Sample records for master equation analysis

  1. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

    PubMed

    Ma, Jianyi

    2016-10-11

    Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

  2. The Markov process admits a consistent steady-state thermodynamic formalism

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  3. Effect of Dust Coagulation Dynamics on the Geometry of Aggregates

    NASA Technical Reports Server (NTRS)

    Nakamura, R.

    1996-01-01

    Master equation gives a more fundamental description of stochastic coagulation processes rather than popular Smoluchowski's equation. In order to examine the effect of the dynamics on the geometry of resulting aggregates, we study Master equation with a rigorous Monte Carlo algorithm. It is found that Cluster-Cluster aggregation model is a good approximation of orderly growth and the aggregates have fluffy structures with a fractal dimension approx. 2. A scaling analysis of Smoluchowski's equation also supports this conclusion.

  4. Understanding the importance of the temperature dependence of viscosity on the crystallization dynamics in the Ge2Sb2Te5 phase-change material

    NASA Astrophysics Data System (ADS)

    Aladool, A.; Aziz, M. M.; Wright, C. D.

    2017-06-01

    The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.

  5. Master equations and the theory of stochastic path integrals

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  6. Master equations and the theory of stochastic path integrals.

    PubMed

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.

  7. Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.

    PubMed

    Li, Haifeng; Shao, Jiushu; Wang, Shikuan

    2011-11-01

    A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.

  8. Entrainment in the master equation.

    PubMed

    Margaliot, Michael; Grüne, Lars; Kriecherbauer, Thomas

    2018-04-01

    The master equation plays an important role in many scientific fields including physics, chemistry, systems biology, physical finance and sociodynamics. We consider the master equation with periodic transition rates. This may represent an external periodic excitation like the 24 h solar day in biological systems or periodic traffic lights in a model of vehicular traffic. Using tools from systems and control theory, we prove that under mild technical conditions every solution of the master equation converges to a periodic solution with the same period as the rates. In other words, the master equation entrains (or phase locks) to periodic excitations. We describe two applications of our theoretical results to important models from statistical mechanics and epidemiology.

  9. Entrainment in the master equation

    PubMed Central

    Grüne, Lars; Kriecherbauer, Thomas

    2018-01-01

    The master equation plays an important role in many scientific fields including physics, chemistry, systems biology, physical finance and sociodynamics. We consider the master equation with periodic transition rates. This may represent an external periodic excitation like the 24 h solar day in biological systems or periodic traffic lights in a model of vehicular traffic. Using tools from systems and control theory, we prove that under mild technical conditions every solution of the master equation converges to a periodic solution with the same period as the rates. In other words, the master equation entrains (or phase locks) to periodic excitations. We describe two applications of our theoretical results to important models from statistical mechanics and epidemiology. PMID:29765669

  10. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  11. On the accuracy of the Padé-resummed master equation approach to dissipative quantum dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-Ta; Reichman, David R.; Berkelbach, Timothy C.

    2016-04-21

    Well-defined criteria are proposed for assessing the accuracy of quantum master equations whose memory functions are approximated by Padé resummation of the first two moments in the electronic coupling. These criteria partition the parameter space into distinct levels of expected accuracy, ranging from quantitatively accurate regimes to regions of parameter space where the approach is not expected to be applicable. Extensive comparison of Padé-resummed master equations with numerically exact results in the context of the spin–boson model demonstrates that the proposed criteria correctly demarcate the regions of parameter space where the Padé approximation is reliable. The applicability analysis we presentmore » is not confined to the specifics of the Hamiltonian under consideration and should provide guidelines for other classes of resummation techniques.« less

  12. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.

    2015-07-01

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  13. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    PubMed

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  14. Master equation for a kinetic model of a trading market and its analytic solution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnab; Chakrabarti, Bikas K.; Stinchcombe, Robin B.

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index ν exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  15. Master equation for a kinetic model of a trading market and its analytic solution.

    PubMed

    Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  16. Fourier's law of heat conduction: quantum mechanical master equation analysis.

    PubMed

    Wu, Lian-Ao; Segal, Dvira

    2008-06-01

    We derive the macroscopic Fourier's Law of heat conduction from the exact gain-loss time convolutionless quantum master equation under three assumptions for the interaction kernel. To second order in the interaction, we show that the first two assumptions are natural results of the long time limit. The third assumption can be satisfied by a family of interactions consisting of an exchange effect. The pure exchange model directly leads to energy diffusion in a weakly coupled spin- 12 chain.

  17. Quantum trajectories for time-dependent adiabatic master equations

    NASA Astrophysics Data System (ADS)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  18. A master equation for strongly interacting dipoles

    NASA Astrophysics Data System (ADS)

    Stokes, Adam; Nazir, Ahsan

    2018-04-01

    We consider a pair of dipoles such as Rydberg atoms for which direct electrostatic dipole–dipole interactions may be significantly larger than the coupling to transverse radiation. We derive a master equation using the Coulomb gauge, which naturally enables us to include the inter-dipole Coulomb energy within the system Hamiltonian rather than the interaction. In contrast, the standard master equation for a two-dipole system, which depends entirely on well-known gauge-invariant S-matrix elements, is usually derived using the multipolar gauge, wherein there is no explicit inter-dipole Coulomb interaction. We show using a generalised arbitrary-gauge light-matter Hamiltonian that this master equation is obtained in other gauges only if the inter-dipole Coulomb interaction is kept within the interaction Hamiltonian rather than the unperturbed part as in our derivation. Thus, our master equation depends on different S-matrix elements, which give separation-dependent corrections to the standard matrix elements describing resonant energy transfer and collective decay. The two master equations coincide in the large separation limit where static couplings are negligible. We provide an application of our master equation by finding separation-dependent corrections to the natural emission spectrum of the two-dipole system.

  19. Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential.

    PubMed

    Nguyen, P T T; Challis, K J; Jack, M W

    2016-02-01

    We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast-changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.

  20. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less

  1. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  2. Canonical form of master equations and characterization of non-Markovianity

    NASA Astrophysics Data System (ADS)

    Hall, Michael J. W.; Cresser, James D.; Li, Li; Andersson, Erika

    2014-04-01

    Master equations govern the time evolution of a quantum system interacting with an environment, and may be written in a variety of forms. Time-independent or memoryless master equations, in particular, can be cast in the well-known Lindblad form. Any time-local master equation, Markovian or non-Markovian, may in fact also be written in a Lindblad-like form. A diagonalization procedure results in a unique, and in this sense canonical, representation of the equation, which may be used to fully characterize the non-Markovianity of the time evolution. Recently, several different measures of non-Markovianity have been presented which reflect, to varying degrees, the appearance of negative decoherence rates in the Lindblad-like form of the master equation. We therefore propose using the negative decoherence rates themselves, as they appear in the canonical form of the master equation, to completely characterize non-Markovianity. The advantages of this are especially apparent when more than one decoherence channel is present. We show that a measure proposed by Rivas et al. [Phys. Rev. Lett. 105, 050403 (2010), 10.1103/PhysRevLett.105.050403] is a surprisingly simple function of the canonical decoherence rates, and give an example of a master equation that is non-Markovian for all times t >0, but to which nearly all proposed measures are blind. We also give necessary and sufficient conditions for trace distance and volume measures to witness non-Markovianity, in terms of the Bloch damping matrix.

  3. Model reduction for stochastic chemical systems with abundant species.

    PubMed

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  4. Open Group Transformations

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of a nilpotent BFV-BRST charge operator. Previously we have shown that generalized quantum Maurer-Cartan equations for arbitrary open groups may be extracted from the quantum connection operators and that they also follow from a simple quantum master equation involving an extended nilpotent BFV-BRST charge and a master charge. Here we give further details of these results. In addition we establish the general structure of the solutions of the quantum master equation. We also construct an extended formulation whose properties are determined by the extended BRST charge in the master equation.

  5. An Analytical Framework for Studying Small-Number Effects in Catalytic Reaction Networks: A Probability Generating Function Approach to Chemical Master Equations

    PubMed Central

    Nakagawa, Masaki; Togashi, Yuichi

    2016-01-01

    Cell activities primarily depend on chemical reactions, especially those mediated by enzymes, and this has led to these activities being modeled as catalytic reaction networks. Although deterministic ordinary differential equations of concentrations (rate equations) have been widely used for modeling purposes in the field of systems biology, it has been pointed out that these catalytic reaction networks may behave in a way that is qualitatively different from such deterministic representation when the number of molecules for certain chemical species in the system is small. Apart from this, representing these phenomena by simple binary (on/off) systems that omit the quantities would also not be feasible. As recent experiments have revealed the existence of rare chemical species in cells, the importance of being able to model potential small-number phenomena is being recognized. However, most preceding studies were based on numerical simulations, and theoretical frameworks to analyze these phenomena have not been sufficiently developed. Motivated by the small-number issue, this work aimed to develop an analytical framework for the chemical master equation describing the distributional behavior of catalytic reaction networks. For simplicity, we considered networks consisting of two-body catalytic reactions. We used the probability generating function method to obtain the steady-state solutions of the chemical master equation without specifying the parameters. We obtained the time evolution equations of the first- and second-order moments of concentrations, and the steady-state analytical solution of the chemical master equation under certain conditions. These results led to the rank conservation law, the connecting state to the winner-takes-all state, and analysis of 2-molecules M-species systems. A possible interpretation of the theoretical conclusion for actual biochemical pathways is also discussed. PMID:27047384

  6. Model reduction for stochastic chemical systems with abundant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equationmore » which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.« less

  7. On the origins of approximations for stochastic chemical kinetics.

    PubMed

    Haseltine, Eric L; Rawlings, James B

    2005-10-22

    This paper considers the derivation of approximations for stochastic chemical kinetics governed by the discrete master equation. Here, the concepts of (1) partitioning on the basis of fast and slow reactions as opposed to fast and slow species and (2) conditional probability densities are used to derive approximate, partitioned master equations, which are Markovian in nature, from the original master equation. Under different conditions dictated by relaxation time arguments, such approximations give rise to both the equilibrium and hybrid (deterministic or Langevin equations coupled with discrete stochastic simulation) approximations previously reported. In addition, the derivation points out several weaknesses in previous justifications of both the hybrid and equilibrium systems and demonstrates the connection between the original and approximate master equations. Two simple examples illustrate situations in which these two approximate methods are applicable and demonstrate the two methods' efficiencies.

  8. Generalized graphs and unitary irrational central charge in the superconformal master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, M.B.; Obers, N.A.

    1991-12-01

    For each magic basis of Lie {ital g}, it is known that the Virasoro master equation on affine {ital g} contains a generalized graph theory of conformal level-families. In this paper, it is found that the superconformal master equation on affine {ital g}{times}SO(dim {ital g}) similarly contains a generalized graph theory of superconformal level-families for each magic basis of {ital g}. The superconformal level-families satisfy linear equations on the generalized graphs, and the first exact unitary irrational solutions of the superconformal master equation are obtained on the sine-area graphs of {ital g}=SU({ital n}), including the simplest unitary irrational central chargesmore » {ital c}=6{ital nx}/({ital nx}+8 sin{sup 2}(rs{pi}/n)) yet observed in the program.« less

  9. An Experimental and Master Equation Study of the Kinetics of OH/OD + SO2: The Limiting High-Pressure Rate Coefficients.

    PubMed

    Blitz, Mark A; Salter, Robert J; Heard, Dwayne E; Seakins, Paul W

    2017-05-04

    The kinetics of the reaction OH/OD + SO 2 were studied using a laser flash photolysis/laser-induced fluorescence technique. Evidence for two-photon photolysis of SO 2 at 248 nm is presented and quantified, and which appears to have been evident to some extent in most previous photolysis studies, potentially leading to values for the rate coefficient k 1 that are too large. The kinetics of the reaction OH(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) were measured under conditions where SO 2 photolysis was taken into account. These results, together with literature data, were modeled using a master equation analysis. This analysis highlighted problems with the literature data: the rate coefficients derived from flash photolysis data were generally too high and from the flow tube data too low. Our best estimate of the high-pressure limiting rate coefficient k 1 ∞ was obtained from selected data and gives a value of (7.8 ± 2.2) × 10 -13 cm 3 molecule -1 s -1 , which is lower than that recommended in the literature. A parametrized form of k 1 ([N 2 ],T) is provided. The OD(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) data are reported for the first time, and master equation analysis reinforces our assignment of k 1 ∞ .

  10. Solving the chemical master equation using sliding windows

    PubMed Central

    2010-01-01

    Background The chemical master equation (CME) is a system of ordinary differential equations that describes the evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We construct the window based on a deterministic approximation of the future behavior of the system by estimating upper and lower bounds on the populations of the chemical species. Results In order to show the effectiveness of our approach, we apply it to several examples previously described in the literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to a global analysis, while still providing high accuracy. Conclusions The sliding window method is a novel approach to address the performance problems of numerical algorithms for the solution of the chemical master equation. The method efficiently approximates the probability distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no upper bound on the population sizes of the chemical species is known a priori. PMID:20377904

  11. Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations

    NASA Astrophysics Data System (ADS)

    Lai, Hon-Lam; Yang, Pei-Yun; Huang, Yu-Wei; Zhang, Wei-Min

    2018-02-01

    In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC) that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.

  12. Deterministic analysis of extrinsic and intrinsic noise in an epidemiological model.

    PubMed

    Bayati, Basil S

    2016-05-01

    We couple a stochastic collocation method with an analytical expansion of the canonical epidemiological master equation to analyze the effects of both extrinsic and intrinsic noise. It is shown that depending on the distribution of the extrinsic noise, the master equation yields quantitatively different results compared to using the expectation of the distribution for the stochastic parameter. This difference is incident to the nonlinear terms in the master equation, and we show that the deviation away from the expectation of the extrinsic noise scales nonlinearly with the variance of the distribution. The method presented here converges linearly with respect to the number of particles in the system and exponentially with respect to the order of the polynomials used in the stochastic collocation calculation. This makes the method presented here more accurate than standard Monte Carlo methods, which suffer from slow, nonmonotonic convergence. In epidemiological terms, the results show that extrinsic fluctuations should be taken into account since they effect the speed of disease breakouts and that the gamma distribution should be used to model the basic reproductive number.

  13. Theoretical analysis of the overtone-induced isomerization of methyl isocyanide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.A.; Chandler, D.W.

    1986-10-15

    A master-equation formalism is applied to the problem of overtone-induced isomerization of CH/sub 3/NC to CH/sub 3/CN. The results are compared to the experiments of Reddy and Berry, who measured the yield of isomerization as a function of pressure after excitation to the fourth and fifth overtones of the CH stretching mode. The master-equation model predicts the yield and the curvature in the yield/sup -1/ vs pressure plots observed in the experiments. For the lower overtone (50) the results are consistent with a simple strong-collider model. However, even under strong-collider conditions the yield is very sensitive to the parameters inmore » the master equation. For the upper overtone (60) the data do not fit a strong collider model and multistep deactivation dominates. We are able to determine from the data the average energy transferred in a collision by assuming a particular form for the energy-transfer function. In addition, the effect of changing the shape of the energy-transfer function is investigated.« less

  14. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    PubMed

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the regions of parameter space in which there are maximum differences between the solutions of the master equation and the corresponding rate equations. We show that these differences depend sensitively on the Fano factors and on the inherent structure and topology of the chemical network. The theory of effective mesoscopic rate equations generalizes the conventional rate equations of physical chemistry to describe kinetics in systems of mesoscopic size such as biological cells.

  15. Efficient determination of the Markovian time-evolution towards a steady-state of a complex open quantum system

    NASA Astrophysics Data System (ADS)

    Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar

    2017-11-01

    Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.

  16. Telegraph noise in Markovian master equation for electron transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Kosov, Daniel S.

    2018-05-01

    We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.

  17. The Approach to Equilibrium: Detailed Balance and the Master Equation

    ERIC Educational Resources Information Center

    Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.

    2011-01-01

    The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…

  18. Nonstationary stochastic charge fluctuations of a dust particle in plasmas.

    PubMed

    Shotorban, B

    2011-06-01

    Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.

  19. Operator Approach to the Master Equation for the One-Step Process

    NASA Astrophysics Data System (ADS)

    Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.

    2016-02-01

    Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.

  20. Model dynamics for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  1. On the structure of the master equation for a two-level system coupled to a thermal bath

    NASA Astrophysics Data System (ADS)

    de Vega, Inés

    2015-04-01

    We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).

  2. Control of Stochastic Master Equation Models of Genetic Regulatory Networks by Approximating Their Average Behavior

    NASA Astrophysics Data System (ADS)

    Umut Caglar, Mehmet; Pal, Ranadip

    2010-10-01

    The central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid.'' However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of data in the cellular level and probabilistic nature of interactions. Probabilistic models like Stochastic Master Equation (SME) or deterministic models like differential equations (DE) can be used to analyze these types of interactions. SME models based on chemical master equation (CME) can provide detailed representation of genetic regulatory system, but their use is restricted by the large data requirements and computational costs of calculations. The differential equations models on the other hand, have low calculation costs and much more adequate to generate control procedures on the system; but they are not adequate to investigate the probabilistic nature of interactions. In this work the success of the mapping between SME and DE is analyzed, and the success of a control policy generated by DE model with respect to SME model is examined. Index Terms--- Stochastic Master Equation models, Differential Equation Models, Control Policy Design, Systems biology

  3. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    PubMed

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  4. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  5. Proton-pumping mechanism of cytochrome c oxidase: A kinetic master-equation approach

    PubMed Central

    Kim, Young C.; Hummer, Gerhard

    2011-01-01

    Cytochrome c oxidase (CcO) is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, CcO translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in CcO. Basic principles of the CcO proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the ative-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for CcO provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. PMID:21946020

  6. Topographies and dynamics on multidimensional potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ball, Keith Douglas

    The stochastic master equation is a valuable tool for elucidating potential energy surface (PES) details that govern structural relaxation in clusters, bulk systems, and protein folding. This work develops a comprehensive framework for studying non-equilibrium relaxation dynamics using the master equation. Since our master equations depend upon accurate partition function models for use in Rice-Ramsperger-Kassel-Marcus (RRK(M) transition state theory, this work introduces several such models employing various harmonic and anharmonic approximations and compares their predicted equilibrium population distributions with those determined from molecular dynamics. This comparison is performed for the fully-delineated surfaces (KCl)5 and Ar9 to evaluate model performance for potential surfaces with long- and short-range interactions, respectively. For each system, several models perform better than a simple harmonic approximation. While no model gives acceptable results for all minima, and optimal modeling strategies differ for (KCl)5 and Ar9, a particular one-parameter model gives the best agreement with simulation for both systems. We then construct master equations from these models and compare their isothermal relaxation predictions for (KCl)5 and Ar9 with molecular dynamics simulations. This is the first comprehensive test of the kinetic performance of partition function models of its kind. Our results show that accurate modeling of transition-state partition functions is more important for (KCl)5 than for Ar9 in reproducing simulation results, due to a marked stiffening anharmonicity in the transition-state normal modes of (KCl)5. For both systems, several models yield qualitative agreement with simulation over a large temperature range. To examine the robustness of the master equation when applied to larger systems, for which full topographical descriptions would be either impossible or infeasible, we compute relaxation predictions for Ar11 using a master equation constructed from data representing the full PES, and compare these predictions to those of reduced master equations based on statistical samples of the full PES. We introduce a sampling method which generates random, Boltzmann-weighted, energetically 'downhill' sequences. The study reveals that, at moderate temperatures, the slowest relaxation timescale converges as the number of sequences in a sample grows to ~1000. Furthermore, the asymptotic timescale is comparable to the full-PES value.

  7. Cavity master equation for the continuous time dynamics of discrete-spin models.

    PubMed

    Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  8. Cavity master equation for the continuous time dynamics of discrete-spin models

    NASA Astrophysics Data System (ADS)

    Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.

    2017-05-01

    We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.

  9. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Smirnov, Vladimir A.

    2016-10-01

    We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.

  10. On the computer analysis of structures and mechanical systems

    NASA Technical Reports Server (NTRS)

    Bennett, B. E.

    1984-01-01

    The governing equations for the analysis of open branch-chain mechanical systems are developed in a form suitable for implementation in a general purpose finite element computer program. Lagrange's form of d'Alembert's principle is used to derive the system mass matrix and force vector. The generalized coordinates are selected as the unconstrained relative degrees of freedom giving the position and orientation of each slave link with respect to their master link. Each slave link may have from zero to six degrees of freedom relative to the reference frames of its master link. A strategy for automatic generation of the system mass matrix and force vector is described.

  11. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua

    2018-04-01

    In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

  12. Communication: Limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2011-11-01

    It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemical master equations obtained using the stochastic quasi-steady-state approximation are in very good agreement with the predictions of the full master equations. We use the linear noise approximation to obtain a simple formula for the relative error between the predictions of the two master equations for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoretical results are validated by stochastic simulations using experimental parameter values for enzymes involved in proteolysis, gluconeogenesis, and fermentation.

  13. Fermi’s golden rule, the origin and breakdown of Markovian master equations, and the relationship between oscillator baths and the random matrix model

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt

    2017-10-01

    Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.

  14. Unbound motion on a Schwarzschild background: Practical approaches to frequency domain computations

    NASA Astrophysics Data System (ADS)

    Hopper, Seth

    2018-03-01

    Gravitational perturbations due to a point particle moving on a static black hole background are naturally described in Regge-Wheeler gauge. The first-order field equations reduce to a single master wave equation for each radiative mode. The master function satisfying this wave equation is a linear combination of the metric perturbation amplitudes with a source term arising from the stress-energy tensor of the point particle. The original master functions were found by Regge and Wheeler (odd parity) and Zerilli (even parity). Subsequent work by Moncrief and then Cunningham, Price and Moncrief introduced new master variables which allow time domain reconstruction of the metric perturbation amplitudes. Here, I explore the relationship between these different functions and develop a general procedure for deriving new higher-order master functions from ones already known. The benefit of higher-order functions is that their source terms always converge faster at large distance than their lower-order counterparts. This makes for a dramatic improvement in both the speed and accuracy of frequency domain codes when analyzing unbound motion.

  15. General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks.

    PubMed

    Reis, Matthias; Kromer, Justus A; Klipp, Edda

    2018-01-20

    Multimodality is a phenomenon which complicates the analysis of statistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equation (CME) for this type of reaction network and thereby extend the class of solvable CME's. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. Generalized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription-translation network and Bateman's model from nuclear physics. For both examples, multimodality was previously not reported.

  16. Stability of squashed Kaluza-Klein black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Masashi; Ishihara, Hideki; Murata, Keiju

    2008-03-15

    The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1){approx_equal}U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Kleinmore » black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.« less

  17. Heisenberg-Langevin versus quantum master equation

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel; Jasnow, David

    2017-12-01

    The quantum master equation is an important tool in the study of quantum open systems. It is often derived under a set of approximations, chief among them the Born (factorization) and Markov (neglect of memory effects) approximations. In this article we study the paradigmatic model of quantum Brownian motion of a harmonic oscillator coupled to a bath of oscillators with a Drude-Ohmic spectral density. We obtain analytically the exact solution of the Heisenberg-Langevin equations, with which we study correlation functions in the asymptotic stationary state. We compare the exact correlation functions to those obtained in the asymptotic long time limit with the quantum master equation in the Born approximation with and without the Markov approximation. In the latter case we implement a systematic derivative expansion that yields the exact asymptotic limit under the factorization approximation only. We find discrepancies that could be significant when the bandwidth of the bath Λ is much larger than the typical scales of the system. We study the exact interaction energy as a proxy for the correlations missed by the Born approximation and find that its dependence on Λ is similar to the discrepancy between the exact solution and that of the quantum master equation in the Born approximation. We quantify the regime of validity of the quantum master equation in the Born approximation with or without the Markov approximation in terms of the system's relaxation rate γ , its unrenormalized natural frequency Ω and Λ : γ /Ω ≪1 and also γ Λ /Ω2≪1 . The reliability of the Born approximation is discussed within the context of recent experimental settings and more general environments.

  18. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.

    PubMed

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook

    2018-05-04

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  19. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators

    NASA Astrophysics Data System (ADS)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook

    2018-05-01

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  20. Electronic structure, transport, and collective effects in molecular layered systems.

    PubMed

    Hahn, Torsten; Ludwig, Tim; Timm, Carsten; Kortus, Jens

    2017-01-01

    The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine-manganese phthalocyanine (F 16 CoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green's function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.

  1. Algebraic aspects of the driven dynamics in the density operator and correlation functions calculation for multi-level open quantum systems

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Soldatov, Andrey V.

    2017-12-01

    Exact and approximate master equations were derived by the projection operator method for the reduced statistical operator of a multi-level quantum system with finite number N of quantum eigenstates interacting with arbitrary external classical fields and dissipative environment simultaneously. It was shown that the structure of these equations can be simplified significantly if the free Hamiltonian driven dynamics of an arbitrary quantum multi-level system under the influence of the external driving fields as well as its Markovian and non-Markovian evolution, stipulated by the interaction with the environment, are described in terms of the SU(N) algebra representation. As a consequence, efficient numerical methods can be developed and employed to analyze these master equations for real problems in various fields of theoretical and applied physics. It was also shown that literally the same master equations hold not only for the reduced density operator but also for arbitrary nonequilibrium multi-time correlation functions as well under the only assumption that the system and the environment are uncorrelated at some initial moment of time. A calculational scheme was proposed to account for these lost correlations in a regular perturbative way, thus providing additional computable terms to the correspondent master equations for the correlation functions.

  2. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  3. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  4. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.

    PubMed

    Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A; McCarthy, Michael C; Stanton, John F

    2015-06-04

    The fraction of the collisionally stabilized Criegee species CH2OO produced from the ozonolysis of ethylene is calculated using a two-dimensional (E, J)-grained master equation technique and semiclassical transition-state theory based on the potential energy surface obtained from high-accuracy quantum chemical calculations. Our calculated yield of 42 ± 6% for the stabilized CH2OO agrees well, within experimental error, with available (indirect) experimental results. Inclusion of angular momentum in the master equation is found to play an essential role in bringing the theoretical results into agreement with the experiment. Additionally, yields of HO and HO2 radical products are predicted to be 13 ± 6% and 17 ± 6%, respectively. In the kinetic simulation, the HO radical product is produced mostly from the stepwise decomposition mechanism of primary ozonide rather than from dissociation of hot CH2OO.

  5. Decoherence, discord, and the quantum master equation for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; McDonald, Jamie I.

    2017-05-01

    We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.

  6. Unification of the general non-linear sigma model and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J. de; Halpern, M.B.

    1997-06-01

    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less

  7. Field Effect Transistor in Nanoscale

    DTIC Science & Technology

    2017-04-26

    analogues) and BxCyNz (Napathalene analogues with x+y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations...analogues with x +y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations. Interestingly, various types of non-linear...Small molecules (such as benzene), double quantum dots (like GaAs-based QDs) which are coupled weakly to metallic electrodes have shown their

  8. Generation of squeezed microwave states by a dc-pumped degenerate parametric Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kaertner, Franz X.; Russer, Peter

    1990-11-01

    The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is shown that the Wigner distribution representation of this master equation can be approximated by a Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Josephson amplifier with respect to squeezing of the radiation field is investigated. It is shown that below threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic relations between the achievable amplitude squeezing, the output power, and the operation frequency are derived.

  9. Group-kinetic theory of turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  10. Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Marchiolli, M. A.; Mizrahi, Solomon S.; Moussa, M. H. Y.

    1994-01-01

    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too.

  11. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  12. Resummed memory kernels in generalized system-bath master equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2014-08-07

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between themore » two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.« less

  13. Non-linear corrections to the time-covariance function derived from a multi-state chemical master equation.

    PubMed

    Scott, M

    2012-08-01

    The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic.

  14. Evolution in time of an N-atom system. I. A physical basis set for the projection of the master equation

    NASA Astrophysics Data System (ADS)

    Freedhoff, Helen

    2004-01-01

    We study an aggregate of N identical two-level atoms (TLA’s) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,…,9 TLA’s.

  15. Sport commitment and participation in masters swimmers: the influence of coach and teammates.

    PubMed

    Santi, Giampaolo; Bruton, Adam; Pietrantoni, Luca; Mellalieu, Stephen

    2014-01-01

    This study investigated how coach and teammates influence masters athletes' sport commitment, and the effect of functional and obligatory commitments on participation in masters swimming. The sample consisted of 523 masters swimmers (330 males and 193 females) aged between 22 and 83 years (M = 39.00, SD = 10.42). A bi-dimensional commitment scale was used to measure commitment dimensions and perceived influence from social agents. Structural equation modelling analysis was conducted to evaluate the influence of social agents on functional and obligatory commitments, and the predictive capabilities of the two types of commitment towards sport participation. Support provided by coach and teammates increased functional commitment, constraints from these social agents determined higher obligatory commitment, and coach constraints negatively impacted functional commitment. In addition, both commitment types predicted training participation, with functional commitment increasing participation in team training sessions, and obligatory commitment increasing the hours of individual training. The findings suggest that in order to increase participation in masters swimming teams and reduce non-supervised training, coach and teammates should exhibit a supportive attitude and avoid over expectation.

  16. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  17. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    NASA Astrophysics Data System (ADS)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  18. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems

    NASA Astrophysics Data System (ADS)

    Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.

    2016-11-01

    Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.

