Sample records for matched filter algorithm

  1. MR fingerprinting reconstruction with Kalman filter.

    PubMed

    Zhang, Xiaodi; Zhou, Zechen; Chen, Shiyang; Chen, Shuo; Li, Rui; Hu, Xiaoping

    2017-09-01

    Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic resonance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictionary construction, storage and matching. In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dictionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equation of inversion-recovery balanced steady state free-precession (IR-bSSFP) MRF sequence was derived to predict signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate the accurate MR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation were implemented with Kalman filter and the results were compared with those from dictionary matching reconstruction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm. The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong.

  3. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  4. Research on Palmprint Identification Method Based on Quantum Algorithms

    PubMed Central

    Zhang, Zhanzhan

    2014-01-01

    Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165

  5. The Improved Locating Algorithm of Particle Filter Based on ROS Robot

    NASA Astrophysics Data System (ADS)

    Fang, Xun; Fu, Xiaoyang; Sun, Ming

    2018-03-01

    This paperanalyzes basic theory and primary algorithm of the real-time locating system and SLAM technology based on ROS system Robot. It proposes improved locating algorithm of particle filter effectively reduces the matching time of laser radar and map, additional ultra-wideband technology directly accelerates the global efficiency of FastSLAM algorithm, which no longer needs searching on the global map. Meanwhile, the re-sampling has been largely reduced about 5/6 that directly cancels the matching behavior on Roboticsalgorithm.

  6. Underwater terrain-aided navigation system based on combination matching algorithm.

    PubMed

    Li, Peijuan; Sheng, Guoliang; Zhang, Xiaofei; Wu, Jingqiu; Xu, Baochun; Liu, Xing; Zhang, Yao

    2018-07-01

    Considering that the terrain-aided navigation (TAN) system based on iterated closest contour point (ICCP) algorithm diverges easily when the indicative track of strapdown inertial navigation system (SINS) is large, Kalman filter is adopted in the traditional ICCP algorithm, difference between matching result and SINS output is used as the measurement of Kalman filter, then the cumulative error of the SINS is corrected in time by filter feedback correction, and the indicative track used in ICCP is improved. The mathematic model of the autonomous underwater vehicle (AUV) integrated into the navigation system and the observation model of TAN is built. Proper matching point number is designated by comparing the simulation results of matching time and matching precision. Simulation experiments are carried out according to the ICCP algorithm and the mathematic model. It can be concluded from the simulation experiments that the navigation accuracy and stability are improved with the proposed combinational algorithm in case that proper matching point number is engaged. It will be shown that the integrated navigation system is effective in prohibiting the divergence of the indicative track and can meet the requirements of underwater, long-term and high precision of the navigation system for autonomous underwater vehicles. Copyright © 2017. Published by Elsevier Ltd.

  7. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  8. Rapid code acquisition algorithms employing PN matched filters

    NASA Technical Reports Server (NTRS)

    Su, Yu T.

    1988-01-01

    The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.

  9. On-sky demonstration of matched filters for wavefront measurements using ELT-scale elongated laser guide stars

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Bardou, L.; Bonaccini Calia, D.; Buey, T.; Centrone, M.; Chemla, F.; Gach, J. L.; Gendron, E.; Gratadour, D.; Guidolin, I.; Jenkins, D. R.; Marchetti, E.; Morris, T. J.; Myers, R. M.; Osborn, J.; Reeves, A. P.; Reyes, M.; Rousset, G.; Lombardi, G.; Townson, M. J.; Vidal, F.

    2017-04-01

    The performance of adaptive optics systems is partially dependent on the algorithms used within the real-time control system to compute wavefront slope measurements. We demonstrate the use of a matched filter algorithm for the processing of elongated laser guide star (LGS) Shack-Hartmann images, using the CANARY adaptive optics instrument on the 4.2 m William Herschel Telescope and the European Southern Observatory Wendelstein LGS Unit placed 40 m away. This algorithm has been selected for use with the forthcoming Thirty Meter Telescope, but until now had not been demonstrated on-sky. From the results of a first observing run, we show that the use of matched filtering improves our adaptive optics system performance, with increases in on-sky H-band Strehl measured up to about a factor of 1.1 with respect to a conventional centre of gravity approach. We describe the algorithm used, and the methods that we implemented to enable on-sky demonstration.

  10. Optical implementation of the synthetic discriminant function

    NASA Astrophysics Data System (ADS)

    Butler, S.; Riggins, J.

    1984-10-01

    Much attention is focused on the use of coherent optical pattern recognition (OPR) using matched spatial filters for robotics and intelligent systems. The OPR problem consists of three aspects -- information input, information processing, and information output. This paper discusses the information processing aspect which consists of choosing a filter to provide robust correlation with high efficiency. The filter should ideally be invariant to image shift, rotation and scale, provide a reasonable signal-to-noise (S/N) ratio and allow high throughput efficiency. The physical implementation of a spatial matched filter involves many choices. These include the use of conventional holograms or computer-generated holograms (CGH) and utilizing absorption or phase materials. Conventional holograms inherently modify the reference image by non-uniform emphasis of spatial frequencies. Proper use of film nonlinearity provides improved filter performance by emphasizing frequency ranges crucial to target discrimination. In the case of a CGH, the emphasis of the reference magnitude and phase can be controlled independently of the continuous tone or binary writing processes. This paper describes computer simulation and optical implementation of a geometrical shape and a Synthetic Discriminant Function (SDF) matched filter. The authors chose the binary Allebach-Keegan (AK) CGH algorithm to produce actual filters. The performances of these filters were measured to verify the simulation results. This paper provides a brief summary of the matched filter theory, the SDF, CGH algorithms, Phase-Only-Filtering, simulation procedures, and results.

  11. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data

    NASA Astrophysics Data System (ADS)

    Fereydooni, H.; Mojeddifar, S.

    2017-09-01

    This study introduced a different procedure to implement matched filtering algorithm (MF) on the ASTER images to obtain the distribution map of alteration minerals in the northwestern part of the Kerman Cenozoic Magmatic Arc (KCMA). This region contains many areas with porphyry copper mineralization such as Meiduk, Abdar, Kader, Godekolvari, Iju, Serenu, Chahfiroozeh and Parkam. Also argillization, sericitization and propylitization are the most common types of hydrothermal alteration in the area. Matched filtering results were provided for alteration minerals with a matched filtering score, called MF image. To identify the pixels which contain only one material (endmember), an appropriate threshold value should be used to the MF image. The chosen threshold classifies a MF image into background and target pixels. This article argues that the current thresholding process (the choice of a threshold) shows misclassification for MF image. To address the issue, this paper introduced the directed matched filtering (DMF) algorithm in which a spectral signature-based filter (SSF) was used instead of the thresholding process. SSF is a user-defined rule package which contains numeral descriptions about the spectral reflectance of alteration minerals. On the other hand, the spectral bands are defined by an upper and lower limit in SSF filter for each alteration minerals. SSF was developed for chlorite, kaolinite, alunite, and muscovite minerals to map alteration zones. The validation proved that, at first: selecting a contiguous range of MF values could not identify desirable results, second: unexpectedly, considerable frequency of pure pixels was observed in the MF scores less than threshold value. Also, the comparison between DMF results and field studies showed an accuracy of 88.51%.

  12. Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering

    NASA Astrophysics Data System (ADS)

    Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech

    2015-03-01

    We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.

  13. MATCHED FILTER COMPUTATION ON FPGA, CELL, AND GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAKER, ZACHARY K.; GOKHALE, MAYA B.; TRIPP, JUSTIN L.

    2007-01-08

    The matched filter is an important kernel in the processing of hyperspectral data. The filter enables researchers to sift useful data from instruments that span large frequency bands. In this work, they evaluate the performance of a matched filter algorithm implementation on accelerated co-processor (XD1000), the IBM Cell microprocessor, and the NVIDIA GeForce 6900 GTX GPU graphics card. They provide extensive discussion of the challenges and opportunities afforded by each platform. In particular, they explore the problems of partitioning the filter most efficiently between the host CPU and the co-processor. Using their results, they derive several performance metrics that providemore » the optimal solution for a variety of application situations.« less

  14. A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1976-01-01

    The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.

  15. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection

    PubMed Central

    Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335

  16. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    PubMed

    Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  17. Kalman/Map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing.

    PubMed

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-11-13

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  18. Kalman/Map Filtering-Aided Fast Normalized Cross Correlation-Based Wi-Fi Fingerprinting Location Sensing

    PubMed Central

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-01-01

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027

  19. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    NASA Astrophysics Data System (ADS)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  20. RF tomography of metallic objects in free space: preliminary results

    NASA Astrophysics Data System (ADS)

    Li, Jia; Ewing, Robert L.; Berdanier, Charles; Baker, Christopher

    2015-05-01

    RF tomography has great potential in defense and homeland security applications. A distributed sensing research facility is under development at Air Force Research Lab. To develop a RF tomographic imaging system for the facility, preliminary experiments have been performed in an indoor range with 12 radar sensors distributed on a circle of 3m radius. Ultra-wideband pulses are used to illuminate single and multiple metallic targets. The echoes received by distributed sensors were processed and combined for tomography reconstruction. Traditional matched filter algorithm and truncated singular value decomposition (SVD) algorithm are compared in terms of their complexity, accuracy, and suitability for distributed processing. A new algorithm is proposed for shape reconstruction, which jointly estimates the object boundary and scatter points on the waveform's propagation path. The results show that the new algorithm allows accurate reconstruction of object shape, which is not available through the matched filter and truncated SVD algorithms.

  1. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  2. Focusing attention on objects of interest using multiple matched filters.

    PubMed

    Stough, T M; Brodley, C E

    2001-01-01

    In order to be of use to scientists, large image databases need to be analyzed to create a catalog of the objects of interest. One approach is to apply a multiple tiered search algorithm that uses reduction techniques of increasing computational complexity to select the desired objects from the database. The first tier of this type of algorithm, often called a focus of attention (FOA) algorithm, selects candidate regions from the image data and passes them to the next tier of the algorithm. In this paper we present a new approach to FOA that employs multiple matched filters (MMF), one for each object prototype, to detect the regions of interest. The MMFs are formed using k-means clustering on a set of image patches identified by domain experts as positive examples of objects of interest. An innovation of the approach is to radically reduce the dimensionality of the feature space, used by the k-means algorithm, by taking block averages (spoiling) the sample image patches. The process of spoiling is analyzed and its applicability to other domains is discussed. The combination of the output of the MMFs is achieved through the projection of the detections back into an empty image and then thresholding. This research was motivated by the need to detect small volcanos in the Magellan probe data from Venus. An empirical evaluation of the approach illustrates that a combination of the MMF plus the average filter results in a higher likelihood of 100% detection of the objects of interest at a lower false positive rate than a single matched filter alone.

  3. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratiomore » (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.« less

  4. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  5. Retrieving quasi-phase-matching structure with discrete layer-peeling method.

    PubMed

    Zhang, Q W; Zeng, X L; Wang, M; Wang, T Y; Chen, X F

    2012-07-02

    An approach to reconstruct a quasi-phase-matching grating by using a discrete layer-peeling algorithm is presented. Experimentally measured output spectra of Šolc-type filters, based on uniform and chirped QPM structures, are used in the discrete layer-peeling algorithm. The reconstructed QPM structures are in agreement with the exact structures used in the experiment and the method is verified to be accurate and efficient in quality inspection on quasi-phase-matching grating.

  6. Simulation of synthetic discriminant function optical implementation

    NASA Astrophysics Data System (ADS)

    Riggins, J.; Butler, S.

    1984-12-01

    The optical implementation of geometrical shape and synthetic discriminant function matched filters is computer modeled. The filter implementation utilizes the Allebach-Keegan computer-generated hologram algorithm. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  7. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  8. Face identification with frequency domain matched filtering in mobile environments

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan

    2012-06-01

    Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.

  9. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  10. Range resolution improvement in passive bistatic radars using nested FM channels and least squares approach

    NASA Astrophysics Data System (ADS)

    Arslan, Musa T.; Tofighi, Mohammad; Sevimli, Rasim A.; ćetin, Ahmet E.

    2015-05-01

    One of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented.

  11. Adaptive object tracking via both positive and negative models matching

    NASA Astrophysics Data System (ADS)

    Li, Shaomei; Gao, Chao; Wang, Yawen

    2015-03-01

    To improve tracking drift which often occurs in adaptive tracking, an algorithm based on the fusion of tracking and detection is proposed in this paper. Firstly, object tracking is posed as abinary classification problem and is modeled by partial least squares (PLS) analysis. Secondly, tracking object frame by frame via particle filtering. Thirdly, validating the tracking reliability based on both positive and negative models matching. Finally, relocating the object based on SIFT features matching and voting when drift occurs. Object appearance model is updated at the same time. The algorithm can not only sense tracking drift but also relocate the object whenever needed. Experimental results demonstrate that this algorithm outperforms state-of-the-art algorithms on many challenging sequences.

  12. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    PubMed

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.

  13. Deep neural networks to enable real-time multimessenger astrophysics

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, E. A.

    2018-02-01

    Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the science reach of this emergent field of research, there is a pressing need to increase the depth and speed of the algorithms used to enable these ground-breaking discoveries. We introduce Deep Filtering—a new scalable machine learning method for end-to-end time-series signal processing. Deep Filtering is based on deep learning with two deep convolutional neural networks, which are designed for classification and regression, to detect gravitational wave signals in highly noisy time-series data streams and also estimate the parameters of their sources in real time. Acknowledging that some of the most sensitive algorithms for the detection of gravitational waves are based on implementations of matched filtering, and that a matched filter is the optimal linear filter in Gaussian noise, the application of Deep Filtering using whitened signals in Gaussian noise is investigated in this foundational article. The results indicate that Deep Filtering outperforms conventional machine learning techniques, achieves similar performance compared to matched filtering, while being several orders of magnitude faster, allowing real-time signal processing with minimal resources. Furthermore, we demonstrate that Deep Filtering can detect and characterize waveform signals emitted from new classes of eccentric or spin-precessing binary black holes, even when trained with data sets of only quasicircular binary black hole waveforms. The results presented in this article, and the recent use of deep neural networks for the identification of optical transients in telescope data, suggests that deep learning can facilitate real-time searches of gravitational wave sources and their electromagnetic and astroparticle counterparts. In the subsequent article, the framework introduced herein is directly applied to identify and characterize gravitational wave events in real LIGO data.

  14. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  15. A Comprehensive Motion Estimation Technique for the Improvement of EIS Methods Based on the SURF Algorithm and Kalman Filter.

    PubMed

    Cheng, Xuemin; Hao, Qun; Xie, Mengdi

    2016-04-07

    Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.

  16. A difference tracking algorithm based on discrete sine transform

    NASA Astrophysics Data System (ADS)

    Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun

    2018-04-01

    Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.

  17. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  18. Accuracy and robustness evaluation in stereo matching

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc M.; Hanca, Jan; Lu, Shao-Ping; Schelkens, Peter; Munteanu, Adrian

    2016-09-01

    Stereo matching has received a lot of attention from the computer vision community, thanks to its wide range of applications. Despite of the large variety of algorithms that have been proposed so far, it is not trivial to select suitable algorithms for the construction of practical systems. One of the main problems is that many algorithms lack sufficient robustness when employed in various operational conditions. This problem is due to the fact that most of the proposed methods in the literature are usually tested and tuned to perform well on one specific dataset. To alleviate this problem, an extensive evaluation in terms of accuracy and robustness of state-of-the-art stereo matching algorithms is presented. Three datasets (Middlebury, KITTI, and MPEG FTV) representing different operational conditions are employed. Based on the analysis, improvements over existing algorithms have been proposed. The experimental results show that our improved versions of cross-based and cost volume filtering algorithms outperform the original versions with large margins on Middlebury and KITTI datasets. In addition, the latter of the two proposed algorithms ranks itself among the best local stereo matching approaches on the KITTI benchmark. Under evaluations using specific settings for depth-image-based-rendering applications, our improved belief propagation algorithm is less complex than MPEG's FTV depth estimation reference software (DERS), while yielding similar depth estimation performance. Finally, several conclusions on stereo matching algorithms are also presented.

  19. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  20. Mapped Landmark Algorithm for Precision Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Ansar, Adnan; Matthies, Larry

    2007-01-01

    A report discusses a computer vision algorithm for position estimation to enable precision landing during planetary descent. The Descent Image Motion Estimation System for the Mars Exploration Rovers has been used as a starting point for creating code for precision, terrain-relative navigation during planetary landing. The algorithm is designed to be general because it handles images taken at different scales and resolutions relative to the map, and can produce mapped landmark matches for any planetary terrain of sufficient texture. These matches provide a measurement of horizontal position relative to a known landing site specified on the surface map. Multiple mapped landmarks generated per image allow for automatic detection and elimination of bad matches. Attitude and position can be generated from each image; this image-based attitude measurement can be used by the onboard navigation filter to improve the attitude estimate, which will improve the position estimates. The algorithm uses normalized correlation of grayscale images, producing precise, sub-pixel images. The algorithm has been broken into two sub-algorithms: (1) FFT Map Matching (see figure), which matches a single large template by correlation in the frequency domain, and (2) Mapped Landmark Refinement, which matches many small templates by correlation in the spatial domain. Each relies on feature selection, the homography transform, and 3D image correlation. The algorithm is implemented in C++ and is rated at Technology Readiness Level (TRL) 4.

  1. Joint histogram-based cost aggregation for stereo matching.

    PubMed

    Min, Dongbo; Lu, Jiangbo; Do, Minh N

    2013-10-01

    This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.

  2. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  3. Ladar range image denoising by a nonlocal probability statistics algorithm

    NASA Astrophysics Data System (ADS)

    Xia, Zhi-Wei; Li, Qi; Xiong, Zhi-Peng; Wang, Qi

    2013-01-01

    According to the characteristic of range images of coherent ladar and the basis of nonlocal means (NLM), a nonlocal probability statistics (NLPS) algorithm is proposed in this paper. The difference is that NLM performs denoising using the mean of the conditional probability distribution function (PDF) while NLPS using the maximum of the marginal PDF. In the algorithm, similar blocks are found out by the operation of block matching and form a group. Pixels in the group are analyzed by probability statistics and the gray value with maximum probability is used as the estimated value of the current pixel. The simulated range images of coherent ladar with different carrier-to-noise ratio and real range image of coherent ladar with 8 gray-scales are denoised by this algorithm, and the results are compared with those of median filter, multitemplate order mean filter, NLM, median nonlocal mean filter and its incorporation of anatomical side information, and unsupervised information-theoretic adaptive filter. The range abnormality noise and Gaussian noise in range image of coherent ladar are effectively suppressed by NLPS.

  4. An improved principal component analysis based region matching method for fringe direction estimation

    NASA Astrophysics Data System (ADS)

    He, A.; Quan, C.

    2018-04-01

    The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.

  5. Stereo-Based Region-Growing using String Matching

    NASA Technical Reports Server (NTRS)

    Mandelbaum, Robert; Mintz, Max

    1995-01-01

    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.

  6. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    PubMed

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  7. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter

    PubMed Central

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-01

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the “Velocity and Attitude” matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment. PMID:28098829

  8. Digital Terrain from a Two-Step Segmentation and Outlier-Based Algorithm

    NASA Astrophysics Data System (ADS)

    Hingee, Kassel; Caccetta, Peter; Caccetta, Louis; Wu, Xiaoliang; Devereaux, Drew

    2016-06-01

    We present a novel ground filter for remotely sensed height data. Our filter has two phases: the first phase segments the DSM with a slope threshold and uses gradient direction to identify candidate ground segments; the second phase fits surfaces to the candidate ground points and removes outliers. Digital terrain is obtained by a surface fit to the final set of ground points. We tested the new algorithm on digital surface models (DSMs) for a 9600km2 region around Perth, Australia. This region contains a large mix of land uses (urban, grassland, native forest and plantation forest) and includes both a sandy coastal plain and a hillier region (elevations up to 0.5km). The DSMs are captured annually at 0.2m resolution using aerial stereo photography, resulting in 1.2TB of input data per annum. Overall accuracy of the filter was estimated to be 89.6% and on a small semi-rural subset our algorithm was found to have 40% fewer errors compared to Inpho's Match-T algorithm.

  9. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  10. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    PubMed Central

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-01-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of TOF scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (Direct Image Reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias vs. variance performance to iterative TOF reconstruction with a matched resolution model. PMID:27032968

  11. Analytic TOF PET reconstruction algorithm within DIRECT data partitioning framework

    NASA Astrophysics Data System (ADS)

    Matej, Samuel; Daube-Witherspoon, Margaret E.; Karp, Joel S.

    2016-05-01

    Iterative reconstruction algorithms are routinely used for clinical practice; however, analytic algorithms are relevant candidates for quantitative research studies due to their linear behavior. While iterative algorithms also benefit from the inclusion of accurate data and noise models the widespread use of time-of-flight (TOF) scanners with less sensitivity to noise and data imperfections make analytic algorithms even more promising. In our previous work we have developed a novel iterative reconstruction approach (DIRECT: direct image reconstruction for TOF) providing convenient TOF data partitioning framework and leading to very efficient reconstructions. In this work we have expanded DIRECT to include an analytic TOF algorithm with confidence weighting incorporating models of both TOF and spatial resolution kernels. Feasibility studies using simulated and measured data demonstrate that analytic-DIRECT with appropriate resolution and regularization filters is able to provide matched bias versus variance performance to iterative TOF reconstruction with a matched resolution model.

  12. Prospects of detection of the first sources with SKA using matched filters

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.; Mellema, Garrelt; Choudhuri, Samir; Majumdar, Suman; Giri, Sambit K.

    2018-05-01

    The matched filtering technique is an efficient method to detect H ii bubbles and absorption regions in radio interferometric observations of the redshifted 21-cm signal from the epoch of reionization and the Cosmic Dawn. Here, we present an implementation of this technique to the upcoming observations such as the SKA1-low for a blind search of absorption regions at the Cosmic Dawn. The pipeline explores four dimensional parameter space on the simulated mock visibilities using a MCMC algorithm. The framework is able to efficiently determine the positions and sizes of the absorption/H ii regions in the field of view.

  13. State of Charge estimation of lithium ion battery based on extended Kalman filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Feng, Yiming; Pan, Binbiao; Wan, Renzhuo; Wang, Jun

    2017-08-01

    Accurate estimation of state-of-charge (SOC) for lithium ion battery is crucial for real-time diagnosis and prognosis in green energy vehicles. In this paper, a state space model of the battery based on Thevenin model is adopted. The strategy of estimating state of charge (SOC) based on extended Kalman fil-ter is presented, as well as to combine with ampere-hour counting (AH) and open circuit voltage (OCV) methods. The comparison between simulation and experiments indicates that the model’s performance matches well with that of lithium ion battery. The algorithm of extended Kalman filter keeps a good accura-cy precision and less dependent on its initial value in full range of SOC, which is proved to be suitable for online SOC estimation.

  14. Maximum likelihood estimation of signal-to-noise ratio and combiner weight

    NASA Technical Reports Server (NTRS)

    Kalson, S.; Dolinar, S. J.

    1986-01-01

    An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.

  15. Fast localization of optic disc and fovea in retinal images for eye disease screening

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.

    2011-03-01

    Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.

  16. On the precision of automated activation time estimation

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.

    1988-01-01

    We examined how the assignment of local activation times in epicardial and endocardial electrograms is affected by sampling rate, ambient signal-to-noise ratio, and sinx/x waveform interpolation. Algorithms used for the estimation of fiducial point locations included dV/dtmax, and a matched filter detection algorithm. Test signals included epicardial and endocardial electrograms overlying both normal and infarcted regions of dog myocardium. Signal-to-noise levels were adjusted by combining known data sets with white noise "colored" to match the spectral characteristics of experimentally recorded noise. For typical signal-to-noise ratios and sampling rates, the template-matching algorithm provided the greatest precision in reproducibly estimating fiducial point location, and sinx/x interpolation allowed for an additional significant improvement. With few restrictions, combining these two techniques may allow for use of digitization rates below the Nyquist rate without significant loss of precision.

  17. A multistage gene normalization system integrating multiple effective methods.

    PubMed

    Li, Lishuang; Liu, Shanshan; Li, Lihua; Fan, Wenting; Huang, Degen; Zhou, Huiwei

    2013-01-01

    Gene/protein recognition and normalization is an important preliminary step for many biological text mining tasks. In this paper, we present a multistage gene normalization system which consists of four major subtasks: pre-processing, dictionary matching, ambiguity resolution and filtering. For the first subtask, we apply the gene mention tagger developed in our earlier work, which achieves an F-score of 88.42% on the BioCreative II GM testing set. In the stage of dictionary matching, the exact matching and approximate matching between gene names and the EntrezGene lexicon have been combined. For the ambiguity resolution subtask, we propose a semantic similarity disambiguation method based on Munkres' Assignment Algorithm. At the last step, a filter based on Wikipedia has been built to remove the false positives. Experimental results show that the presented system can achieve an F-score of 90.1%, outperforming most of the state-of-the-art systems.

  18. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching

    PubMed Central

    Wang, Guohua; Liu, Qiong

    2015-01-01

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only. PMID:26703611

  19. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    PubMed

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  20. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    PubMed

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  1. Architectures and algorithms for digital image processing; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)

    1986-01-01

    The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.

  2. Photogrammetric DSM denoising

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.

    2014-08-01

    Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.

  3. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter.

    PubMed

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-10-23

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.

  4. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter

    PubMed Central

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-01-01

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment. PMID:29065521

  5. Modified compensation algorithm of lever-arm effect and flexural deformation for polar shipborne transfer alignment based on improved adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Tongda; Cheng, Jianhua; Guan, Dongxue; Kang, Yingyao; Zhang, Wei

    2017-09-01

    Due to the lever-arm effect and flexural deformation in the practical application of transfer alignment (TA), the TA performance is decreased. The existing polar TA algorithm only compensates a fixed lever-arm without considering the dynamic lever-arm caused by flexural deformation; traditional non-polar TA algorithms also have some limitations. Thus, the performance of existing compensation algorithms is unsatisfactory. In this paper, a modified compensation algorithm of the lever-arm effect and flexural deformation is proposed to promote the accuracy and speed of the polar TA. On the basis of a dynamic lever-arm model and a noise compensation method for flexural deformation, polar TA equations are derived in grid frames. Based on the velocity-plus-attitude matching method, the filter models of polar TA are designed. An adaptive Kalman filter (AKF) is improved to promote the robustness and accuracy of the system, and then applied to the estimation of the misalignment angles. Simulation and experiment results have demonstrated that the modified compensation algorithm based on the improved AKF for polar TA can effectively compensate the lever-arm effect and flexural deformation, and then improve the accuracy and speed of TA in the polar region.

  6. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  7. Visual environment recognition for robot path planning using template matched filters

    NASA Astrophysics Data System (ADS)

    Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto

    2017-08-01

    A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.

  8. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu

    2017-09-01

    This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.

  9. Improved space object detection using short-exposure image data with daylight background.

    PubMed

    Becker, David; Cain, Stephen

    2018-05-10

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.

  10. The Tetracorder user guide: version 4.4

    USGS Publications Warehouse

    Livo, Keith Eric; Clark, Roger N.

    2014-01-01

    Imaging spectroscopy mapping software assists in the identification and mapping of materials based on their chemical properties as expressed in spectral measurements of a planet including the solid or liquid surface or atmosphere. Such software can be used to analyze field, aircraft, or spacecraft data; remote sensing datasets; or laboratory spectra. Tetracorder is a set of software algorithms commanded through an expert system to identify materials based on their spectra (Clark and others, 2003). Tetracorder also can be used in traditional remote sensing analyses, because some of the algorithms are a version of a matched filter. Thus, depending on the instructions fed to the Tetracorder system, results can range from simple matched filter output, to spectral feature fitting, to full identification of surface materials (within the limits of the spectral signatures of materials over the spectral range and resolution of the imaging spectroscopy data). A basic understanding of spectroscopy by the user is required for developing an optimum mapping strategy and assessing the results.

  11. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature.

    PubMed

    Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie

    2018-02-23

    Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  12. CFA-aware features for steganalysis of color images

    NASA Astrophysics Data System (ADS)

    Goljan, Miroslav; Fridrich, Jessica

    2015-03-01

    Color interpolation is a form of upsampling, which introduces constraints on the relationship between neighboring pixels in a color image. These constraints can be utilized to substantially boost the accuracy of steganography detectors. In this paper, we introduce a rich model formed by 3D co-occurrences of color noise residuals split according to the structure of the Bayer color filter array to further improve detection. Some color interpolation algorithms, AHD and PPG, impose pixel constraints so tight that extremely accurate detection becomes possible with merely eight features eliminating the need for model richification. We carry out experiments on non-adaptive LSB matching and the content-adaptive algorithm WOW on five different color interpolation algorithms. In contrast to grayscale images, in color images that exhibit traces of color interpolation the security of WOW is significantly lower and, depending on the interpolation algorithm, may even be lower than non-adaptive LSB matching.

  13. All-digital GPS receiver mechanization

    NASA Astrophysics Data System (ADS)

    Ould, P. C.; van Wechel, R. J.

    The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.

  14. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    PubMed

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    PubMed

    Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.

