Sample records for matched filter receiver

  1. System and method for detection of dispersed broadband signals

    DOEpatents

    Qian, S.; Dunham, M.E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time are disclosed. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos[l brace]2[phi](t)[r brace]. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase [phi](t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of [phi][prime](t). 10 figs.

  2. System and method for detection of dispersed broadband signals

    DOEpatents

    Qian, Shie; Dunham, Mark E.

    1999-06-08

    A system and method for detecting the presence of dispersed broadband signals in real time. The present invention utilizes a bank of matched filters for detecting the received dispersed broadband signals. Each matched filter uses a respective robust time template that has been designed to approximate the dispersed broadband signals of interest, and each time template varies across a spectrum of possible dispersed broadband signal time templates. The received dispersed broadband signal x(t) is received by each of the matched filters, and if one or more matches occurs, then the received data is determined to have signal data of interest. This signal data can then be analyzed and/or transmitted to Earth for analysis, as desired. The system and method of the present invention will prove extremely useful in many fields, including satellite communications, plasma physics, and interstellar research. The varying time templates used in the bank of matched filters are determined as follows. The robust time domain template is assumed to take the form w(t)=A(t)cos{2.phi.(t)}. Since the instantaneous frequency f(t) is known to be equal to the derivative of the phase .phi.(t), the trajectory of a joint time-frequency representation of x(t) is used as an approximation of .phi.'(t).

  3. Optimization of a matched-filter receiver for frequency hopping code acquisition in jamming

    NASA Astrophysics Data System (ADS)

    Pawlowski, P. R.; Polydoros, A.

    A matched-filter receiver for frequency hopping (FH) code acquisition is optimized when either partial-band tone jamming or partial-band Gaussian noise jamming is present. The receiver is matched to a segment of the FH code sequence, sums hard per-channel decisions to form a test, and uses multiple tests to verify acquisition. The length of the matched filter and the number of verification tests are fixed. Optimization is then choosing thresholds to maximize performance based upon the receiver's degree of knowledge about the jammer ('side-information'). Four levels of side-information are considered, ranging from none to complete. The latter level results in a constant-false-alarm-rate (CFAR) design. At each level, performance sensitivity to threshold choice is analyzed. Robust thresholds are chosen to maximize performance as the jammer varies its power distribution, resulting in simple design rules which aid threshold selection. Performance results, which show that optimum distributions for the jammer power over the total FH bandwidth exist, are presented.

  4. Frequency band adjustment match filtering based on variable frequency GPR antennas pairing scheme for shallow subsurface investigations

    NASA Astrophysics Data System (ADS)

    Shaikh, Shahid Ali; Tian, Gang; Shi, Zhanjie; Zhao, Wenke; Junejo, S. A.

    2018-02-01

    Ground penetrating Radar (GPR) is an efficient tool for subsurface geophysical investigations, particularly at shallow depths. The non-destructiveness, cost efficiency, and data reliability are the important factors that make it an ideal tool for the shallow subsurface investigations. Present study encompasses; variations in central frequency of transmitting and receiving GPR antennas (Tx-Rx) have been analyzed and frequency band adjustment match filters are fabricated and tested accordingly. Normally, the frequency of both the antennas remains similar to each other whereas in this study we have experimentally changed the frequencies of Tx-Rx and deduce the response. Instead of normally adopted three pairs, a total of nine Tx-Rx pairs were made from 50 MHz, 100 MHz, and 200 MHz antennas. The experimental data was acquired at the designated near surface geophysics test site of the Zhejiang University, Hangzhou, China. After the impulse response analysis of acquired data through conventional as well as varied Tx-Rx pairs, different swap effects were observed. The frequency band and exploration depth are influenced by transmitting frequencies rather than the receiving frequencies. The impact of receiving frequencies was noticed on the resolution; the more noises were observed using the combination of high frequency transmitting with respect to low frequency receiving. On the basis of above said variable results we have fabricated two frequency band adjustment match filters, the constant frequency transmitting (CFT) and the variable frequency transmitting (VFT) frequency band adjustment match filters. By the principle, the lower and higher frequency components were matched and then incorporated with intermediate one. Therefore, this study reveals that a Tx-Rx combination of low frequency transmitting with high frequency receiving is a better choice. Moreover, both the filters provide better radargram than raw one, the result of VFT frequency band adjustment filter is much better than CFT frequency band adjustment filter.

  5. Ultrasound sounding in air by fast-moving receiver

    NASA Astrophysics Data System (ADS)

    Sukhanov, D.; Erzakova, N.

    2018-05-01

    A method of ultrasound imaging in the air for a fast receiver. The case, when the speed of movement of the receiver can not be neglected with respect to the speed of sound. In this case, the Doppler effect is significant, making it difficult for matched filtering of the backscattered signal. The proposed method does not use a continuous repetitive noise-sounding signal. generalized approach applies spatial matched filtering in the time domain to recover the ultrasonic tomographic images.

  6. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-01

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  7. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.

    PubMed

    Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris

    2018-04-06

    We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.

  8. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  9. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  10. Optimal beamforming in ultrasound using the ideal observer.

    PubMed

    Abbey, Craig K; Nguyen, Nghia Q; Insana, Michael F

    2010-08-01

    Beamforming of received pulse-echo data generally involves the compression of signals from multiple channels within an aperture. This compression is irreversible, and therefore allows the possibility that information relevant for performing a diagnostic task is irretrievably lost. The purpose of this study was to evaluate information transfer in beamforming using a previously developed ideal observer model to quantify diagnostic information relevant to performing a task. We describe an elaborated statistical model of image formation for fixed-focus transmission and single-channel reception within a moving aperture, and we use this model on a panel of tasks related to breast sonography to evaluate receive-beamforming approaches that optimize the transfer of information. Under the assumption that acquisition noise is well described as an additive wide-band Gaussian white-noise process, we show that signal compression across receive-aperture channels after a 2-D matched-filtering operation results in no loss of diagnostic information. Across tasks, the matched-filter beamformer results in more information than standard delay-and-sum beamforming in the subsequent radio-frequency signal by a factor of two. We also show that for this matched filter, 68% of the information gain can be attributed to the phase of the matched-filter and 21% can be attributed to the amplitude. A 1-D matched filtering along axial lines shows no advantage over delay-andsum, suggesting an important role for incorporating correlations across different aperture windows in beamforming. We also show that a post-compression processing before the computation of an envelope is necessary to pass the diagnostic information in the beamformed radio-frequency signal to the final envelope image.

  11. Signal detection by means of orthogonal decomposition

    NASA Astrophysics Data System (ADS)

    Hajdu, C. F.; Dabóczi, T.; Péceli, G.; Zamantzas, C.

    2018-03-01

    Matched filtering is a well-known method frequently used in digital signal processing to detect the presence of a pattern in a signal. In this paper, we suggest a time variant matched filter, which, unlike a regular matched filter, maintains a given alignment between the input signal and the template carrying the pattern, and can be realized recursively. We introduce a method to synchronize the two signals for presence detection, usable in case direct synchronization between the signal generator and the receiver is not possible or not practical. We then propose a way of realizing and extending the same filter by modifying a recursive spectral observer, which gives rise to orthogonal filter channels and also leads to another way to synchronize the two signals.

  12. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  13. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  14. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  15. Comparison of active-set method deconvolution and matched-filtering for derivation of an ultrasound transit time spectrum.

    PubMed

    Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M

    2015-06-21

    The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

  16. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  17. Coherent broadband sonar signal processing with the environmentally corrected matched filter

    NASA Astrophysics Data System (ADS)

    Camin, Henry John, III

    The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband ambiguity function is presented as a way to view the behavior of the matched filter with and without the decorrelating environmental effects; a new, integrated phase broadband angle estimation method is developed and compared to existing methods; and a new, asymptotic offset phase angle variance model is presented. Several data sets are used to demonstrate these new contributions. High fidelity Sonar Simulation Toolset (SST) synthetic data is used to characterize the theoretical performance. Two in-water data sets were used to verify assumptions that were made during the development of the ECMF. Finally, a newly collected in-air data set containing ultra wideband signals was used in lieu of a cost prohibitive underwater experiment to demonstrate the effectiveness of the ECMF at improving parameter estimates.

  18. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  19. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  20. A floating-point digital receiver for MRI.

    PubMed

    Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki

    2002-07-01

    A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.

  1. Unconventional signal detection techniques with Gaussian probability mixtures adaptation in non-AWGN channels: full resolution receiver

    NASA Astrophysics Data System (ADS)

    Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.

    2011-04-01

    In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.

  2. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOEpatents

    Qian, Shie; Dunham, Mark E.

    1996-01-01

    A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.

  3. Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.

    PubMed

    Chen, Yuling; Lou, Yang; Yen, Jesse

    2017-07-01

    During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.

  4. Fraunhofer filters to reduce solar background for optical communications

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1986-01-01

    A wavelength that lies within a spectral interval of reduced solar emission (a Fraunhofer line) can carry optical communications with reduced interference from direct or reflected background sunlight. Suitable Fraunhofer lines are located within the tuning range of good candidate lasers. The laser should be tunable dynamically to track Doppler shifts in the sunlight incident on any solar system body that may appear in the background as viewed by the receiver. A Fraunhofer filter used with a direct-detection receiver should be tuned to match the Doppler shifts of the source and background. The required tuning calculated here for various situations is also required if, instead, one uses a heterodyne receiver with limited post-detection bandwidth.

  5. Signal Processing Design of Low Probability of Intercept Waveforms via Intersymbol Dither

    DTIC Science & Technology

    2008-03-01

    filter output asynchronously. 3.3.1 Basic Receiver. This section considers the receiver shown in Fig- ure 3.4. Note that the matched filter output is...0 0.5 1 Q ua dr at ur e In−phase s1s2 s3 s4 Figure 4.3: 4-ary DPSK Constellation Table 4.1: 4-ary DPSK Gray code mapping Word Phase Shift, ∆θ 00 0 01...both the real and imaginary parts of each noise samples following an independent Gaussian distribution. The Marsaglia ziggurat algorithm in Matlabr is

  6. A high temperature superconductor notch filter for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bolli, Pietro; Cresci, Luca; Huang, Frederick; Mariotti, Sergio; Panella, Dario

    2018-04-01

    A High Temperature Superconductor filter operating in the C-band between 4200 and 5600 MHz has been developed for one of the radio astronomical receivers of the Sardinia Radio Telescope. The motivation was to attenuate an interference from a weather radar at 5640 MHz, whose power level exceeds the linear region of the first active stages of the receiver. A very sharp transition after the nominal maximum passband frequency is reached by combining a 6th order band-pass filter with a 6th order stop-band. This solution is competitive with an alternative layout based on a cascaded triplet filter. Three units of the filter have been measured with two different calibration approaches to investigate pros and cons of each, and data repeatability. The final performance figures of the filters are: ohmic losses of the order of 0.15-0.25 dB, matching better than -15 dB, and -30 dB attenuation at 5640 MHz. Finally, a more accurate model of the connection between external connector and microstrip shows a better agreement between simulations and experimental data.

  7. Improving signal-to-noise ratios of liquid chromatography-tandem mass spectrometry peaks using noise frequency spectrum modification between two consecutive matched-filtering procedures.

    PubMed

    Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min

    2007-08-17

    This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.

  8. All-digital GPS receiver mechanization

    NASA Astrophysics Data System (ADS)

    Ould, P. C.; van Wechel, R. J.

    The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.

  9. Experimental validation of wireless communication with chaos.

    PubMed

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  10. Experimental validation of wireless communication with chaos

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  11. Experimental validation of wireless communication with chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and anmore » integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.« less

  12. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical suboptimal MLSD receiver, requiring only a single receive filter, is evaluated.

  13. a Computer Simulation Study of Coherent Optical Fibre Communication Systems

    NASA Astrophysics Data System (ADS)

    Urey, Zafer

    Available from UMI in association with The British Library. A computer simulation study of coherent optical fibre communication systems is presented in this thesis. The Wiener process is proposed as the simulation model of laser phase noise and verified to be a good one. This model is included in the simulation experiments along with the other noise sources (i.e shot noise, thermal noise and laser intensity noise) and the models that represent the various waveform processing blocks in a system such as filtering, demodulation, etc. A novel mixed-semianalytical simulation procedure is designed and successfully applied for the estimation of bit error rates as low as 10^{-10 }. In this technique the noise processes and the ISI effects at the decision time are characterized from simulation experiments but the calculation of the probability of error is obtained by numerically integrating the noise statistics over the error region using analytical expressions. Simulation of only 4096 bits is found to give estimates of BER's corresponding to received optical power within 1 dB of the theoretical calculations using this approach. This number is very small when compared with the pure simulation techniques. Hence, the technique is proved to be very efficient in terms of the computation time and the memory requirements. A command driven simulation software which runs on a DEC VAX computer under the UNIX operating system is written by the author and a series of simulation experiments are carried out using this software. In particular, the effects of IF filtering on the performance of PSK heterodyne receivers with synchronous demodulation are examined when both the phase noise and the shot noise are included in the simulations. The BER curves of this receiver are estimated for the first time for various cases of IF filtering using the mixed-semianalytical approach. At a power penalty of 1 dB the IF linewidth requirement of this receiver with the matched filter is estimated to be less than 650 kHz at the modulation rate of 1 Gbps and BER of 10 ^{-9}. The IF linewidth requirement for other IF filtering cases are also estimated. The results are not found to be much different from the matched filter case. Therefore, it is concluded that IF filtering does not have any effect for the reduction of phase noise in PSK heterodyne systems with synchronous demodulation.

  14. RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications

    NASA Astrophysics Data System (ADS)

    Jackson, Suzy A.

    2004-06-01

    New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.

  15. Digital PCM bit synchronizer and detector

    NASA Astrophysics Data System (ADS)

    Moghazy, A. E.; Maral, G.; Blanchard, A.

    1980-08-01

    A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.

  16. Risks and benefits of prophylactic inferior vena cava filters in patients undergoing bariatric surgery.

    PubMed

    Birkmeyer, Nancy J; Finks, Jonathan F; English, Wayne J; Carlin, Arthur M; Hawasli, Abdelkader A; Genaw, Jeffrey A; Wood, Michael H; Share, David A; Birkmeyer, John D

    2013-04-01

    The United States Food and Drug Administration recently issued a warning about adverse events in patients receiving inferior vena cava (IVC) filters. To assess relationships between IVC filter insertion and complications while controlling for differences in baseline patient characteristics and medical venous thromboembolism prophylaxis. Propensity-matched cohort study. The prospective, statewide, clinical registry of the Michigan Bariatric Surgery Collaborative. Bariatric surgery patients (n=35,477) from 32 hospitals during the years 2006 through 2012. Prophylactic IVC filter insertion. Outcomes included the occurrence of complications (pulmonary embolism, deep vein thrombosis, and overall combined rates of complications by severity) within 30 days of bariatric surgery. There were no significant differences in baseline characteristics among the 1,077 patients with IVC filters and in 1,077 matched control patients. Patients receiving IVC filters had higher rates of pulmonary embolism (0.84% vs 0.46%; odds ratio [OR], 2.0; 95% confidence interval [CI], 0.6-6.5; P=0.232), deep vein thrombosis (1.2% vs 0.37%; OR, 3.3; 95% CI, 1.1-10.1; P=0.039), venous thromboembolism (1.9% vs 0.74%; OR, 2.7; 95% CI, 1.1-6.3, P=0.027), serious complications (5.8% vs 3.8%; OR, 1.6; 95% CI, 1.0-2.4; P=0.031), permanently disabling complications (1.2% vs 0.37%; OR, 4.3; 95% CI, 1.2-15.6; P=0.028), and death (0.7% vs 0.09%; OR, 7.0; 95% CI, 0.9-57.3; P=0.068). Of the 7 deaths among patients with IVC filters, 4 were attributable to pulmonary embolism and 2 to IVC thrombosis/occlusion. We have identified no benefits and significant risks to the use of prophylactic IVC filters among bariatric surgery patients and believe that their use should be discouraged. Copyright © 2013 Society of Hospital Medicine.

  17. Communication Channel Estimation and Waveform Design: Time Delay Estimation on Parallel, Flat Fading Channels

    DTIC Science & Technology

    2010-02-01

    channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are

  18. A low noise 230 GHz heterodyne receiver employing .25 sq micron area Nb/AlO(x)/Nb tunnel junctions

    NASA Technical Reports Server (NTRS)

    Kooi, Jacob W.; Chan, M.; Phillips, T. G.; Bumble, B.; Leduc, H. G.

    1992-01-01

    Recent results for a full height rectangular waveguide mixer with an integrated IF matching network are reported. Two 0.25 sq micron Nb/AlO(x)/Nb superconducting insulating superconducting (SIS) tunnel junctions with a current density of about 8500 A/sq cm and omega RC of about 2.5 at 230 GHz have been tested. Detailed measurements of the receiver noise have been made from 200-290 GHz for both junctions at 4.2 K. The lowest receiver noise temperatures were recorded at 239 GHz, measuring 48 K DSB at 4.2 K and 40 K DSB at 2.1 K. The 230 GHz receiver incorporates a one octave wide integrated low pass filter and matching network which transforms the pumped IF junction impedance to 50 ohms over a wide range of impedances.

  19. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    NASA Astrophysics Data System (ADS)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Wang, Jason J.; Pueyo, Laurent; Nielsen, Eric L.; De Rosa, Robert J.; Czekala, Ian; Marley, Mark S.; Arriaga, Pauline; Bailey, Vanessa P.; Barman, Travis; Bulger, Joanna; Chilcote, Jeffrey; Cotten, Tara; Doyon, Rene; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Katherine B.; Gerard, Benjamin L.; Goodsell, Stephen J.; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn; Larkin, James E.; Maire, Jérôme; Marchis, Franck; Marois, Christian; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Morzinski, Katie M.; Oppenheimer, Rebecca; Palmer, David; Patience, Jennifer; Perrin, Marshall; Poyneer, Lisa; Rajan, Abhijith; Rameau, Julien; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Wallace, J. Kent; Ward-Duong, Kimberly; Wiktorowicz, Sloane; Wolff, Schuyler

    2017-06-01

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

  20. Covert Half Duplex Data Link Using Radar-Embedded Communications With Various Modulation Schemes

    DTIC Science & Technology

    2017-12-01

    27 Figure 4.1 Comparison of Theoretical, Radar-Pulse-Only Matched Filter , and the Radar...CommunicationsMatched Filtered PD Curves versus SNR for RCR = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 4.2 Comparison of Theoretical, Radar...Pulse-Only Matched Filter , and the Radar-CommunicationsMatched Filtered PD Curves versus SNR for RCR = [3, 6, 10] dB

  1. Estimation of Cyclic Shift with Delayed Correlation and Matched Filtering in Time Domain Cyclic-SLM for PAPR Reduction

    PubMed Central

    2016-01-01

    Time domain cyclic-selective mapping (TDC-SLM) reduces the peak-to-average power ratio (PAPR) in OFDM systems while the amounts of cyclic shifts are required to recover the transmitted signal in a receiver. One of the critical issues of the SLM scheme is sending the side information (SI) which reduces the throughputs in wireless OFDM systems. The proposed scheme implements delayed correlation and matched filtering (DC-MF) to estimate the amounts of the cyclic shifts in the receiver. In the proposed scheme, the DC-MF is placed after the frequency domain equalization (FDE) to improve the accuracy of cyclic shift estimation. The accuracy rate of the propose scheme reaches 100% at E b/N 0 = 5 dB and the bit error rate (BER) improves by 0.2 dB as compared with the conventional TDC-SLM. The BER performance of the proposed scheme is also better than that of the conventional TDC-SLM even though a nonlinear high power amplifier is assumed. PMID:27752539

  2. Adaptive data rate SSMA system for personal and mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Takahashi, Takashi; Arakaki, Yoshiya; Wakana, Hiromitsu

    1995-01-01

    An adaptive data rate SSMA (spread spectrum multiple access) system is proposed for mobile and personal multimedia satellite communications without the aid of system control earth stations. This system has a constant occupied bandwidth and has variable data rates and processing gains to mitigate communication link impairments such as fading, rain attenuation and interference as well as to handle variable data rate on demand. Proof of concept hardware for 6MHz bandwidth transponder is developed, that uses offset-QPSK (quadrature phase shift keying) and MSK (minimum shift keying) for direct sequence spread spectrum modulation and handle data rates of 4k to 64kbps. The RS422 data interface, low rate voice and H.261 video codecs are installed. The receiver is designed with coherent matched filter technique to achieve fast code acquisition, AFC (automatic frequency control) and coherent detection with minimum hardware losses in a single matched filter circuit. This receiver structure facilitates variable data rate on demand during a call. This paper shows the outline of the proposed system and the performance of the prototype equipment.

  3. Matched spectral filter based on reflection holograms for analyte identification.

    PubMed

    Cao, Liangcai; Gu, Claire

    2009-12-20

    A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO(3) crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025 degrees . Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter's reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.

  4. Coherent detection of frequency-hopped quadrature modulations in the presence of jamming. II - QPR Class I modulation. [Quadrature Partial Response

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1981-01-01

    This paper considers the performance of quadrature partial response (QPR) in the presence of jamming. Although a QPR system employs a single sample detector in its receiver, while quadrature amplitude shift keying (or quadrature phase shift keying) requires a matched-filter type of receiver, it is shown that the coherent detection performances of the two in the presence of the intentional jammer have definite similarities.

  5. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  6. The Time-Domain Matched Filter and the Spectral-Domain Matched Filter in 1-Dimensional NMR Spectroscopy.

    PubMed

    Spencer, Richard G

    2010-09-01

    A type of "matched filter" (MF), used extensively in the processing of one-dimensional spectra, is defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio (SNR) in the spectrum obtained after Fourier transformation. However, a different entity known also as the matched filter was introduced by van Vleck in the context of pulse detection in the 1940's and has become widely integrated into signal processing practice. These two types of matched filters appear to be quite distinct. In the NMR case, the "filter", that is, the exponential multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter, demonstrating that the NMR "matched filter" is a special case of the matched filter more rigorously defined in the signal processing literature. In addition, two limitations in the use of the MF are highlighted. First, application of the MF distorts resonance ratios as defined by amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing the SNR with respect to area requires a somewhat different approach to matched filtering.

  7. Use, microbiological effectiveness and health impact of a household water filter intervention in rural Rwanda-A matched cohort study.