  19. Application of a Master Equation for Quantitative mRNA Analysis Using qRT-PCR

    USDA-ARS?s Scientific Manuscript database

    The qRT-PCR has been widely accepted as the assay of choice for mRNA quantification. Gene expression as measured by mRNA dynamics varies in response to different conditions and environmental stimuli. For conventional practice, housekeeping genes have been applied as internal reference for data nor...

  20. Multiple re-encounter approach to radical pair reactions and the role of nonlinear master equations.

    PubMed

    Clausen, Jens; Guerreschi, Gian Giacomo; Tiersch, Markus; Briegel, Hans J

    2014-08-07

    We formulate a multiple-encounter model of the radical pair mechanism that is based on a random coupling of the radical pair to a minimal model environment. These occasional pulse-like couplings correspond to the radical encounters and give rise to both dephasing and recombination. While this is in agreement with the original model of Haberkorn and its extensions that assume additional dephasing, we show how a nonlinear master equation may be constructed to describe the conditional evolution of the radical pairs prior to the detection of their recombination. We propose a nonlinear master equation for the evolution of an ensemble of independently evolving radical pairs whose nonlinearity depends on the record of the fluorescence signal. We also reformulate Haberkorn's original argument on the physicality of reaction operators using the terminology of quantum optics/open quantum systems. Our model allows one to describe multiple encounters within the exponential model and connects this with the master equation approach. We include hitherto neglected effects of the encounters, such as a separate dephasing in the triplet subspace, and predict potential new effects, such as Grover reflections of radical spins, that may be observed if the strength and time of the encounters can be experimentally controlled.

  1. FAST TRACK COMMUNICATION: Semiclassical Klein Kramers and Smoluchowski equations for the Brownian motion of a particle in an external potential

    NASA Astrophysics Data System (ADS)

    Coffey, W. T.; Kalmykov, Yu P.; Titov, S. V.; Mulligan, B. P.

    2007-01-01

    The quantum Brownian motion of a particle in an external potential V(x) is treated using the master equation for the Wigner distribution function W(x, p, t) in phase space (x, p). A heuristic method of determination of diffusion coefficients in the master equation is proposed. The time evolution equation so obtained contains explicit quantum correction terms up to o(planck4) and in the classical limit, planck → 0, reduces to the Klein-Kramers equation. For a quantum oscillator, the method yields an evolution equation for W(x, p, t) coinciding with that of Agarwal (1971 Phys. Rev. A 4 739). In the non-inertial regime, by applying the Brinkman expansion of the momentum distribution in Weber functions (Brinkman 1956 Physica 22 29), the corresponding semiclassical Smoluchowski equation is derived.

  2. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    PubMed

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  3. Lattice gas models for particle systems in an underdamped hopping regime

    NASA Astrophysics Data System (ADS)

    Gobron, Thierry

    A model in which the state of the particle is described by a multicomponent vector, each possible kinetic state for the particle being associated with one of the components is presented. A master equation describes the evolution of the probability distribution in an independent particle model. From the master equation and with the help of the symmetry group that leaves the state transition operator invariant, physical quantities such as the diffusion constant are explicitly calculated for several lattices in one, two, and three dimensions. A Boltzmann equation is established and compared to the Rice and Roth proposal.

  4. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    NASA Astrophysics Data System (ADS)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  5. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface.more » We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.« less

  6. Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems

    NASA Astrophysics Data System (ADS)

    Tessarotto, Massimo; Asci, Claudio

    2017-05-01

    In this paper the problem is posed of determining the physically-meaningful asymptotic orderings holding for the statistical description of a large N-body system of hard spheres, i.e., formed by N ≡1/ε ≫ 1 particles, which are allowed to undergo instantaneous and purely elastic unary, binary or multiple collisions. Starting point is the axiomatic treatment recently developed [Tessarotto et al., 2013-2016] and the related discovery of an exact kinetic equation realized by Master equation which advances in time the 1-body probability density function (PDF) for such a system. As shown in the paper the task involves introducing appropriate asymptotic orderings in terms of ε for all the physically-relevant parameters. The goal is that of identifying the relevant physically-meaningful asymptotic approximations applicable for the Master kinetic equation, together with their possible relationships with the Boltzmann and Enskog kinetic equations, and holding in appropriate asymptotic regimes. These correspond either to dilute or dense systems and are formed either by small-size or finite-size identical hard spheres, the distinction between the various cases depending on suitable asymptotic orderings in terms of ε.

  7. Lévy targeting and the principle of detailed balance.

    PubMed

    Garbaczewski, Piotr; Stephanovich, Vladimir

    2011-07-01

    We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) solution of the master equation. Here, an asymptotic behavior of different μ-motion scenarios ceases to depend on μ. That is exemplified by considering Gaussian and Cauchy family target PDFs. A complementary problem of the reverse engineering is analyzed: given a priori a semigroup potential, quantify how sensitive upon the choice of the μ driver is an asymptotic behavior of solutions of the associated master equation and thus an invariant PDF itself. This task is accomplished for so-called μ family of Lévy oscillators.

  8. Production of a sterile species: Quantum kinetics

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; Ho, C. M.

    2007-10-01

    Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is τdec=2/Γaa, but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where Γaa is the interaction rate of the active species in the absence of mixing and θm the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the “polarization vector” and show their equivalence to those obtained from the quantum master equation and effective action.

  9. Theory of strong turbulence by renormalization

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1981-01-01

    The hydrodynamical equations of turbulent motions are inhomogeneous and nonlinear in their inertia and force terms and will generate a hierarchy. A kinetic method was developed to transform the hydrodynamic equations into a master equation governing the velocity distribution, as a function of the time, the position and the velocity as an independent variable. The master equation presents the advantage of being homogeneous and having fewer nonlinear terms and is therefore simpler for the investigation of closure. After the closure by means of a cascade scaling procedure, the kinetic equation is derived and possesses a memory which represents the nonMarkovian character of turbulence. The kinetic equation is transformed back to the hydrodynamical form to yield an energy balance in the cascade form. Normal and anomalous transports are analyzed. The theory is described for incompressible, compressible and plasma turbulence. Applications of the method to problems relating to sound generation and the propagation of light in a nonfrozen turbulence are considered.

  10. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2014-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130

  11. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    NASA Astrophysics Data System (ADS)

    Chevalier, Michael W.; El-Samad, Hana

    2014-12-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.

  12. Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Härtle, R.; Cohen, G.; Reichman, D. R.; Millis, A. J.

    2013-12-01

    The interplay between interference effects and electron-electron interactions in electron transport through an interacting double quantum dot system is investigated using a hierarchical quantum master equation approach which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced broadening of structures in current-voltage characteristics, and an inversion of the electronic population. Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to the Nakajima-Zwanzig equation and from the noncrossing approximation to the nonequilibrium Green's function reveals the importance of an interdot coupling that originates from the energy dependence of the conduction bands in the leads and the need for a systematic perturbative expansion.

  13. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes.

    PubMed

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree k_{max} of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large k_{max}. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  14. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubbelohde, N.; Maire, N.; Haug, R. J.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  15. Breakdown of the reaction-diffusion master equation with nonelementary rates

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  16. A Simple "Boxed Molecular Kinetics" Approach To Accelerate Rare Events in the Stochastic Kinetic Master Equation.

    PubMed

    Shannon, Robin; Glowacki, David R

    2018-02-15

    The chemical master equation is a powerful theoretical tool for analyzing the kinetics of complex multiwell potential energy surfaces in a wide range of different domains of chemical kinetics spanning combustion, atmospheric chemistry, gas-surface chemistry, solution phase chemistry, and biochemistry. There are two well-established methodologies for solving the chemical master equation: a stochastic "kinetic Monte Carlo" approach and a matrix-based approach. In principle, the results yielded by both approaches are identical; the decision of which approach is better suited to a particular study depends on the details of the specific system under investigation. In this Article, we present a rigorous method for accelerating stochastic approaches by several orders of magnitude, along with a method for unbiasing the accelerated results to recover the "true" value. The approach we take in this paper is inspired by the so-called "boxed molecular dynamics" (BXD) method, which has previously only been applied to accelerate rare events in molecular dynamics simulations. Here we extend BXD to design a simple algorithmic strategy for accelerating rare events in stochastic kinetic simulations. Tests on a number of systems show that the results obtained using the BXD rare event strategy are in good agreement with unbiased results. To carry out these tests, we have implemented a kinetic Monte Carlo approach in MESMER, which is a cross-platform, open-source, and freely available master equation solver.

  17. Continuous joint measurement and entanglement of qubits in remote cavities

    NASA Astrophysics Data System (ADS)

    Motzoi, Felix; Whaley, K. Birgitta; Sarovar, Mohan

    2015-09-01

    We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.

  18. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    PubMed

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  19. Gravitational decoherence, alternative quantum theories and semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Hu, B. L.

    2014-04-01

    In this report we discuss three aspects: 1) Semiclassical gravity theory (SCG): 4 levels of theories describing the interaction of quantum matter with classical gravity. 2) Alternative Quantum Theories: Discerning those which are derivable from general relativity (GR) plus quantum field theory (QFT) from those which are not 3) Gravitational Decoherence: derivation of a master equation and examination of the assumptions which led to the claims of observational possibilities. We list three sets of corresponding problems worthy of pursuit: a) Newton-Schrödinger Equations in relation to SCG; b) Master equation of gravity-induced effects serving as discriminator of 2); and c) Role of gravity in macroscopic quantum phenomena.

  20. Intrinsic noise analyzer: a software package for the exploration of stochastic biochemical kinetics using the system size expansion.

    PubMed

    Thomas, Philipp; Matuschek, Hannes; Grima, Ramon

    2012-01-01

    The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen's system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA's performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with circadian rhythms. The software iNA is freely available as executable binaries for Linux, MacOSX and Microsoft Windows, as well as the full source code under an open source license.

  1. Intrinsic Noise Analyzer: A Software Package for the Exploration of Stochastic Biochemical Kinetics Using the System Size Expansion

    PubMed Central

    Grima, Ramon

    2012-01-01

    The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which, despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these equations are typically computationally intractable because of the inherently large state space. Here we introduce the software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by means of van Kampen’s system size expansion of the Chemical Master Equation. iNA is platform independent and supports the popular SBML format natively. The present implementation is the first to adopt a complementary approach that combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with direct statistical evaluation and visualization. We showcase iNA’s performance by using it to explore the stochastic properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with circadian rhythms. The software iNA is freely available as executable binaries for Linux, MacOSX and Microsoft Windows, as well as the full source code under an open source license. PMID:22723865

  2. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.

    PubMed

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  3. Calculating work in weakly driven quantum master equations: Backward and forward equations

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    2016-01-01

    I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.

  4. Generalized Master Equation with Non-Markovian Multichromophoric Förster Resonance Energy Transfer for Modular Exciton Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham

    2014-10-31

    A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately describedmore » by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.« less

  5. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-04-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less

  6. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-07

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  7. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model.

    PubMed

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-28

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  8. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  9. Master equation for open two-band systems and its applications to Hall conductance

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Zhang, S. S.; Dai, C. M.; Yi, X. X.

    2018-02-01

    Hall conductivity in the presence of a dephasing environment has recently been investigated with a dissipative term introduced phenomenologically. In this paper, we study the dissipative topological insulator (TI) and its topological transition in the presence of quantized electromagnetic environments. A Lindblad-type equation is derived to determine the dynamics of a two-band system. When the two-band model describes TIs, the environment may be the fluctuations of radiation that surround the TIs. We find the dependence of decay rates in the master equation on Bloch vectors in the two-band system, which leads to a mixing of the band occupations. Hence the environment-induced current is in general not perfectly topological in the presence of coupling to the environment, although deviations are small in the weak limit. As an illustration, we apply the Bloch-vector-dependent master equation to TIs and calculate the Hall conductance of tight-binding electrons in a two-dimensional lattice. The influence of environments on the Hall conductance is presented and discussed. The calculations show that the phase transition points of the TIs are robust against the quantized electromagnetic environment. The results might bridge the gap between quantum optics and topological photonic materials.

  10. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less

  11. PsiQuaSP-A library for efficient computation of symmetric open quantum systems.

    PubMed

    Gegg, Michael; Richter, Marten

    2017-11-24

    In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.

  12. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-10-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  13. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  14. Resonance fluorescence in the resolvent-operator formalism

    NASA Astrophysics Data System (ADS)

    Debierre, V.; Harman, Z.

    2017-10-01

    The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator formalism. The derivation is based on the construction of a master equation from the resolvent operator of the atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified, to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the spectrum derived matches that of Mollow.

  15. Studying relaxation phenomena via effective master equations

    NASA Astrophysics Data System (ADS)

    Chan, David; Wan, Jones T. K.; Chu, L. L.; Yu, K. W.

    2000-04-01

    The real-time dynamics of various relaxation phenomena can be conveniently formulated by a master equation with the enumeration of transition rates between given classes of conformations. To study the relaxation time towards equilibrium, it suffices to solve for the second largest eigenvalue of the resulting eigenvalue equation. Generally speaking, there is no analytic solution for the dynamic equation. Mean-field approaches generally yield misleading results while the presumably exact Monte-Carlo methods require prohibitive time steps in most real systems. In this work, we propose an exact decimation procedure for reducing the number of conformations significantly, while there is no loss of information, i.e., the reduced (or effective) equation is an exact transformed version of the original one. However, we have to pay the price: the initial Markovianity of the evolution equation is lost and the reduced equation contains memory terms in the transition rates. Since the transformed equation has significantly reduced number of degrees of freedom, the systems can readily be diagonalized by iterative means, to obtain the exact second largest eigenvalue and hence the relaxation time. The decimation method has been applied to various relaxation equations with generally desirable results. The advantages and limitations of the method will be discussed.

  16. Recursion Operators and Bi-Hamiltonian Structures in Multidimensions II,

    DTIC Science & Technology

    1986-07-01

    a Symmifetry (1.2). For example the Kadomtsev - Petviashvili (KP) equation and the Davey-Stewartson (DS) equation admit two such hierarchies of...Degasperis, Nuovo Cimento, 398, 1 (1977). [16] P. Caudrey, Discrete and Periodic Spectral Transforms Related to the Kadomtsev - Petviashvili Equation ...these equations possess infinitely many time dependent symmetries and constants of motion. The master symmetries T for these equations are simply derived

  17. A consistent hierarchy of generalized kinetic equation approximations to the master equation applied to surface catalysis.

    PubMed

    Herschlag, Gregory J; Mitran, Sorin; Lin, Guang

    2015-06-21

    We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.

  18. One parameter family of master equations for logistic growth and BCM theory

    NASA Astrophysics Data System (ADS)

    De Oliveira, L. R.; Castellani, C.; Turchetti, G.

    2015-02-01

    We propose a one parameter family of master equations, for the evolution of a population, having the logistic equation as mean field limit. The parameter α determines the relative weight of linear versus nonlinear terms in the population number n ⩽ N entering the loss term. By varying α from 0 to 1 the equilibrium distribution changes from maximum growth to almost extinction. The former is a Gaussian centered at n = N, the latter is a power law peaked at n = 1. A bimodal distribution is observed in the transition region. When N grows and tends to ∞, keeping the value of α fixed, the distribution tends to a Gaussian centered at n = N whose limit is a delta function corresponding to the stable equilibrium of the mean field equation. The choice of the master equation in this family depends on the equilibrium distribution for finite values of N. The presence of an absorbing state for n = 0 does not change this picture since the extinction mean time grows exponentially fast with N. As a consequence for α close to zero extinction is not observed, whereas when α approaches 1 the relaxation to a power law is observed before extinction occurs. We extend this approach to a well known model of synaptic plasticity, the so called BCM theory in the case of a single neuron with one or two synapses.

  19. Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-06-01

    The Onsager's reciprocal relation plays a fundamental role in the nonequilibrium thermodynamics. However, unfortunately, its classical version is valid only within a narrow region near equilibrium due to the linear regression hypothesis, which largely restricts its usage. In this paper, based on the conservation-dissipation formalism, a generalized version of Onsager's relations for the master equations and Fokker-Planck equations was derived. Nonlinear constitutive relations with nonsymmetric and positively stable operators, which become symmetric under the detailed balance condition, constitute key features of this new generalization. Similar conclusions also hold for many other classical models in physics and chemistry, which in turn make the current study as a benchmark for the application of generalized Onsager's relations in nonequilibrium thermodynamics.

  20. Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Morozov, V. G.

    2018-01-01

    We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.

  1. Solving differential equations for Feynman integrals by expansions near singular points

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  2. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less

  3. Two-mode mazer injected with V-type three-level atoms

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Qing; Zhang, Zhi-Ming; Xie, Sheng-Wu

    2003-12-01

    The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the one-atom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Scott E.; Hesthaven, Jan S.; Lau, Stephen R.

    In the context of metric perturbation theory for nonspinning black holes, extreme mass ratio binary systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary value problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial data is a common choice, despite being inconsistent and resulting in a solution which is initially discontinuous in time. As is well known, this choice leads to a burst of junk radiation which eventually propagates off the computational domain. We observe another potential consequence ofmore » trivial initial data: development of a persistent spurious solution, here referred to as the Jost junk solution, which contaminates the physical solution for long times. This work studies the influence of both types of junk on metric perturbations, waveforms, and self-force measurements, and it demonstrates that smooth modified source terms mollify the Jost solution and reduce junk radiation. Our concluding section discusses the applicability of these observations to other numerical schemes and techniques used to solve distributionally forced master wave equations.« less

  5. H theorem for generalized entropic forms within a master-equation framework

    NASA Astrophysics Data System (ADS)

    Casas, Gabriela A.; Nobre, Fernando D.; Curado, Evaldo M. F.

    2016-03-01

    The H theorem is proven for generalized entropic forms, in the case of a discrete set of states. The associated probability distributions evolve in time according to a master equation, for which the corresponding transition rates depend on these entropic forms. An important equation describing the time evolution of the transition rates and probabilities in such a way as to drive the system towards an equilibrium state is found. In the particular case of Boltzmann-Gibbs entropy, it is shown that this equation is satisfied in the microcanonical ensemble only for symmetric probability transition rates, characterizing a single path to the equilibrium state. This equation fulfils the proof of the H theorem for generalized entropic forms, associated with systems characterized by complex dynamics, e.g., presenting nonsymmetric probability transition rates and more than one path towards the same equilibrium state. Some examples considering generalized entropies of the literature are discussed, showing that they should be applicable to a wide range of natural phenomena, mainly those within the realm of complex systems.

  6. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    NASA Astrophysics Data System (ADS)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  7. The effect of memory in the stochastic master equation analyzed using the stochastic Liouville equation of motion. Electronic energy migration transfer between reorienting donor-donor, donor-acceptor chromophores

    NASA Astrophysics Data System (ADS)

    Håkansson, Pär; Westlund, Per-Olof

    2005-01-01

    This paper discusses the process of energy migration transfer within reorientating chromophores using the stochastic master equation (SME) and the stochastic Liouville equation (SLE) of motion. We have found that the SME over-estimates the rate of the energy migration compared to the SLE solution for a case of weakly interacting chromophores. This discrepancy between SME and SLE is caused by a memory effect occurring when fluctuations in the dipole-dipole Hamiltonian ( H( t)) are on the same timescale as the intrinsic fast transverse relaxation rate characterized by (1/ T2). Thus the timescale critical for energy-transfer experiments is T2≈10 -13 s. An extended SME is constructed, accounting for the memory effect of the dipole-dipole Hamiltonian dynamics. The influence of memory on the interpretation of experiments is discussed.

  8. Dissecting Embryonic Stem Cell Self-Renewal and Differentiation Commitment from Quantitative Models.

    PubMed

    Hu, Rong; Dai, Xianhua; Dai, Zhiming; Xiang, Qian; Cai, Yanning

    2016-10-01

    To model quantitatively embryonic stem cell (ESC) self-renewal and differentiation by computational approaches, we developed a unified mathematical model for gene expression involved in cell fate choices. Our quantitative model comprised ESC master regulators and lineage-specific pivotal genes. It took the factors of multiple pathways as input and computed expression as a function of intrinsic transcription factors, extrinsic cues, epigenetic modifications, and antagonism between ESC master regulators and lineage-specific pivotal genes. In the model, the differential equations of expression of genes involved in cell fate choices from regulation relationship were established according to the transcription and degradation rates. We applied this model to the Murine ESC self-renewal and differentiation commitment and found that it modeled the expression patterns with good accuracy. Our model analysis revealed that Murine ESC was an attractor state in culture and differentiation was predominantly caused by antagonism between ESC master regulators and lineage-specific pivotal genes. Moreover, antagonism among lineages played a critical role in lineage reprogramming. Our results also uncovered that the ordered expression alteration of ESC master regulators over time had a central role in ESC differentiation fates. Our computational framework was generally applicable to most cell-type maintenance and lineage reprogramming.

  9. Non-Markovian stochastic Schrödinger equations: Generalization to real-valued noise using quantum-measurement theory

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay; Wiseman, H. M.

    2002-07-01

    Do stochastic Schrödinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schrödinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schrödinger equation introduced by Strunz, Diósi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction.

  10. Recent progress in irrational conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, M.B.

    1993-09-01

    In this talk, I will review the foundations of irrational conformal field theory (ICFT), which includes rational conformal field theory as a small subspace. Highlights of the review include the Virasoro master equation, the Ward identities for the correlators of ICFT and solutions of the Ward identities. In particular, I will discuss the solutions for the correlators of the g/h coset construction and the correlators of the affine-Sugawara nests on g {contains} h{sub 1} {contains} {hor_ellipsis} {contains} h{sub n}. Finally, I will discuss the recent global solution for the correlators of all the ICFT`s in the master equation.

  11. Mapping of uncertainty relations between continuous and discrete time

    NASA Astrophysics Data System (ADS)

    Chiuchiú, Davide; Pigolotti, Simone

    2018-03-01

    Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.

  12. Mapping of uncertainty relations between continuous and discrete time.

    PubMed

    Chiuchiù, Davide; Pigolotti, Simone

    2018-03-01

    Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.

  13. Accurate analytic solution of chemical master equations for gene regulation networks in a single cell

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Saakian, David B.; Hu, Chin-Kun

    2018-01-01

    Studying gene regulation networks in a single cell is an important, interesting, and hot research topic of molecular biology. Such process can be described by chemical master equations (CMEs). We propose a Hamilton-Jacobi equation method with finite-size corrections to solve such CMEs accurately at the intermediate region of switching, where switching rate is comparable to fast protein production rate. We applied this approach to a model of self-regulating proteins [H. Ge et al., Phys. Rev. Lett. 114, 078101 (2015), 10.1103/PhysRevLett.114.078101] and found that as a parameter related to inducer concentration increases the probability of protein production changes from unimodal to bimodal, then to unimodal, consistent with phenotype switching observed in a single cell.

  14. Master-equation approach to the study of phase-change processes in data storage media

    NASA Astrophysics Data System (ADS)

    Blyuss, K. B.; Ashwin, P.; Bassom, A. P.; Wright, C. D.

    2005-07-01

    We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories.

  15. Quod erat demonstrandum: Understanding and Explaining Equations in Physics Teacher Education

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo; Krey, Olaf

    2015-07-01

    In physics education, equations are commonly seen as calculation tools to solve problems or as concise descriptions of experimental regularities. In physical science, however, equations often play a much more important role associated with the formulation of theories to provide explanations for physical phenomena. In order to overcome this inconsistency, one crucial step is to improve physics teacher education. In this work, we describe the structure of a course that was given to physics teacher students at the end of their master's degree in two European universities. The course had two main goals: (1) To investigate the complex interplay between physics and mathematics from a historical and philosophical perspective and (2) To expand students' repertoire of explanations regarding possible ways to derive certain school-relevant equations. A qualitative analysis on a case study basis was conducted to investigate the learning outcomes of the course. Here, we focus on the comparative analysis of two students who had considerably different views of the math-physics interplay in the beginning of the course. Our general results point to important changes on some of the students' views on the role of mathematics in physics, an increase in the participants' awareness of the difficulties faced by learners to understand physics equations and a broadening in the students' repertoire to answer "Why?" questions formulated to equations. Based on this analysis, further implications for physics teacher education are derived.

  16. Binding Energies of Proton-Bound Dimers of Imidazole and n-Acetylalanine Methyl Ester Obtained by Blackbody Infrared Radiative Dissociation

    PubMed Central

    Jockusch, Rebecca A.; Williams*, Evan R.

    2005-01-01

    The dissociation kinetics of protonated n-acetyl-L-alanine methyl ester dimer (AcAlaMEd), imidazole dimer, and their cross dimer were measured using blackbody infrared radiative dissociation (BIRD). Master equation modeling of these data was used to extract threshold dissociation energies (Eo) for the dimers. Values of 1.18 ± 0.06, 1.11 ± 0.04, and 1.12 ± 0.08 eV were obtained for AcAlaMEd, imidazole dimer, and the cross dimer, respectively. Assuming that the reverse activation barrier for dissociation of the ion–molecule complex is negligible, the value of Eo can be compared to the dissociation enthalpy (ΔHd°) from HPMS data. The Eo values obtained for the imidazole dimer and the cross dimer are in agreement with HPMS values; the value for AcAlaMEd is somewhat lower. Radiative rate constants used in the master equation modeling were determined using transition dipole moments calculated at the semiempirical (AM1) level for all dimers and compared to ab initio (RHF/3-21G*) calculations where possible. To reproduce the experimentally measured dissociation rates using master equation modeling, it was necessary to multiply semiempirical transition dipole moments by a factor between 2 and 3. Values for transition dipole moments from the ab initio calculations could be used for two of the dimers but appear to be too low for AcAlaMEd. These results demonstrate that BIRD, in combination with master equation modeling, can be used to determine threshold dissociation energies for intermediate size ions that are in neither the truncated Boltzmann nor the rapid energy exchange limit. PMID:16604163

  17. A Hybrid Method of Moment Equations and Rate Equations to Modeling Gas-Grain Chemistry

    NASA Astrophysics Data System (ADS)

    Pei, Y.; Herbst, E.

    2011-05-01

    Grain surfaces play a crucial role in catalyzing many important chemical reactions in the interstellar medium (ISM). The deterministic rate equation (RE) method has often been used to simulate the surface chemistry. But this method becomes inaccurate when the number of reacting particles per grain is typically less than one, which can occur in the ISM. In this condition, stochastic approaches such as the master equations are adopted. However, these methods have mostly been constrained to small chemical networks due to the large amounts of processor time and computer power required. In this study, we present a hybrid method consisting of the moment equation approximation to the stochastic master equation approach and deterministic rate equations to treat a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In this model, we use the standard OSU gas phase network (version OSU2006V3) which involves 458 gas phase species and more than 4000 reactions, and treat it by deterministic rate equations. A medium-sized surface reaction network which consists of 21 species and 19 reactions accounts for the productions of stable molecules such as H_2O, CO, CO_2, H_2CO, CH_3OH, NH_3 and CH_4. These surface reactions are treated by a hybrid method of moment equations (Barzel & Biham 2007) and rate equations: when the abundance of a surface species is lower than a specific threshold, say one per grain, we use the ``stochastic" moment equations to simulate the evolution; when its abundance goes above this threshold, we use the rate equations. A continuity technique is utilized to secure a smooth transition between these two methods. We have run chemical simulations for a time up to 10^8 yr at three temperatures: 10 K, 15 K, and 20 K. The results will be compared with those generated from (1) a completely deterministic model that uses rate equations for both gas phase and grain surface chemistry, (2) the method of modified rate equations (Garrod 2008), which partially takes into account the stochastic effect for surface reactions, and (3) the master equation approach solved using a Monte Carlo technique. At 10 K and standard grain sizes, our model results agree well with the above three methods, while discrepancies appear at higher temperatures and smaller grain sizes.

  18. Splitting nodes and linking channels: A method for assembling biocircuits from stochastic elementary units

    NASA Astrophysics Data System (ADS)

    Ferwerda, Cameron; Lipan, Ovidiu

    2016-11-01

    Akin to electric circuits, we construct biocircuits that are manipulated by cutting and assembling channels through which stochastic information flows. This diagrammatic manipulation allows us to create a method which constructs networks by joining building blocks selected so that (a) they cover only basic processes; (b) it is scalable to large networks; (c) the mean and variance-covariance from the Pauli master equation form a closed system; and (d) given the initial probability distribution, no special boundary conditions are necessary to solve the master equation. The method aims to help with both designing new synthetic signaling pathways and quantifying naturally existing regulatory networks.

  19. Open Group Transformations Within the Sp(2)-Formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Previously we have shown that open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of the nilpotent BFV-BRST charge operator. Here we show that they may also be quantized within an Sp(2)-frame in which there are two odd anticommuting operators called Sp(2)-charges. Previous results for finite open group transformations are generalized to the Sp(2)-formalism. We show that in order to define open group transformations on the whole ghost extended space we need Sp(2)-charges in the nonminimal sector which contains dynamical Lagrange multipliers. We give an Sp(2)-version of the quantum master equation with extended Sp(2)-charges and a master charge of a more involved form, which is proposed to represent the integrability conditions of defining operators of connection operators and which therefore should encode the generalized quantum Maurer-Cartan equations for arbitrary open groups. General solutions of this master equation are given in explicit form. A further extended Sp(2)-formalism is proposed in which the group parameters are quadrupled to a supersymmetric set and from which all results may be derived.