  16. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    NASA Astrophysics Data System (ADS)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  17. The selection of the optimal baseline in the front-view monocular vision system

    NASA Astrophysics Data System (ADS)

    Xiong, Bincheng; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen

    2018-03-01

    In the front-view monocular vision system, the accuracy of solving the depth field is related to the length of the inter-frame baseline and the accuracy of image matching result. In general, a longer length of the baseline can lead to a higher precision of solving the depth field. However, at the same time, the difference between the inter-frame images increases, which increases the difficulty in image matching and the decreases matching accuracy and at last may leads to the failure of solving the depth field. One of the usual practices is to use the tracking and matching method to improve the matching accuracy between images, but this algorithm is easy to cause matching drift between images with large interval, resulting in cumulative error in image matching, and finally the accuracy of solving the depth field is still very low. In this paper, we propose a depth field fusion algorithm based on the optimal length of the baseline. Firstly, we analyze the quantitative relationship between the accuracy of the depth field calculation and the length of the baseline between frames, and find the optimal length of the baseline by doing lots of experiments; secondly, we introduce the inverse depth filtering technique for sparse SLAM, and solve the depth field under the constraint of the optimal length of the baseline. By doing a large number of experiments, the results show that our algorithm can effectively eliminate the mismatch caused by image changes, and can still solve the depth field correctly in the large baseline scene. Our algorithm is superior to the traditional SFM algorithm in time and space complexity. The optimal baseline obtained by a large number of experiments plays a guiding role in the calculation of the depth field in front-view monocular.

  18. Tracking Subpixel Targets with Critically Sampled Optical Sensors

    DTIC Science & Technology

    2012-09-01

    5 [32]. The Viterbi algorithm is a dynamic programming method for calculating the MAP in O(tn2) time . The most common use of this algorithm is in the... method to detect subpixel point targets using the sensor’s PSF as an identifying characteristic. Using matched filtering theory, a measure is defined to...ocean surface beneath the cloud will have a different distribution. While the basic methods will adapt to changes in cloud cover over time , it is also

  19. On dealing with multiple correlation peaks in PIV

    NASA Astrophysics Data System (ADS)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  20. FPGA-accelerated algorithm for the regular expression matching system

    NASA Astrophysics Data System (ADS)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  1. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves.

    PubMed

    van Velzen, Marit H N; Loeve, Arjo J; Niehof, Sjoerd P; Mik, Egbert G

    2017-11-01

    Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW shape. PPG signals are sensitive to artefacts. Coughing or movement of the subject can affect PW shapes that much that the PWs become unsuitable for further analysis. The aim of this study was to develop an algorithm that automatically and objectively eliminates unsuitable PWs. In order to develop a proper algorithm for eliminating unsuitable PWs, a literature study was conducted. Next, a '7Step PW-Filter' algorithm was developed that applies seven criteria to determine whether a PW matches the characteristics required to allow PTT calculation. To validate whether the '7Step PW-Filter' eliminates only and all unsuitable PWs, its elimination results were compared to the outcome of manual elimination of unsuitable PWs. The '7Step PW-Filter' had a sensitivity of 96.3% and a specificity of 99.3%. The overall accuracy of the '7Step PW-Filter' for detection of unsuitable PWs was 99.3%. Compared to manual elimination, using the '7Step PW-Filter' reduces PW elimination times from hours to minutes and helps to increase the validity, reliability and reproducibility of PTT data.

  2. A simple new filter for nonlinear high-dimensional data assimilation

    NASA Astrophysics Data System (ADS)

    Tödter, Julian; Kirchgessner, Paul; Ahrens, Bodo

    2015-04-01

    The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes' theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. This work shows how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The forecast step remains as in the ETKF. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF). The properties and performance of the proposed algorithm are investigated via a set of Lorenz experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Furthermore, localization enhances the potential applicability of this PF-inspired scheme in larger-dimensional systems. Finally, the novel algorithm is coupled to a large-scale ocean general circulation model. The NETF is stable, behaves reasonably and shows a good performance with a realistic ensemble size. The results confirm that, in principle, it can be applied successfully and as simple as the ETKF in high-dimensional problems without further modifications of the algorithm, even though it is only based on the particle weights. This proves that the suggested method constitutes a useful filter for nonlinear, high-dimensional data assimilation, and is able to overcome the curse of dimensionality even in deterministic systems.

  3. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  4. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  5. An improved three-dimension reconstruction method based on guided filter and Delaunay

    NASA Astrophysics Data System (ADS)

    Liu, Yilin; Su, Xiu; Liang, Haitao; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    Binocular stereo vision is becoming a research hotspot in the area of image processing. Based on traditional adaptive-weight stereo matching algorithm, we improve the cost volume by averaging the AD (Absolute Difference) of RGB color channels and adding x-derivative of the grayscale image to get the cost volume. Then we use guided filter in the cost aggregation step and weighted median filter for post-processing to address the edge problem. In order to get the location in real space, we combine the deep information with the camera calibration to project each pixel in 2D image to 3D coordinate matrix. We add the concept of projection to region-growing algorithm for surface reconstruction, its specific operation is to project all the points to a 2D plane through the normals of clouds and return the results back to 3D space according to these connection relationship among the points in 2D plane. During the triangulation in 2D plane, we use Delaunay algorithm because it has optimal quality of mesh. We configure OpenCV and pcl on Visual Studio for testing, and the experimental results show that the proposed algorithm have higher computational accuracy of disparity and can realize the details of the real mesh model.

  6. Improving the interoperability of biomedical ontologies with compound alignments.

    PubMed

    Oliveira, Daniela; Pesquita, Catia

    2018-01-09

    Ontologies are commonly used to annotate and help process life sciences data. Although their original goal is to facilitate integration and interoperability among heterogeneous data sources, when these sources are annotated with distinct ontologies, bridging this gap can be challenging. In the last decade, ontology matching systems have been evolving and are now capable of producing high-quality mappings for life sciences ontologies, usually limited to the equivalence between two ontologies. However, life sciences research is becoming increasingly transdisciplinary and integrative, fostering the need to develop matching strategies that are able to handle multiple ontologies and more complex relations between their concepts. We have developed ontology matching algorithms that are able to find compound mappings between multiple biomedical ontologies, in the form of ternary mappings, finding for instance that "aortic valve stenosis"(HP:0001650) is equivalent to the intersection between "aortic valve"(FMA:7236) and "constricted" (PATO:0001847). The algorithms take advantage of search space filtering based on partial mappings between ontology pairs, to be able to handle the increased computational demands. The evaluation of the algorithms has shown that they are able to produce meaningful results, with precision in the range of 60-92% for new mappings. The algorithms were also applied to the potential extension of logical definitions of the OBO and the matching of several plant-related ontologies. This work is a first step towards finding more complex relations between multiple ontologies. The evaluation shows that the results produced are significant and that the algorithms could satisfy specific integration needs.

  7. Taxamatch, an Algorithm for Near (‘Fuzzy’) Matching of Scientific Names in Taxonomic Databases

    PubMed Central

    Rees, Tony

    2014-01-01

    Misspellings of organism scientific names create barriers to optimal storage and organization of biological data, reconciliation of data stored under different spelling variants of the same name, and appropriate responses from user queries to taxonomic data systems. This study presents an analysis of the nature of the problem from first principles, reviews some available algorithmic approaches, and describes Taxamatch, an improved name matching solution for this information domain. Taxamatch employs a custom Modified Damerau-Levenshtein Distance algorithm in tandem with a phonetic algorithm, together with a rule-based approach incorporating a suite of heuristic filters, to produce improved levels of recall, precision and execution time over the existing dynamic programming algorithms n-grams (as bigrams and trigrams) and standard edit distance. Although entirely phonetic methods are faster than Taxamatch, they are inferior in the area of recall since many real-world errors are non-phonetic in nature. Excellent performance of Taxamatch (as recall, precision and execution time) is demonstrated against a reference database of over 465,000 genus names and 1.6 million species names, as well as against a range of error types as present at both genus and species levels in three sets of sample data for species and four for genera alone. An ancillary authority matching component is included which can be used both for misspelled names and for otherwise matching names where the associated cited authorities are not identical. PMID:25247892

  8. Block matching and Wiener filtering approach to optical turbulence mitigation and its application to simulated and real imagery with quantitative error analysis

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; Rucci, Michael A.; Dapore, Alexander J.; Karch, Barry K.

    2017-07-01

    We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged, and the average image is processed with a Wiener filter to provide deconvolution. An important aspect of the proposed method lies in how we model the degradation point spread function (PSF) for the purposes of Wiener filtering. We use a parametric model that takes into account the level of geometric correction achieved during image registration. This is unlike any method we are aware of in the literature. By matching the PSF to the level of registration in this way, the Wiener filter is able to fully exploit the reduced blurring achieved by registration. We also describe a method for estimating the atmospheric coherence diameter (or Fried parameter) from the estimated motion vectors. We provide a detailed performance analysis that illustrates how the key tuning parameters impact system performance. The proposed method is relatively simple computationally, yet it has excellent performance in comparison with state-of-the-art benchmark methods in our study.

  9. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  10. Design of tree structured matched wavelet for HRV signals of menstrual cycle.

    PubMed

    Rawal, Kirti; Saini, B S; Saini, Indu

    2016-07-01

    An algorithm is presented for designing a new class of wavelets matched to the Heart Rate Variability (HRV) signals of the menstrual cycle. The proposed wavelets are used to find HRV variations between phases of menstrual cycle. The method finds the signal matching characteristics by minimising the shape feature error using Least Mean Square method. The proposed filter banks are used for the decomposition of the HRV signal. For reconstructing the original signal, the tree structure method is used. In this approach, decomposed sub-bands are selected based upon their energy in each sub-band. Thus, instead of using all sub-bands for reconstruction, sub-bands having high energy content are used for the reconstruction of signal. Thus, a lower number of sub-bands are required for reconstruction of the original signal which shows the effectiveness of newly created filter coefficients. Results show that proposed wavelets are able to differentiate HRV variations between phases of the menstrual cycle accurately than standard wavelets.

  11. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster candidates, and examine the prominence of the red sequence in each. We find that the X-ray clusters in our survey do not all have a prominent red sequence. We conclude that while the red sequence may be a distinct feature in the color-magnitude plots for virialized massive clusters, it may be less distinct in lower mass clusters of galaxies at even moderate redshifts. Multiple, complementary methods of selecting and defining clusters may be essential, particularly at high redshift where all methods start to run into completeness limits, incomplete understanding of physical evolution, and projection effects.

  12. Kalman filter parameter estimation for a nonlinear diffusion model of epithelial cell migration using stochastic collocation and the Karhunen-Loeve expansion.

    PubMed

    Barber, Jared; Tanase, Roxana; Yotov, Ivan

    2016-06-01

    Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Uncertainty Representation and Interpretation in Model-based Prognostics Algorithms based on Kalman Filter Estimation

    DTIC Science & Technology

    2012-09-01

    interpreting the state vector as the health indicator and a threshold is used on this variable in order to compute EOL (end-of-life) and RUL. Here, we...End-of-life ( EOL ) would match the true spread and would not change from one experiment to another. This is, however, in practice impossible to achieve

  14. Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.

    PubMed

    Slażyński, Leszek; Bohte, Sander

    2012-01-01

    The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.

  15. Signal Processing Design of Low Probability of Intercept Waveforms via Intersymbol Dither

    DTIC Science & Technology

    2008-03-01

    filter output asynchronously. 3.3.1 Basic Receiver. This section considers the receiver shown in Fig- ure 3.4. Note that the matched filter output is...0 0.5 1 Q ua dr at ur e In−phase s1s2 s3 s4 Figure 4.3: 4-ary DPSK Constellation Table 4.1: 4-ary DPSK Gray code mapping Word Phase Shift, ∆θ 00 0 01...both the real and imaginary parts of each noise samples following an independent Gaussian distribution. The Marsaglia ziggurat algorithm in Matlabr is

  16. Multiple targets detection method in detection of UWB through-wall radar

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Yang, Chuanfa; Zhao, Xingwen; Tian, Xianzhong

    2017-11-01

    In this paper, the problems and difficulties encountered in the detection of multiple moving targets by UWB radar are analyzed. The experimental environment and the penetrating radar system are established. An adaptive threshold method based on local area is proposed to effectively filter out clutter interference The objective of the moving target is analyzed, and the false target is further filtered out by extracting the target feature. Based on the correlation between the targets, the target matching algorithm is proposed to improve the detection accuracy. Finally, the effectiveness of the above method is verified by practical experiment.

  17. Improving signal-to-noise ratios of liquid chromatography-tandem mass spectrometry peaks using noise frequency spectrum modification between two consecutive matched-filtering procedures.

    PubMed

    Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min

    2007-08-17

    This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.

  18. Comparing multiple turbulence restoration algorithms performance on noisy anisoplanatic imagery

    NASA Astrophysics Data System (ADS)

    Rucci, Michael A.; Hardie, Russell C.; Dapore, Alexander J.

    2017-05-01

    In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching method with restoration filter. These algorithms were chosen because they incorporate different approaches and processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated degraded imagery.

  19. A basic analysis toolkit for biological sequences

    PubMed Central

    Giancarlo, Raffaele; Siragusa, Alessandro; Siragusa, Enrico; Utro, Filippo

    2007-01-01

    This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks. Namely, local alignments, via approximate string matching, and global alignments, via longest common subsequence and alignments with affine and concave gap cost functions. Moreover, it also supports filtering operations to select strings from a set and establish their statistical significance, via z-score computation. None of the algorithms is new, but although they are generally regarded as fundamental for sequence analysis, they have not been implemented in a single and consistent software package, as we do here. Therefore, our main contribution is to fill this gap between algorithmic theory and practice by providing an extensible and easy to use software library that includes algorithms for the mentioned string matching and alignment problems. The library consists of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and can also be used as a stand-alone system with a GUI. The software is available at under the GNU GPL. PMID:17877802

  20. A hierarchical graph neuron scheme for real-time pattern recognition.

    PubMed

    Nasution, B B; Khan, A I

    2008-02-01

    The hierarchical graph neuron (HGN) implements a single cycle memorization and recall operation through a novel algorithmic design. The HGN is an improvement on the already published original graph neuron (GN) algorithm. In this improved approach, it recognizes incomplete/noisy patterns. It also resolves the crosstalk problem, which is identified in the previous publications, within closely matched patterns. To accomplish this, the HGN links multiple GN networks for filtering noise and crosstalk out of pattern data inputs. Intrinsically, the HGN is a lightweight in-network processing algorithm which does not require expensive floating point computations; hence, it is very suitable for real-time applications and tiny devices such as the wireless sensor networks. This paper describes that the HGN's pattern matching capability and the small response time remain insensitive to the increases in the number of stored patterns. Moreover, the HGN does not require definition of rules or setting of thresholds by the operator to achieve the desired results nor does it require heuristics entailing iterative operations for memorization and recall of patterns.

  1. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  2. New Directions in the Digital Signal Processing of Image Data.

    DTIC Science & Technology

    1987-05-01

    and identify by block number) FIELD GROUP SUB-GROUP Object detection and idLntification 12 01 restoration of photon noise limited imagery 15 04 image...from incomplete information, restoration of blurred images in additive and multiplicative noise , motion analysis with fast hierarchical algorithms...different resolutions. As is well known, the solution to the matched filter problem under additive white noise conditions is the correlation receiver

  3. Learnable despeckling framework for optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Rashedi, Elaheh; Clayton, Anne; Mohebbi-Kalkhoran, Hamed; Chen, Xue-wen; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2018-01-01

    Optical coherence tomography (OCT) is a prevalent, interferometric, high-resolution imaging method with broad biomedical applications. Nonetheless, OCT images suffer from an artifact called speckle, which degrades the image quality. Digital filters offer an opportunity for image improvement in clinical OCT devices, where hardware modification to enhance images is expensive. To reduce speckle, a wide variety of digital filters have been proposed; selecting the most appropriate filter for an OCT image/image set is a challenging decision, especially in dermatology applications of OCT where a different variety of tissues are imaged. To tackle this challenge, we propose an expandable learnable despeckling framework, we call LDF. LDF decides which speckle reduction algorithm is most effective on a given image by learning a figure of merit (FOM) as a single quantitative image assessment measure. LDF is learnable, which means when implemented on an OCT machine, each given image/image set is retrained and its performance is improved. Also, LDF is expandable, meaning that any despeckling algorithm can easily be added to it. The architecture of LDF includes two main parts: (i) an autoencoder neural network and (ii) filter classifier. The autoencoder learns the FOM based on several quality assessment measures obtained from the OCT image including signal-to-noise ratio, contrast-to-noise ratio, equivalent number of looks, edge preservation index, and mean structural similarity index. Subsequently, the filter classifier identifies the most efficient filter from the following categories: (a) sliding window filters including median, mean, and symmetric nearest neighborhood, (b) adaptive statistical-based filters including Wiener, homomorphic Lee, and Kuwahara, and (c) edge preserved patch or pixel correlation-based filters including nonlocal mean, total variation, and block matching three-dimensional filtering.

  4. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1997-11-04

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.

  5. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Hubbard, Bradley

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.

  6. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation

    PubMed Central

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-01-01

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361

  7. A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2016-12-19

    The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.

  8. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.

    PubMed

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao

    2018-04-05

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  9. Cross-modal face recognition using multi-matcher face scores

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2015-05-01

    The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.

  10. A 48Cycles/MB H.264/AVC Deblocking Filter Architecture for Ultra High Definition Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Dajiang; Zhou, Jinjia; Zhu, Jiayi; Goto, Satoshi

    In this paper, a highly parallel deblocking filter architecture for H.264/AVC is proposed to process one macroblock in 48 clock cycles and give real-time support to QFHD@60fps sequences at less than 100MHz. 4 edge filters organized in 2 groups for simultaneously processing vertical and horizontal edges are applied in this architecture to enhance its throughput. While parallelism increases, pipeline hazards arise owing to the latency of edge filters and data dependency of deblocking algorithm. To solve this problem, a zig-zag processing schedule is proposed to eliminate the pipeline bubbles. Data path of the architecture is then derived according to the processing schedule and optimized through data flow merging, so as to minimize the cost of logic and internal buffer. Meanwhile, the architecture's data input rate is designed to be identical to its throughput, while the transmission order of input data can also match the zig-zag processing schedule. Therefore no intercommunication buffer is required between the deblocking filter and its previous component for speed matching or data reordering. As a result, only one 24×64 two-port SRAM as internal buffer is required in this design. When synthesized with SMIC 130nm process, the architecture costs a gate count of 30.2k, which is competitive considering its high performance.

  11. A floor-map-aided WiFi/pseudo-odometry integration algorithm for an indoor positioning system.

    PubMed

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-03-24

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The "go and back" phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The "cross-wall" problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning.

  12. Robust feature matching via support-line voting and affine-invariant ratios

    NASA Astrophysics Data System (ADS)

    Li, Jiayuan; Hu, Qingwu; Ai, Mingyao; Zhong, Ruofei

    2017-10-01

    Robust image matching is crucial for many applications of remote sensing and photogrammetry, such as image fusion, image registration, and change detection. In this paper, we propose a robust feature matching method based on support-line voting and affine-invariant ratios. We first use popular feature matching algorithms, such as SIFT, to obtain a set of initial matches. A support-line descriptor based on multiple adaptive binning gradient histograms is subsequently applied in the support-line voting stage to filter outliers. In addition, we use affine-invariant ratios computed by a two-line structure to refine the matching results and estimate the local affine transformation. The local affine model is more robust to distortions caused by elevation differences than the global affine transformation, especially for high-resolution remote sensing images and UAV images. Thus, the proposed method is suitable for both rigid and non-rigid image matching problems. Finally, we extract as many high-precision correspondences as possible based on the local affine extension and build a grid-wise affine model for remote sensing image registration. We compare the proposed method with six state-of-the-art algorithms on several data sets and show that our method significantly outperforms the other methods. The proposed method achieves 94.46% average precision on 15 challenging remote sensing image pairs, while the second-best method, RANSAC, only achieves 70.3%. In addition, the number of detected correct matches of the proposed method is approximately four times the number of initial SIFT matches.

  13. Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)

    1987-01-01

    The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.

  14. Gaussian-based filters for detecting Martian dust devils

    USGS Publications Warehouse

    Yang, F.; Mlsna, P.A.; Geissler, P.

    2006-01-01

    The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.

  15. 3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake.

    PubMed

    Jacob, Mathews; Blu, Thierry; Vaillant, Cedric; Maddocks, John H; Unser, Michael

    2006-01-01

    We introduce a three-dimensional (3-D) parametric active contour algorithm for the shape estimation of DNA molecules from stereo cryo-electron micrographs. We estimate the shape by matching the projections of a 3-D global shape model with the micrographs; we choose the global model as a 3-D filament with a B-spline skeleton and a specified radial profile. The active contour algorithm iteratively updates the B-spline coefficients, which requires us to evaluate the projections and match them with the micrographs at every iteration. Since the evaluation of the projections of the global model is computationally expensive, we propose a fast algorithm based on locally approximating it by elongated blob-like templates. We introduce the concept of projection-steerability and derive a projection-steerable elongated template. Since the two-dimensional projections of such a blob at any 3-D orientation can be expressed as a linear combination of a few basis functions, matching the projections of such a 3-D template involves evaluating a weighted sum of inner products between the basis functions and the micrographs. The weights are simple functions of the 3-D orientation and the inner-products are evaluated efficiently by separable filtering. We choose an internal energy term that penalizes the average curvature magnitude. Since the exact length of the DNA molecule is known a priori, we introduce a constraint energy term that forces the curve to have this specified length. The sum of these energies along with the image energy derived from the matching process is minimized using the conjugate gradients algorithm. We validate the algorithm using real, as well as simulated, data and show that it performs well.

  16. Retina verification system based on biometric graph matching.

    PubMed

    Lajevardi, Seyed Mehdi; Arakala, Arathi; Davis, Stephen A; Horadam, Kathy J

    2013-09-01

    This paper presents an automatic retina verification framework based on the biometric graph matching (BGM) algorithm. The retinal vasculature is extracted using a family of matched filters in the frequency domain and morphological operators. Then, retinal templates are defined as formal spatial graphs derived from the retinal vasculature. The BGM algorithm, a noisy graph matching algorithm, robust to translation, non-linear distortion, and small rotations, is used to compare retinal templates. The BGM algorithm uses graph topology to define three distance measures between a pair of graphs, two of which are new. A support vector machine (SVM) classifier is used to distinguish between genuine and imposter comparisons. Using single as well as multiple graph measures, the classifier achieves complete separation on a training set of images from the VARIA database (60% of the data), equaling the state-of-the-art for retina verification. Because the available data set is small, kernel density estimation (KDE) of the genuine and imposter score distributions of the training set are used to measure performance of the BGM algorithm. In the one dimensional case, the KDE model is validated with the testing set. A 0 EER on testing shows that the KDE model is a good fit for the empirical distribution. For the multiple graph measures, a novel combination of the SVM boundary and the KDE model is used to obtain a fair comparison with the KDE model for the single measure. A clear benefit in using multiple graph measures over a single measure to distinguish genuine and imposter comparisons is demonstrated by a drop in theoretical error of between 60% and more than two orders of magnitude.

  17. Coarse Alignment Technology on Moving base for SINS Based on the Improved Quaternion Filter Algorithm.

    PubMed

    Zhang, Tao; Zhu, Yongyun; Zhou, Feng; Yan, Yaxiong; Tong, Jinwu

    2017-06-17

    Initial alignment of the strapdown inertial navigation system (SINS) is intended to determine the initial attitude matrix in a short time with certain accuracy. The alignment accuracy of the quaternion filter algorithm is remarkable, but the convergence rate is slow. To solve this problem, this paper proposes an improved quaternion filter algorithm for faster initial alignment based on the error model of the quaternion filter algorithm. The improved quaternion filter algorithm constructs the K matrix based on the principle of optimal quaternion algorithm, and rebuilds the measurement model by containing acceleration and velocity errors to make the convergence rate faster. A doppler velocity log (DVL) provides the reference velocity for the improved quaternion filter alignment algorithm. In order to demonstrate the performance of the improved quaternion filter algorithm in the field, a turntable experiment and a vehicle test are carried out. The results of the experiments show that the convergence rate of the proposed improved quaternion filter is faster than that of the tradition quaternion filter algorithm. In addition, the improved quaternion filter algorithm also demonstrates advantages in terms of correctness, effectiveness, and practicability.

  18. Iris recognition using possibilistic fuzzy matching on local features.

    PubMed

    Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang

    2012-02-01

    In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.

  19. Communication Channel Estimation and Waveform Design: Time Delay Estimation on Parallel, Flat Fading Channels

    DTIC Science & Technology

    2010-02-01

    channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are

  20. Applying Image Matching to Video Analysis

    DTIC Science & Technology

    2010-09-01

    image groups, classified by the background scene, are the flag, the kitchen, the telephone, the bookshelf , the title screen, the...Kitchen 136 Telephone 3 Bookshelf 81 Title Screen 10 Map 1 24 Map 2 16 command line. This implementation of a Bloom filter uses two arbitrary...with the Bookshelf images. This scene is a much closer shot than the Kitchen scene so the host occupies much of the background. Algorithms for face

  1. Research on Information Sharing Method for Future C2 in Network Centric Environment

    DTIC Science & Technology

    2011-06-01

    subscription (or search) request. Then, some of the information service nodes for future C2 deal with these users’ requests, locate, federated search the... federated search server is responsible for resolving the search requests sending out from the users, and executing the federated search . The information... federated search server, information filtering model, or information subscription matching algorithm (such as users subscribe the target information at two

  2. Matched-filter algorithm for subpixel spectral detection in hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Borough, Howard C.

    1991-11-01

    Hyperspectral imagery, spatial imagery with associated wavelength data for every pixel, offers a significant potential for improved detection and identification of certain classes of targets. The ability to make spectral identifications of objects which only partially fill a single pixel (due to range or small size) is of considerable interest. Multiband imagery such as Landsat's 5 and 7 band imagery has demonstrated significant utility in the past. Hyperspectral imaging systems with hundreds of spectral bands offer improved performance. To explore the application of differentpixel spectral detection algorithms a synthesized set of hyperspectral image data (hypercubes) was generated utilizing NASA earth resources and other spectral data. The data was modified using LOWTRAN 7 to model the illumination, atmospheric contributions, attenuations and viewing geometry to represent a nadir view from 10,000 ft. altitude. The base hypercube (HC) represented 16 by 21 spatial pixels with 101 wavelength samples from 0.5 to 2.5 micrometers for each pixel. Insertions were made into the base data to provide random location, random pixel percentage, and random material. Fifteen different hypercubes were generated for blind testing of candidate algorithms. An algorithm utilizing a matched filter in the spectral dimension proved surprisingly good yielding 100% detections for pixels filled greater than 40% with a standard camouflage paint, and a 50% probability of detection for pixels filled 20% with the paint, with no false alarms. The false alarm rate as a function of the number of spectral bands in the range from 101 to 12 bands was measured and found to increase from zero to 50% illustrating the value of a large number of spectral bands. This test was on imagery without system noise; the next step is to incorporate typical system noise sources.

  3. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  4. Using mixture tuned match filtering to measure changes in subpixel vegetation area in Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Brelsford, Christa; Shepherd, Doug

    2013-09-01

    In desert cities, securing sufficient water supply to meet the needs of both existing population and future growth is a complex problem with few easy solutions. Grass lawns are a major driver of water consumption and accurate measurements of vegetation area are necessary to understand drivers of changes in household water consumption. Measuring vegetation change in a heterogeneous urban environment requires sub-pixel estimation of vegetation area. Mixture Tuned Match Filtering has been successfully applied to target detection for materials that only cover small portions of a satellite image pixel. There have been few successful applications of MTMF to fractional area estimation, despite theory that suggests feasibility. We use a ground truth dataset over ten times larger than that available for any previous MTMF application to estimate the bias between ground truth data and matched filter results. We find that the MTMF algorithm underestimates the fractional area of vegetation by 5-10%, and calculate that averaging over 20 to 30 pixels is necessary to correct this bias. We conclude that with a large ground truth dataset, using MTMF for fractional area estimation is possible when results can be estimated at a lower spatial resolution than the base image. When this method is applied to estimating vegetation area in Las Vegas, NV spatial and temporal trends are consistent with expectations from known population growth and policy goals.

  5. On the simulation and mitigation of anisoplanatic optical turbulence for long range imaging

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; LeMaster, Daniel A.

    2017-05-01

    We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. The simulation tool is also used here to quantitatively evaluate a recently proposed block- matching and Wiener filtering (BMWF) method for turbulence mitigation. In this method block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged and processed with a Wiener filter for restoration. A novel aspect of the proposed BMWF method is that the PSF model used for restoration takes into account the level of geometric correction achieved during image registration. This way, the Wiener filter is able fully exploit the reduced blurring achieved by registration. The BMWF method is relatively simple computationally, and yet, has excellent performance in comparison to state-of-the-art benchmark methods.

  6. Low cost digital electronics for isotope analysis with microcalorimeters - final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Hennig

    2006-09-11

    The overall goal of the Phase I research was to demonstrate that the digital readout electronics and filter algorithms developed by XIA for use with HPGe detectors can be adapted to high precision, cryogenic gamma detectors (microcalorimeters) and not only match the current state of the art in terms of energy resolution, but do so at a significantly reduced cost. This would make it economically feasible to instrument large arrays of microcalorimeters and would also allow automation of the setup, calibration and operation of large numbers of channels through software. We expected, and have demonstrated, that this approach would furthermore » allow much higher count rates than the optimum filter algorithms currently used. In particular, in measurements with a microcalorimeter at LLNL, the adapted Pixie-16 spectrometer achieved an energy resolution of 0.062%, significantly better than the targeted resolution of 0.1% in the Phase I proposal and easily matching resolutions obtained with LLNL readout electronics and optimum filtering (0.066%). The theoretical maximum output count rate for the filter settings used to achieve this resolution is about 120cps. If the filter is adjusted for maximum throughput with an energy resolution of 0.1% or better, rates of 260cps are possible. This is 20-50 times higher than the maximum count rates of about 5cps with optimum filters for this detector. While microcalorimeter measurements were limited to count rates of ~1.3cps due to the strength of available sources, pulser measurements demonstrated that measured energy resolutions were independent of counting rate to output counting rates well in excess of 200cps or more.. We also developed a preliminary hardware design of a spectrometer module, consisting of a digital processing core and several input options that can be implemented on daughter boards. Depending upon the daughter board, the total parts cost per channel ranged between $12 and $27, resulting in projected product prices of $80 to $160 per channel. This demonstrates that a price of $100 per channel is economically very feasible for large microcalorimeter arrays.« less

  7. Image based book cover recognition and retrieval

    NASA Astrophysics Data System (ADS)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  8. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    NASA Astrophysics Data System (ADS)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  9. Motion Evaluation for Rehabilitation Training of the Disabled

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Young; Park, Jun; Lim, Cheol-Su

    In this paper, a motion evaluation technique for rehabilitation training is introduced. Motion recognition technologies have been developed for determining matching motions in the training set. However, we need to measure how well and how much of the motion has been followed for training motion evaluation. We employed a Finite State Machine as a framework of motion evaluation. For similarity analysis, we used weighted angular value differences although any template matching algorithm may be used. For robustness under illumination changes, IR LED's and cameras with IR-pass filter were used. Developed technique was successfully used for rehabilitation training of the disabled. Therapists appraised the system as practically useful.