    PubMed

    Kirby, Miles A; Nagel, Corey L; Rosa, Ghislaine; Umupfasoni, Marie Mediatrice; Iyakaremye, Laurien; Thomas, Evan A; Clasen, Thomas F

    2017-08-01

    Unsafe drinking water is a substantial health risk contributing to child diarrhoea. We investigated impacts of a program that provided a water filter to households in rural Rwandan villages. We assessed drinking water quality and reported diarrhoea 12-24 months after intervention delivery among 269 households in the poorest tertile with a child under 5 from 9 intervention villages and 9 matched control villages. We also documented filter coverage and use. In Round 1 (12-18 months after delivery), 97.4% of intervention households reported receiving the filter, 84.5% were working, and 86.0% of working filters contained water. Sensors confirmed half of households with working filters filled them at least once every other day on average. Coverage and usage was similar in Round 2 (19-24 months after delivery). The odds of detecting faecal indicator bacteria in drinking water were 78% lower in the intervention arm than the control arm (odds ratio (OR) 0.22, 95% credible interval (CrI) 0.10-0.39, p<0.001). The intervention arm also had 50% lower odds of reported diarrhoea among children <5 than the control arm (OR=0.50, 95% CrI 0.23-0.90, p=0.03). The protective effect of the filter is also suggested by reduced odds of reported diarrhoea-related visits to community health workers or clinics, although these did not reach statistical significance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  9. A high powered radar interference mitigation technique for communications signal recovery with fpga implementation

    DTIC Science & Technology

    2017-03-01

    2016.7485263.] 14. SUBJECT TERMS parameter estimation; matched- filter detection; QPSK; radar; interference; LSE, cyber, electronic warfare 15. NUMBER OF...signal is routed through a maximum-likelihood detector (MLD), which is a bank of four filters matched to the four symbols of the QPSK constellation... filters matched for each of the QPSK symbols is used to demodulate the signal after cancellation. The matched filters are defined as the complex

  10. A Frequency-Domain Adaptive Matched Filter for Active Sonar Detection.

    PubMed

    Zhao, Zhishan; Zhao, Anbang; Hui, Juan; Hou, Baochun; Sotudeh, Reza; Niu, Fang

    2017-07-04

    The most classical detector of active sonar and radar is the matched filter (MF), which is the optimal processor under ideal conditions. Aiming at the problem of active sonar detection, we propose a frequency-domain adaptive matched filter (FDAMF) with the use of a frequency-domain adaptive line enhancer (ALE). The FDAMF is an improved MF. In the simulations in this paper, the signal to noise ratio (SNR) gain of the FDAMF is about 18.6 dB higher than that of the classical MF when the input SNR is -10 dB. In order to improve the performance of the FDAMF with a low input SNR, we propose a pre-processing method, which is called frequency-domain time reversal convolution and interference suppression (TRC-IS). Compared with the classical MF, the FDAMF combined with the TRC-IS method obtains higher SNR gain, a lower detection threshold, and a better receiver operating characteristic (ROC) in the simulations in this paper. The simulation results show that the FDAMF has higher processing gain and better detection performance than the classical MF under ideal conditions. The experimental results indicate that the FDAMF does improve the performance of the MF, and can adapt to actual interference in a way. In addition, the TRC-IS preprocessing method works well in an actual noisy ocean environment.

  11. Acoustic Emission Detected by Matched Filter Technique in Laboratory Earthquake Experiment

    NASA Astrophysics Data System (ADS)

    Wang, B.; Hou, J.; Xie, F.; Ren, Y.

    2017-12-01

    Acoustic Emission in laboratory earthquake experiment is a fundamental measures to study the mechanics of the earthquake for instance to characterize the aseismic, nucleation, as well as post seismic phase or in stick slip experiment. Compared to field earthquake, AEs are generally recorded when they are beyond threshold, so some weak signals may be missing. Here we conducted an experiment on a 1.1m×1.1m granite with a 1.5m fault and 13 receivers with the same sample rate of 3MHz are placed on the surface. We adopt continues record and a matched filter technique to detect low-SNR signals. We found there are too many signals around the stick-slip and the P- arrival picked by manual may be time-consuming. So, we combined the short-term average to long-tem-average ratio (STA/LTA) technique with Autoregressive-Akaike information criterion (AR-AIC) technique to pick the arrival automatically and found mostly of the P- arrival accuracy can satisfy our demand to locate signals. Furthermore, we will locate the signals and apply a matched filter technique to detect low-SNR signals. Then, we can see if there is something interesting in laboratory earthquake experiment. Detailed and updated results will be present in the meeting.

  12. Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffio, Jean-Baptiste; Macintosh, Bruce; Nielsen, Eric L.

    We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Loéve image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signal-to-noise ratiomore » (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.« less

  13. A digital matched filter for reverse time chaos.

    PubMed

    Bailey, J Phillip; Beal, Aubrey N; Dean, Robert N; Hamilton, Michael C

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  14. A digital matched filter for reverse time chaos

    NASA Astrophysics Data System (ADS)

    Bailey, J. Phillip; Beal, Aubrey N.; Dean, Robert N.; Hamilton, Michael C.

    2016-07-01

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form of the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.

  15. RF tomography of metallic objects in free space: preliminary results

    NASA Astrophysics Data System (ADS)

    Li, Jia; Ewing, Robert L.; Berdanier, Charles; Baker, Christopher

    2015-05-01

    RF tomography has great potential in defense and homeland security applications. A distributed sensing research facility is under development at Air Force Research Lab. To develop a RF tomographic imaging system for the facility, preliminary experiments have been performed in an indoor range with 12 radar sensors distributed on a circle of 3m radius. Ultra-wideband pulses are used to illuminate single and multiple metallic targets. The echoes received by distributed sensors were processed and combined for tomography reconstruction. Traditional matched filter algorithm and truncated singular value decomposition (SVD) algorithm are compared in terms of their complexity, accuracy, and suitability for distributed processing. A new algorithm is proposed for shape reconstruction, which jointly estimates the object boundary and scatter points on the waveform's propagation path. The results show that the new algorithm allows accurate reconstruction of object shape, which is not available through the matched filter and truncated SVD algorithms.

  16. Development of a Software-Defined Radar

    DTIC Science & Technology

    2017-10-01

    waveform to the widest available (unoccupied) instantaneous bandwidth in real time. Consequently, the radar range resolution and target detection are...LabVIEW The matched filter range profile is calculated in real time using fast Fourier transform (FFT) operations to perform a cross-correlation...between the transmitted waveform and the received complex data. Figure 4 demonstrates the block logic used to achieve real -time range profile

  17. A digital matched filter for reverse time chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J. Phillip, E-mail: mchamilton@auburn.edu; Beal, Aubrey N.; Dean, Robert N.

    2016-07-15

    The use of reverse time chaos allows the realization of hardware chaotic systems that can operate at speeds equivalent to existing state of the art while requiring significantly less complex circuitry. Matched filter decoding is possible for the reverse time system since it exhibits a closed form solution formed partially by a linear basis pulse. Coefficients have been calculated and are used to realize the matched filter digitally as a finite impulse response filter. Numerical simulations confirm that this correctly implements a matched filter that can be used for detection of the chaotic signal. In addition, the direct form ofmore » the filter has been implemented in hardware description language and demonstrates performance in agreement with numerical results.« less

  18. UltiMatch-NL: A Web Service Matchmaker Based on Multiple Semantic Filters

    PubMed Central

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters. PMID:25157872

  19. UltiMatch-NL: a Web service matchmaker based on multiple semantic filters.

    PubMed

    Mohebbi, Keyvan; Ibrahim, Suhaimi; Zamani, Mazdak; Khezrian, Mojtaba

    2014-01-01

    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.

  20. Chaos-based wireless communication resisting multipath effects.

    PubMed

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  1. Chaos-based wireless communication resisting multipath effects

    NASA Astrophysics Data System (ADS)

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  2. Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver

    NASA Astrophysics Data System (ADS)

    Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.

    2017-02-01

    We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.

  3. A target detection multi-layer matched filter for color and hyperspectral cameras

    NASA Astrophysics Data System (ADS)

    Miyanishi, Tomoya; Preece, Bradley L.; Reynolds, Joseph P.

    2018-05-01

    In this article, a method for applying matched filters to a 3-dimentional hyperspectral data cube is discussed. In many applications, color visible cameras or hyperspectral cameras are used for target detection where the color or spectral optical properties of the imaged materials are partially known in advance. Therefore, the use of matched filtering with spectral data along with shape data is an effective method for detecting certain targets. Since many methods for 2D image filtering have been researched, we propose a multi-layer filter where ordinary spatially matched filters are used before the spectral filters. We discuss a way to layer the spectral filters for a 3D hyperspectral data cube, accompanied by a detectability metric for calculating the SNR of the filter. This method is appropriate for visible color cameras and hyperspectral cameras. We also demonstrate an analysis using the Night Vision Integrated Performance Model (NV-IPM) and a Monte Carlo simulation in order to confirm the effectiveness of the filtering in providing a higher output SNR and a lower false alarm rate.

  4. Development of an acoustic filter for parametric loudspeaker using phononic crystals.

    PubMed

    Ji, Peifeng; Hu, Wenlin; Yang, Jun

    2016-04-01

    The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. On the Compressive Sensing Systems (Part 1)

    DTIC Science & Technology

    2015-02-01

    resolution between targets of classical radar is limited by the radar uncertainty principle. B. Fundamentals on CS and CS-Based Radar ( CSR ) Under...appropriate conditions, CSR can beat the traditional radar. We now consider K targets with unknown range-velocities and corresponding reflection...sparse target scene. A CSR has the following features: 1) Eliminating the need of matched filter at the receiver; 2) Requiring low sampling bandwidth

  6. New Directions in the Digital Signal Processing of Image Data.

    DTIC Science & Technology

    1987-05-01

    and identify by block number) FIELD GROUP SUB-GROUP Object detection and idLntification 12 01 restoration of photon noise limited imagery 15 04 image...from incomplete information, restoration of blurred images in additive and multiplicative noise , motion analysis with fast hierarchical algorithms...different resolutions. As is well known, the solution to the matched filter problem under additive white noise conditions is the correlation receiver

  7. Towards Standardization of X-ray Beam Filters in Digital Mammography and Digital Breast Tomosynthesis: Monte Carlo simulations and analytical modelling

    PubMed Central

    Shrestha, Suman; Vedantham, Srinivasan; Karellas, Andrew

    2017-01-01

    In digital breast tomosynthesis and digital mammography, the x-ray beam filter material and thickness vary between systems. Replacing K-edge filters with Al was investigated with the intent to reduce exposure duration and to simplify system design. Tungsten target x-ray spectra were simulated with K-edge filters (50μm Rh; 50μm Ag) and Al filters of varying thickness. Monte Carlo simulations were conducted to quantify the x-ray scatter from various filters alone, scatter-to-primary ratio (SPR) with compressed breasts, and to determine the radiation dose to the breast. These data were used to analytically compute the signal-difference-to-noise ratio (SDNR) at unit (1 mGy) mean glandular dose (MGD) for W/Rh and W/Ag spectra. At SDNR matched between K-edge and Al filtered spectra, the reductions in exposure duration and MGD were quantified for three strategies: (i) fixed Al thickness and matched tube potential in kilovolts (kV); (ii) fixed Al thickness and varying the kV to match the half-value layer (HVL) between Al and K-edge filtered spectra; and, (iii) matched kV and varying the Al thickness to match the HVL between Al and K-edge filtered spectra. Monte Carlo simulations indicate that the SPR with and without the breast were not different between Al and K-edge filters. Modelling for fixed Al thickness (700μm) and kV matched to K-edge filtered spectra, identical SDNR was achieved with 37–57% reduction in exposure duration and with 2–20% reduction in MGD, depending on breast thickness. Modelling for fixed Al thickness (700μm) and HVL matched by increasing the kV over [0,4] range, identical SDNR was achieved with 62–65% decrease in exposure duration and with 2–24% reduction in MGD, depending on breast thickness. For kV and HVL matched to K-edge filtered spectra by varying Al filter thickness over [700,880]μm range, identical SDNR was achieved with 23–56% reduction in exposure duration and 2–20% reduction in MGD, depending on breast thickness. These simulations indicate that increased fluence with Al filter of fixed or variable thickness substantially decreases exposure duration while providing for similar image quality with moderate reduction in MGD. PMID:28075335

  8. Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.

    1990-02-01

    A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.

  9. Kalman/Map filtering-aided fast normalized cross correlation-based Wi-Fi fingerprinting location sensing.

    PubMed

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-11-13

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.

  10. Kalman/Map Filtering-Aided Fast Normalized Cross Correlation-Based Wi-Fi Fingerprinting Location Sensing

    PubMed Central

    Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin

    2013-01-01

    A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027

  11. Optimum coding techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Sulzer, M. P.; Woodman, R. F.

    1986-01-01

    The optimum coding technique for MST (mesosphere stratosphere troposphere) radars is that which gives the lowest possible sidelobes in practice and can be implemented without too much computing power. Coding techniques are described in Farley (1985). A technique mentioned briefly there but not fully developed and not in general use is discussed here. This is decoding by means of a filter which is not matched to the transmitted waveform, in order to reduce sidelobes below the level obtained with a matched filter. This is the first part of the technique discussed here; the second part consists of measuring the transmitted waveform and using it as the basis for the decoding filter, thus reducing errors due to imperfections in the transmitter. There are two limitations to this technique. The first is a small loss in signal to noise ratio (SNR), which usually is not significant. The second problem is related to incomplete information received at the lowest ranges. An appendix shows a technique for handling this problem. Finally, it is shown that the use of complementary codes on transmission and nonmatched decoding gives the lowest possible sidelobe level and the minimum loss in SNR due to mismatch.

  12. A human auditory tuning curves matched wavelet function.

    PubMed

    Abolhassani, Mohammad D; Salimpour, Yousef

    2008-01-01

    This paper proposes a new quantitative approach to the problem of matching a wavelet function to a human auditory tuning curves. The auditory filter shapes were derived from the psychophysical measurements in normal-hearing listeners using the variant of the notched-noise method for brief signals in forward and simultaneous masking. These filters were used as templates for the designing a wavelet function that has the maximum matching to a tuning curve. The scaling function was calculated from the matched wavelet function and by using these functions, low pass and high pass filters were derived for the implementation of a filter bank. Therefore, new wavelet families were derived.

  13. 3D-FFT for Signature Detection in LWIR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier spacemore » can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.« less

  14. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  15. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    DTIC Science & Technology

    2018-01-01

    grating lobes as compared to the conventional Doppler processing counterpart. 15. SUBJECT TERMS Doppler radar, UWB radar, matched filter , ambiguity...maps by the matched filter method, illustrating the radar data support in (a) the frequency-slow time domain and (b) the ρ-u domain. The samples...example, obtained by the matched filter method, for a 1.2-s CPI centered at t = 1.5 s

  16. Digital receiver study and implementation

    NASA Technical Reports Server (NTRS)

    Fogle, D. A.; Lee, G. M.; Massey, J. C.

    1972-01-01

    Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.

  17. On the relationship between matched filter theory as applied to gust loads and phased design loads analysis

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Pototzky, Anthony S.

    1989-01-01

    A theoretical basis and example calculations are given that demonstrate the relationship between the Matched Filter Theory approach to the calculation of time-correlated gust loads and Phased Design Load Analysis in common use in the aerospace industry. The relationship depends upon the duality between Matched Filter Theory and Random Process Theory and upon the fact that Random Process Theory is used in Phased Design Loads Analysis in determining an equiprobable loads design ellipse. Extensive background information describing the relevant points of Phased Design Loads Analysis, calculating time-correlated gust loads with Matched Filter Theory, and the duality between Matched Filter Theory and Random Process Theory is given. It is then shown that the time histories of two time-correlated gust load responses, determined using the Matched Filter Theory approach, can be plotted as parametric functions of time and that the resulting plot, when superposed upon the design ellipse corresponding to the two loads, is tangent to the ellipse. The question is raised of whether or not it is possible for a parametric load plot to extend outside the associated design ellipse. If it is possible, then the use of the equiprobable loads design ellipse will not be a conservative design practice in some circumstances.

  18. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  19. Architectural design of a ground-based deep-space optical reception antenna

    NASA Technical Reports Server (NTRS)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  20. MATCHED FILTER COMPUTATION ON FPGA, CELL, AND GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAKER, ZACHARY K.; GOKHALE, MAYA B.; TRIPP, JUSTIN L.

    2007-01-08

    The matched filter is an important kernel in the processing of hyperspectral data. The filter enables researchers to sift useful data from instruments that span large frequency bands. In this work, they evaluate the performance of a matched filter algorithm implementation on accelerated co-processor (XD1000), the IBM Cell microprocessor, and the NVIDIA GeForce 6900 GTX GPU graphics card. They provide extensive discussion of the challenges and opportunities afforded by each platform. In particular, they explore the problems of partitioning the filter most efficiently between the host CPU and the co-processor. Using their results, they derive several performance metrics that providemore » the optimal solution for a variety of application situations.« less

  1. Optical implementation of the synthetic discriminant function

    NASA Astrophysics Data System (ADS)

    Butler, S.; Riggins, J.

    1984-10-01

    Much attention is focused on the use of coherent optical pattern recognition (OPR) using matched spatial filters for robotics and intelligent systems. The OPR problem consists of three aspects -- information input, information processing, and information output. This paper discusses the information processing aspect which consists of choosing a filter to provide robust correlation with high efficiency. The filter should ideally be invariant to image shift, rotation and scale, provide a reasonable signal-to-noise (S/N) ratio and allow high throughput efficiency. The physical implementation of a spatial matched filter involves many choices. These include the use of conventional holograms or computer-generated holograms (CGH) and utilizing absorption or phase materials. Conventional holograms inherently modify the reference image by non-uniform emphasis of spatial frequencies. Proper use of film nonlinearity provides improved filter performance by emphasizing frequency ranges crucial to target discrimination. In the case of a CGH, the emphasis of the reference magnitude and phase can be controlled independently of the continuous tone or binary writing processes. This paper describes computer simulation and optical implementation of a geometrical shape and a Synthetic Discriminant Function (SDF) matched filter. The authors chose the binary Allebach-Keegan (AK) CGH algorithm to produce actual filters. The performances of these filters were measured to verify the simulation results. This paper provides a brief summary of the matched filter theory, the SDF, CGH algorithms, Phase-Only-Filtering, simulation procedures, and results.

  2. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.

    PubMed

    Hoffman, David S; Repasky, Kevin S; Reagan, John A; Carlsten, John L

    2012-09-01

    The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.

  3. QPPM receiver for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Mohamed, J. H.; Nagy, L. A.; Lizanich, P. J.; Mortensen, D. J.

    1994-01-01

    A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned.

  4. Multichannel, Active Low-Pass Filters

    NASA Technical Reports Server (NTRS)

    Lev, James J.

    1989-01-01

    Multichannel integrated circuits cascaded to obtain matched characteristics. Gain and phase characteristics of channels of multichannel, multistage, active, low-pass filter matched by making filter of cascaded multichannel integrated-circuit operational amplifiers. Concept takes advantage of inherent equality of electrical characteristics of nominally-identical circuit elements made on same integrated-circuit chip. Characteristics of channels vary identically with changes in temperature. If additional matched channels needed, chips containing more than two operational amplifiers apiece (e.g., commercial quad operational amplifliers) used. Concept applicable to variety of equipment requiring matched gain and phase in multiple channels - radar, test instruments, communication circuits, and equipment for electronic countermeasures.

  5. Filtering Photogrammetric Point Clouds Using Standard LIDAR Filters Towards DTM Generation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Gerke, M.; Vosselman, G.; Yang, M. Y.

    2018-05-01

    Digital Terrain Models (DTMs) can be generated from point clouds acquired by laser scanning or photogrammetric dense matching. During the last two decades, much effort has been paid to developing robust filtering algorithms for the airborne laser scanning (ALS) data. With the point cloud quality from dense image matching (DIM) getting better and better, the research question that arises is whether those standard Lidar filters can be used to filter photogrammetric point clouds as well. Experiments are implemented to filter two dense matching point clouds with different noise levels. Results show that the standard Lidar filter is robust to random noise. However, artefacts and blunders in the DIM points often appear due to low contrast or poor texture in the images. Filtering will be erroneous in these locations. Filtering the DIM points pre-processed by a ranking filter will bring higher Type II error (i.e. non-ground points actually labelled as ground points) but much lower Type I error (i.e. bare ground points labelled as non-ground points). Finally, the potential DTM accuracy that can be achieved by DIM points is evaluated. Two DIM point clouds derived by Pix4Dmapper and SURE are compared. On grassland dense matching generates points higher than the true terrain surface, which will result in incorrectly elevated DTMs. The application of the ranking filter leads to a reduced bias in the DTM height, but a slightly increased noise level.

  6. Morphological filtering and multiresolution fusion for mammographic microcalcification detection

    NASA Astrophysics Data System (ADS)

    Chen, Lulin; Chen, Chang W.; Parker, Kevin J.

    1997-04-01

    Mammographic images are often of relatively low contrast and poor sharpness with non-stationary background or clutter and are usually corrupted by noise. In this paper, we propose a new method for microcalcification detection using gray scale morphological filtering followed by multiresolution fusion and present a unified general filtering form called the local operating transformation for whitening filtering and adaptive thresholding. The gray scale morphological filters are used to remove all large areas that are considered as non-stationary background or clutter variations, i.e., to prewhiten images. The multiresolution fusion decision is based on matched filter theory. In addition to the normal matched filter, the Laplacian matched filter which is directly related through the wavelet transforms to multiresolution analysis is exploited for microcalcification feature detection. At the multiresolution fusion stage, the region growing techniques are used in each resolution level. The parent-child relations between resolution levels are adopted to make final detection decision. FROC is computed from test on the Nijmegen database.

  7. WE-DE-207B-08: Towards Standardization of X-Ray Filters in Digital Mammography-Enabled Breast Tomosynthesis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: In digital breast tomosynthesis (DBT) systems capable of digital mammography (DM), Al filters are used during DBT and K-edge filters during DM. The potential for standardizing the x-ray filters with Al, instead of K-edge filters, was investigated with intent to reduce exposure duration and to promote a simpler system design. Methods: Analytical computations of the half-value thickness (HVT) and the photon fluence per mAs (photons/mm2/mAs) for K-edge filters (50µm Rh; 50µm Ag) were compared with Al filters of varying thickness. Two strategies for matching the HVT from K-edge and Al filtered spectra were investigated: varying the kVp for fixedmore » Al thickness, or varying the Al thickness at matched kVp. For both strategies, Al filters were an order of magnitude thicker than K-edge filters. Hence, Monte Carlo simulations were conducted with the GEANT4 toolkit to determine if the scatter-to-primary ratio (SPR) and the point spread function of scatter (scatter PSF) differed between Al and K-edge filters. Results: Results show the potential for replacing currently used Kedge filters with Al. For fixed Al thickness (700µm), ±1 kVp and +(1–3) kVp change, matched HVT of Rh and Ag filtered spectra. At matched kVp, Al thickness range (650,750)µm and (750,860)µm matched the HVT from Rh and Ag filtered spectra. Photon fluence/mAs with Al filters were 1.5–2.5 times higher, depending on kVp and Al thickness, compared to K-edge filters. Although Al thickness was an order higher than K-edge filters, neither the SPR nor the scatter PSF differed from K-edge filters. Conclusion: The use of Al filters for digital mammography is potentially feasible. The increased fluence/mAs with Al could decrease exposure duration for the combined DBT+DM exam and simplify system design. Effect of x-ray spectrum change due to Al filtration on radiation dose, signal, noise, contrast and related metrics are being investigated. Funding support: Supported in part by NIH R21CA176470 and R01CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or NCI.« less

  8. Waveform design for detection of weapons based on signature exploitation

    NASA Astrophysics Data System (ADS)

    Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian

    2010-04-01

    We present waveform design based on signature exploitation techniques for improved detection of weapons in urban sensing applications. A single-antenna monostatic radar system is considered. Under the assumption of exact knowledge of the target orientation and, hence, known impulse response, matched illumination approach is used for optimal target detection. For the case of unknown target orientation, we analyze the target signatures as random processes and perform signal-to-noise-ratio based waveform optimization. Numerical electromagnetic modeling is used to provide the impulse responses of an AK-47 assault rifle for various target aspect angles relative to the radar. Simulation results depict an improvement in the signal-to-noise-ratio at the output of the matched filter receiver for both matched illumination and stochastic waveforms as compared to a chirp waveform of the same duration and energy.

  9. Millimeter-wave active probe

    DOEpatents

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  10. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz. Additionally, the use of a W-band isolator between the receiver module and the local oscillator source also improved the noise temperature substantially. This may be because the mixer was presented with a better impedance match with the use of the isolator. Cryogenic testing indicates a system noise temperature of 100 K or less at 166 GHz. Prior tests of the MMIC amplifiers alone have resulted in a system noise temperature of 65.70 K in the same frequency range (.160 GHz) when cooled to an ambient temperature of 20 K. While other detector systems may be slightly more sensitive (such as SIS mixers), they require more cooling (to 4 K ambient) and are not as easily scalable to build a large array, due to the need for large magnets and other equipment. When cooled to 20 K, this receiver module achieves approximately 100 K system noise temperature, which is slightly higher than single-amplifier module results obtained at JPL (65.70 K when an amplifier is corrected for back-end noise contributions). If this performance can be realized in practice, and a scalable array can be produced, the impact on cosmic microwave background experiments, astronomical and Earth spectroscopy, interferometry, and radio astronomy in general will be dramatic.