  20. Master equation and runaway speed of the Francis turbine

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2018-04-01

    The master equation of the Francis turbine is derived based on the combination of the angular momentum (Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings (guide vane angle and rotational speed) to the discharge and the power output. The master equation, thus, enables the complete characteristics of a given Francis turbine to be easily computed. While applying the energy law, both the shock loss at the impeller inlet and the swirling loss at the impeller exit are taken into account. These are main losses which occur at both the partial load and the overloads and, thus, dominantly influence the characteristics of the Francis turbine. They also totally govern the discharge of the water through the impeller when the impeller is found in the standstill. The computations have been performed for the discharge, the hydraulic torque and the hydraulic efficiency. They were also compared with the available measurements on a model turbine. Excellent agreement has been achieved. The computations also enable the runaway speed of the Francis turbine and the related discharge to be determined as a function of the setting angle of the guide vanes.

  1. Decoherence and dissipation for a quantum system coupled to a local environment

    NASA Technical Reports Server (NTRS)

    Gallis, Michael R.

    1994-01-01

    Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.

  2. A qualitative study of the complete set of solutions of the differential equation of motion of a test particle in the equatorial plane of the Kerr gravitational field

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Chan, F. K.

    1973-01-01

    A study is made of the mathematical solution of the differential equation of motion of a test particle in the equatorial plane of the Kerr gravitational field, using S (Schwarzschild-like) coordinates. A qualitative solution of this equation leads to the conclusion that there can only be 25 different types of orbits. For each value of a, the results are presented in a master diagram for which h and e are the parameters. A master diagram divides the h, e parameter space into regions such that at each point within one of these regions the types of admissible orbits are qualitatively the same. A pictorial representation of the physical orbits in the r, phi plane is also given.

  3. Generalized master equations for non-Poisson dynamics on networks.

    PubMed

    Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud

    2012-10-01

    The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.

  4. Generalized master equations for non-Poisson dynamics on networks

    NASA Astrophysics Data System (ADS)

    Hoffmann, Till; Porter, Mason A.; Lambiotte, Renaud

    2012-10-01

    The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.

  5. Delay chemical master equation: direct and closed-form solutions

    PubMed Central

    Leier, Andre; Marquez-Lago, Tatiana T.

    2015-01-01

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived. PMID:26345616

  6. Delay chemical master equation: direct and closed-form solutions.

    PubMed

    Leier, Andre; Marquez-Lago, Tatiana T

    2015-07-08

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.

  7. Evolutionary prisoner's dilemma games coevolving on adaptive networks.

    PubMed

    Lee, Hsuan-Wei; Malik, Nishant; Mucha, Peter J

    2018-02-01

    We study a model for switching strategies in the Prisoner's Dilemma game on adaptive networks of player pairings that coevolve as players attempt to maximize their return. We use a node-based strategy model wherein each player follows one strategy at a time (cooperate or defect) across all of its neighbors, changing that strategy and possibly changing partners in response to local changes in the network of player pairing and in the strategies used by connected partners. We compare and contrast numerical simulations with existing pair approximation differential equations for describing this system, as well as more accurate equations developed here using the framework of approximate master equations. We explore the parameter space of the model, demonstrating the relatively high accuracy of the approximate master equations for describing the system observations made from simulations. We study two variations of this partner-switching model to investigate the system evolution, predict stationary states, and compare the total utilities and other qualitative differences between these two model variants.

  8. Semi-classical statistical description of Fröhlich condensation.

    PubMed

    Preto, Jordane

    2017-06-01

    Fröhlich's model equations describing phonon condensation in open systems of biological relevance are reinvestigated within a semi-classical statistical framework. The main assumptions needed to deduce Fröhlich's rate equations are identified and it is shown how they lead us to write an appropriate form for the corresponding master equation. It is shown how solutions of the master equation can be numerically computed and can highlight typical features of the condensation effect. Our approach provides much more information compared to the existing ones as it allows to investigate the time evolution of the probability density function instead of following single averaged quantities. The current work is also motivated, on the one hand, by recent experimental evidences of long-lived excited modes in the protein structure of hen-egg white lysozyme, which were reported as a consequence of the condensation effect, and, on the other hand, by a growing interest in investigating long-range effects of electromagnetic origin and their influence on the dynamics of biochemical reactions.

  9. A systematic and efficient method to compute multi-loop master integrals

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Ma, Yan-Qing; Wang, Chen-Yu

    2018-04-01

    We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.

  10. Dynamics of quantum tomography in an open system

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2015-06-01

    In this study, we provide a way to describe the dynamics of quantum tomography in an open system with a generalized master equation, considering a case where the relevant system under tomographic measurement is influenced by the environment. We apply this to spin tomography because such situations typically occur in μSR (muon spin rotation/relaxation/resonance) experiments where microscopic features of the material are investigated by injecting muons as probes. As a typical example to describe the interaction between muons and a sample material, we use a spin-boson model where the relevant spin interacts with a bosonic environment. We describe the dynamics of a spin tomogram using a time-convolutionless type of generalized master equation that enables us to describe short time scales and/or low-temperature regions. Through numerical evaluation for the case of Ohmic spectral density with an exponential cutoff, a clear interdependency is found between the time evolution of elements of the density operator and a spin tomogram. The formulation in this paper may provide important fundamental information for the analysis of results from, for example, μSR experiments on short time scales and/or in low-temperature regions using spin tomography.

  11. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  12. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  13. Master equation with quantized atomic motion including dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-05-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.

  14. Dissipation in a rotating frame: Master equation, effective temperature, and Lamb shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verso, Alvise; Ankerhold, Joachim

    Motivated by recent realizations of microwave-driven nonlinear resonators in superconducting circuits, the impact of environmental degrees of freedom is analyzed as seen from a rotating frame. A system plus reservoir model is applied to consistently derive in the weak coupling limit the master equation for the reduced density in the moving frame and near the first bifurcation threshold. The concept of an effective temperature is introduced to analyze to what extent a detailed balance relation exists. Explicit expressions are also found for the Lamb-shift. Results for ohmic baths are in agreement with experimental findings, while for structured environments population inversionmore » is predicted that may qualitatively explain recent observations.« less

  15. Langevin approach to a chemical wave front: Selection of the propagation velocity in the presence of internal noise

    NASA Astrophysics Data System (ADS)

    Lemarchand, A.; Lesne, A.; Mareschal, M.

    1995-05-01

    The reaction-diffusion equation associated with the Fisher chemical model A+B-->2A admits wave-front solutions by replacing an unstable stationary state with a stable one. The deterministic analysis concludes that their propagation velocity is not prescribed by the dynamics. For a large class of initial conditions the velocity which is spontaneously selected is equal to the minimum allowed velocity vmin, as predicted by the marginal stability criterion. In order to test the relevance of this deterministic description we investigate the macroscopic consequences, on the velocity and the width of the front, of the intrinsic stochasticity due to the underlying microscopic dynamics. We solve numerically the Langevin equations, deduced analytically from the master equation within a system size expansion procedure. We show that the mean profile associated with the stochastic solution propagates faster than the deterministic solution at a velocity up to 25% greater than vmin.

  16. Mahdi S. Hantush 1921”1984

    NASA Astrophysics Data System (ADS)

    Ahmad, M. U.; Gross, G. W.; Marino, M. A.; Papadopulos, S. S.; Saleem, Z. A.

    1984-04-01

    Mahdi Salih Hantush, Professor of Hydrology at the University of Kuwait, died on January 14, 1984 from complications following heart surgery.A hydrologist, scientist, and great teacher, Mantush specialized in the application of mathematics to the solution of transient groundwater flow problems. His particular expertise in the development of well-flow equations led the late R.W. Stallman of the U.S. Geological Survey to refer to him as “The Master of Radial Flow.” Hantush's numerous scientific publications contributed greatly to the present theories of flow in leaky aquifers, unconfined aquifers, and anisotropic aquifers. He derived the mathematical equations of flow to fully and/or partially penetrating wells in such aquifer systems, and devised methods for the analysis of pumpingtest data to determine their hydraulic properties. He was not only a researcher, but also a practicing hydrologist, deriving the equations he needed to solve practical problems.

  17. Recent developments in the kinetic theory of nucleation.

    PubMed

    Ruckenstein, E; Djikaev, Y S

    2005-12-30

    A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski B, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation, but the hierarchy of time scales does allow one to reduce it to the Fokker-Plank equation in the energy space. The new theory provides an equation for the critical radius of a new-phase particle which in the limit of large clusters (low supersaturations) yields the Kelvin equation and hence an expression for the macroscopic surface tension. The theory was illustrated with numerical calculations for a molecular pair interaction potential combining the dispersive attraction with the hard-sphere repulsion. The results for the liquid-to-solid nucleation clearly show that at given supersaturation the nucleation rate depends on the cluster structure (for three cluster structures considered-amorphous, fcc, and icosahedral). For both the liquid-to-solid and vapor-to-liquid nucleation, the predictions of the theory are consistent with the results of classical nucleation theory (CNT) in the limit of large critical clusters (low supersaturations). For small critical clusters the new theory provides higher nucleation rates than CNT. This can be accounted for by the fact that CNT uses the macroscopic interfacial tension which presumably overpredicts the surface tension of small clusters, and hence underpredicts nucleation rates.

  18. Linear and nonlinear spectroscopy from quantum master equations.

    PubMed

    Fetherolf, Jonathan H; Berkelbach, Timothy C

    2017-12-28

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  19. Linear and nonlinear spectroscopy from quantum master equations

    NASA Astrophysics Data System (ADS)

    Fetherolf, Jonathan H.; Berkelbach, Timothy C.

    2017-12-01

    We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.

  20. Markovian master equations for quantum thermal machines: local versus global approach

    NASA Astrophysics Data System (ADS)

    Hofer, Patrick P.; Perarnau-Llobet, Martí; Miranda, L. David M.; Haack, Géraldine; Silva, Ralph; Bohr Brask, Jonatan; Brunner, Nicolas

    2017-12-01

    The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.

  1. Combinatoric analysis of heterogeneous stochastic self-assembly.

    PubMed

    D'Orsogna, Maria R; Zhao, Bingyu; Berenji, Bijan; Chou, Tom

    2013-09-28

    We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed system with a fixed total particle number M, and a fixed number of seeds Ns. Each seed can bind a maximum of N particles. A discrete master equation for the probability distribution of the cluster sizes is derived and the corresponding cluster concentrations are found using kinetic Monte-Carlo simulations in terms of the density of seeds, the total mass, and the maximum cluster size. In the limit of slow detachment, we also find new analytic expressions and recursion relations for the cluster densities at intermediate times and at equilibrium. Our analytic and numerical findings are compared with those obtained from classical mass-action equations and the discrepancies between the two approaches analyzed.

  2. Approximation and inference methods for stochastic biochemical kinetics—a tutorial review

    NASA Astrophysics Data System (ADS)

    Schnoerr, David; Sanguinetti, Guido; Grima, Ramon

    2017-03-01

    Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics.

  3. The finite state projection algorithm for the solution of the chemical master equation.

    PubMed

    Munsky, Brian; Khammash, Mustafa

    2006-01-28

    This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods.

  4. Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas

    NASA Astrophysics Data System (ADS)

    Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.

    2016-09-01

    In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates in imitation-based models. For the square lattice the master equation can be solved analytically in the large temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including the number of neighbors that are considered for payoff determination on lattices, which further corroborates the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the macroscopic properties of the interaction network.

  5. Non-Markovian dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Fleming, Chris H.

    An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature. In contrast to previous claims, we found that all initial states of two-level atoms undergo finite-time disentanglement. We were also able to access regimes which cannot be described by Lindblad equations and other simpler methods, such as near resonance. Finally we revisit the infamous Abraham-Lorentz force, wherein a single particle in motion experiences backreaction from the electromagnetic field. This leads to a number of well-known problems including pre-acceleration and runaway solutions. We found a more a more-suitable open-system treatment of the nonrelativistic particle to be perfectly causal and dissipative without any extraneous requirements for finite size of the particle, weak coupling to the field, etc..

  6. Dynamics of open quantum systems by interpolation of von Neumann and classical master equations, and its application to quantum annealing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Tadashi

    2018-02-01

    We propose a method to interpolate dynamics of von Neumann and classical master equations with an arbitrary mixing parameter to investigate the thermal effects in quantum dynamics. The two dynamics are mixed by intervening to continuously modify their solutions, thus coupling them indirectly instead of directly introducing a coupling term. This maintains the quantum system in a pure state even after the introduction of thermal effects and obtains not only a density matrix but also a state vector representation. Further, we demonstrate that the dynamics of a two-level system can be rewritten as a set of standard differential equations, resulting in quantum dynamics that includes thermal relaxation. These equations are equivalent to the optical Bloch equations at the weak coupling and asymptotic limits, implying that the dynamics cause thermal effects naturally. Numerical simulations of ferromagnetic and frustrated systems support this idea. Finally, we use this method to study thermal effects in quantum annealing, revealing nontrivial performance improvements for a spin glass model over a certain range of annealing time. This result may enable us to optimize the annealing time of real annealing machines.

  7. Generalized master equation via aging continuous-time random walks.

    PubMed

    Allegrini, Paolo; Aquino, Gerardo; Grigolini, Paolo; Palatella, Luigi; Rosa, Angelo

    2003-11-01

    We discuss the problem of the equivalence between continuous-time random walk (CTRW) and generalized master equation (GME). The walker, making instantaneous jumps from one site of the lattice to another, resides in each site for extended times. The sojourn times have a distribution density psi(t) that is assumed to be an inverse power law with the power index micro. We assume that the Onsager principle is fulfilled, and we use this assumption to establish a complete equivalence between GME and the Montroll-Weiss CTRW. We prove that this equivalence is confined to the case where psi(t) is an exponential. We argue that is so because the Montroll-Weiss CTRW, as recently proved by Barkai [E. Barkai, Phys. Rev. Lett. 90, 104101 (2003)], is nonstationary, thereby implying aging, while the Onsager principle is valid only in the case of fully aged systems. The case of a Poisson distribution of sojourn times is the only one with no aging associated to it, and consequently with no need to establish special initial conditions to fulfill the Onsager principle. We consider the case of a dichotomous fluctuation, and we prove that the Onsager principle is fulfilled for any form of regression to equilibrium provided that the stationary condition holds true. We set the stationary condition on both the CTRW and the GME, thereby creating a condition of total equivalence, regardless of the nature of the waiting-time distribution. As a consequence of this procedure we create a GME that is a bona fide master equation, in spite of being non-Markov. We note that the memory kernel of the GME affords information on the interaction between system of interest and its bath. The Poisson case yields a bath with infinitely fast fluctuations. We argue that departing from the Poisson form has the effect of creating a condition of infinite memory and that these results might be useful to shed light on the problem of how to unravel non-Markov quantum master equations.

  8. Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Knezevic, I.

    2013-02-01

    In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.

  9. Derivation of Hodgkin-Huxley equations for a Na+ channel from a master equation for coupled activation and inactivation

    NASA Astrophysics Data System (ADS)

    Vaccaro, S. R.

    2016-11-01

    The Na+ current in nerve and muscle membranes may be described in terms of the activation variable m (t ) and the inactivation variable h (t ) , which are dependent on the transitions of S4 sensors of each of the Na+ channel domains DI to DIV. The time-dependence of the Na+ current and the rate equations satisfied by m (t ) and h (t ) may be derived from the solution to a master equation that describes the coupling between two or three activation sensors regulating the Na+ channel conductance and a two-stage inactivation process. If the inactivation rate from the closed or open states increases as the S4 sensors activate, a more general form of the Hodgkin-Huxley expression for the open-state probability may be derived where m (t ) is dependent on both activation and inactivation processes. The voltage dependence of the rate functions for inactivation and recovery from inactivation are consistent with the empirically determined expressions and exhibit saturation for both depolarized and hyperpolarized clamp potentials.

  10. Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows

    NASA Astrophysics Data System (ADS)

    Roohi, Ehsan; Stefanov, Stefan

    2016-10-01

    The motivation of this review paper is to present a detailed summary of different collision models developed in the framework of the direct simulation Monte Carlo (DSMC) method. The emphasis is put on a newly developed collision model, i.e., the Simplified Bernoulli trial (SBT), which permits efficient low-memory simulation of rarefied gas flows. The paper starts with a brief review of the governing equations of the rarefied gas dynamics including Boltzmann and Kac master equations and reiterates that the linear Kac equation reduces to a non-linear Boltzmann equation under the assumption of molecular chaos. An introduction to the DSMC method is provided, and principles of collision algorithms in the DSMC are discussed. A distinction is made between those collision models that are based on classical kinetic theory (time counter, no time counter (NTC), and nearest neighbor (NN)) and the other class that could be derived mathematically from the Kac master equation (pseudo-Poisson process, ballot box, majorant frequency, null collision, Bernoulli trials scheme and its variants). To provide a deeper insight, the derivation of both collision models, either from the principles of the kinetic theory or the Kac master equation, is provided with sufficient details. Some discussions on the importance of subcells in the DSMC collision procedure are also provided and different types of subcells are presented. The paper then focuses on the simplified version of the Bernoulli trials algorithm (SBT) and presents a detailed summary of validation of the SBT family collision schemes (SBT on transient adaptive subcells: SBT-TAS, and intelligent SBT: ISBT) in a broad spectrum of rarefied gas-flow test cases, ranging from low speed, internal micro and nano flows to external hypersonic flow, emphasizing first the accuracy of these new collision models and second, demonstrating that the SBT family scheme, if compared to other conventional and recent collision models, requires smaller number of particles per cell to obtain sufficiently accurate solutions.

  11. Analysis of the accuracy and precision of the McMaster method in detection of the eggs of Toxocara and Trichuris species (Nematoda) in dog faeces.

    PubMed

    Kochanowski, Maciej; Dabrowska, Joanna; Karamon, Jacek; Cencek, Tomasz; Osiński, Zbigniew

    2013-07-01

    The aim of this study was to determine the accuracy and precision of McMaster method with Raynaud's modification in the detection of the eggs of the nematodes Toxocara canis (Werner, 1782) and Trichuris ovis (Abildgaard, 1795) in faeces of dogs. Four variants of McMaster method were used for counting: in one grid, two grids, the whole McMaster chamber and flotation in the tube. One hundred sixty samples were prepared from dog faeces (20 repetitions for each egg quantity) containing 15, 25, 50, 100, 150, 200, 250 and 300 eggs of T. canis and T. ovis in 1 g of faeces. To compare the influence of kind of faeces on the results, samples of dog faeces were enriched at the same levels with the eggs of another nematode, Ascaris suum Goeze, 1782. In addition, 160 samples of pig faeces were prepared and enriched only with A. suum eggs in the same way. The highest limit of detection (the lowest level of eggs that were detected in at least 50% of repetitions) in all McMaster chamber variants were obtained for T. canis eggs (25-250 eggs/g faeces). In the variant with flotation in the tube, the highest limit of detection was obtained for T. ovis eggs (100 eggs/g). The best results of the limit of detection, sensitivity and the lowest coefficients of variation were obtained with the use of the whole McMaster chamber variant. There was no significant impact of properties of faeces on the obtained results. Multiplication factors for the whole chamber were calculated on the basis of the transformed equation of the regression line, illustrating the relationship between the number of detected eggs and that of the eggs added to the'sample. Multiplication factors calculated for T. canis and T. ovis eggs were higher than those expected using McMaster method with Raynaud modification.

  12. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    NASA Astrophysics Data System (ADS)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  13. Nonlinear fluctuations-induced rate equations for linear birth-death processes

    NASA Astrophysics Data System (ADS)

    Honkonen, J.

    2008-05-01

    The Fock-space approach to the solution of master equations for one-step Markov processes is reconsidered. It is shown that in birth-death processes with an absorbing state at the bottom of the occupation-number spectrum and occupation-number independent annihilation probability of occupation-number fluctuations give rise to rate equations drastically different from the polynomial form typical of birth-death processes. The fluctuation-induced rate equations with the characteristic exponential terms are derived for Mikhailov’s ecological model and Lanchester’s model of modern warfare.

  14. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    NASA Astrophysics Data System (ADS)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  15. Colonization of a territory by a stochastic population under a strong Allee effect and a low immigration pressure

    NASA Astrophysics Data System (ADS)

    Be'er, Shay; Assaf, Michael; Meerson, Baruch

    2015-06-01

    We study the dynamics of colonization of a territory by a stochastic population at low immigration pressure. We assume a sufficiently strong Allee effect that introduces, in deterministic theory, a large critical population size for colonization. At low immigration rates, the average precolonization population size is small, thus invalidating the WKB approximation to the master equation. We circumvent this difficulty by deriving an exact zero-flux solution of the master equation and matching it with an approximate nonzero-flux solution of the pertinent Fokker-Planck equation in a small region around the critical population size. This procedure provides an accurate evaluation of the quasistationary probability distribution of population sizes in the precolonization state and of the mean time to colonization, for a wide range of immigration rates. At sufficiently high immigration rates our results agree with WKB results obtained previously. At low immigration rates the results can be very different.

  16. Colonization of a territory by a stochastic population under a strong Allee effect and a low immigration pressure.

    PubMed

    Be'er, Shay; Assaf, Michael; Meerson, Baruch

    2015-06-01

    We study the dynamics of colonization of a territory by a stochastic population at low immigration pressure. We assume a sufficiently strong Allee effect that introduces, in deterministic theory, a large critical population size for colonization. At low immigration rates, the average precolonization population size is small, thus invalidating the WKB approximation to the master equation. We circumvent this difficulty by deriving an exact zero-flux solution of the master equation and matching it with an approximate nonzero-flux solution of the pertinent Fokker-Planck equation in a small region around the critical population size. This procedure provides an accurate evaluation of the quasistationary probability distribution of population sizes in the precolonization state and of the mean time to colonization, for a wide range of immigration rates. At sufficiently high immigration rates our results agree with WKB results obtained previously. At low immigration rates the results can be very different.

  17. Resonant Perturbation Theory of Decoherence and Relaxation of Quantum Bits

    DOE PAGES

    Merkli, M.; Berman, G. P.; Sigal, I. M.

    2010-01-01

    We describe our recenmore » t results on the resonant perturbation theory of decoherence and relaxation for quantum systems with many qubits. The approach represents a rigorous analysis of the phenomenon of decoherence and relaxation for general N -level systems coupled to reservoirs of bosonic fields. We derive a representation of the reduced dynamics valid for all times t ≥ 0 and for small but fixed interaction strength. Our approach does not involve master equation approximations and applies to a wide variety of systems which are not explicitly solvable.« less

  18. A linear model of population dynamics

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  19. Cavity losses for the dissipative Jaynes Cummings Hamiltonian beyond rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Scala, M.; Militello, B.; Messina, A.; Maniscalco, S.; Piilo, J.; Suominen, K.-A.

    2007-11-01

    A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows us to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis (Scala et al 2007 Phys. Rev. A 75 013811), where a microscopic derivation was given in the framework of the rotating wave approximation.

  20. Reformulation and solution of the master equation for multiple-well chemical reactions.

    PubMed

    Georgievskii, Yuri; Miller, James A; Burke, Michael P; Klippenstein, Stephen J

    2013-11-21

    We consider an alternative formulation of the master equation for complex-forming chemical reactions with multiple wells and bimolecular products. Within this formulation the dynamical phase space consists of only the microscopic populations of the various isomers making up the reactive complex, while the bimolecular reactants and products are treated equally as sources and sinks. This reformulation yields compact expressions for the phenomenological rate coefficients describing all chemical processes, i.e., internal isomerization reactions, bimolecular-to-bimolecular reactions, isomer-to-bimolecular reactions, and bimolecular-to-isomer reactions. The applicability of the detailed balance condition is discussed and confirmed. We also consider the situation where some of the chemical eigenvalues approach the energy relaxation time scale and show how to modify the phenomenological rate coefficients so that they retain their validity.

  1. Epidemics in networks: a master equation approach

    NASA Astrophysics Data System (ADS)

    Cotacallapa, M.; Hase, M. O.

    2016-02-01

    A problem closely related to epidemiology, where a subgraph of ‘infected’ links is defined inside a larger network, is investigated. This subgraph is generated from the underlying network by a random variable, which decides whether a link is able to propagate a disease/information. The relaxation timescale of this random variable is examined in both annealed and quenched limits, and the effectiveness of propagation of disease/information is analyzed. The dynamics of the model is governed by a master equation and two types of underlying network are considered: one is scale-free and the other has exponential degree distribution. We have shown that the relaxation timescale of the contagion variable has a major influence on the topology of the subgraph of infected links, which determines the efficiency of spreading of disease/information over the network.

  2. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph

    NASA Astrophysics Data System (ADS)

    Primo, Amedeo; Tancredi, Lorenzo

    2017-08-01

    We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.

  3. Ultrastable light sources in the crossover from superradiance to lasing

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Tieri, David; Holland, Murray

    2013-05-01

    We theoretically investigate the crossover from steady-state superradiance to optical lasing. An exact solution of the quantum master equation is difficult to obtain due to the exponential scaling of the Hilbert space dimension with system size. However, since Lindblad operators in the master equation are invariant under SU(4) transformations, we are able to reduce the exponential scaling of the problem to cubic by expanding the density matrix in terms of an SU(4) basis. In this way, we obtain exact quantum solutions of the superradiance-laser crossover. We use this theory to investigate the potential for ultrastable lasers in the millihertz linewidth regime, and find the behavior of important observables, such as intensity, linewidth, spin-correlation, and entanglement. This work was supported by the DARPA QUASAR program and NSF.

  4. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.

    PubMed

    Levy, Tal J; Rabani, Eran

    2013-04-28

    We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.

  5. Simple, explicitly time-dependent, and regular solutions of the linearized vacuum Einstein equations in Bondi-Sachs coordinates

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas

    2013-05-01

    Perturbations of the linearized vacuum Einstein equations in the Bondi-Sachs formulation of general relativity can be derived from a single master function with spin weight two, which is related to the Weyl scalar Ψ0, and which is determined by a simple wave equation. By utilizing a standard spin representation of tensors on a sphere and two different approaches to solve the master equation, we are able to determine two simple and explicitly time-dependent solutions. Both solutions, of which one is asymptotically flat, comply with the regularity conditions at the vertex of the null cone. For the asymptotically flat solution we calculate the corresponding linearized perturbations, describing all multipoles of spin-2 waves that propagate on a Minkowskian background spacetime. We also analyze the asymptotic behavior of this solution at null infinity using a Penrose compactification and calculate the Weyl scalar Ψ4. Because of its simplicity, the asymptotically flat solution presented here is ideally suited for test bed calculations in the Bondi-Sachs formulation of numerical relativity. It may be considered as a sibling of the Bergmann-Sachs or Teukolsky-Rinne solutions, on spacelike hypersurfaces, for a metric adapted to null hypersurfaces.

  6. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments including Restrictions and Unusual features: Systems of single-variable differential equations are considered. A system needs to be reducible to Fuchsian form and eigenvalues of its residues must be of the form n + m ɛ, where n is integer. Performance depends upon the input matrix, its size, number of singular points and their degrees. It takes around an hour to reduce an example 74 × 74 matrix with 20 singular points on a PC with a 1.7 GHz Intel Core i5 CPU. An additional slowdown is to be expected for matrices with complex and/or irrational singular point locations, as these are particularly difficult for symbolic algebra software to handle.

  7. Exact time-dependent solutions for a self-regulating gene.

    PubMed

    Ramos, A F; Innocentini, G C P; Hornos, J E M

    2011-06-01

    The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.

  8. Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2017-07-01

    An explicit formula is found for the rate of extinction of subcritical linear birth-and-death processes in a random environment. The formula is illustrated by numerical computations of the eigenvalue with largest real part of the truncated matrix for the master equation. The generating function of the corresponding eigenvector satisfies a Fuchsian system of singular differential equations. A particular attention is set on the case of two environments, which leads to Riemann's differential equation.

  9. Non-equilibrium voltage noise generated by ion transport through pores.

    PubMed

    Frehland, E; Solleder, P

    1985-01-01

    In this paper, we describe a systematic approach to the theoretical analysis of non-equilibrium voltage noise that arises from ions moving through pores in membranes. We assume that an ion must cross one or two barriers in the pore in order to move from one side of the membrane to the other. In our analysis, we consider the following factors: a) surface charge as a variable in the kinetic equations, b) linearization of the kinetic equations, c) master equation approach to fluctuations. To analyze the voltage noise arising from ion movement through a two barrier (i.e., one binding site) pore, we included the effects of ions in the channel's interior on the voltage noise. The current clamp is considered as a white noise generating additional noise in the system. In contrast to what is found for current noise, at low frequencies the voltage noise intensity is reduced by increasing voltage across the membrane. With this approach, we demonstrate explicitly for the examples treated that, apart from additional noise generated by the current clamp, the non-equilibrium voltage fluctuations can be related to the current fluctuations by the complex admittance.

  10. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics

    PubMed Central

    Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.

    2016-01-01

    Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493

  11. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  12. Non-additive dissipation in open quantum networks out of equilibrium

    NASA Astrophysics Data System (ADS)

    Mitchison, Mark T.; Plenio, Martin B.

    2018-03-01

    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

  13. Open quantum system approach to the modeling of spin recombination reactions.

    PubMed

    Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J

    2012-04-26

    In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.

  14. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

  15. CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

    PubMed Central

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  16. Pressure and Temperature Dependence of the Reaction of Vinyl Radical with Ethylene

    NASA Technical Reports Server (NTRS)

    Ismail, Huzeifa; Goldsmith, C. Franklin; Abel, Paul R.; Howe, Pui-Teng; Fahr, Askar; Halpern, Joshua B.; Jusinski, Leonard E.; Georgievskii, Yuri; Taatjes, Craig A.; Green, William H.

