. The recognition of barcode and adapter sequences is hence commonly needed for the analysis of next-generation sequencing data. Flexbar performs demultiplexing based on barcodes and adapter trimming for such data. The massive amounts of data generated on modern sequencing machines demand that this preprocessing is done as efficiently as possible. We present Flexbar 3.0, the successor of the popular program Flexbar. It employs now twofold parallelism: multi-threading and additionally SIMD vectorization. Both types of parallelism are used to speed-up the computation of pair-wise sequence alignments, which are used for the detection of barcodes and adapters. Furthermore, new features were included to cover a wide range of applications. We evaluated the performance of Flexbar based on a simulated sequencing dataset. Our program outcompetes other tools in terms of speed and is among the best tools in the presented quality benchmark. https://github.com/seqan/flexbar. johannes.roehr@fu-berlin.de or knut.reinert@fu-berlin.de. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)
2000-01-01
HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)
2001-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Adaptive parallel logic networks
NASA Technical Reports Server (NTRS)
Martinez, Tony R.; Vidal, Jacques J.
1988-01-01
Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.
Experience in highly parallel processing using DAP
NASA Technical Reports Server (NTRS)
Parkinson, D.
1987-01-01
Distributed Array Processors (DAP) have been in day to day use for ten years and a large amount of user experience has been gained. The profile of user applications is similar to that of the Massively Parallel Processor (MPP) working group. Experience has shown that contrary to expectations, highly parallel systems provide excellent performance on so-called dirty problems such as the physics part of meteorological codes. The reasons for this observation are discussed. The arguments against replacing bit processors with floating point processors are also discussed.
NASA Astrophysics Data System (ADS)
Spurzem, R.; Berczik, P.; Zhong, S.; Nitadori, K.; Hamada, T.; Berentzen, I.; Veles, A.
2012-07-01
Astrophysical Computer Simulations of Dense Star Clusters in Galactic Nuclei with Supermassive Black Holes are presented using new cost-efficient supercomputers in China accelerated by graphical processing cards (GPU). We use large high-accuracy direct N-body simulations with Hermite scheme and block-time steps, parallelised across a large number of nodes on the large scale and across many GPU thread processors on each node on the small scale. A sustained performance of more than 350 Tflop/s for a science run on using simultaneously 1600 Fermi C2050 GPUs is reached; a detailed performance model is presented and studies for the largest GPU clusters in China with up to Petaflop/s performance and 7000 Fermi GPU cards. In our case study we look at two supermassive black holes with equal and unequal masses embedded in a dense stellar cluster in a galactic nucleus. The hardening processes due to interactions between black holes and stars, effects of rotation in the stellar system and relativistic forces between the black holes are simultaneously taken into account. The simulation stops at the complete relativistic merger of the black holes.
RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors.
Voglreiter, Philip; Mariappan, Panchatcharam; Pollari, Mika; Flanagan, Ronan; Blanco Sequeiros, Roberto; Portugaller, Rupert Horst; Fütterer, Jurgen; Schmalstieg, Dieter; Kolesnik, Marina; Moche, Michael
2018-01-15
The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.
Mantle convection on modern supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter
2015-04-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.
pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter
2015-11-01
We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.
Developing Chemistry and Kinetic Modeling Tools for Low-Temperature Plasma Simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Beckwith, Kris; Davidson, Bradley; Kruger, Scott; Pankin, Alexei; Roark, Christine; Stoltz, Peter
2015-09-01
We discuss the use of proper orthogonal decomposition (POD) methods in VSim, a FDTD plasma simulation code capable of both PIC/MCC and fluid modeling. POD methods efficiently generate smooth representations of noisy self-consistent or test-particle PIC data, and are thus advantageous in computing macroscopic fluid quantities from large PIC datasets (e.g. for particle-based closure computations) and in constructing optimal visual representations of the underlying physics. They may also confer performance advantages for massively parallel simulations, due to the significant reduction in dataset sizes conferred by truncated singular-value decompositions of the PIC data. We also demonstrate how complex LTP chemistry scenarios can be modeled in VSim via an interface with MUNCHKIN, a developing standalone python/C++/SQL code that identifies reaction paths for given input species, solves 1D rate equations for the time-dependent chemical evolution of the system, and generates corresponding VSim input blocks with appropriate cross-sections/reaction rates. MUNCHKIN also computes reaction rates from user-specified distribution functions, and conducts principal path analyses to reduce the number of simulated chemical reactions. Supported by U.S. Department of Energy SBIR program, Award DE-SC0009501.
Dynamic load balancing of applications
Wheat, Stephen R.
1997-01-01
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Ross, Kevin
2009-01-01
Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Kamesh; Ediger, David; Jiang, Karl
2009-02-15
We present a new lock-free parallel algorithm for computing betweenness centralityof massive small-world networks. With minor changes to the data structures, ouralgorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun multicore server with the UltraSPARC T2 processor. For a small-world network of 134 millionmore » vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Kamesh; Ediger, David; Jiang, Karl
2009-05-29
We present a new lock-free parallel algorithm for computing betweenness centrality of massive small-world networks. With minor changes to the data structures, our algorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in the HPCS SSCA#2 Graph Analysis benchmark, which has been extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the ThreadStorm processor, and a single-socket Sun multicore server with the UltraSparc T2 processor.more » For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.« less
Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments
NASA Astrophysics Data System (ADS)
Atwal, Gurinder S.; Kinney, Justin B.