  11. Adaptive receiver structures for asynchronous CDMA systems

    NASA Astrophysics Data System (ADS)

    Rapajic, Predrag B.; Vucetic, Branka S.

    1994-05-01

    Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise.

  12. Detection of digital FSK using a phase-locked loop

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Simon, M. K.

    1975-01-01

    A theory is presented for the design of a digital FSK receiver which employs a phase-locked loop to set up the desired matched filter as the arriving signal frequency switches. The developed mathematical model makes it possible to establish the error probability performance of systems which employ a class of digital FM modulations. The noise mechanism which accounts for decision errors is modeled on the basis of the Meyr distribution and renewal Markov process theory.

  13. Performance Evaluation of a Radar by Computer

    DTIC Science & Technology

    1992-09-01

    spatial-resolution map (0.25 nmi x 2.80 ) is employed to select the appropriate threshold values for the ground clutter; a doppler weighting that...seconds with approximately 16 mi’ x 3-Doppler-bin resolution. The second filter integrates over 5 seconds and covers within 20 miles of radar and within 3...also includes receiver matching loss , beamshape loss , and the signal processing loss. D, can be written as D,=D, (n) MLL,= -f- (3.2) where x

  14. Time-correlated gust loads using matched filter theory and random process theory - A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  15. High-Resolution Radar Waveforms Based on Randomized Latin Square Sequences

    DTIC Science & Technology

    2017-04-18

    familiar Costas sequence [17]. The ambiguity function first introduced by Woodward in [13] is used to evaluate the matched filter output of a Radar waveform...the zero-delay cut that the result takes the shape of a sinc function which shows, even for significant Doppler shifts, the matched filter output...bad feature as the high ridge of the LFM waveform will still result in a large matched filter response from the target, just not at the correct delay

  16. Time-correlated gust loads using Matched-Filter Theory and Random-Process Theory: A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  17. A Low Cost Bluetooth Low Energy Transceiver for Wireless Sensor Network Applications with a Front-end Receiver-Matching Network-Reusing Power Amplifier Load Inductor.

    PubMed

    Liang, Zhen; Li, Bin; Huang, Mo; Zheng, Yanqi; Ye, Hui; Xu, Ken; Deng, Fangming

    2017-04-19

    In this work, a low cost Bluetooth Low Energy (BLE) transceiver for wireless sensor network (WSN) applications, with a receiver (RX)-matching network-reusing power amplifier (PA) load inductor, is presented. In order to decrease the die area, only two inductors were used in this work. Besides the one used in the voltage control oscillator (VCO), the PA load inductor was reused as the RX impedance matching component in the front-end. Proper controls have been applied to achieve high transmitter (TX) input impedance when the transceiver is in the receiving mode, and vice versa. This allows the TRX-switch/matching network integration without significant performance degradation. The RX adopted a low-IF structure and integrated a single-ended low noise amplifier (LNA), a current bleeding mixer, a 4th complex filter and a delta-sigma continuous time (CT) analog-to-digital converter (ADC). The TX employed a two-point PLL-based architecture with a non-linear PA. The RX achieved a sensitivity of -93 dBm and consumes 9.7 mW, while the TX achieved a 2.97% error vector magnitude (EVM) with 9.4 mW at 0 dBm output power. This design was fabricated in a 0.11 μm complementary metal oxide semiconductor (CMOS) technology and the front-end circuit only occupies 0.24 mm². The measurement results verify the effectiveness and applicability of the proposed BLE transceiver for WSN applications.

  18. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C [Santa Fe, NM

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  19. Face identification with frequency domain matched filtering in mobile environments

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Su; Woo, Yong-Hyun; Yeom, Seokwon; Kim, Shin-Hwan

    2012-06-01

    Face identification at a distance is very challenging since captured images are often degraded by blur and noise. Furthermore, the computational resources and memory are often limited in the mobile environments. Thus, it is very challenging to develop a real-time face identification system on the mobile device. This paper discusses face identification based on frequency domain matched filtering in the mobile environments. Face identification is performed by the linear or phase-only matched filter and sequential verification stages. The candidate window regions are decided by the major peaks of the linear or phase-only matched filtering outputs. The sequential stages comprise a skin-color test and an edge mask filtering test, which verify color and shape information of the candidate regions in order to remove false alarms. All algorithms are built on the mobile device using Android platform. The preliminary results show that face identification of East Asian people can be performed successfully in the mobile environments.

  20. A comparative study of optimum and suboptimum direct-detection laser ranging receivers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1978-01-01

    A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.

  1. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  2. Hierarchical image coding with diamond-shaped sub-bands

    NASA Technical Reports Server (NTRS)

    Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken

    1992-01-01

    We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.

  3. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  4. Collaborative emitter tracking using Rao-Blackwellized random exchange diffusion particle filtering

    NASA Astrophysics Data System (ADS)

    Bruno, Marcelo G. S.; Dias, Stiven S.

    2014-12-01

    We introduce in this paper the fully distributed, random exchange diffusion particle filter (ReDif-PF) to track a moving emitter using multiple received signal strength (RSS) sensors. We consider scenarios with both known and unknown sensor model parameters. In the unknown parameter case, a Rao-Blackwellized (RB) version of the random exchange diffusion particle filter, referred to as the RB ReDif-PF, is introduced. In a simulated scenario with a partially connected network, the proposed ReDif-PF outperformed a PF tracker that assimilates local neighboring measurements only and also outperformed a linearized random exchange distributed extended Kalman filter (ReDif-EKF). Furthermore, the novel ReDif-PF matched the tracking error performance of alternative suboptimal distributed PFs based respectively on iterative Markov chain move steps and selective average gossiping with an inter-node communication cost that is roughly two orders of magnitude lower than the corresponding cost for the Markov chain and selective gossip filters. Compared to a broadcast-based filter which exactly mimics the optimal centralized tracker or its equivalent (exact) consensus-based implementations, ReDif-PF showed a degradation in steady-state error performance. However, compared to the optimal consensus-based trackers, ReDif-PF is better suited for real-time applications since it does not require iterative inter-node communication between measurement arrivals.

  5. Improving the precision of the keyword-matching pornographic text filtering method using a hybrid model.

    PubMed

    Su, Gui-yang; Li, Jian-hua; Ma, Ying-hua; Li, Sheng-hong

    2004-09-01

    With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision.

  6. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    DTIC Science & Technology

    2016-06-01

    UNCLASSIFIED Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Peter W. Sarunic 1 1...determine instantaneous estimates of receiver position and then goes on to develop three Kalman filter based estimators, which use stationary receiver...used in actual GPS receivers, and cover a wide range of applications. While the standard form of the Kalman filter , of which the three filters just

  7. Improved photo response non-uniformity (PRNU) based source camera identification.

    PubMed

    Cooper, Alan J

    2013-03-10

    The concept of using Photo Response Non-Uniformity (PRNU) as a reliable forensic tool to match an image to a source camera is now well established. Traditionally, the PRNU estimation methodologies have centred on a wavelet based de-noising approach. Resultant filtering artefacts in combination with image and JPEG contamination act to reduce the quality of PRNU estimation. In this paper, it is argued that the application calls for a simplified filtering strategy which at its base level may be realised using a combination of adaptive and median filtering applied in the spatial domain. The proposed filtering method is interlinked with a further two stage enhancement strategy where only pixels in the image having high probabilities of significant PRNU bias are retained. This methodology significantly improves the discrimination between matching and non-matching image data sets over that of the common wavelet filtering approach. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  9. Method for accurate sizing of pulmonary vessels from 3D medical images

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2015-03-01

    Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.

  10. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  11. MR fingerprinting reconstruction with Kalman filter.

    PubMed

    Zhang, Xiaodi; Zhou, Zechen; Chen, Shiyang; Chen, Shuo; Li, Rui; Hu, Xiaoping

    2017-09-01

    Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic resonance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictionary construction, storage and matching. In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dictionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equation of inversion-recovery balanced steady state free-precession (IR-bSSFP) MRF sequence was derived to predict signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate the accurate MR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation were implemented with Kalman filter and the results were compared with those from dictionary matching reconstruction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm. The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Root Raised Cosine (RRC) Filters and Pulse Shaping in Communication Systems

    NASA Technical Reports Server (NTRS)

    Cubukcu, Erkin

    2012-01-01

    This presentation briefly discusses application of the Root Raised Cosine (RRC) pulse shaping in the space telecommunication. Use of the RRC filtering (i.e., pulse shaping) is adopted in commercial communications, such as cellular technology, and used extensively. However, its use in space communication is still relatively new. This will possibly change as the crowding of the frequency spectrum used in the space communication becomes a problem. The two conflicting requirements in telecommunication are the demand for high data rates per channel (or user) and need for more channels, i.e., more users. Theoretically as the channel bandwidth is increased to provide higher data rates the number of channels allocated in a fixed spectrum must be reduced. Tackling these two conflicting requirements at the same time led to the development of the RRC filters. More channels with wider bandwidth might be tightly packed in the frequency spectrum achieving the desired goals. A link model with the RRC filters has been developed and simulated. Using 90% power Bandwidth (BW) measurement definition showed that the RRC filtering might improve spectrum efficiency by more than 75%. Furthermore using the matching RRC filters both in the transmitter and receiver provides the improved Bit Error Rate (BER) performance. In this presentation the theory of three related concepts, namely pulse shaping, Inter Symbol Interference (ISI), and Bandwidth (BW) will be touched upon. Additionally the concept of the RRC filtering and some facts about the RRC filters will be presented

  13. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data

    NASA Astrophysics Data System (ADS)

    Fereydooni, H.; Mojeddifar, S.

    2017-09-01

    This study introduced a different procedure to implement matched filtering algorithm (MF) on the ASTER images to obtain the distribution map of alteration minerals in the northwestern part of the Kerman Cenozoic Magmatic Arc (KCMA). This region contains many areas with porphyry copper mineralization such as Meiduk, Abdar, Kader, Godekolvari, Iju, Serenu, Chahfiroozeh and Parkam. Also argillization, sericitization and propylitization are the most common types of hydrothermal alteration in the area. Matched filtering results were provided for alteration minerals with a matched filtering score, called MF image. To identify the pixels which contain only one material (endmember), an appropriate threshold value should be used to the MF image. The chosen threshold classifies a MF image into background and target pixels. This article argues that the current thresholding process (the choice of a threshold) shows misclassification for MF image. To address the issue, this paper introduced the directed matched filtering (DMF) algorithm in which a spectral signature-based filter (SSF) was used instead of the thresholding process. SSF is a user-defined rule package which contains numeral descriptions about the spectral reflectance of alteration minerals. On the other hand, the spectral bands are defined by an upper and lower limit in SSF filter for each alteration minerals. SSF was developed for chlorite, kaolinite, alunite, and muscovite minerals to map alteration zones. The validation proved that, at first: selecting a contiguous range of MF values could not identify desirable results, second: unexpectedly, considerable frequency of pure pixels was observed in the MF scores less than threshold value. Also, the comparison between DMF results and field studies showed an accuracy of 88.51%.

  14. Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz

    This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less

  15. Automated Threshold Selection for Template-Based Sonar Target Detection

    DTIC Science & Technology

    2017-08-01

    test based on the distribution of the matched filter correlations. From the matched filter output we evaluate target sized areas and surrounding...synthetic aperture sonar data that were part of the evaluation . Figure 3 shows a nearly uniform seafloor. Figure 4 is more complex, with

  16. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    NASA Astrophysics Data System (ADS)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  17. LANDSAT-D band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A filter, fabricated to match the spectral response of the LANDSAT band 6 sensors, was received and the combined system response function computed. The half power points for the aircraft system are 10.5 micrometer and 11.55 micrometer compared to the 10.4 and 11.6 micrometer values for the satellite. These discrepancies are considered acceptable; their effect on the apparent temperature observed at the satellite is being evaluated. The filter was installed in the infrared line scanner and the line scanner was installed in the aircraft and field checked. A daytime underflight of the satellite is scheduled for the next clear overpass and the feasibility of a nightime overpass is being discussed with NASA. The LOWTRAN 5 computer code was obtained from the Air Force Geophysical Laboratory and is being implemented for use on this effort.

  18. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  19. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  20. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  1. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    PubMed Central

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  2. Conversion and matched filter approximations for serial minimum-shift keyed modulation

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Ryan, C. R.; Stilwell, J. H.

    1982-01-01

    Serial minimum-shift keyed (MSK) modulation, a technique for generating and detecting MSK using series filtering, is ideally suited for high data rate applications provided the required conversion and matched filters can be closely approximated. Low-pass implementations of these filters as parallel inphase- and quadrature-mixer structures are characterized in this paper in terms of signal-to-noise ratio (SNR) degradation from ideal and envelope deviation. Several hardware implementation techniques utilizing microwave devices or lumped elements are presented. Optimization of parameter values results in realizations whose SNR degradation is less than 0.5 dB at error probabilities of .000001.

  3. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  4. Robotic Vision, Tray-Picking System Design Using Multiple, Optical Matched Filters

    NASA Astrophysics Data System (ADS)

    Leib, Kenneth G.; Mendelsohn, Jay C.; Grieve, Philip G.

    1986-10-01

    The optical correlator is applied to a robotic vision, tray-picking problem. Complex matched filters (MFs) are designed to provide sufficient optical memory for accepting any orientation of the desired part, and a multiple holographic lens (MHL) is used to increase the memory for continuous coverage. It is shown that with appropriate thresholding a small part can be selected using optical matched filters. A number of criteria are presented for optimizing the vision system. Two of the part-filled trays that Mendelsohn used are considered in this paper which is the analog (optical) expansion of his paper. Our view in this paper is that of the optical correlator as a cueing device for subsequent, finer vision techniques.

  5. Ultrasound strain imaging using Barker code

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  6. Phase ambiguity resolution for offset QPSK modulation systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M. (Inventor)

    1991-01-01

    A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Deanna Lynn; Coleman, Matthew A; Lane, Stephen M

    A hand-held portable microarray reader for biodetection includes a microarray reader engineered to be small enough for portable applications. The invention includes a high-powered light-emitting diode that emits excitation light, an excitation filter positioned to receive the excitation light, a slide, a slide holder assembly for positioning the slide to receive the excitation light from the excitation filter, an emission filter positioned to receive the excitation light from the slide, a lens positioned to receive the excitation light from the emission filter, and a CCD camera positioned to receive the excitation light from the lens.

  8. Minimum Energy-Variance Filters for the detection of compact sources in crowded astronomical images

    NASA Astrophysics Data System (ADS)

    Herranz, D.; Sanz, J. L.; López-Caniego, M.; González-Nuevo, J.

    2006-10-01

    In this paper we address the common problem of the detection and identification of compact sources, such as stars or far galaxies, in Astronomical images. The common approach, that consist in applying a matched filter to the data in order to remove noise and to search for intensity peaks above a certain detection threshold, does not work well when the sources to be detected appear in large number over small regions of the sky due to the effect of source overlapping and interferences among the filtered profiles of the sources. A new class of filter that balances noise removal with signal spatial concentration is introduced, then it is applied to simulated astronomical images of the sky at 857 GHz. We show that with the new filter it is possible to improve the ratio between true detections and false alarms with respect to the matched filter. For low detection thresholds, the improvement is ~ 40%.

  9. A real-time chirp-coded imaging system with tissue attenuation compensation.

    PubMed

    Ramalli, A; Guidi, F; Boni, E; Tortoli, P

    2015-07-01

    In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 μs, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Applications of charge-coupled device transversal filters to communication

    NASA Technical Reports Server (NTRS)

    Buss, D. D.; Bailey, W. H.; Brodersen, R. W.; Hewes, C. R.; Tasch, A. F., Jr.

    1975-01-01

    The paper discusses the computational power of state-of-the-art charged-coupled device (CCD) transversal filters in communications applications. Some of the performance limitations of CCD transversal filters are discussed, with attention given to time delay and bandwidth, imperfect charge transfer efficiency, weighting coefficient error, noise, and linearity. The application of CCD transversal filters to matched filtering, spectral filtering, and Fourier analysis is examined. Techniques for making programmable transversal filters are briefly outlined.

  11. A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets

    DOE PAGES

    Klein, M.; Mohr, J. J.; Desai, S.; ...

    2017-11-14

    We describe a multi-component matched filter cluster confirmation tool (MCMF) designed for the study of large X-ray source catalogs produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts $0.05

  12. A multicomponent matched filter cluster confirmation tool for eROSITA: initial application to the RASS and DES-SV data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Mohr, J. J.; Desai, S.

    We describe a multi-component matched filter cluster confirmation tool (MCMF) designed for the study of large X-ray source catalogs produced by the upcoming X-ray all-sky survey mission eROSITA. We apply the method to confirm a sample of 88 clusters with redshifts $0.05

  13. Unpowered wireless generation and sensing of ultrasound

    NASA Astrophysics Data System (ADS)

    Huang, Haiying

    2013-04-01

    This paper presents a wireless ultrasound pitch-catch system that demonstrates the wireless generation and sensing of ultrasounds based on the principle of frequency conversion. The wireless ultrasound pitch-catch system consists of a wireless interrogator and two wireless ultrasound transducers. The wireless interrogator generates an ultrasound-modulated signal and a carrier signal, both at the microwave frequency, and transmits these two signals to the wireless ultrasound actuator using a pair of antennas. Upon receiving these two signals, the wireless ultrasound actuator recovers the ultrasound excitation signal using a passive mixer and then supplies it to a piezoelectric wafer sensor for ultrasound generation in the structure. For wireless ultrasound sensing, the frequency conversion process is reversed. The ultrasound sensing signal is up-converted to a microwave signal by the wireless ultrasound sensor and is recovered at the wireless interrogator using a homodyne receiver. To differentiate the wireless actuator from the wireless sensor, each wireless transducer is equipped with a narrowband microwave filter so that it only responds to the carrier frequency that matches the filter's operation bandwidth. The principle of operation of the wireless pitch-catch system, the hardware implementation, and the associated data processing algorithm to recover the ultrasound signal from the wirelessly received signal are described. The wirelessly acquired ultrasound signal is compared with those acquired using wired connection in both time and frequency domain.

  14. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications

    PubMed Central

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-01-01

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service. PMID:28574471

  15. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.

    PubMed

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-06-02

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.

  16. Real Time System for Practical Acoustic Monitoring of Global Ocean Temperature. Volume 3

    DTIC Science & Technology

    1994-06-30

    signal processing software to the SSAR. This software performs Doppler correction , circulating sums, matched filtering and pulse compression, estimation...Doppler correction , circulating sums, matched filtering and pulse compression, estimation of multipath arrival angle, and peak- picking. At the... geometrica , sound speed, and focuing region sAles to the acoustic wavelengths Our work on this problem is based on an oceanographic application. To

  17. Systematic Biological Filter Design with a Desired I/O Filtering Response Based on Promoter-RBS Libraries.

    PubMed

    Hsu, Chih-Yuan; Pan, Zhen-Ming; Hu, Rei-Hsing; Chang, Chih-Chun; Cheng, Hsiao-Chun; Lin, Che; Chen, Bor-Sen

    2015-01-01

    In this study, robust biological filters with an external control to match a desired input/output (I/O) filtering response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the field of synthetic biology, the biological filter system serves as a powerful detector or sensor to sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. The proposed systematic design method of robust biological filters is summarized into three steps. Firstly, several well-characterized promoter-RBS libraries are established for biological filter design by identifying and collecting the quantitative and qualitative characteristics of their promoter-RBS components via nonlinear parameter estimation method. Then, the topology of synthetic biological filter is decomposed into three cascade gene regulatory modules, and an appropriate promoter-RBS library is selected for each module to achieve the desired I/O specification of a biological filter. Finally, based on the proposed systematic method, a robust externally tunable biological filter is engineered by searching the promoter-RBS component libraries and a control inducer concentration library to achieve the optimal reference match for the specified I/O filtering response.

  18. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image was processed by mean filter and median filter, then image matching was processed. The result show that when the noise is little, mean filter and median filter can achieve a good result. But when the noise density of salt and pepper noise is bigger than 0.4, or the variance of Gaussian noise is bigger than 0.0015, the result of image matching will be wrong.

  19. Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain

    NASA Astrophysics Data System (ADS)

    Ayoobi, Iman; Tangestani, Majid H.

    2017-10-01

    This study investigates the effect of spatial subsets of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) L1B visible-near infrared and short wave-infrared (VNIR-SWIR) data on matched filtering results at the central part of Kerman magmatic arc, where abundant porphyry copper deposits exist. The matched filtering (MF) procedure was run separately at sites containing hydrothermal minerals such as sericite, kaolinite, chlorite, and jarosite to map the abundances of these minerals on spatial subsets containing 100, 75, 50, and 25 percent of the original scene. Results were evaluated by comparing the matched filtering scores with the mineral abundances obtained by semi-quantitative XRD analysis of corresponding field samples. It was concluded that MF method should be applied to the whole scene prior to any data subsetting.

  20. Compressed sensing: Radar signal detection and parameter measurement for EW applications

    NASA Astrophysics Data System (ADS)

    Rao, M. Sreenivasa; Naik, K. Krishna; Reddy, K. Maheshwara

    2016-09-01

    State of the art system development is very much required for UAVs (Unmanned Aerial Vehicle) and other airborne applications, where miniature, lightweight and low-power specifications are essential. Currently, the airborne Electronic Warfare (EW) systems are developed with digital receiver technology using Nyquist sampling. The detection of radar signals and parameter measurement is a necessary requirement in EW digital receivers. The Random Modulator Pre-Integrator (RMPI) can be used for matched detection of signals using smashed filter. RMPI hardware eliminates the high sampling rate analog to digital computer and reduces the number of samples using random sampling and detection of sparse orthonormal basis vectors. RMPI explore the structural and geometrical properties of the signal apart from traditional time and frequency domain analysis for improved detection. The concept has been proved with the help of MATLAB and LabVIEW simulations.

  1. Underwater terrain-aided navigation system based on combination matching algorithm.

    PubMed

    Li, Peijuan; Sheng, Guoliang; Zhang, Xiaofei; Wu, Jingqiu; Xu, Baochun; Liu, Xing; Zhang, Yao

    2018-07-01

    Considering that the terrain-aided navigation (TAN) system based on iterated closest contour point (ICCP) algorithm diverges easily when the indicative track of strapdown inertial navigation system (SINS) is large, Kalman filter is adopted in the traditional ICCP algorithm, difference between matching result and SINS output is used as the measurement of Kalman filter, then the cumulative error of the SINS is corrected in time by filter feedback correction, and the indicative track used in ICCP is improved. The mathematic model of the autonomous underwater vehicle (AUV) integrated into the navigation system and the observation model of TAN is built. Proper matching point number is designated by comparing the simulation results of matching time and matching precision. Simulation experiments are carried out according to the ICCP algorithm and the mathematic model. It can be concluded from the simulation experiments that the navigation accuracy and stability are improved with the proposed combinational algorithm in case that proper matching point number is engaged. It will be shown that the integrated navigation system is effective in prohibiting the divergence of the indicative track and can meet the requirements of underwater, long-term and high precision of the navigation system for autonomous underwater vehicles. Copyright © 2017. Published by Elsevier Ltd.

  2. Joint histogram-based cost aggregation for stereo matching.

    PubMed

    Min, Dongbo; Lu, Jiangbo; Do, Minh N

    2013-10-01

    This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.