    2007-01-01

    This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C2H3 + C2H4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H2C=CH) were generated by laser photolysis of vinyl iodide (C2H31) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k = (7 +/- 1) x 10(exp -l4) cu cm/molecule/s (T/298 K)(exp 2) exp[-(1430 +/- 70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C4H7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of I -methylallyl.

  17. Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers.

    PubMed

    Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja

    2014-05-01

    Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N → ∞ and t → ∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

  18. Globally coupled stochastic two-state oscillators: Fluctuations due to finite numbers

    NASA Astrophysics Data System (ADS)

    Pinto, Italo'Ivo Lima Dias; Escaff, Daniel; Harbola, Upendra; Rosas, Alexandre; Lindenberg, Katja

    2014-05-01

    Infinite arrays of coupled two-state stochastic oscillators exhibit well-defined steady states. We study the fluctuations that occur when the number N of oscillators in the array is finite. We choose a particular form of global coupling that in the infinite array leads to a pitchfork bifurcation from a monostable to a bistable steady state, the latter with two equally probable stationary states. The control parameter for this bifurcation is the coupling strength. In finite arrays these states become metastable: The fluctuations lead to distributions around the most probable states, with one maximum in the monostable regime and two maxima in the bistable regime. In the latter regime, the fluctuations lead to transitions between the two peak regions of the distribution. Also, we find that the fluctuations break the symmetry in the bimodal regime, that is, one metastable state becomes more probable than the other, increasingly so with increasing array size. To arrive at these results, we start from microscopic dynamical evolution equations from which we derive a Langevin equation that exhibits an interesting multiplicative noise structure. We also present a master equation description of the dynamics. Both of these equations lead to the same Fokker-Planck equation, the master equation via a 1/N expansion and the Langevin equation via standard methods of Itô calculus for multiplicative noise. From the Fokker-Planck equation we obtain an effective potential that reflects the transition from the monomodal to the bimodal distribution as a function of a control parameter. We present a variety of numerical and analytic results that illustrate the strong effects of the fluctuations. We also show that the limits N →∞ and t →∞ (t is the time) do not commute. In fact, the two orders of implementation lead to drastically different results.

  19. QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas

    2017-12-01

    QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.

  20. Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, O.; Karimi, F.; Knezevic, I.

    2016-08-01

    We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less

  1. Hierarchical Equation of Motion Investigation of Decoherence and Relaxation Dynamics in Nonequilibrium Transport through Interacting Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartle, Rainer; Cohen, Guy; Reichman, David R.; Millis, Andrew J.

    2014-03-01

    A recently developed hierarchical quantum master equation approach is used to investigate nonequilibrium electron transport through an interacting double quantum dot system in the regime where the inter-dot coupling is weaker than the coupling to the electrodes. The corresponding eigenstates provide tunneling paths that may interfere constructively or destructively, depending on the energy of the tunneling electrons. Electron-electron interactions are shown to quench these interference effects in bias-voltage dependent ways, leading, in particular, to negative differential resistance, population inversion and an enhanced broadening of resonances in the respective transport characteristics. Relaxation times are found to be very long, and to be correlated with very slow dynamics of the inter-dot coherences (off diagonal density matrix elements). The ability of the hierarchical quantum master equation approach to access very long time scales is crucial for the study of this physics. This work is supported by the National Science Foundation (NSF DMR-1006282 and NSF CHE-1213247), the Yad Hanadiv-Rothschild Foundation (via a Rothschild Fellowship for GC) and the Alexander von Humboldt Foundation (via a Feodor Lynen fellowship for RH).

  2. Stochastic effects in a thermochemical system with Newtonian heat exchange.

    PubMed

    Nowakowski, B; Lemarchand, A

    2001-12-01

    We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.

  3. Stochastic wave-function unravelling of the generalized Lindblad equation

    NASA Astrophysics Data System (ADS)

    Semin, V.; Semina, I.; Petruccione, F.

    2017-12-01

    We investigate generalized non-Markovian stochastic Schrödinger equations (SSEs), driven by a multidimensional counting process and multidimensional Brownian motion introduced by A. Barchielli and C. Pellegrini [J. Math. Phys. 51, 112104 (2010), 10.1063/1.3514539]. We show that these SSEs can be translated in a nonlinear form, which can be efficiently simulated. The simulation is illustrated by the model of a two-level system in a structured bath, and the results of the simulations are compared with the exact solution of the generalized master equation.

  4. The ε-form of the differential equations for Feynman integrals in the elliptic case

    NASA Astrophysics Data System (ADS)

    Adams, Luise; Weinzierl, Stefan

    2018-06-01

    Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.

  5. Comparison of Control Approaches in Genetic Regulatory Networks by Using Stochastic Master Equation Models, Probabilistic Boolean Network Models and Differential Equation Models and Estimated Error Analyzes

    NASA Astrophysics Data System (ADS)

    Caglar, Mehmet Umut; Pal, Ranadip

    2011-03-01

    Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.

  6. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    PubMed

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  7. Prescription-induced jump distributions in multiplicative Poisson processes.

    PubMed

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  8. Prescription-induced jump distributions in multiplicative Poisson processes

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Porporato, Amilcare; Rinaldo, Andrea; Maritan, Amos

    2011-06-01

    Generalized Langevin equations (GLE) with multiplicative white Poisson noise pose the usual prescription dilemma leading to different evolution equations (master equations) for the probability distribution. Contrary to the case of multiplicative Gaussian white noise, the Stratonovich prescription does not correspond to the well-known midpoint (or any other intermediate) prescription. By introducing an inertial term in the GLE, we show that the Itô and Stratonovich prescriptions naturally arise depending on two time scales, one induced by the inertial term and the other determined by the jump event. We also show that, when the multiplicative noise is linear in the random variable, one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We apply these results to a recently proposed stochastic model describing the dynamics of primary soil salinization, in which the salt mass balance within the soil root zone requires the analysis of different prescriptions arising from the resulting stochastic differential equation forced by multiplicative white Poisson noise, the features of which are tailored to the characters of the daily precipitation. A method is finally suggested to infer the most appropriate prescription from the data.

  9. On the Perturbative Equivalence Between the Hamiltonian and Lagrangian Quantizations

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Tyutin, I. V.

    The Hamiltonian (BFV) and Lagrangian (BV) quantization schemes are proved to be perturbatively equivalent to each other. It is shown in particular that the quantum master equation being treated perturbatively possesses a local formal solution.

  10. Protecting coherence by environmental decoherence: a solvable paradigmatic model

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Seligman, Thomas H.

    2017-11-01

    We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes-Cummings Hamiltonian, which we introduce into a Kossakowski-Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.

  11. Sharp peaks in the conductance of a double quantum dot and a quantum-dot spin valve at high temperatures: A hierarchical quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Wenderoth, S.; Bätge, J.; Härtle, R.

    2016-09-01

    We study sharp peaks in the conductance-voltage characteristics of a double quantum dot and a quantum dot spin valve that are located around zero bias. The peaks share similarities with a Kondo peak but can be clearly distinguished, in particular as they occur at high temperatures. The underlying physical mechanism is a strong current suppression that is quenched in bias-voltage dependent ways by exchange interactions. Our theoretical results are based on the quantum master equation methodology, including the Born-Markov approximation and a numerically exact, hierarchical scheme, which we extend here to the spin-valve case. The comparison of exact and approximate results allows us to reveal the underlying physical mechanisms, the role of first-, second- and beyond-second-order processes and the robustness of the effect.

  12. Rapidity window dependences of higher order cumulants and diffusion master equation

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo

    2015-10-01

    We study the rapidity window dependences of higher order cumulants of conserved charges observed in relativistic heavy ion collisions. The time evolution and the rapidity window dependence of the non-Gaussian fluctuations are described by the diffusion master equation. Analytic formulas for the time evolution of cumulants in a rapidity window are obtained for arbitrary initial conditions. We discuss that the rapidity window dependences of the non-Gaussian cumulants have characteristic structures reflecting the non-equilibrium property of fluctuations, which can be observed in relativistic heavy ion collisions with the present detectors. It is argued that various information on the thermal and transport properties of the hot medium can be revealed experimentally by the study of the rapidity window dependences, especially by the combined use, of the higher order cumulants. Formulas of higher order cumulants for a probability distribution composed of sub-probabilities, which are useful for various studies of non-Gaussian cumulants, are also presented.

  13. Master equation and two heat reservoirs.

    PubMed

    Trimper, Steffen

    2006-11-01

    A simple spin-flip process is analyzed under the presence of two heat reservoirs. While one flip process is triggered by a bath at temperature T, the inverse process is activated by a bath at a different temperature T'. The situation can be described by using a master equation approach in a second quantized Hamiltonian formulation. The stationary solution leads to a generalized Fermi-Dirac distribution with an effective temperature Te. Likewise the relaxation time is given in terms of Te. Introducing a spin representation we perform a Landau expansion for the averaged spin as order parameter and consequently, a free energy functional can be derived. Owing to the two reservoirs the model is invariant with respect to a simultaneous change sigma<-->-sigma and T<-->T'. This symmetry generates a third order term in the free energy which gives rise a dynamically induced first order transition.

  14. Theory and modeling of atmospheric turbulence, part 2

    NASA Technical Reports Server (NTRS)

    Chen, C. M.

    1984-01-01

    Two dimensional geostrophic turbulence driven by a random force is investigated. Based on the Liouville equation, which simulates the primitive hydrodynamical equations, a group-kinetic theory of turbulence is developed and the kinetic equation of the scaled singlet distribution is derived. The kinetic equation is transformed into an equation of spectral balance in the equilibrium and non-equilibrium states. Comparison is made between the propagators and the Green's functions in the case of the non-asymptotic quasi-linear equation to prove the equivalence of both kinds of approximations used to describe perturbed trajectories of plasma turbulence. The microdynamical state of fluid turbulence is described by a hydrodynamical system and transformed into a master equation analogous to the Vlasov equation for plasma turbulence. The spectral balance for the velocity fluctuations of individual components shows that the scaled pressure strain correlation and the cascade transfer are two transport functions that play the most important roles.

  15. A variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks

    NASA Astrophysics Data System (ADS)

    Bronstein, Leo; Koeppl, Heinz

    2018-01-01

    Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equations which provides us with an intuitive understanding of their properties and failure modes and allows us to correct some of these problems. We use mixtures of product-Poisson distributions to obtain a flexible parametric family which solves the commonly observed problem of divergences at low system sizes. We also extend the recently introduced entropic matching approach to arbitrary ansatz distributions and Markov processes, demonstrating that it is a special case of variational moment closure. This provides us with a particularly principled approximation method. Finally, we extend the above approaches to cover the approximation of multi-time joint distributions, resulting in a viable alternative to process-level approximations which are often intractable.

  16. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  17. Decoherence at constant excitation

    NASA Astrophysics Data System (ADS)

    Torres, J. M.; Sadurní, E.; Seligman, T. H.

    2012-02-01

    We present a simple exactly solvable extension of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×4 matrices.

  18. Perturbation expansions of stochastic wavefunctions for open quantum systems

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2017-11-01

    Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.

  19. Estimating the Accuracy of the Chedoke-McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation.

    PubMed

    Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A

    2011-01-01

    To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.

  20. Stochastic modification of the Schrödinger-Newton equation

    NASA Astrophysics Data System (ADS)

    Bera, Sayantani; Mohan, Ravi; Singh, Tejinder P.

    2015-07-01

    The Schrödinger-Newton (SN) equation describes the effect of self-gravity on the evolution of a quantum system, and it has been proposed that gravitationally induced decoherence drives the system to one of the stationary solutions of the SN equation. However, the equation itself lacks a decoherence mechanism, because it does not possess any stochastic feature. In the present work we derive a stochastic modification of the Schrödinger-Newton equation, starting from the Einstein-Langevin equation in the theory of stochastic semiclassical gravity. We specialize this equation to the case of a single massive point particle, and by using Karolyhazy's phase variance method, we derive the Diósi-Penrose criterion for the decoherence time. We obtain a (nonlinear) master equation corresponding to this stochastic SN equation. This equation is, however, linear at the level of the approximation we use to prove decoherence; hence, the no-signaling requirement is met. Lastly, we use physical arguments to obtain expressions for the decoherence length of extended objects.

  1. Master plot analysis of microcracking in graphite/epoxy and graphite/PEEK laminates

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Hu, Shoufeng; Bark, Jong Song

    1993-01-01

    We used a variational stress analysis and an energy release rate failure criterion to construct a master plot analysis of matrix microcracking. In the master plot, the results for all laminates of a single material are predicted to fall on a single line whose slope gives the microcracking toughness of the material. Experimental results from 18 different layups of AS4/3501-6 laminates show that the master plot analysis can explain all observations. In particular, it can explain the differences between microcracking of central 90 deg plies and of free-surface 90 deg plies. Experimental results from two different AS4/PEEK laminates tested at different temperatures can be explained by a modified master plot that accounts for changes in the residual thermal stresses. Finally, we constructed similar master plot analyses for previous literature microcracking models. All microcracking theories that ignore the thickness dependence of the stresses gave poor results.

  2. Evolution of quantum-like modeling in decision making processes

    NASA Astrophysics Data System (ADS)

    Khrennikova, Polina

    2012-12-01

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  3. Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems

    NASA Astrophysics Data System (ADS)

    Zúñiga-Galindo, W. A.

    2018-06-01

    We initiate the study of non-Archimedean reaction-ultradiffusion equations and their connections with models of complex hierarchic systems. From a mathematical perspective, the equations studied here are the p-adic counterpart of the integro-differential models for phase separation introduced by Bates and Chmaj. Our equations are also generalizations of the ultradiffusion equations on trees studied in the 1980s by Ogielski, Stein, Bachas, Huberman, among others, and also generalizations of the master equations of the Avetisov et al models, which describe certain complex hierarchic systems. From a physical perspective, our equations are gradient flows of non-Archimedean free energy functionals and their solutions describe the macroscopic density profile of a bistable material whose space of states has an ultrametric structure. Some of our results are p-adic analogs of some well-known results in the Archimedean setting, however, the mechanism of diffusion is completely different due to the fact that it occurs in an ultrametric space.

  4. Intertime jump statistics of state-dependent Poisson processes.

    PubMed

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  5. Finite-size effects and switching times for Moran process with mutation.

    PubMed

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  6. Modular operads and the quantum open-closed homotopy algebra

    NASA Astrophysics Data System (ADS)

    Doubek, Martin; Jurčo, Branislav; Münster, Korbinian

    2015-12-01

    We verify that certain algebras appearing in string field theory are algebras over Feynman transform of modular operads which we describe explicitly. Equivalent description in terms of solutions of generalized BV master equations are explained from the operadic point of view.

  7. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

    PubMed

    Salis, Howard; Kaznessis, Yiannis N

    2005-12-01

    Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

  8. Integrodifferential formulations of the continuous-time random walk for solute transport subject to bimolecular A +B →0 reactions: From micro- to mesoscopic

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Berkowitz, Brian

    2015-03-01

    We develop continuous-time random walk (CTRW) equations governing the transport of two species that annihilate when in proximity to one another. In comparison with catalytic or spontaneous transformation reactions that have been previously considered in concert with CTRW, both species have spatially variant concentrations that require consideration. We develop two distinct formulations. The first treats transport and reaction microscopically, potentially capturing behavior at sharp fronts, but at the cost of being strongly nonlinear. The second, mesoscopic, formulation relies on a separation-of-scales technique we develop to separate microscopic-scale reaction and upscaled transport. This simplifies the governing equations and allows treatment of more general reaction dynamics, but requires stronger smoothness assumptions of the solution. The mesoscopic formulation is easily tractable using an existing solution from the literature (we also provide an alternative derivation), and the generalized master equation (GME) for particles undergoing A +B →0 reactions is presented. We show that this GME simplifies, under appropriate circumstances, to both the GME for the unreactive CTRW and to the advection-dispersion-reaction equation. An additional major contribution of this work is on the numerical side: to corroborate our development, we develop an indirect particle-tracking-partial-integro-differential-equation (PIDE) hybrid verification technique which could be applicable widely in reactive anomalous transport. Numerical simulations support the mesoscopic analysis.

  9. QuTiP: An open-source Python framework for the dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Johansson, J. R.; Nation, P. D.; Nori, Franco

    2012-08-01

    We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object class, and then passed on to a choice of master equation or Monte Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction. Catalogue identifier: AEMB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 16 482 No. of bytes in distributed program, including test data, etc.: 213 438 Distribution format: tar.gz Programming language: Python Computer: i386, x86-64 Operating system: Linux, Mac OSX, Windows RAM: 2+ Gigabytes Classification: 7 External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.sourceforge.net/) Nature of problem: Dynamics of open quantum systems. Solution method: Numerical solutions to Lindblad master equation or Monte Carlo wave function method. Restrictions: Problems must meet the criteria for using the master equation in Lindblad form. Running time: A few seconds up to several tens of minutes, depending on size of underlying Hilbert space.

  10. Modeling stochastic noise in gene regulatory systems

    PubMed Central

    Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung

    2014-01-01

    The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368

  11. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation.

    PubMed

    Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W; Harding, Lawrence B; Hase, William L; Klippenstein, Stephen J

    2018-05-07

    Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C 2 H 4 O 3 , the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H 2 COO) and formaldehyde (H 2 CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (∼30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.

  12. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation

    NASA Astrophysics Data System (ADS)

    Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.; Harding, Lawrence B.; Hase, William L.; Klippenstein, Stephen J.

    2018-05-01

    Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C2H4O3, the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H2COO) and formaldehyde (H2CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (˜30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.

  13. Open quantum systems, effective Hamiltonians, and device characterization

    NASA Astrophysics Data System (ADS)

    Duffus, S. N. A.; Dwyer, V. M.; Everitt, M. J.

    2017-10-01

    High fidelity models, which are able to both support accurate device characterization and correctly account for environmental effects, are crucial to the engineering of scalable quantum technologies. As it ensures positivity of the density matrix, one preferred model of open systems describes the dynamics with a master equation in Lindblad form. In practice, Linblad operators are rarely derived from first principles, and often a particular form of annihilator is assumed. This results in dynamical models that miss those additional terms which must generally be added for the master equation to assume the Lindblad form, together with the other concomitant terms that must be assimilated into an effective Hamiltonian to produce the correct free evolution. In first principles derivations, such additional terms are often canceled (or countered), frequently in a somewhat ad hoc manner, leading to a number of competing models. Whilst the implications of this paper are quite general, to illustrate the point we focus here on an example anharmonic system; specifically that of a superconducting quantum interference device (SQUID) coupled to an Ohmic bath. The resulting master equation implies that the environment has a significant impact on the system's energy; we discuss the prospect of keeping or canceling this impact and note that, for the SQUID, monitoring the magnetic susceptibility under control of the capacitive coupling strength and the externally applied flux results in experimentally measurable differences between a number of these models. In particular, one should be able to determine whether a squeezing term of the form X ̂P ̂+P ̂X ̂ should be present in the effective Hamiltonian or not. If model generation is not performed correctly, device characterization will be prone to systemic errors.

  14. Gravitational perturbations and metric reconstruction: Method of extended homogeneous solutions applied to eccentric orbits on a Schwarzschild black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, Seth; Evans, Charles R.

    2010-10-15

    We calculate the gravitational perturbations produced by a small mass in eccentric orbit about a much more massive Schwarzschild black hole and use the numerically computed perturbations to solve for the metric. The calculations are initially made in the frequency domain and provide Fourier-harmonic modes for the gauge-invariant master functions that satisfy inhomogeneous versions of the Regge-Wheeler and Zerilli equations. These gravitational master equations have specific singular sources containing both delta function and derivative-of-delta function terms. We demonstrate in this paper successful application of the method of extended homogeneous solutions, developed recently by Barack, Ori, and Sago, to handle sourcemore » terms of this type. The method allows transformation back to the time domain, with exponential convergence of the partial mode sums that represent the field. This rapid convergence holds even in the region of r traversed by the point mass and includes the time-dependent location of the point mass itself. We present numerical results of mode calculations for certain orbital parameters, including highly accurate energy and angular momentum fluxes at infinity and at the black hole event horizon. We then address the issue of reconstructing the metric perturbation amplitudes from the master functions, the latter being weak solutions of a particular form to the wave equations. The spherical harmonic amplitudes that represent the metric in Regge-Wheeler gauge can themselves be viewed as weak solutions. They are in general a combination of (1) two differentiable solutions that adjoin at the instantaneous location of the point mass (a result that has order of continuity C{sup -1} typically) and (2) (in some cases) a delta function distribution term with a computable time-dependent amplitude.« less

  15. Superelement Analysis of Tile-Reinforced Composite Armor

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    1998-01-01

    Super-elements can greatly improve the computational efficiency of analyses of tile-reinforced structures such as the hull of the Composite Armored Vehicle. By taking advantage of the periodicity in this type of construction, super-elements can be used to simplify the task of modeling, to virtually eliminate the time required to assemble the stiffness matrices, and to reduce significantly the analysis solution time. Furthermore, super-elements are fully transferable between analyses and analysts, so that they provide a consistent method to share information and reduce duplication. This paper describes a methodology that was developed to model and analyze large upper hull components of the Composite Armored Vehicle. The analyses are based on two types of superelement models. The first type is based on element-layering, which consists of modeling a laminate by using several layers of shell elements constrained together with compatibility equations. Element layering is used to ensure the proper transverse shear deformation in the laminate rubber layer. The second type of model uses three-dimensional elements. Since no graphical pre-processor currently supports super-elements, a special technique based on master-elements was developed. Master-elements are representations of super-elements that are used in conjunction with a custom translator to write the superelement connectivities as input decks for ABAQUS.

  16. Quantum harmonic oscillator in a thermal bath

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhong

    1993-01-01

    The influence functional path-integral treatment of quantum Brownian motion is briefly reviewed. A newly derived exact master equation of a quantum harmonic oscillator coupled to a general environment at arbitrary temperature is discussed. It is applied to the problem of loss of quantum coherence.

  17. Investigation of the Numerical Methods of Finite Differences and Weighted Residuals for Solution of the Heat Equation.

    DTIC Science & Technology

    1982-03-01

    OF FINITE DIFFERENCES AND WEIGHTED RESIDUALS FOR SOLUTION OF THE HEAT EQUATION a THESIS J’. AFIT/GNE/PH/81-7 *-.1 Robert Naegeli .. ....... J --aC t...Institute of Technology Air University in Partial Fulfillment of the a Requirements for the Degree of Master of Science by Robert E. Naegeli , M.S. Capt USAF...a time which proved to be one of great personal adjustment and turmoil. Robert E. Naegeli ii Contents Page Preface

  18. Non-Boltzmann Modeling for Air Shock-Layer Radiation at Lunar-Return Conditions

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2008-01-01

    This paper investigates the non-Boltzmann modeling of the radiating atomic and molecular electronic states present in lunar-return shock-layers. The Master Equation is derived for a general atom or molecule while accounting for a variety of excitation and de-excitation mechanisms. A new set of electronic-impact excitation rates is compiled for N, O, and N2+, which are the main radiating species for most lunar-return shock-layers. Based on these new rates, a novel approach of curve-fitting the non-Boltzmann populations of the radiating atomic and molecular states is developed. This new approach provides a simple and accurate method for calculating the atomic and molecular non-Boltzmann populations while avoiding the matrix inversion procedure required for the detailed solution of the Master Equation. The radiative flux values predicted by the present detailed non-Boltzmann model and the approximate curve-fitting approach are shown to agree within 5% for the Fire 1634 s case.

  19. A master equation approach to actin polymerization applied to endocytosis in yeast.

    PubMed

    Wang, Xinxin; Carlsson, Anders E

    2017-12-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.

  20. Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach

    NASA Astrophysics Data System (ADS)

    Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico

    2018-01-01

    We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.

  1. Finite state projection based bounds to compare chemical master equation models using single-cell data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less

  2. Symmetric and antisymmetric forms of the Pauli master equation.

    PubMed

    Klimenko, A Y

    2016-07-21

    When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter - this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future.

  3. An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca

    2016-03-15

    Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less

  4. A master equation approach to actin polymerization applied to endocytosis in yeast

    PubMed Central

    Wang, Xinxin

    2017-01-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771

  5. Sudden spreading of infections in an epidemic model with a finite seed fraction

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takehisa; Nemoto, Koji

    2018-03-01

    We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.

  6. Laplace transform analysis of a multiplicative asset transfer model

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Melatos, Andrew; Kieu, Tien

    2010-07-01

    We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.

  7. On the reduced dynamics of a subset of interacting bosonic particles

    NASA Astrophysics Data System (ADS)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  8. Fractional Stochastic Field Theory

    NASA Astrophysics Data System (ADS)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  9. Open groups of constraints. Integrating arbitrary involutions

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-11-01

    A new type of quantum master equation is presented which is expressed in terms of a recently introduced quantum antibracket. The equation involves only two operators: an extended nilpotent BFV-BRST charge and an extended ghost charge. It is proposed to determine the generalized quantum Maurer-Cartan equations for arbitrary open groups. These groups are the integration of constraints in arbitrary involutions. The only condition for this is that the constraint operators may be embedded in an odd nilpotent operator, the BFV-BRST charge. The proposal is verified at the quasigroup level. The integration formulas are also used to construct a generating operator for quantum antibrackets of operators in arbitrary involutions.

  10. Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    1993-03-01

    In the last decade, stochastic models have shown to be very useful for quantitative modelling of social processes. Here, a configurational master equation for the description of behavioral changes by pair interactions of individuals is developed. Three kinds of social pair interactions are distinguished: Avoidance processes, compromising processes, and imitative processes. Computational results are presented for a special case of imitative processes: the competition of two equivalent strategies. They show a phase transition that describes the self-organization of a behavioral convention. This phase transition is further analyzed by examining the equations for the most probable behavioral distribution, which are Boltzmann-like equations. Special cases of Boltzmann-like equations do not obey the H-theorem and have oscillatory or even chaotic solutions. A suitable Taylor approximation leads to the so-called game dynamical equations (also known as selection-mutation equations in the theory of evolution).

  11. A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases.

    PubMed

    Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik

    2010-09-28

    Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the model and depends on the dimensionality of the system, is obtained from Mittag-Leffler functions due to their long-time asymptotics, whereas (stretched) exponential behavior is found for short times.

  12. On the BV formalism of open superstring field theory in the large Hilbert space

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroaki; Nomura, Mitsuru

    2018-05-01

    We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.

  13. Students' Difficulties with Vector Calculus in Electrodynamics

    ERIC Educational Resources Information Center

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…

  14. QuTiP 2: A Python framework for the dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Johansson, J. R.; Nation, P. D.; Nori, Franco

    2013-04-01

    We present version 2 of QuTiP, the Quantum Toolbox in Python. Compared to the preceding version [J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 183 (2012) 1760.], we have introduced numerous new features, enhanced performance, and made changes in the Application Programming Interface (API) for improved functionality and consistency within the package, as well as increased compatibility with existing conventions used in other scientific software packages for Python. The most significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse operators, support for the Floquet formalism, and new solvers for Bloch-Redfield and Floquet-Markov master equations. Here we introduce these new features, demonstrate their use, and give a summary of the important backward-incompatible API changes introduced in this version. Catalog identifier: AEMB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 33625 No. of bytes in distributed program, including test data, etc.: 410064 Distribution format: tar.gz Programming language: Python. Computer: i386, x86-64. Operating system: Linux, Mac OSX. RAM: 2+ Gigabytes Classification: 7. External routines: NumPy, SciPy, Matplotlib, Cython Catalog identifier of previous version: AEMB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1760 Does the new version supercede the previous version?: Yes Nature of problem: Dynamics of open quantum systems Solution method: Numerical solutions to Lindblad, Floquet-Markov, and Bloch-Redfield master equations, as well as the Monte Carlo wave function method. Reasons for new version: Compared to the preceding version we have introduced numerous new features, enhanced performance, and made changes in the Application Programming Interface (API) for improved functionality and consistency within the package, as well as increased compatibility with existing conventions used in other scientific software packages for Python. The most significant new features include efficient solvers for arbitrary time-dependent Hamiltonians and collapse operators, support for the Floquet formalism, and new solvers for Bloch-Redfield and Floquet-Markov master equations. Restrictions: Problems must meet the criteria for using the master equation in Lindblad, Floquet-Markov, or Bloch-Redfield form. Running time: A few seconds up to several tens of hours, depending on size of the underlying Hilbert space.

  15. Activation energy-activation volume master plots for ion transport behavior in polymer electrolytes and supercooled molten salts.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W

    2005-09-08

    We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.