2016-03-01
A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.
Massively parallel first-principles simulation of electron dynamics in materials
Draeger, Erik W.; Andrade, Xavier; Gunnels, John A.; ...
2017-08-01
Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up tomore » 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.« less
Magnetosphere simulations with a high-performance 3D AMR MHD Code
NASA Astrophysics Data System (ADS)
Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul
1998-11-01
BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.
Massively parallel first-principles simulation of electron dynamics in materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draeger, Erik W.; Andrade, Xavier; Gunnels, John A.
Here we present a highly scalable, parallel implementation of first-principles electron dynamics coupled with molecular dynamics (MD). By using optimized kernels, network topology aware communication, and by fully distributing all terms in the time-dependent Kohn–Sham equation, we demonstrate unprecedented time to solution for disordered aluminum systems of 2000 atoms (22,000 electrons) and 5400 atoms (59,400 electrons), with wall clock time as low as 7.5 s per MD time step. Despite a significant amount of non-local communication required in every iteration, we achieved excellent strong scaling and sustained performance on the Sequoia Blue Gene/Q supercomputer at LLNL. We obtained up tomore » 59% of the theoretical sustained peak performance on 16,384 nodes and performance of 8.75 Petaflop/s (43% of theoretical peak) on the full 98,304 node machine (1,572,864 cores). Lastly, scalable explicit electron dynamics allows for the study of phenomena beyond the reach of standard first-principles MD, in particular, materials subject to strong or rapid perturbations, such as pulsed electromagnetic radiation, particle irradiation, or strong electric currents.« less
Computer Sciences and Data Systems, volume 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: data storage; information network architecture; VHSIC technology; fiber optics; laser applications; distributed processing; spaceborne optical disk controller; massively parallel processors; and advanced digital SAR processors.
Design considerations for parallel graphics libraries
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1994-01-01
Applications which run on parallel supercomputers are often characterized by massive datasets. Converting these vast collections of numbers to visual form has proven to be a powerful aid to comprehension. For a variety of reasons, it may be desirable to provide this visual feedback at runtime. One way to accomplish this is to exploit the available parallelism to perform graphics operations in place. In order to do this, we need appropriate parallel rendering algorithms and library interfaces. This paper provides a tutorial introduction to some of the issues which arise in designing parallel graphics libraries and their underlying rendering algorithms. The focus is on polygon rendering for distributed memory message-passing systems. We illustrate our discussion with examples from PGL, a parallel graphics library which has been developed on the Intel family of parallel systems.
Directions in parallel programming: HPF, shared virtual memory and object parallelism in pC++
NASA Technical Reports Server (NTRS)
Bodin, Francois; Priol, Thierry; Mehrotra, Piyush; Gannon, Dennis
1994-01-01
Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions to these languages are the most popular for programming massively parallel computers. We discuss two such approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S takes a different approach in which the data distribution is managed by the operating system and the user provides annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent aggregate parallel model.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-23
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Nodes vary a choice of routing policy for routing data in the network in a semi-random manner, so that similarly situated packets are not always routed along the same path. Semi-random variation of the routing policy tends to avoid certain local hot spots of network activity, which might otherwise arise using more consistent routing determinations. Preferably, the originating node chooses a routing policy for a packet, and all intermediate nodes in the path route the packet according to that policy. Policies may be rotated on a round-robin basis, selected by generating a random number, or otherwise varied.
Applications of massively parallel computers in telemetry processing
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; Pritchard, Jim; Knoble, Gordon
1994-01-01
Telemetry processing refers to the reconstruction of full resolution raw instrumentation data with artifacts, of space and ground recording and transmission, removed. Being the first processing phase of satellite data, this process is also referred to as level-zero processing. This study is aimed at investigating the use of massively parallel computing technology in providing level-zero processing to spaceflights that adhere to the recommendations of the Consultative Committee on Space Data Systems (CCSDS). The workload characteristics, of level-zero processing, are used to identify processing requirements in high-performance computing systems. An example of level-zero functions on a SIMD MPP, such as the MasPar, is discussed. The requirements in this paper are based in part on the Earth Observing System (EOS) Data and Operation System (EDOS).
Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line
STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR
2016-01-01
Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252
Big data mining analysis method based on cloud computing
NASA Astrophysics Data System (ADS)
Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao
2017-08-01
Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.
Application of high-performance computing to numerical simulation of human movement
NASA Technical Reports Server (NTRS)
Anderson, F. C.; Ziegler, J. M.; Pandy, M. G.; Whalen, R. T.
1995-01-01
We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.
1995-01-01
This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.
NASA Astrophysics Data System (ADS)
Zoller, Christian; Hohmann, Ansgar; Ertl, Thomas; Kienle, Alwin
2017-07-01
The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media [1]. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important [1, 2]. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards can be used as well as other computing devices. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. This Monte Carlo software can be used for many applications. In this work the transmission spectrum of a tooth and the color reconstruction of a virtual object are shown, using results from the Monte Carlo software.