  10. The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone

    NASA Astrophysics Data System (ADS)

    Liu, J.; Jiang, C.; Shi, Z.

    2017-09-01

    Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.

  11. Speckle-reducing scale-invariant feature transform match for synthetic aperture radar image registration

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Li, Bo; Xu, Qizhi

    2016-07-01

    The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.

  12. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar

    PubMed Central

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun

    2018-01-01

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256×13 real-time radar image display with a throughput of 28.2 frames per second. PMID:29621170

  13. Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA)

    PubMed Central

    Grötzinger, Stefan W.; Alam, Intikhab; Ba Alawi, Wail; Bajic, Vladimir B.; Stingl, Ulrich; Eppinger, Jörg

    2014-01-01

    Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant challenges for the attribution of functions to the coding sequences identified. The anoxic deep-sea brine pools of the Red Sea are a promising source of novel enzymes with unique evolutionary adaptation. Sequencing data from Red Sea brine pool cultures and SAGs are annotated and stored in the Integrated Data Warehouse of Microbial Genomes (INDIGO) data warehouse. Low sequence homology of annotated genes (no similarity for 35% of these genes) may translate into false positives when searching for specific functions. The Profile and Pattern Matching (PPM) strategy described here was developed to eliminate false positive annotations of enzyme function before progressing to labor-intensive hyper-saline gene expression and characterization. It utilizes InterPro-derived Gene Ontology (GO)-terms (which represent enzyme function profiles) and annotated relevant PROSITE IDs (which are linked to an amino acid consensus pattern). The PPM algorithm was tested on 15 protein families, which were selected based on scientific and commercial potential. An initial list of 2577 enzyme commission (E.C.) numbers was translated into 171 GO-terms and 49 consensus patterns. A subset of INDIGO-sequences consisting of 58 SAGs from six different taxons of bacteria and archaea were selected from six different brine pool environments. Those SAGs code for 74,516 genes, which were independently scanned for the GO-terms (profile filter) and PROSITE IDs (pattern filter). Following stringent reliability filtering, the non-redundant hits (106 profile hits and 147 pattern hits) are classified as reliable, if at least two relevant descriptors (GO-terms and/or consensus patterns) are present. Scripts for annotation, as well as for the PPM algorithm, are available through the INDIGO website. PMID:24778629

  14. A Brokering Protocol for Agent-Based Grid Resource Discovery

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyong; Sim, Kwang Mong

    Resource discovery is one of the basic and key aspects in grid resource management, which aims at searching for the suitable resources for satisfying the requirement of users' applications. This paper introduces an agent-based brokering protocol which connects users and providers in grid environments. In particular, it focuses on addressing the problem of connecting users and providers. A connection algorithm that matches advertisements of users and requests from providers based on pre-specified multiple criteria is devised and implemented. The connection algorithm mainly consists of four stages: selection, evaluation, filtering, and recommendation. A series of experiments that were carried out in executing the protocol, and favorable results were obtained.

  15. Transiting Planet Search in the Kepler Pipeline

    NASA Technical Reports Server (NTRS)

    Jenkins, Jon M.; Chandrasekaran, Hema; McCauliff, Sean D.; Caldwell, Douglas A.; Tenebaum, Peter; Li, Jie; Klaus, Todd C.; Cote, Mile T.; Middour, Christopher

    2010-01-01

    The Kepler Mission simultaneously measures the brightness of more than 160,000 stars every 29.4 minutes over a 3.5-year mission to search for transiting planets. Detecting transits is a signal-detection problem where the signal of interest is a periodic pulse train and the predominant noise source is non-white, non-stationary (1/f) type process of stellar variability. Many stars also exhibit coherent or quasi-coherent oscillations. The detection algorithm first identifies and removes strong oscillations followed by an adaptive, wavelet-based matched filter. We discuss how we obtain super-resolution detection statistics and the effectiveness of the algorithm for Kepler flight data.

  16. Covert Half Duplex Data Link Using Radar-Embedded Communications With Various Modulation Schemes

    DTIC Science & Technology

    2017-12-01

    27 Figure 4.1 Comparison of Theoretical, Radar-Pulse-Only Matched Filter , and the Radar...CommunicationsMatched Filtered PD Curves versus SNR for RCR = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 4.2 Comparison of Theoretical, Radar...Pulse-Only Matched Filter , and the Radar-CommunicationsMatched Filtered PD Curves versus SNR for RCR = [3, 6, 10] dB

  17. PSK Shift Timing Information Detection Using Image Processing and a Matched Filter

    DTIC Science & Technology

    2009-09-01

    phase shifts are enhanced.  Develop, design, and test the resulting phase shift identification scheme. xx  Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme.  Develop, design, and test an optional analysis window overlapping technique to improve phase

  18. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  19. Matched spectral filter based on reflection holograms for analyte identification.

    PubMed

    Cao, Liangcai; Gu, Claire

    2009-12-20

    A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO(3) crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025 degrees . Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter's reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.

  20. Matched filter based detection of floating mines in IR spacetime

    NASA Astrophysics Data System (ADS)

    Borghgraef, Alexander; Lapierre, Fabian; Philips, Wilfried; Acheroy, Marc

    2009-09-01

    Ship-based automatic detection of small floating objects on an agitated sea surface remains a hard problem. Our main concern is the detection of floating mines, which proved a real threat to shipping in confined waterways during the first Gulf War, but applications include salvaging,search-and-rescue and perimeter or harbour defense. IR video was chosen for its day-and-night imaging capability, and its availability on military vessels. Detection is difficult because a rough sea is seen as a dynamic background of moving objects with size order, shape and temperature similar to those of the floating mine. We do find a determinant characteristic in the target's periodic motion, which differs from that of the propagating surface waves composing the background. The classical detection and tracking approaches give bad results when applied to this problem. While background detection algorithms assume a quasi-static background, the sea surface is actually very dynamic, causing this category of algorithms to fail. Kalman or particle filter algorithms on the other hand, which stress temporal coherence, suffer from tracking loss due to occlusions and the great noise level of the image. We propose an innovative approach. This approach uses the periodicity of the objects movement and thus its temporal coherence. The principle is to consider the video data as a spacetime volume similar to a hyperspectral data cube by replacing the spectral axis with a temporal axis. We can then apply algorithms developed for hyperspectral detection problems to the detection of small floating objects. We treat the detection problem using multilinear algebra, designing a number of finite impulse response filters (FIR) maximizing the target response. The algorithm was applied to test footage of practice mines in the infrared.

  1. Advancements to the planogram frequency–distance rebinning algorithm

    PubMed Central

    Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E

    2010-01-01

    In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact reconstruction) and planogram filtered backprojection image reconstruction algorithms. We show that the PFDRX algorithm produces images that are nearly as accurate as images reconstructed with the planogram filtered backprojection algorithm and more accurate than images reconstructed with the PFDR+FBP algorithm. Both the PFDR+FBP and PFDRX algorithms provide a dramatic improvement in computation time over the planogram filtered backprojection algorithm. PMID:20436790

  2. Simulation for noise cancellation using LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  3. Symmetric Phase Only Filtering for Improved DPIV Data Processing

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2006-01-01

    The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."

  4. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.

    PubMed

    Kalathil, Shaeen; Elias, Elizabeth

    2015-11-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.

  5. Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space

    PubMed Central

    Kalathil, Shaeen; Elias, Elizabeth

    2014-01-01

    This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921

  6. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-01-01

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The “go and back” phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The “cross-wall” problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning. PMID:25811224

  7. INS/GNSS Tightly-Coupled Integration Using Quaternion-Based AUPF for USV.

    PubMed

    Xia, Guoqing; Wang, Guoqing

    2016-08-02

    This paper addresses the problem of integration of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) for the purpose of developing a low-cost, robust and highly accurate navigation system for unmanned surface vehicles (USVs). A tightly-coupled integration approach is one of the most promising architectures to fuse the GNSS data with INS measurements. However, the resulting system and measurement models turn out to be nonlinear, and the sensor stochastic measurement errors are non-Gaussian and distributed in a practical system. Particle filter (PF), one of the most theoretical attractive non-linear/non-Gaussian estimation methods, is becoming more and more attractive in navigation applications. However, the large computation burden limits its practical usage. For the purpose of reducing the computational burden without degrading the system estimation accuracy, a quaternion-based adaptive unscented particle filter (AUPF), which combines the adaptive unscented Kalman filter (AUKF) with PF, has been proposed in this paper. The unscented Kalman filter (UKF) is used in the algorithm to improve the proposal distribution and generate a posterior estimates, which specify the PF importance density function for generating particles more intelligently. In addition, the computational complexity of the filter is reduced with the avoidance of the re-sampling step. Furthermore, a residual-based covariance matching technique is used to adapt the measurement error covariance. A trajectory simulator based on a dynamic model of USV is used to test the proposed algorithm. Results show that quaternion-based AUPF can significantly improve the overall navigation accuracy and reliability.

  8. The Time-Domain Matched Filter and the Spectral-Domain Matched Filter in 1-Dimensional NMR Spectroscopy.

    PubMed

    Spencer, Richard G

    2010-09-01

    A type of "matched filter" (MF), used extensively in the processing of one-dimensional spectra, is defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio (SNR) in the spectrum obtained after Fourier transformation. However, a different entity known also as the matched filter was introduced by van Vleck in the context of pulse detection in the 1940's and has become widely integrated into signal processing practice. These two types of matched filters appear to be quite distinct. In the NMR case, the "filter", that is, the exponential multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter, demonstrating that the NMR "matched filter" is a special case of the matched filter more rigorously defined in the signal processing literature. In addition, two limitations in the use of the MF are highlighted. First, application of the MF distorts resonance ratios as defined by amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing the SNR with respect to area requires a somewhat different approach to matched filtering.

  9. Spiking Neural Network Decoder for Brain-Machine Interfaces.

    PubMed

    Dethier, Julie; Gilja, Vikash; Nuyujukian, Paul; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using Nengo , a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.

  10. Image denoising for real-time MRI.

    PubMed

    Klosowski, Jakob; Frahm, Jens

    2017-03-01

    To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Global velocity constrained cloud motion prediction for short-term solar forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping

    2016-09-01

    Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.

  12. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  13. Spectral dispersion and fringe detection in IOTA

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Lacasse, M. G.; Carleton, N. P.

    1990-01-01

    Pupil plane beam combination, spectral dispersion, detection, and fringe tracking are discussed for the IOTA interferometer. A new spectrometer design is presented in which the angular dispersion with respect to wavenumber is nearly constant. The dispersing element is a type of grism, a series combination of grating and prism, in which the constant parts of the dispersion add, but the slopes cancel. This grism is optimized for the display of channelled spectra. The dispersed fringes can be tracked by a matched-filter photon-counting correlator algorithm. This algorithm requires very few arithmetic operations per detected photon, making it well-suited for real-time fringe tracking. The algorithm is able to adapt to different stellar spectral types, intensity levels, and atmospheric time constants. The results of numerical experiments are reported.

  14. Computation of maximum gust loads in nonlinear aircraft using a new method based on the matched filter approach and numerical optimization

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Heeg, Jennifer; Perry, Boyd, III

    1990-01-01

    Time-correlated gust loads are time histories of two or more load quantities due to the same disturbance time history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is maximum. At least two analysis methods have been identified that are capable of computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and computing multiple simultaneous load responses. Such time histories are physically realizable and may be applied to aircraft structures. Within the past several years there has been much interest in obtaining a practical analysis method which is capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus of an international committee of gust loads specialists formed by the U.S. Federal Aviation Administration and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in Mobile, Alabama. The kinds of nonlinearities common on modern transport aircraft are indicated. The Statical Discrete Gust method is capable of being, but so far has not been, applied to nonlinear aircraft. To make the method practical for nonlinear applications, a search procedure is essential. Another method is based on Matched Filter Theory and, in its current form, is applicable to linear systems only. The purpose here is to present the status of an attempt to extend the matched filter approach to nonlinear systems. The extension uses Matched Filter Theory as a starting point and then employs a constrained optimization algorithm to attack the nonlinear problem.

  15. New development of the image matching algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Feng, Zhao

    2018-04-01

    To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.

  16. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  17. Structural Acoustic UXO Detection and Identification in Marine Environments

    DTIC Science & Technology

    2016-05-01

    BOSS Buried Object Scanning Sonar DVL Doppler Velocity Log EW East/West IMU Inertial Measurement Unit NRL Naval Research Laboratory NSWC-PCD... Inertial Measurement Unit (IMU) to time-delay and coherently sum matched-filtered phase histories from subsurface focal points over a large number of... Measurement Unit (IMU) systems. In our imaging algorithm, the 2D depth image of a target, i.e. one mapped over x and z or y and z, presents the

  18. Deep searches for broadband extended gravitational-wave emission bursts by heterogeneous computing

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2017-09-01

    We present a heterogeneous search algorithm for broadband extended gravitational-wave emission, expected from gamma-ray bursts and energetic core-collapse supernovae. It searches the (f,\\dot{f})-plane for long-duration bursts by inner engines slowly exhausting their energy reservoir by matched filtering on a graphics processor unit (GPU) over a template bank of millions of 1 s duration chirps. Parseval's theorem is used to predict the standard deviation σ of the filter output, taking advantage of the near-Gaussian noise in the LIGO S6 data over 350-2000 Hz. Tails exceeding a multiple of σ are communicated back to a central processing unit. This algorithm attains about 65% efficiency overall, normalized to the fast Fourier transform. At about one million correlations per second over data segments of 16 s duration (N=2^{16} samples), better than real-time analysis is achieved on a cluster of about a dozen GPUs. We demonstrate its application to the capture of high-frequency hardware LIGO injections. This algorithm serves as a starting point for deep all-sky searches in both archive data and real-time analysis in current observational runs.

  19. Hybrid geometric-random template-placement algorithm for gravitational wave searches from compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay

    2017-05-01

    Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.

  20. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  1. A high powered radar interference mitigation technique for communications signal recovery with fpga implementation

    DTIC Science & Technology

    2017-03-01

    2016.7485263.] 14. SUBJECT TERMS parameter estimation; matched- filter detection; QPSK; radar; interference; LSE, cyber, electronic warfare 15. NUMBER OF...signal is routed through a maximum-likelihood detector (MLD), which is a bank of four filters matched to the four symbols of the QPSK constellation... filters matched for each of the QPSK symbols is used to demodulate the signal after cancellation. The matched filters are defined as the complex

  2. Laser Doppler velocimeter system simulation for sensing aircraft wake vortices. Part 2: Processing and analysis of LDV data (for runs 1023 and 2023)

    NASA Technical Reports Server (NTRS)

    Meng, J. C. S.; Thomson, J. A. L.

    1975-01-01

    A data analysis program constructed to assess LDV system performance, to validate the simulation model, and to test various vortex location algorithms is presented. Real or simulated Doppler spectra versus range and elevation is used and the spatial distributions of various spectral moments or other spectral characteristics are calculated and displayed. Each of the real or simulated scans can be processed by one of three different procedures: simple frequency or wavenumber filtering, matched filtering, and deconvolution filtering. The final output is displayed as contour plots in an x-y coordinate system, as well as in the form of vortex tracks deduced from the maxima of the processed data. A detailed analysis of run number 1023 and run number 2023 is presented to demonstrate the data analysis procedure. Vortex tracks and system range resolutions are compared with theoretical predictions.

  3. Ultrasound Image Despeckling Using Stochastic Distance-Based BM3D.

    PubMed

    Santos, Cid A N; Martins, Diego L N; Mascarenhas, Nelson D A

    2017-06-01

    Ultrasound image despeckling is an important research field, since it can improve the interpretability of one of the main categories of medical imaging. Many techniques have been tried over the years for ultrasound despeckling, and more recently, a great deal of attention has been focused on patch-based methods, such as non-local means and block-matching collaborative filtering (BM3D). A common idea in these recent methods is the measure of distance between patches, originally proposed as the Euclidean distance, for filtering additive white Gaussian noise. In this paper, we derive new stochastic distances for the Fisher-Tippett distribution, based on well-known statistical divergences, and use them as patch distance measures in a modified version of the BM3D algorithm for despeckling log-compressed ultrasound images. State-of-the-art results in filtering simulated, synthetic, and real ultrasound images confirm the potential of the proposed approach.

  4. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    NASA Astrophysics Data System (ADS)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time provides significant opportunities in cost savings in both equipment protection and waste minimization.

  5. Forest Roadidentification and Extractionof Through Advanced Log Matching Techniques

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Hu, B.; Quist, L.

    2017-10-01

    A novel algorithm for forest road identification and extraction was developed. The algorithm utilized Laplacian of Gaussian (LoG) filter and slope calculation on high resolution multispectral imagery and LiDAR data respectively to extract both primary road and secondary road segments in the forest area. The proposed method used road shape feature to extract the road segments, which have been further processed as objects with orientation preserved. The road network was generated after post processing with tensor voting. The proposed method was tested on Hearst forest, located in central Ontario, Canada. Based on visual examination against manually digitized roads, the majority of roads from the test area have been identified and extracted from the process.

  6. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison.

    PubMed

    Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard

    2016-10-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.

  7. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  8. Optical correlation based pose estimation using bipolar phase grayscale amplitude spatial light modulators

    NASA Astrophysics Data System (ADS)

    Outerbridge, Gregory John, II

    Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.

  9. A digital matched filter for reverse time chaos.

    PubMed

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  10. A digital matched filter for reverse time chaos

    NASA Astrophysics Data System (ADS)

    Bailey, J. Phillip; Beal, Aubrey N.; Dean, Robert N.; Hamilton, Michael C.

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  11. Generation and assessment of turntable SAR data for the support of ATR development

    NASA Astrophysics Data System (ADS)

    Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby

    1998-10-01

    Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.

  12. GPU implementation of prior image constrained compressed sensing (PICCS)

    NASA Astrophysics Data System (ADS)

    Nett, Brian E.; Tang, Jie; Chen, Guang-Hong

    2010-04-01

    The Prior Image Constrained Compressed Sensing (PICCS) algorithm (Med. Phys. 35, pg. 660, 2008) has been applied to several computed tomography applications with both standard CT systems and flat-panel based systems designed for guiding interventional procedures and radiation therapy treatment delivery. The PICCS algorithm typically utilizes a prior image which is reconstructed via the standard Filtered Backprojection (FBP) reconstruction algorithm. The algorithm then iteratively solves for the image volume that matches the measured data, while simultaneously assuring the image is similar to the prior image. The PICCS algorithm has demonstrated utility in several applications including: improved temporal resolution reconstruction, 4D respiratory phase specific reconstructions for radiation therapy, and cardiac reconstruction from data acquired on an interventional C-arm. One disadvantage of the PICCS algorithm, just as other iterative algorithms, is the long computation times typically associated with reconstruction. In order for an algorithm to gain clinical acceptance reconstruction must be achievable in minutes rather than hours. In this work the PICCS algorithm has been implemented on the GPU in order to significantly reduce the reconstruction time of the PICCS algorithm. The Compute Unified Device Architecture (CUDA) was used in this implementation.

  13. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  14. Stereo matching using census cost over cross window and segmentation-based disparity refinement

    NASA Astrophysics Data System (ADS)

    Li, Qingwu; Ni, Jinyan; Ma, Yunpeng; Xu, Jinxin

    2018-03-01

    Stereo matching is a vital requirement for many applications, such as three-dimensional (3-D) reconstruction, robot navigation, object detection, and industrial measurement. To improve the practicability of stereo matching, a method using census cost over cross window and segmentation-based disparity refinement is proposed. First, a cross window is obtained using distance difference and intensity similarity in binocular images. Census cost over the cross window and color cost are combined as the matching cost, which is aggregated by the guided filter. Then, winner-takes-all strategy is used to calculate the initial disparities. Second, a graph-based segmentation method is combined with color and edge information to achieve moderate under-segmentation. The segmented regions are classified into reliable regions and unreliable regions by consistency checking. Finally, the two regions are optimized by plane fitting and propagation, respectively, to match the ambiguous pixels. The experimental results are on Middlebury Stereo Datasets, which show that the proposed method has good performance in occluded and discontinuous regions, and it obtains smoother disparity maps with a lower average matching error rate compared with other algorithms.

  15. A database linking Chinese patents to China’s census firms

    PubMed Central

    He, Zi-Lin; Tong, Tony W.; Zhang, Yuchen; He, Wenlong

    2018-01-01

    To meet researchers’ increasing interest in the fast growing innovation activities taking place in China, we match patents filed with China’s State Intellectual Property Office to firms covered in China’s Census. China has experienced a strong growth in patent filings over the past two decades, and has since 2011 become the world’s top patent filing country. China’s Census database covers about one million unique manufacturing firms from 1998–2009, representing the broad Chinese economy. We design data parsing and pre-processing routines to clean and stem firm and assignee names, create a matching algorithm that fits with our data and maintains a balance between matching accuracy and workload of manual check, and implement a systematic manual check process to filter out false positives generated from computerized matching. Our project generates 1,113,588 matches for the Census firms, among which 849,647 patents are uniquely matched. By creating the patent-firm linked dataset, we hope to reduce duplicative effort and encourage more research to better understand China’s fast changing innovation landscape. PMID:29583142

  16. Classification VIA Information-Theoretic Fusion of Vector-Magnetic and Acoustic Sensor Data

    DTIC Science & Technology

    2007-04-01

    10) where tBsBtBsBtBsBtsB zzyyxx, . (11) The operation in (10) may be viewed as a vector matched- filter on to estimate )(tB CPARv . In summary...choosing to maximize the classification information in Y are described in Section 3.2. A 3.2. Maximum mutual information ( MMI ) features We begin with a...review of several desirable properties of features that maximize a mutual information ( MMI ) criterion. Then we review a particular algorithm [2

  17. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.

  18. Development of mathematical techniques for the assimilation of remote sensing data into atmospheric models

    NASA Technical Reports Server (NTRS)

    Seinfeld, J. H. (Principal Investigator)

    1982-01-01

    The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Sun; Yoon, Wang-Jung

    The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.

  20. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.

    PubMed

    Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya

    2018-04-04

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.

  1. A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain.

    PubMed

    Andreev, Victor P; Rejtar, Tomas; Chen, Hsuan-Shen; Moskovets, Eugene V; Ivanov, Alexander R; Karger, Barry L

    2003-11-15

    A new denoising and peak picking algorithm (MEND, matched filtration with experimental noise determination) for analysis of LC-MS data is described. The algorithm minimizes both random and chemical noise in order to determine MS peaks corresponding to sample components. Noise characteristics in the data set are experimentally determined and used for efficient denoising. MEND is shown to enable low-intensity peaks to be detected, thus providing additional useful information for sample analysis. The process of denoising, performed in the chromatographic time domain, does not distort peak shapes in the m/z domain, allowing accurate determination of MS peak centroids, including low-intensity peaks. MEND has been applied to denoising of LC-MALDI-TOF-MS and LC-ESI-TOF-MS data for tryptic digests of protein mixtures. MEND is shown to suppress chemical and random noise and baseline fluctuations, as well as filter out false peaks originating from the matrix (MALDI) or mobile phase (ESI). In addition, MEND is shown to be effective for protein expression analysis by allowing selection of a large number of differentially expressed ICAT pairs, due to increased signal-to-noise ratio and mass accuracy.

  2. Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui

    2017-05-01

    The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.

  3. A digital matched filter for reverse time chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J. Phillip, E-mail: mchamilton@auburn.edu; Beal, Aubrey N.; Dean, Robert N.

    2016-07-15

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form ofmore » the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.« less

  4. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    NASA Astrophysics Data System (ADS)

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  5. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.

    PubMed

    Shtark, Tomer; Gurfil, Pini

    2017-03-31

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.

  6. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study

    PubMed Central

    Shtark, Tomer; Gurfil, Pini

    2017-01-01

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338

  7. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  8. UltiMatch-NL: A Web Service Matchmaker Based on Multiple Semantic Filters

    PubMed Central

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters. PMID:25157872

  9. UltiMatch-NL: a Web service matchmaker based on multiple semantic filters.

    PubMed

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.

  10. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    PubMed

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  11. Axial Cone-Beam Reconstruction by Weighted BPF/DBPF and Orthogonal Butterfly Filtering.

    PubMed

    Tang, Shaojie; Tang, Xiangyang

    2016-09-01

    The backprojection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical reconstruction from cone-beam (CB) scan data and axial reconstruction from fan beam data, respectively. These two algorithms can be heuristically extended for image reconstruction from axial CB scan data, but induce severe artifacts in images located away from the central plane, determined by the circular source trajectory. We propose an algorithmic solution herein to eliminate the artifacts. The solution is an integration of three-dimensional (3-D) weighted axial CB-BPF/DBPF algorithm with orthogonal butterfly filtering, namely axial CB-BPF/DBPF cascaded with orthogonal butterfly filtering. Using the computer simulated Forbild head and thoracic phantoms that are rigorous in inspecting the reconstruction accuracy, and an anthropomorphic thoracic phantom with projection data acquired by a CT scanner, we evaluate the performance of the proposed algorithm. Preliminary results show that the orthogonal butterfly filtering can eliminate the severe streak artifacts existing in the images reconstructed by the 3-D weighted axial CB-BPF/DBPF algorithm located at off-central planes. Integrated with orthogonal butterfly filtering, the 3-D weighted CB-BPF/DBPF algorithm can perform at least as well as the 3-D weighted CB-FBP algorithm in image reconstruction from axial CB scan data. The proposed 3-D weighted axial CB-BPF/DBPF cascaded with orthogonal butterfly filtering can be an algorithmic solution for CT imaging in extensive clinical and preclinical applications.

  12. Study on Underwater Image Denoising Algorithm Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Jian, Sun; Wen, Wang

    2017-02-01

    This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising

  13. A target detection multi-layer matched filter for color and hyperspectral cameras

    NASA Astrophysics Data System (ADS)

    Miyanishi, Tomoya; Preece, Bradley L.; Reynolds, Joseph P.

    2018-05-01

    In this article, a method for applying matched filters to a 3-dimentional hyperspectral data cube is discussed. In many applications, color visible cameras or hyperspectral cameras are used for target detection where the color or spectral optical properties of the imaged materials are partially known in advance. Therefore, the use of matched filtering with spectral data along with shape data is an effective method for detecting certain targets. Since many methods for 2D image filtering have been researched, we propose a multi-layer filter where ordinary spatially matched filters are used before the spectral filters. We discuss a way to layer the spectral filters for a 3D hyperspectral data cube, accompanied by a detectability metric for calculating the SNR of the filter. This method is appropriate for visible color cameras and hyperspectral cameras. We also demonstrate an analysis using the Night Vision Integrated Performance Model (NV-IPM) and a Monte Carlo simulation in order to confirm the effectiveness of the filtering in providing a higher output SNR and a lower false alarm rate.

  14. ElarmS Earthquake Early Warning System: 2017 Performance and New ElarmS Version 3.0 (E3)

    NASA Astrophysics Data System (ADS)

    Chung, A. I.; Henson, I. H.; Allen, R. M.; Hellweg, M.; Neuhauser, D. S.

    2017-12-01

    The ElarmS earthquake early warning (EEW) system has been successfully detecting earthquakes throughout California since 2007. ElarmS version 2.0 (E2) is one of the three algorithms contributing alerts to ShakeAlert, a public EEW system being developed by the USGS in collaboration with UC Berkeley, Caltech, University of Washington, and University of Oregon. E2 began operating in test mode in the Pacific Northwest in 2013, and since April of this year E2 has been contributing real-time alerts from Oregon and Washington to the ShakeAlert production prototype system as part of the ShakeAlert roll-out throughout the West Coast. Since it began operating west-coast-wide, E2 has correctly alerted on 5 events that matched ANSS catalog events with M≥4, missed 1 event with M≥4, and incorrectly created alerts for 5 false events with M≥4. The most recent version of the algorithm, ElarmS version 3.0 (E3), is a significant improvement over E2. It addresses some of the most problematic causes of false events for which E2 produced alerts, without impacting reliability in terms of matched and missed events. Of the 5 false events that were generated by E2 since April, 4 would have been suppressed by E3. In E3, we have added a filterbank teleseismic filter. By analyzing the amplitude of the waveform filtered in various passbands, it is possible to distinguish between local and teleseismic events. We have also added a series of checks to validate triggers and filter out spurious and S-wave triggers. Additional improvements to the waveform associator also improve detections. In this presentation, we describe the improvements and compare the performance of the current production (E2) and development (E3) versions of ElarmS over the past year. The ShakeAlert project is now working through a streamlining process to identify the best components of various algorithms and merge them. The ElarmS team is participating in this effort and we anticipate that much of E3 will continue in the final system.

  15. An Efficient Conflict Detection Algorithm for Packet Filters

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung

    Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.

  16. Robot acting on moving bodies (RAMBO): Preliminary results

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madju; Harwood, David

    1989-01-01

    A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  17. Design of analytical failure detection using secondary observers

    NASA Technical Reports Server (NTRS)

    Sisar, M.