  16. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains

    PubMed Central

    Kazeev, Vladimir; Khammash, Mustafa; Nip, Michael; Schwab, Christoph

    2014-01-01

    The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to “lift” this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging -discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the “basis” of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude storage savings over direct approaches. PMID:24626049

  17. Nonlinear optical response in narrow graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Karimi, Farhad; Knezevic, Irena

    We present an iterative method to calculate the nonlinear optical response of armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) while including the effects of dissipation. In contrast to methods that calculate the nonlinear response in the ballistic (dissipation-free) regime, here we obtain the nonlinear response of an electronic system to an external electromagnetic field while interacting with a dissipative environment (to second order). We use a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations, and we solve the master equation iteratively to obtain the higher-order response functions. We employ the SCF-MMEF to calculate the nonlinear conductance and susceptibility, as well as to calculate the dependence of the plasmon dispersion and plasmon propagation length on the intensity of the electromagnetic field in GNRs. The electron scattering mechanisms included in this work are scattering with intrinsic phonons, ionized impurities, surface optical phonons, and line-edge roughness. Unlike in wide GNRs, where ionized-impurity scattering dominates dissipation, in ultra-narrow nanoribbons on polar substrates optical-phonon scattering and ionized-impurity scattering are equally prominent. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  18. Estimating the Accuracy of the Chedoke–McMaster Stroke Assessment Predictive Equations for Stroke Rehabilitation

    PubMed Central

    Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.

    2011-01-01

    ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239

  19. Dielectric function and plasmons in graphene: A self-consistent-field calculation within a Markovian master equation formalism

    DOE PAGES

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2016-05-12

    We introduce a method for calculating the dielectric function of nanostructures with an arbitrary band dispersion and Bloch wave functions. The linear response of a dissipative electronic system to an external electromagnetic field is calculated by a self-consistent-field approach within a Markovian master equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. The SCF-MMEF accurately accounts for several concurrent scattering mechanisms. The method captures interband electron-hole-pair generation, as well as the interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for supported graphene. From the loss-function maximum,more » we obtain plasmon dispersion and propagation length for different substrate types [nonpolar diamondlike carbon (DLC) and polar SiO 2 and hBN], impurity densities, carrier densities, and temperatures. Plasmons on the two polar substrates are suppressed below the highest surface phonon energy, while the spectrum is broad on the nonpolar DLC. Plasmon propagation lengths are comparable on polar and nonpolar substrates and are on the order of tens of nanometers, considerably shorter than previously reported. As a result, they improve with fewer impurities, at lower temperatures, and at higher carrier densities.« less

  20. Non-Markovian quantum Brownian motion in one dimension in electric fields

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  1. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

    PubMed

    Salis, Howard; Kaznessis, Yiannis

    2005-02-01

    The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.

  2. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    PubMed

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  3. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  4. Autonomous rotor heat engine

    NASA Astrophysics Data System (ADS)

    Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio

    2017-06-01

    The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

  5. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    NASA Astrophysics Data System (ADS)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  6. State-to-state rotational energy-transfer measurements in the nu(2) = 1 state of ammonia by infrared-infrared double resonance

    NASA Technical Reports Server (NTRS)

    Abel, Bernd; Coy, Stephen L.; Klaassen, Jody J.; Steinfeld, Jeffrey I.

    1992-01-01

    The state-resolved rotational (R-R, R-T) energy transfer in (N-14)H3 (for NH3-NH3 and NH3-Ar collisions) was studied using an IR double-resonance laser spectroscopic technique. Measurements of both the total rate of depopulation by collisions, and the rates of transfer into specific final rovibrational states (v,J,K) were performed using time-resolved tunable diode laser absorption spectroscopy. A kinetic master-equation analysis of time-resolved level populatons was carried out, yielding state-to-state rate constants and propensity rules for NH3-NH3 and NH3-Ar collisions.

  7. Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, A. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2018-03-01

    Employing the fermionic and bosonic Hamiltonians for the collective oscillator linearly FC-coupled with several heat baths, the analytical expressions for the collective occupation number are derived within the non-Markovian quantum Langevin approach. The master equations for the occupation number of collective subsystem are derived and discussed. In the case of Ohmic dissipation with Lorenzian cutoffs, the possibility of reduction of the system with several heat baths to the system with one heat bath is analytically demonstrated. For the fermionic and bosonic systems, a comparative analysis is performed between the collective subsystem coupled to two heat baths and the reference case of the subsystem coupled to one bath.

  8. Decoherence-free evolution of time-dependent superposition states of two-level systems and thermal effects

    NASA Astrophysics Data System (ADS)

    Prado, F. O.; de Almeida, N. G.; Duzzioni, E. I.; Moussa, M. H. Y.; Villas-Boas, C. J.

    2011-07-01

    In this paper we detail some results advanced in a recent letter [Prado , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.073008 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.

  9. Barrierless Reactions with Loose Transition States Govern the Yields and Lifetimes of Organic Nitrates Derived from Isoprene

    EPA Science Inventory

    The chemical reaction mechanism of NO addition to two β and δ isoprene hydroxy–peroxy radical isomers is examined in detail using density functional theory, coupled cluster methods, and the energy resolved master equation formalism to provide estimates of rate co...

  10. Fundamentals of Acoustic Backscatter Imagery

    DTIC Science & Technology

    1997-10-20

    in HYSAS of the acoustic imagery layer of the Master Seafloor Digital Database (MSDDB). Manuscript approved December 19, 1996 2 Clyde E. Nishimura 1.1...than for sidescan systems. Refraction is simply described by Snell’s law, which is derived from the eikonal equation and Fermat’s principle, and can

  11. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  12. Will learning to solve one-step equations pose a challenge to 8th grade students?

    NASA Astrophysics Data System (ADS)

    Ngu, Bing Hiong; Phan, Huy P.

    2017-08-01

    Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. Element interactivity arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features (e.g. negative pronumeral) poses additional challenge to master equation solving skills. In an experiment, 41 8th grade students (girls = 16, boys = 25) sat for a pre-test, attended a session about equation solving, completed an acquisition phase which constituted the main intervention and were tested again in a post-test. The results showed that at post-test, students performed better on one-step equations tapping low rather than high element interactivity knowledge. In addition, students performed better on those one-step equations that contained no special features. Thus, both the degree of element interactivity and the operation with special features affect the challenge posed to 8th grade students on learning how to solve one-step equations.

  13. Trends in Distance Education: A Content Analysis of Master's Thesis

    ERIC Educational Resources Information Center

    Durak, Gürhan; Çankaya, Serkan; Yunkul, Eyup; Urfa, Mehmet; Toprakliklioglu, Kivanç; Arda, Yagmur; Inam, Nazmiye

    2017-01-01

    The present study aimed at presenting the results of content analysis on Master's Theses carried out in the field of distance education at higher education level in Turkey between 1986 and 2015. A total of 285 Master's Theses were examined to determine the key words, academic disciplines, research areas, theoretical frameworks, research designs…

  14. Sign reversals of the output autocorrelation function for the stochastic Bernoulli-Verhulst equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N., E-mail: Neeme.Lumi@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee

    2015-10-28

    We consider a stochastic Bernoulli-Verhulst equation as a model for population growth processes. The effect of fluctuating environment on the carrying capacity of a population is modeled as colored dichotomous noise. Relying on the composite master equation an explicit expression for the stationary autocorrelation function (ACF) of population sizes is found. On the basis of this expression a nonmonotonic decay of the ACF by increasing lag-time is shown. Moreover, in a certain regime of the noise parameters the ACF demonstrates anticorrelation as well as related sign reversals at some values of the lag-time. The conditions for the appearance of thismore » highly unexpected effect are also discussed.« less

  15. Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA

    NASA Astrophysics Data System (ADS)

    Meyer, Christoph

    2018-01-01

    The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis. This paper presents the Mathematica package CANONICA, which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations.

  16. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system.

    PubMed

    Lee, Hyunyoung; Cheon, Byungsik; Hwang, Minho; Kang, Donghoon; Kwon, Dong-Soo

    2018-02-01

    In robotic surgical systems, commercial master devices have limitations owing to insufficient workspace and lack of intuitiveness. To overcome these limitations, a remote-center-of-motion (RCM) master manipulator was proposed. The feasibility of the proposed RCM structure was evaluated through kinematic analysis using a conventional serial structure. Two performance comparison experiments (peg transfer task and objective transfer task) were conducted for the developed master and Phantom Omni. The kinematic analysis results showed that compared with the serial structure, the proposed RCM structure has better performance in terms of design efficiency (19%) and workspace quality (59.08%). Further, in comparison with Phantom Omni, the developed master significantly increased task efficiency and significantly decreased workload in both experiments. The comparatively better performance in terms of intuitiveness, design efficiency, and operability of the proposed master for a robotic system for minimally invasive surgery was confirmed through kinematic and experimental analysis. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  18. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  19. Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system.

    PubMed

    Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita

    2007-06-16

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.

  20. A Discourse Analysis of Master's Theses across Disciplines with a Focus on Introductions

    ERIC Educational Resources Information Center

    Samraj, Betty

    2008-01-01

    There have been a growing number of discourse studies in recent years on written academic genres produced by students. However, the master's thesis has not received as much attention as the PhD dissertation. This investigation of master's theses from three disciplines, biology, philosophy and linguistics, employs both discourse analysis and…

  1. BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    NASA Astrophysics Data System (ADS)

    Caffo, Michele; Czyż, Henryk; Gunia, Michał; Remiddi, Ettore

    2009-03-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations. Program summaryProgram title: BOKASUN Catalogue identifier: AECG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9404 No. of bytes in distributed program, including test data, etc.: 104 123 Distribution format: tar.gz Programming language: FORTRAN77 Computer: Any computer with a Fortran compiler accepting FORTRAN77 standard. Tested on various PC's with LINUX Operating system: LINUX RAM: 120 kbytes Classification: 4.4 Nature of problem: Any integral arising in the evaluation of the two-loop sunrise Feynman diagram can be expressed in terms of a given set of Master Integrals, which should be calculated numerically. The program provides a fast and precise evaluation method of the Master Integrals for arbitrary (but not vanishing) masses and arbitrary value of the external momentum. Solution method: The integrals depend on three internal masses and the external momentum squared p. The method is a combination of an accelerated expansion in 1/p in its (pretty large!) region of fast convergence and of a Runge-Kutta numerical solution of a system of linear differential equations. Running time: To obtain 4 Master Integrals on PC with 2 GHz processor it takes 3 μs for series expansion with pre-calculated coefficients, 80 μs for series expansion without pre-calculated coefficients, from a few seconds up to a few minutes for Runge-Kutta method (depending on the required accuracy and the values of the physical parameters).

  2. Hybrid discrete-time neural networks.

    PubMed

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  3. Long-range spin coherence in a strongly coupled all-electronic dot-cavity system

    NASA Astrophysics Data System (ADS)

    Ferguson, Michael Sven; Oehri, David; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Blatter, Gianni; Zilberberg, Oded

    2017-12-01

    We present a theoretical analysis of spin-coherent electronic transport across a mesoscopic dot-cavity system. Such spin-coherent transport has been recently demonstrated in an experiment with a dot-cavity hybrid implemented in a high-mobility two-dimensional electron gas [C. Rössler et al., Phys. Rev. Lett. 115, 166603 (2015), 10.1103/PhysRevLett.115.166603] and its spectroscopic signatures have been interpreted in terms of a competition between Kondo-type dot-lead and molecular-type dot-cavity singlet formation. Our analysis brings forward all the transport features observed in the experiments and supports the claim that a spin-coherent molecular singlet forms across the full extent of the dot-cavity device. Our model analysis includes (i) a single-particle numerical investigation of the two-dimensional geometry, its quantum-coral-type eigenstates, and associated spectroscopic transport features, (ii) the derivation of an effective interacting model based on the observations of the numerical and experimental studies, and (iii) the prediction of transport characteristics through the device using a combination of a master-equation approach on top of exact eigenstates of the dot-cavity system, and an equation-of-motion analysis that includes Kondo physics. The latter provides additional temperature scaling predictions for the many-body phase transition between molecular- and Kondo-singlet formation and its associated transport signatures.

  4. Teaching Quantitative Management to Evening MBA Students.

    ERIC Educational Resources Information Center

    Libby, Barbara

    1984-01-01

    The author discusses the mathematics background of Masters of Business Administration (MBA) students and asks what math tools are necessary for an MBA. While she finds useful the ability to deal with linear and quadratic equations; interest, depreciation, and growth rates; and word problems, she concludes that calculus is of little use apart from…

  5. Super-Group Field Cosmology in Batalin-Vilkovisky Formulation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2016-09-01

    In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.

  6. Steady bipartite coherence induced by non-equilibrium environment

    NASA Astrophysics Data System (ADS)

    Huangfu, Yong; Jing, Jun

    2018-01-01

    We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.

  7. Symmetric and antisymmetric forms of the Pauli master equation

    PubMed Central

    Klimenko, A. Y.

    2016-01-01

    When applied to matter and antimatter states, the Pauli master equation (PME) may have two forms: time-symmetric, which is conventional, and time-antisymmetric, which is suggested in the present work. The symmetric and antisymmetric forms correspond to symmetric and antisymmetric extensions of thermodynamics from matter to antimatter — this is demonstrated by proving the corresponding H-theorem. The two forms are based on the thermodynamic similarity of matter and antimatter and differ only in the directions of thermodynamic time for matter and antimatter (the same in the time-symmetric case and the opposite in the time-antisymmetric case). We demonstrate that, while the symmetric form of PME predicts an equibalance between matter and antimatter, the antisymmetric form of PME favours full conversion of antimatter into matter. At this stage, it is impossible to make an experimentally justified choice in favour of the symmetric or antisymmetric versions of thermodynamics since we have no experience of thermodynamic properties of macroscopic objects made of antimatter, but experiments of this kind may become possible in the future. PMID:27440454

  8. Eternal non-Markovianity: from random unitary to Markov chain realisations.

    PubMed

    Megier, Nina; Chruściński, Dariusz; Piilo, Jyrki; Strunz, Walter T

    2017-07-25

    The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrödinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.

  9. Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.

    2014-09-01

    We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.

  10. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-08-01

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.

  11. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics

    NASA Astrophysics Data System (ADS)

    Colmenares, Pedro J.

    2018-05-01

    This article has to do with the derivation and solution of the Fokker-Planck equation associated to the momentum-integrated Wigner function of a particle subjected to a harmonic external field in contact with an ohmic thermal bath of quantum harmonic oscillators. The strategy employed is a simplified version of the phenomenological approach of Schramm, Jung, and Grabert of interpreting the operators as c numbers to derive the quantum master equation arising from a twofold transformation of the Wigner function of the entire phase space. The statistical properties of the random noise comes from the integral functional theory of Grabert, Schramm, and Ingold. By means of a single Wigner transformation, a simpler equation than that mentioned before is found. The Wigner function reproduces the known results of the classical limit. This allowed us to rewrite the underdamped classical Langevin equation as a first-order stochastic differential equation with time-dependent drift and diffusion terms.

  12. Creep rupture of polymer-matrix composites

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Morris, D. H.; Griffith, W. I.

    1981-01-01

    The time-dependent creep-rupture process in graphite-epoxy laminates is examined as a function of temperature and stress level. Moisture effects are not considered. An accelerated characterization method of composite-laminate viscoelastic modulus and strength properties is reviewed. It is shown that lamina-modulus master curves can be obtained using a minimum of normally performed quality-control-type testing. Lamina-strength master curves, obtained by assuming a constant-strain-failure criterion, are presented along with experimental data, and reasonably good agreement is shown to exist between the two. Various phenomenological delayed failure models are reviewed and two (the modified rate equation and the Larson-Miller parameter method) are compared to creep-rupture data with poor results.

  13. Analytic integration of real-virtual counterterms in NNLO jet cross sections I

    NASA Astrophysics Data System (ADS)

    Aglietti, Ugo; Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Trócsányi, Zoltán

    2008-09-01

    We present analytic evaluations of some integrals needed to give explicitly the integrated real-virtual counterterms, based on a recently proposed subtraction scheme for next-to-next-to-leading order (NNLO) jet cross sections. After an algebraic reduction of the integrals, integration-by-parts identities are used for the reduction to master integrals and for the computation of the master integrals themselves by means of differential equations. The results are written in terms of one- and two-dimensional harmonic polylogarithms, once an extension of the standard basis is made. We expect that the techniques described here will be useful in computing other integrals emerging in calculations in perturbative quantum field theories.

  14. Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1984-01-01

    The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are given explicitly. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, is derived by solving the system of master equations accounting for the multiple-level transitions.

  15. Basic Governing Equations for the Flight Regimes of Aeroassisted Orbital Transfer Vehicles

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1985-01-01

    The basic governing equations for the low-density, high-enthalpy flow regimes expected in the shock layers over the heat shields of the proposed aeroassisted orbital transfer vehicles are derived by combining and extending existing theories. The conservation equations are derived from gas kinetic principles for a four-component ionized gas consisting of neutral molecules, neutral atoms, singly ionized ions, and electrons, assuming a continuum flow. The differences among translational-rotational, vibrational, and electron temperatures are accounted for, as well as chemical nonequilibrium and electric-charge separation. Expressions for convective and viscous fluxes, transport properties, and the terms representing interactions among various energy modes are explicitly given. The expressions for the rate of electron-vibration energy transfer, which violates the Landau-Teller conditions, are derived by solving the system of master equations accounting for the multiple-level transitions.

  16. Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method

    NASA Astrophysics Data System (ADS)

    Volokitin, V.; Liniov, A.; Meyerov, I.; Hartmann, M.; Ivanchenko, M.; Hänggi, P.; Denisov, S.

    2017-11-01

    Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and experimental domains. In this work, we consider time-periodically modulated quantum systems that are in contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states of such systems are described by time-periodic density operators. Resolution of these operators constitutes a nontrivial computational task. Approaches based on spectral and iterative methods are restricted to systems with the dimension of the hosting Hilbert space dim H =N ≲300 , while the direct long-time numerical integration of the master equation becomes increasingly problematic for N ≳400 , especially when the coupling to the environment is weak. To go beyond this limit, we use the quantum trajectory method, which unravels the master equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic realization of the method. The algorithm is computationally efficient, allowing for long "leaps" forward in time. It is also numerically exact, in the sense that, being given the list of uniformly distributed (on the unit interval) random numbers, {η1,η2,...,ηn} , one could propagate a quantum trajectory (with ηi's as norm thresholds) in a numerically exact way. By using a scalable N -particle quantum model, we demonstrate that the algorithm allows us to resolve the asymptotic density operator of the model system with N =2000 states on a regular-size computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are currently performed.

  17. Dynamic control modification techniques in teleoperation of a flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Magee, David Patrick

    1991-01-01

    The objective of this research is to reduce the end-point vibration of a large, teleoperated manipulator while preserving the usefulness of the system motion. A master arm is designed to measure desired joint angles as the user specifies a desired tip motion. The desired joint angles from the master arm are the inputs to an adaptive PD control algorithm that positions the end-point of the manipulator. As the user moves the tip of the master, the robot will vibrate at its natural frequencies which makes it difficult to position the end-point. To eliminate the tip vibration during teleoperated motions, an input shaping method is presented. The input shaping method transforms each sample of the desired input into a new set of impulses that do not excite the system resonances. The method is explained using the equation of motion for a simple, second-order system. The impulse response of such a system is derived and the constraint equations for vibrationless motion are presented. To evaluate the robustness of the method, a different residual vibration equation from Singer's is derived that more accurately represents the input shaping technique. The input shaping method is shown to actually increase the residual vibration in certain situations when the system parameters are not accurately specified. Finally, the implementation of the input shaping method to a system with varying parameters is shown to induce a vibration into the system. To eliminate this vibration, a modified command shaping technique is developed. The ability of the modified command shaping method to reduce vibration at the system resonances is tested by varying input perturbations to trajectories in a range of possible user inputs. By comparing the frequency responses of the transverse acceleration at the end-point of the manipulator, the modified method is compared to the original PD routine. The control scheme that produces the smaller magnitude of resonant vibration at the first natural frequency is considered the more effective control method.

  18. Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method.

    PubMed

    Volokitin, V; Liniov, A; Meyerov, I; Hartmann, M; Ivanchenko, M; Hänggi, P; Denisov, S

    2017-11-01

    Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and experimental domains. In this work, we consider time-periodically modulated quantum systems that are in contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states of such systems are described by time-periodic density operators. Resolution of these operators constitutes a nontrivial computational task. Approaches based on spectral and iterative methods are restricted to systems with the dimension of the hosting Hilbert space dimH=N≲300, while the direct long-time numerical integration of the master equation becomes increasingly problematic for N≳400, especially when the coupling to the environment is weak. To go beyond this limit, we use the quantum trajectory method, which unravels the master equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic realization of the method. The algorithm is computationally efficient, allowing for long "leaps" forward in time. It is also numerically exact, in the sense that, being given the list of uniformly distributed (on the unit interval) random numbers, {η_{1},η_{2},...,η_{n}}, one could propagate a quantum trajectory (with η_{i}'s as norm thresholds) in a numerically exact way. By using a scalable N-particle quantum model, we demonstrate that the algorithm allows us to resolve the asymptotic density operator of the model system with N=2000 states on a regular-size computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are currently performed.

  19. Numerical simulation of photocurrent generation in bilayer organic solar cells: Comparison of master equation and kinetic Monte Carlo approaches

    NASA Astrophysics Data System (ADS)

    Casalegno, Mosè; Bernardi, Andrea; Raos, Guido

    2013-07-01

    Numerical approaches can provide useful information about the microscopic processes underlying photocurrent generation in organic solar cells (OSCs). Among them, the Kinetic Monte Carlo (KMC) method is conceptually the simplest, but computationally the most intensive. A less demanding alternative is potentially represented by so-called Master Equation (ME) approaches, where the equations describing particle dynamics rely on the mean-field approximation and their solution is attained numerically, rather than stochastically. The description of charge separation dynamics, the treatment of electrostatic interactions and numerical stability are some of the key issues which have prevented the application of these methods to OSC modelling, despite of their successes in the study of charge transport in disordered system. Here we describe a three-dimensional ME approach to photocurrent generation in OSCs which attempts to deal with these issues. The reliability of the proposed method is tested against reference KMC simulations on bilayer heterojunction solar cells. Comparison of the current-voltage curves shows that the model well approximates the exact result for most devices. The largest deviations in current densities are mainly due to the adoption of the mean-field approximation for electrostatic interactions. The presence of deep traps, in devices characterized by strong energy disorder, may also affect result quality. Comparison of the simulation times reveals that the ME algorithm runs, on the average, one order of magnitude faster than KMC.

  20. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  1. Multistate and multihypothesis discrimination with open quantum systems

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2018-05-01

    We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.

  2. Non-equilibrium time evolution of higher order cumulants of conserved charges and event-by-event analysis

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato

    2014-01-01

    We investigate the time evolution of higher order cumulants of conserved charges in a volume with the diffusion master equation. Applying the result to the diffusion of non-Gaussian fluctuations in the hadronic stage of relativistic heavy ion collisions, we show that the fourth-order cumulant of net-electric charge at LHC energy is suppressed compared with the recently observed second-order cumulant at ALICE, if the higher order cumulants at hadronization are suppressed compared with their values in the hadron phase in equilibrium. The significance of the experimental information on the rapidity window dependence of various cumulants in investigating the history of the dynamical evolution of the hot medium created in relativistic heavy ion collisions is emphasized.

  3. Biological proton pumping in an oscillating electric field.

    PubMed

    Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard

    2009-12-31

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.

  4. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  5. Vibrational and vibronic coherences in the dynamics of the FMO complex

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Kühn, Oliver

    2016-12-01

    The coupled exciton-vibrational dynamics of a seven site Frenkel exciton model of the Fenna-Matthews-Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton-vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  6. Stochastic Analysis of Reaction–Diffusion Processes

    PubMed Central

    Hu, Jifeng; Kang, Hye-Won

    2013-01-01

    Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732

  7. Broader, flatter optical spectra of passively mode-locked semiconductor lasers for a wavelength-division multiplexing source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, Danny; Yariv, Amnon

    1997-05-01

    Using the time domain master equation for a complex electric-field pulse envelope, we find analytical results for the optical spectra of passively mode-locked semiconductor lasers. The analysis includes the effect of optical nonlinearity of semiconductor lasers, which is characterized by a slow saturable amplifier and absorber. Group velocity dispersion, bandwidth limiting, and self-phase modulation were considered as well. The FWHM of the spectrum profile was found to have a strong dependence on group velocity dispersion and self-phase modulation. For large absolute values of the chirp parameter, the optical spectra result in equispaced continuous wave frequencies, a large fraction of whichmore » have equal power. {copyright} 1997 Optical Society of America« less

  8. Nonlinear subdiffusive fractional equations and the aggregation phenomenon.

    PubMed

    Fedotov, Sergei

    2013-09-01

    In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that these equations describe the transition from an intermediate subdiffusive regime to asymptotically normal advection-diffusion transport regime. This transition is governed by nonlinear tempering parameter that generalizes the standard linear tempering. We illustrate the general results through the use of the examples from cell and population biology. We find that a nonuniform anomalous exponent has a strong influence on the aggregation phenomenon.

  9. The weak coupling limit as a quantum functional central limit

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Frigerio, A.; Lu, Y. G.

    1990-08-01

    We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

  10. Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations.

    PubMed

    Ismail, Mona M; El Zokm, Gehan M; El-Sayed, Abeer A M

    2017-11-25

    Biochemical constituents and master elements (Pb, Cr, Cd, Fe, Cu, Zn, Hg, B, Al, SO 4 2- , Na, K, Li, Ca, Mg, and F) were investigated in six different seaweed species from Abu Qir Bay in the Egyptian Mediterranean Sea coast. The moisture level ranged from 30.26% in Corallina mediterranea to 77.57% in Padina boryana. On dry weight basis, the ash contents varied from 25.53% in Jania rubens to 88.84% in Sargassum wightii. The protein contents fluctuated from 8.26% in S. wightii to 28.01% in J. rubens. Enteromorpha linza showed the highest lipids (4.66%) and carbohydrate contents (78.95%), whereas C. mediterranea had the lowest lipid (0.5%), and carbohydrate contents (38.12%). Chlorophylls and carotenoid contents varied among the species. Total antioxidant capacity of the tested green seaweeds had the highest activities followed by brown and red seaweeds which had a similar trend of phenol and tannins contents. High reducing power was observed in all tested seaweeds extract except Ulva lactuca. Brown species had the highest amount of elements followed by red and green seaweeds. Notably, SO 4 2- recorded the highest level in the tested green species (108.05 mg/g dry weight (DW)). The Ca/Mg and K/Na ratios reflected highly significant difference between seaweed species. This study keeps an eye on 29 parameters and by applying stepwise multiple regression analysis, prospective equations have been set to describe the interactions between these parameters inside seaweeds. Accordingly, the tested seaweeds can be recommended as a source of healthy food with suitable ion quotient and estimated daily intake values.

  11. Theory and modeling of atmospheric turbulence, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.

  12. Why Bother about Writing a Masters Dissertation? Assumptions of Faculty and Masters Students in an Iranian Setting

    ERIC Educational Resources Information Center

    Hasrati, Mostafa

    2013-01-01

    This article reports the results of a mixed methodology analysis of the assumptions of academic staff and Masters students in an Iranian university regarding various aspects of the assessment of the Masters degree thesis, including the main objective for writing the thesis, the role of the students, supervisors and advisors in writing the…

  13. A fashion model with social interaction

    NASA Astrophysics Data System (ADS)

    Nakayama, Shoichiro; Nakamura, Yasuyuki

    2004-06-01

    In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.

  14. Factors Affecting Perceived Learning, Satisfaction, and Quality in the Online MBA: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Sebastianelli, Rose; Swift, Caroline; Tamimi, Nabil

    2015-01-01

    The authors examined how six factors related to content and interaction affect students' perceptions of learning, satisfaction, and quality in online master of business administration (MBA) courses. They developed three scale items to measure each factor. Using survey data from MBA students at a private university, the authors estimated structural…

  15. Rejoinder to MacCallum, Edwards, and Cai (2012) and Rindskopf (2012): Mastering a New Method

    ERIC Educational Resources Information Center

    Muthen, Bengt; Asparouhov, Tihomir

    2012-01-01

    This rejoinder discusses the general comments on how to use Bayesian structural equation modeling (BSEM) wisely and how to get more people better trained in using Bayesian methods. Responses to specific comments cover how to handle sign switching, nonconvergence and nonidentification, and prior choices in latent variable models. Two new…

  16. Fully Quantum Fluctuation Theorems

    NASA Astrophysics Data System (ADS)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  17. Symmetries, supersymmetries and cohomologies in gauge theories

    NASA Astrophysics Data System (ADS)

    Bǎbǎlîc, Elena-Mirela

    2009-12-01

    The main subjects approached in the thesis are the following: a) the derivation of the interactions in two space-time dimensions in a particular class of topological BF models; b) the construction of the couplings in D ≥ 5 dimensions between one massless tensor field with the mixed symmetry (3, 1) and one with the mixed symmetry of the Riemann tensor; c) the evaluation of the existence of interactions in D ≥ 5 dimensions between two different collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2); d) the analysis of the relation between the BRST charges obtained in the pure-spinor formalism, respectively in the κ-symmetric one for the supermembrane in eleven dimensions. Our procedure for the first three subjects is based on solving the equations that describe the deformation of the solution to the master equation by means of specific cohomological techniques, while for the fourth one we will use techniques specific to the BRST Hamiltonian approach in order to write the BRST charge. The interactions are obtained under the following hypotheses: locality, Lorentz covariance, Poincare invariance, analyticity of the deformations, and preservation of the number of derivatives on each field. The first three assumptions imply that the interacting theory is local in space-time, Lorentz covariant and Poincare invariant. The analyticity of the deformations refers to the fact that the deformed solution to the master equation is analytical in the coupling constant and reduces to the original solution in the free limit. The conservation of the number of derivatives on each field with respect to the free theory means here that the following two requirements are simultaneously satisfied: (i) the derivative order of the equations of motion on each field is the same for the free and respectively for the interacting theory; (ii) the maximum number of derivatives in the interaction vertices is equal to two, i.e. the maximum number of derivatives from the free Lagrangian. The main results of the thesis are: interactions in two space-time dimensions for a particular class of BF models; interactions between one massless tensor field with the mixed symmetry (3, 1) and one with the mixed symmetry of the Riemann tensor; interactions between collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2); relating the kappa-symmetric and pure-spinor versions of the supermembrane in eleven dimensions.