  3. Digital coherent receiver based transmitter penalty characterization.

    PubMed

    Geisler, David J; Kaufmann, John E

    2016-12-26

    For optical communications links where receivers are signal-power-starved, such as through free-space, it is important to design transmitters and receivers that can operate as close as practically possible to theoretical limits. A total system penalty is typically assessed in terms of how far the end-to-end bit-error rate (BER) is from these limits. It is desirable, but usually difficult, to determine the division of this penalty between the transmitter and receiver. This paper describes a new rigorous and computationally based method that isolates which portion of the penalty can be assessed against the transmitter. There are two basic parts to this approach: (1) use of a coherent optical receiver to perform frequency down-conversion of a transmitter's optical signal waveform to the electrical domain, preserving both optical field amplitude and phase information, and (2): software-based analysis of the digitized electrical waveform. The result is a single numerical metric that quantifies how close a transmitter's signal waveform is to the ideal, based on its BER performance with a perfect software-defined matched-filter receiver demodulator. A detailed description of applying the proposed methodology to the waveform characterization of an optical burst-mode differential phase-shifted keying (DPSK) transmitter is experimentally demonstrated.

  4. Propagation path effects for rayleigh and love waves. Semi-annual technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrin, E.; Goforth, T.

    Seismic surface waves are usually composed of overlapping wave trains representing multi-path propagation. A first task in the analysis of such waves is to identify and separate the various component wave trains so that each can be analyzed separately. Phase-matched filters are a class of linear filters in which the Fourier phase of the filter is made equal to that of a given signal. The authors previously described an iterative technique which can be used to find a phase-matched filter for a particular component of a seismic signal. Application of the filters to digital records of Rayleigh waves allowed multiplemore » arrivals to be identified and removed, and allowed recovery of the complex spectrum of the primary wave train along with its apparent group velocity dispersion curve. A comparable analysis of Love waves presents additional complications. Love waves are contaminated by both Love and Rayleigh multipathing and by primary off-axis Rayleigh energy. In the case of explosions, there is much less energy generated as Love waves than as Rayleigh waves. The applicability of phase-matched filtering to Love waves is demonstrated by its use on earthquakes occurring in the Norwegian Sea and near Iceland and on a nuclear explosion in Novaya Zemlya. Despite severe multipathing in two of the three events, the amplitude and phase of each of the primary Love waves were recovered without significant distortion.« less

  5. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    PubMed

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.

  6. High Speed Link Radiated Emission Reduction

    NASA Astrophysics Data System (ADS)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such approach.

  7. Weak beacon detection for air-to-ground optical wireless link establishment.

    PubMed

    Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong

    2010-02-01

    In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.

  8. Association between mortality and replacement solution bicarbonate concentration in continuous renal replacement therapy: A propensity-matched cohort study.

    PubMed

    Kashani, Kianoush; Thongprayoon, Charat; Cheungpasitporn, Wisit; Iacovella, Gina M; Akhoundi, Abbasali; Albright, Robert C

    2017-01-01

    Given the known deleterious effects seen with bicarbonate supplementation for acidemia, we hypothesized that utilizing high bicarbonate concentration replacement solution in continuous venovenous hemofiltration (CVVH) would be independently associated with higher mortality. In a propensity score-matched historical cohort study conducted at a single tertiary care center from December 9, 2006, through December 31, 2009, a total of 287consecutive adult critically ill patients with Stage III acute kidney injury (AKI) requiring CVVH were enrolled. We excluded patients on maintenance dialysis, those who received other modalities of continuous renal replacement therapies, and patients that received a mixed of 22 and 32 mEq/L bicarbonate solution pre- and post-filter. The primary outcome was in-hospital and 90-day mortality rates. Among enrollees, 68 were used 32 mEq/L bicarbonate solution, and 219 received 22mEq/L bicarbonate solution for CVVH. Patients on 32 mEq/L bicarbonate solution were more often non-surgical, had lower pH and bicarbonate level but had higher blood potassium and phosphorus levels in comparison with those on 22 mEq/L bicarbonate solution. After adjustment for the baseline characteristics, the use of 32 bicarbonate solution was significantly associated with increased in-hospital (HR = 1.94; 95% CI 1.02-3.79) and 90-day mortality (HR = 1.50; 95% CI 1.03-2.14). There was a significant increase in the hospital (p = .03) and 90-day (p = .04) mortality between the 22 vs. 32 mEq/L bicarbonate solution groups following propensity matching. Our data showed there is a strong association between using high bicarbonate solution and mortality independent of severity of illness and comorbid conditions. These findings need to be evaluated further in prospective studies.

  9. Optimal Divergence-Free Hatch Filter for GNSS Single-Frequency Measurement.

    PubMed

    Park, Byungwoon; Lim, Cheolsoon; Yun, Youngsun; Kim, Euiho; Kee, Changdon

    2017-02-24

    The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF) divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS) market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS) performance of the low-cost SF receivers comparable to that of DF receivers.

  10. Optimal Divergence-Free Hatch Filter for GNSS Single-Frequency Measurement

    PubMed Central

    Park, Byungwoon; Lim, Cheolsoon; Yun, Youngsun; Kim, Euiho; Kee, Changdon

    2017-01-01

    The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF) divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS) market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS) performance of the low-cost SF receivers comparable to that of DF receivers. PMID:28245584

  11. Processing of single channel air and water gun data for imaging an impact structure at the Chesapeake Bay

    USGS Publications Warehouse

    Lee, Myung W.

    1999-01-01

    Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.

  12. Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.

    PubMed

    Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy

    2018-01-01

    Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.

  13. Deep neural networks to enable real-time multimessenger astrophysics

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, E. A.

    2018-02-01

    Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the science reach of this emergent field of research, there is a pressing need to increase the depth and speed of the algorithms used to enable these ground-breaking discoveries. We introduce Deep Filtering—a new scalable machine learning method for end-to-end time-series signal processing. Deep Filtering is based on deep learning with two deep convolutional neural networks, which are designed for classification and regression, to detect gravitational wave signals in highly noisy time-series data streams and also estimate the parameters of their sources in real time. Acknowledging that some of the most sensitive algorithms for the detection of gravitational waves are based on implementations of matched filtering, and that a matched filter is the optimal linear filter in Gaussian noise, the application of Deep Filtering using whitened signals in Gaussian noise is investigated in this foundational article. The results indicate that Deep Filtering outperforms conventional machine learning techniques, achieves similar performance compared to matched filtering, while being several orders of magnitude faster, allowing real-time signal processing with minimal resources. Furthermore, we demonstrate that Deep Filtering can detect and characterize waveform signals emitted from new classes of eccentric or spin-precessing binary black holes, even when trained with data sets of only quasicircular binary black hole waveforms. The results presented in this article, and the recent use of deep neural networks for the identification of optical transients in telescope data, suggests that deep learning can facilitate real-time searches of gravitational wave sources and their electromagnetic and astroparticle counterparts. In the subsequent article, the framework introduced herein is directly applied to identify and characterize gravitational wave events in real LIGO data.

  14. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  15. Photonic compressed sensing nyquist folding receiver

    DTIC Science & Technology

    2017-09-01

    filter . Two independent photonic receiver architectures are designed and analyzed over the course of this research. Both receiver designs are...undersamples the signals using an opti- cal modulator configuration at 1550 nm and collects the detected samples in a low pass interpolation filter ...Electronic Intelligence EW Electronic Warfare FM Frequency Modulated LNA Low Noise Amplifier LPF Low Pass Filter MZI Mach-Zehnder Interferometer NYFR Nyquist

  16. Accuracy and robustness evaluation in stereo matching

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc M.; Hanca, Jan; Lu, Shao-Ping; Schelkens, Peter; Munteanu, Adrian

    2016-09-01

    Stereo matching has received a lot of attention from the computer vision community, thanks to its wide range of applications. Despite of the large variety of algorithms that have been proposed so far, it is not trivial to select suitable algorithms for the construction of practical systems. One of the main problems is that many algorithms lack sufficient robustness when employed in various operational conditions. This problem is due to the fact that most of the proposed methods in the literature are usually tested and tuned to perform well on one specific dataset. To alleviate this problem, an extensive evaluation in terms of accuracy and robustness of state-of-the-art stereo matching algorithms is presented. Three datasets (Middlebury, KITTI, and MPEG FTV) representing different operational conditions are employed. Based on the analysis, improvements over existing algorithms have been proposed. The experimental results show that our improved versions of cross-based and cost volume filtering algorithms outperform the original versions with large margins on Middlebury and KITTI datasets. In addition, the latter of the two proposed algorithms ranks itself among the best local stereo matching approaches on the KITTI benchmark. Under evaluations using specific settings for depth-image-based-rendering applications, our improved belief propagation algorithm is less complex than MPEG's FTV depth estimation reference software (DERS), while yielding similar depth estimation performance. Finally, several conclusions on stereo matching algorithms are also presented.

  17. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  18. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  19. Accuracy of telemetry signal power loss in a filter as an estimate for telemetry degradation

    NASA Technical Reports Server (NTRS)

    Koerner, M. A.

    1989-01-01

    When telemetry data is transmitted through a communication link, some degradation in telemetry performance occurs as a result of the imperfect frequency response of the channel. The term telemetry degradation as used here is the increase in received signal power required to offset this filtering. The usual approach to assessing this degradation is to assume that it is equal to the signal power loss in the filtering, which is easily calculated. However, this approach neglects the effects of the nonlinear phase response of the filter, the effect of any reduction of the receiving system noise due to the filter, and intersymbol interference. Here, an exact calculation of the telemetry degradation, which includes all of the above effects, is compared with the signal power loss calculation for RF filtering of NRZ data on a carrier. The signal power loss calculation is found to be a reasonable approximation when the filter follows the point at which the receiving system noise is introduced, especially if the signal power loss is less than 0.5 dB. The signal power loss approximation is less valid when the receiving system noise is not filtered.

  20. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  1. The Improved Locating Algorithm of Particle Filter Based on ROS Robot

    NASA Astrophysics Data System (ADS)

    Fang, Xun; Fu, Xiaoyang; Sun, Ming

    2018-03-01

    This paperanalyzes basic theory and primary algorithm of the real-time locating system and SLAM technology based on ROS system Robot. It proposes improved locating algorithm of particle filter effectively reduces the matching time of laser radar and map, additional ultra-wideband technology directly accelerates the global efficiency of FastSLAM algorithm, which no longer needs searching on the global map. Meanwhile, the re-sampling has been largely reduced about 5/6 that directly cancels the matching behavior on Roboticsalgorithm.

  2. Further studies using matched filter theory and stochastic simulation for gust loads prediction

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd Iii

    1993-01-01

    This paper describes two analysis methods -- one deterministic, the other stochastic -- for computing maximized and time-correlated gust loads for aircraft with nonlinear control systems. The first method is based on matched filter theory; the second is based on stochastic simulation. The paper summarizes the methods, discusses the selection of gust intensity for each method and presents numerical results. A strong similarity between the results from the two methods is seen to exist for both linear and nonlinear configurations.

  3. The Effects of Filter Cutoff Frequency on Musculoskeletal Simulations of High-Impact Movements.

    PubMed

    Tomescu, Sebastian; Bakker, Ryan; Beach, Tyson A C; Chandrashekar, Naveen

    2018-02-12

    Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single leg jump-landing. Kinematics were captured with a 3D motion capture system and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using two matched filter frequencies (10-10Hz, 15-15Hz) and two unmatched frequencies (10-50Hz, 15-50Hz). Musculoskeletal simulations using Computed Muscle Control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10-50Hz, 15-50Hz) conditions than in the matched (10-10Hz, 15-15Hz) conditions (p<0.05). Resultant joint contact forces and reserve (non-physiologic) moments were similarly larger in the unmatched filter categories (p<0.05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics which are not physiologic.

  4. The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters.

    PubMed

    Hedlin, Michael A H; Alcoverro, Benoit

    2005-04-01

    Rosette spatial filters are used at International Monitoring System infrasound array sites to reduce noise due to atmospheric turbulence. A rosette filter consists of several clusters, or rosettes, of low-impedance inlets. Acoustic energy entering each rosette of inlets is summed, acoustically, at a secondary summing manifold. Acoustic energy from the secondary manifolds are summed acoustically at a primary summing manifold before entering the microbarometer. Although rosette filters have been found to be effective at reducing infrasonic noise across a broad frequency band, resonance inside the filters reduces the effectiveness of the filters at high frequencies. This paper presents theoretical and observational evidence that the resonance inside these filters that is seen below 10 Hz is due to reflections occuring at impedance discontinuities at the primary and secondary summing manifolds. Resonance involving reflections at the inlets amplifies noise levels at frequencies above 10 Hz. This paper further reports results from theoretical and observational tests of impedance matching capillaries for removing the resonance problem. Almost total removal of resonant energy below 5 Hz was found by placing impedance matching capillaries adjacent to the secondary summing manifolds in the pipes leading to the primary summing manifold and the microbarometer. Theory and recorded data indicate that capillaries with resistance equal to the characteristic impedance of the pipe connecting the secondary and primary summing manifolds suppresses resonance but does not degrade the reception of acoustic signals. Capillaries at the inlets can be used to remove resonant energy at higher frequencies but are found to be less effective due to the high frequency of this energy outside the frequency band of interest.

  5. Privacy-preserving matching of similar patients.

    PubMed

    Vatsalan, Dinusha; Christen, Peter

    2016-02-01

    The identification of similar entities represented by records in different databases has drawn considerable attention in many application areas, including in the health domain. One important type of entity matching application that is vital for quality healthcare analytics is the identification of similar patients, known as similar patient matching. A key component of identifying similar records is the calculation of similarity of the values in attributes (fields) between these records. Due to increasing privacy and confidentiality concerns, using the actual attribute values of patient records to identify similar records across different organizations is becoming non-trivial because the attributes in such records often contain highly sensitive information such as personal and medical details of patients. Therefore, the matching needs to be based on masked (encoded) values while being effective and efficient to allow matching of large databases. Bloom filter encoding has widely been used as an efficient masking technique for privacy-preserving matching of string and categorical values. However, no work on Bloom filter-based masking of numerical data, such as integer (e.g. age), floating point (e.g. body mass index), and modulus (numbers wrap around upon reaching a certain value, e.g. date and time), which are commonly required in the health domain, has been presented in the literature. We propose a framework with novel methods for masking numerical data using Bloom filters, thereby facilitating the calculation of similarities between records. We conduct an empirical study on publicly available real-world datasets which shows that our framework provides efficient masking and achieves similar matching accuracy compared to the matching of actual unencoded patient records. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Block matching and Wiener filtering approach to optical turbulence mitigation and its application to simulated and real imagery with quantitative error analysis

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; Rucci, Michael A.; Dapore, Alexander J.; Karch, Barry K.

    2017-07-01

    We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged, and the average image is processed with a Wiener filter to provide deconvolution. An important aspect of the proposed method lies in how we model the degradation point spread function (PSF) for the purposes of Wiener filtering. We use a parametric model that takes into account the level of geometric correction achieved during image registration. This is unlike any method we are aware of in the literature. By matching the PSF to the level of registration in this way, the Wiener filter is able to fully exploit the reduced blurring achieved by registration. We also describe a method for estimating the atmospheric coherence diameter (or Fried parameter) from the estimated motion vectors. We provide a detailed performance analysis that illustrates how the key tuning parameters impact system performance. The proposed method is relatively simple computationally, yet it has excellent performance in comparison with state-of-the-art benchmark methods in our study.

  7. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  8. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  9. Demonstration of Detection and Ranging Using Solvable Chaos

    NASA Technical Reports Server (NTRS)

    Corron, Ned J.; Stahl, Mark T.; Blakely, Jonathan N.

    2013-01-01

    Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This linear representation enables coherent reception using a simple analog matched filter and without need for digital sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. Successful acoustic ranging measurements are presented to demonstrate the viability of the approach.

  10. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  11. Safety of laser use under the dental microscope.

    PubMed

    Saegusa, Hidetoshi; Watanabe, Satoshi; Anjo, Tomoo; Ebihara, Arata; Suda, Hideaki

    2010-04-01

    The aim of this study was to investigate the safety of laser use under the dental microscope. Nd:YAG, Er:YAG and diode lasers were used. The end of the tips was positioned at a distance of 5 cm from the objective lens of a dental microscope. Each eye protector was made into a flat disc, which was fixed on the lens of the microscope. The filters were placed in front of the objective lens or behind the eye lens. Transmitted energy through the microscope with or without the filters was measured. No transmitted laser energy was detected when using matched eye protectors. Mismatched eye protectors were not effective for shutting out laser energy, especially for Nd:YAG and diode lasers. None or very little laser energy was detected through the microscope even without any laser filter. Matched filters shut out all laser energy irrespective of their positions.

  12. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  13. Send-side matching of data communications messages

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-07-01

    Send-side matching of data communications messages includes a plurality of compute nodes organized for collective operations, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  14. Send-side matching of data communications messages

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.

    2014-06-17

    Send-side matching of data communications messages in a distributed computing system comprising a plurality of compute nodes, including: issuing by a receiving node to source nodes a receive message that specifies receipt of a single message to be sent from any source node, the receive message including message matching information, a specification of a hardware-level mutual exclusion device, and an identification of a receive buffer; matching by two or more of the source nodes the receive message with pending send messages in the two or more source nodes; operating by one of the source nodes having a matching send message the mutual exclusion device, excluding messages from other source nodes with matching send messages and identifying to the receiving node the source node operating the mutual exclusion device; and sending to the receiving node from the source node operating the mutual exclusion device a matched pending message.

  15. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching

    PubMed Central

    Wang, Guohua; Liu, Qiong

    2015-01-01

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only. PMID:26703611

  16. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    PubMed

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  17. On-sky demonstration of matched filters for wavefront measurements using ELT-scale elongated laser guide stars

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Bardou, L.; Bonaccini Calia, D.; Buey, T.; Centrone, M.; Chemla, F.; Gach, J. L.; Gendron, E.; Gratadour, D.; Guidolin, I.; Jenkins, D. R.; Marchetti, E.; Morris, T. J.; Myers, R. M.; Osborn, J.; Reeves, A. P.; Reyes, M.; Rousset, G.; Lombardi, G.; Townson, M. J.; Vidal, F.

    2017-04-01

    The performance of adaptive optics systems is partially dependent on the algorithms used within the real-time control system to compute wavefront slope measurements. We demonstrate the use of a matched filter algorithm for the processing of elongated laser guide star (LGS) Shack-Hartmann images, using the CANARY adaptive optics instrument on the 4.2 m William Herschel Telescope and the European Southern Observatory Wendelstein LGS Unit placed 40 m away. This algorithm has been selected for use with the forthcoming Thirty Meter Telescope, but until now had not been demonstrated on-sky. From the results of a first observing run, we show that the use of matched filtering improves our adaptive optics system performance, with increases in on-sky H-band Strehl measured up to about a factor of 1.1 with respect to a conventional centre of gravity approach. We describe the algorithm used, and the methods that we implemented to enable on-sky demonstration.

  18. Simulation of synthetic discriminant function optical implementation

    NASA Astrophysics Data System (ADS)

    Riggins, J.; Butler, S.

    1984-12-01

    The optical implementation of geometrical shape and synthetic discriminant function matched filters is computer modeled. The filter implementation utilizes the Allebach-Keegan computer-generated hologram algorithm. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  19. Optical calculation of correlation filters for a robotic vision system

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  20. Influence of light source, polarization, education, and training on shade matching quality.

    PubMed

    Clary, Jacqueline A; Ontiveros, Joe C; Cron, Stanley G; Paravina, Rade D

    2016-07-01

    Many factors influence the quality of shade selection, and isolating how significantly each of these factors influences results is difficult. The purpose of this in vitro study was to compare results of shade matching using handheld lights with or without a polarizing filter with results obtained using a professional viewing booth and to analyze the influence of education and training on shade selection outcome. A total of 96 third-year dental students (evaluators) were randomly separated into 4 groups. Each group was assigned 1 of 2 handheld shade-matching devices (lights) with or without a polarizing filter. Each group performed a shade matching exercise using the handheld light or a professional viewing booth. The exercise consisted of matching shade tabs placed in a typodont to a commercial shade guide. Each group repeated this procedure 4 times over a 9-week period. A lecture on shade matching was presented at the fifth week of the study, between "before" and "after" shade matching procedures. Shade matching scores with handheld lights (7.8) were higher than scores of shade matching with the viewing booth (7.2). The mean scores for before (7.2) and after (7.8) shade matching (with education and training in between) were significantly different. The combined effect of light and education and training improved the shade matching score by 1.2, from 6.8 in the before sessions using the viewing booth to 8.0 in the after sessions using handheld lights. A 21% increase in the number of evaluators who selected 1 of 4 best matches was recorded, 10% for handheld lights versus viewing booth after education and training versus before sessions and 11% between after sessions using handheld lights versus before sessions using viewing booth. Within the limits of the study, the shade matching scores with handheld lights were significantly better than the results obtained using a viewing booth (P<.01). Using a handheld light with or without a polarizing filter did not influence shade matching results. Mean shade matching scores were significantly better after education and training (P<.01). Light combined with education and training resulted in the greatest increase in shade matching quality. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Gunther Tulip Retrievable Inferior Vena Caval Filters: Indications, Efficacy, Retrieval, and Complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looby, S.; Given, M.F.; Geoghegan, T.

    Purpose. We evaluated the Gunther Tulip (GT) retrievable inferior vena cava (IVC) filter with regard to indications, filtration efficacy, complications, retrieval window, and use of anticoagulation. Method. A retrospective study was performed of 147 patients (64 men, 83 women; mean age 58.8 years) who underwent retrievable GT filter insertion between 2001 and 2005. The indications for placement included a diagnosis of pulmonary embolism or deep venous thrombosis with a contraindication to anticoagulation (n = 68), pulmonary embolism or deep venous thrombosis while on anticoagulation (n = 49), prophylactic filter placement for high-risk surgical patients with a past history of pulmonarymore » embolism or deep venous thrombosis (n = 20), and a high risk of pulmonary embolism or deep venous thrombosis (n = 10). Forty-nine of the 147 patients did not receive anticoagulation (33.7%) while 96 of 147 patients did, 82 of these receiving warfarin (56.5%), 11 receiving low-molecular weight heparins (7.58%), and 3 receiving antiplatelet agents alone (2.06%). Results. Filter placement was successful in 147 patients (100%). Two patients had two filters inserted. Of the 147 patients, filter deployment was on a permanent basis in 102 and with an intention to retrieve in 45 patients. There were 36 (80%) successful retrievals and 9 (20%) failed retrievals. The mean time to retrieval was 33.6 days. The reasons for failed retrieval included filter struts tightly adherent to the IVC wall (5/9), extreme filter tilt (2/9), and extensive filter thrombus (2/9). Complications included pneumothorax (n = 4), failure of filter expansion (n = 1), and breakthrough pulmonary embolism (n = 1). No IVC thrombotic episodes were recorded. Discussion. The Gunther Tulip retrievable filter can be used as a permanent or a retrievable filter. It is safe and efficacious. GT filters can be safely retrieved at a mean time interval of 33.6 days. The newly developed Celect filter may extend the retrieval interval.« less

  2. Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

    NASA Astrophysics Data System (ADS)

    Lenz, Andreas; Stein, Manuel S.; Swindlehurst, A. Lee

    2018-05-01

    In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter $B$ to the rate of the analog-to-digital converter $f_s$ to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm $B\\leq f_s$. To this end, at the receiver, we allow for a higher pre-filter bandwidth $B>f_s$ and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.

  3. Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System

    NASA Astrophysics Data System (ADS)

    Toh, Keat Beng; Tachikawa, Shin'ichi

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.

  4. Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.

    PubMed

    Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C

    2013-03-01

    This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.