    1982-01-01

    The problem of designing analytical failure-detection systems (FDS) for sensors and actuators, using observers, is addressed. The use of observers in FDS is related to the examination of the n-dimensional observer error vector which carries the necessary information on possible failures. The problem is that in practical systems, in which only some of the components of the state vector are measured, one has access only to the m-dimensional observer-output error vector, with m or = to n. In order to cope with these cases, a secondary observer is synthesized to reconstruct the entire observer-error vector from the observer output error vector. This approach leads toward the design of highly sensitive and reliable FDS, with the possibility of obtaining a unique fingerprint for every possible failure. In order to keep the observer's (or Kalman filter) false-alarm rate under a certain specified value, it is necessary to have an acceptable matching between the observer (or Kalman filter) models and the system parameters. A previously developed adaptive observer algorithm is used to maintain the desired system-observer model matching, despite initial mismatching or system parameter variations. Conditions for convergence for the adaptive process are obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors, while accurate and fast parameter identification, in both deterministic and stochastic cases, is obtained.

  18. Development of a digital method for neutron/gamma-ray discrimination based on matched filtering

    NASA Astrophysics Data System (ADS)

    Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.

    2016-09-01

    Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.

  19. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-01

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  20. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.

    PubMed

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-06

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  1. Multiple local feature representations and their fusion based on an SVR model for iris recognition using optimized Gabor filters

    NASA Astrophysics Data System (ADS)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing

    2014-12-01

    Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.

  2. Parametric adaptive filtering and data validation in the bar GW detector AURIGA

    NASA Astrophysics Data System (ADS)

    Ortolan, A.; Baggio, L.; Cerdonio, M.; Prodi, G. A.; Vedovato, G.; Vitale, S.

    2002-04-01

    We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ2 and the time of arrival are those that are expected.

  3. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    PubMed

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass filter is found to be very much effective in edge enhancement whereas fuzzy conditional entropy efficiently distinguishes vessels of different widths. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Towards Standardization of X-ray Beam Filters in Digital Mammography and Digital Breast Tomosynthesis: Monte Carlo simulations and analytical modelling

    PubMed Central

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-01-01

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50μm Rh; 50μm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700μm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37–57% reduction in exposure duration and with 2–20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700μm) and HVL matched by increasing the kV over [0,4] range, identical SDNR was achieved with 62–65% decrease in exposure duration and with 2–24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over [700,880]μm range, identical SDNR was achieved with 23–56% reduction in exposure duration and 2–20% reduction in MGD, depending on breast thickness. These simulations indicate that increased fluence with Al filter of fixed or variable thickness substantially decreases exposure duration while providing for similar image quality with moderate reduction in MGD. PMID:28075335

  5. Efficient Scalable Median Filtering Using Histogram-Based Operations.

    PubMed

    Green, Oded

    2018-05-01

    Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.

  6. Axial Cone Beam Reconstruction by Weighted BPF/DBPF and Orthogonal Butterfly Filtering

    PubMed Central

    Tang, Shaojie; Tang, Xiangyang

    2016-01-01

    Goal The backprojection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical reconstruction from cone beam (CB) scan data and axial reconstruction from fan beam data, respectively. These two algorithms can be heuristically extended for image reconstruction from axial CB scan data, but induce severe artifacts in images located away from the central plane determined by the circular source trajectory. We propose an algorithmic solution herein to eliminate the artifacts. Methods The solution is an integration of three-dimensional (3D) weighted axial CB-BPF/ DBPF algorithm with orthogonal butterfly filtering, namely axial CB-BPF/DBPF cascaded with orthogonal butterfly filtering. Using the computer simulated Forbild head and thoracic phantoms that are rigorous in inspecting reconstruction accuracy and an anthropomorphic thoracic phantom with projection data acquired by a CT scanner, we evaluate performance of the proposed algorithm. Results Preliminary results show that the orthogonal butterfly filtering can eliminate the severe streak artifacts existing in the images reconstructed by the 3D weighted axial CB-BPF/DBPF algorithm located at off-central planes. Conclusion Integrated with orthogonal butterfly filtering, the 3D weighted CB-BPF/DBPF algorithm can perform at least as well as the 3D weighted CB-FBP algorithm in image reconstruction from axial CB scan data. Significance The proposed 3D weighted axial CB-BPF/DBPF cascaded with orthogonal butterfly filtering can be an algorithmic solution for CT imaging in extensive clinical and preclinical applications. PMID:26660512

  7. Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.

    1990-02-01

    A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.

  8. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    PubMed Central

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-01-01

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385

  9. Automatic digital surface model (DSM) generation from aerial imagery data

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  10. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  11. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system

    NASA Astrophysics Data System (ADS)

    Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian

    2017-04-01

    Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.

  12. Generating Accurate 3d Models of Architectural Heritage Structures Using Low-Cost Camera and Open Source Algorithms

    NASA Astrophysics Data System (ADS)

    Zacharek, M.; Delis, P.; Kedzierski, M.; Fryskowska, A.

    2017-05-01

    These studies have been conductedusing non-metric digital camera and dense image matching algorithms, as non-contact methods of creating monuments documentation.In order toprocess the imagery, few open-source software and algorithms of generating adense point cloud from images have been executed. In the research, the OSM Bundler, VisualSFM software, and web application ARC3D were used. Images obtained for each of the investigated objects were processed using those applications, and then dense point clouds and textured 3D models were created. As a result of post-processing, obtained models were filtered and scaled.The research showedthat even using the open-source software it is possible toobtain accurate 3D models of structures (with an accuracy of a few centimeters), but for the purpose of documentation and conservation of cultural and historical heritage, such accuracy can be insufficient.

  13. Reducing the number of templates for aligned-spin compact binary coalescence gravitational wave searches using metric-agnostic template nudging

    NASA Astrophysics Data System (ADS)

    Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.

    2018-06-01

    Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.

  14. Vision Algorithm for the Solar Aspect System of the HEROES Mission

    NASA Technical Reports Server (NTRS)

    Cramer, Alexander

    2014-01-01

    This work covers the design and test of a machine vision algorithm for generating high-accuracy pitch and yaw pointing solutions relative to the sun for the High Energy Replicated Optics to Explore the Sun (HEROES) mission. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small fiducial markers. Images of this plate were processed in real time to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an "Average Intersection" method, fiducial detection by a matched filter approach, identification with an ad-hoc method based on the spacing between fiducials, and image registration with a simple least squares fit. Performance is verified on a combination of artificially generated images, test data recorded on the ground, and images from the 2013 flight

  15. Vision Algorithm for the Solar Aspect System of the HEROES Mission

    NASA Technical Reports Server (NTRS)

    Cramer, Alexander; Christe, Steven; Shih, Albert

    2014-01-01

    This work covers the design and test of a machine vision algorithm for generating high-accuracy pitch and yaw pointing solutions relative to the sun for the High Energy Replicated Optics to Explore the Sun (HEROES) mission. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small fiducial markers. Images of this plate were processed in real time to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an Average Intersection method, fiducial detection by a matched filter approach, identification with an ad-hoc method based on the spacing between fiducials, and image registration with a simple least squares fit. Performance is verified on a combination of artificially generated images, test data recorded on the ground, and images from the 2013 flight.

  16. Spiral: Automated Computing for Linear Transforms

    NASA Astrophysics Data System (ADS)

    Püschel, Markus

    2010-09-01

    Writing fast software has become extraordinarily difficult. For optimal performance, programs and their underlying algorithms have to be adapted to take full advantage of the platform's parallelism, memory hierarchy, and available instruction set. To make things worse, the best implementations are often platform-dependent and platforms are constantly evolving, which quickly renders libraries obsolete. We present Spiral, a domain-specific program generation system for important functionality used in signal processing and communication including linear transforms, filters, and other functions. Spiral completely replaces the human programmer. For a desired function, Spiral generates alternative algorithms, optimizes them, compiles them into programs, and intelligently searches for the best match to the computing platform. The main idea behind Spiral is a mathematical, declarative, domain-specific framework to represent algorithms and the use of rewriting systems to generate and optimize algorithms at a high level of abstraction. Experimental results show that the code generated by Spiral competes with, and sometimes outperforms, the best available human-written code.

  17. An Attitude Filtering and Magnetometer Calibration Approach for Nanosatellites

    NASA Astrophysics Data System (ADS)

    Söken, Halil Ersin

    2018-04-01

    We propose an attitude filtering and magnetometer calibration approach for nanosatellites. Measurements from magnetometers, Sun sensor and gyros are used in the filtering algorithm to estimate the attitude of the satellite together with the bias terms for the gyros and magnetometers. In the traditional approach for the attitude filtering, the attitude sensor measurements are used in the filter with a nonlinear vector measurement model. In the proposed algorithm, the TRIAD algorithm is used in conjunction with the unscented Kalman filter (UKF) to form the nontraditional attitude filter. First the vector measurements from the magnetometer and Sun sensor are processed with the TRIAD algorithm to obtain a coarse attitude estimate for the spacecraft. In the second phase the estimated coarse attitude is used as quaternion measurements for the UKF. The UKF estimates the fine attitude, and the gyro and magnetometer biases. We evaluate the algorithm for a hypothetical nanosatellite by numerical simulations. The results show that the attitude of the satellite can be estimated with an accuracy better than 0.5{°} and the computational load decreases more than 25% compared to a traditional UKF algorithm. We discuss the algorithm's performance in case of a time-variance in the magnetometer errors.

  18. Recursive Algorithms for Real-Time Digital CR-RCn Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.

    2011-10-01

    This paper reports on recursive algorithms for real-time implementation of CR-(RC)n filters in digital nuclear spectroscopy systems. The algorithms are derived by calculating the Z-transfer function of the filters for filter orders up to n=4 . The performances of the filters are compared with the performance of the conventional digital trapezoidal filter using a noise generator which separately generates pure series, 1/f and parallel noise. The results of our study enable one to select the optimum digital filter for different noise and rate conditions.

  19. Method for hyperspectral imagery exploitation and pixel spectral unmixing

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2003-01-01

    An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.

  20. An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter

    NASA Astrophysics Data System (ADS)

    Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu

    2017-05-01

    Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.

  1. A flexible new method for 3D measurement based on multi-view image sequences

    NASA Astrophysics Data System (ADS)

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  2. Clever eye algorithm for target detection of remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Geng, Xiurui; Ji, Luyan; Sun, Kang

    2016-04-01

    Target detection algorithms for hyperspectral remote sensing imagery, such as the two most commonly used remote sensing detection algorithms, the constrained energy minimization (CEM) and matched filter (MF), can usually be attributed to the inner product between a weight filter (or detector) and a pixel vector. CEM and MF have the same expression except that MF requires data centralization first. However, this difference leads to a difference in the target detection results. That is to say, the selection of the data origin could directly affect the performance of the detector. Therefore, does there exist another data origin other than the zero and mean-vector points for a better target detection performance? This is a very meaningful issue in the field of target detection, but it has not been paid enough attention yet. In this study, we propose a novel objective function by introducing the data origin as another variable, and the solution of the function is corresponding to the data origin with the minimal output energy. The process of finding the optimal solution can be vividly regarded as a clever eye automatically searching the best observing position and direction in the feature space, which corresponds to the largest separation between the target and background. Therefore, this new algorithm is referred to as the clever eye algorithm (CE). Based on the Sherman-Morrison formula and the gradient ascent method, CE could derive the optimal target detection result in terms of energy. Experiments with both synthetic and real hyperspectral data have verified the effectiveness of our method.

  3. A human auditory tuning curves matched wavelet function.

    PubMed

    Abolhassani, Mohammad D; Salimpour, Yousef

    2008-01-01

    This paper proposes a new quantitative approach to the problem of matching a wavelet function to a human auditory tuning curves. The auditory filter shapes were derived from the psychophysical measurements in normal-hearing listeners using the variant of the notched-noise method for brief signals in forward and simultaneous masking. These filters were used as templates for the designing a wavelet function that has the maximum matching to a tuning curve. The scaling function was calculated from the matched wavelet function and by using these functions, low pass and high pass filters were derived for the implementation of a filter bank. Therefore, new wavelet families were derived.

  4. Lidar-Based Navigation Algorithm for Safe Lunar Landing

    NASA Technical Reports Server (NTRS)

    Myers, David M.; Johnson, Andrew E.; Werner, Robert A.

    2011-01-01

    The purpose of Hazard Relative Navigation (HRN) is to provide measurements to the Navigation Filter so that it can limit errors on the position estimate after hazards have been detected. The hazards are detected by processing a hazard digital elevation map (HDEM). The HRN process takes lidar images as the spacecraft descends to the surface and matches these to the HDEM to compute relative position measurements. Since the HDEM has the hazards embedded in it, the position measurements are relative to the hazards, hence the name Hazard Relative Navigation.

  5. 3D-FFT for Signature Detection in LWIR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier spacemore » can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.« less

  6. The research of radar target tracking observed information linear filter method

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  7. Target tracking and 3D trajectory acquisition of cabbage butterfly (P. rapae) based on the KCF-BS algorithm.

    PubMed

    Guo, Yang-Yang; He, Dong-Jian; Liu, Cong

    2018-06-25

    Insect behaviour is an important research topic in plant protection. To study insect behaviour accurately, it is necessary to observe and record their flight trajectory quantitatively and precisely in three dimensions (3D). The goal of this research was to analyse frames extracted from videos using Kernelized Correlation Filters (KCF) and Background Subtraction (BS) (KCF-BS) to plot the 3D trajectory of cabbage butterfly (P. rapae). Considering the experimental environment with a wind tunnel, a quadrature binocular vision insect video capture system was designed and applied in this study. The KCF-BS algorithm was used to track the butterfly in video frames and obtain coordinates of the target centroid in two videos. Finally the 3D trajectory was calculated according to the matching relationship in the corresponding frames of two angles in the video. To verify the validity of the KCF-BS algorithm, Compressive Tracking (CT) and Spatio-Temporal Context Learning (STC) algorithms were performed. The results revealed that the KCF-BS tracking algorithm performed more favourably than CT and STC in terms of accuracy and robustness.

  8. Retinal vessel segmentation on SLO image

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.

    2010-01-01

    A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149

  9. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  10. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  11. A multichannel block-matching denoising algorithm for spectral photon-counting CT images.

    PubMed

    Harrison, Adam P; Xu, Ziyue; Pourmorteza, Amir; Bluemke, David A; Mollura, Daniel J

    2017-06-01

    We present a denoising algorithm designed for a whole-body prototype photon-counting computed tomography (PCCT) scanner with up to 4 energy thresholds and associated energy-binned images. Spectral PCCT images can exhibit low signal to noise ratios (SNRs) due to the limited photon counts in each simultaneously-acquired energy bin. To help address this, our denoising method exploits the correlation and exact alignment between energy bins, adapting the highly-effective block-matching 3D (BM3D) denoising algorithm for PCCT. The original single-channel BM3D algorithm operates patch-by-patch. For each small patch in the image, a patch grouping action collects similar patches from the rest of the image, which are then collaboratively filtered together. The resulting performance hinges on accurate patch grouping. Our improved multi-channel version, called BM3D_PCCT, incorporates two improvements. First, BM3D_PCCT uses a more accurate shared patch grouping based on the image reconstructed from photons detected in all 4 energy bins. Second, BM3D_PCCT performs a cross-channel decorrelation, adding a further dimension to the collaborative filtering process. These two improvements produce a more effective algorithm for PCCT denoising. Preliminary results compare BM3D_PCCT against BM3D_Naive, which denoises each energy bin independently. Experiments use a three-contrast PCCT image of a canine abdomen. Within five regions of interest, selected from paraspinal muscle, liver, and visceral fat, BM3D_PCCT reduces the noise standard deviation by 65.0%, compared to 40.4% for BM3D_Naive. Attenuation values of the contrast agents in calibration vials also cluster much tighter to their respective lines of best fit. Mean angular differences (in degrees) for the original, BM3D_Naive, and BM3D_PCCT images, respectively, were 15.61, 7.34, and 4.45 (iodine); 12.17, 7.17, and 4.39 (galodinium); and 12.86, 6.33, and 3.96 (bismuth). We outline a multi-channel denoising algorithm tailored for spectral PCCT images, demonstrating improved performance over an independent, yet state-of-the-art, single-channel approach. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Contact-free palm-vein recognition based on local invariant features.

    PubMed

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.

  13. Contact-Free Palm-Vein Recognition Based on Local Invariant Features

    PubMed Central

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176

  14. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  15. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF). PMID:28608843

  16. Interacting Multiple Model (IMM) Fifth-Degree Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-06-13

    For improving the tracking accuracy and model switching speed of maneuvering target tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use of Markov process to describe the switching probability among the models, and uses 5thSSRCKF to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm, which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally, the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering target tracking scenario. Simulation results show that the proposed algorithm has better tracking performance and quicker model switching speed when disposing maneuver models compared with the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF).

  17. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning

    PubMed Central

    Bhawiyuga, Adhitya

    2018-01-01

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning. PMID:29617341

  18. The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo

    2018-03-01

    The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.

  19. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    DTIC Science & Technology

    2018-01-01

    grating lobes as compared to the conventional Doppler processing counterpart. 15. SUBJECT TERMS Doppler radar, UWB radar, matched filter , ambiguity...maps by the matched filter method, illustrating the radar data support in (a) the frequency-slow time domain and (b) the ρ-u domain. The samples...example, obtained by the matched filter method, for a 1.2-s CPI centered at t = 1.5 s

  20. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  1. An accelerated non-Gaussianity based multichannel predictive deconvolution method with the limited supporting region of filters

    NASA Astrophysics Data System (ADS)

    Li, Zhong-xiao; Li, Zhen-chun

    2016-09-01

    The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.

  2. A comparative analysis of signal processing methods for motion-based rate responsive pacing.

    PubMed

    Greenhut, S E; Shreve, E A; Lau, C P

    1996-08-01

    Pacemakers that augment heart rate (HR) by sensing body motion have been the most frequently prescribed rate responsive pacemakers. Many comparisons between motion-based rate responsive pacemaker models have been published. However, conclusions regarding specific signal processing methods used for rate response (e.g., filters and algorithms) can be affected by device-specific features. To objectively compare commonly used motion sensing filters and algorithms, acceleration and ECG signals were recorded from 16 normal subjects performing exercise and daily living activities. Acceleration signals were filtered (1-4 or 15-Hz band-pass), then processed using threshold crossing (TC) or integration (IN) algorithms creating four filter/algorithm combinations. Data were converted to an acceleration indicated rate and compared to intrinsic HR using root mean square difference (RMSd) and signed RMSd. Overall, the filters and algorithms performed similarly for most activities. The only differences between filters were for walking at an increasing grade (1-4 Hz superior to 15-Hz) and for rocking in a chair (15-Hz superior to 1-4 Hz). The only differences between algorithms were for bicycling (TC superior to IN), walking at an increasing grade (IN superior to TC), and holding a drill (IN superior to TC). Performance of the four filter/algorithm combinations was also similar over most activities. The 1-4/IN (filter [Hz]/algorithm) combination performed best for walking at a grade, while the 15/TC combination was best for bicycling. However, the 15/TC combination tended to be most sensitive to higher frequency artifact, such as automobile driving, downstairs walking, and hand drilling. Chair rocking artifact was highest for 1-4/IN. The RMSd for bicycling and upstairs walking were large for all combinations, reflecting the nonphysiological nature of the sensor. The 1-4/TC combination demonstrated the least intersubject variability, was the only filter/algorithm combination insensitive to changes in footwear, and gave similar RMSd over a large range of amplitude thresholds for most activities. In conclusion, based on overall error performance, the preferred filter/algorithm combination depended upon the type of activity.

  3. Volterra series based blind equalization for nonlinear distortions in short reach optical CAP system

    NASA Astrophysics Data System (ADS)

    Tao, Li; Tan, Hui; Fang, Chonghua; Chi, Nan

    2016-12-01

    In this paper, we propose a blind Volterra series based nonlinear equalization (VNLE) with low complexity for the nonlinear distortion mitigation in short reach optical carrierless amplitude and phase (CAP) modulation system. The principle of the blind VNLE is presented and the performance of its blind adaptive algorithms including the modified cascaded multi-mode algorithm (MCMMA) and direct detection LMS (DD-LMS) are investigated experimentally. Compared to the conventional VNLE using training symbols before demodulation, it is performed after matched filtering and downsampling, so shorter memory length is required but similar performance improvement is observed. About 1 dB improvement is observed at BER of 3.8×10-3 for 40 Gb/s CAP32 signal over 40 km standard single mode fiber.

  4. Obstacle Detection using Binocular Stereo Vision in Trajectory Planning for Quadcopter Navigation

    NASA Astrophysics Data System (ADS)

    Bugayong, Albert; Ramos, Manuel, Jr.

    2018-02-01

    Quadcopters are one of the most versatile unmanned aerial vehicles due to its vertical take-off and landing as well as hovering capabilities. This research uses the Sum of Absolute Differences (SAD) block matching algorithm for stereo vision. A complementary filter was used in sensor fusion to combine obtained quadcopter orientation data from the accelerometer and the gyroscope. PID control was implemented for the motor control and VFH+ algorithm was implemented for trajectory planning. Results show that the quadcopter was able to consistently actuate itself in the roll, yaw and z-axis during obstacle avoidance but was however found to be inconsistent in the pitch axis during forward and backward maneuvers due to the significant noise present in the pitch axis angle outputs compared to the roll and yaw axes.

  5. WE-G-18A-08: Axial Cone Beam DBPF Reconstruction with Three-Dimensional Weighting and Butterfly Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, S; Wang, W; Tang, X

    2014-06-15

    Purpose: With the major benefit in dealing with data truncation for ROI reconstruction, the algorithm of differentiated backprojection followed by Hilbert filtering (DBPF) is originally derived for image reconstruction from parallel- or fan-beam data. To extend its application for axial CB scan, we proposed the integration of the DBPF algorithm with 3-D weighting. In this work, we further propose the incorporation of Butterfly filtering into the 3-D weighted axial CB-DBPF algorithm and conduct an evaluation to verify its performance. Methods: Given an axial scan, tomographic images are reconstructed by the DBPF algorithm with 3-D weighting, in which streak artifacts existmore » along the direction of Hilbert filtering. Recognizing this orientation-specific behavior, a pair of orthogonal Butterfly filtering is applied on the reconstructed images with the horizontal and vertical Hilbert filtering correspondingly. In addition, the Butterfly filtering can also be utilized for streak artifact suppression in the scenarios wherein only partial scan data with an angular range as small as 270° are available. Results: Preliminary data show that, with the correspondingly applied Butterfly filtering, the streak artifacts existing in the images reconstructed by the 3-D weighted DBPF algorithm can be suppressed to an unnoticeable level. Moreover, the Butterfly filtering also works at the scenarios of partial scan, though the 3-D weighting scheme may have to be dropped because of no sufficient projection data are available. Conclusion: As an algorithmic step, the incorporation of Butterfly filtering enables the DBPF algorithm for CB image reconstruction from data acquired along either a full or partial axial scan.« less

  6. RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.

    PubMed

    Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na

    2015-09-03

    Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.

  7. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  8. On the relationship between matched filter theory as applied to gust loads and phased design loads analysis

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Pototzky, Anthony S.

    1989-01-01

    A theoretical basis and example calculations are given that demonstrate the relationship between the Matched Filter Theory approach to the calculation of time-correlated gust loads and Phased Design Load Analysis in common use in the aerospace industry. The relationship depends upon the duality between Matched Filter Theory and Random Process Theory and upon the fact that Random Process Theory is used in Phased Design Loads Analysis in determining an equiprobable loads design ellipse. Extensive background information describing the relevant points of Phased Design Loads Analysis, calculating time-correlated gust loads with Matched Filter Theory, and the duality between Matched Filter Theory and Random Process Theory is given. It is then shown that the time histories of two time-correlated gust load responses, determined using the Matched Filter Theory approach, can be plotted as parametric functions of time and that the resulting plot, when superposed upon the design ellipse corresponding to the two loads, is tangent to the ellipse. The question is raised of whether or not it is possible for a parametric load plot to extend outside the associated design ellipse. If it is possible, then the use of the equiprobable loads design ellipse will not be a conservative design practice in some circumstances.

  9. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-09-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.

  10. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Liu, Hua; Wu, Wen

    2017-03-31

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.

  11. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Liu, Hua; Wu, Wen

    2017-01-01

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states’ error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF’s strong robustness and SSRCKF’s high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking. PMID:28362347

  12. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  13. MSSA de-noising of horizon time structure to improve the curvature attribute analysis

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Rekapalli, R.; Vedanti, N.

    2017-12-01

    Although the seismic attributes are useful for identifying sub-surface structural features like faults, fractures, lineaments and sharp stratigraphy etc., the different kinds of noises arising from unknown physical sources during the data acquisition and processing creates acute problems in physical interpretation of complex crustal structures. Hence, we propose to study effect of noise on curvature attribute analysis of seismic time structure data. We propose here Multichannel Singular Spectrum Analysis (MSSA) de-noising algorithm as a pre filtering scheme to reduce effect of noise. To demonstrate the procedure, first, we compute the most positive and negative curvature on a synthetic time structure with surface features resembling anticlines, synclines and faults and then adding the known percentage of noise. We noticed that the curvatures estimated from the noisy data reveal considerable deviations from the curvature of pure synthetic data. This suggests that there is a strong impact of noise on the curvature estimates. Further, we have employed 2D median filter and MSSA methods to filter the noisy time structure and then computed the curvatures. The comparisons of curvatures estimated from de-noised data suggest that the results obtained from MSSA de-noised data match well with the curvatures of pure synthetic data. Finally, we present an example of real data analysis from Utsira Top (UT) horizon of Southern Viking Graben, Norway to identify the time-lapse changes in UT horizon after CO2 injection. We applied the MSSA de-noising algorithm on UT horizon time structure and amplitude data of pre and post CO2 injection. Our analyses suggest modest but clearly visible, structural changes in the UT horizon after CO2 injection at a few locations, which seem to be associated with the locations of change in seismic amplitudes. Thus, the results from both the synthetic and real field data suggest that the MSSA based de-noising algorithm is robust for filtering the horizon time structures for accurate curvature attributes analysis and better interpretation of structural changes in geological features. Key Words: Curvature attributes, MSSA, Seismic Horizon, 2D-median filter, Utsira Horizon.

  14. a Threshold-Free Filtering Algorithm for Airborne LIDAR Point Clouds Based on Expectation-Maximization

    NASA Astrophysics Data System (ADS)

    Hui, Z.; Cheng, P.; Ziggah, Y. Y.; Nie, Y.

    2018-04-01

    Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by the ISPRS for the test. The proposed algorithm can obtain a 4.48 % total error which is much lower than most of the eight classical filtering algorithms reported by the ISPRS.

  15. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  16. Separating Gravitational Wave Signals from Instrument Artifacts

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Cornish, Neil J.

    2010-01-01

    Central to the gravitational wave detection problem is the challenge of separating features in the data produced by astrophysical sources from features produced by the detector. Matched filtering provides an optimal solution for Gaussian noise, but in practice, transient noise excursions or "glitches" complicate the analysis. Detector diagnostics and coincidence tests can be used to veto many glitches which may otherwise be misinterpreted as gravitational wave signals. The glitches that remain can lead to long tails in the matched filter search statistics and drive up the detection threshold. Here we describe a Bayesian approach that incorporates a more realistic model for the instrument noise allowing for fluctuating noise levels that vary independently across frequency bands, and deterministic "glitch fitting" using wavelets as "glitch templates", the number of which is determined by a trans-dimensional Markov chain Monte Carlo algorithm. We demonstrate the method's effectiveness on simulated data containing low amplitude gravitational wave signals from inspiraling binary black hole systems, and simulated non-stationary and non-Gaussian noise comprised of a Gaussian component with the standard LIGO/Virgo spectrum, and injected glitches of various amplitude, prevalence, and variety. Glitch fitting allows us to detect significantly weaker signals than standard techniques.

  17. [Study of automatic marine oil spills detection using imaging spectroscopy].

    PubMed

    Liu, De-Lian; Han, Liang; Zhang, Jian-Qi

    2013-11-01

    To reduce artificial auxiliary works in oil spills detection process, an automatic oil spill detection method based on adaptive matched filter is presented. Firstly, the characteristics of reflectance spectral signature of C-H bond in oil spill are analyzed. And an oil spill spectral signature extraction model is designed by using the spectral feature of C-H bond. It is then used to obtain the reference spectral signature for the following oil spill detection step. Secondly, the characteristics of reflectance spectral signature of sea water, clouds, and oil spill are compared. The bands which have large difference in reflectance spectral signatures of the sea water, clouds, and oil spill are selected. By using these bands, the sea water pixels are segmented. And the background parameters are then calculated. Finally, the classical adaptive matched filter from target detection algorithms is improved and introduced for oil spill detection. The proposed method is applied to the real airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral image captured during the deepwater horizon oil spill in the Gulf of Mexico for oil spill detection. The results show that the proposed method has, high efficiency, does not need artificial auxiliary work, and can be used for automatic detection of marine oil spill.

  18. An improved conscan algorithm based on a Kalman filter

    NASA Technical Reports Server (NTRS)

    Eldred, D. B.

    1994-01-01

    Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.