  18. Near-peer mentorship for undergraduate training in Ugandan medical schools: views of undergraduate students

    PubMed Central

    Rukundo, Godfrey Zari; Burani, Aluonzi; Kasozi, Jannat; Kirimuhuzya, Claude; Odongo, Charles; Mwesigwa, Catherine; Byona, Wycliff; Kiguli, Sarah

    2016-01-01

    Introduction Masters Students are major stakeholders in undergraduate medical education but their contribution has not been documented in Uganda. The aim of the study was to explore and document views and experiences of undergraduate students regarding the role of masters students as educators in four Ugandan medical schools. Methods This was a cross-sectional descriptive study using qualitative data collection methods. Eight Focus Group Discussions were conducted among eighty one selected preclinical and clinical students in the consortium of four Ugandan medical schools: Mbarara University of Science and Technology, Makerere College of Health Sciences, Gulu University and Kampala International University, Western Campus. Data analysis was done using thematic analysis. Participants’ privacy and confidentiality were respected and participant identifiers were not included in data analysis. Results Undergraduate students from all the medical schools viewed the involvement of master's students as very important. Frequent contact between masters and undergraduate students was reported as an important factor in undergraduate students’ motivation and learning. Despite the useful contribution, master’ students face numerous challenges like heavy workload and conflicting priorities. Conclusion According to undergraduate students in Ugandan medical schools, involvement of master's students in the teaching and learning of undergraduate students is both useful and challenging to masters and undergraduate students. Masters students provide peer mentorship to the undergraduate students. The senior educators are still needed to do their work and also to support the master's students in their teaching role. PMID:27347289

  19. Describing the dynamics of processes consisting simultaneously of Poissonian and non-Poissonian kinetics

    NASA Astrophysics Data System (ADS)

    Eule, S.; Friedrich, R.

    2013-03-01

    Dynamical processes exhibiting non-Poissonian kinetics with nonexponential waiting times are frequently encountered in nature. Examples are biochemical processes like gene transcription which are known to involve multiple intermediate steps. However, often a second process, obeying Poissonian statistics, affects the first one simultaneously, such as the degradation of mRNA in the above example. The aim of the present article is to provide a concise treatment of such random systems which are affected by regular and non-Poissonian kinetics at the same time. We derive the governing master equation and provide a controlled approximation scheme for this equation. The simplest approximation leads to generalized reaction rate equations. For a simple model of gene transcription we solve the resulting equation and show how the time evolution is influenced significantly by the type of waiting time distribution assumed for the non-Poissonian process.

  20. Excitation of turbulence by density waves

    NASA Technical Reports Server (NTRS)

    Tichen, C. M.

    1985-01-01

    A nonlinear system describes the microdynamical state of turbulence that is excited by density waves. It consists of an equation of propagation and a master equation. A group-scaling generates the scaled equations of many interacting groups of distribution functions. The two leading groups govern the transport processes of evolution and eddy diffusivity. The remaining sub-groups represent the relaxation for the approach of diffusivity to equilibrium. In strong turbulence, the sub-groups disperse themselves and the ensemble acts like a medium that offers an effective damping to close the hierarchy. The kinetic equation of turbulence is derived. It calculates the eddy viscosity and identifies the effective damping of the assumed medium self-consistently. It formulates the coupling mechanism for the intensification of the turbulent energy at the expense of the wave energy, and the transfer mechanism for the cascade. The spectra of velocity and density fluctuations find the power law k sup-2 and k sup-4, respectively.

  1. Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation

    NASA Technical Reports Server (NTRS)

    Hutsell, Steven T.

    1996-01-01

    The Global Positioning System (GPS) Master Control Station (MCS) currently makes significant use of the Allan Variance. This two-sample variance equation has proven excellent as a handy, understandable tool, both for time domain analysis of GPS cesium frequency standards, and for fine tuning the MCS's state estimation of these atomic clocks. The Allan Variance does not explicitly converge for the nose types of alpha less than or equal to minus 3 and can be greatly affected by frequency drift. Because GPS rubidium frequency standards exhibit non-trivial aging and aging noise characteristics, the basic Allan Variance analysis must be augmented in order to (a) compensate for a dynamic frequency drift, and (b) characterize two additional noise types, specifically alpha = minus 3, and alpha = minus 4. As the GPS program progresses, we will utilize a larger percentage of rubidium frequency standards than ever before. Hence, GPS rubidium clock characterization will require more attention than ever before. The three sample variance, commonly referred to as a renormalized Hadamard Variance, is unaffected by linear frequency drift, converges for alpha is greater than minus 5, and thus has utility for modeling noise in GPS rubidium frequency standards. This paper demonstrates the potential of Hadamard Variance analysis in GPS operations, and presents an equation that relates the Hadamard Variance to the MCS's Kalman filter process noises.

  2. Supersymmetric quantum spin chains and classical integrable systems

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-05-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  3. Two-loop integrals for CP-even heavy quarkonium production and decays: elliptic sectors

    NASA Astrophysics Data System (ADS)

    Chen, Long-Bin; Jiang, Jun; Qiao, Cong-Feng

    2018-04-01

    By employing the differential equations, we compute analytically the elliptic sectors of two-loop master integrals appearing in the NNLO QCD corrections to CP-even heavy quarkonium exclusive production and decays, which turns out to be the last and toughest part in the relevant calculation. The integrals are found can be expressed as Goncharov polylogarithms and iterative integrals over elliptic functions. The master integrals may be applied to some other NNLO QCD calculations about heavy quarkonium exclusive production, like {γ}^{\\ast}γ \\to Q\\overline{Q} , {e}+{e}-\\to γ +Q\\overline{Q} , and H/{Z}^0\\to γ +Q\\overline{Q} , heavy quarkonium exclusive decays, and also the CP-even heavy quarkonium inclusive production and decays.

  4. Wheeled Pro(p)file of Batalin-Vilkovisky Formalism

    NASA Astrophysics Data System (ADS)

    Merkulov, S. A.

    2010-05-01

    Using a technique of wheeled props we establish a correspondence between the homotopy theory of unimodular Lie 1-bialgebras and the famous Batalin-Vilkovisky formalism. Solutions of the so-called quantum master equation satisfying certain boundary conditions are proven to be in 1-1 correspondence with representations of a wheeled dg prop which, on the one hand, is isomorphic to the cobar construction of the prop of unimodular Lie 1-bialgebras and, on the other hand, is quasi-isomorphic to the dg wheeled prop of unimodular Poisson structures. These results allow us to apply properadic methods for computing formulae for a homotopy transfer of a unimodular Lie 1-bialgebra structure on an arbitrary complex to the associated quantum master function on its cohomology. It is proven that in the category of quantum BV manifolds associated with the homotopy theory of unimodular Lie 1-bialgebras quasi-isomorphisms are equivalence relations. It is shown that Losev-Mnev’s BF theory for unimodular Lie algebras can be naturally extended to the case of unimodular Lie 1-bialgebras (and, eventually, to the case of unimodular Poisson structures). Using a finite-dimensional version of the Batalin-Vilkovisky quantization formalism it is rigorously proven that the Feynman integrals computing the effective action of this new BF theory describe precisely homotopy transfer formulae obtained within the wheeled properadic approach to the quantum master equation. Quantum corrections (which are present in our BF model to all orders of the Planck constant) correspond precisely to what are often called “higher Massey products” in the homological algebra.

  5. Quantum transport under ac drive from the leads: A Redfield quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dubi, Yonatan

    2017-08-01

    Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.

  6. Automated analysis in generic groups

    NASA Astrophysics Data System (ADS)

    Fagerholm, Edvard

    This thesis studies automated methods for analyzing hardness assumptions in generic group models, following ideas of symbolic cryptography. We define a broad class of generic and symbolic group models for different settings---symmetric or asymmetric (leveled) k-linear groups --- and prove ''computational soundness'' theorems for the symbolic models. Based on this result, we formulate a master theorem that relates the hardness of an assumption to solving problems in polynomial algebra. We systematically analyze these problems identifying different classes of assumptions and obtain decidability and undecidability results. Then, we develop automated procedures for verifying the conditions of our master theorems, and thus the validity of hardness assumptions in generic group models. The concrete outcome is an automated tool, the Generic Group Analyzer, which takes as input the statement of an assumption, and outputs either a proof of its generic hardness or shows an algebraic attack against the assumption. Structure-preserving signatures are signature schemes defined over bilinear groups in which messages, public keys and signatures are group elements, and the verification algorithm consists of evaluating ''pairing-product equations''. Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another aspect of performance is the time it takes to verify a signature. The most expensive operation during verification is the computation of pairings. However, the concrete number of pairings is not captured by the number of pairing-product equations considered in earlier work. We consider the question of what is the minimal number of pairing computations needed to verify structure-preserving signatures. We build an automated tool to search for structure-preserving signatures matching a template. Through exhaustive search we conjecture lower bounds for the number of pairings required in the Type~II setting and prove our conjecture to be true. Finally, our tool exhibits examples of structure-preserving signatures matching the lower bounds, which proves tightness of our bounds, as well as improves on previously known structure-preserving signature schemes.

  7. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-08-01

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their capabilities to switch from one state to another as is observed during synaptic plasticity, cell fate determination, and differentiation.

  8. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    PubMed

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their capabilities to switch from one state to another as is observed during synaptic plasticity, cell fate determination, and differentiation.

  9. From quantum stochastic differential equations to Gisin-Percival state diffusion

    NASA Astrophysics Data System (ADS)

    Parthasarathy, K. R.; Usha Devi, A. R.

    2017-08-01

    Starting from the quantum stochastic differential equations of Hudson and Parthasarathy [Commun. Math. Phys. 93, 301 (1984)] and exploiting the Wiener-Itô-Segal isomorphism between the boson Fock reservoir space Γ (L2(R+ ) ⊗(Cn⊕Cn ) ) and the Hilbert space L2(μ ) , where μ is the Wiener probability measure of a complex n-dimensional vector-valued standard Brownian motion {B (t ) ,t ≥0 } , we derive a non-linear stochastic Schrödinger equation describing a classical diffusion of states of a quantum system, driven by the Brownian motion B. Changing this Brownian motion by an appropriate Girsanov transformation, we arrive at the Gisin-Percival state diffusion equation [N. Gisin and J. Percival, J. Phys. A 167, 315 (1992)]. This approach also yields an explicit solution of the Gisin-Percival equation, in terms of the Hudson-Parthasarathy unitary process and a randomized Weyl displacement process. Irreversible dynamics of system density operators described by the well-known Gorini-Kossakowski-Sudarshan-Lindblad master equation is unraveled by coarse-graining over the Gisin-Percival quantum state trajectories.

  10. The diversity and unit of reactor noise theory

    NASA Astrophysics Data System (ADS)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the contribution of the terms that are novel as compared to the traditional formulae has been made. The second subject treats a problem in power reactor noise with the Langevin formalism. With a very few exceptions, in all previous work the diffusion approximation was used. In order to extend the treatment to transport theory, in Paper III, we introduced a novel method, i.e. Padé approximation via Lanczos algorithm to calculate the transfer function of a finite slab reactor described by one-group transport equation. It was found that the local-global decomposition of the neutron noise, formerly only reproduced in at least 2- group theory, can be reconstructed. We have also showed the existence of a boundary layer of the neutron noise close to the boundary. Finally, we have explored the possibility of building up a unified theory to account for the coexistence of zero power and power reactor noise in a system. In Paper IV, a unified description of the neutron noise is given by the use of backward master equations in a model where the cross section fluctuations are given as a simple binary pseudorandom process. The general solution contains both the zero power and power reactor noise concurrently, and they can be extracted individually as limiting cases of the general solution. It justified the separate treatments of zero power and power reactor noise. The result was extended to the case including one group of delayed neutron precursors in Paper V.

  11. A Combination of Teacher-Led Assessment and Self-Assessment Drives the Learning Process in Online Master Degree in Transplantation

    ERIC Educational Resources Information Center

    Halawa, Ahmed; Sharma, Ajay; Bridson, Julie M.; Lyon, Sarah; Prescott, Denise; Guha, Arpan; Taylor, David

    2017-01-01

    Background: Good performance in a summative assessment does not always equate to educational gain following a course. An educational programme may focus on improving student's performance on a particular test instrument. For example, practicing multiple choice questions may lead to mastery of the instrument itself rather than testing the knowledge…

  12. Evidence for the Effectiveness of Inquiry-Based, Particulate-Level Instruction on Conceptions of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Bridle, Chad A.; Yezierski, Ellen J.

    2012-01-01

    Research has shown that students in traditional college-preparatory chemistry courses become masters of mathematical equations without an understanding of the conceptual basis for the mathematical relationships. This problem is rooted not only in what curriculum is presented to students, but also in how it is experienced by the students. Ample…

  13. Magic bases, metric ansaetze and generalized graph theories in the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, M.B.; Obers, N.A.

    1991-11-15

    The authors define a class of magic Lie group bases in which the Virasoro master equation admits a class of simple metric ansaetze (g{sub metric}), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of So(n) and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). A new phenomenon is observed in the high-level comparison of SU(n){sub metric}: Due to the trigonometricmore » structure constants of the Pauli-like basis, irrational central charge is clearly visible at finite order of the expansion. They also define the sine-area graphs of SU(n), which label the conformal field theories of SU(n){sub metric} and note that, in a similar fashion, each magic basis of g defines a generalize graph theory on g which labels the conformal field theories of g{sub metric}.« less

  14. Computational methods for diffusion-influenced biochemical reactions.

    PubMed

    Dobrzynski, Maciej; Rodríguez, Jordi Vidal; Kaandorp, Jaap A; Blom, Joke G

    2007-08-01

    We compare stochastic computational methods accounting for space and discrete nature of reactants in biochemical systems. Implementations based on Brownian dynamics (BD) and the reaction-diffusion master equation are applied to a simplified gene expression model and to a signal transduction pathway in Escherichia coli. In the regime where the number of molecules is small and reactions are diffusion-limited predicted fluctuations in the product number vary between the methods, while the average is the same. Computational approaches at the level of the reaction-diffusion master equation compute the same fluctuations as the reference result obtained from the particle-based method if the size of the sub-volumes is comparable to the diameter of reactants. Using numerical simulations of reversible binding of a pair of molecules we argue that the disagreement in predicted fluctuations is due to different modeling of inter-arrival times between reaction events. Simulations for a more complex biological study show that the different approaches lead to different results due to modeling issues. Finally, we present the physical assumptions behind the mesoscopic models for the reaction-diffusion systems. Input files for the simulations and the source code of GMP can be found under the following address: http://www.cwi.nl/projects/sic/bioinformatics2007/

  15. Mechanisms of stochastic focusing and defocusing in biological reaction networks: insight from accurate chemical master equation (ACME) solutions.

    PubMed

    Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang

    2016-08-01

    Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.

  16. Generalized Gibbs state with modified Redfield solution: Exact agreement up to second order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thingna, Juzar; Wang, Jian-Sheng; Haenggi, Peter

    A novel scheme for the steady state solution of the standard Redfield quantum master equation is developed which yields agreement with the exact result for the corresponding reduced density matrix up to second order in the system-bath coupling strength. We achieve this objective by use of an analytic continuation of the off-diagonal matrix elements of the Redfield solution towards its diagonal limit. Notably, our scheme does not require the provision of yet higher order relaxation tensors. Testing this modified method for a heat bath consisting of a collection of harmonic oscillators we assess that the system relaxes towards its correctmore » coupling-dependent, generalized quantum Gibbs state in second order. We numerically compare our formulation for a damped quantum harmonic system with the nonequilibrium Green's function formalism: we find good agreement at low temperatures for coupling strengths that are even larger than expected from the very regime of validity of the second-order Redfield quantum master equation. Yet another advantage of our method is that it markedly reduces the numerical complexity of the problem; thus, allowing to study efficiently large-sized system Hilbert spaces.« less

  17. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    PubMed

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  18. Stochastic thermodynamics and entropy production of chemical reaction systems

    NASA Astrophysics Data System (ADS)

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  19. ab initio calculation of the rate of vibrational relaxation and thermal dissociation of hydrogen by helium at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dove, J.E.; Raynor, S.

    The master equation for the thermal dissociation of para-H/sub 2/ infinitely dilute in He, was solved for temperatures of 1000 to 10,000/sup 0/K. Transition probabilities, used in the master equation, were obtained, in the case of energy transfer transitions, from distorted wave and quasi-classical trajectory calculations and, for dissociative processes, from trajectory calculations alone. An ab initio potential was used. From the solution, values of the dissociation rate constant, vibrational relaxation times, and incubation times for dissociation and vibrational relaxation were calculated. The sensitivity of the calculated results to variations in the transition probabilities was examined. Vibrational relaxation is mostmore » sensitive to simultaneous transitions in vibration and rotation (VRT processes); pure rotational (RT) transitions also have a substantial effect. Dissociation is most strongly affected by RT processes, but changes in VRT and groups of dissociative transitions also have a significant effect. However complete suppression of all dissociative transitions except those from levels immediately next to the continuum lowers the dissociation rates only by a factor of about 2. The location of the dissociation ''bottleneck'' is discussed. 5 figures, 3 tables.« less

  20. Liouville master equation for multi-electron dynamics during ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Wirtz, L.; Reinhold, C. O.; Lemell, C.; Burgdorfer, J.

    2003-05-01

    We present a simulation of the neutralization of highly charged ions in front of a LiF(100) surface including the close-collision regime above the surface. Our approach employs a Monte-Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from CTMC calculations as well as quantum mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (``trampoline effect"). For Ne10+ ions we find that image acceleration dominates and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutrals or even as singly charged negative particles, irrespective of the charge state of the incoming ion.

  1. Synchronization in networks with heterogeneous coupling delays

    NASA Astrophysics Data System (ADS)

    Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor

    2018-01-01

    Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

  2. Interconversion of mechanical and dielectrical relaxation measurements for dicyclohexylmethyl-2-methyl succinate.

    PubMed

    Díaz-Calleja, R; Garcia-Bernabé, A; Sanchis, M J; del Castillo, L F

    2005-11-01

    A comparison between results of dielectrical relaxation and dynamic mechanical spectroscopies is carried out for the alpha-relaxation of the ester dicyclohexyl methyl-2-methyl succinate (DCMMS). The results for the dielectric permittivity and the shear modulus measurements are presented according to the empirical Havriliak-Negami (HN) equation. By using the time-temperature principle a master curve in each case was obtained for several temperatures. The comparative analysis presented here is based on the assumption of a relationship between rotational and shear viscosities. The former one is associated to the dielectrical relaxation, whereas the latter is associated to mechanical relaxation. Both viscosities are not necessarily equal in general, and we assume that the difference between them is an important factor to appropriately compare the dielectrical and mechanical results.

  3. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    PubMed Central

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-01-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705

  4. Time varying moments, regime switch, and crisis warning: The birth-death process with changing transition probability

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2014-06-01

    The sub-prime crisis in the U.S. reveals the limitation of diversification strategy based on mean-variance analysis. A regime switch and a turning point can be observed using a high moment representation and time-dependent transition probability. Up-down price movements are induced by interactions among agents, which can be described by the birth-death (BD) process. Financial instability is visible by dramatically increasing 3rd to 5th moments one-quarter before and during the crisis. The sudden rising high moments provide effective warning signals of a regime-switch or a coming crisis. The critical condition of a market breakdown can be identified from nonlinear stochastic dynamics. The master equation approach of population dynamics provides a unified theory of a calm and turbulent market.

  5. Biological proton pumping in an oscillating electric field

    PubMed Central

    Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard

    2010-01-01

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that the proton pumping efficiency and the electronic currents in steady state both depend significantly and distinctly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant kinetic modes that show reaction steps consistent with an electron-gated pumping mechanism. PMID:20366348

  6. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  7. Modeling and numerical simulations of the influenced Sznajd model

    NASA Astrophysics Data System (ADS)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  8. Modeling and numerical simulations of the influenced Sznajd model.

    PubMed

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  9. Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches.

    PubMed

    Smith, Stephen; Grima, Ramon

    2018-05-21

    Models of chemical kinetics that incorporate both stochasticity and diffusion are an increasingly common tool for studying biology. The variety of competing models is vast, but two stand out by virtue of their popularity: the reaction-diffusion master equation and Brownian dynamics. In this review, we critically address a number of open questions surrounding these models: How can they be justified physically? How do they relate to each other? How do they fit into the wider landscape of chemical models, ranging from the rate equations to molecular dynamics? This review assumes no prior knowledge of modelling chemical kinetics and should be accessible to a wide range of readers.

  10. Group-kinetic theory and modeling of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1989-01-01

    A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.

  11. New method for calculating a mathematical expression for streamflow recession

    USGS Publications Warehouse

    Rutledge, Albert T.

    1991-01-01

    An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.

  12. Numerical simulation of incoherent optical wave propagation in nonlinear fibers

    NASA Astrophysics Data System (ADS)

    Fernandez, Arnaud; Balac, Stéphane; Mugnier, Alain; Mahé, Fabrice; Texier-Picard, Rozenn; Chartier, Thierry; Pureur, David

    2013-11-01

    The present work concerns the study of pulsed laser systems containing a fiber amplifier for boosting optical output power. In this paper, this fiber amplification device is included into a MOPFA laser, a master oscillator coupled with fiber amplifier, usually a cladding-pumped high-power amplifier often based on an ytterbium-doped fiber. An experimental study has established that the observed nonlinear effects (such as Kerr effect, four waves mixing, Raman effect) could behave very differently depending on the characteristics of the optical source emitted by the master laser. However, it has not yet been possible to determine from the experimental data if the statistics of the photons is alone responsible for the various nonlinear scenarios observed. Therefore, we have developed a numerical simulation software for solving the generalized nonlinear Schrödinger equation with a stochastic source term in order to validate the hypothesis that the coherence properties of the master laser are mainly liable for the behavior of the observed nonlinear effects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.

  13. Comparative Analysis of Master of Industrial Design Education in Turkey

    ERIC Educational Resources Information Center

    Erkarslan, Onder; Imamogullari, Beril

    2010-01-01

    This research focused on the masters degree programme in industrial design (ID), which is research and practice oriented in the light of current themes and design principles. It argued that a masters degree in industrial design would help graduates specialise in the related field and improve their skills. Therefore, institutional and academic…

  14. Compilation of Theses Abstracts

    DTIC Science & Technology

    2004-12-01

    Lieutenant, United States Navy Master of Business Administration–December 2004 Jonathan C. Byrom–Captain, United States Army Master of Business...Hyperspectral Imagery, Principal Components Analysis, Minimum Noise Transform ALTERNATE CONFIGURATIONS FOR BLOCKED-IMPURITY-BAND DETECTORS Jonathan C...Yew Sing Quek –Captain, Republic of Singapore Armed Forces B.E., Nanyang Technological University-Singapore, 1999 Master of Science in Combat

  15. MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER: PART 1. PROTOCOLS

    EPA Science Inventory

    A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...

  16. APPLICATION OF THE MASTER ANALYTICAL SCHEME TO POLAR ORGANICS IN DRINKING WATER

    EPA Science Inventory

    EPA's Master Analytical Scheme (MAS) for Organic Compounds in Water provides for comprehensive qualitative-quantitative analysis of gas chromatographable organics in many types of water. The paper emphasizes the analysis of polar and ionic organics, the more water soluble compoun...

  17. Experiments and Reaction Models of Fundamental Combustion Properties

    DTIC Science & Technology

    2010-05-31

    in liquid hydrocarbon flames Lennard - Jones 12-6 potential parameters were estimated for n-alkanes and 1-alkenes with carbon numbers ranging from 5...hydrocarbons, were studied both experimentally and numerically. The fuel mixtures were chosen in order to gain insight into potential kinetic couplings...initio electronic structure theory, transition state theory, and master equation modelling. The potential energy surface was examined with the coupled

  18. Prediction of wood mechanical and chemical properties in the presence and absence of blue stain using two near infrared instruments

    Treesearch

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Lori G. Eckhardt; Michael Stine; Leslie H. Groom

    2005-01-01

    The objective of this research was to (a) determine if blue stain in solid wood influenced calibration equations developed from a nonstained wood population, (b) assess the bias introduced when scanning was performed by the slave instrument without calibration transfer from the master instrument and (c) partition absorbance-based variation by instrument, stain and...

  19. Analytic descriptions of stochastic bistable systems under force ramp

    DOE PAGES

    Friddle, Raymond W.

    2016-05-13

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  20. Geometry and Algebra: The Future Flight Equation. A Lesson Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This activity, part of the NASA CONNECT Series, is designed to help students in grades 6-8 learn how NASA engineers develop experimental aircraft. It consists of an overview of the program, details of the hands-on activity, a series of blackline master student worksheets, teacher materials, and a guide to further resources. (MM)

  1. Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2017-07-01

    Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather than the mere presence or absence of coherence or noise, that is responsible for the optimal heat engine performance. In addition, we find that the effective voltage of QHE exhibits superior robustness against the bath noise as long as the system-bath coupling is not very strong.

  2. Application of Item Analysis to Assess Multiple-Choice Examinations in the Mississippi Master Cattle Producer Program

    ERIC Educational Resources Information Center

    Parish, Jane A.; Karisch, Brandi B.

    2013-01-01

    Item analysis can serve as a useful tool in improving multiple-choice questions used in Extension programming. It can identify gaps between instruction and assessment. An item analysis of Mississippi Master Cattle Producer program multiple-choice examination responses was performed to determine the difficulty of individual examinations, assess the…

  3. An Approximate Solution and Master Curves for Buckling of Symmetrically Laminated Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.

  4. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  5. Spin coefficients and gauge fixing in the Newman-Penrose formalism

    NASA Astrophysics Data System (ADS)

    Nerozzi, Andrea

    2017-03-01

    Since its introduction in 1962, the Newman-Penrose formalism has been widely used in analytical and numerical studies of Einstein's equations, like for example for the Teukolsky master equation, or as a powerful wave extraction tool in numerical relativity. Despite the many applications, Einstein's equations in the Newman-Penrose formalism appear complicated and not easily applicable to general studies of spacetimes, mainly because physical and gauge degrees of freedom are mixed in a nontrivial way. In this paper we approach the whole formalism with the goal of expressing the spin coefficients as functions of tetrad invariants once a particular tetrad is chosen. We show that it is possible to do so, and give for the first time a general recipe for the task, as well as an indication of the quantities and identities that are required.

  6. Probability distributions for multimeric systems.

    PubMed

    Albert, Jaroslav; Rooman, Marianne

    2016-01-01

    We propose a fast and accurate method of obtaining the equilibrium mono-modal joint probability distributions for multimeric systems. The method necessitates only two assumptions: the copy number of all species of molecule may be treated as continuous; and, the probability density functions (pdf) are well-approximated by multivariate skew normal distributions (MSND). Starting from the master equation, we convert the problem into a set of equations for the statistical moments which are then expressed in terms of the parameters intrinsic to the MSND. Using an optimization package on Mathematica, we minimize a Euclidian distance function comprising of a sum of the squared difference between the left and the right hand sides of these equations. Comparison of results obtained via our method with those rendered by the Gillespie algorithm demonstrates our method to be highly accurate as well as efficient.

  7. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks. PMID:27105653

  8. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Youfang; Terebus, Anna; Liang, Jie

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. Wemore » further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.« less

  9. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

    DOE PAGES

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-22

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. Wemore » further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.« less

  10. Conjoint Analysis: A Tool for Designing Degree Programs.

    ERIC Educational Resources Information Center

    Martin, John; Moore, Thomas E.

    1993-01-01

    Conjoint analysis, commonly used in product development, was used to determine the graduate education needs and program preferences of business administration graduates. Results suggest an accelerated and abbreviated Master's in Business Administration would be preferred to an master's degree, without detracting from existing programs or being…

  11. MASTER ANALYTICAL SCHEME FOR ORGANIC COMPOUNDS IN WATER. PART 2. APPENDICES TO PROTOCOLS

    EPA Science Inventory

    A Master Analytical Scheme (MAS) has been developed for the analysis of volatile (gas chromatographable) organic compounds in water. In developing the MAS, it was necessary to evaluate and modify existing analysis procedures and develop new techniques to produce protocols that pr...

  12. Stochastic theory of non-Markovian open quantum system

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu

    In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD approach, we also study the environment-assisted error correction (EAEC) scheme. We have proposed two new schemes beyond the original EAEC scheme. Our schemes can be used to recover an unknown entangled initial state for a dephasing channel and recover an arbitrary unknown initial state for a dissipative channel using a generalized quantum measurement.