  5. An orbital angular momentum radio communication system optimized by intensity controlled masks effectively: Theoretical design and experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xinlu; Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, Beijing 100875; Huang, Shanguo, E-mail: shghuang@bupt.edu.cn

    A system of generating and receiving orbital angular momentum (OAM) radio beams, which are collectively formed by two circular array antennas (CAAs) and effectively optimized by two intensity controlled masks, is proposed and experimentally investigated. The scheme is effective in blocking of the unwanted OAM modes and enhancing the power of received radio signals, which results in the capacity gain of system and extended transmission distance of the OAM radio beams. The operation principle of the intensity controlled masks, which can be regarded as both collimator and filter, is feasible and simple to realize. Numerical simulations of intensity and phasemore » distributions at each key cross-sectional plane of the radio beams demonstrate the collimated results. The experimental results match well with the theoretical analysis and the receive distance of the OAM radio beam at radio frequency (RF) 20 GHz is extended up to 200 times of the wavelength of the RF signals, the measured distance is 5 times of the original measured distance. The presented proof-of-concept experiment demonstrates the feasibility of the system.« less

  6. Implementation of an Electronic Ionosonde to Monitor the Earth's Ionosphere via a Projected Column through USRP.

    PubMed

    Barona Mendoza, Jhon Jairo; Quiroga Ruiz, Carlos Fernando; Pinedo Jaramillo, Carlos Rafael

    2017-04-25

    This document illustrates the processes carried out for the construction of an ionospheric sensor or ionosonde, from a universal software radio peripheral (USRP), and its programming using GNU-Radio and MATLAB. The development involved the in-depth study of the characteristics of the ionosphere, to apply the corresponding mathematical models used in the radar-like pulse compression technique and matched filters, among others. The sensor operates by firing electromagnetic waves in a frequency sweep, which are reflected against the ionosphere and are received on its return by the receiver of the instrument, which calculates the reflection height through the signal offset. From this information and a series of calculations, the electron density of the terrestrial ionosphere could be obtained. Improving the SNR of received echoes reduces the transmission power to a maximum of 400 W. The resolution associated with the bandwidth of the signal used is approximately 5 km, but this can be improved, taking advantage of the fact that the daughterboards used in the USRP allow a higher sampling frequency than the one used in the design of this experiment.

  7. Indications, retrieval rate, and complications of inferior vena cava filters: Single-center experience in Saudi Arabia.

    PubMed

    Shabib, Abdullah Bin; Alsayed, Fahad; Aldughaythir, Saad; Habeeb, Hanan; Al Tamimi, Sumayyah; Masuadi, Emad; Alzahrani, Mohsen; Alaklabi, Ali; Alotaibi, Azzam; Rajendram, Rajkumar; Almegren, Mosaad

    2018-01-01

    Inferior vena cava (IVC) filter is indicated in patients with acute venous thromboembolism (VTE) in whom therapeutic anticoagulation is contraindicated. While prophylactic insertion of an IVC filter may be considered for patients at high risk of VTE, there are significant differences between clinical guidelines on the role of IVC filters. These discrepancies have arisen predominantly because of the paucity of data on the efficacy and safety of IVC filters. We, therefore, evaluated the indications for filter insertion, the rate of filter retrieval and complications in patients who received IVC filters at King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia. A descriptive, retrospective review of electronic- and paper-based medical records was performed. Consecutive sampling was used to study all adult patients who received an IVC filter at KAMC between 2007 and 2016 and met the inclusion criteria. A total of 382 IVC filters were inserted. 113 patients (30%) had an acute VTE and a contraindication to anticoagulation while 53 patients (14%) received an IVC filter in the absence of VTE (i.e., prophylactic). Only 124 (32.5%) IVC filters were eventually retrieved. The most common reason for nonretrieval was the need for permanent filtration (155, 60%). Thrombotic complications developed in 72 (19%) patients; nine patients had fatal pulmonary embolism. The insertion of IVC filters in this cohort was associated with low retrieval rate and relatively high incidence of thrombotic complications. Follow-up of patients is required to detect IVC filter-related complications and to increase retrieval rate.

  8. Improved space object detection using short-exposure image data with daylight background.

    PubMed

    Becker, David; Cain, Stephen

    2018-05-10

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.

  9. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1991-01-01

    Two matched filter theory based schemes are described and illustrated for obtaining maximized and time correlated gust loads for a nonlinear aircraft. The first scheme is computationally fast because it uses a simple 1-D search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multi-dimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  10. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.

    1991-01-01

    This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  11. The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Willis, Joshua; LIGO Scientific Collaboration

    2017-01-01

    Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.

  12. Distilling quantum entanglement via mode-matched filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Yuping; Kumar, Prem

    We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.

  13. Minimum Bayes risk image correlation

    NASA Technical Reports Server (NTRS)

    Minter, T. C., Jr.

    1980-01-01

    In this paper, the problem of designing a matched filter for image correlation will be treated as a statistical pattern recognition problem. It is shown that, by minimizing a suitable criterion, a matched filter can be estimated which approximates the optimum Bayes discriminant function in a least-squares sense. It is well known that the use of the Bayes discriminant function in target classification minimizes the Bayes risk, which in turn directly minimizes the probability of a false fix. A fast Fourier implementation of the minimum Bayes risk correlation procedure is described.

  14. Video-signal improvement using comb filtering techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Stuber, F. M.; Panneton, R. J.

    1973-01-01

    Significant improvement in the signal-to-noise performance of television signals has been obtained through the application of comb filtering techniques. This improvement is achieved by removing the inherent redundancy in the television signal through linear prediction and by utilizing the unique noise-rejection characteristics of the receiver comb filter. Theoretical and experimental results describe the signal-to-noise ratio and picture-quality improvement obtained through the use of baseband comb filters and the implementation of a comb network as the loop filter in a phase-lock-loop demodulator. Attention is given to the fact that noise becomes correlated when processed by the receiver comb filter.

  15. Nonlocal Means Denoising of Self-Gated and k-Space Sorted 4-Dimensional Magnetic Resonance Imaging Using Block-Matching and 3-Dimensional Filtering: Implications for Pancreatic Tumor Registration and Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jun; McKenzie, Elizabeth; Fan, Zhaoyang

    Purpose: To denoise self-gated k-space sorted 4-dimensional magnetic resonance imaging (SG-KS-4D-MRI) by applying a nonlocal means denoising filter, block-matching and 3-dimensional filtering (BM3D), to test its impact on the accuracy of 4D image deformable registration and automated tumor segmentation for pancreatic cancer patients. Methods and Materials: Nine patients with pancreatic cancer and abdominal SG-KS-4D-MRI were included in the study. Block-matching and 3D filtering was adapted to search in the axial slices/frames adjacent to the reference image patch in the spatial and temporal domains. The patches with high similarity to the reference patch were used to collectively denoise the 4D-MRI image. Themore » pancreas tumor was manually contoured on the first end-of-exhalation phase for both the raw and the denoised 4D-MRI. B-spline deformable registration was applied to the subsequent phases for contour propagation. The consistency of tumor volume defined by the standard deviation of gross tumor volumes from 10 breathing phases (σ-GTV), tumor motion trajectories in 3 cardinal motion planes, 4D-MRI imaging noise, and image contrast-to-noise ratio were compared between the raw and denoised groups. Results: Block-matching and 3D filtering visually and quantitatively reduced image noise by 52% and improved image contrast-to-noise ratio by 56%, without compromising soft tissue edge definitions. Automatic tumor segmentation is statistically more consistent on the denoised 4D-MRI (σ-GTV = 0.6 cm{sup 3}) than on the raw 4D-MRI (σ-GTV = 0.8 cm{sup 3}). Tumor end-of-exhalation location is also more reproducible on the denoised 4D-MRI than on the raw 4D-MRI in all 3 cardinal motion planes. Conclusions: Block-matching and 3D filtering can significantly reduce random image noise while maintaining structural features in the SG-KS-4D-MRI datasets. In this study of pancreatic tumor segmentation, automatic segmentation of GTV in the registered image sets is shown to be more consistent on the denoised 4D-MRI than on the raw 4D-MRI.« less

  16. A multistage gene normalization system integrating multiple effective methods.

    PubMed

    Li, Lishuang; Liu, Shanshan; Li, Lihua; Fan, Wenting; Huang, Degen; Zhou, Huiwei

    2013-01-01

    Gene/protein recognition and normalization is an important preliminary step for many biological text mining tasks. In this paper, we present a multistage gene normalization system which consists of four major subtasks: pre-processing, dictionary matching, ambiguity resolution and filtering. For the first subtask, we apply the gene mention tagger developed in our earlier work, which achieves an F-score of 88.42% on the BioCreative II GM testing set. In the stage of dictionary matching, the exact matching and approximate matching between gene names and the EntrezGene lexicon have been combined. For the ambiguity resolution subtask, we propose a semantic similarity disambiguation method based on Munkres' Assignment Algorithm. At the last step, a filter based on Wikipedia has been built to remove the false positives. Experimental results show that the presented system can achieve an F-score of 90.1%, outperforming most of the state-of-the-art systems.

  17. A wideband UHF high-temperature superconducting filter system with a fractional bandwidth over 108%

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Wu, Yun; Wang, Jia; Bian, Yongbo; Wang, Xu; Li, Guoqiang; Zhang, Xueqiang; Li, Chunguang; Sun, Liang; He, Yusheng

    2018-07-01

    A High-temperature superconducting (HTS) bandpass filter system containing a lowpass filter, a highpass filter and an LNA has been fabricated to meet the demands of wideband wireless signal receiving system. The filter system has an ultimate fractional bandwidth over 108% with the passband from 820 MHz to 2750 MHz. Besides, the filter system showed good frequency selectivity and out-of-band rejection. The 40 dB to 3 dB rectangle coefficient of our filter system is 1.4, which is better than that of an 8-pole Chebyshev filter, and the out-of-band rejection is better than 40 dB. Through systematical optimization, a return loss of better than 9.8 dB was received in the filter system. This system also showed advantages in design and fabrication precision.

  18. Trade Study of Implementation of Software Defined Radio (SDR): Fundamental Limitations and Future Prospects

    DTIC Science & Technology

    2008-12-09

    as an antenna followed by an analog signal processing chain ( filters , RF amplifiers) followed by an analog-to- digital converter (ADC) followed by a...Figure 2.3 Block diagram of a DSP- based superheterodyne receiver. ADC RF Filter LNA IF Filter IF Amplifier Tunable Local Oscillator ADC...some band limiting filtering and amplification. In a more realistic architecture (Figure 2.3) that we call the DSP- based superheterodyne receiver, a

  19. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  20. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  1. Retrievable vena cava filters in trauma patients for high-risk prophylaxis and prevention of pulmonary embolism.

    PubMed

    Allen, Todd L; Carter, Jody L; Morris, Brad J; Harker, Colleen P; Stevens, Mark H

    2005-06-01

    Venous thromboembolic (VTE) disease remains a significant cause of morbidity for trauma patients because many patients have injuries that may preclude effective VTE prevention and treatment. Retrievable vena cava filters may prove beneficial in this subset of trauma patients. Trauma patients at risk for VTE were identified and managed by institutional protocol. Patients who required a vena cava filter were managed with a device that could be retrieved or left in situ. A retrospective review of medical records was used to identify the use, indications, and complications associated with a retrievable filter. Fifty-three retrievable filters were placed in 51 patients. Two of these patients received a second filter, and 1 received a filter in the superior vena cava. Thirty-two filters were placed prophylactically, whereas 21 were placed for demonstrated venous thromboembolism (VTE). Retrieval was successful in 24 of 25 attempts. Twenty-nine filters became permanent: 10 for continued contraindications to anticoagulation without known VTE, 12 for known VTE and continued contraindications to anticoagulation, 1 for technical reasons, and 6 because of patient death. There were no complications of bleeding, device migration or thrombosis, infection, or pulmonary embolism. A retrievable vena cava filter appears safe and effective for the prevention of pulmonary embolism in the high-risk trauma patient who cannot receive anticoagulation.

  2. Face crack reduction strategy for particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  3. Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets*

    PubMed Central

    Nakhmani, Arie; Tannenbaum, Allen

    2012-01-01

    Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target’s occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion. PMID:22506088

  4. Advances in optical information processing IV; Proceedings of the Meeting, Orlando, FL, Apr. 18-20, 1990

    NASA Astrophysics Data System (ADS)

    Pape, Dennis R.

    1990-09-01

    The present conference discusses topics in optical image processing, optical signal processing, acoustooptic spectrum analyzer systems and components, and optical computing. Attention is given to tradeoffs in nonlinearly recorded matched filters, miniature spatial light modulators, detection and classification using higher-order statistics of optical matched filters, rapid traversal of an image data base using binary synthetic discriminant filters, wideband signal processing for emitter location, an acoustooptic processor for autonomous SAR guidance, and sampling of Fresnel transforms. Also discussed are an acoustooptic RF signal-acquisition system, scanning acoustooptic spectrum analyzers, the effects of aberrations on acoustooptic systems, fast optical digital arithmetic processors, information utilization in analog and digital processing, optical processors for smart structures, and a self-organizing neural network for unsupervised learning.

  5. Performance study on the effect of filter curve in CWDM System for the access network

    NASA Astrophysics Data System (ADS)

    Ali, N.; Rahman, N. A.; Hambali, N. A. M. Ahmad; Rashidi, C. B. M.

    2017-11-01

    This paper presents the study on the effect of filter variation on the coarse wavelength division multiplexing (CWDM) system. The filter curve will affect the performance of the CWDM system due to changes of received power lever and isolation of the signal. The significant impact on the received power level and isolation can be found when the required signal is isolated from unwanted signal by the steep curve of filter. As a result, BER of 1.0x 10-12 was obtained corresponding to receive power level of -24.27 dBm with isolation of 23.22 dB. When the wavelength spacing is reduced to 1nm, the isolation is only 11.30 dB and BER increased to 5.49x10-7 with a received power of -15.39 dBm.

  6. Impulsive interference in communication channels and its mitigation by SPART and other nonlinear filters

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexei V.; Epard, Marc; Lancaster, John B.; Lutes, Robert L.; Shumaker, Eric A.

    2012-12-01

    A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.

  7. Equalization filters for multiple-channel electromyogram arrays

    PubMed Central

    Clancy, Edward A.; Xia, Hongfang; Christie, Anita; Kamen, Gary

    2007-01-01

    Multiple channels of electromyogram activity are frequently transduced via electrodes, then combined electronically to form one electrophysiologic recording, e.g. bipolar, linear double difference and Laplacian montages. For high quality recordings, precise gain and frequency response matching of the individual electrode potentials is achieved in hardware (e.g., an instrumentation amplifier for bipolar recordings). This technique works well when the number of derived signals is small and the montages are pre-determined. However, for array electrodes employing a variety of montages, hardware channel matching can be expensive and tedious, and limits the number of derived signals monitored. This report describes a method for channel matching based on the concept of equalization filters. Monopolar potentials are recorded from each site without precise hardware matching. During a calibration phase, a time-varying linear chirp voltage is applied simultaneously to each site and recorded. Based on the calibration recording, each monopolar channel is digitally filtered to “correct” for (equalize) differences in the individual channels, and then any derived montages subsequently created. In a hardware demonstration system, the common mode rejection ratio (at 60 Hz) of bipolar montages improved from 35.2 ± 5.0 dB (prior to channel equalization) to 69.0 ± 5.0 dB (after equalization). PMID:17614134

  8. UHF FM receiver having improved frequency stability and low RFI emission

    DOEpatents

    Lupinetti, Francesco

    1990-02-27

    A UHF receiver which converts UHF modulated carrier signals to baseband video signals without any heterodyne or frequency conversion stages. A bandpass filter having a fixed frequency first filters the signals. A low noise amplifier amplifies the filtered signal and applies the signal through further amplification stages to a limited FM demodulator circuit. The UHF signal is directly converted to a baseband video signal. The baseband video signal is clamped by a clamping circuit before driving a monitor. Frequency stability for the receivers is at a theoretical maximum, and interference to adjacent receivers is eliminated due to the absence of a local oscillator.

  9. Research on Palmprint Identification Method Based on Quantum Algorithms

    PubMed Central

    Zhang, Zhanzhan

    2014-01-01

    Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165

  10. Design and Characterization of a Photometer-Colorimeter Standard

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.; Rácz, Miklós

    2004-05-01

    A photometer and tristimulus colorimeter has been developed at the National Institute of Standards and Technology (NIST) to realize a color scale. A novel construction was developed to implement the spectral-responsivity-based scale with small uncertainty. The new device can be used as a reference illuminance and luminance meter as well. Temperature-controlled filter combinations, with 5-8 layers in one package, are used to match the responsivity of a silicon tunnel-trap detector to the CIE color-matching functions with small spectral mismatch values (f1'). Design considerations to extend the tunnel-trap detector with replaceable single and double apertures and changeable filter combinations are described. The design and fabrication of the filter packages and the dependence of the f1' values on the thickness of the filter layers are discussed. The colorimeter was characterized for angular, spatial, and spectral responsivity. An improved preamplifier can convert current to voltage in an 11-decade dynamic range with 0.01% uncertainty.

  11. Design and characterization of a photometer-colorimeter standard.

    PubMed

    Eppeldauer, George P; Rácz, Miklós

    2004-05-01

    A photometer and tristimulus colorimeter has been developed at the National Institute of Standards and Technology (NIST) to realize a color scale. A novel construction was developed to implement the spectral-responsivity-based scale with small uncertainty. The new device can be used as a reference illuminance and luminance meter as well. Temperature-controlled filter combinations, with 5-8 layers in one package, are used to match the responsivity of a silicon tunnel-trap detector to the CIE color-matching functions with small spectral mismatch values (f1'). Design considerations to extend the tunnel-trap detector with replaceable single and double apertures and changeable filter combinations are described. The design and fabrication of the filter packages and the dependence of the f1' values on the thickness of the filter layers are discussed. The colorimeter was characterized for angular, spatial, and spectral responsivity. An improved preamplifier can convert current to voltage in an 11-decade dynamic range with 0.01% uncertainty.

  12. Tunable multimode-interference bandpass fiber filter.

    PubMed

    Antonio-Lopez, J E; Castillo-Guzman, A; May-Arrioja, D A; Selvas-Aguilar, R; Likamwa, P

    2010-02-01

    We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.

  13. Distributed processing of a GPS receiver network for a regional ionosphere map

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Ho; Hoo Lim, Joon; Yoo, Won Jae; Lee, Hyung Keun

    2018-01-01

    This paper proposes a distributed processing method applicable to GPS receivers in a network to generate a regional ionosphere map accurately and reliably. For accuracy, the proposed method is operated by multiple local Kalman filters and Kriging estimators. Each local Kalman filter is applied to a dual-frequency receiver to estimate the receiver’s differential code bias and vertical ionospheric delays (VIDs) at different ionospheric pierce points. The Kriging estimator selects and combines several VID estimates provided by the local Kalman filters to generate the VID estimate at each ionospheric grid point. For reliability, the proposed method uses receiver fault detectors and satellite fault detectors. Each receiver fault detector compares the VID estimates of the same local area provided by different local Kalman filters. Each satellite fault detector compares the VID estimate of each local area with that projected from the other local areas. Compared with the traditional centralized processing method, the proposed method is advantageous in that it considerably reduces the computational burden of each single Kalman filter and enables flexible fault detection, isolation, and reconfiguration capability. To evaluate the performance of the proposed method, several experiments with field collected measurements were performed.

  14. Association between mortality and replacement solution bicarbonate concentration in continuous renal replacement therapy: A propensity-matched cohort study

    PubMed Central

    Thongprayoon, Charat; Cheungpasitporn, Wisit; Iacovella, Gina M.; Akhoundi, Abbasali; Albright, Robert C.

    2017-01-01

    Background Given the known deleterious effects seen with bicarbonate supplementation for acidemia, we hypothesized that utilizing high bicarbonate concentration replacement solution in continuous venovenous hemofiltration (CVVH) would be independently associated with higher mortality. Methods In a propensity score-matched historical cohort study conducted at a single tertiary care center from December 9, 2006, through December 31, 2009, a total of 287consecutive adult critically ill patients with Stage III acute kidney injury (AKI) requiring CVVH were enrolled. We excluded patients on maintenance dialysis, those who received other modalities of continuous renal replacement therapies, and patients that received a mixed of 22 and 32 mEq/L bicarbonate solution pre- and post-filter. The primary outcome was in-hospital and 90-day mortality rates. Results Among enrollees, 68 were used 32 mEq/L bicarbonate solution, and 219 received 22mEq/L bicarbonate solution for CVVH. Patients on 32 mEq/L bicarbonate solution were more often non-surgical, had lower pH and bicarbonate level but had higher blood potassium and phosphorus levels in comparison with those on 22 mEq/L bicarbonate solution. After adjustment for the baseline characteristics, the use of 32 bicarbonate solution was significantly associated with increased in-hospital (HR = 1.94; 95% CI 1.02–3.79) and 90-day mortality (HR = 1.50; 95% CI 1.03–2.14). There was a significant increase in the hospital (p = .03) and 90-day (p = .04) mortality between the 22 vs. 32 mEq/L bicarbonate solution groups following propensity matching. Conclusion Our data showed there is a strong association between using high bicarbonate solution and mortality independent of severity of illness and comorbid conditions. These findings need to be evaluated further in prospective studies. PMID:28957333

  15. Angular displacement measuring device

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1992-01-01

    A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

  16. Spectral shaping of an all-fiber torsional acousto-optic tunable filter.

    PubMed

    Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon

    2014-12-20

    Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.

  17. Effects of the use of multi-layer filter on radiation exposure and the quality of upper airway radiographs compared to the traditional copper filter.

    PubMed

    Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana

    2014-06-01

    The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less radiation dose using high kVp technique with multi-layer filter compared to the conventional technique, and 25.9% less than using the traditional copper filter 45% of the radiologists who participated in this study reported that the high kVp technique with multi-layer filter was better for diagnosing stenosis, or narrowing of the upper airways. 33% reported that, both techniques were equal, while 22% reported that the traditional copper filter allowed for better details of airway obstruction. These findings showed that the multi-layered filter was comparable to the copper filter in terms of film interpretation. Using the multi-layer filter resulted in patients receiving a lower dose of radiation, as well as similar film interpretation when compared to the traditional copper filter.

  18. Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang

    2018-05-15

    The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Design and implementation of a hybrid digital phase-locked loop with a TMS320C25: An application to a transponder receiver breadboard

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1994-01-01

    Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.

  20. Study on geophone coupling and attenuating compensatory of low-depression velocity layer in desert area

    USGS Publications Warehouse

    Shi, Z.; Tian, G.; Dong, S.; Xia, J.; He, H.; ,

    2004-01-01

    In a desert area, it is difficult to couple geophones with dry sands. A low and depression velocity layer can seriously attenuate high frequency components of seismic data. Therefore, resolution and signal-to-noise (S/N) ratio of seismic data deteriorate. To enhance resolution and S/N ratio of seismic data, we designed a coupling compensatory inverse filter by using the single trace seismic data from Seismic Wave Detect System (SWDS) and common receivers on equal conditions. We designed an attenuating compensatory inverse filter by using seismic data from a microseismogram log. At last, in order to convert a shot gather from common receivers to a shot gather from SWDS, we applied the coupling compensatory inverse filter to the shot gather from common receivers. And then we applied the attenuating compensatory inverse filter to the coupling stacked seismic data to increase its resolution and S/N ratio. The results show that the resolution of seismic data from common receivers after processing by using the coupling compensatory inverse filter is nearly comparable with that of data from SWDS. It is also found that the resolution and S/N ratio have been enhanced after the use of attenuating compensatory inverse filter. From the results, we can conclude that the filters can compensate high frequencies of seismic data. Moreover, the low frequency changed nearly.