  19. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-06-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

  20. Axial 3D region of interest reconstruction using weighted cone beam BPF/DBPF algorithm cascaded with adequately oriented orthogonal butterfly filtering

    NASA Astrophysics Data System (ADS)

    Tang, Shaojie; Tang, Xiangyang

    2016-03-01

    Axial cone beam (CB) computed tomography (CT) reconstruction is still the most desirable in clinical applications. As the potential candidates with analytic form for the task, the back projection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical and axial reconstruction from CB and fan beam projection data, respectively. These two algorithms have been heuristically extended for axial CB reconstruction via adoption of virtual PI-line segments. Unfortunately, however, streak artifacts are induced along the Hilbert filtering direction, since these algorithms are no longer accurate on the virtual PI-line segments. We have proposed to cascade the extended BPF/DBPF algorithm with orthogonal butterfly filtering for image reconstruction (namely axial CB-BPP/DBPF cascaded with orthogonal butterfly filtering), in which the orientation-specific artifacts caused by post-BP Hilbert transform can be eliminated, at a possible expense of losing the BPF/DBPF's capability of dealing with projection data truncation. Our preliminary results have shown that this is not the case in practice. Hence, in this work, we carry out an algorithmic analysis and experimental study to investigate the performance of the axial CB-BPP/DBPF cascaded with adequately oriented orthogonal butterfly filtering for three-dimensional (3D) reconstruction in region of interest (ROI).

  1. An Automated Energy Detection Algorithm Based on Consecutive Mean Excision

    DTIC Science & Technology

    2018-01-01

    present in the RF spectrum. 15. SUBJECT TERMS RF spectrum, detection threshold algorithm, consecutive mean excision, rank order filter , statistical...Median 4 3.1.9 Rank Order Filter (ROF) 4 3.1.10 Crest Factor (CF) 5 3.2 Statistical Summary 6 4. Algorithm 7 5. Conclusion 8 6. References 9...energy detection algorithm based on morphological filter processing with a semi- disk structure. Adelphi (MD): Army Research Laboratory (US); 2018 Jan

  2. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  3. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  4. A theory of phase singularities for image representation and its applications to object tracking and image matching.

    PubMed

    Qiao, Yu; Wang, Wei; Minematsu, Nobuaki; Liu, Jianzhuang; Takeda, Mitsuo; Tang, Xiaoou

    2009-10-01

    This paper studies phase singularities (PSs) for image representation. We show that PSs calculated with Laguerre-Gauss filters contain important information and provide a useful tool for image analysis. PSs are invariant to image translation and rotation. We introduce several invariant features to characterize the core structures around PSs and analyze the stability of PSs to noise addition and scale change. We also study the characteristics of PSs in a scale space, which lead to a method to select key scales along phase singularity curves. We demonstrate two applications of PSs: object tracking and image matching. In object tracking, we use the iterative closest point algorithm to determine the correspondences of PSs between two adjacent frames. The use of PSs allows us to precisely determine the motions of tracked objects. In image matching, we combine PSs and scale-invariant feature transform (SIFT) descriptor to deal with the variations between two images and examine the proposed method on a benchmark database. The results indicate that our method can find more correct matching pairs with higher repeatability rates than some well-known methods.

  5. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  6. Robust extrema features for time-series data analysis.

    PubMed

    Vemulapalli, Pramod K; Monga, Vishal; Brennan, Sean N

    2013-06-01

    The extraction of robust features for comparing and analyzing time series is a fundamentally important problem. Research efforts in this area encompass dimensionality reduction using popular signal analysis tools such as the discrete Fourier and wavelet transforms, various distance metrics, and the extraction of interest points from time series. Recently, extrema features for analysis of time-series data have assumed increasing significance because of their natural robustness under a variety of practical distortions, their economy of representation, and their computational benefits. Invariably, the process of encoding extrema features is preceded by filtering of the time series with an intuitively motivated filter (e.g., for smoothing), and subsequent thresholding to identify robust extrema. We define the properties of robustness, uniqueness, and cardinality as a means to identify the design choices available in each step of the feature generation process. Unlike existing methods, which utilize filters "inspired" from either domain knowledge or intuition, we explicitly optimize the filter based on training time series to optimize robustness of the extracted extrema features. We demonstrate further that the underlying filter optimization problem reduces to an eigenvalue problem and has a tractable solution. An encoding technique that enhances control over cardinality and uniqueness is also presented. Experimental results obtained for the problem of time series subsequence matching establish the merits of the proposed algorithm.

  7. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    NASA Astrophysics Data System (ADS)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  8. Seismic random noise removal by delay-compensation time-frequency peak filtering

    NASA Astrophysics Data System (ADS)

    Yu, Pengjun; Li, Yue; Lin, Hongbo; Wu, Ning

    2017-06-01

    Over the past decade, there has been an increasing awareness of time-frequency peak filtering (TFPF) due to its outstanding performance in suppressing non-stationary and strong seismic random noise. The traditional approach based on time-windowing achieves local linearity and meets the unbiased estimation. However, the traditional TFPF (including the improved algorithms with alterable window lengths) could hardly relieve the contradiction between removing noise and recovering the seismic signal, and this situation is more obvious in wave crests and troughs, even for alterable window lengths (WL). To improve the efficiency of the algorithm, the following TFPF in the time-space domain is applied, such as in the Radon domain and radial trace domain. The time-space transforms obtain a reduced-frequency input to reduce the TFPF error and stretch the desired signal along a certain direction, therefore the time-space development brings an improvement by both enhancing reflection events and attenuating noise. It still proves limited in application because the direction should be matched as a straight line or quadratic curve. As a result, waveform distortion and false seismic events may appear when processing the complex stratum record. The main emphasis in this article is placed on the time-space TFPF applicable expansion. The reconstructed signal in delay-compensation TFPF, which is generated according to the similarity among the reflection events, overcomes the limitation of the direction curve fitting. Moreover, the reconstructed signal just meets the TFPF linearity unbiased estimation and integrates signal reservation with noise attenuation. Experiments on both the synthetic model and field data indicate that delay-compensation TFPF has a better performance over the conventional filtering algorithms.

  9. Attitude determination and calibration using a recursive maximum likelihood-based adaptive Kalman filter

    NASA Technical Reports Server (NTRS)

    Kelly, D. A.; Fermelia, A.; Lee, G. K. F.

    1990-01-01

    An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.

  10. Optimization of internet content filtering-Combined with KNN and OCAT algorithms

    NASA Astrophysics Data System (ADS)

    Guo, Tianze; Wu, Lingjing; Liu, Jiaming

    2018-04-01

    The face of the status quo that rampant illegal content in the Internet, the result of traditional way to filter information, keyword recognition and manual screening, is getting worse. Based on this, this paper uses OCAT algorithm nested by KNN classification algorithm to construct a corpus training library that can dynamically learn and update, which can be improved on the filter corpus for constantly updated illegal content of the network, including text and pictures, and thus can better filter and investigate illegal content and its source. After that, the research direction will focus on the simplified updating of recognition and comparison algorithms and the optimization of the corpus learning ability in order to improve the efficiency of filtering, save time and resources.

  11. A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

    DOE PAGES

    Azad, Ariful; Buluç, Aydın

    2016-05-16

    We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less

  12. Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control

    NASA Astrophysics Data System (ADS)

    Song, Pucha; Zhao, Haiquan

    2018-07-01

    The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.

  13. Detection and analysis of microseismic events using a Matched Filtering Algorithm (MFA)

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Eaton, David W.; Jones, Joshua P.; van der Baan, Mirko

    2016-07-01

    A new Matched Filtering Algorithm (MFA) is proposed for detecting and analysing microseismic events recorded by downhole monitoring of hydraulic fracturing. This method requires a set of well-located template (`parent') events, which are obtained using conventional microseismic processing and selected on the basis of high signal-to-noise (S/N) ratio and representative spatial distribution of the recorded microseismicity. Detection and extraction of `child' events are based on stacked, multichannel cross-correlation of the continuous waveform data, using the parent events as reference signals. The location of a child event relative to its parent is determined using an automated process, by rotation of the multicomponent waveforms into the ray-centred co-ordinates of the parent and maximizing the energy of the stacked amplitude envelope within a search volume around the parent's hypocentre. After correction for geometrical spreading and attenuation, the relative magnitude of the child event is obtained automatically using the ratio of stacked envelope peak with respect to its parent. Since only a small number of parent events require interactive analysis such as picking P- and S-wave arrivals, the MFA approach offers the potential for significant reduction in effort for downhole microseismic processing. Our algorithm also facilitates the analysis of single-phase child events, that is, microseismic events for which only one of the S- or P-wave arrivals is evident due to unfavourable S/N conditions. A real-data example using microseismic monitoring data from four stages of an open-hole slickwater hydraulic fracture treatment in western Canada demonstrates that a sparse set of parents (in this case, 4.6 per cent of the originally located events) yields a significant (more than fourfold increase) in the number of located events compared with the original catalogue. Moreover, analysis of the new MFA catalogue suggests that this approach leads to more robust interpretation of the induced microseismicity and novel insights into dynamic rupture processes based on the average temporal (foreshock-aftershock) relationship of child events to parents.

  14. A graphic user interface for efficient 3D photo-reconstruction based on free software

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael; Gómez, Jose A.

    2015-04-01

    Recently, different studies have stressed the applicability of 3D photo-reconstruction based on Structure from Motion algorithms in a wide range of geoscience applications. For the purpose of image photo-reconstruction, a number of commercial and freely available software packages have been developed (e.g. Agisoft Photoscan, VisualSFM). The workflow involves typically different stages such as image matching, sparse and dense photo-reconstruction, point cloud filtering and georeferencing. For approaches using open and free software, each of these stages usually require different applications. In this communication, we present an easy-to-use graphic user interface (GUI) developed in Matlab® code as a tool for efficient 3D photo-reconstruction making use of powerful existing software: VisualSFM (Wu, 2015) for photo-reconstruction and CloudCompare (Girardeau-Montaut, 2015) for point cloud processing. The GUI performs as a manager of configurations and algorithms, taking advantage of the command line modes of existing software, which allows an intuitive and automated processing workflow for the geoscience user. The GUI includes several additional features: a) a routine for significantly reducing the duration of the image matching operation, normally the most time consuming stage; b) graphical outputs for understanding the overall performance of the algorithm (e.g. camera connectivity, point cloud density); c) a number of useful options typically performed before and after the photo-reconstruction stage (e.g. removal of blurry images, image renaming, vegetation filtering); d) a manager of batch processing for the automated reconstruction of different image datasets. In this study we explore the advantages of this new tool by testing its performance using imagery collected in several soil erosion applications. References Girardeau-Montaut, D. 2015. CloudCompare documentation accessed at http://cloudcompare.org/ Wu, C. 2015. VisualSFM documentation access at http://ccwu.me/vsfm/doc.html#.

  15. Wiener Chaos and Nonlinear Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lototsky, S.V.

    2006-11-15

    The paper discusses two algorithms for solving the Zakai equation in the time-homogeneous diffusion filtering model with possible correlation between the state process and the observation noise. Both algorithms rely on the Cameron-Martin version of the Wiener chaos expansion, so that the approximate filter is a finite linear combination of the chaos elements generated by the observation process. The coefficients in the expansion depend only on the deterministic dynamics of the state and observation processes. For real-time applications, computing the coefficients in advance improves the performance of the algorithms in comparison with most other existing methods of nonlinear filtering. Themore » paper summarizes the main existing results about these Wiener chaos algorithms and resolves some open questions concerning the convergence of the algorithms in the noise-correlated setting. The presentation includes the necessary background on the Wiener chaos and optimal nonlinear filtering.« less

  16. A fast method to emulate an iterative POCS image reconstruction algorithm.

    PubMed

    Zeng, Gengsheng L

    2017-10-01

    Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.

  17. Recursive Implementations of the Consider Filter

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; DSouza, Chris

    2012-01-01

    One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.

  18. Automated Handling of Garments for Pressing

    DTIC Science & Technology

    1991-09-30

    Parallel Algorithms for 2D Kalman Filtering ................................. 47 DJ. Potter and M.P. Cline Hash Table and Sorted Array: A Case Study of... Kalman Filtering on the Connection Machine ............................ 55 MA. Palis and D.K. Krecker Parallel Sorting of Large Arrays on the MasPar...ALGORITHM’VS FOR SEAM SENSING. .. .. .. ... ... .... ..... 24 6.1 KarelTW Algorithms .. .. ... ... ... ... .... ... ...... 24 6.1.1 Image Filtering

  19. Multichannel, Active Low-Pass Filters

    NASA Technical Reports Server (NTRS)

    Lev, James J.

    1989-01-01

    Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.

  20. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  1. Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing

    NASA Astrophysics Data System (ADS)

    Tian, Q.; Fainman, Y.; Lee, Sing H.

    1989-02-01

    The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.

  2. Learning-based 3D surface optimization from medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  3. Practical image registration concerns overcome by the weighted and filtered mutual information metric

    NASA Astrophysics Data System (ADS)

    Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey

    2012-04-01

    Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.

  4. CHAMP: a locally adaptive unmixing-based hyperspectral anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Crist, Eric P.; Thelen, Brian J.; Carrara, David A.

    1998-10-01

    Anomaly detection offers a means by which to identify potentially important objects in a scene without prior knowledge of their spectral signatures. As such, this approach is less sensitive to variations in target class composition, atmospheric and illumination conditions, and sensor gain settings than would be a spectral matched filter or similar algorithm. The best existing anomaly detectors generally fall into one of two categories: those based on local Gaussian statistics, and those based on linear mixing moles. Unmixing-based approaches better represent the real distribution of data in a scene, but are typically derived and applied on a global or scene-wide basis. Locally adaptive approaches allow detection of more subtle anomalies by accommodating the spatial non-homogeneity of background classes in a typical scene, but provide a poorer representation of the true underlying background distribution. The CHAMP algorithm combines the best attributes of both approaches, applying a linear-mixing model approach in a spatially adaptive manner. The algorithm itself, and teste results on simulated and actual hyperspectral image data, are presented in this paper.

  5. Morphological filtering and multiresolution fusion for mammographic microcalcification detection

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Chen, Chang W.; Parker, Kevin J.

    1997-04-01

    Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.

  6. An improved filtering algorithm for big read datasets and its application to single-cell assembly.

    PubMed

    Wedemeyer, Axel; Kliemann, Lasse; Srivastav, Anand; Schielke, Christian; Reusch, Thorsten B; Rosenstiel, Philip

    2017-07-03

    For single-cell or metagenomic sequencing projects, it is necessary to sequence with a very high mean coverage in order to make sure that all parts of the sample DNA get covered by the reads produced. This leads to huge datasets with lots of redundant data. A filtering of this data prior to assembly is advisable. Brown et al. (2012) presented the algorithm Diginorm for this purpose, which filters reads based on the abundance of their k-mers. We present Bignorm, a faster and quality-conscious read filtering algorithm. An important new algorithmic feature is the use of phred quality scores together with a detailed analysis of the k-mer counts to decide which reads to keep. We qualify and recommend parameters for our new read filtering algorithm. Guided by these parameters, we remove in terms of median 97.15% of the reads while keeping the mean phred score of the filtered dataset high. Using the SDAdes assembler, we produce assemblies of high quality from these filtered datasets in a fraction of the time needed for an assembly from the datasets filtered with Diginorm. We conclude that read filtering is a practical and efficient method for reducing read data and for speeding up the assembly process. This applies not only for single cell assembly, as shown in this paper, but also to other projects with high mean coverage datasets like metagenomic sequencing projects. Our Bignorm algorithm allows assemblies of competitive quality in comparison to Diginorm, while being much faster. Bignorm is available for download at https://git.informatik.uni-kiel.de/axw/Bignorm .

  7. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature.

    PubMed

    Qu, Yufu; Zou, Zhaofan

    2017-10-16

    Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel, Fattal, Ren, and Berman based on the criteria of no-reference quality assessment (NRQA), blind/referenceless image spatial quality evaluator (BRISQUE), blind anistropic quality index (AQI), and e.

  8. WE-DE-207B-08: Towards Standardization of X-Ray Filters in Digital Mammography-Enabled Breast Tomosynthesis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: In digital breast tomosynthesis (DBT) systems capable of digital mammography (DM), Al filters are used during DBT and K-edge filters during DM. The potential for standardizing the x-ray filters with Al, instead of K-edge filters, was investigated with intent to reduce exposure duration and to promote a simpler system design. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for K-edge filters (50µm Rh; 50µm Ag) were compared with Al filters of varying thickness. Two strategies for matching the HVT from K-edge and Al filtered spectra were investigated: varying the kVp for fixedmore » Al thickness, or varying the Al thickness at matched kVp. For both strategies, Al filters were an order of magnitude thicker than K-edge filters. Hence, Monte Carlo simulations were conducted with the GEANT4 toolkit to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Al and K-edge filters. Results: Results show the potential for replacing currently used Kedge filters with Al. For fixed Al thickness (700µm), ±1 kVp and +(1–3) kVp change, matched HVT of Rh and Ag filtered spectra. At matched kVp, Al thickness range (650,750)µm and (750,860)µm matched the HVT from Rh and Ag filtered spectra. Photon fluence/mAs with Al filters were 1.5–2.5 times higher, depending on kVp and Al thickness, compared to K-edge filters. Although Al thickness was an order higher than K-edge filters, neither the SPR nor the scatter PSF differed from K-edge filters. Conclusion: The use of Al filters for digital mammography is potentially feasible. The increased fluence/mAs with Al could decrease exposure duration for the combined DBT+DM exam and simplify system design. Effect of x-ray spectrum change due to Al filtration on radiation dose, signal, noise, contrast and related metrics are being investigated. Funding support: Supported in part by NIH R21CA176470 and R01CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less

  9. Signal detection by means of orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.

    2018-03-01

    Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.

  10. Millimeter-wave active probe

    DOEpatents

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  11. Improving the Response of Accelerometers for Automotive Applications by Using LMS Adaptive Filters: Part II

    PubMed Central

    Hernandez, Wilmar; de Vicente, Jesús; Sergiyenko, Oleg Y.; Fernández, Eduardo

    2010-01-01

    In this paper, the fast least-mean-squares (LMS) algorithm was used to both eliminate noise corrupting the important information coming from a piezoresisitive accelerometer for automotive applications, and improve the convergence rate of the filtering process based on the conventional LMS algorithm. The response of the accelerometer under test was corrupted by process and measurement noise, and the signal processing stage was carried out by using both conventional filtering, which was already shown in a previous paper, and optimal adaptive filtering. The adaptive filtering process relied on the LMS adaptive filtering family, which has shown to have very good convergence and robustness properties, and here a comparative analysis between the results of the application of the conventional LMS algorithm and the fast LMS algorithm to solve a real-life filtering problem was carried out. In short, in this paper the piezoresistive accelerometer was tested for a multi-frequency acceleration excitation. Due to the kind of test conducted in this paper, the use of conventional filtering was discarded and the choice of one adaptive filter over the other was based on the signal-to-noise ratio improvement and the convergence rate. PMID:22315579

  12. Effect of filters and reconstruction algorithms on I-124 PET in Siemens Inveon PET scanner

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su

    2015-10-01

    Purpose: To assess the effects of filtering and reconstruction on Siemens I-124 PET data. Methods: A Siemens Inveon PET was used. Spatial resolution of I-124 was measured to a transverse offset of 50 mm from the center FBP, 2D ordered subset expectation maximization (OSEM2D), 3D re-projection algorithm (3DRP), and maximum a posteriori (MAP) methods were tested. Non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR) parameterized image quality. Mini deluxe phantom data of I-124 was also assessed. Results: Volumetric resolution was 7.3 mm3 from the transverse FOV center when FBP reconstruction algorithms with ramp filter was used. MAP yielded minimal NU with β =1.5. OSEM2D yielded maximal RC. SOR was below 4% for FBP with ramp, Hamming, Hanning, or Shepp-Logan filters. Based on the mini deluxe phantom results, an FBP with Hanning or Parzen filters, or a 3DRP with Hanning filter yielded feasible I-124 PET data.Conclusions: Reconstruction algorithms and filters were compared. FBP with Hanning or Parzen filters, or 3DRP with Hanning filter yielded feasible data for quantifying I-124 PET.

  13. Vision Algorithm for the Solar Aspect System of the High Energy Replicated Optics to Explore the Sun Mission

    NASA Technical Reports Server (NTRS)

    Cramer, Alexander Krishnan

    2014-01-01

    This work covers the design and test of a machine vision algorithm for generating high- accuracy pitch and yaw pointing solutions relative to the sun on a high altitude balloon. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small cross-shaped fiducial markers. Images of this plate taken with an off-the-shelf camera were processed to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an "Average Intersection" method, fiducial detection by a matched filter approach, and identification with an ad-hoc method based on the spacing between fiducials. Performance is verified on real test data where possible, but otherwise uses artificially generated data. Pointing knowledge is ultimately verified to meet the 20 arcsecond requirement.

  14. An Improved Technique for the Photometry and Astrometry of Faint Companions

    NASA Astrophysics Data System (ADS)

    Burke, Daniel; Gladysz, Szymon; Roberts, Lewis; Devaney, Nicholas; Dainty, Chris

    2009-07-01

    We propose a new approach to differential astrometry and photometry of faint companions in adaptive optics images. It is based on a prewhitening matched filter, also referred to in the literature as the Hotelling observer. We focus on cases where the signal of the companion is located within the bright halo of the parent star. Using real adaptive optics data from the 3 m Shane telescope at the Lick Observatory, we compare the performance of the Hotelling algorithm with other estimation algorithms currently used for the same problem. The real single-star data are used to generate artificial binary objects with a range of magnitude ratios. In most cases, the Hotelling observer gives significantly lower astrometric and photometric errors. In the case of high Strehl ratio (SR) data (SR ≈ 0.5), the differential photometry of a binary star with a Δm = 4.5 and a separation of 0.6″ is better than 0.1 mag a factor of 2 lower than the other algorithms considered.

  15. Aho-Corasick String Matching on Shared and Distributed Memory Parallel Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    String matching is at the core of many critical applications, including network intrusion detection systems, search engines, virus scanners, spam filters, DNA and protein sequencing, and data mining. For all of these applications string matching requires a combination of (sometimes all) the following characteristics: high and/or predictable performance, support for large data sets and flexibility of integration and customization. Many software based implementations targeting conventional cache-based microprocessors fail to achieve high and predictable performance requirements, while Field-Programmable Gate Array (FPGA) implementations and dedicated hardware solutions fail to support large data sets (dictionary sizes) and are difficult to integrate and customize.more » The advent of multicore, multithreaded, and GPU-based systems is opening the possibility for software based solutions to reach very high performance at a sustained rate. This paper compares several software-based implementations of the Aho-Corasick string searching algorithm for high performance systems. We discuss the implementation of the algorithm on several types of shared-memory high-performance architectures (Niagara 2, large x86 SMPs and Cray XMT), distributed memory with homogeneous processing elements (InfiniBand cluster of x86 multicores) and heterogeneous processing elements (InfiniBand cluster of x86 multicores with NVIDIA Tesla C10 GPUs). We describe in detail how each solution achieves the objectives of supporting large dictionaries, sustaining high performance, and enabling customization and flexibility using various data sets.« less

  16. Vision-based vehicle detection and tracking algorithm design

    NASA Astrophysics Data System (ADS)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  17. A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure.

    PubMed

    Chen, Xinjian; Tian, Jie; Yang, Xin

    2006-03-01

    Coping with nonlinear distortions in fingerprint matching is a challenging task. This paper proposes a novel algorithm, normalized fuzzy similarity measure (NFSM), to deal with the nonlinear distortions. The proposed algorithm has two main steps. First, the template and input fingerprints were aligned. In this process, the local topological structure matching was introduced to improve the robustness of global alignment. Second, the method NFSM was introduced to compute the similarity between the template and input fingerprints. The proposed algorithm was evaluated on fingerprints databases of FVC2004. Experimental results confirm that NFSM is a reliable and effective algorithm for fingerprint matching with nonliner distortions. The algorithm gives considerably higher matching scores compared to conventional matching algorithms for the deformed fingerprints.

  18. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  19. A collaborative filtering recommendation algorithm based on weighted SimRank and social trust

    NASA Astrophysics Data System (ADS)

    Su, Chang; Zhang, Butao

    2017-05-01

    Collaborative filtering is one of the most widely used recommendation technologies, but the data sparsity and cold start problem of collaborative filtering algorithms are difficult to solve effectively. In order to alleviate the problem of data sparsity in collaborative filtering algorithm, firstly, a weighted improved SimRank algorithm is proposed to compute the rating similarity between users in rating data set. The improved SimRank can find more nearest neighbors for target users according to the transmissibility of rating similarity. Then, we build trust network and introduce the calculation of trust degree in the trust relationship data set. Finally, we combine rating similarity and trust to build a comprehensive similarity in order to find more appropriate nearest neighbors for target user. Experimental results show that the algorithm proposed in this paper improves the recommendation precision of the Collaborative algorithm effectively.

  20. Improved collaborative filtering recommendation algorithm of similarity measure

    NASA Astrophysics Data System (ADS)

    Zhang, Baofu; Yuan, Baoping

    2017-05-01

    The Collaborative filtering recommendation algorithm is one of the most widely used recommendation algorithm in personalized recommender systems. The key is to find the nearest neighbor set of the active user by using similarity measure. However, the methods of traditional similarity measure mainly focus on the similarity of user common rating items, but ignore the relationship between the user common rating items and all items the user rates. And because rating matrix is very sparse, traditional collaborative filtering recommendation algorithm is not high efficiency. In order to obtain better accuracy, based on the consideration of common preference between users, the difference of rating scale and score of common items, this paper presents an improved similarity measure method, and based on this method, a collaborative filtering recommendation algorithm based on similarity improvement is proposed. Experimental results show that the algorithm can effectively improve the quality of recommendation, thus alleviate the impact of data sparseness.

  1. Application of Least Mean Square Algorithms to Spacecraft Vibration Compensation

    NASA Technical Reports Server (NTRS)

    Woodard , Stanley E.; Nagchaudhuri, Abhijit

    1998-01-01

    This paper describes the application of the Least Mean Square (LMS) algorithm in tandem with the Filtered-X Least Mean Square algorithm for controlling a science instrument's line-of-sight pointing. Pointing error is caused by a periodic disturbance and spacecraft vibration. A least mean square algorithm is used on-orbit to produce the transfer function between the instrument's servo-mechanism and error sensor. The result is a set of adaptive transversal filter weights tuned to the transfer function. The Filtered-X LMS algorithm, which is an extension of the LMS, tunes a set of transversal filter weights to the transfer function between the disturbance source and the servo-mechanism's actuation signal. The servo-mechanism's resulting actuation counters the disturbance response and thus maintains accurate science instrumental pointing. A simulation model of the Upper Atmosphere Research Satellite is used to demonstrate the algorithms.

  2. Time-correlated gust loads using matched filter theory and random process theory - A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  3. High-Resolution Radar Waveforms Based on Randomized Latin Square Sequences

    DTIC Science & Technology

    2017-04-18

    familiar Costas sequence [17]. The ambiguity function first introduced by Woodward in [13] is used to evaluate the matched filter output of a Radar waveform...the zero-delay cut that the result takes the shape of a sinc function which shows, even for significant Doppler shifts, the matched filter output...bad feature as the high ridge of the LFM waveform will still result in a large matched filter response from the target, just not at the correct delay

  4. Time-correlated gust loads using Matched-Filter Theory and Random-Process Theory: A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  5. Theatre Ballistic Missile Defense-Multisensor Fusion, Targeting and Tracking Techniques

    DTIC Science & Technology

    1998-03-01

    Washington, D.C., 1994. 8. Brown , R., and Hwang , P., Introduction to Random Signals and Applied Kaiman Filtering, Third Edition, John Wiley and Sons...C. ADDING MEASUREMENT NOISE 15 III. EXTENDED KALMAN FILTER 19 A. DISCRETE TIME KALMAN FILTER 19 B. EXTENDED KALMAN FILTER 21 C. EKF IN TARGET...tracking algorithms. 17 18 in. EXTENDED KALMAN FILTER This chapter provides background information on the development of a tracking algorithm

  6. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm

    PubMed Central

    2015-01-01

    This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168

  7. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  8. Image quality enhancement for skin cancer optical diagnostics

    NASA Astrophysics Data System (ADS)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  9. Multitarget mixture reduction algorithm with incorporated target existence recursions

    NASA Astrophysics Data System (ADS)

    Ristic, Branko; Arulampalam, Sanjeev

    2000-07-01

    The paper derives a deferred logic data association algorithm based on the mixture reduction approach originally due to Salmond [SPIE vol.1305, 1990]. The novelty of the proposed algorithm provides the recursive formulae for both data association and target existence (confidence) estimation, thus allowing automatic track initiation and termination. T he track initiation performance of the proposed filter is investigated by computer simulations. It is observed that at moderately high levels of clutter density the proposed filter initiates tracks more reliably than its corresponding PDA filter. An extension of the proposed filter to the multi-target case is also presented. In addition, the paper compares the track maintenance performance of the MR algorithm with an MHT implementation.

  10. Formulation and implementation of nonstationary adaptive estimation algorithm with applications to air-data reconstruction

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.

    1985-01-01

    The dynamics model and data sources used to perform air-data reconstruction are discussed, as well as the Kalman filter. The need for adaptive determination of the noise statistics of the process is indicated. The filter innovations are presented as a means of developing the adaptive criterion, which is based on the true mean and covariance of the filter innovations. A method for the numerical approximation of the mean and covariance of the filter innovations is presented. The algorithm as developed is applied to air-data reconstruction for the space shuttle, and data obtained from the third landing are presented. To verify the performance of the adaptive algorithm, the reconstruction is also performed using a constant covariance Kalman filter. The results of the reconstructions are compared, and the adaptive algorithm exhibits better performance.

  11. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  12. A method of measuring and correcting tilt of anti - vibration wind turbines based on screening algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongxiu

    2018-04-01

    A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.

  13. Proceedings of the Conference on Moments and Signal

    NASA Astrophysics Data System (ADS)

    Purdue, P.; Solomon, H.