  13. Trends in Exiting Physics Master's. Focus On

    ERIC Educational Resources Information Center

    Mulvey, Patrick J.; Nicholson, Starr

    2014-01-01

    A physics master's degree provides the recipient with a variety of career options. Some master's recipients will continue their education at the graduate level in physics or another field, where others enter the workforce pursuing a wide range of employment opportunities. This "Focus On" provides an in-depth analysis of physics…

  14. Master's Training as a Part of Young Researcher's Professional Development: British and Ukrainian Experience

    ERIC Educational Resources Information Center

    Bidyuk, Natalya

    2014-01-01

    The problem of the professional development of young researchers in terms of Master's training has been analyzed. The analysis of the literature references, documental and other sources gave grounds to state that the basic principle of Master's professional training is a research-oriented paradigm. The necessity of using the innovative ideas of…

  15. Two-dimensional electronic spectra from the hierarchical equations of motion method: Application to model dimers

    NASA Astrophysics Data System (ADS)

    Chen, Liping; Zheng, Renhui; Shi, Qiang; Yan, YiJing

    2010-01-01

    We extend our previous study of absorption line shapes of molecular aggregates using the Liouville space hierarchical equations of motion (HEOM) method [L. P. Chen, R. H. Zheng, Q. Shi, and Y. J. Yan, J. Chem. Phys. 131, 094502 (2009)] to calculate third order optical response functions and two-dimensional electronic spectra of model dimers. As in our previous work, we have focused on the applicability of several approximate methods related to the HEOM method. We show that while the second order perturbative quantum master equations are generally inaccurate in describing the peak shapes and solvation dynamics, they can give reasonable peak amplitude evolution even in the intermediate coupling regime. The stochastic Liouville equation results in good peak shapes, but does not properly describe the excited state dynamics due to the lack of detailed balance. A modified version of the high temperature approximation to the HEOM gives the best agreement with the exact result.

  16. Clinical Study of the 3D-Master Color System among the Spanish Population.

    PubMed

    Gómez-Polo, Cristina; Gómez-Polo, Miguel; Martínez Vázquez de Parga, Juan Antonio; Celemín-Viñuela, Alicia

    2017-01-12

    To study whether the shades of the 3D-Master System were grouped and represented in the chromatic space according to the three-color coordinates of value, chroma, and hue. Maxillary central incisor color was measured on tooth surfaces through the Easyshade Compact spectrophotometer using 1361 participants aged between 16 and 89. The natural (not bleached teeth) color of the middle thirds was registered in the 3D-Master System nomenclature and in the CIELCh system. Principal component analysis and cluster analysis were applied. 75 colors of the 3D-Master System were found. The statistical analysis revealed the existence of 5 cluster groups. The centroid, the average of the 75 samples, in relation to lightness (L*) was 74.64, 22.87 for chroma (C*), and 88.85 for hue (h*). All of the clusters, except cluster 3, showed significant statistical differences with the centroid for the three-color coordinates (p <0.001). The results of this study indicated that 75 shades in the 3D-Master System were grouped into 5 clusters following coordinates L*, C*, and h* resulting from the dental spectrophotometer Vita Easyshade compact. The shades that composed each cluster did not belong to the same lightness color dimension groups. There was no special uniform chromatic distribution among the colors of the 3D-Master System. © 2017 by the American College of Prosthodontists.

  17. Designing post-graduate Master's degree programs: the advanced training program in Dental Functional Analysis and Therapy as one example.

    PubMed

    Ratzmann, Anja; Ruge, Sebastian; Ostendorf, Kristin; Kordass, Bernd

    2014-01-01

    The decision to consolidate European higher education was reached by the Bologna Conference. Based on the Anglo-American system, a two-cycle degree program (Bachelor and Master) has been introduced. Subjects culminating in a state examination, such as Medicine and Dentistry, were excluded from this reform. Since the state examination is already comparable in its caliber to a Master's degree in Medicine or Dentistry, only advanced Master's degree programs with post-graduate specializations come into consideration for these subjects. In the field of dentistry numerous post-graduate study programs are increasingly coming into existence. Many different models and approaches are being pursued. Since the 2004-2005 winter semester, the University of Greifswald has offered the Master's degree program in Dental Functional Analysis and Therapy. Two and a half years in duration, this program is structured to allow program participation while working and targets licensed dentists who wish to attain certified skills for the future in state-of-the-art functional analysis and therapy. The design of this post-graduate program and the initial results of the evaluation by alumni are presented here. Our experiences show that the conceptual idea of an advanced Master's program has proved successful. The program covers a specialty which leads to increased confidence in handling challenging patient cases. The sharing of experiences among colleagues was evaluated as being especially important.

  18. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-10-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ω_i while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  19. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-09-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  20. Analysis of high-speed rotating flow inside gas centrifuge casing

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2017-11-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chęcińska, Agata; Heaney, Libby; Pollock, Felix A.

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electronmore » transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.« less

  2. Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence

    NASA Astrophysics Data System (ADS)

    Nickelsen, Daniel

    2017-07-01

    The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.

  3. Bistability in the chemical master equation for dual phosphorylation cycles.

    PubMed

    Bazzani, Armando; Castellani, Gastone C; Giampieri, Enrico; Remondini, Daniel; Cooper, Leon N

    2012-06-21

    Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory, and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed at elucidating the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional chemical master equation for a well-known model of a two step phospho/dephosphorylation cycle using the quasi-steady state approximation of enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the chemical fluxes. In the last case, we show how the external field derived from the generation and recombination transition rates, can be decomposed by the Helmholtz theorem, into a conservative and a rotational (irreversible) part. Moreover, this decomposition allows to compute the stationary distribution via a perturbative approach. For a finite number of molecules there exists diffusion dynamics in a macroscopic region of the state space where a relevant transition rate between the two critical points is observed. Further, the stationary distribution function can be approximated by the solution of a Fokker-Planck equation. We illustrate the theoretical results using several numerical simulations.

  4. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Multi-temperature model derived from state-to-state kinetics for hypersonic entry in Jupiter atmosphere

    NASA Astrophysics Data System (ADS)

    Colonna, G.; D'Ambrosio, D.; D'Ammando, G.; Pietanza, L. D.; Capitelli, M.

    2014-12-01

    A state-to-state model of H2/He plasmas coupling the master equations for internal distributions of heavy species with the transport equation for the free electrons has been used as a basis for implementing a multi-temperature kinetic model. In the multi-temperature model internal distributions of heavy particles are Boltzmann, the electron energy distribution function is Maxwell, and the rate coefficients of the elementary processes become a function of local temperatures associated to the relevant equilibrium distributions. The state-to-state and multi-temperature models have been compared in the case of a homogenous recombining plasma, reproducing the conditions met during supersonic expansion though converging-diverging nozzles.

  6. Students' difficulties with vector calculus in electrodynamics

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  7. A polymorphic reconfigurable emulator for parallel simulation

    NASA Technical Reports Server (NTRS)

    Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.

    1980-01-01

    Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.

  8. Cops or Robbers — a Bistable Society

    NASA Astrophysics Data System (ADS)

    Kułakowski, K.

    The norm game described by Axelrod in 1985 was recently treated with the master equation formalism. Here we discuss the equations, where (i) those who break the norm cannot punish and those who punish cannot break the norm, (ii) the tendency to punish is suppressed if the majority breaks the norm. The second mechanism is new. For some values of the parameters the solution shows the saddle-point bifurcation. Then, two stable solutions are possible, where the majority breaks the norm or the majority punishes. This means, that the norm breaking can be discontinuous, when measured in the social scale. The bistable character is reproduced also with new computer simulations on the Erdös-Rényi directed network.

  9. Single-photon absorption by single photosynthetic light-harvesting complexes

    NASA Astrophysics Data System (ADS)

    Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta

    2018-03-01

    We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode < n > -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment-protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment-protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton-phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ˜0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.

  10. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.

    PubMed

    Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung

    2014-06-02

    The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.

  11. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

    PubMed

    Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa

    2010-02-21

    We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

  12. Quantum dynamics intervened by repeated nonselective measurements

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.

    We derive the theory of open quantum system dynamics intervened by a series of nonselective measurements. We analyze the cases of time-independent and time-dependent Hamiltonian dynamics between the measurements and find the approximate master equation in the stroboscopic limit. We also consider a situation, in which the measurement basis changes in time, and illustrate it by nonselective measurements in the basis of diabatic states of the Landau-Zener model.

  13. Remarks on Chern-Simons Invariants

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnëv, Pavel

    2010-02-01

    The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.

  14. Afghan National Security Forces: Closing the Gap Before 2014

    DTIC Science & Technology

    2013-03-20

    To) 20-03-2013 Master of Military Studies Research Paper September 2012 - March 2013 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Afghan National...this paper , security force assistance (SFA) will be used as an umbrella term which incorporates training, advising, and mentoring. In the last ten...predominantly throughout this paper because according to the Joint Center for International Security Force Assistance, SFA “equates to those activities

  15. Stochastic-master-equation analysis of optimized three-qubit nondemolition parity measurements

    NASA Astrophysics Data System (ADS)

    Tornberg, L.; Barzanjeh, Sh.; DiVincenzo, David P.

    2014-03-01

    We analyzea direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected and transmitted microwave radiation, and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant-cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions, and we analyze this detrimental effect and show that it can be overcome in the limit of a weak measurement signal. Our analysis shows that, with a moderate degree of postselection, it is possible to achieve postmeasurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error correction protocols in a scalable architecture.

  16. Automatising the analysis of stochastic biochemical time-series

    PubMed Central

    2015-01-01

    Background Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted to the definition and implementation of high-performance mechanistic simulation frameworks. Within these frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best setting of, e.g., parameters for a target system. Motivation This operational pipeline relies on the ability to interpret the predictions of a model, often represented as simulation time-series. Thus, an efficient data analysis pipeline is crucial to automatise time-series analyses, bearing in mind that errors in this phase might mislead the modeller's conclusions. Results For this reason we have developed an intuitive framework-independent Python tool to automate analyses common to a variety of modelling approaches. These include assessment of useful non-trivial statistics for simulation ensembles, e.g., estimation of master equations. Intuitive and domain-independent batch scripts will allow the researcher to automatically prepare reports, thus speeding up the usual model-definition, testing and refinement pipeline. PMID:26051821

  17. Deriving Lindblad master equations with Keldysh diagrams: Correlated gain and loss in higher order perturbation theory

    NASA Astrophysics Data System (ADS)

    Müller, Clemens; Stace, Thomas M.

    2017-01-01

    Motivated by correlated decay processes producing gain, loss, and lasing in driven semiconductor quantum dots [Phys. Rev. Lett. 113, 036801 (2014), 10.1103/PhysRevLett.113.036801; Science 347, 285 (2015), 10.1126/science.aaa2501; Phys. Rev. Lett. 114, 196802 (2015), 10.1103/PhysRevLett.114.196802], we develop a theoretical technique by using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second-order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behavior at the same order of perturbation theory. We then apply these results to analyze the phonon-assisted steady-state gain of a microwave field driving a double quantum dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing-assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.

  18. Decoherence in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  19. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  20. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    NASA Astrophysics Data System (ADS)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  1. Persistent random walk of cells involving anomalous effects and random death

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Tan, Abby; Zubarev, Andrey

    2015-04-01

    The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.

  2. Many-body effects in transport through a quantum-dot cavity system

    NASA Astrophysics Data System (ADS)

    Dinu, I. V.; Moldoveanu, V.; Gartner, P.

    2018-05-01

    We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.

  3. Quantum-like model of brain's functioning: decision making from decoherence.

    PubMed

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Method of conditional moments (MCM) for the Chemical Master Equation: a unified framework for the method of moments and hybrid stochastic-deterministic models.

    PubMed

    Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J

    2014-09-01

    The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.

  5. Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface

    NASA Astrophysics Data System (ADS)

    Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdörfer, Joachim

    2003-01-01

    We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface (“trampoline effect”). For Ne10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions.

  6. Factors Mediating the Interactions between Adviser and Advisee during the Master's Thesis Project: A Quantitative Approach

    ERIC Educational Resources Information Center

    Rodrigues Jr., Jose Florencio; Lehmann, Angela Valeria Levay; Fleith, Denise De Souza

    2005-01-01

    Building on previous studies centred on the interaction between adviser and advisee in masters thesis projects, in which a qualitative approach was used, the present study uses factor analysis to identify the factors that determine either a successful or unsuccessful outcome for the masters thesis project. There were five factors relating to the…

  7. The Limits of Master Narratives in History Textbooks: An Analysis of Representations of Martin Luther King, Jr.

    ERIC Educational Resources Information Center

    Alridge, Derrick P.

    2006-01-01

    In this study, I argue that American history textbooks present discrete, heroic, one-dimensional, and neatly packaged master narratives that deny students a complex, realistic, and rich understanding of people and events in American history. In making this argument, I examine the master narratives of Martin Luther King, Jr., in high school history…

  8. LGBTQ Studies and Interdisciplinarity: A Citation Analysis of Master's Theses

    ERIC Educational Resources Information Center

    Graziano, Vince

    2018-01-01

    Emergent programs or newly established areas of study are often viewed as interdisciplinary. But how is interdisciplinarity defined or measured? The identification of research methods and the selection of objects of inquiry are significant elements in this definition. Citation analysis, however, also plays a role. Citation patterns in master's…

  9. Local Citation Analysis of Graduate Biology Theses: Collection Development Implications

    ERIC Educational Resources Information Center

    Miller, Laura Newton

    2011-01-01

    This paper will focus on the citation analysis of graduate masters theses from Carleton University's Biology Department with implications for library collection management decisions. Twenty-five masters theses were studied to determine citation types and percentages, ranking of journals by frequency of citation and by number of authors citing, and…

  10. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  11. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    PubMed

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  12. Counting statistics for genetic switches based on effective interaction approximation

    NASA Astrophysics Data System (ADS)

    Ohkubo, Jun

    2012-09-01

    Applicability of counting statistics for a system with an infinite number of states is investigated. The counting statistics has been studied a lot for a system with a finite number of states. While it is possible to use the scheme in order to count specific transitions in a system with an infinite number of states in principle, we have non-closed equations in general. A simple genetic switch can be described by a master equation with an infinite number of states, and we use the counting statistics in order to count the number of transitions from inactive to active states in the gene. To avoid having the non-closed equations, an effective interaction approximation is employed. As a result, it is shown that the switching problem can be treated as a simple two-state model approximately, which immediately indicates that the switching obeys non-Poisson statistics.

  13. Updated Estimates of the Average Financial Return on Master's Degree Programs in the United States

    ERIC Educational Resources Information Center

    Gándara, Denisa; Toutkoushian, Robert K.

    2017-01-01

    In this study, we provide updated estimates of the private and social financial return on enrolling in a master's degree program in the United States. In addition to returns for all fields of study, we show estimated returns to enrolling in master's degree programs in business and education, specifically. We also conduct a sensitivity analysis to…

  14. The intrinsic mechanical nonlinearity 3Q0(ω) of linear homopolymer melts

    NASA Astrophysics Data System (ADS)

    Cziep, Miriam Angela; Abbasi, Mahdi; Wilhelm, Manfred

    2017-05-01

    Medium amplitude oscillatory shear (MAOS) in combination with Fourier Transformation of the mechanical stress signal (FT rheology) was utilized to investigate the influence of molecular weight, molecular weight distribution and the monomer on the intrinsic nonlinearity 3Q0(ω). Nonlinear master curves of 3Q0(ω) have been created, applying the time-temperature superposition (TTS) principle. These master curves showed a characteristic shape with an increasing slope at small frequencies, a maximum 3Q0,max and a decreasing slope at high frequencies. 3Q0(De) master curves of monodisperse polymers were evaluated and quantified with the help of a semi-empiric equation, derived from predictions from the pom-pom and molecular stress function (MSF) models. This resulted in a monomer independent description of the nonlinear mechanical behavior of linear, monodisperse homopolymer melts, where 3Q0(ω,Z) is only a function of the frequency ω and the number of entanglements Z. For polydisperse samples, 3Q0(ω) showed a high sensitivity within the experimental window towards an increasing PDI. At small frequencies, the slope of 3Q0(ω) decreases until approximately zero as a plateau value is reached, starting at a PDI around 2 and higher.

  15. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    PubMed

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  16. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks

    PubMed Central

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde

    2015-01-01

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380

  17. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  18. Self-Directed Student Research through Analysis of Microarray Datasets: A Computer-Based Functional Genomics Practical Class for Masters-Level Students

    ERIC Educational Resources Information Center

    Grenville-Briggs, Laura J.; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…

  19. Content Analysis of Master Theses and Dissertations Based on Action Research

    ERIC Educational Resources Information Center

    Durak, Gürhan; Yünkül, Eyup; Cankaya, Serkan; Akpinar, Sükran; Erten, Emine; Inam, Nazmiye; Taylan, Ufuk; Tastekin, Eray

    2016-01-01

    Action Research (AR) is becoming popular in the field of education, and according to literature, it could be stated that AR studies have positive influence on practice in education. The present study aims at conducting content analysis of action research (AR) master theses and doctoral dissertations submitted at the level of Turkish higher…

  20. Risk Assessment Planning for Airborne Systems: An Information Assurance Failure Mode, Effects and Criticality Analysis Methodology

    DTIC Science & Technology

    2012-06-01

    Visa Investigate Data Breach March 30, 2012 Visa and MasterCard are investigating whether a data security breach at one of the main companies that...30). MasterCard and Visa Investigate Data Breach . New York Times . Stamatis, D. (2003). Failure Mode Effect Analysis: FMEA from Theory to Execution

  1. The master degree: A critical transition in STEM doctoral education

    NASA Astrophysics Data System (ADS)

    Lange, Sheila Edwards

    The need to broaden participation in the nation's science, technology, engineering, and mathematics (STEM) undergraduate and graduate programs is currently a matter of national urgency. The small number of women and underrepresented minorities (URM) earning doctoral degrees in STEM is particularly troubling given significant increases in the number of students earning master's degrees since 1990. In the decade between 1990 and 2000, the total number of master's recipients increased by 42%. During this same time period, the number of women earning master's degrees increased by 56%, African Americans increased by 132%, American Indians by 101%, Hispanics by 146%, and Asian Americans by 117% (Syverson, 2003). Growth in underrepresented group education at the master's level raises questions about the relationship between master's and doctoral education. Secondary data analysis of the Survey of Earned Doctorates (SED) was used to examine institutional pathways to the doctorate in STEM disciplines and transitions from master's to doctoral programs by race and gender. While the study revealed no significant gender differences in pathways, compared to White and Asian American students, URM students take significantly different pathways to the doctorate. URM students are significantly more likely to earn the bachelor's, master's, and doctoral degrees at three different institutions. Their path is significantly more likely to include earning a master's degree en route to the doctorate. Further, URM students are more likely to experience transition between the master's and doctoral degrees, and the transitions are not limited to those who earn master's degrees at master's-only institutions. These findings suggest that earning a master's degree is more often a stepping stone to the doctorate for URM students. Master's degree programs, therefore, have the potential to be a valuable resource for policymakers and graduate programs seeking to increase the diversity of URM students earning doctorates in STEM.

  2. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  3. Excitation anisotropy in laser-induced-fluorescence spectroscopy: Broad-line excitation case

    NASA Astrophysics Data System (ADS)

    Hirabayashi, A.; Nambu, Y.; Fujimoto, T.

    1986-01-01

    Treatment of excitation anisotropy for Laser-Induced-Fluorescence Spectroscopy (LIFS) is extended to the intense excitation case. The depolarization coefficient is derived for intense excitation limit (linearly-polarized or unpolarized light excitation), and the result is presented in tables. For the region of intermediate intensity between the weak and intense excitation limits, the master equation is solved for specific example of transitions and its result is compared with experiment.

  4. Relaxation Processes and Time Scale Transformation.

    DTIC Science & Technology

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...discussions of the master equation, 2and has recently been applied in cumulative damage models with discrete time parameter .3 However, it does not seem to...development parameter is taken tG be a positive, cumulative function that increases from an origin monotonically. Consider two continuous time scales e and t

  5. Computational Sciences.

    DTIC Science & Technology

    1987-11-01

    III. - 7 1 11 1*25 4 11 - IN, I 61I’. UNCLASSIFIED MASTER COPY - FOR REPRODUCTION PURPOSES ) C . AD-A 190 ’PORT DOCUMENTATION PAGE ~~ 190 826 lb...E uations, University of Alabama, Birmingham, *AL.-7 N. Medhin, M. Sambandham, and C . K. Zoltani, Numerical Solution to a System of Random Volterra...Sambandham, and C . K. Zoltani, "Numerical Solution to a System of Random Volterra Integral Equations I: Successive Approximation Method’,"-submitted to

  6. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    PubMed

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  7. Interactive Macroeconomics

    NASA Astrophysics Data System (ADS)

    Di Guilmi, Corrado; Gallegati, Mauro; Landini, Simone

    2017-04-01

    Preface; List of tables; List of figures, 1. Introduction; Part I. Methodological Notes and Tools: 2. The state space notion; 3. The master equation; Part II. Applications to HIA Based Models: 4. Financial fragility and macroeconomic dynamics I: heterogeneity and interaction; 5. Financial fragility and macroeconomic Dynamics II: learning; Part III. Conclusions: 6. Conclusive remarks; Part IV. Appendices and Complements: Appendix A: Complements to Chapter 3; Appendix B: Solving the ME to solve the ABM; Appendix C: Specifying transition rates; Index.

  8. Data Quality- and Master Data Management - A Hospital Case.

    PubMed

    Arthofer, Klaus; Girardi, Dominic

    2017-01-01

    Poor data quality prevents the analysis of data for decisions which are critical for business. It also has a negative impact on business processes. Nevertheless the maturity level of data quality- and master data management is still insufficient in many organizations nowadays. This article discusses the corresponding maturity of companies and a management cycle integrating data quality- and master data management in a case dealing with benchmarking in hospitals. In conclusion if data quality and master data are not properly managed, structured data should not be acquired in the first place due to the added expense and complexity.

  9. Universal rescaling of flow curves for yield-stress fluids close to jamming

    NASA Astrophysics Data System (ADS)

    Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.

    2015-07-01

    The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.

  10. [Preventing maternal and child malnutrition: the nutrition component of the Mesoamerican Health Initiative 2015].

    PubMed

    Rivera, Juan A; Martorell, Reynaldo; González, Wendy; Lutter, Chessa; Cossío, Teresa González de; Flores-Ayala, Rafael; Uauy, Ricardo; Delgado, Hernán

    2011-01-01

    To describe the regional master plan of nutrition to address maternal and child malnutrition in a 5- year period developed by the Nutrition Technical Group. The Nutrition Technical Group developed a situation analysis describing the main nutrition problems, policies and programs in Mesoamerica. The situation analysis and a literature review about effective interventions to address malnutrition were conducted to develop a nutrition master plan. The Nutrition Technical Group held various meetings to develop, discuss and validate the master plan. Theory of change identified problems and barriers, the actions to be developed, the changes and impacts expected. A package of interventions is proposed to reduce undernutrition and micronutrient deficiencies useful under different epidemiological contexts. The nutrition master plan provides a guideline of best practices that can be used for evidence-informed decision making and the development of national policies and programs to reduce malnutrition.

  11. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  12. Cavity-induced mirror-mirror entanglement in a single-atom Raman laser

    NASA Astrophysics Data System (ADS)

    Teklu, Berihu; Byrnes, Tim; Khan, Faisal Shah

    2018-02-01

    We address an experimental scheme to analyze the optical bistability and the entanglement of two movable mirrors coupled to a two-mode laser inside a doubly resonant cavity. With this aim we investigate the master equations of the atom-cavity subsystem in conjunction with the quantum Langevin equations that describe the interaction of the mirror cavity. The parametric amplification-type coupling induced by the two-photon coherence on the optical bistability of the intracavity mean photon numbers is found and investigated. Under this condition, the optical intensities exhibit bistability for all large values of cavity laser detuning. We also provide numerical evidence for the generation of strong entanglement between the movable mirrors and show that it is robust against environmental thermalization.

  13. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    PubMed Central

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  14. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    PubMed

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  15. A finite state projection algorithm for the stationary solution of the chemical master equation.

    PubMed

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-21

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 10 6 states can be efficiently solved.

  16. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  17. A finite state projection algorithm for the stationary solution of the chemical master equation

    NASA Astrophysics Data System (ADS)

    Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa

    2017-10-01

    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.

  18. A Content Analysis Related to Theses in Environmental Education: The Case of Turkey (2011-2015)

    ERIC Educational Resources Information Center

    Yavuz, Soner

    2016-01-01

    Environmental chemistry has been a research subject for master thesis and doctoral dissertations since the end of 1980s. Because of the wide usage of in literature, it is essential to draw a framework about the subject. For this reason, content analysis is conducted to analyze master thesis and doctoral dissertations about Environmental Education,…

  19. AAMFT Master Series Tapes: An Analysis of the Inclusion of Feminist Principles into Family Therapy Practice.

    ERIC Educational Resources Information Center

    Haddock, Shelley A.; MacPhee, David; Zimmerman, Toni Schindler

    2001-01-01

    Content analysis of 23 American Association for Marriage and Family Therapy Master Series tapes was used to determine how well feminist behaviors have been incorporated into ideal family therapy practice. Feminist behaviors were infrequent, being evident in fewer than 3% of time blocks in event sampling and 10 of 39 feminist behaviors of the…

  20. Comparison of commercial RNA extraction kits and qPCR master mixes for studying gene expression in small biopsy tissue samples from the equine gastric epithelium.

    PubMed

    Tesena, Parichart; Korchunjit, Wasamon; Taylor, Jane; Wongtawan, Tuempong

    2017-01-01

    Gastric tissue biopsy and gene expression analysis are important tools for disease diagnosis and study of the physiology of the equine stomach. However, RNA extraction from gastric biopsy samples is a complex procedure because the samples contain low quantities of RNA and are contaminated with mucous protein and bacterial flora. The objectives of these studies were to compare the performance of RNA extraction methods and to investigate the sensitivity of commercial qPCR master mixes for gene expression analysis of gastric biopsy samples. Three commercial RNA extraction methods (TRIzol ™ , GENEzol ™ and MiniPrep ™ ) and four qPCR master mixes with SYBR ® green (qPCRBIO, KAPA, QuantiNova, and PerfeCTa) were compared. RNA qualification and quantitation were compared. Real-time PCR was used to compare qPCR master mixes. The results revealed that TRIzol and GENEzol obtained significantly higher yield of RNA (P<0.01) but that TRIzol had the highest contamination of protein and DNA (P<0.05). Conversely, MiniPrep resulting in a significantly higher purification of RNA (P<0.05) but provided the lowest yield of RNA (P<0.01). For PCR master mixes, KAPA was significantly (P<0.05) more sensitive than other qPCR kits for all amounts of DNA template, particularly at the lowest amount of cDNA. In conclusion, GENEzol is the best method to obtain a high RNA yield and purification and it is more cost-effective than the others as well. Regarding the qPCR master mixes, KAPA SYBR qPCR Master Mix (2x) Universal is superior to the other tested master mixes for studying gene expression in equine gastric biopsies.

  1. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    PubMed

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  2. Dynamics of Entropy in Quantum-like Model of Decision Making

    NASA Astrophysics Data System (ADS)

    Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu

    2011-03-01

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)

  3. Species abundance distribution and population dynamics in a two-community model of neutral ecology

    NASA Astrophysics Data System (ADS)

    Vallade, M.; Houchmandzadeh, B.

    2006-11-01

    Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.

  4. Collision efficiency of water in the unimolecular reaction CH4 (+H2O) ⇆ CH3 + H (+H2O): one-dimensional and two-dimensional solutions of the low-pressure-limit master equation.

    PubMed

    Jasper, Ahren W; Miller, James A; Klippenstein, Stephen J

    2013-11-27

    The low-pressure-limit unimolecular decomposition of methane, CH4 (+M) ⇆ CH3 + H (+M), is characterized via low-order moments of the total energy, E, and angular momentum, J, transferred due to collisions. The low-order moments are calculated using ensembles of classical trajectories, with new direct dynamics results for M = H2O and new results for M = O2 compared with previous results for several typical atomic (M = He, Ne, Ar, Kr) and diatomic (M = H2 and N2) bath gases and one polyatomic bath gas, M = CH4. The calculated moments are used to parametrize three different models of the energy transfer function, from which low-pressure-limit rate coefficients for dissociation, k0, are calculated. Both one-dimensional and two-dimensional collisional energy transfer models are considered. The collision efficiency for M = H2O relative to the other bath gases (defined as the ratio of low-pressure limit rate coefficients) is found to depend on temperature, with, e.g., k0(H2O)/k0(Ar) = 7 at 2000 K but only 3 at 300 K. We also consider the rotational collision efficiency of the various baths. Water is the only bath gas found to fully equilibrate rotations, and only at temperatures below 1000 K. At elevated temperatures, the kinetic effect of "weak-collider-in-J" collisions is found to be small. At room temperature, however, the use of an explicitly two-dimensional master equation model that includes weak-collider-in-J effects predicts smaller rate coefficients by 50% relative to the use of a statistical model for rotations. The accuracies of several methods for predicting relative collision efficiencies that do not require solving the master equation and that are based on the calculated low-order moments are tested. Troe's weak collider efficiency, βc, includes the effect of saturation of collision outcomes above threshold and accurately predicts the relative collision efficiencies of the nine baths. Finally, a brief discussion is presented of mechanistic details of the energy transfer process, as inferred from the trajectories.

  5. Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.