  1. Two kinds of novel tunable Thulium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Ma, Xiaowei; Chen, Daru; Feng, Gaofeng; Yang, Junyong

    2014-11-01

    Two kinds of tunable Thulium-doped fiber laser (TDFL) respectively using a Sagnac loop mirror and a novel tunable multimode interference (MMI) fiber filter are experimentally demonstrated. The TDFL with the Sagnac loop mirror made by a 145.5-cm polarization-maintaining fiber (PMF) can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1860nm. Both stable dual-wavelength and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The TDFL with a novel tunable MMI fiber filter formed by splicing a segment of a special no-core fiber that is an all silica fiber without fiber core to single mode fibers can achieve tuning range from 1813.52 nm to 1858.70 nm. The no-core fiber with a large diameter of 200 μm is gradually vertically covered by refractive index matching liquid, which leads to a wavelength tuning of the transmission peak of the MMI fiber filter. The relationship between the refractive index of the refractive index matching liquid and the peak wavelength shift of the MMI fiber filter is also discussed. Using the MMI fiber filter, a Thulium-doped fiber laser with a tuning range of 45.18 nm is demonstrated.

  2. Low-cost mechanical filters for OMEGA receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    A pair of prototype low frequency mechanical filters were obtained for use as the RF front-end components of an OMEGA-VLF navigation receiver. The filter units are of interest because of very narrow bandwidths and high skirt selectivity to minimize noise and off-channel carriers in the reception of OMEGA signals. In addition, the filters have a characteristic low impedance of 75 to 5,000 ohms which results in less critical PC board circuitry compared to some previous resonators with termination resistances of 25,000 ohms to 5 megohms.

  3. Sensory integration: neuronal filters for polarized light patterns.

    PubMed

    Krapp, Holger G

    2014-09-22

    Animal and human behaviour relies on local sensory signals that are often ambiguous. A new study shows how tuning neuronal responses to celestial cues helps locust navigation, demonstrating a common principle of sensory information processing: the use of matched filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  5. Robust Visual Tracking Revisited: From Correlation Filter to Template Matching.

    PubMed

    Liu, Fanghui; Gong, Chen; Huang, Xiaolin; Zhou, Tao; Yang, Jie; Tao, Dacheng

    2018-06-01

    In this paper, we propose a novel matching based tracker by investigating the relationship between template matching and the recent popular correlation filter based trackers (CFTs). Compared to the correlation operation in CFTs, a sophisticated similarity metric termed mutual buddies similarity is proposed to exploit the relationship of multiple reciprocal nearest neighbors for target matching. By doing so, our tracker obtains powerful discriminative ability on distinguishing target and background as demonstrated by both empirical and theoretical analyses. Besides, instead of utilizing single template with the improper updating scheme in CFTs, we design a novel online template updating strategy named memory, which aims to select a certain amount of representative and reliable tracking results in history to construct the current stable and expressive template set. This scheme is beneficial for the proposed tracker to comprehensively understand the target appearance variations, recall some stable results. Both qualitative and quantitative evaluations on two benchmarks suggest that the proposed tracking method performs favorably against some recently developed CFTs and other competitive trackers.

  6. A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors

    PubMed Central

    Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier

    2013-01-01

    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain. PMID:24217355

  7. Convolutional auto-encoder for image denoising of ultra-low-dose CT.

    PubMed

    Nishio, Mizuho; Nagashima, Chihiro; Hirabayashi, Saori; Ohnishi, Akinori; Sasaki, Kaori; Sagawa, Tomoyuki; Hamada, Masayuki; Yamashita, Tatsuo

    2017-08-01

    The purpose of this study was to validate a patch-based image denoising method for ultra-low-dose CT images. Neural network with convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose CT image patches were used for image denoising. The performance of the proposed method was measured by using a chest phantom. Standard-dose and ultra-low-dose CT images of the chest phantom were acquired. The tube currents for standard-dose and ultra-low-dose CT were 300 and 10 mA, respectively. Ultra-low-dose CT images were denoised with our proposed method using neural network, large-scale nonlocal mean, and block-matching and 3D filtering. Five radiologists and three technologists assessed the denoised ultra-low-dose CT images visually and recorded their subjective impressions of streak artifacts, noise other than streak artifacts, visualization of pulmonary vessels, and overall image quality. For the streak artifacts, noise other than streak artifacts, and visualization of pulmonary vessels, the results of our proposed method were statistically better than those of block-matching and 3D filtering (p-values < 0.05). On the other hand, the difference in the overall image quality between our proposed method and block-matching and 3D filtering was not statistically significant (p-value = 0.07272). The p-values obtained between our proposed method and large-scale nonlocal mean were all less than 0.05. Neural network with convolutional auto-encoder could be trained using pairs of standard-dose and ultra-low-dose CT image patches. According to the visual assessment by radiologists and technologists, the performance of our proposed method was superior to that of large-scale nonlocal mean and block-matching and 3D filtering.

  8. Very low frequency earthquakes (VLFEs) detected during episodic tremor and slip (ETS) events in Cascadia using a match filter method indicate repeating events

    NASA Astrophysics Data System (ADS)

    Hutchison, A. A.; Ghosh, A.

    2016-12-01

    Very low frequency earthquakes (VLFEs) occur in transitional zones of faults, releasing seismic energy in the 0.02-0.05 Hz frequency band over a 90 s duration and typically have magntitudes within the range of Mw 3.0-4.0. VLFEs can occur down-dip of the seismogenic zone, where they can transfer stress up-dip potentially bringing the locked zone closer to a critical failure stress. VLFEs also occur up-dip of the seismogenic zone in a region along the plate interface that can rupture coseismically during large megathrust events, such as the 2011 Tohoku-Oki earthquake [Ide et al., 2011]. VLFEs were first detected in Cascadia during the 2011 episodic tremor and slip (ETS) event, occurring coincidentally with tremor [Ghosh et al., 2015]. However, during the 2014 ETS event, VLFEs were spatially and temporally asynchronous with tremor activity [Hutchison and Ghosh, 2016]. Such contrasting behaviors remind us that the mechanics behind such events remain elusive, yet they are responsible for the largest portion of the moment release during an ETS event. Here, we apply a match filter method using known VLFEs as template events to detect additional VLFEs. Using a grid-search centroid moment tensor inversion method, we invert stacks of the resulting match filter detections to ensure moment tensor solutions are similar to that of the respective template events. Our ability to successfully employ a match filter method to VLFE detection in Cascadia intrinsically indicates that these events can be repeating, implying that the same asperities are likely responsible for generating multiple VLFEs.

  9. Cyclic additional optical true time delay for microwave beam steering with spectral filtering.

    PubMed

    Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J

    2014-06-15

    Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.

  10. Page Oriented Holographic Memories And Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  11. Covert laser remote sensing and vibrometry

    NASA Technical Reports Server (NTRS)

    Maleki, Lutfollah (Inventor); Yu, Nan (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor)

    2012-01-01

    Designs of single-beam laser vibrometry systems and methods. For example, a method for detecting vibrations of a target based on optical sensing is provided to include operating a laser to produce a laser probe beam at a laser frequency and modulated at a modulation frequency onto a target; collecting light at or near the laser to collect light from the target while the target is being illuminated by the laser probe beam through an optical receiver aperture; using a narrow-band optical filter centered at the laser frequency to filter light collected from the optical receiver aperture to transmit light at the laser frequency while blocking light at other frequencies; using an optical detector to convert filtered light from the narrow-band optical filter to produce a receiver electrical signal; using a lock-in amplifier to detect and amplify the receiver electrical signal at the modulation frequency while rejecting signal components at other frequencies to produce an amplified receiver electrical signal; processing the amplified receiver electrical signal to extract information on vibrations of the target carried by reflected laser probe beam in the collected light; and controlling optical power of the laser probe beam at the target to follow optical power of background illumination at the target.

  12. Simpler Alternative to an Optimum FQPSK-B Viterbi Receiver

    NASA Technical Reports Server (NTRS)

    Lee, Dennis; Simon, Marvin; Yan, Tsun-Yee

    2003-01-01

    A reduced-complexity alternative to an optimum FQPSK-B Viterbi receiver has been invented. As described, the reduction in complexity is achieved at the cost of only a small reduction in power performance [performance expressed in terms of a bit-energy-to-noise-energy ratio (Eb/N0) for a given bit-error rate (BER)]. The term "FQPSK-B" denotes a baseband-filtered version of Feher quadrature-phase-shift keying, which is a patented, bandwidth-efficient phase-modulation scheme named after its inventor. Heretofore, commercial FQPSK-B receivers have performed symbol-by-symbol detection, in each case using a detection filter (either the proprietary FQPSK-B filter for better BER performance, or a simple integrate-and-dump filter with degraded performance) and a sample-and-hold circuit.

  13. Anti-aliasing filter design on spaceborne digital receiver

    NASA Astrophysics Data System (ADS)

    Yu, Danru; Zhao, Chonghui

    2009-12-01

    In recent years, with the development of satellite observation technologies, more and more active remote sensing technologies are adopted in spaceborne system. The spaceborne precipitation radar will depend heavily on high performance digital processing to collect meaningful rain echo data. It will increase the complexity of the spaceborne system and need high-performance and reliable digital receiver. This paper analyzes the frequency aliasing in the intermediate frequency signal sampling of digital down conversion in spaceborne radar, and gives an effective digital filter. By analysis and calculation, we choose reasonable parameters of the half-band filters to suppress the frequency aliasing on DDC. Compared with traditional filter, the FPGA resources cost in our system are reduced by over 50%. This can effectively reduce the complexity in the spaceborne digital receiver and improve the reliability of system.

  14. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  15. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  16. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, Robert J.; Patterson, Frank

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  17. Efficient Processing of Acoustic Signals for High Rate Information Transmission over Sparse Underwater Channels

    DTIC Science & Technology

    2016-09-02

    the fractionally-spaced channel estimators and the short feedforward equalizer filters . Receiver algorithm is applied to real data transmitted at 10...multichannel decision-feedback equalizer (DFE)[1]. This receiver consists of a bank of adaptive feedforwad filters , one per array element, followed by a...decision-feedback filter . It has been implemented in the prototype high-rate acoustic modem developed at the Woods Hole Oceanographic Institution, and

  18. Implementation of an Electronic Ionosonde to Monitor the Earth’s Ionosphere via a Projected Column through USRP

    PubMed Central

    Barona Mendoza, Jhon Jairo; Quiroga Ruiz, Carlos Fernando; Pinedo Jaramillo, Carlos Rafael

    2017-01-01

    This document illustrates the processes carried out for the construction of an ionospheric sensor or ionosonde, from a universal software radio peripheral (USRP), and its programming using GNU-Radio and MATLAB. The development involved the in-depth study of the characteristics of the ionosphere, to apply the corresponding mathematical models used in the radar-like pulse compression technique and matched filters, among others. The sensor operates by firing electromagnetic waves in a frequency sweep, which are reflected against the ionosphere and are received on its return by the receiver of the instrument, which calculates the reflection height through the signal offset. From this information and a series of calculations, the electron density of the terrestrial ionosphere could be obtained. Improving the SNR of received echoes reduces the transmission power to a maximum of 400 W. The resolution associated with the bandwidth of the signal used is approximately 5 km, but this can be improved, taking advantage of the fact that the daughterboards used in the USRP allow a higher sampling frequency than the one used in the design of this experiment. PMID:28441329

  19. First Results from the Telescope Array RAdar (TARA) Detector

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2014-03-01

    The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.

  20. Recommending personally interested contents by text mining, filtering, and interfaces

    DOEpatents

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  1. Method of securing filter elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit bodymore » housing.« less

  2. Prospects of detection of the first sources with SKA using matched filters

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.; Mellema, Garrelt; Choudhuri, Samir; Majumdar, Suman; Giri, Sambit K.

    2018-05-01

    The matched filtering technique is an efficient method to detect H ii bubbles and absorption regions in radio interferometric observations of the redshifted 21-cm signal from the epoch of reionization and the Cosmic Dawn. Here, we present an implementation of this technique to the upcoming observations such as the SKA1-low for a blind search of absorption regions at the Cosmic Dawn. The pipeline explores four dimensional parameter space on the simulated mock visibilities using a MCMC algorithm. The framework is able to efficiently determine the positions and sizes of the absorption/H ii regions in the field of view.

  3. Rapid code acquisition algorithms employing PN matched filters

    NASA Technical Reports Server (NTRS)

    Su, Yu T.

    1988-01-01

    The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.

  4. A landmark recognition and tracking experiment for flight on the Shuttle/Advanced Technology Laboratory (ATL)

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1975-01-01

    The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.

  5. Fixed-pattern noise correction method based on improved moment matching for a TDI CMOS image sensor.

    PubMed

    Xu, Jiangtao; Nie, Huafeng; Nie, Kaiming; Jin, Weimin

    2017-09-01

    In this paper, an improved moment matching method based on a spatial correlation filter (SCF) and bilateral filter (BF) is proposed to correct the fixed-pattern noise (FPN) of a time-delay-integration CMOS image sensor (TDI-CIS). First, the values of row FPN (RFPN) and column FPN (CFPN) are estimated and added to the original image through SCF and BF, respectively. Then the filtered image will be processed by an improved moment matching method with a moving window. Experimental results based on a 128-stage TDI-CIS show that, after correcting the FPN in the image captured under uniform illumination, the standard deviation of row mean vector (SDRMV) decreases from 5.6761 LSB to 0.1948 LSB, while the standard deviation of the column mean vector (SDCMV) decreases from 15.2005 LSB to 13.1949LSB. In addition, for different images captured by different TDI-CISs, the average decrease of SDRMV and SDCMV is 5.4922/2.0357 LSB, respectively. Comparative experimental results indicate that the proposed method can effectively correct the FPNs of different TDI-CISs while maintaining image details without any auxiliary equipment.

  6. In-Network Processing of an Iceberg Join Query in Wireless Sensor Networks Based on 2-Way Fragment Semijoins

    PubMed Central

    Kang, Hyunchul

    2015-01-01

    We investigate the in-network processing of an iceberg join query in wireless sensor networks (WSNs). An iceberg join is a special type of join where only those joined tuples whose cardinality exceeds a certain threshold (called iceberg threshold) are qualified for the result. Processing such a join involves the value matching for the join predicate as well as the checking of the cardinality constraint for the iceberg threshold. In the previous scheme, the value matching is carried out as the main task for filtering non-joinable tuples while the iceberg threshold is treated as an additional constraint. We take an alternative approach, meeting the cardinality constraint first and matching values next. In this approach, with a logical fragmentation of the join operand relations on the aggregate counts of the joining attribute values, the optimal sequence of 2-way fragment semijoins is generated, where each fragment semijoin employs a Bloom filter as a synopsis of the joining attribute values. This sequence filters non-joinable tuples in an energy-efficient way in WSNs. Through implementation and a set of detailed experiments, we show that our alternative approach considerably outperforms the previous one. PMID:25774710

  7. Modular reconfigurable matched spectral filter spectrometer

    NASA Astrophysics Data System (ADS)

    Schundler, Elizabeth; Engel, James R.; Gruber, Thomas; Vaillancourt, Robert; Benedict-Gill, Ryan; Mansur, David J.; Dixon, John; Potter, Kevin; Newbry, Scott

    2015-06-01

    OPTRA is currently developing a modular, reconfigurable matched spectral filter (RMSF) spectrometer for the monitoring of greenhouse gases. The heart of this spectrometer will be the RMSF core, which is a dispersive spectrometer that images the sample spectrum from 2000 - 3333 cm-1 onto a digital micro-mirror device (DMD) such that different columns correspond to different wavebands. By applying masks to this DMD, a matched spectral filter can be applied in hardware. The core can then be paired with different fore-optics or detector modules to achieve active in situ or passive remote detection of the chemicals of interest. This results in a highly flexible system that can address a wide variety of chemicals by updating the DMD masks and a wide variety of applications by swapping out fore-optic and detector modules. In either configuration, the signal on the detector is effectively a dot-product between the applied mask and the sample spectrum that can be used to make detection and quantification determinations. Using this approach significantly reduces the required data bandwidth of the sensor without reducing the information content, therefore making it ideal for remote, unattended systems. This paper will focus on the design of the RMSF core.

  8. Least Median of Squares Filtering of Locally Optimal Point Matches for Compressible Flow Image Registration

    PubMed Central

    Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602

  9. Optical Implementation Of The Synthetic Discrimination Function

    NASA Astrophysics Data System (ADS)

    Butler, Steve; Riggins, James

    1985-01-01

    Computer-generated holograms of geometrical shape and synthetic discriminant function (SDF) matched filters are modeled and produced. The models include ideal correlations and Allebach-Keegan binary holograms. A distinction between Phase-Only-Information and Phase-Only-Material Filters is demonstrated. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  10. A Comprehensive Motion Estimation Technique for the Improvement of EIS Methods Based on the SURF Algorithm and Kalman Filter.

    PubMed

    Cheng, Xuemin; Hao, Qun; Xie, Mengdi

    2016-04-07

    Video stabilization is an important technology for removing undesired motion in videos. This paper presents a comprehensive motion estimation method for electronic image stabilization techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were located and then matched. The false matched points were removed by modified RANSAC. Global motion was estimated by using the feature points and modified cascading parameters, which reduced the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by 8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified adjacent frame compensation. The experimental results proved that the target images were stabilized even when the vibrating amplitudes of the video become increasingly large.

  11. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    PubMed

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America

  12. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  13. Fast-synchronizing high-fidelity spread-spectrum receiver

    DOEpatents

    Moore, Michael Roy; Smith, Stephen Fulton; Emery, Michael Steven

    2004-06-01

    A fast-synchronizing receiver having a circuit including an equalizer configured for manipulating an analog signal; a detector in communication with the equalizer; a filter in communication with the detector; an oscillator in communication with the filter; a gate for receiving the manipulated signal; a circuit portion for synchronizing and tracking the manipulated signal; a summing circuit in communication with the circuit portion; and an output gate.

  14. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  15. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    PubMed

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  16. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  17. Analytical study to define a helicopter stability derivative extraction method, volume 1

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.

    1973-01-01

    A method is developed for extracting six degree-of-freedom stability and control derivatives from helicopter flight data. Different combinations of filtering and derivative estimate are investigated and used with a Bayesian approach for derivative identification. The combination of filtering and estimate found to yield the most accurate time response match to flight test data is determined and applied to CH-53A and CH-54B flight data. The method found to be most accurate consists of (1) filtering flight test data with a digital filter, followed by an extended Kalman filter (2) identifying a derivative estimate with a least square estimator, and (3) obtaining derivatives with the Bayesian derivative extraction method.

  18. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    PubMed

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be applied to any read mapper. We hope that our results provide inspiration for new works to design other bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as processing-in-memory using 3D-stacked memory devices.

  19. Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.

    PubMed

    Shui, Peng-Lang; Wang, Fu-Ping

    2017-07-13

    Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.

  20. Browsing schematics: Query-filtered graphs with context nodes

    NASA Technical Reports Server (NTRS)

    Ciccarelli, Eugene C.; Nardi, Bonnie A.

    1988-01-01

    The early results of a research project to create tools for building interfaces to intelligent systems on the NASA Space Station are reported. One such tool is the Schematic Browser which helps users engaged in engineering problem solving find and select schematics from among a large set. Users query for schematics with certain components, and the Schematic Browser presents a graph whose nodes represent the schematics with those components. The query greatly reduces the number of choices presented to the user, filtering the graph to a manageable size. Users can reformulate and refine the query serially until they locate the schematics of interest. To help users maintain orientation as they navigate a large body of data, the graph also includes nodes that are not matches but provide global and local context for the matching nodes. Context nodes include landmarks, ancestors, siblings, children and previous matches.

  1. Efficient RF energy harvesting by using a fractal structured rectenna system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.

    2014-04-01

    A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.

  2. Clinical Sequelae of Thrombus in an Inferior Vena Cava Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar; Yeddula, Kalpana; Wicky, Stephan

    The purpose of this study was to assess the long-term clinical sequelae of inferior vena cava (IVC) filter thrombus and the effect of anticoagulation on filter thrombus. Of 1,718 patients who had IVC filters placed during 2001-2008, 598 (34.8%) had follow-up abdominal CT. Filter thrombus was seen in 111 of the 598 (18.6%). There were 44 men (39.6%). The mean age at filter placement was 64 years. The medical diseases included cancer in 64, trauma in 15, stroke in 12, and others in 20. The frequency of filter thrombus on CT and asymptomatic filter thrombus on CT was calculated. Themore » frequency of pulmonary embolism (PE) in patients with filter thrombus was calculated. The frequency of thrombus progression or regression (on CT, available in 56) was calculated. The effect of anticoagulation on filter thrombus regression/progression was evaluated using the Fisher exact test by comparing the group of patients who received anticoagulants versus those who did not. A P-value of <0.05 was considered significant. The overall frequency of filter thrombus was 18.6%. Total occlusion of the IVC filter was seen in 12 of 598 (2%). The filter thrombus was asymptomatic in 110 (18.3%). Filter thrombus was detected after a median of 35 days (range, 0-2082) following filter placement. Thrombus extended above the filter in 4 (3.6%); IVC thrombus below the filter was seen in 35(31.5%). Thrombus in the filter occluded <25% of the filter volume in 58 (52.3%), 25-50% in 21 (18.9%), and 50-75% in 20 (18%). Total IVC occlusion was seen in 12 (10.8%). Eighty-three patients received anticoagulation. Sixteen patients developed symptoms of PE. PE was confirmed on CT in 3 of 15 (2.7%). On follow-up, filter thrombus regressed completely in 19 (33.9%) after a median of 6 months. Filter thrombus decreased in size in 13 (23.2%) and it progressed without IVC occlusion in 7 (12.6%). In one (1.7%), filter thrombus progressed to IVC occlusion. Filter thrombus remained stable in 16 (28.6%). There was no significant difference in thrombus regression or progression rates whether or not the patients received anticoagulation for filter thrombus. In conclusion, asymptomatic thrombus in the filter is common and it rarely progresses to complete caval occlusion. Anticoagulation has little effect on the resolution of filter thrombosis and future occurrence of PE.« less

  3. Choosing and using methodological search filters: searchers' views.

    PubMed

    Beale, Sophie; Duffy, Steven; Glanville, Julie; Lefebvre, Carol; Wright, Dianne; McCool, Rachael; Varley, Danielle; Boachie, Charles; Fraser, Cynthia; Harbour, Jenny; Smith, Lynne

    2014-06-01

    Search filters or hedges are search strategies developed to assist information specialists and librarians to retrieve different types of evidence from bibliographic databases. The objectives of this project were to learn about searchers' filter use, how searchers choose search filters and what information they would like to receive to inform their choices. Interviews with information specialists working in, or for, the National Institute for Health and Care Excellence (NICE) were conducted. An online questionnaire survey was also conducted and advertised via a range of email lists. Sixteen interviews were undertaken and 90 completed questionnaires were received. The use of search filters tends to be linked to reducing a large amount of literature, introducing focus and assisting with searches that are based on a single study type. Respondents use numerous ways to identify search filters and can find choosing between different filters problematic because of knowledge gaps and lack of time. Search filters are used mainly for reducing large result sets (introducing focus) and assisting with searches focused on a single study type. Features that would help with choosing filters include making information about filters less technical, offering ratings and providing more detail about filter validation strategies and filter provenance. © 2014 The authors. Health Information and Libraries Journal © 2014 Health Libraries Group.

  4. Symmetric Phase Only Filtering for Improved DPIV Data Processing

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2006-01-01

    The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."

  5. Multi-Filter String Matching and Human-Centric Entity Matching for Information Extraction

    ERIC Educational Resources Information Center

    Sun, Chong

    2012-01-01

    More and more information is being generated in text documents, such as Web pages, emails and blogs. To effectively manage this unstructured information, one broadly used approach includes locating relevant content in documents, extracting structured information and integrating the extracted information for querying, mining or further analysis. In…

  6. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .

  7. GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 sigma.

  8. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  9. Visual environment recognition for robot path planning using template matched filters

    NASA Astrophysics Data System (ADS)

    Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto

    2017-08-01

    A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.

  10. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.

    PubMed

    Chen, Hsiao-Ping; Liao, Hui-Ju; Huang, Chih-Min; Wang, Shau-Chun; Yu, Sung-Nien

    2010-04-23

    This paper employs one chemometric technique to modify the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram between two consecutive wavelet-based low-pass filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. Although similar techniques of using other sets of low-pass procedures such as matched filters have been published, the procedures developed in this work are able to avoid peak broadening disadvantages inherent in matched filters. In addition, unlike Fourier transform-based low-pass filters, wavelet-based filters efficiently reject noises in the chromatograms directly in the time domain without distorting the original signals. In this work, the low-pass filtering procedures sequentially convolve the original chromatograms against each set of low pass filters to result in approximation coefficients, representing the low-frequency wavelets, of the first five resolution levels. The tedious trials of setting threshold values to properly shrink each wavelet are therefore no longer required. This noise modification technique is to multiply one wavelet-based low-pass filtered LC-MS/MS chromatogram with another artificial chromatogram added with thermal noises prior to the other wavelet-based low-pass filter. Because low-pass filter cannot eliminate frequency components below its cut-off frequency, more efficient peak S/N ratio improvement cannot be accomplished using consecutive low-pass filter procedures to process LC-MS/MS chromatograms. In contrast, when the low-pass filtered LC-MS/MS chromatogram is conditioned with the multiplication alteration prior to the other low-pass filter, much better ratio improvement is achieved. The noise frequency spectrum of low-pass filtered chromatogram, which originally contains frequency components below the filter cut-off frequency, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the high frequency regimes, the other low-pass filter is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS/MS chromatograms, of which typically less than 6-fold peak S/N ratio improvement achieved with two consecutive wavelet-based low-pass filters remains the same S/N ratio improvement using one-step wavelet-based low-pass filter, are improved to accomplish much better ratio enhancement 25-folds to 40-folds typically when the noise frequency spectrum is modified between two low-pass filters. The linear standard curves using the filtered LC-MS/MS signals are validated. The filtered LC-MS/MS signals are also reproducible. The more accurate determinations of very low concentration samples (S/N ratio about 7-9) are obtained using the filtered signals than the determinations using the original signals. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Filter for on-line air monitor unaffected by radon progeny and method of using same

    DOEpatents

    Phillips, Terrance D.; Edwards, Howard D.

    1999-01-01

    An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

  12. Polarization division multiplexing for optical data communications

    NASA Astrophysics Data System (ADS)

    Ivanovich, Darko; Powell, Samuel B.; Gruev, Viktor; Chamberlain, Roger D.

    2018-02-01

    Multiple parallel channels are ubiquitous in optical communications, with spatial division multiplexing (separate physical paths) and wavelength division multiplexing (separate optical wavelengths) being the most common forms. Here, we investigate the viability of polarization division multiplexing, the separation of distinct parallel optical communication channels through the polarization properties of light. Two or more linearly polarized optical signals (at different polarization angles) are transmitted through a common medium, filtered using aluminum nanowire optical filters fabricated on-chip, and received using individual silicon photodetectors (one per channel). The entire receiver (including optics) is compatible with standard CMOS fabrication processes. The filter model is based upon an input optical signal formed as the sum of the Stokes vectors for each individual channel, transformed by the Mueller matrix that models the filter proper, resulting in an output optical signal that impinges on each photodiode. The results show that two- and three-channel systems can operate with a fixed-threshold comparator in the receiver circuit, but four-channel systems (and larger) will require channel coding of some form. For example, in the four-channel system, 10 of 16 distinct bit patterns are separable by the receiver. The model supports investigation of the range of variability tolerable in the fabrication of the on-chip polarization filters.

  13. Method for removing soot from exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less

  14. Time-lapse analysis of methane quantity in Mary Lee group of coal seams using filter-based multiple-point geostatistical simulation

    USGS Publications Warehouse

    Karacan, C. Özgen; Olea, Ricardo A.

    2013-01-01

    The systematic approach presented in this paper is the first time in literature that history matching, TIs of GIPs and filter simulations are used for degasification performance evaluation and for assessing GIP for mining safety. Results from this study showed that using production history matching of coalbed methane wells to determine time-lapsed reservoir data could be used to compute spatial GIP and representative GIP TIs generated through Voronoi decomposition. Furthermore, performing filter simulations using point-wise data and TIs could be used to predict methane quantity in coal seams subjected to degasification. During the course of the study, it was shown that the material balance of gas produced by wellbores and the GIP reductions in coal seams predicted using filter simulations compared very well, showing the success of filter simulations for continuous variables in this case study. Quantitative results from filter simulations of GIP within the studied area briefly showed that GIP was reduced from an initial ∼73 Bcf (median) to ∼46 Bcf (2011), representing a 37 % decrease and varying spatially through degasification. It is forecasted that there will be an additional ∼2 Bcf reduction in methane quantity between 2011 and 2015. This study and presented results showed that the applied methodology and utilized techniques can be used to map GIP and its change within coal seams after degasification, which can further be used for ventilation design for methane control in coal mines.

  15. Modal Filters for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander; MacDonald, Daniel R.; Soibel, Alexander

    2009-01-01

    Modal filters in the approximately equal to 10-micrometer spectral range have been implemented as planar dielectric waveguides in infrared interferometric applications such as searching for Earth-like planets. When looking for a small, dim object ("Earth") in close proximity to a large, bright object ("Sun"), the interferometric technique uses beams from two telescopes combined with a 180 phase shift in order to cancel the light from a brighter object. The interferometer baseline can be adjusted so that, at the same time, the light from the dimmer object arrives at the combiner in phase. This light can be detected and its infrared (IR) optical spectra can be studied. The cancellation of light from the "Sun" to approximately equal to 10(exp 6) is required; this is not possible without special devices-modal filters- that equalize the wavefronts arriving from the two telescopes. Currently, modal filters in the approximately equal to 10-micrometer spectral range are implemented as single- mode fibers. Using semiconductor technology, single-mode waveguides for use as modal filters were fabricated. Two designs were implemented: one using an InGaAs waveguide layer matched to an InP substrate, and one using InAlAs matched to an InP substrate. Photon Design software was used to design the waveguides, with the main feature all designs being single-mode operation in the 10.5- to 17-micrometer spectral range. Preliminary results show that the filter's rejection ratio is 26 dB.

  16. Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex

    PubMed Central

    Sugase-Miyamoto, Yasuko; Liu, Zheng; Wiener, Matthew C.; Optican, Lance M.; Richmond, Barry J.

    2008-01-01

    Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory. PMID:18464917

  17. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster candidates, and examine the prominence of the red sequence in each. We find that the X-ray clusters in our survey do not all have a prominent red sequence. We conclude that while the red sequence may be a distinct feature in the color-magnitude plots for virialized massive clusters, it may be less distinct in lower mass clusters of galaxies at even moderate redshifts. Multiple, complementary methods of selecting and defining clusters may be essential, particularly at high redshift where all methods start to run into completeness limits, incomplete understanding of physical evolution, and projection effects.

  18. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2017-11-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  19. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2018-06-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  20. 45 CFR 264.80 - If a Territory receives Matching Grant funds, what funds must it expend?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... funds must it expend? 264.80 Section 264.80 Public Welfare Regulations Relating to Public Welfare OFFICE... Levels of the Territories? § 264.80 If a Territory receives Matching Grant funds, what funds must it expend? (a) If a Territory receives Matching Grant funds under section 1108(b) of the Act, it must: (1...

  1. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  2. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  3. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  4. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  5. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  6. Feature-based RNN target recognition

    NASA Astrophysics Data System (ADS)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-09-01

    Detection and recognition of target signatures in sensory data obtained by synthetic aperture radar (SAR), forward- looking infrared, or laser radar, have received considerable attention in the literature. In this paper, we propose a feature based target classification methodology to detect and classify targets in cluttered SAR images, that makes use of selective signature data from sensory data, together with a neural network technique which uses a set of trained networks based on the Random Neural Network (RNN) model (Gelenbe 89, 90, 91, 93) which is trained to act as a matched filter. We propose and investigate radial features of target shapes that are invariant to rotation, translation, and scale, to characterize target and clutter signatures. These features are then used to train a set of learning RNNs which can be used to detect targets within clutter with high accuracy, and to classify the targets or man-made objects from natural clutter. Experimental data from SAR imagery is used to illustrate and validate the proposed method, and to calculate Receiver Operating Characteristics which illustrate the performance of the proposed algorithm.

  7. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    DOEpatents

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  8. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia

    PubMed Central

    Zhang, Mei-Jie; Bacigalupo, Andrea A.; Bashey, Asad; Appelbaum, Frederick R.; Aljitawi, Omar S.; Armand, Philippe; Antin, Joseph H.; Chen, Junfang; Devine, Steven M.; Fowler, Daniel H.; Luznik, Leo; Nakamura, Ryotaro; O’Donnell, Paul V.; Perales, Miguel-Angel; Pingali, Sai Ravi; Porter, David L.; Riches, Marcie R.; Ringdén, Olle T. H.; Rocha, Vanderson; Vij, Ravi; Weisdorf, Daniel J.; Champlin, Richard E.; Horowitz, Mary M.; Fuchs, Ephraim J.; Eapen, Mary

    2015-01-01

    We studied adults with acute myeloid leukemia (AML) after haploidentical (n = 192) and 8/8 HLA-matched unrelated donor (n = 1982) transplantation. Haploidentical recipients received calcineurin inhibitor (CNI), mycophenolate, and posttransplant cyclophosphamide for graft-versus-host disease (GVHD) prophylaxis; 104 patients received myeloablative and 88 received reduced intensity conditioning regimens. Matched unrelated donor transplant recipients received CNI with mycophenolate or methotrexate for GVHD prophylaxis; 1245 patients received myeloablative and 737 received reduced intensity conditioning regimens. In the myeloablative setting, day 30 neutrophil recovery was lower after haploidentical compared with matched unrelated donor transplants (90% vs 97%, P = .02). Corresponding rates after reduced intensity conditioning transplants were 93% and 96% (P = .25). In the myeloablative setting, 3-month acute grade 2-4 (16% vs 33%, P < .0001) and 3-year chronic GVHD (30% vs 53%, P < .0001) were lower after haploidentical compared with matched unrelated donor transplants. Similar differences were observed after reduced intensity conditioning transplants, 19% vs 28% (P = .05) and 34% vs 52% (P = .002). Among patients receiving myeloablative regimens, 3-year probabilities of overall survival were 45% (95% CI, 36-54) and 50% (95% CI, 47-53) after haploidentical and matched unrelated donor transplants (P = .38). Corresponding rates after reduced intensity conditioning transplants were 46% (95% CI, 35-56) and 44% (95% CI, 0.40-47) (P = .71). Although statistical power is limited, these data suggests that survival for patients with AML after haploidentical transplantation with posttransplant cyclophosphamide is comparable with matched unrelated donor transplantation. PMID:26130705

  9. Retrieving quasi-phase-matching structure with discrete layer-peeling method.

    PubMed

    Zhang, Q W; Zeng, X L; Wang, M; Wang, T Y; Chen, X F

    2012-07-02

    An approach to reconstruct a quasi-phase-matching grating by using a discrete layer-peeling algorithm is presented. Experimentally measured output spectra of Šolc-type filters, based on uniform and chirped QPM structures, are used in the discrete layer-peeling algorithm. The reconstructed QPM structures are in agreement with the exact structures used in the experiment and the method is verified to be accurate and efficient in quality inspection on quasi-phase-matching grating.

  10. Inferior Vena Cava Filters in Patients with Acute Pulmonary Embolism and Cancer.

    PubMed

    Stein, Paul D; Matta, Fadi; Lawrence, Frank R; Hughes, Mary J

    2018-04-01

    Administrative data have shown a lower mortality in hospitalized patients with pulmonary embolism and cancer who receive a vena cava filter. In the absence of a randomized controlled trial of vena cava filters in such patients, further investigation is necessary. Therefore, we performed this investigation using administrative data from a different database than used previously, and we investigate patients hospitalized in more recent years. We analyzed administrative data from the Premier Healthcare Database, 2010-2014, in patients hospitalized with pulmonary embolism and solid malignant tumors. Patients were identified on the basis of International Classification of Disease, Ninth Revision, Clinical Modification codes. Patients aged >60 years had a lower in-hospital all-cause mortality with vena cava filters than those who did not have filters, 346 of 4648 (7.4%) compared with 2216 of 19,847 (11.2%) (P < .0001) (relative risk 0.67). Among patients aged >60 years who received an inferior vena cava, all-cause mortality within 3 months was 704 of 4648 (15.1%), compared with 3444 of 19,847 (17.4%) among those who did not receive a filter (P < .0001) (relative risk 0.86). Elderly patients with pulmonary embolism and cancer may be a special population in whom inferior vena cava filters reduce in-hospital and 3-month all-cause mortality. Further investigation is needed, particularly in younger patients. Copyright © 2018. Published by Elsevier Inc.

  11. Computation of maximum gust loads in nonlinear aircraft using a new method based on the matched filter approach and numerical optimization

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Heeg, Jennifer; Perry, Boyd, III

    1990-01-01

    Time-correlated gust loads are time histories of two or more load quantities due to the same disturbance time history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is maximum. At least two analysis methods have been identified that are capable of computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and computing multiple simultaneous load responses. Such time histories are physically realizable and may be applied to aircraft structures. Within the past several years there has been much interest in obtaining a practical analysis method which is capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus of an international committee of gust loads specialists formed by the U.S. Federal Aviation Administration and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in Mobile, Alabama. The kinds of nonlinearities common on modern transport aircraft are indicated. The Statical Discrete Gust method is capable of being, but so far has not been, applied to nonlinear aircraft. To make the method practical for nonlinear applications, a search procedure is essential. Another method is based on Matched Filter Theory and, in its current form, is applicable to linear systems only. The purpose here is to present the status of an attempt to extend the matched filter approach to nonlinear systems. The extension uses Matched Filter Theory as a starting point and then employs a constrained optimization algorithm to attack the nonlinear problem.

  12. Focusing attention on objects of interest using multiple matched filters.

    PubMed

    Stough, T M; Brodley, C E

    2001-01-01

    In order to be of use to scientists, large image databases need to be analyzed to create a catalog of the objects of interest. One approach is to apply a multiple tiered search algorithm that uses reduction techniques of increasing computational complexity to select the desired objects from the database. The first tier of this type of algorithm, often called a focus of attention (FOA) algorithm, selects candidate regions from the image data and passes them to the next tier of the algorithm. In this paper we present a new approach to FOA that employs multiple matched filters (MMF), one for each object prototype, to detect the regions of interest. The MMFs are formed using k-means clustering on a set of image patches identified by domain experts as positive examples of objects of interest. An innovation of the approach is to radically reduce the dimensionality of the feature space, used by the k-means algorithm, by taking block averages (spoiling) the sample image patches. The process of spoiling is analyzed and its applicability to other domains is discussed. The combination of the output of the MMFs is achieved through the projection of the detections back into an empty image and then thresholding. This research was motivated by the need to detect small volcanos in the Magellan probe data from Venus. An empirical evaluation of the approach illustrates that a combination of the MMF plus the average filter results in a higher likelihood of 100% detection of the objects of interest at a lower false positive rate than a single matched filter alone.

  13. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  14. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  15. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  16. Indications, complications and outcomes of inferior vena cava filters: A retrospective study.

    PubMed

    Wassef, Andrew; Lim, Wendy; Wu, Cynthia

    2017-05-01

    Inferior vena cava filters are used to prevent embolization of a lower extremity deep vein thrombosis when the risk of pulmonary embolism is thought to be high. However, evidence is lacking for their benefit and guidelines differ on the recommended indications for filter insertion. The study aim was to determine the reasons for inferior vena cava filter placement and subsequent complication rate. A retrospective cohort of patients receiving inferior vena cava filters in Edmonton, Alberta, Canada from 2007 to 2011. Main outcome was the indication of inferior vena cava filter insertion. Other measures include baseline demographic and medical history of patients, clinical outcomes and filter retrieval rates. 464 patients received inferior vena cava filters. An acute deep vein thrombosis with a contraindication to anticoagulation was the indication for 206 (44.4%) filter insertions. No contraindication to anticoagulation could be identified in 20.7% of filter placements. 30.6% were placed in those with active cancer, in which mortality was significantly higher. Only 38.9% of retrievable filters were successfully retrieved. Inferior vena cava filters were placed frequently in patients with weak or no guideline-supported indications for filter placement and in up to 20% of patients with no contraindication to anticoagulation. The high rates of cancer and the high mortality rate of the cohort raise the possibility that some filters are placed inappropriately in end of life settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  18. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.

    PubMed

    Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya

    2018-04-04

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.

  19. A 48Cycles/MB H.264/AVC Deblocking Filter Architecture for Ultra High Definition Applications

    NASA Astrophysics Data System (ADS)

    Zhou, Dajiang; Zhou, Jinjia; Zhu, Jiayi; Goto, Satoshi

    In this paper, a highly parallel deblocking filter architecture for H.264/AVC is proposed to process one macroblock in 48 clock cycles and give real-time support to QFHD@60fps sequences at less than 100MHz. 4 edge filters organized in 2 groups for simultaneously processing vertical and horizontal edges are applied in this architecture to enhance its throughput. While parallelism increases, pipeline hazards arise owing to the latency of edge filters and data dependency of deblocking algorithm. To solve this problem, a zig-zag processing schedule is proposed to eliminate the pipeline bubbles. Data path of the architecture is then derived according to the processing schedule and optimized through data flow merging, so as to minimize the cost of logic and internal buffer. Meanwhile, the architecture's data input rate is designed to be identical to its throughput, while the transmission order of input data can also match the zig-zag processing schedule. Therefore no intercommunication buffer is required between the deblocking filter and its previous component for speed matching or data reordering. As a result, only one 24×64 two-port SRAM as internal buffer is required in this design. When synthesized with SMIC 130nm process, the architecture costs a gate count of 30.2k, which is competitive considering its high performance.

  20. Complete filter-based cerebral embolic protection with transcatheter aortic valve replacement.

    PubMed

    Van Gils, Lennart; Kroon, Herbert; Daemen, Joost; Ren, Claire; Maugenest, Anne-Marie; Schipper, Marguerite; De Jaegere, Peter P; Van Mieghem, Nicolas M

    2018-03-01

    To evaluate the value of left vertebral artery filter protection in addition to the current filter-based embolic protection technology to achieve complete cerebral protection during TAVR. The occurrence of cerebrovascular events after transcatheter aortic valve replacement (TAVR) has fueled concern for its potential application in younger patients with longer life expectancy. Transcatheter cerebral embolic protection (TCEP) devices may limit periprocedural cerebrovascular events by preventing macro and micro-embolization to the brain. Conventional filter-based TCEP devices cover three extracranial contributories to the brain, yet leave the left vertebral artery unprotected. Patients underwent TAVR with complete TCEP. A dual-filter system was deployed in the brachiocephalic trunk and left common carotid artery with an additional single filter in the left vertebral artery. After TAVR all filters were retrieved and sent for histopathological evaluation by an experienced pathologist. Eleven patients received a dual-filter system and nine of them received an additional left vertebral filter. In the remaining two patients, the left vertebral filter could not be deployed. No periprocedural strokes occurred. We found debris in all filters, consisting of thrombus, tissue derived debris, and foreign body material. The left vertebral filter contained debris in an equal amount of patients as the Sentinel filters. The size of the captured particles was similar between all filters. The left vertebral artery is an important entry route for embolic material to the brain during TAVR. Selective filter protection of the left vertebral artery revealed embolic debris in all patients. The clinical value of complete filter-based TCEP during TAVR warrants further research. © 2017 Wiley Periodicals, Inc.

  1. A Review of the Match Technique as Applied to AASE-2/EASOE and SOLVE/THESEO 2000

    NASA Technical Reports Server (NTRS)

    Morris, Gary A.; Bojkov, Bojan R.; Lait, Leslie R.; Schoeberl, Mark R.; Rex, Markus

    2004-01-01

    We apply the GSFC trajectory model with a series of ozonesondes to derive ozone loss rates in the lower stratosphere for the AASE-2/EASOE mission (January - March 1992) and for the SOLVE/THESEO 2000 mission (January - March 2000) in an approach similar to Match. Ozone loss rates are computed by comparing the ozone concentrations provided by ozonesondes launched at the beginning and end of the trajectories connecting the launches. We investigate the sensitivity of the Match results on the various parameters used to reject potential matches in the original Match technique and conclude that only a filter based on potential vorticity changes along the calculated back trajectory seems necessary. Our study also demonstrates that calculated ozone loss rates can vary by up to a factor of two depending upon the precise trajectory paths calculated for each trajectory. As a result an additional systematic error might need to be added to the statistical uncertainties published with previous Match results. The sensitivity to the trajectory path is particularly pronounced in the month of January, the month during which the largest ozone loss rate discrepancies between photochemical models and Match are found. For most of the two study periods, our ozone loss rates agree with those previously published. Notable exceptions are found for January 1992 at 475 K and late February/early March 2000 at 450 K, both periods during which we find less loss than the previous studies. Integrated ozone loss rates in both years compare well with those found in numerous other studies and in a potential vorticity/potential temperature approach shown previously and in this paper. Finally, we suggest an alternate approach to Match using trajectory mapping that appears to more accurately reflect the true uncertainties associated with Match and reduces the dependence upon filters that may bias the results of Match through the rejection of greater than or equal to 80% of the matched sonde pairs and >99% of matched observations.

  2. Large-memory real-time multichannel multiplexed pattern recognition

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Liu, H. K.

    1984-01-01

    The principle and experimental design of a real-time multichannel multiplexed optical pattern recognition system via use of a 25-focus dichromated gelatin holographic lens (hololens) are described. Each of the 25 foci of the hololens may have a storage and matched filtering capability approaching that of a single-lens correlator. If the space-bandwidth product of an input image is limited, as is true in most practical cases, the 25-focus hololens system has 25 times the capability of a single lens. Experimental results have shown that the interfilter noise is not serious. The system has already demonstrated the storage and recognition of over 70 matched filters - which is a larger capacity than any optical pattern recognition system reported to date.

  3. Microprocessor realizations of range rate filters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance of five digital range rate filters is evaluated. A range rate filter receives an input of range data from a radar unit and produces an output of smoothed range data and its estimated derivative range rate. The filters are compared through simulation on an IBM 370. Two of the filter designs are implemented on a 6800 microprocessor-based system. Comparisons are made on the bases of noise variance reduction ratios and convergence times of the filters in response to simulated range signals.

  4. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    NASA Technical Reports Server (NTRS)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  5. Combline designs improve mm-wave filter performance

    NASA Astrophysics Data System (ADS)

    Hey-Shipton, Gregory L.

    1990-10-01

    Combline filters with 2- to 75-percent bandwidths and orders up to 19 are discussed. They are realized as coupled rectangular coaxial transmission lines, since this type of transmission line is characterized by machinability and the wide variation in coupling coefficients that can be realized with rectangular bars. A broadband combline filter designed as a 19th-order, 0.01-dB equal-ripple Chebyshev type is presented, along with a third-order 0.001-dB equal-ripple Chebyshev filter with a 200-MHz bandwidth centered at 8.0 GHz. Interfaces to standard 50-ohm coaxial lines, as well as structures for waveguide interfaces are described, and focus is placed on a two-step impedance transformer matching a 538-ohm waveguide characteristic impedance to a 95-ohm filter terminal impedance.

  6. Design and experimentally measure a high performance metamaterial filter

    NASA Astrophysics Data System (ADS)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  7. Design of tree structured matched wavelet for HRV signals of menstrual cycle.