    1992-09-01

    The focus of this paper is (1) to describe systematic methodologies for selecting nonlinear transformations for blind equalization algorithms (and thus new types of cumulants), and (2) to give an overview of the existing blind equalization algorithms and point out their strengths as well as weaknesses. It is shown that all blind equalization algorithms belong in one of the following three categories, depending where the nonlinear transformation is being applied on the data: (1) the Bussgang algorithms, where the nonlinearity is in the output of the adaptive equalization filter; (2) the polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the input of the adaptive equalization filter; and (3) the algorithms where the nonlinearity is inside the adaptive filter, i.e., the nonlinear filter or neural network. We describe methodologies for selecting nonlinear transformations based on various optimality criteria such as MSE or MAP. We illustrate that such existing algorithms as Sato, Benveniste-Goursat, Godard or CMA, Stop-and-Go, and Donoho are indeed special cases of the Bussgang family of techniques when the nonlinearity is memoryless. We present results that demonstrate the polyspectra-based algorithms exhibit faster convergence rate than Bussgang algorithms. However, this improved performance is at the expense of more computations per iteration. We also show that blind equalizers based on nonlinear filters or neural networks are more suited for channels that have nonlinear distortions.

  14. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    DTIC Science & Technology

    2017-05-01

    contraction images were analyzed visually and with three different classes of algorithms: pixel standard deviation (SD), high-pass filter and Teager Kaiser...Linear relationships and agreements between computed and visual muscle onset were calculated. The top algorithms were high-pass filtered with a 30 Hz...suggest that computer automated determination using high-pass filtering is a potential objective alternative to visual determination in human

  15. Image defog algorithm based on open close filter and gradient domain recursive bilateral filter

    NASA Astrophysics Data System (ADS)

    Liu, Daqian; Liu, Wanjun; Zhao, Qingguo; Fei, Bowen

    2017-11-01

    To solve the problems of fuzzy details, color distortion, low brightness of the image obtained by the dark channel prior defog algorithm, an image defog algorithm based on open close filter and gradient domain recursive bilateral filter, referred to as OCRBF, was put forward. The algorithm named OCRBF firstly makes use of weighted quad tree to obtain more accurate the global atmospheric value, then exploits multiple-structure element morphological open and close filter towards the minimum channel map to obtain a rough scattering map by dark channel prior, makes use of variogram to correct the transmittance map,and uses gradient domain recursive bilateral filter for the smooth operation, finally gets recovery images by image degradation model, and makes contrast adjustment to get bright, clear and no fog image. A large number of experimental results show that the proposed defog method in this paper can be good to remove the fog , recover color and definition of the fog image containing close range image, image perspective, the image including the bright areas very well, compared with other image defog algorithms,obtain more clear and natural fog free images with details of higher visibility, what's more, the relationship between the time complexity of SIDA algorithm and the number of image pixels is a linear correlation.

  16. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization.

    PubMed

    Zhang, Tao; Gao, Feng; Muhamedsalih, Hussam; Lou, Shan; Martin, Haydn; Jiang, Xiangqian

    2018-03-20

    The phase slope method which estimates height through fringe pattern frequency and the algorithm which estimates height through the fringe phase are the fringe analysis algorithms widely used in interferometry. Generally they both extract the phase information by filtering the signal in frequency domain after Fourier transform. Among the numerous papers in the literature about these algorithms, it is found that the design of the filter, which plays an important role, has never been discussed in detail. This paper focuses on the filter design in these algorithms for wavelength scanning interferometry (WSI), trying to optimize the parameters to acquire the optimal results. The spectral characteristics of the interference signal are analyzed first. The effective signal is found to be narrow-band (near single frequency), and the central frequency is calculated theoretically. Therefore, the position of the filter pass-band is determined. The width of the filter window is optimized with the simulation to balance the elimination of the noise and the ringing of the filter. Experimental validation of the approach is provided, and the results agree very well with the simulation. The experiment shows that accuracy can be improved by optimizing the filter design, especially when the signal quality, i.e., the signal noise ratio (SNR), is low. The proposed method also shows the potential of improving the immunity to the environmental noise by adapting the signal to acquire the optimal results through designing an adaptive filter once the signal SNR can be estimated accurately.

  17. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    DTIC Science & Technology

    2016-06-01

    UNCLASSIFIED Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Peter W. Sarunic 1 1...determine instantaneous estimates of receiver position and then goes on to develop three Kalman filter based estimators, which use stationary receiver...used in actual GPS receivers, and cover a wide range of applications. While the standard form of the Kalman filter , of which the three filters just

  18. Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.

    PubMed

    Matthé, Maximilian; Sannolo, Marco; Winiarski, Kristopher; Spitzen-van der Sluijs, Annemarieke; Goedbloed, Daniel; Steinfartz, Sebastian; Stachow, Ulrich

    2017-08-01

    Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.

  19. Robotic fish tracking method based on suboptimal interval Kalman filter

    NASA Astrophysics Data System (ADS)

    Tong, Xiaohong; Tang, Chao

    2017-11-01

    Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.

  20. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  1. Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David

    1989-01-01

    Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  2. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.

  3. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    PubMed

    Zeng, Ping; Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  4. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol

    PubMed Central

    Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on—all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications. PMID:28399157

  5. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum.

    PubMed

    Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M

    2015-06-21

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

  6. UDU/T/ covariance factorization for Kalman filtering

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1980-01-01

    There has been strong motivation to produce numerically stable formulations of the Kalman filter algorithms because it has long been known that the original discrete-time Kalman formulas are numerically unreliable. Numerical instability can be avoided by propagating certain factors of the estimate error covariance matrix rather than the covariance matrix itself. This paper documents filter algorithms that correspond to the covariance factorization P = UDU(T), where U is a unit upper triangular matrix and D is diagonal. Emphasis is on computational efficiency and numerical stability, since these properties are of key importance in real-time filter applications. The history of square-root and U-D covariance filters is reviewed. Simple examples are given to illustrate the numerical inadequacy of the Kalman covariance filter algorithms; these examples show how factorization techniques can give improved computational reliability.

  7. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  8. A nowcasting technique based on application of the particle filter blending algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhao; Lan, Hongping; Chen, Xunlai; Zhang, Wenhai

    2017-10-01

    To improve the accuracy of nowcasting, a new extrapolation technique called particle filter blending was configured in this study and applied to experimental nowcasting. Radar echo extrapolation was performed by using the radar mosaic at an altitude of 2.5 km obtained from the radar images of 12 S-band radars in Guangdong Province, China. The first bilateral filter was applied in the quality control of the radar data; an optical flow method based on the Lucas-Kanade algorithm and the Harris corner detection algorithm were used to track radar echoes and retrieve the echo motion vectors; then, the motion vectors were blended with the particle filter blending algorithm to estimate the optimal motion vector of the true echo motions; finally, semi-Lagrangian extrapolation was used for radar echo extrapolation based on the obtained motion vector field. A comparative study of the extrapolated forecasts of four precipitation events in 2016 in Guangdong was conducted. The results indicate that the particle filter blending algorithm could realistically reproduce the spatial pattern, echo intensity, and echo location at 30- and 60-min forecast lead times. The forecasts agreed well with observations, and the results were of operational significance. Quantitative evaluation of the forecasts indicates that the particle filter blending algorithm performed better than the cross-correlation method and the optical flow method. Therefore, the particle filter blending method is proved to be superior to the traditional forecasting methods and it can be used to enhance the ability of nowcasting in operational weather forecasts.

  9. Identifying Optimal Measurement Subspace for the Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Welch, Greg

    2012-05-24

    To reduce the computational load of the ensemble Kalman filter while maintaining its efficacy, an optimization algorithm based on the generalized eigenvalue decomposition method is proposed for identifying the most informative measurement subspace. When the number of measurements is large, the proposed algorithm can be used to make an effective tradeoff between computational complexity and estimation accuracy. This algorithm also can be extended to other Kalman filters for measurement subspace selection.

  10. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    PubMed Central

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  11. Research on the method of information system risk state estimation based on clustering particle filter

    NASA Astrophysics Data System (ADS)

    Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua

    2017-05-01

    With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.

  12. Improved Collaborative Filtering Algorithm via Information Transformation

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Wang, Bing-Hong; Guo, Qiang

    In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering using the Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-N similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.

  13. Selection method of terrain matching area for TERCOM algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Qieqie; Zhao, Long

    2017-10-01

    The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%

  14. Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters

    NASA Astrophysics Data System (ADS)

    Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada

    2011-01-01

    We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.

  15. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  16. Content Based Image Matching for Planetary Science

    NASA Astrophysics Data System (ADS)

    Deans, M. C.; Meyer, C.

    2006-12-01

    Planetary missions generate large volumes of data. With the MER rovers still functioning on Mars, PDS contains over 7200 released images from the Microscopic Imagers alone. These data products are only searchable by keys such as the Sol, spacecraft clock, or rover motion counter index, with little connection to the semantic content of the images. We have developed a method for matching images based on the visual textures in images. For every image in a database, a series of filters compute the image response to localized frequencies and orientations. Filter responses are turned into a low dimensional descriptor vector, generating a 37 dimensional fingerprint. For images such as the MER MI, this represents a compression ratio of 99.9965% (the fingerprint is approximately 0.0035% the size of the original image). At query time, fingerprints are quickly matched to find images with similar appearance. Image databases containing several thousand images are preprocessed offline in a matter of hours. Image matches from the database are found in a matter of seconds. We have demonstrated this image matching technique using three sources of data. The first database consists of 7200 images from the MER Microscopic Imager. The second database consists of 3500 images from the Narrow Angle Mars Orbital Camera (MOC-NA), which were cropped into 1024×1024 sub-images for consistency. The third database consists of 7500 scanned archival photos from the Apollo Metric Camera. Example query results from all three data sources are shown. We have also carried out user tests to evaluate matching performance by hand labeling results. User tests verify approximately 20% false positive rate for the top 14 results for MOC NA and MER MI data. This means typically 10 to 12 results out of 14 match the query image sufficiently. This represents a powerful search tool for databases of thousands of images where the a priori match probability for an image might be less than 1%. Qualitatively, correct matches can also be confirmed by verifying MI images taken in the same z-stack, or MOC image tiles taken from the same image strip. False negatives are difficult to quantify as it would mean finding matches in the database of thousands of images that the algorithm did not detect.

  17. On-board attitude determination for the Explorer Platform satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C.; Class, B.

    1992-01-01

    This paper describes the attitude determination algorithm for the Explorer Platform satellite. The algorithm, which is baselined on the Landsat code, is a six-element linear quadratic state estimation processor, in the form of a Kalman filter augmented by an adaptive filter process. Improvements to the original Landsat algorithm were required to meet mission pointing requirements. These consisted of a more efficient sensor processing algorithm and the addition of an adaptive filter which acts as a check on the Kalman filter during satellite slew maneuvers. A 1750A processor will be flown on board the satellite for the first time as a coprocessor (COP) in addition to the NASA Standard Spacecraft Computer. The attitude determination algorithm, which will be resident in the COP's memory, will make full use of its improved processing capabilities to meet mission requirements. Additional benefits were gained by writing the attitude determination code in Ada.

  18. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  19. Kalman Filters for Time Delay of Arrival-Based Source Localization

    NASA Astrophysics Data System (ADS)

    Klee, Ulrich; Gehrig, Tobias; McDonough, John

    2006-12-01

    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  20. Computationally efficient algorithm for high sampling-frequency operation of active noise control

    NASA Astrophysics Data System (ADS)

    Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati

    2015-05-01

    In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.

  1. Nonlinear Motion Cueing Algorithm: Filtering at Pilot Station and Development of the Nonlinear Optimal Filters for Pitch and Roll

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill B.; Cardullo, Frank M.

    2012-01-01

    Telban and Cardullo have developed and successfully implemented the non-linear optimal motion cueing algorithm at the Visual Motion Simulator (VMS) at the NASA Langley Research Center in 2005. The latest version of the non-linear algorithm performed filtering of motion cues in all degrees-of-freedom except for pitch and roll. This manuscript describes the development and implementation of the non-linear optimal motion cueing algorithm for the pitch and roll degrees of freedom. Presented results indicate improved cues in the specified channels as compared to the original design. To further advance motion cueing in general, this manuscript describes modifications to the existing algorithm, which allow for filtering at the location of the pilot's head as opposed to the centroid of the motion platform. The rational for such modification to the cueing algorithms is that the location of the pilot's vestibular system must be taken into account as opposed to the off-set of the centroid of the cockpit relative to the center of rotation alone. Results provided in this report suggest improved performance of the motion cueing algorithm.

  2. Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise

    PubMed Central

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis

    2014-01-01

    A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428

  3. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications

    PubMed Central

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-01-01

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service. PMID:28574471

  4. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.

    PubMed

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-06-02

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.

  5. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  6. Improved Artificial Bee Colony Algorithm Based Gravity Matching Navigation Method

    PubMed Central

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-01-01

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position. PMID:25046019

  7. Research on sparse feature matching of improved RANSAC algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangsi; Zhao, Xian

    2018-04-01

    In this paper, a sparse feature matching method based on modified RANSAC algorithm is proposed to improve the precision and speed. Firstly, the feature points of the images are extracted using the SIFT algorithm. Then, the image pair is matched roughly by generating SIFT feature descriptor. At last, the precision of image matching is optimized by the modified RANSAC algorithm,. The RANSAC algorithm is improved from three aspects: instead of the homography matrix, this paper uses the fundamental matrix generated by the 8 point algorithm as the model; the sample is selected by a random block selecting method, which ensures the uniform distribution and the accuracy; adds sequential probability ratio test(SPRT) on the basis of standard RANSAC, which cut down the overall running time of the algorithm. The experimental results show that this method can not only get higher matching accuracy, but also greatly reduce the computation and improve the matching speed.

  8. Impulsive noise removal from color video with morphological filtering

    NASA Astrophysics Data System (ADS)

    Ruchay, Alexey; Kober, Vitaly

    2017-09-01

    This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.

  9. Map based navigation for autonomous underwater vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuohy, S.T.; Leonard, J.J.; Bellingham, J.G.

    1995-12-31

    In this work, a map based navigation algorithm is developed wherein measured geophysical properties are matched to a priori maps. The objectives is a complete algorithm applicable to a small, power-limited AUV which performs in real time to a required resolution with bounded position error. Interval B-Splines are introduced for the non-linear representation of two-dimensional geophysical parameters that have measurement uncertainty. Fine-scale position determination involves the solution of a system of nonlinear polynomial equations with interval coefficients. This system represents the complete set of possible vehicle locations and is formulated as the intersection of contours established on each map frommore » the simultaneous measurement of associated geophysical parameters. A standard filter mechanisms, based on a bounded interval error model, predicts the position of the vehicle and, therefore, screens extraneous solutions. When multiple solutions are found, a tracking mechanisms is applied until a unique vehicle location is determined.« less

  10. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  11. Measurement of pattern roughness and local size variation using CD-SEM: current status

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori

    2018-03-01

    Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.

  12. Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles

    PubMed Central

    Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen

    2013-01-01

    In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717

  13. Obtaining gravitational waves from inspiral binary systems using LIGO data

    NASA Astrophysics Data System (ADS)

    Antelis, Javier M.; Moreno, Claudia

    2017-01-01

    The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.

  14. One-dimensional error-diffusion technique adapted for binarization of rotationally symmetric pupil filters

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Marek; Martínez-Corral, Manuel; Cichocki, Tomasz; Andrés, Pedro

    1995-02-01

    Two novel algorithms for the binarization of continuous rotationally symmetric real and positive pupil filters are presented. Both algorithms are based on the one-dimensional error diffusion concept. In our numerical experiment an original gray-tone apodizer is substituted by a set of transparent and opaque concentric annular zones. Depending on the algorithm the resulting binary mask consists of either equal width or equal area zones. The diffractive behavior of binary filters is evaluated. It is shown that the filter with equal width zones gives Fraunhofer diffraction pattern more similar to that of the original gray-tone apodizer than that with equal area zones, assuming in both cases the same resolution limit of device used to print both filters.

  15. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    PubMed

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  16. Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    PubMed Central

    Goldsworthy, Raymond L.; Delhorne, Lorraine A.; Desloge, Joseph G.; Braida, Louis D.

    2014-01-01

    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution. PMID:25096120

  17. Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems.

    PubMed

    Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao

    2017-06-01

    The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously.

  18. Filtered gradient reconstruction algorithm for compressive spectral imaging

    NASA Astrophysics Data System (ADS)

    Mejia, Yuri; Arguello, Henry

    2017-04-01

    Compressive sensing matrices are traditionally based on random Gaussian and Bernoulli entries. Nevertheless, they are subject to physical constraints, and their structure unusually follows a dense matrix distribution, such as the case of the matrix related to compressive spectral imaging (CSI). The CSI matrix represents the integration of coded and shifted versions of the spectral bands. A spectral image can be recovered from CSI measurements by using iterative algorithms for linear inverse problems that minimize an objective function including a quadratic error term combined with a sparsity regularization term. However, current algorithms are slow because they do not exploit the structure and sparse characteristics of the CSI matrices. A gradient-based CSI reconstruction algorithm, which introduces a filtering step in each iteration of a conventional CSI reconstruction algorithm that yields improved image quality, is proposed. Motivated by the structure of the CSI matrix, Φ, this algorithm modifies the iterative solution such that it is forced to converge to a filtered version of the residual ΦTy, where y is the compressive measurement vector. We show that the filtered-based algorithm converges to better quality performance results than the unfiltered version. Simulation results highlight the relative performance gain over the existing iterative algorithms.

  19. Improving the precision of the keyword-matching pornographic text filtering method using a hybrid model.

    PubMed

    Su, Gui-yang; Li, Jian-hua; Ma, Ying-hua; Li, Sheng-hong

    2004-09-01

    With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision.

  20. Space Object Maneuver Detection Algorithms Using TLE Data

    NASA Astrophysics Data System (ADS)

    Pittelkau, M.

    2016-09-01

    An important aspect of Space Situational Awareness (SSA) is detection of deliberate and accidental orbit changes of space objects. Although space surveillance systems detect orbit maneuvers within their tracking algorithms, maneuver data are not readily disseminated for general use. However, two-line element (TLE) data is available and can be used to detect maneuvers of space objects. This work is an attempt to improve upon existing TLE-based maneuver detection algorithms. Three adaptive maneuver detection algorithms are developed and evaluated: The first is a fading-memory Kalman filter, which is equivalent to the sliding-window least-squares polynomial fit, but computationally more efficient and adaptive to the noise in the TLE data. The second algorithm is based on a sample cumulative distribution function (CDF) computed from a histogram of the magnitude-squared |V|2 of change-in-velocity vectors (V), which is computed from the TLE data. A maneuver detection threshold is computed from the median estimated from the CDF, or from the CDF and a specified probability of false alarm. The third algorithm is a median filter. The median filter is the simplest of a class of nonlinear filters called order statistics filters, which is within the theory of robust statistics. The output of the median filter is practically insensitive to outliers, or large maneuvers. The median of the |V|2 data is proportional to the variance of the V, so the variance is estimated from the output of the median filter. A maneuver is detected when the input data exceeds a constant times the estimated variance.

  1. De-Dopplerization of Acoustic Measurements

    DTIC Science & Technology

    2017-08-10

    band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier

  2. Prospective implementation of an algorithm for bedside intravascular ultrasound-guided filter placement in critically ill patients.

    PubMed

    Killingsworth, Christopher D; Taylor, Steven M; Patterson, Mark A; Weinberg, Jordan A; McGwin, Gerald; Melton, Sherry M; Reiff, Donald A; Kerby, Jeffrey D; Rue, Loring W; Jordan, William D; Passman, Marc A

    2010-05-01

    Although contrast venography is the standard imaging method for inferior vena cava (IVC) filter insertion, intravascular ultrasound (IVUS) imaging is a safe and effective option that allows for bedside filter placement and is especially advantageous for immobilized critically ill patients by limiting resource use, risk of transportation, and cost. This study reviewed the effectiveness of a prospectively implemented algorithm for IVUS-guided IVC filter placement in this high-risk population. Current evidence-based guidelines were used to create a clinical decision algorithm for IVUS-guided IVC filter placement in critically ill patients. After a defined lead-in phase to allow dissemination of techniques, the algorithm was prospectively implemented on January 1, 2008. Data were collected for 1 year using accepted reporting standards and a quality assurance review performed based on intent-to-treat at 6, 12, and 18 months. As defined in the prospectively implemented algorithm, 109 patients met criteria for IVUS-directed bedside IVC filter placement. Technical feasibility was 98.1%. Only 2 patients had inadequate IVUS visualization for bedside filter placement and required subsequent placement in the endovascular suite. Technical success, defined as proper deployment in an infrarenal position, was achieved in 104 of the remaining 107 patients (97.2%). The filter was permanent in 21 (19.6%) and retrievable in 86 (80.3%). The single-puncture technique was used in 101 (94.4%), with additional dual access required in 6 (5.6%). Periprocedural complications were rare but included malpositioning requiring retrieval and repositioning in three patients, filter tilt >/=15 degrees in two, and arteriovenous fistula in one. The 30-day mortality rate for the bedside group was 5.5%, with no filter-related deaths. Successful placement of IVC filters using IVUS-guided imaging at the bedside in critically ill patients can be established through an evidence-based prospectively implemented algorithm, thereby limiting the need for transport in this high-risk population. Copyright (c) 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  3. Topics in the Detection of Gravitational Waves from Compact Binary Inspirals

    NASA Astrophysics Data System (ADS)

    Kapadia, Shasvath Jagat

    Orbiting compact binaries - such as binary black holes, binary neutron stars and neutron star-black hole binaries - are among the most promising sources of gravitational waves observable by ground-based interferometric detectors. Despite numerous sophisticated engineering techniques, the gravitational wave signals will be buried deep within noise generated by various instrumental and environmental processes, and need to be extracted via a signal processing technique referred to as matched filtering. Matched filtering requires large banks of signal templates that are faithful representations of the true gravitational waveforms produced by astrophysical binaries. The accurate and efficient production of templates is thus crucial to the success of signal processing and data analysis. To that end, the dissertation presents a numerical technique that calibrates existing analytical (Post-Newtonian) waveforms, which are relatively inexpensive, to more accurate fiducial waveforms that are computationally expensive to generate. The resulting waveform family is significantly more accurate than the analytical waveforms, without incurring additional computational costs of production. Certain kinds of transient background noise artefacts, called "glitches'', can masquerade as gravitational wave signals for short durations and throw-off the matched-filter algorithm. Identifying glitches from true gravitational wave signals is a highly non-trivial exercise in data analysis which has been attempted with varying degrees of success. We present here a machine-learning based approach that exploits the various attributes of glitches and signals within detector data to provide a classification scheme that is a significant improvement over previous methods. The dissertation concludes by investigating the possibility of detecting a non-linear DC imprint, called the Christodoulou memory, produced in the arms of ground-based interferometers by the recently detected gravitational waves. The memory, which is even smaller in amplitude than the primary (detected) gravitational waves, will almost certainly not be seen in the current detection event. Nevertheless, future space-based detectors will likely be sensitive enough to observe the memory.

  4. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  5. A deblocking algorithm based on color psychology for display quality enhancement

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Tseng, Wen-Yu; Huang, Kai-Lin

    2012-12-01

    This article proposes a post-processing deblocking filter to reduce blocking effects. The proposed algorithm detects blocking effects by fusing the results of Sobel edge detector and wavelet-based edge detector. The filtering stage provides four filter modes to eliminate blocking effects at different color regions according to human color vision and color psychology analysis. Experimental results show that the proposed algorithm has better subjective and objective qualities for H.264/AVC reconstructed videos when compared to several existing methods.

  6. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  7. Improved photo response non-uniformity (PRNU) based source camera identification.

    PubMed

    Cooper, Alan J

    2013-03-10

    The concept of using Photo Response Non-Uniformity (PRNU) as a reliable forensic tool to match an image to a source camera is now well established. Traditionally, the PRNU estimation methodologies have centred on a wavelet based de-noising approach. Resultant filtering artefacts in combination with image and JPEG contamination act to reduce the quality of PRNU estimation. In this paper, it is argued that the application calls for a simplified filtering strategy which at its base level may be realised using a combination of adaptive and median filtering applied in the spatial domain. The proposed filtering method is interlinked with a further two stage enhancement strategy where only pixels in the image having high probabilities of significant PRNU bias are retained. This methodology significantly improves the discrimination between matching and non-matching image data sets over that of the common wavelet filtering approach. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Two-Microphone Spatial Filtering Improves Speech Reception for Cochlear-Implant Users in Reverberant Conditions With Multiple Noise Sources

    PubMed Central

    2014-01-01

    This study evaluates a spatial-filtering algorithm as a method to improve speech reception for cochlear-implant (CI) users in reverberant environments with multiple noise sources. The algorithm was designed to filter sounds using phase differences between two microphones situated 1 cm apart in a behind-the-ear hearing-aid capsule. Speech reception thresholds (SRTs) were measured using a Coordinate Response Measure for six CI users in 27 listening conditions including each combination of reverberation level (T60 = 0, 270, and 540 ms), number of noise sources (1, 4, and 11), and signal-processing algorithm (omnidirectional response, dipole-directional response, and spatial-filtering algorithm). Noise sources were time-reversed speech segments randomly drawn from the Institute of Electrical and Electronics Engineers sentence recordings. Target speech and noise sources were processed using a room simulation method allowing precise control over reverberation times and sound-source locations. The spatial-filtering algorithm was found to provide improvements in SRTs on the order of 6.5 to 11.0 dB across listening conditions compared with the omnidirectional response. This result indicates that such phase-based spatial filtering can improve speech reception for CI users even in highly reverberant conditions with multiple noise sources. PMID:25330772

  9. Supervised learning of tools for content-based search of image databases

    NASA Astrophysics Data System (ADS)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  10. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  11. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.

    PubMed

    Hesar, Hamed Danandeh; Mohebbi, Maryam

    2017-05-01

    In this paper, a model-based Bayesian filtering framework called the "marginalized particle-extended Kalman filter (MP-EKF) algorithm" is proposed for electrocardiogram (ECG) denoising. This algorithm does not have the extended Kalman filter (EKF) shortcoming in handling non-Gaussian nonstationary situations because of its nonlinear framework. In addition, it has less computational complexity compared with particle filter. This filter improves ECG denoising performance by implementing marginalized particle filter framework while reducing its computational complexity using EKF framework. An automatic particle weighting strategy is also proposed here that controls the reliance of our framework to the acquired measurements. We evaluated the proposed filter on several normal ECGs selected from MIT-BIH normal sinus rhythm database. To do so, artificial white Gaussian and colored noises as well as nonstationary real muscle artifact (MA) noise over a range of low SNRs from 10 to -5 dB were added to these normal ECG segments. The benchmark methods were the EKF and extended Kalman smoother (EKS) algorithms which are the first model-based Bayesian algorithms introduced in the field of ECG denoising. From SNR viewpoint, the experiments showed that in the presence of Gaussian white noise, the proposed framework outperforms the EKF and EKS algorithms in lower input SNRs where the measurements and state model are not reliable. Owing to its nonlinear framework and particle weighting strategy, the proposed algorithm attained better results at all input SNRs in non-Gaussian nonstationary situations (such as presence of pink noise, brown noise, and real MA). In addition, the impact of the proposed filtering method on the distortion of diagnostic features of the ECG was investigated and compared with EKF/EKS methods using an ECG diagnostic distortion measure called the "Multi-Scale Entropy Based Weighted Distortion Measure" or MSEWPRD. The results revealed that our proposed algorithm had the lowest MSEPWRD for all noise types at low input SNRs. Therefore, the morphology and diagnostic information of ECG signals were much better conserved compared with EKF/EKS frameworks, especially in non-Gaussian nonstationary situations.

  12. A coarse to fine minutiae-based latent palmprint matching.

    PubMed

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a previously published state-of-the-art-algorithm.

  13. Geomagnetic matching navigation algorithm based on robust estimation

    NASA Astrophysics Data System (ADS)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  14. A distributed-memory approximation algorithm for maximum weight perfect bipartite matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydin; Li, Xiaoye S.

    We design and implement an efficient parallel approximation algorithm for the problem of maximum weight perfect matching in bipartite graphs, i.e. the problem of finding a set of non-adjacent edges that covers all vertices and has maximum weight. This problem differs from the maximum weight matching problem, for which scalable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization where sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64, are widely used due to the lack of scalable alternatives. To overcome this limitation, we proposemore » a fully parallel distributed memory algorithm that first generates a perfect matching and then searches for weightaugmenting cycles of length four in parallel and iteratively augments the matching with a vertex disjoint set of such cycles. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.« less

  15. Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition.

    PubMed

    Cicone, A; Liu, J; Zhou, H

    2016-04-13

    Chemicals released in the air can be extremely dangerous for human beings and the environment. Hyperspectral images can be used to identify chemical plumes, however the task can be extremely challenging. Assuming we know a priori that some chemical plume, with a known frequency spectrum, has been photographed using a hyperspectral sensor, we can use standard techniques such as the so-called matched filter or adaptive cosine estimator, plus a properly chosen threshold value, to identify the position of the chemical plume. However, due to noise and inadequate sensing, the accurate identification of chemical pixels is not easy even in this apparently simple situation. In this paper, we present a post-processing tool that, in a completely adaptive and data-driven fashion, allows us to improve the performance of any classification methods in identifying the boundaries of a plume. This is done using the multidimensional iterative filtering (MIF) algorithm (Cicone et al. 2014 (http://arxiv.org/abs/1411.6051); Cicone & Zhou 2015 (http://arxiv.org/abs/1507.07173)), which is a non-stationary signal decomposition method like the pioneering empirical mode decomposition method (Huang et al. 1998 Proc. R. Soc. Lond. A 454, 903. (doi:10.1098/rspa.1998.0193)). Moreover, based on the MIF technique, we propose also a pre-processing method that allows us to decorrelate and mean-centre a hyperspectral dataset. The cosine similarity measure, which often fails in practice, appears to become a successful and outperforming classifier when equipped with such a pre-processing method. We show some examples of the proposed methods when applied to real-life problems. © 2016 The Author(s).