    PubMed

    Masoudi, A A; Shahbazi, F; Davoudi, J; Tabar, M Reza Rahimi

    2002-02-01

    The Kardar-Parisi-Zhang (KPZ) equation in (1+1) dimensions dynamically develops sharply connected valley structures within which the height derivative is not continuous. We develop a statistical theory for the KPZ equation in (1+1) dimensions driven with a random forcing that is white in time and Gaussian-correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h-h*, partial differential(x)h,t) when the forcing correlation length is much smaller than the system size and much larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find the exact generating function of h-h* and partial differential(x)h. The time scale of the sharp valley formation is expressed in terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size corrections to the scaling laws of the structure functions left angle bracket(h-h*)(n)(partial differential(x)h)(m)right angle bracket are also obtained.

  6. Theories of Matter, Space and Time, Volume 2; Quantum theories

    NASA Astrophysics Data System (ADS)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  7. Solitary Ring Pairs and Non-Thermal Regimes in Plasmas Connected with Black Holes*

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2011-10-01

    The two-dimensional plasma and field configurations that can be associated with compact objects such as black holes are described, (in the limit where assuming a scalar pressure can be justified), by two characteristic non-linear equations: i) one that connects the plasma density profile to that of the relevant magnetic surfaces and is called the ``master equation'': ii) the other, the ``vertical equilibrium equation,'' connects the plasma pressure to the density and the magnetic surfaces and is closely related to the G-S equation for magnetically confined laboratory plasmas. Two kinds of solutions are found that consist of: i) a periodic sequence of plasma rings; ii) solitary pairs of rings. Experimental observations support the presence of rings around collapsed objects. Tridimensional configuration are found in the linear approximation as consisting of trailing spirals. Observations of High Frequency Quasi-Periodic oscillations implies that they originate from 3-dimentional structures. The existing theory is extended to involve non-thermal particle distributions in order to comply with relevant experimental observations. *Sponsored in part by the U.S. DOE.

  8. Corridor Planning And Feasibility Analysis Corridor, Master Plan

    DOT National Transportation Integrated Search

    1996-04-01

    THE I-70 RURAL IVHS CORRIDOR MASTER PLAN IS THE GUIDANCE DOCUMENT FOR DEPLOYMENT OF THE INTELLIGENT TRANSPORTATION SYSTEM (ITS) FOR THE INTERSTATE-70 CORRIDOR FROM DENVER TO GLENWOOD SPRINGS, COLORADO. AS A WORKING DOCUMENT, THE PLAN RECOMMENDS STRAT...

  9. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.

    PubMed

    Plehn, Thomas; May, Volkhard

    2017-01-21

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  10. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach

    NASA Astrophysics Data System (ADS)

    Plehn, Thomas; May, Volkhard

    2017-01-01

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik

    We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.

  12. Accelerated characterization of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Griffith, W. I.; Morris, D. H.; Brinson, H. F.

    1980-01-01

    A method to predict the long term compliance of unidirectional off-axis laminates from short term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 and 90 degrees. Analytical predictions of long term compliance for 30 and 60 degrees laminates are made. Comparisons with experimental data are also given.

  13. A Flow Solver for Three-Dimensional DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2002-01-01

    DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.

  14. Theoretical Transport Studies of Non-equilibrium Carriers Driven by High Electric Fields

    DTIC Science & Technology

    2012-04-25

    for two different types of confinement. Motivated by our desire to understand scattering processes in quantum wires in a simple way, in the final...Π’s are probability propagators. The probability propagators can be found, for example, by solving a Master equation if the motion is fully inco - herent...shown that when the transport is coherent (i.e. there are no phase- breaking scattering processes ), the current in the conductor is related to the

  15. Decoherence of odd compass states in the phase-sensitive amplifying/dissipating environment

    NASA Astrophysics Data System (ADS)

    Dodonov, V. V.; Valverde, C.; Souza, L. S.; Baseia, B.

    2016-08-01

    We study the evolution of odd compass states (specific superpositions of four coherent states), governed by the standard master equation with phase-sensitive amplifying/attenuating terms, in the presence of a Hamiltonian describing a parametric degenerate linear amplifier. Explicit expressions for the time-dependent Wigner function are obtained. The time of disappearance of the so called ;sub-Planck structures; is calculated using the negative value of the Wigner function at the origin of phase space. It is shown that this value rapidly decreases during a short ;conventional interference degradation time; (CIDT), which is inversely proportional to the size of quantum superposition, provided the anti-Hermitian terms in the master equation are of the same order (or stronger) as the Hermitian ones (governing the parametric amplification). The CIDT is compared with the final positivization time (FPT), when the Wigner function becomes positive. It appears that the FPT does not depend on the size of superpositions, moreover, it can be much bigger in the amplifying media than in the attenuating ones. Paradoxically, strengthening the Hamiltonian part results in decreasing the CIDT, so that the CIDT almost does not depend on the size of superpositions in the asymptotical case of very weak reservoir coupling. We also analyze the evolution of the Mandel factor, showing that for some sets of parameters this factor remains significantly negative, even when the Wigner function becomes positive.

  16. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.

  17. Analysis, Design, and Prototyping Of Accounting Software for Navy Signal Intelligence Collection Systems Return On Investment Reporting

    DTIC Science & Technology

    2010-09-01

    The MasterNet project continued to expand in software and hardware complexity until its failure ( Szilagyi , n.d.). Despite all of the issues...were used for MasterNet ( Szilagyi , n.d.). Although executive management committed significant financial resources to MasterNet, Bank of America...implementation failure as well as project- management failure as a whole ( Szilagyi , n.d.). The lesson learned from this vignette is the importance of setting

  18. Analysis of a Professional Officer Master’s Degree Program.

    DTIC Science & Technology

    1986-04-01

    another source to convince the officer that he must have a masters For career success . The most powerful and understood form of communication to an...officer of the importance of any factor For career success is how it affects promotions. To determine if a master’s degree is important to career success , one...PME. Most Air Force officers know PME is vitally impor- tant to fulfilling professional education requirements and career success . Therefore, when

  19. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaramakrishnan, Raghu; Michael, Joe V.; Harding, Lawrence B.

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature micro-tubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation re-analysismore » of the CH3CHO potential energy surface (PES). The lowest energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a re-isomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (~10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water and acetylene in the recent micro-tubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms, and have no bearing on the unimolecular decomposition mechanism of CH3CHO. The present simulations also indicate that experiments using these micro-tubular reactors when interpreted with the aid of high-level theoretical calculations and kinetics modeling can offer insights into the chemistry of elusive intermediates in high temperature pyrolysis of organic molecules.« less

  20. Relation between random walks and quantum walks

    NASA Astrophysics Data System (ADS)

    Boettcher, Stefan; Falkner, Stefan; Portugal, Renato

    2015-05-01

    Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.

  1. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter.

    PubMed

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-10-23

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.

  2. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter

    PubMed Central

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-01-01

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment. PMID:29065521

  3. Preparation of silicon target material by adding Al-B master alloy in directional solidification

    NASA Astrophysics Data System (ADS)

    Li, Pengting; Wang, Kai; Ren, Shiqiang; Jiang, Dachuan; Tan, Yi

    2017-03-01

    The silicon target material was prepared by adding Al-6B master alloy in directional solidification. The microstructure was characterized and the resistivity was studied in this work. The results showed that the purity of the silicon target material was more than 99.999% (5N). The resistivity was ranges from 0.002 to 0.030 Ω·cm along the ingot height. It was revealed that the particles of AlB2 in Al-6B master alloy would react spontaneously and generate clusters of [B] and [Al] in molten silicon at 1723 K. After directional solidification, the content of B and Al were increasing gradually with the increase of solidified fraction. The measured values of B were in good agreement with the curve of the Scheil equation below 80% of the ingot height. The mean concentration of B was about 17.20 ppmw and the mean concentration of Al was about 8.07 ppmw after directional solidification. The measured values of Al were fitting well with the curve of values which the effective segregation coefficient was 0.00378. It was observed that B co-doped Al in directional solidification polysilicon could regulate resistivity mutually. This work provides the theoretical basis and technical support for industrial production of the silicon target material.

  4. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.

    PubMed

    Vargas, D M; De Bastiani, M A; Zimmer, E R; Klamt, F

    2018-06-23

    Alzheimer's disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD.

  5. Investigating Value Creation in a Community of Practice with Social Network Analysis in a Hybrid Online Graduate Education Program

    ERIC Educational Resources Information Center

    Cowan, John E.; Menchaca, Michael P.

    2014-01-01

    This study reports an analysis of 10?years in the life of the Internet-based Master in Educational Technology program (iMET) at Sacramento State University. iMET is a hybrid educational technology master's program delivered 20% face to face and 80% online. The program has achieved a high degree of success, with a course completion rate of 93% and…

  6. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states

    NASA Astrophysics Data System (ADS)

    Dou, Wenjie; Subotnik, Joseph E.

    2016-08-01

    We present a very general form of electronic friction as present when a molecule with multiple orbitals hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our previous work analyzing the case of one electronic level, as we may now treat the case of multiple levels and many electronic molecular states. We show that, in the adiabatic limit, where electron transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation, such that nuclei feel an average force as well as friction and a random force—as caused by their interaction with the metallic electrons. Finally, we show numerically and analytically that our frictional results agree with other published results calculated using non-equilibrium Green's functions. Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper.

  7. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Wenjie; Subotnik, Joseph E.

    We present a very general form of electronic friction as present when a molecule with multiple orbitals hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our previous work analyzing the case of one electronic level, as we may now treat the case of multiple levels and many electronic molecular states. We show that, in the adiabatic limit, where electron transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation, such that nuclei feel an average forcemore » as well as friction and a random force—as caused by their interaction with the metallic electrons. Finally, we show numerically and analytically that our frictional results agree with other published results calculated using non-equilibrium Green’s functions. Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper.« less

  8. Emergent Lévy behavior in single-cell stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Jia, Chen; Zhang, Michael Q.; Qian, Hong

    2017-10-01

    Single-cell gene expression is inherently stochastic; its emergent behavior can be defined in terms of the chemical master equation describing the evolution of the mRNA and protein copy numbers as the latter tends to infinity. We establish two types of "macroscopic limits": the Kurtz limit is consistent with the classical chemical kinetics, while the Lévy limit provides a theoretical foundation for an empirical equation proposed in N. Friedman et al., Phys. Rev. Lett. 97, 168302 (2006), 10.1103/PhysRevLett.97.168302. Furthermore, we clarify the biochemical implications and ranges of applicability for various macroscopic limits and calculate a comprehensive analytic expression for the protein concentration distribution in autoregulatory gene networks. The relationship between our work and modern population genetics is discussed.

  9. Synchronization of an optomechanical system to an external drive

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph

    2017-05-01

    Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.

  10. Bidding process in online auctions and winning strategy: Rate equation approach

    NASA Astrophysics Data System (ADS)

    Yang, I.; Kahng, B.

    2006-06-01

    Online auctions have expanded rapidly over the last decade and have become a fascinating new type of business or commercial transaction in this digital era. Here we introduce a master equation for the bidding process that takes place in online auctions. We find that the number of distinct bidders who bid k times up to the t th bidding progresses, called the k -frequent bidder, seems to scale as nk(t)˜tk-2.4 . The successfully transmitted bidding rate by the k -frequent bidder is likely to scale as qk(t)˜k-1.4 , independent of t for large t . This theoretical prediction is close to empirical data. These results imply that bidding at the last moment is a rational and effective strategy to win in an eBay auction.

  11. A stochastic simulator of birth-death master equations with application to phylodynamics.

    PubMed

    Vaughan, Timothy G; Drummond, Alexei J

    2013-06-01

    In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be used as the basis for generating either single population histories or large ensembles of such histories. Importantly, phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be recorded in place of the full ensemble, allowing for a reduction in the amount of memory used--an important consideration for models including large numbers of individual subpopulations or demes. In the case of population size histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance relationships.

  12. A Stochastic Simulator of Birth–Death Master Equations with Application to Phylodynamics

    PubMed Central

    Vaughan, Timothy G.; Drummond, Alexei J.

    2013-01-01

    In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be used as the basis for generating either single population histories or large ensembles of such histories. Importantly, phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be recorded in place of the full ensemble, allowing for a reduction in the amount of memory used—an important consideration for models including large numbers of individual subpopulations or demes. In the case of population size histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance relationships. PMID:23505043

  13. Noise and noise figure of vertical-cavity semiconductor optical amplifiers (VCSOAs) operated in reflection mode

    NASA Astrophysics Data System (ADS)

    Wen, Pengyue; Sanchez, Michael; Gross, Matthias; Esener, Sadik C.

    2003-05-01

    In this paper, the noise properties of vertical cavity semiconductor optical amplifiers (VCSOAs) operated in reflection mode are studied. Expressions for noise sources contributing to the total noise detected at amplifier output are derived, based on the photon statistics master equations. The noise figure, defined as the degradation of signal-to-noise ratio (SNR), is analyzed using the assumption that spontaneous emission-signal beat noise dominates. The analysis shows that the noise figure of reflection mode VCSOAs has the same values as that in transmission mode as long as amplifier gain is high (G>>1). Furthermore, simulations depict the dependence of noise figure on device parameters and bias conditions, as well as reveal the importance of the low reflectivity front mirror and the high reflectivity rear mirror for low noise operation. In addition, the noise figure analysis results are compared with experimental measurements, in which amplified spontaneous emission (ASE) power is measured by an optical spectrum analyzer and the noise figure is obtained from the ASE power and the amplifier gain. The measured data are in good agreement with the theoretical predictions.

  14. Interpolation and Extrapolation of Creep Rupture Data by the Minimum Commitment Method. Part 3: Analysis of Multiheats

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Ensign, C. R.

    1978-01-01

    The Minimum Commitment Method was applied to two sets of data for which multiple heat information was available. For one alloy, a 304 stainless steel studied in Japan, data on nine well characterized heats were used, while for a proprietary low alloy carbon steel studied in the United Kingdom data were available on seven heats - in many cases to very long rupture times. For this preliminary study no instability factors were used. It was discovered that heat-to-heat variations would be accounted for by introducing heat identifiers in the form A + B log sigma where sigma is the stress and the constants A and B depend only on the heat. With these identifiers all the data could be collapsed onto a single master curve, even though there was considerable scatter among heats. Using these identifiers together with the average behavior of all heats made possible the determination of an accurate constitutive equation for each individual heat. Two basic approaches are discussed for applying the results of the analysis.

  15. Analysis of timescale to consensus in voting dynamics with more than two options

    NASA Astrophysics Data System (ADS)

    Wu, Degang; Szeto, Kwok Yip

    2018-04-01

    We generalize a binary majority-vote model on adaptive networks to its plurality-vote counterpart and analyze the timescale to consensus when voters are given more than two options. When opinions are uniformly distributed in the population of voters in the initial state, we find that the timescale to consensus is shorter than the binary vote model from both numerical simulations and mathematical analysis using the master equation for the three-state plurality-vote model. When intervention such as opinion conversion is allowed, as in the case of sudden change of mind of voter for any reason, the effort needed to push the fragmented three-opinion population in the thermodynamic limit to the consensus state, measured in minimal intervention cost, is less than that needed to push a polarized two-opinion population to the consensus state, when the degree (p ) of homophily is less than 0.8. For a finite system, the fragmented three-opinion population will spontaneously reach the consensus state, with faster time to consensus, compared to polarized two-opinion population, for a broad range of p .

  16. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  17. Explanation of the quantum phenomenon of off-resonant cavity-mode emission

    NASA Astrophysics Data System (ADS)

    Echeverri-Arteaga, Santiago; Vinck-Posada, Herbert; Gómez, Edgar A.

    2018-04-01

    We theoretically investigate the unexpected occurrence of an extra emission peak that has been experimentally observed in off-resonant studies of cavity QED systems. Our results within the Markovian master equation approach successfully explain why the central peak arises, and how it reveals that the system is suffering a dynamical phase transition induced by the phonon-mediated coupling. Our findings are in qualitative agreement with previous reported experimental results, and the fundamental physics behind this quantum phenomenon is understood.

  18. Exact N 3LO results for qq ' → H + X

    DOE PAGES

    Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik; ...

    2015-07-27

    We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.

  19. Laser cooling of a trapped two-component Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Santos, L.

    2003-04-01

    We study the collective Raman cooling of a trapped two-component Fermi gas using quantum master equation in the festina lente regime, where the heating due to photon reabsorption can be neglected. The Monte Carlo simulations show that three-dimensional temperatures of the order of 0.008T{sub F} can be achieved. We analyze the heating related to background losses, and show that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses.

  20. Accelerated characterization of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Griffith, W. I.; Morris, D. H.; Brinson, H. F.

    1980-01-01

    A method to predict the long-term compliance of unidirectional off-axis laminates from short-term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short-term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 deg and 90 deg. In addition, analytical predictions of long-term compliance for 30 deg and 60 deg laminates are made. Comparisons with experimental data are also given.

  1. Epidemic Spreading in a Multi-compartment System

    NASA Astrophysics Data System (ADS)

    Gao, Zong-Mao; Gu, Jiao; Li, Wei

    2012-02-01

    We introduce the variant rate and white noise into the susceptible-infected-removed (SIR) model for epidemics, discuss the epidemic dynamics of a multiple-compartment system, and describe this system by using master equations. For both the local epidemic spreading system and the whole multiple-compartment system, we find that a threshold could be useful in forecasting when the epidemic vanishes. Furthermore, numerical simulations show that a model with the variant infection rate and white noise can improve fitting with real SARS data.

  2. A Multiple Time-Step Finite State Projection Algorithm for the Solution to the Chemical Master Equation

    DTIC Science & Technology

    2006-11-30

    except in the simplest of circumstances. This belief has driven the com- putational research community to devise clever kinetic Monte Carlo ( KMC ... KMC rou- tine is very slow; cutting the error in half requires four times the number of simulations. Since a single simulation may contain huge numbers...subintervals [9–14]. Both approximation types, system partitioning and τ leaping, have been very successful in increasing the scope of problems to which KMC

  3. Continuous quantum measurement in spin environments

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Wang, An Min

    2015-08-01

    We derive a stochastic master equation (SME) which describes the decoherence dynamics of a system in spin environments conditioned on the measurement record. Markovian and non-Markovian nature of environment can be revealed by a spectroscopy method based on weak continuous quantum measurement. On account of that correlated environments can lead to a non-local open system which exhibits strong non-Markovian effects although the local dynamics are Markovian, the spectroscopy method can be used to demonstrate that there is correlation between two environments.

  4. A Feasibility Study of Burning Waste Paper in Coal-Fired Boilers on Air Force Installations

    DTIC Science & Technology

    1993-09-01

    from coal emissions is known as wet flue - gas desulfurization . This process involves the spraying of pulverized limestone (CaCO3 ) mixed with water...conversion to natural gas fuel or additional air : 13-tion controls . However, both of these options can be very costly, and a 6 less expensive alternative may...into the flue gas . The SO, is absorbed by the spray, creating calcium sulfite (Masters, 1991:349). The process is represented in equation form as CaCO3

  5. Organic magnetoresistance based on hopping theory

    NASA Astrophysics Data System (ADS)

    Yang, Fu-Jiang; Xie, Shi-Jie

    2014-09-01

    For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.

  6. Gauge-independent decoherence models for solids in external fields

    NASA Astrophysics Data System (ADS)

    Wismer, Michael S.; Yakovlev, Vladislav S.

    2018-04-01

    We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.

  7. Quantum angular momentum diffusion of rigid bodies

    NASA Astrophysics Data System (ADS)

    Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus

    2017-12-01

    We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.

  8. Data on master regulators and transcription factor binding sites found by upstream analysis of multi-omics data on methotrexate resistance of colon cancer.

    PubMed

    Kel, AlexanderE

    2017-02-01

    Computational analysis of master regulators through the search for transcription factor binding sites followed by analysis of signal transduction networks of a cell is a new approach of causal analysis of multi-omics data. This paper contains results on analysis of multi-omics data that include transcriptomics, proteomics and epigenomics data of methotrexate (MTX) resistant colon cancer cell line. The data were used for analysis of mechanisms of resistance and for prediction of potential drug targets and promising compounds for reverting the MTX resistance of these cancer cells. We present all results of the analysis including the lists of identified transcription factors and their binding sites in genome and the list of predicted master regulators - potential drug targets. This data was generated in the study recently published in the article "Multi-omics "Upstream Analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer" (Kel et al., 2016) [4]. These data are of interest for researchers from the field of multi-omics data analysis and for biologists who are interested in identification of novel drug targets against NTX resistance.

  9. Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations

    PubMed Central

    2013-01-01

    In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably re-scaled, converges to a centred Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the chemical Langevin equation in the present setting. On a technical level, we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces, and by this are able to incorporate spatial structures of the underlying model. Mathematics Subject Classification (2000): 60F05, 60J25, 60J75, 92C20. PMID:23343328

  10. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    PubMed

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  11. Latin-square three-dimensional gage master

    DOEpatents

    Jones, L.

    1981-05-12

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  12. Latin square three dimensional gage master

    DOEpatents

    Jones, Lynn L.

    1982-01-01

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  13. Transcriptional master regulator analysis in breast cancer genetic networks.

    PubMed

    Tovar, Hugo; García-Herrera, Rodrigo; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-12-01

    Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Online Education in Public Affairs

    ERIC Educational Resources Information Center

    Ginn, Martha H.; Hammond, Augustine

    2012-01-01

    This exploratory study provides an overview of the current landscape of online education in the fields of Master of Public Administration and Master of Public Policy (MPA/MPP) utilizing a dataset compiled from content analysis of MPA/MPP programs' websites and survey of 96 National Association of Schools of Public Affairs and Administration…

  15. The International Space Station Comparative Maintenance Analysis(CMAM)

    DTIC Science & Technology

    2004-09-01

    External Component • Entire ORU Database 2. Database Connectivity The CMAM ORU database consists of three tables: an ORU master parts list , an ISS...Flight table, and an ISS Subsystem table. The ORU master parts list and the ISS Flight table can be updated or modified from the CMAM user interface

  16. 78 FR 61373 - Animal Center Master Plan Record of Decision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... propose any land use changes outside NIHAC. Therefore, the NIHAC campus is anticipated to remain... analysis, Environmental Justice will not be discussed. Visual Quality The Master Plan's land use plan provides a framework to help organize future development at NIHAC so that similar land use types are...

  17. A Consideration of the Challenges Involved in Supervising International Masters Students

    ERIC Educational Resources Information Center

    Brown, Lorraine

    2007-01-01

    This paper explores the challenges facing supervisors of international postgraduate students at the dissertation stage of the masters programme. The central problems of time pressure, language difficulties, a lack of critical analysis and a prevalence of personal problems among international students are discussed. This paper makes recommendations…

  18. Performance Trends in Master Butterfly Swimmers Competing in the FINA World Championships.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T; Rosemann, Thomas; Rüst, Christoph A

    2017-06-01

    Performance trends in elite butterfly swimmers are well known, but less information is available regarding master butterfly swimmers. We investigated trends in participation, performance and sex differences in 9,606 female and 13,250 male butterfly race times classified into five-year master groups, from 25-29 to 90-94 years, competing in the FINA World Masters Championships between 1986 and 2014. Trends in participation were analyzed using linear regression analysis. Trends in performance changes were investigated using mixed-effects regression analyses with sex, distance and a calendar year as fixed variables. We also considered interaction effects between sex and distance. Participation increased in master swimmers older than ~30-40 years. The men-to-women ratio remained unchanged across calendar years and master groups, but was lower in 200 m compared to 50 m and 100 m. Men were faster than women from 25-29 to 85-89 years (p < 0.05), although not for 90-94 years. Sex and distance showed a significant interaction in all master groups from 25-29 to 90-94 years for 200m (p < 0.05). For 50 m and 100 m, a significant sex × distance interaction was observed from 25-29 to 75-79 years (p < 0.05), but not in the older groups. In 50 m, women reduced the sex difference in master groups 30-34 to 60-64 years (p < 0.05). In 100 m, women decreased the gap to men in master groups 35-39 to 55-59 years (p < 0.05). In 200 m, the sex difference was reduced in master groups 30-34 to 40-44 years (p < 0.05). In summary, women and men improved performance at all distances, women were not slower compared to men in the master group 90-94 years; moreover, women reduced the gap to men between ~30 and ~60 years, although not in younger or older master groups.

  19. Performance Trends in Master Butterfly Swimmers Competing in the FINA World Championships

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T; Rosemann, Thomas; Rüst, Christoph A

    2017-01-01

    Abstract Performance trends in elite butterfly swimmers are well known, but less information is available regarding master butterfly swimmers. We investigated trends in participation, performance and sex differences in 9,606 female and 13,250 male butterfly race times classified into five-year master groups, from 25-29 to 90-94 years, competing in the FINA World Masters Championships between 1986 and 2014. Trends in participation were analyzed using linear regression analysis. Trends in performance changes were investigated using mixed-effects regression analyses with sex, distance and a calendar year as fixed variables. We also considered interaction effects between sex and distance. Participation increased in master swimmers older than ~30-40 years. The men-to-women ratio remained unchanged across calendar years and master groups, but was lower in 200 m compared to 50 m and 100 m. Men were faster than women from 25-29 to 85-89 years (p < 0.05), although not for 90-94 years. Sex and distance showed a significant interaction in all master groups from 25-29 to 90-94 years for 200m (p < 0.05). For 50 m and 100 m, a significant sex × distance interaction was observed from 25-29 to 75-79 years (p < 0.05), but not in the older groups. In 50 m, women reduced the sex difference in master groups 30-34 to 60-64 years (p < 0.05). In 100 m, women decreased the gap to men in master groups 35-39 to 55-59 years (p < 0.05). In 200 m, the sex difference was reduced in master groups 30-34 to 40-44 years (p < 0.05). In summary, women and men improved performance at all distances, women were not slower compared to men in the master group 90-94 years; moreover, women reduced the gap to men between ~30 and ~60 years, although not in younger or older master groups. PMID:28713472

  20. A Maxwell-Schrödinger solver for quantum optical few-level systems

    NASA Astrophysics Data System (ADS)

    Fleischhaker, Robert; Evers, Jörg

    2011-03-01

    The msprop program presented in this work is capable of solving the Maxwell-Schrödinger equations for one or several laser fields propagating through a medium of quantum optical few-level systems in one spatial dimension and in time. In particular, it allows to numerically treat systems in which a laser field interacts with the medium with both its electric and magnetic component at the same time. The internal dynamics of the few-level system is modeled by a quantum optical master equation which includes coherent processes due to optical transitions driven by the laser fields as well as incoherent processes due to decay and dephasing. The propagation dynamics of the laser fields is treated in slowly varying envelope approximation resulting in a first order wave equation for each laser field envelope function. The program employs an Adams predictor formula second order in time to integrate the quantum optical master equation and a Lax-Wendroff scheme second order in space and time to evolve the wave equations for the fields. The source function in the Lax-Wendroff scheme is specifically adapted to allow taking into account the simultaneous coupling of a laser field to the polarization and the magnetization of the medium. To reduce execution time, a customized data structure is implemented and explained. In three examples the features of the program are demonstrated and the treatment of a system with a phase-dependent cross coupling of the electric and magnetic field component of a laser field is shown. Program summaryProgram title: msprop Catalogue identifier: AEHR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 507 625 No. of bytes in distributed program, including test data, etc.: 10 698 552 Distribution format: tar.gz Programming language: C (C99 standard), Mathematica, bash script, gnuplot script Computer: Tested on x86 architecture Operating system: Unix/Linux environment RAM: Less than 30 MB Classification: 2.5 External routines: Standard C math library, accompanying bash script uses gnuplot, bc (basic calculator), and convert (ImageMagick) Nature of problem: We consider a system of quantum optical few-level atoms exposed to several near-resonant continuous-wave or pulsed laser fields. The complexity of the problem arises from the combination of the coherent and incoherent time evolution of the atoms and its dependence on the spatially varying fields. In systems with a coupling to the electric and magnetic field component the simultaneous treatment of both field components poses an additional challenge. Studying the system dynamics requires solving the quantum optical master equation coupled to the wave equations governing the spatio-temporal dynamics of the fields [1,2]. Solution method: We numerically integrate the equations of motion using a second order Adams predictor method for the time evolution of the atomic density matrix and a second order Lax-Wendroff scheme for iterating the fields in space [3]. For the Lax-Wendroff scheme, the source function is adapted such that a simultaneous coupling to the polarization and the magnetization of the medium can be taken into account. Restrictions: The evolution of the fields is treated in slowly varying envelope approximation [2] such that variations of the fields in space and time must be on a scale larger than the wavelength and the optical cycle. Propagation is restricted to the forward direction and to one dimension. Concerning the description of the atomic system, only a finite number of basis states can be treated and the laser-driven transitions have to be near-resonant such that the rotating-wave approximation can be applied [2]. Unusual features: The program allows the dipole interaction of both the electric and the magnetic component of a laser field to be taken into account at the same time. Thus, a system with a phase-dependent cross coupling of electric and magnetic field component can be treated (see Section 4.2 and [4]). Concerning the implementation of the data structure, it has been optimized for faster memory access. Compared to using standard memory allocation methods, shorter run times are achieved (see Section 3.2). Additional comments: Three examples are given. They each include a readme file, a Mathematica notebook to generate the C-code form of the quantum optical master equation, a parameter file, a bash script which runs the program and converts the numerical data into a movie, two gnuplot scripts, and all files that are produced by running the bash script. Running time: For the first two examples the running time is less than a minute, the third example takes about 12 minutes. On a Pentium 4 (3 GHz) system, a rough estimate can be made with a value of 1 second per million grid points and per field variable.

Top