  16. Hybrid ICA-Bayesian Network approach reveals distinct effective connectivity differences in schizophrenia

    PubMed Central

    Kim, D.; Burge, J.; Lane, T.; Pearlson, G. D; Kiehl, K. A; Calhoun, V. D.

    2008-01-01

    We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge et al., 2007) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge and Lane, 2005). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, 1991). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions, including bilateral temporal and frontal cortices, plus cerebellum during an auditory paradigm. PMID:18602482

  17. Nonlinear unbiased minimum-variance filter for Mars entry autonomous navigation under large uncertainties and unknown measurement bias.

    PubMed

    Xiao, Mengli; Zhang, Yongbo; Fu, Huimin; Wang, Zhihua

    2018-05-01

    High-precision navigation algorithm is essential for the future Mars pinpoint landing mission. The unknown inputs caused by large uncertainties of atmospheric density and aerodynamic coefficients as well as unknown measurement biases may cause large estimation errors of conventional Kalman filters. This paper proposes a derivative-free version of nonlinear unbiased minimum variance filter for Mars entry navigation. This filter has been designed to solve this problem by estimating the state and unknown measurement biases simultaneously with derivative-free character, leading to a high-precision algorithm for the Mars entry navigation. IMU/radio beacons integrated navigation is introduced in the simulation, and the result shows that with or without radio blackout, our proposed filter could achieve an accurate state estimation, much better than the conventional unscented Kalman filter, showing the ability of high-precision Mars entry navigation algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  19. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  20. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.

    PubMed

    Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario

    2012-03-01

    Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.

  1. An improved algorithm of laser spot center detection in strong noise background

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  2. CUDA-based acceleration of collateral filtering in brain MR images

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Yuan; Chang, Herng-Hua

    2017-02-01

    Image denoising is one of the fundamental and essential tasks within image processing. In medical imaging, finding an effective algorithm that can remove random noise in MR images is important. This paper proposes an effective noise reduction method for brain magnetic resonance (MR) images. Our approach is based on the collateral filter which is a more powerful method than the bilateral filter in many cases. However, the computation of the collateral filter algorithm is quite time-consuming. To solve this problem, we improved the collateral filter algorithm with parallel computing using GPU. We adopted CUDA, an application programming interface for GPU by NVIDIA, to accelerate the computation. Our experimental evaluation on an Intel Xeon CPU E5-2620 v3 2.40GHz with a NVIDIA Tesla K40c GPU indicated that the proposed implementation runs dramatically faster than the traditional collateral filter. We believe that the proposed framework has established a general blueprint for achieving fast and robust filtering in a wide variety of medical image denoising applications.

  3. Fast template matching with polynomials.

    PubMed

    Omachi, Shinichiro; Omachi, Masako

    2007-08-01

    Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.

  4. Efficient Approximation Algorithms for Weighted $b$-Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.

    2016-01-01

    We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less

  5. Analysis and improvement of the quantum image matching

    NASA Astrophysics Data System (ADS)

    Dang, Yijie; Jiang, Nan; Hu, Hao; Zhang, Wenyin

    2017-11-01

    We investigate the quantum image matching algorithm proposed by Jiang et al. (Quantum Inf Process 15(9):3543-3572, 2016). Although the complexity of this algorithm is much better than the classical exhaustive algorithm, there may be an error in it: After matching the area between two images, only the pixel at the upper left corner of the matched area played part in following steps. That is to say, the paper only matched one pixel, instead of an area. If more than one pixels in the big image are the same as the one at the upper left corner of the small image, the algorithm will randomly measure one of them, which causes the error. In this paper, an improved version is presented which takes full advantage of the whole matched area to locate a small image in a big image. The theoretical analysis indicates that the network complexity is higher than the previous algorithm, but it is still far lower than the classical algorithm. Hence, this algorithm is still efficient.

  6. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  7. A hand tracking algorithm with particle filter and improved GVF snake model

    NASA Astrophysics Data System (ADS)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  8. Estimating parameters for probabilistic linkage of privacy-preserved datasets.

    PubMed

    Brown, Adrian P; Randall, Sean M; Ferrante, Anna M; Semmens, James B; Boyd, James H

    2017-07-10

    Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further, the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those probabilities. The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational approach for probabilistic linkage of privacy-preserved datasets.

  9. Software Technology Readiness Assessment. Defense Acquisition Guidance with Space Examples

    DTIC Science & Technology

    2010-04-01

    are never Software CTE candidates 19 Algorithm Example: Filters • Definitions – Filters in Signal Processing • A filter is a mathematical algorithm...Segment Segment • SOA as a CTE? – Google produced 40 million (!) hits in 0.2 sec for “SOA”. Even if we discount hits on the Society of Actuaries and

  10. Filtering observations without the initial guess

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.

    2017-12-01

    Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.

  11. Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm

    NASA Astrophysics Data System (ADS)

    Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong

    2018-06-01

    The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.

  12. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-12-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.

  13. Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter

    NASA Astrophysics Data System (ADS)

    Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.

    2018-04-01

    Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.

  14. Experimental Verification of Bayesian Planet Detection Algorithms with a Shaped Pupil Coronagraph

    NASA Astrophysics Data System (ADS)

    Savransky, D.; Groff, T. D.; Kasdin, N. J.

    2010-10-01

    We evaluate the feasibility of applying Bayesian detection techniques to discovering exoplanets using high contrast laboratory data with simulated planetary signals. Background images are generated at the Princeton High Contrast Imaging Lab (HCIL), with a coronagraphic system utilizing a shaped pupil and two deformable mirrors (DMs) in series. Estimates of the electric field at the science camera are used to correct for quasi-static speckle and produce symmetric high contrast dark regions in the image plane. Planetary signals are added in software, or via a physical star-planet simulator which adds a second off-axis point source before the coronagraph with a beam recombiner, calibrated to a fixed contrast level relative to the source. We produce a variety of images, with varying integration times and simulated planetary brightness. We then apply automated detection algorithms such as matched filtering to attempt to extract the planetary signals. This allows us to evaluate the efficiency of these techniques in detecting planets in a high noise regime and eliminating false positives, as well as to test existing algorithms for calculating the required integration times for these techniques to be applicable.

  15. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2018-05-01

    3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  16. Performance Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer

    DTIC Science & Technology

    2017-01-05

    1 Performance Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer Yu-Ren Chien, Daryush...D. Mehta, Member, IEEE, Jón Guðnason, Matías Zañartu, Member, IEEE, and Thomas F. Quatieri, Fellow, IEEE Abstract—Glottal inverse filtering aims to...of inverse filtering performance has been challenging due to the practical difficulty in measuring the true glottal signals while speech signals are

  17. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Yuming; Pehlke, Carolyn A.; Conklin, Matthew W.; Szulczewski, Joseph M.; Inman, David R.; Keely, Patricia J.; Nowak, Robert D.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Second-harmonic generation (SHG) imaging can help reveal interactions between collagen fibers and cancer cells. Quantitative analysis of SHG images of collagen fibers is challenged by the heterogeneity of collagen structures and low signal-to-noise ratio often found while imaging collagen in tissue. The role of collagen in breast cancer progression can be assessed post acquisition via enhanced computation. To facilitate this, we have implemented and evaluated four algorithms for extracting fiber information, such as number, length, and curvature, from a variety of SHG images of collagen in breast tissue. The image-processing algorithms included a Gaussian filter, SPIRAL-TV filter, Tubeness filter, and curvelet-denoising filter. Fibers are then extracted using an automated tracking algorithm called fiber extraction (FIRE). We evaluated the algorithm performance by comparing length, angle and position of the automatically extracted fibers with those of manually extracted fibers in twenty-five SHG images of breast cancer. We found that the curvelet-denoising filter followed by FIRE, a process we call CT-FIRE, outperforms the other algorithms under investigation. CT-FIRE was then successfully applied to track collagen fiber shape changes over time in an in vivo mouse model for breast cancer.

  18. Investigation of optical current transformer signal processing method based on an improved Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan

    2018-01-01

    This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.

  19. An exact algorithm for optimal MAE stack filter design.

    PubMed

    Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior

    2007-02-01

    We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.

  20. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Sik; Lee, Sanggyun

    2013-06-15

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequenciesmore » are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.« less

  1. FIR filters for hardware-based real-time multi-band image blending

    NASA Astrophysics Data System (ADS)

    Popovic, Vladan; Leblebici, Yusuf

    2015-02-01

    Creating panoramic images has become a popular feature in modern smart phones, tablets, and digital cameras. A user can create a 360 degree field-of-view photograph from only several images. Quality of the resulting image is related to the number of source images, their brightness, and the used algorithm for their stitching and blending. One of the algorithms that provides excellent results in terms of background color uniformity and reduction of ghosting artifacts is the multi-band blending. The algorithm relies on decomposition of image into multiple frequency bands using dyadic filter bank. Hence, the results are also highly dependant on the used filter bank. In this paper we analyze performance of the FIR filters used for multi-band blending. We present a set of five filters that showed the best results in both literature and our experiments. The set includes Gaussian filter, biorthogonal wavelets, and custom-designed maximally flat and equiripple FIR filters. The presented results of filter comparison are based on several no-reference metrics for image quality. We conclude that 5/3 biorthogonal wavelet produces the best result in average, especially when its short length is considered. Furthermore, we propose a real-time FPGA implementation of the blending algorithm, using 2D non-separable systolic filtering scheme. Its pipeline architecture does not require hardware multipliers and it is able to achieve very high operating frequencies. The implemented system is able to process 91 fps for 1080p (1920×1080) image resolution.

  2. Minimal-scan filtered backpropagation algorithms for diffraction tomography.

    PubMed

    Pan, X; Anastasio, M A

    1999-12-01

    The filtered backpropagation (FBPP) algorithm, originally developed by Devaney [Ultrason. Imaging 4, 336 (1982)], has been widely used for reconstructing images in diffraction tomography. It is generally known that the FBPP algorithm requires scattered data from a full angular range of 2 pi for exact reconstruction of a generally complex-valued object function. However, we reveal that one needs scattered data only over the angular range 0 < or = phi < or = 3 pi/2 for exact reconstruction of a generally complex-valued object function. Using this insight, we develop and analyze a family of minimal-scan filtered backpropagation (MS-FBPP) algorithms, which, unlike the FBPP algorithm, use scattered data acquired from view angles over the range 0 < or = phi < or = 3 pi/2. We show analytically that these MS-FBPP algorithms are mathematically identical to the FBPP algorithm. We also perform computer simulation studies for validation, demonstration, and comparison of these MS-FBPP algorithms. The numerical results in these simulation studies corroborate our theoretical assertions.

  3. Development of a stereo analysis algorithm for generating topographic maps using interactive techniques of the MPP

    NASA Technical Reports Server (NTRS)

    Strong, James P.

    1987-01-01

    A local area matching algorithm was developed on the Massively Parallel Processor (MPP). It is an iterative technique that first matches coarse or low resolution areas and at each iteration performs matches of higher resolution. Results so far show that when good matches are possible in the two images, the MPP algorithm matches corresponding areas as well as a human observer. To aid in developing this algorithm, a control or shell program was developed for the MPP that allows interactive experimentation with various parameters and procedures to be used in the matching process. (This would not be possible without the high speed of the MPP). With the system, optimal techniques can be developed for different types of matching problems.

  4. Adaptively Tuned Iterative Low Dose CT Image Denoising

    PubMed Central

    Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  5. Visual Persons Behavior Diary Generation Model based on Trajectories and Pose Estimation

    NASA Astrophysics Data System (ADS)

    Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li

    2018-03-01

    The behavior pattern of persons was the important output of the surveillance analysis. This paper focus on the generation model of visual person behavior diary. The pipeline includes the person detection, tracking, and the person behavior classify. This paper adopts the deep convolutional neural model YOLO (You Only Look Once)V2 for person detection module. Multi person tracking was based on the detection framework. The Hungarian assignment algorithm was used to the matching. The person appearance model was integrated by HSV color model and Hash code model. The person object motion was estimated by the Kalman Filter. The multi objects were matching with exist tracklets through the appearance and motion location distance by the Hungarian assignment method. A long continuous trajectory for one person was get by the spatial-temporal continual linking algorithm. And the face recognition information was used to identify the trajectory. The trajectories with identification information can be used to generate the visual diary of person behavior based on the scene context information and person action estimation. The relevant modules are tested in public data sets and our own capture video sets. The test results show that the method can be used to generate the visual person behavior pattern diary with certain accuracy.

  6. A Novel Attitude Determination Algorithm for Spinning Spacecraft

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2007-01-01

    This paper presents a single frame algorithm for the spin-axis orientation-determination of spinning spacecraft that encounters no ambiguity problems, as well as a simple Kalman filter for continuously estimating the full attitude of a spinning spacecraft. The later algorithm is comprised of two low order decoupled Kalman filters; one estimates the spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully tested using data obtained from one of the ST5 satellites.

  7. Onboard Robust Visual Tracking for UAVs Using a Reliable Global-Local Object Model

    PubMed Central

    Fu, Changhong; Duan, Ran; Kircali, Dogan; Kayacan, Erdal

    2016-01-01

    In this paper, we present a novel onboard robust visual algorithm for long-term arbitrary 2D and 3D object tracking using a reliable global-local object model for unmanned aerial vehicle (UAV) applications, e.g., autonomous tracking and chasing a moving target. The first main approach in this novel algorithm is the use of a global matching and local tracking approach. In other words, the algorithm initially finds feature correspondences in a way that an improved binary descriptor is developed for global feature matching and an iterative Lucas–Kanade optical flow algorithm is employed for local feature tracking. The second main module is the use of an efficient local geometric filter (LGF), which handles outlier feature correspondences based on a new forward-backward pairwise dissimilarity measure, thereby maintaining pairwise geometric consistency. In the proposed LGF module, a hierarchical agglomerative clustering, i.e., bottom-up aggregation, is applied using an effective single-link method. The third proposed module is a heuristic local outlier factor (to the best of our knowledge, it is utilized for the first time to deal with outlier features in a visual tracking application), which further maximizes the representation of the target object in which we formulate outlier feature detection as a binary classification problem with the output features of the LGF module. Extensive UAV flight experiments show that the proposed visual tracker achieves real-time frame rates of more than thirty-five frames per second on an i7 processor with 640 × 512 image resolution and outperforms the most popular state-of-the-art trackers favorably in terms of robustness, efficiency and accuracy. PMID:27589769

  8. TECHNICAL NOTE: Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter

    NASA Astrophysics Data System (ADS)

    Xu, Guanshui

    2000-12-01

    A direct finite-element model is developed for the full-scale analysis of the electromechanical phenomena involved in surface acoustic wave (SAW) devices. The equations of wave propagation in piezoelectric materials are discretized using the Galerkin method, in which an implicit algorithm of the Newmark family with unconditional stability is implemented. The Rayleigh damping coefficients are included in the elements near the boundary to reduce the influence of the reflection of waves. The performance of the model is demonstrated by the analysis of the frequency response of a Y-Z lithium niobate filter with two uniform ports, with emphasis on the influence of the number of electrodes. The frequency response of the filter is obtained through the Fourier transform of the impulse response, which is solved directly from the finite-element simulation. It shows that the finite-element results are in good agreement with the characteristic frequency response of the filter predicted by the simple phase-matching argument. The ability of the method to evaluate the influence of the bulk waves at the high-frequency end of the filter passband and the influence of the number of electrodes on insertion loss is noteworthy. We conclude that the direct finite-element analysis of SAW devices can be used as an effective tool for the design of high-performance SAW devices. Some practical computational challenges of finite-element modeling of SAW devices are discussed.

  9. Automated Threshold Selection for Template-Based Sonar Target Detection

    DTIC Science & Technology

    2017-08-01

    test based on the distribution of the matched filter correlations. From the matched filter output we evaluate target sized areas and surrounding...synthetic aperture sonar data that were part of the evaluation . Figure 3 shows a nearly uniform seafloor. Figure 4 is more complex, with

  10. Modification and fixed-point analysis of a Kalman filter for orientation estimation based on 9D inertial measurement unit data.

    PubMed

    Brückner, Hans-Peter; Spindeldreier, Christian; Blume, Holger

    2013-01-01

    A common approach for high accuracy sensor fusion based on 9D inertial measurement unit data is Kalman filtering. State of the art floating-point filter algorithms differ in their computational complexity nevertheless, real-time operation on a low-power microcontroller at high sampling rates is not possible. This work presents algorithmic modifications to reduce the computational demands of a two-step minimum order Kalman filter. Furthermore, the required bit-width of a fixed-point filter version is explored. For evaluation real-world data captured using an Xsens MTx inertial sensor is used. Changes in computational latency and orientation estimation accuracy due to the proposed algorithmic modifications and fixed-point number representation are evaluated in detail on a variety of processing platforms enabling on-board processing on wearable sensor platforms.

  11. Approximate string matching algorithms for limited-vocabulary OCR output correction

    NASA Astrophysics Data System (ADS)

    Lasko, Thomas A.; Hauser, Susan E.

    2000-12-01

    Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.

  12. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  13. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    NASA Astrophysics Data System (ADS)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  14. Adaptive nonlocal means filtering based on local noise level for CT denoising

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.

    2014-01-15

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analyticalmore » noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the shape and peak frequency of the noise power spectrum better than commercial smoothing kernels, and indicate that the spatial resolution at low contrast levels is not significantly degraded. Both the subjective evaluation using the ACR phantom and the objective evaluation on a low-contrast detection task using a CHO model observer demonstrate an improvement on low-contrast performance. The GPU implementation can process and transfer 300 slice images within 5 min. On patient data, the adaptive NLM algorithm provides more effective denoising of CT data throughout a volume than standard NLM, and may allow significant lowering of radiation dose. After a two week pilot study of lower dose CT urography and CT enterography exams, both GI and GU radiology groups elected to proceed with permanent implementation of adaptive NLM in their GI and GU CT practices. Conclusions: This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.« less

  15. Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  16. A comparison of 12 algorithms for matching on the propensity score.

    PubMed

    Austin, Peter C

    2014-03-15

    Propensity-score matching is increasingly being used to reduce the confounding that can occur in observational studies examining the effects of treatments or interventions on outcomes. We used Monte Carlo simulations to examine the following algorithms for forming matched pairs of treated and untreated subjects: optimal matching, greedy nearest neighbor matching without replacement, and greedy nearest neighbor matching without replacement within specified caliper widths. For each of the latter two algorithms, we examined four different sub-algorithms defined by the order in which treated subjects were selected for matching to an untreated subject: lowest to highest propensity score, highest to lowest propensity score, best match first, and random order. We also examined matching with replacement. We found that (i) nearest neighbor matching induced the same balance in baseline covariates as did optimal matching; (ii) when at least some of the covariates were continuous, caliper matching tended to induce balance on baseline covariates that was at least as good as the other algorithms; (iii) caliper matching tended to result in estimates of treatment effect with less bias compared with optimal and nearest neighbor matching; (iv) optimal and nearest neighbor matching resulted in estimates of treatment effect with negligibly less variability than did caliper matching; (v) caliper matching had amongst the best performance when assessed using mean squared error; (vi) the order in which treated subjects were selected for matching had at most a modest effect on estimation; and (vii) matching with replacement did not have superior performance compared with caliper matching without replacement. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  17. A comparison of 12 algorithms for matching on the propensity score

    PubMed Central

    Austin, Peter C

    2014-01-01

    Propensity-score matching is increasingly being used to reduce the confounding that can occur in observational studies examining the effects of treatments or interventions on outcomes. We used Monte Carlo simulations to examine the following algorithms for forming matched pairs of treated and untreated subjects: optimal matching, greedy nearest neighbor matching without replacement, and greedy nearest neighbor matching without replacement within specified caliper widths. For each of the latter two algorithms, we examined four different sub-algorithms defined by the order in which treated subjects were selected for matching to an untreated subject: lowest to highest propensity score, highest to lowest propensity score, best match first, and random order. We also examined matching with replacement. We found that (i) nearest neighbor matching induced the same balance in baseline covariates as did optimal matching; (ii) when at least some of the covariates were continuous, caliper matching tended to induce balance on baseline covariates that was at least as good as the other algorithms; (iii) caliper matching tended to result in estimates of treatment effect with less bias compared with optimal and nearest neighbor matching; (iv) optimal and nearest neighbor matching resulted in estimates of treatment effect with negligibly less variability than did caliper matching; (v) caliper matching had amongst the best performance when assessed using mean squared error; (vi) the order in which treated subjects were selected for matching had at most a modest effect on estimation; and (vii) matching with replacement did not have superior performance compared with caliper matching without replacement. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. PMID:24123228

  18. Layout Study and Application of Mobile App Recommendation Approach Based On Spark Streaming Framework

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.

    2018-05-01

    For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.

  19. On Parallel Push-Relabel based Algorithms for Bipartite Maximum Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langguth, Johannes; Azad, Md Ariful; Halappanavar, Mahantesh

    2014-07-01

    We study multithreaded push-relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial (graph) problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing maximum transversal of a matrix. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a testset comprised of a wide range of real-world instances. Building on several heuristics for enhancing performance, we demonstrate good scaling for themore » parallel push-relabel algorithm. We show that it is comparable to the best augmenting path-based algorithms for bipartite matching. To the best of our knowledge, this is the first extensive study of multithreaded push-relabel based algorithms. In addition to a direct impact on the applications using matching, the proposed algorithmic techniques can be extended to preflow-push based algorithms for computing maximum flow in graphs.« less

  20. Nonlocal variational model and filter algorithm to remove multiplicative noise

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Qiang; Zhang, Hui; Cheng, Li-Zhi

    2010-07-01

    The nonlocal (NL) means filter proposed by Buades, Coll, and Morel (SIAM Multiscale Model. Simul. 4(2), 490-530, 2005), which makes full use of the redundancy information in images, has shown to be very efficient for image denoising with Gauss noise added. On the basis of the NL method and a striver to minimize the conditional mean-square error, we design a NL means filter to remove multiplicative noise, and combining the NL filter to regularity method, we propose a NL total variational (TV) model and present a fast iterated algorithm for it. Experiments demonstrate that our algorithm is better than TV method; it is superior in preserving small structures and textures and can obtain an improvement in peak signal-to-noise ratio.

  1. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

    PubMed

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-09-19

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions.

  2. A New Quaternion-Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm

    PubMed Central

    Feng, Kaiqiang; Li, Jie; Zhang, Xiaoming; Shen, Chong; Bi, Yu; Zheng, Tao; Liu, Jun

    2017-01-01

    In order to reduce the computational complexity, and improve the pitch/roll estimation accuracy of the low-cost attitude heading reference system (AHRS) under conditions of magnetic-distortion, a novel linear Kalman filter, suitable for nonlinear attitude estimation, is proposed in this paper. The new algorithm is the combination of two-step geometrically-intuitive correction (TGIC) and the Kalman filter. In the proposed algorithm, the sequential two-step geometrically-intuitive correction scheme is used to make the current estimation of pitch/roll immune to magnetic distortion. Meanwhile, the TGIC produces a computed quaternion input for the Kalman filter, which avoids the linearization error of measurement equations and reduces the computational complexity. Several experiments have been carried out to validate the performance of the filter design. The results demonstrate that the mean time consumption and the root mean square error (RMSE) of pitch/roll estimation under magnetic disturbances are reduced by 45.9% and 33.8%, respectively, when compared with a standard filter. In addition, the proposed filter is applicable for attitude estimation under various dynamic conditions. PMID:28925979

  3. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  4. A Matched Filter Technique for Slow Radio Transient Detection and First Demonstration with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-03-01

    Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.

  5. Implementation of real-time digital signal processing systems

    NASA Technical Reports Server (NTRS)

    Narasimha, M.; Peterson, A.; Narayan, S.

    1978-01-01

    Special purpose hardware implementation of DFT Computers and digital filters is considered in the light of newly introduced algorithms and IC devices. Recent work by Winograd on high-speed convolution techniques for computing short length DFT's, has motivated the development of more efficient algorithms, compared to the FFT, for evaluating the transform of longer sequences. Among these, prime factor algorithms appear suitable for special purpose hardware implementations. Architectural considerations in designing DFT computers based on these algorithms are discussed. With the availability of monolithic multiplier-accumulators, a direct implementation of IIR and FIR filters, using random access memories in place of shift registers, appears attractive. The memory addressing scheme involved in such implementations is discussed. A simple counter set-up to address the data memory in the realization of FIR filters is also described. The combination of a set of simple filters (weighting network) and a DFT computer is shown to realize a bank of uniform bandpass filters. The usefulness of this concept in arriving at a modular design for a million channel spectrum analyzer, based on microprocessors, is discussed.

  6. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, E. A.

    2018-03-01

    The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of science, we pioneered the use of deep learning with convolutional neural networks, that take time-series inputs, for rapid detection and characterization of gravitational wave signals. This approach, Deep Filtering, was initially demonstrated using simulated LIGO noise. In this article, we present the extension of Deep Filtering using real data from LIGO, for both detection and parameter estimation of gravitational waves from binary black hole mergers using continuous data streams from multiple LIGO detectors. We demonstrate for the first time that machine learning can detect and estimate the true parameters of real events observed by LIGO. Our results show that Deep Filtering achieves similar sensitivities and lower errors compared to matched-filtering while being far more computationally efficient and more resilient to glitches, allowing real-time processing of weak time-series signals in non-stationary non-Gaussian noise with minimal resources, and also enables the detection of new classes of gravitational wave sources that may go unnoticed with existing detection algorithms. This unified framework for data analysis is ideally suited to enable coincident detection campaigns of gravitational waves and their multimessenger counterparts in real-time.

  7. Systolic Signal Processor/High Frequency Direction Finding

    DTIC Science & Technology

    1990-10-01

    MUSIC ) algorithm and the finite impulse response (FIR) filter onto the testbed hardware was supported by joint sponsorship of the block and major bid...computational throughput. The systolic implementations of a four-channel finite impulse response (FIR) filter and multiple signal classification ( MUSIC ... MUSIC ) algorithm was mated to a bank of finite impulse response (FIR) filters and a four-channel data acquisition subsystem. A complete description

  8. SDIA: A dynamic situation driven information fusion algorithm for cloud environment

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Tong; Wang, Jian

    2017-09-01

    Information fusion is an important issue in information integration domain. In order to form an extensive information fusion technology under the complex and diverse situations, a new information fusion algorithm is proposed. Firstly, a fuzzy evaluation model of tag utility was proposed that can be used to count the tag entropy. Secondly, a ubiquitous situation tag tree model is proposed to define multidimensional structure of information situation. Thirdly, the similarity matching between the situation models is classified into three types: the tree inclusion, the tree embedding, and the tree compatibility. Next, in order to reduce the time complexity of the tree compatible matching algorithm, a fast and ordered tree matching algorithm is proposed based on the node entropy, which is used to support the information fusion by ubiquitous situation. Since the algorithm revolve from the graph theory of disordered tree matching algorithm, it can improve the information fusion present recall rate and precision rate in the situation. The information fusion algorithm is compared with the star and the random tree matching algorithm, and the difference between the three algorithms is analyzed in the view of isomorphism, which proves the innovation and applicability of the algorithm.

  9. Image matching for digital close-range stereo photogrammetry based on constraints of Delaunay triangulated network and epipolar-line

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.

    2006-10-01

    In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.

  10. Stable Kalman filters for processing clock measurement data

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Gibbs, B. P.; Vandergraft, J. S.

    1989-01-01

    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given.

  11. An iterative sinogram gap-filling method with object- and scanner-dedicated discrete cosine transform (DCT)-domain filters for high resolution PET scanners.

    PubMed

    Kim, Kwangdon; Lee, Kisung; Lee, Hakjae; Joo, Sungkwan; Kang, Jungwon

    2018-01-01

    We aimed to develop a gap-filling algorithm, in particular the filter mask design method of the algorithm, which optimizes the filter to the imaging object by an adaptive and iterative process, rather than by manual means. Two numerical phantoms (Shepp-Logan and Jaszczak) were used for sinogram generation. The algorithm works iteratively, not only on the gap-filling iteration but also on the mask generation, to identify the object-dedicated low frequency area in the DCT-domain that is to be preserved. We redefine the low frequency preserving region of the filter mask at every gap-filling iteration, and the region verges on the property of the original image in the DCT domain. The previous DCT2 mask for each phantom case had been manually well optimized, and the results show little difference from the reference image and sinogram. We observed little or no difference between the results of the manually optimized DCT2 algorithm and those of the proposed algorithm. The proposed algorithm works well for various types of scanning object and shows results that compare to those of the manually optimized DCT2 algorithm without perfect or full information of the imaging object.

  12. Design of a composite filter realizable on practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Ramakrishnan, Ramachandran

    1994-01-01

    Hybrid optical correlator systems use two spatial light modulators (SLM's), one at the input plane and the other at the filter plane. Currently available SLM's such as the deformable mirror device (DMD) and liquid crystal television (LCTV) SLM's exhibit arbitrarily constrained operating characteristics. The pattern recognition filters designed with the assumption that the SLM's have ideal operating characteristic may not behave as expected when implemented on the DMD or LCTV SLM's. Therefore it is necessary to incorporate the SLM constraints in the design of the filters. In this report, an iterative method is developed for the design of an unconstrained minimum average correlation energy (MACE) filter. Then using this algorithm a new approach for the design of a SLM constrained distortion invariant filter in the presence of input SLM is developed. Two different optimization algorithms are used to maximize the objective function during filter synthesis, one based on the simplex method and the other based on the Hooke and Jeeves method. Also, the simulated annealing based filter design algorithm proposed by Khan and Rajan is refined and improved. The performance of the filter is evaluated in terms of its recognition/discrimination capabilities using computer simulations and the results are compared with a simulated annealing optimization based MACE filter. The filters are designed for different LCTV SLM's operating characteristics and the correlation responses are compared. The distortion tolerance and the false class image discrimination qualities of the filter are comparable to those of the simulated annealing based filter but the new filter design takes about 1/6 of the computer time taken by the simulated annealing filter design.

  13. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    PubMed

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  14. Hybrid employment recommendation algorithm based on Spark

    NASA Astrophysics Data System (ADS)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  15. Social computing for image matching

    PubMed Central

    Rivas, Alberto; Sánchez-Torres, Ramiro; Rodríguez, Sara

    2018-01-01

    One of the main technological trends in the last five years is mass data analysis. This trend is due in part to the emergence of concepts such as social networks, which generate a large volume of data that can provide added value through their analysis. This article is focused on a business and employment-oriented social network. More specifically, it focuses on the analysis of information provided by different users in image form. The images are analyzed to detect whether other existing users have posted or talked about the same image, even if the image has undergone some type of modification such as watermarks or color filters. This makes it possible to establish new connections among unknown users by detecting what they are posting or whether they are talking about the same images. The proposed solution consists of an image matching algorithm, which is based on the rapid calculation and comparison of hashes. However, there is a computationally expensive aspect in charge of revoking possible image transformations. As a result, the image matching process is supported by a distributed forecasting system that enables or disables nodes to serve all the possible requests. The proposed system has shown promising results for matching modified images, especially when compared with other existing systems. PMID:29813082

  16. Optimizing of a high-order digital filter using PSO algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Fuchun

    2018-04-01

    A self-adaptive high-order digital filter, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance, is presented in this paper. The parameters of traditional digital filter are mainly tuned by complex calculation, whereas this paper presents a 5th order digital filter to obtain outstanding performance and the parameters of the proposed filter are optimized by swarm intelligent algorithm. Simulation results with respect to the proposed 5th order digital filter, SNR>122dB and the noise floor under -170dB are obtained in frequency range of [5-150Hz]. In further simulation, the robustness of the proposed 5th order digital is analyzed.

  17. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  18. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  19. New color-based tracking algorithm for joints of the upper extremities

    NASA Astrophysics Data System (ADS)

    Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang

    2007-11-01

    To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.

  20. Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images

    NASA Technical Reports Server (NTRS)

    Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.

    1991-01-01

    The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.

  1. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  2. A Dynamic Attitude Measurement System Based on LINS

    PubMed Central

    Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun

    2014-01-01

    A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802

  3. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  4. Progress in navigation filter estimate fusion and its application to spacecraft rendezvous

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    1994-01-01

    A new derivation of an algorithm which fuses the outputs of two Kalman filters is presented within the context of previous research in this field. Unlike other works, this derivation clearly shows the combination of estimates to be optimal, minimizing the trace of the fused covariance matrix. The algorithm assumes that the filters use identical models, and are stable and operating optimally with respect to their own local measurements. Evidence is presented which indicates that the error ellipsoid derived from the covariance of the optimally fused estimate is contained within the intersections of the error ellipsoids of the two filters being fused. Modifications which reduce the algorithm's data transmission requirements are also presented, including a scalar gain approximation, a cross-covariance update formula which employs only the two contributing filters' autocovariances, and a form of the algorithm which can be used to reinitialize the two Kalman filters. A sufficient condition for using the optimally fused estimates to periodically reinitialize the Kalman filters in this fashion is presented and proved as a theorem. When these results are applied to an optimal spacecraft rendezvous problem, simulated performance results indicate that the use of optimally fused data leads to significantly improved robustness to initial target vehicle state errors. The following applications of estimate fusion methods to spacecraft rendezvous are also described: state vector differencing, and redundancy management.

  5. Inertial sensor-based smoother for gait analysis.

    PubMed

    Suh, Young Soo

    2014-12-17

    An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).

  6. Real-time implementation of camera positioning algorithm based on FPGA & SOPC

    NASA Astrophysics Data System (ADS)

    Yang, Mingcao; Qiu, Yuehong

    2014-09-01

    In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.

  7. An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei

    2018-03-01

    A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.

  8. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  9. The Power Plant Operating Data Based on Real-time Digital Filtration Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Ya-mi; Wang, Hui-jie

    2018-03-01

    Real-time monitoring of the data of the thermal power plant was the basis of accurate analyzing thermal economy and accurate reconstruction of the operating state. Due to noise interference was inevitable; we need real-time monitoring data filtering to get accurate information of the units and equipment operating data of the thermal power plant. Real-time filtering algorithm couldn’t be used to correct the current data with future data. Compared with traditional filtering algorithm, there were a lot of constraints. First-order lag filtering method and weighted recursive average filtering method could be used for real-time filtering. This paper analyzes the characteristics of the two filtering methods and applications for real-time processing of the positive spin simulation data, and the thermal power plant operating data. The analysis was revealed that the weighted recursive average filtering method applied to the simulation and real-time plant data filtering achieved very good results.

  10. Restoration of Static JPEG Images and RGB Video Frames by Means of Nonlinear Filtering in Conditions of Gaussian and Non-Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Sokolov, R. I.; Abdullin, R. R.

    2017-11-01

    The use of nonlinear Markov process filtering makes it possible to restore both video stream frames and static photos at the stage of preprocessing. The present paper reflects the results of research in comparison of these types image filtering quality by means of special algorithm when Gaussian or non-Gaussian noises acting. Examples of filter operation at different values of signal-to-noise ratio are presented. A comparative analysis has been performed, and the best filtered kind of noise has been defined. It has been shown the quality of developed algorithm is much better than quality of adaptive one for RGB signal filtering at the same a priori information about the signal. Also, an advantage over median filter takes a place when both fluctuation and pulse noise filtering.

  11. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  12. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  13. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  14. Finding Your Literature Match - A Physics Literature Recommender System

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin; Kurtz, Michael

    2010-03-01

    A recommender system is a filtering algorithm that helps you find the right match by offering suggestions based on your choices and information you have provided. A latent factor model is a successful approach. Here an item is characterized by a vector describing to what extent a product is described by each of N categories, and a person is characterized by an ``interest'' vector, based on explicit or implicit feedback by this user. The recommender system assigns ratings to new items and suggests items this user might be interested in. Here we present results of a recommender system designed to find recent literature of interest to people working in the field of solid state physics. Since we do not have explicit feedback, our user vector consists of (implicit) ``usage.'' Using a system of N keywords we construct normalized keyword vectors for articles based on the keywords of that article and its bibliography. The normalized ``interest'' vector is created by calculating the normalized frequency of keyword occurrence in the papers cited by the papers read.

  15. Plasma Parameters From Reentry Signal Attenuation

    DOE PAGES

    Statom, T. K.

    2018-02-27

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  16. Plasma Parameters From Reentry Signal Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Statom, T. K.

    This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less

  17. Accuracy of the Estimated Core Temperature (ECTemp) Algorithm in Estimating Circadian Rhythm Indicators

    DTIC Science & Technology

    2017-04-12

    measurement of CT outside of stringent laboratory environments. This study evaluated ECTempTM, a heart rate-based extended Kalman Filter CT...based CT-estimation algorithms [7, 13, 14]. One notable example is ECTempTM, which utilizes an extended Kalman Filter to estimate CT from...3. The extended Kalman filter mapping function variance coefficient (Ct) was computed using the following equation: = −9.1428 ×

  18. A Stabilized Sparse-Matrix U-D Square-Root Implementation of a Large-State Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Boggs, D.; Ghil, M.; Keppenne, C.

    1995-01-01

    The full nonlinear Kalman filter sequential algorithm is, in theory, well-suited to the four-dimensional data assimilation problem in large-scale atmospheric and oceanic problems. However, it was later discovered that this algorithm can be very sensitive to computer roundoff, and that results may cease to be meaningful as time advances. Implementations of a modified Kalman filter are given.

  19. Development of Na Adaptive Filter to Estimate the Percentage of Body Fat Based on Anthropometric Measures

    NASA Astrophysics Data System (ADS)

    do Lago, Naydson Emmerson S. P.; Kardec Barros, Allan; Sousa, Nilviane Pires S.; Junior, Carlos Magno S.; Oliveira, Guilherme; Guimares Polisel, Camila; Eder Carvalho Santana, Ewaldo

    2018-01-01

    This study aims to develop an algorithm of an adaptive filter to determine the percentage of body fat based on the use of anthropometric indicators in adolescents. Measurements such as body mass, height and waist circumference were collected for a better analysis. The development of this filter was based on the Wiener filter, used to produce an estimate of a random process. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The LMS algorithm was also studied for the development of the filter because it is important due to its simplicity and facility of computation. Excellent results were obtained with the filter developed, being these results analyzed and compared with the data collected.

  20. A comparative study of new and current methods for dental micro-CT image denoising

    PubMed Central

    Lashgari, Mojtaba; Qin, Jie; Swain, Michael

    2016-01-01

    Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583

  1. A study on low-cost, high-accuracy, and real-time stereo vision algorithms for UAV power line inspection

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue

    2018-04-01

    Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.

  2. Web server to identify similarity of amino acid motifs to compounds (SAAMCO).

    PubMed

    Casey, Fergal P; Davey, Norman E; Baran, Ivan; Varekova, Radka Svobodova; Shields, Denis C

    2008-07-01

    Protein-protein interactions are fundamental in mediating biological processes including metabolism, cell growth, and signaling. To be able to selectively inhibit or induce protein activity or complex formation is a key feature in controlling disease. For those situations in which protein-protein interactions derive substantial affinity from short linear peptide sequences, or motifs, we can develop search algorithms for peptidomimetic compounds that resemble the short peptide's structure but are not compromised by poor pharmacological properties. SAAMCO is a Web service ( http://bioware.ucd.ie/ approximately saamco) that facilitates the screening of motifs with known structures against bioactive compound databases. It is built on an algorithm that defines compound similarity based on the presence of appropriate amino acid side chain fragments and a favorable Root Mean Squared Deviation (RMSD) between compound and motif structure. The methodology is efficient as the available compound databases are preprocessed and fast regular expression searches filter potential matches before time-intensive 3D superposition is performed. The required input information is minimal, and the compound databases have been selected to maximize the availability of information on biological activity. "Hits" are accompanied with a visualization window and links to source database entries. Motif matching can be defined on partial or full similarity which will increase or reduce respectively the number of potential mimetic compounds. The Web server provides the functionality for rapid screening of known or putative interaction motifs against prepared compound libraries using a novel search algorithm. The tabulated results can be analyzed by linking to appropriate databases and by visualization.

  3. Generic Kalman Filter Software

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on the basis of the aforementioned templates. The GKF software can be used to develop many different types of unfactorized Kalman filters. A developer can choose to implement either a linearized or an extended Kalman filter algorithm, without having to modify the GKF software. Control dynamics can be taken into account or neglected in the filter-dynamics model. Filter programs developed by use of the GKF software can be made to propagate equations of motion for linear or nonlinear dynamical systems that are deterministic or stochastic. In addition, filter programs can be made to operate in user-selectable "covariance analysis" and "propagation-only" modes that are useful in design and development stages.

  4. Multimodal medical image fusion by combining gradient minimization smoothing filter and non-subsampled directional filter bank

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wenbo, Mei; Huiqian, Du; Zexian, Wang

    2018-04-01

    A new algorithm was proposed for medical images fusion in this paper, which combined gradient minimization smoothing filter (GMSF) with non-sampled directional filter bank (NSDFB). In order to preserve more detail information, a multi scale edge preserving decomposition framework (MEDF) was used to decompose an image into a base image and a series of detail images. For the fusion of base images, the local Gaussian membership function is applied to construct the fusion weighted factor. For the fusion of detail images, NSDFB was applied to decompose each detail image into multiple directional sub-images that are fused by pulse coupled neural network (PCNN) respectively. The experimental results demonstrate that the proposed algorithm is superior to the compared algorithms in both visual effect and objective assessment.

  5. The influence of digital filter type, amplitude normalisation method, and co-contraction algorithm on clinically relevant surface electromyography data during clinical movement assessments.

    PubMed

    Devaprakash, Daniel; Weir, Gillian J; Dunne, James J; Alderson, Jacqueline A; Donnelly, Cyril J

    2016-12-01

    There is a large and growing body of surface electromyography (sEMG) research using laboratory-specific signal processing procedures (i.e., digital filter type and amplitude normalisation protocols) and data analyses methods (i.e., co-contraction algorithms) to acquire practically meaningful information from these data. As a result, the ability to compare sEMG results between studies is, and continues to be challenging. The aim of this study was to determine if digital filter type, amplitude normalisation method, and co-contraction algorithm could influence the practical or clinical interpretation of processed sEMG data. Sixteen elite female athletes were recruited. During data collection, sEMG data was recorded from nine lower limb muscles while completing a series of calibration and clinical movement assessment trials (running and sidestepping). Three analyses were conducted: (1) signal processing with two different digital filter types (Butterworth or critically damped), (2) three amplitude normalisation methods, and (3) three co-contraction ratio algorithms. Results showed the choice of digital filter did not influence the clinical interpretation of sEMG; however, choice of amplitude normalisation method and co-contraction algorithm did influence the clinical interpretation of the running and sidestepping task. Care is recommended when choosing amplitude normalisation method and co-contraction algorithms if researchers/clinicians are interested in comparing sEMG data between studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. 77 FR 59444 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... provides a ``menu'' of matching algorithms to choose from when executing incoming electronic orders. The menu format allows the Exchange to utilize different matching algorithms on a class-by-class basis. The menu includes, among other choices, the ultimate matching algorithm (``UMA''), as well as price-time...

  7. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    PubMed Central

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  8. Conversion and matched filter approximations for serial minimum-shift keyed modulation

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.

    1982-01-01

    Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.

  9. Context-Sensitive Grammar Transform: Compression and Pattern Matching

    NASA Astrophysics Data System (ADS)

    Maruyama, Shirou; Tanaka, Youhei; Sakamoto, Hiroshi; Takeda, Masayuki

    A framework of context-sensitive grammar transform for speeding-up compressed pattern matching (CPM) is proposed. A greedy compression algorithm with the transform model is presented as well as a Knuth-Morris-Pratt (KMP)-type compressed pattern matching algorithm. The compression ratio is a match for gzip and Re-Pair, and the search speed of our CPM algorithm is almost twice faster than the KMP-type CPM algorithm on Byte-Pair-Encoding by Shibata et al.[18], and in the case of short patterns, faster than the Boyer-Moore-Horspool algorithm with the stopper encoding by Rautio et al.[14], which is regarded as one of the best combinations that allows a practically fast search.

  10. Incomplete projection reconstruction of computed tomography based on the modified discrete algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei

    2018-02-01

    Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.

  11. PSC algorithm description

    NASA Technical Reports Server (NTRS)

    Nobbs, Steven G.

    1995-01-01

    An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.

  12. A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets

    NASA Astrophysics Data System (ADS)

    Klein, M.; Mohr, J. J.; Desai, S.; Israel, H.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Cunha, C. E.; da Costa, L. N.; Dietrich, J. P.; Eifler, T. F.; Evrard, A. E.; Frieman, J.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lima, M.; Maia, M. A. G.; March, M.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Collaboration, the DES

    2018-03-01

    We describe a multicomponent matched filter (MCMF) cluster confirmation tool designed for the study of large X-ray source catalogues produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts 0.05 < z < 0.8 in the recently published 2RXS catalogue from the ROSAT All-Sky Survey (RASS) over the 208 deg2 region overlapped by the Dark Energy Survey (DES) Science Verification (DES-SV) data set. In our pilot study, we examine all X-ray sources, regardless of their extent. Our method employs a multicolour red sequence (RS) algorithm that incorporates the X-ray count rate and peak position in determining the region of interest for follow-up and extracts the positionally and colour-weighted optical richness λMCMF as a function of redshift for each source. Peaks in the λMCMF-redshift distribution are identified and used to extract photometric redshifts, richness and uncertainties. The significances of all optical counterparts are characterized using the distribution of richnesses defined along random lines of sight. These significances are used to extract cluster catalogues and to estimate the contamination by random superpositions of unassociated optical systems. The delivered photometric redshift accuracy is δz/(1 + z) = 0.010. We find a well-defined X-ray luminosity-λMCMF relation with an intrinsic scatter of δln (λMCMF|Lx) = 0.21. Matching our catalogue with the DES-SV redMaPPer catalogue yields good agreement in redshift and richness estimates; comparing our catalogue with the South Pole Telescope (SPT) selected clusters shows no inconsistencies. SPT clusters in our data set are consistent with the high-mass extension of the RASS-based λMCMF-mass relation.

  13. Optimizing Approximate Weighted Matching on Nvidia Kepler K40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less

  14. Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.

    PubMed

    Milani, Ali A; Panahi, Issa M; Briggs, Richard

    2007-01-01

    Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.

  15. System and method for detection of dispersed broadband signals

    DOEpatents

    Qian, S.; Dunham, M.E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.

  16. System and method for detection of dispersed broadband signals

    DOEpatents

    Qian, Shie; Dunham, Mark E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos{2.phi.(t)}. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase .phi.(t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of .phi.'(t).

  17. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations

    PubMed Central

    Ho, ThienLuan; Oh, Seung-Rohk

    2017-01-01

    Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700

  18. History matching by spline approximation and regularization in single-phase areal reservoirs

    NASA Technical Reports Server (NTRS)

    Lee, T. Y.; Kravaris, C.; Seinfeld, J.

    1986-01-01

    An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.

  19. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  20. Modeling human faces with multi-image photogrammetry

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a color texture image can be draped over the model to achieve a photorealistic visualization. The advantage of the presented method over laser scanning and coded light range digitizers is the acquisition of the source data in a fraction of a second, allowing the measurement of human faces with higher accuracy and the possibility to measure dynamic events like the speech of a person.

  1. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  2. Entropy-guided switching trimmed mean deviation-boosted anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Nnolim, Uche A.

    2016-07-01

    An effective anisotropic diffusion (AD) mean filter variant is proposed for filtering of salt-and-pepper impulse noise. The implemented filter is robust to impulse noise ranging from low to high density levels. The algorithm involves a switching scheme in addition to utilizing the unsymmetric trimmed mean/median deviation to filter image noise while greatly preserving image edges, regardless of impulse noise density (ND). It operates with threshold parameters selected manually or adaptively estimated from the image statistics. It is further combined with the partial differential equations (PDE)-based AD for edge preservation at high NDs to enhance the properties of the trimmed mean filter. Based on experimental results, the proposed filter easily and consistently outperforms the median filter and its other variants ranging from simple to complex filter structures, especially the known PDE-based variants. In addition, the switching scheme and threshold calculation enables the filter to avoid smoothing an uncorrupted image, and filtering is activated only when impulse noise is present. Ultimately, the particular properties of the filter make its combination with the AD algorithm a unique and powerful edge-preservation smoothing filter at high-impulse NDs.

  3. Stereo Image Dense Matching by Integrating Sift and Sgm Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Song, Y.; Lu, J.

    2018-05-01

    Semi-global matching(SGM) performs the dynamic programming by treating the different path directions equally. It does not consider the impact of different path directions on cost aggregation, and with the expansion of the disparity search range, the accuracy and efficiency of the algorithm drastically decrease. This paper presents a dense matching algorithm by integrating SIFT and SGM. It takes the successful matching pairs matched by SIFT as control points to direct the path in dynamic programming with truncating error propagation. Besides, matching accuracy can be improved by using the gradient direction of the detected feature points to modify the weights of the paths in different directions. The experimental results based on Middlebury stereo data sets and CE-3 lunar data sets demonstrate that the proposed algorithm can effectively cut off the error propagation, reduce disparity search range and improve matching accuracy.

  4. Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Gai, Qiyang

    2018-01-01

    Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.

  5. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Qiao, Zijian; Xu, Xuefang; Lin, Jing; Niu, Shantao

    2017-09-01

    Most traditional overdamped monostable, bistable and even tristable stochastic resonance (SR) methods have three shortcomings in weak characteristic extraction: (1) their potential structures characterized by single stable-state type are insufficient to match with the complicated and diverse mechanical vibration signals; (2) they vulnerably suffer the interference from multiscale noise and largely depend on the help of highpass filters whose parameters are selected subjectively, probably resulting in false detection; and (3) their rescaling factors are fixed as constants generally, thereby ignoring the synergistic effect among vibration signals, potential structures and rescaling factors. These three shortcomings have limited the enhancement ability of SR. To explore the SR potential, this paper initially investigates the SR in a multistable system by calculating its output spectral amplification, further analyzes its output frequency response numerically, then examines the effect of both damping and rescaling factors on output responses and finally presents a promising underdamped SR method with stable-state matching for incipient bearing fault diagnosis. This method has three advantages: (1) the diversity of stable-state types in a multistable potential makes it easy to match with various vibration signals; (2) the underdamped multistable SR, equivalent to a moving nonlinear bandpass filter that is dependent on the rescaling factors, is able to suppress the multiscale noise; and (3) the synergistic effect among vibration signals, potential structures and rescaling and damping factors is achieved using quantum genetic algorithms whose fitness functions are new weighted signal-to-noise ratio (WSNR) instead of SNR. Therefore, the proposed method is expected to possess good enhancement ability. Simulated and experimental data of rolling element bearings demonstrate its effectiveness. The comparison results show that the proposed method is able to obtain higher amplitude at target frequency and larger output WSNR, and performs better than traditional SR methods.

  6. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.

    PubMed

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter ( SP ), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the reliability, validity and applicability of results.

  7. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.

    PubMed

    Murphy, Kevin; Burke, Daniel; Devaney, Nicholas; Dainty, Chris

    2010-07-19

    Laboratory experiments are carried out to detect optical vortices in conditions typical of those experienced when a laser beam is propagated through the atmosphere. A Spatial Light Modulator (SLM) is used to mimic atmospheric turbulence and a Shack-Hartmann wavefront sensor is utilised to measure the slopes of the wavefront surface. A matched filter algorithm determines the positions of the Shack-Hartmann spot centroids more robustly than a centroiding algorithm. The slope discrepancy is then obtained by taking the slopes measured by the wavefront sensor away from the slopes calculated from a least squares reconstruction of the phase. The slope discrepancy field is used as an input to the branch point potential method to find if a vortex is present, and if so to give its position and sign. The use of the slope discrepancy technique greatly improves the detection rate of the branch point potential method. This work shows the first time the branch point potential method has been used to detect optical vortices in an experimental setup.

  8. MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.

    PubMed

    Sella, Nadir; Verny, Louis; Uguzzoni, Guido; Affeldt, Séverine; Isambert, Hervé

    2018-07-01

    We present a web server running the MIIC algorithm, a network learning method combining constraint-based and information-theoretic frameworks to reconstruct causal, non-causal or mixed networks from non-perturbative data, without the need for an a priori choice on the class of reconstructed network. Starting from a fully connected network, the algorithm first removes dispensable edges by iteratively subtracting the most significant information contributions from indirect paths between each pair of variables. The remaining edges are then filtered based on their confidence assessment or oriented based on the signature of causality in observational data. MIIC online server can be used for a broad range of biological data, including possible unobserved (latent) variables, from single-cell gene expression data to protein sequence evolution and outperforms or matches state-of-the-art methods for either causal or non-causal network reconstruction. MIIC online can be freely accessed at https://miic.curie.fr. Supplementary data are available at Bioinformatics online.

  9. Astronomical data analysis software and systems I; Proceedings of the 1st Annual Conference, Tucson, AZ, Nov. 6-8, 1991

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)

    1992-01-01

    Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.

  10. Frequency band adjustment match filtering based on variable frequency GPR antennas pairing scheme for shallow subsurface investigations

    NASA Astrophysics Data System (ADS)

    Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.

    2018-02-01

    Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is much better than CFT frequency band adjustment filter.

  11. Multiple sound source localization using gammatone auditory filtering and direct sound componence detection

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Cao, Li

    2017-06-01

    In order to research multiple sound source localization with room reverberation and background noise, we analyze the shortcomings of traditional broadband MUSIC and ordinary auditory filtering based broadband MUSIC method, then a new broadband MUSIC algorithm with gammatone auditory filtering of frequency component selection control and detection of ascending segment of direct sound componence is proposed. The proposed algorithm controls frequency component within the interested frequency band in multichannel bandpass filter stage. Detecting the direct sound componence of the sound source for suppressing room reverberation interference is also proposed, whose merits are fast calculation and avoiding using more complex de-reverberation processing algorithm. Besides, the pseudo-spectrum of different frequency channels is weighted by their maximum amplitude for every speech frame. Through the simulation and real room reverberation environment experiments, the proposed method has good performance. Dynamic multiple sound source localization experimental results indicate that the average absolute error of azimuth estimated by the proposed algorithm is less and the histogram result has higher angle resolution.

  12. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  13. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    PubMed

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Optical Flow Analysis and Kalman Filter Tracking in Video Surveillance Algorithms

    DTIC Science & Technology

    2007-06-01

    Grover Brown and Patrick Y.C. Hwang , Introduction to Random Signals and Applied Kalman Filtering, Third edition, John Wiley & Sons, New York, 1997...noise. Brown and Hwang [6] achieve this improvement by linearly blending the prior estimate, 1kx ∧ − , with the noisy measurement, kz , in the equation...AND KALMAN FILTER TRACKING IN VIDEO SURVEILLANCE ALGORITHMS by David A. Semko June 2007 Thesis Advisor: Monique P. Fargues Second

  15. Design of recursive digital filters having specified phase and magnitude characteristics

    NASA Technical Reports Server (NTRS)

    King, R. E.; Condon, G. W.

    1972-01-01

    A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.

  16. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  17. Robotic Vision, Tray-Picking System Design Using Multiple, Optical Matched Filters

    NASA Astrophysics Data System (ADS)

    Leib, Kenneth G.; Mendelsohn, Jay C.; Grieve, Philip G.

    1986-10-01

    The optical correlator is applied to a robotic vision, tray-picking problem. Complex matched filters (MFs) are designed to provide sufficient optical memory for accepting any orientation of the desired part, and a multiple holographic lens (MHL) is used to increase the memory for continuous coverage. It is shown that with appropriate thresholding a small part can be selected using optical matched filters. A number of criteria are presented for optimizing the vision system. Two of the part-filled trays that Mendelsohn used are considered in this paper which is the analog (optical) expansion of his paper. Our view in this paper is that of the optical correlator as a cueing device for subsequent, finer vision techniques.

  18. A Novel Artificial Bee Colony Algorithm Based on Internal-Feedback Strategy for Image Template Matching

    PubMed Central

    Gong, Li-Gang

    2014-01-01

    Image template matching refers to the technique of locating a given reference image over a source image such that they are the most similar. It is a fundamental mission in the field of visual target recognition. In general, there are two critical aspects of a template matching scheme. One is similarity measurement and the other is best-match location search. In this work, we choose the well-known normalized cross correlation model as a similarity criterion. The searching procedure for the best-match location is carried out through an internal-feedback artificial bee colony (IF-ABC) algorithm. IF-ABC algorithm is highlighted by its effort to fight against premature convergence. This purpose is achieved through discarding the conventional roulette selection procedure in the ABC algorithm so as to provide each employed bee an equal chance to be followed by the onlooker bees in the local search phase. Besides that, we also suggest efficiently utilizing the internal convergence states as feedback guidance for searching intensity in the subsequent cycles of iteration. We have investigated four ideal template matching cases as well as four actual cases using different searching algorithms. Our simulation results show that the IF-ABC algorithm is more effective and robust for this template matching mission than the conventional ABC and two state-of-the-art modified ABC algorithms do. PMID:24892107

  19. Optimal Filter Estimation for Lucas-Kanade Optical Flow

    PubMed Central

    Sharmin, Nusrat; Brad, Remus

    2012-01-01

    Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

  20. Markerless positional verification using template matching and triangulation of kV images acquired during irradiation for lung tumors treated in breath-hold

    NASA Astrophysics Data System (ADS)

    Hazelaar, Colien; Dahele, Max; Mostafavi, Hassan; van der Weide, Lineke; Slotman, Ben; Verbakel, Wilko

    2018-06-01

    Lung tumors treated in breath-hold are subject to inter- and intra-breath-hold variations, which makes tumor position monitoring during each breath-hold important. A markerless technique is desirable, but limited tumor visibility on kV images makes this challenging. We evaluated if template matching  +  triangulation of kV projection images acquired during breath-hold stereotactic treatments could determine 3D tumor position. Band-pass filtering and/or digital tomosynthesis (DTS) were used as image pre-filtering/enhancement techniques. On-board kV images continuously acquired during volumetric modulated arc irradiation of (i) a 3D-printed anthropomorphic thorax phantom with three lung tumors (n  =  6 stationary datasets, n  =  2 gradually moving), and (ii) four patients (13 datasets) were analyzed. 2D reference templates (filtered DRRs) were created from planning CT data. Normalized cross-correlation was used for 2D matching between templates and pre-filtered/enhanced kV images. For 3D verification, each registration was triangulated with multiple previous registrations. Generally applicable image processing/algorithm settings for lung tumors in breath-hold were identified. For the stationary phantom, the interquartile range of the 3D position vector was on average 0.25 mm for 12° DTS  +  band-pass filtering (average detected positions in 2D  =  99.7%, 3D  =  96.1%, and 3D excluding first 12° due to triangulation angle  =  99.9%) compared to 0.81 mm for band-pass filtering only (55.8/52.9/55.0%). For the moving phantom, RMS errors for the lateral/longitudinal/vertical direction after 12° DTS  +  band-pass filtering were 1.5/0.4/1.1 mm and 2.2/0.3/3.2 mm. For the clinical data, 2D position was determined for at least 93% of each dataset and 3D position excluding first 12° for at least 82% of each dataset using 12° DTS  +  band-pass filtering. Template matching  +  triangulation using DTS  +  band-pass filtered images could accurately determine the position of stationary lung tumors. However, triangulation was less accurate/reliable for targets with continuous, gradual displacement in the lateral and vertical directions. This technique is therefore currently most suited to detect/monitor offsets occurring between initial setup and the start of treatment, inter-breath-hold variations, and tumors with predominantly longitudinal motion.

Top