    PubMed

    Rawal, Kirti; Saini, B S; Saini, Indu

    2016-07-01

    An algorithm is presented for designing a new class of wavelets matched to the Heart Rate Variability (HRV) signals of the menstrual cycle. The proposed wavelets are used to find HRV variations between phases of menstrual cycle. The method finds the signal matching characteristics by minimising the shape feature error using Least Mean Square method. The proposed filter banks are used for the decomposition of the HRV signal. For reconstructing the original signal, the tree structure method is used. In this approach, decomposed sub-bands are selected based upon their energy in each sub-band. Thus, instead of using all sub-bands for reconstruction, sub-bands having high energy content are used for the reconstruction of signal. Thus, a lower number of sub-bands are required for reconstruction of the original signal which shows the effectiveness of newly created filter coefficients. Results show that proposed wavelets are able to differentiate HRV variations between phases of the menstrual cycle accurately than standard wavelets.

  8. Improvement of retinal blood vessel detection by spur removal and Gaussian matched filtering compensation

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. In this paper, we proposed approaches for improving the quality of blood vessel detection based on our initial blood vessel detection methods. A blood vessel spur pruning method has been developed for removing the blood vessel spurs both on vessel medial lines and binary vessel masks, which are caused by artifacts and side-effect of Gaussian matched vessel enhancement. A Gaussian matched filtering compensation method has been developed for removing incorrect vessel branches in the areas of low illumination. The proposed approaches were applied and tested on the color fundus images from one publicly available database and our diabetic retinopathy screening dataset. A preliminary result has demonstrated the robustness and good performance of the proposed approaches and their potential application for improving retinal blood vessel detection.

  9. Moving Object Detection Using a Parallax Shift Vector Algorithm

    NASA Astrophysics Data System (ADS)

    Gural, Peter S.; Otto, Paul R.; Tedesco, Edward F.

    2018-07-01

    There are various algorithms currently in use to detect asteroids from ground-based observatories, but they are generally restricted to linear or mildly curved movement of the target object across the field of view. Space-based sensors in high inclination, low Earth orbits can induce significant parallax in a collected sequence of images, especially for objects at the typical distances of asteroids in the inner solar system. This results in a highly nonlinear motion pattern of the asteroid across the sensor, which requires a more sophisticated search pattern for detection processing. Both the classical pattern matching used in ground-based asteroid search and the more sensitive matched filtering and synthetic tracking techniques, can be adapted to account for highly complex parallax motion. A new shift vector generation methodology is discussed along with its impacts on commonly used detection algorithms, processing load, and responsiveness to asteroid track reporting. The matched filter, template generator, and pattern matcher source code for the software described herein are available via GitHub.

  10. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  11. Impacts of short-time scale water column variability on broadband high-frequency acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Eickmeier, Justin

    Acoustical oceanography is one way to study the ocean, its internal layers, boundaries and all processes occurring within using underwater acoustics. Acoustical sensing techniques allows for the measurement of ocean processes from within that logistically or financially preclude traditional in-situ measurements. Acoustic signals propagate as pressure wavefronts from a source to a receiver through an ocean medium with variable physical parameters. The water column physical parameters that change acoustic wave propagation in the ocean include temperature, salinity, current, surface roughness, seafloor bathymetry, and vertical stratification over variable time scales. The impacts of short-time scale water column variability on acoustic wave propagation include coherent and incoherent surface reflections, wavefront arrival time delay, focusing or defocusing of the intensity of acoustic beams and refraction of acoustic rays. This study focuses on high-frequency broadband acoustic waves, and examines the influence of short-time scale water column variability on broadband high-frequency acoustics, wavefronts, from 7 to 28 kHz, in shallow water. Short-time scale variability is on the order of seconds to hours and the short-spatial scale variability is on the order of few centimeters. Experimental results were collected during an acoustic experiment along 100 m isobaths and data analysis was conducted using available acoustic wave propagation models. Three main topics are studied to show that acoustic waves are viable as a remote sensing tool to measure oceanographic parameters in shallow water. First, coherent surface reflections forming striation patterns, from multipath receptions, through rough surface interaction of broadband acoustic signals with the dynamic sea surface are analyzed. Matched filtered results of received acoustic waves are compared with a ray tracing numerical model using a sea surface boundary generated from measured water wave spectra at the time of signal propagation. It is determined that on a time scale of seconds, corresponding to typical periods of surface water waves, the arrival time of reflected acoustic signals from surface waves appear as striation patterns in measured data and can be accurately modelled by ray tracing. Second, changes in acoustic beam arrival angle and acoustic ray path influenced by isotherm depth oscillations are analyzed using an 8-element delay-sum beamformer. The results are compared with outputs from a two-dimensional (2-D) parabolic equation (PE) model using measured sound speed profiles (SSPs) in the water column. Using the method of beamforming on the received signal, the arrival time and angle of an acoustic beam was obtained for measured acoustic signals. It is determined that the acoustic ray path, acoustic beam intensity and angular spread are a function of vertical isotherm oscillations on a time scale of minutes and can be modeled accurately by a 2-D PE model. Third, a forward problem is introduced which uses acoustic wavefronts received on a vertical line array, 1.48 km from the source, in the lower part of the water column to infer range dependence or independence in the SSP. The matched filtering results of received acoustic wavefronts at all hydrophone depths are compared with a ray tracing routine augmented to calculate only direct path and bottom reflected signals. It is determined that the SSP range dependence can be inferred on a time scale of hours using an array of hydrophones spanning the water column. Sound speed profiles in the acoustic field were found to be range independent for 11 of the 23 hours in the measurements. A SSP cumulative reconstruction process, conducted from the seafloor to the sea surface, layer-by-layer, identifies critical segments in the SSP that define the ray path, arrival time and boundary interactions. Data-model comparison between matched filtered arrival time spread and arrival time output from the ray tracing was robust when the SSP measured at the receiver was input to the model. When the SSP measured nearest the source (at the same instant in time) was input to the ray tracing model, the data-model comparison was poor. It was determined that the cumulative sound speed change in the SSP near the source was 1.041 m/s greater than that of the SSP at the receiver and resulted in the poor data-model comparison. In this study, the influences on broadband acoustic wave propagation in the frequency range of 7 to 28 kHz of spatial and temporal changes in the oceanography of shallow water regions are addressed. Acoustic waves can be used as remote sensing tools to measure oceanographic parameters in shallow water and data-model comparison results show a direct relationship between the oceanographic variations and acoustic wave propagations.

  12. Blending of phased array data

    NASA Astrophysics Data System (ADS)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  13. Design of multi-wavelength tunable filter based on Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  14. Investigation of Dual-Mode Microstrip Bandpass Filter Based on SIR Technique

    PubMed Central

    Mezaal, Yaqeen S.; Ali, Jawad K.

    2016-01-01

    In this paper, a new bandpass filter design has been presented using simple topology of stepped impedance square loop resonator. The proposed bandpass filter has been simulated and fabricated using a substrate with an insulation constant of 10.8, thickness of 1.27mm and loss tangent of 0.0023 at center frequency of 5.8 GHz. The simulation results have been evaluated using Sonnet simulator that is extensively adopted in microwave analysis and implementation. The output frequency results demonstrated that the proposed filter has high-quality frequency responses in addition to isolated second harmonic frequency. Besides, this filter has very small surface area and perceptible narrow band response features that represent the conditions of recent wireless communication systems. Various filter specifications have been compared with different magnitudes of perturbation element dimension. Furthermore, phase scattering response and current intensity distribution of the proposed filter have been discussed. The simulated and experimental results are well-matched. Lastly, the features of the proposed filter have been compared with other designed microstrip filters in the literature. PMID:27798675

  15. Digital Intermediate Frequency Receiver Module For Use In Airborne Sar Applications

    DOEpatents

    Tise, Bertice L.; Dubbert, Dale F.

    2005-03-08

    A digital IF receiver (DRX) module directly compatible with advanced radar systems such as synthetic aperture radar (SAR) systems. The DRX can combine a 1 G-Sample/sec 8-bit ADC with high-speed digital signal processor, such as high gate-count FPGA technology or ASICs to realize a wideband IF receiver. DSP operations implemented in the DRX can include quadrature demodulation and multi-rate, variable-bandwidth IF filtering. Pulse-to-pulse (Doppler domain) filtering can also be implemented in the form of a presummer (accumulator) and an azimuth prefilter. An out of band noise source can be employed to provide a dither signal to the ADC, and later be removed by digital signal processing. Both the range and Doppler domain filtering operations can be implemented using a unique pane architecture which allows on-the-fly selection of the filter decimation factor, and hence, the filter bandwidth. The DRX module can include a standard VME-64 interface for control, status, and programming. An interface can provide phase history data to the real-time image formation processors. A third front-panel data port (FPDP) interface can send wide bandwidth, raw phase histories to a real-time phase history recorder for ground processing.

  16. Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering

    NASA Astrophysics Data System (ADS)

    Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech

    2015-03-01

    We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.

  17. Using mixture tuned match filtering to measure changes in subpixel vegetation area in Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Brelsford, Christa; Shepherd, Doug

    2013-09-01

    In desert cities, securing sufficient water supply to meet the needs of both existing population and future growth is a complex problem with few easy solutions. Grass lawns are a major driver of water consumption and accurate measurements of vegetation area are necessary to understand drivers of changes in household water consumption. Measuring vegetation change in a heterogeneous urban environment requires sub-pixel estimation of vegetation area. Mixture Tuned Match Filtering has been successfully applied to target detection for materials that only cover small portions of a satellite image pixel. There have been few successful applications of MTMF to fractional area estimation, despite theory that suggests feasibility. We use a ground truth dataset over ten times larger than that available for any previous MTMF application to estimate the bias between ground truth data and matched filter results. We find that the MTMF algorithm underestimates the fractional area of vegetation by 5-10%, and calculate that averaging over 20 to 30 pixels is necessary to correct this bias. We conclude that with a large ground truth dataset, using MTMF for fractional area estimation is possible when results can be estimated at a lower spatial resolution than the base image. When this method is applied to estimating vegetation area in Las Vegas, NV spatial and temporal trends are consistent with expectations from known population growth and policy goals.

  18. On the simulation and mitigation of anisoplanatic optical turbulence for long range imaging

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; LeMaster, Daniel A.

    2017-05-01

    We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. The simulation tool is also used here to quantitatively evaluate a recently proposed block- matching and Wiener filtering (BMWF) method for turbulence mitigation. In this method block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames are then averaged and processed with a Wiener filter for restoration. A novel aspect of the proposed BMWF method is that the PSF model used for restoration takes into account the level of geometric correction achieved during image registration. This way, the Wiener filter is able fully exploit the reduced blurring achieved by registration. The BMWF method is relatively simple computationally, and yet, has excellent performance in comparison to state-of-the-art benchmark methods.

  19. Method and apparatus for biological sequence comparison

    DOEpatents

    Marr, T.G.; Chang, W.I.

    1997-12-23

    A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.

  20. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    PubMed

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  1. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  2. Method and apparatus for biological sequence comparison

    DOEpatents

    Marr, Thomas G.; Chang, William I-Wei

    1997-01-01

    A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.

  3. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Technical Reports Server (NTRS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-01-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  4. High efficiency radioisotope thermophotovoltaic prototype generator

    NASA Astrophysics Data System (ADS)

    Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard

    1995-10-01

    A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.

  5. An investigation and conceptual design of a holographic starfield and landmark tracker

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1973-01-01

    The analysis, experiments, and design effort of this study have supported the feasibility of the basic holographic tracker concept. Image intensifiers and photoplastic recording materials were examined, along with a Polaroid rapid process silver halide material. Two reference beam, coherent optical matched filter technique was used for multiplexing spatial frequency filters for starfields. A 1 watt HeNe laser and an electro-optical readout are also considered.

  6. Image denoising by exploring external and internal correlations.

    PubMed

    Yue, Huanjing; Sun, Xiaoyan; Yang, Jingyu; Wu, Feng

    2015-06-01

    Single image denoising suffers from limited data collection within a noisy image. In this paper, we propose a novel image denoising scheme, which explores both internal and external correlations with the help of web images. For each noisy patch, we build internal and external data cubes by finding similar patches from the noisy and web images, respectively. We then propose reducing noise by a two-stage strategy using different filtering approaches. In the first stage, since the noisy patch may lead to inaccurate patch selection, we propose a graph based optimization method to improve patch matching accuracy in external denoising. The internal denoising is frequency truncation on internal cubes. By combining the internal and external denoising patches, we obtain a preliminary denoising result. In the second stage, we propose reducing noise by filtering of external and internal cubes, respectively, on transform domain. In this stage, the preliminary denoising result not only enhances the patch matching accuracy but also provides reliable estimates of filtering parameters. The final denoising image is obtained by fusing the external and internal filtering results. Experimental results show that our method constantly outperforms state-of-the-art denoising schemes in both subjective and objective quality measurements, e.g., it achieves >2 dB gain compared with BM3D at a wide range of noise levels.

  7. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  8. An acoustic filter based on layered structure

    PubMed Central

    Steer, Michael B.

    2015-01-01

    Acoustic filters (AFs) are key components to control wave propagation in multi-frequency systems. We present a design which selectively achieves acoustic filtering with a stop band and passive amplification at the high- and low-frequencies, respectively. Measurement results from the prototypes closely match the design predictions. The AF suppresses the high frequency aliasing echo by 14.5 dB and amplifies the low frequency transmission by 8.0 dB, increasing an axial resolution from 416 to 86 μm in imaging. The AF design approach is proved to be effective in multi-frequency systems. PMID:25829548

  9. Progress on applications of high temperature superconducting microwave filters

    NASA Astrophysics Data System (ADS)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  10. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  11. A Simple Analytical Model for Asynchronous Dense WDM/OOK Systems

    DTIC Science & Technology

    1994-06-01

    asynchronous dense WDM systems employing an external OOK modulator. Our model is based upon a close approximation of the optical Fabry - Perot filter in the...receiver as a single-pole RC filter for signals that are bandlimitr i, & -equency band approximately equal to one sixtieth of the Fabry - Perot filter’s...4 A. INPUT SIGNAL ............................................................................................... 4 B. FABRY - PEROT FILTERED OUTPUT

  12. Design and simulation of stratified probability digital receiver with application to the multipath communication

    NASA Technical Reports Server (NTRS)

    Deal, J. H.

    1975-01-01

    One approach to the problem of simplifying complex nonlinear filtering algorithms is through using stratified probability approximations where the continuous probability density functions of certain random variables are represented by discrete mass approximations. This technique is developed in this paper and used to simplify the filtering algorithms developed for the optimum receiver for signals corrupted by both additive and multiplicative noise.

  13. A tunable hole-burning filter for lidar applications

    NASA Astrophysics Data System (ADS)

    Billmers, R. I.; Davis, J.; Squicciarini, M.

    The fundamental physical principles for the development of a 'hole-burning' optical filter based on saturable absorption in dye-doped glasses are outlined. A model was developed to calculate the required pump intensity, throughput, and linewidth for this type of filter. Rhodamine 6G, operating at 532 nm, was found to require a 'warm-up' time of 110 pulses and a pump intensity of 100 kW/sq cm per pulse. The linewidth was calculated to be approximately 15 GHz at 77 K with a throughput of at least 25 percent and five orders of magnitude noise suppression. A 'hole-burning' filter offers significant advantages over current filter technology, including tunability over a 10-nm bandwidth, perfect wavelength and bandwidth matching to the transmitting laser in a pulsed lidar system, transform limited response times, and moderately high throughputs (at least 25 percent).

  14. A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1976-01-01

    The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.

  15. Development of a predictive model for 6 month survival in patients with venous thromboembolism and solid malignancy requiring IVC filter placement.

    PubMed

    Huang, Steven Y; Odisio, Bruno C; Sabir, Sharjeel H; Ensor, Joe E; Niekamp, Andrew S; Huynh, Tam T; Kroll, Michael; Gupta, Sanjay

    2017-07-01

    Our purpose was to develop a predictive model for short-term survival (i.e. <6 months) following inferior vena cava filter placement in patients with venous thromboembolism (VTE) and solid malignancy. Clinical and laboratory parameters were retrospectively reviewed for patients with solid malignancy who received a filter between January 2009 and December 2011 at a tertiary care cancer center. Multivariate Cox proportional hazards modeling was used to assess variables associated with 6 month survival following filter placement in patients with VTE and solid malignancy. Significant variables were used to generate a predictive model. 397 patients with solid malignancy received a filter during the study period. Three variables were associated with 6 month survival: (1) serum albumin [hazard ratio (HR) 0.496, P < 0.0001], (2) recent or planned surgery (<30 days) (HR 0.409, P < 0.0001), (3) TNM staging (stage 1 or 2 vs. stage 4, HR 0.177, P = 0.0001; stage 3 vs. stage 4, HR 0.367, P = 0.0002). These variables were used to develop a predictive model to estimate 6 month survival with an area under the receiver operating characteristic curve of 0.815, sensitivity of 0.782, and specificity of 0.715. Six month survival in patients with VTE and solid malignancy requiring filter placement can be predicted from three patient variables. Our predictive model could be used to help physicians decide whether a permanent or retrievable filter may be more appropriate as well as to assess the risks and benefits for filter retrieval within the context of survival longevity in patients with cancer.

  16. Adaptive matched filter spatial detection performance on standard imagery from a wideband VHF/UHF SAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, M.R.; Phillips, S.A.; Sofianos, D.J.

    1994-12-31

    The adaptive matched filter was implemented as a spatial detector for amplitude-only or complex images, and applied to an image formed by standard narrow band means from a wide angle, wideband radar. Direct performance comparisons were made between different implementations and various matched and mismatched cases by using a novel approach to generate ROC curves parametrically. For perfectly matched cases, performance using imaged targets was found to be significantly lower than potential performance of artificial targets whose features differed from the background. Incremental gain due to whitening the background was also found to be small, indicating little background spatial correlation.more » It is conjectured that the relatively featureless behavior in both targets and background is due to the image formation process, since this technique averages together all wide angle, wideband information. For mismatched cases where the signature was unknown, the amplitude detector losses were approximately equal to whatever gain over noncoherent integration that matching provided. However, the complex detector was generally very sensitive to unknown information, especially phase, and produced much larger losses. Whitening under these mismatched conditions produced further losses. Detector choice thus depends primarily on how reproducible target signatures are, especially if phase is used, and the subsequent number of stored signatures necessary to account for various imaging aspect angles.« less

  17. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  18. Optical processing for landmark identification

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Luu, T. K.

    1981-01-01

    A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced.

  19. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Shadel, Craig A.

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results.more » The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.« less

  20. e-POP RRI provides new opportunities for space-based, high-frequency radio science experiments

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.

    2017-04-01

    Perry et al. (2016, https://doi.org/10.1002/2017JG003855) present the first results of the Radio Receiver Instrument (RRI), a part of the enhanced Polar Outflow Probe (e-POP) that flies on board the CAScade, Smallsat and IOnospheric Polar Explorer satellite. Using a matched filter technique, e-POP RRI was able to observe individual radio pulses transmitted by a ground-based radar. These results were used to examine the temporal variations in the dispersion, polarization, and power of the pulses, demonstrating the capacity for e-POP RRI to contribute to studies of radio propagation at high-frequency (HF) ranges. Understanding radio propagation in the presence and absence of ionospheric irregularities is crucial for ionospheric physics, as well as commercial and military radio applications. Conjunctions between e-POP RRI and ground- or space-based HF transmitters offer a new opportunity for coherent scatter experiments.

  1. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  2. Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.

    PubMed

    Zhenwei Miao; Xudong Jiang; Kim-Hui Yap

    2016-01-01

    The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.

  3. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  4. Classification of event location using matched filters via on-floor accelerometers

    NASA Astrophysics Data System (ADS)

    Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.

    2017-04-01

    Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.

  5. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation effectiveness of the system on the 140 ft telescope at Green Bank Observatory.

  6. CCD filter and transform techniques for interference excision

    NASA Technical Reports Server (NTRS)

    Borsuk, G. M.; Dewitt, R. N.

    1976-01-01

    The theoretical and some experimental results of a study aimed at applying CCD filter and transform techniques to the problem of interference excision within communications channels were presented. Adaptive noise (interference) suppression was achieved by the modification of received signals such that they were orthogonal to the recently measured noise field. CCD techniques were examined to develop real-time noise excision processing. They were recursive filters, circulating filter banks, transversal filter banks, an optical implementation of the chirp Z transform, and a CCD analog FFT.

  7. Electrically heated particulate matter filter soot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  8. Dichroic Filter for Separating W-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.

    2012-01-01

    The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.

  9. More than a filter: Feature-based attention regulates the distribution of visual working memory resources.

    PubMed

    Dube, Blaire; Emrich, Stephen M; Al-Aidroos, Naseem

    2017-10-01

    Across 2 experiments we revisited the filter account of how feature-based attention regulates visual working memory (VWM). Originally drawing from discrete-capacity ("slot") models, the filter account proposes that attention operates like the "bouncer in the brain," preventing distracting information from being encoded so that VWM resources are reserved for relevant information. Given recent challenges to the assumptions of discrete-capacity models, we investigated whether feature-based attention plays a broader role in regulating memory. Both experiments used partial report tasks in which participants memorized the colors of circle and square stimuli, and we provided a feature-based goal by manipulating the likelihood that 1 shape would be probed over the other across a range of probabilities. By decomposing participants' responses using mixture and variable-precision models, we estimated the contributions of guesses, nontarget responses, and imprecise memory representations to their errors. Consistent with the filter account, participants were less likely to guess when the probed memory item matched the feature-based goal. Interestingly, this effect varied with goal strength, even across high probabilities where goal-matching information should always be prioritized, demonstrating strategic control over filter strength. Beyond this effect of attention on which stimuli were encoded, we also observed effects on how they were encoded: Estimates of both memory precision and nontarget errors varied continuously with feature-based attention. The results offer support for an extension to the filter account, where feature-based attention dynamically regulates the distribution of resources within working memory so that the most relevant items are encoded with the greatest precision. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST /WFC3 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, Jeffrey D.; Geisler, D.; Villanova, S.

    The analysis of multiple populations (MPs) in globular clusters (GCs), both spectroscopically and photometrically, is key in understanding their formation and evolution. The relatively narrow Johnson U, F336W, and Stromgren and Sloan u filters have been crucial in exhibiting these MPs photometrically, but in Paper I we showed that the broader Washington C filter can more efficiently detect MPs in the test case GC NGC 1851. Additionally, In Paper I we detected a double main sequence (MS) that has not been detected in previous observations of NGC 1851. We now match this photometry to NGC 1851's published RGB abundances andmore » find that the two RGB branches observed in C generally exhibit different abundance characteristics in a variety of elements (e.g., Ba, Na, and O) and in CN band strengths, but no single element can define the two RGB branches. However, simultaneously considering [Ba/Fe] or CN strength with either [Na/Fe], [O/Fe], or CN strength can separate the two photometric RGB branches into two distinct abundance groups. Matches of NGC 1851's published SGB and HB abundances to the Washington photometry shows consistent characterizations of the MPs, which can be defined as an O-rich/N-normal population and an O-poor/N-rich population. Photometric synthesis for both the Washington C filter and the F336W filter finds that these abundance characteristics, with appropriate variations in He, can reproduce for both filters the photometric observations in both the RGB and the MS. This photometric synthesis also confirms the throughput advantages that the C filter has in detecting MPs.« less

  11. Multiple Populations in NGC 1851: Abundance Variations and UV Photometric Synthesis in the Washington and HST/WFC3 Systems

    NASA Astrophysics Data System (ADS)

    Cummings, Jeffrey D.; Geisler, D.; Villanova, S.

    2017-04-01

    The analysis of multiple populations (MPs) in globular clusters (GCs), both spectroscopically and photometrically, is key in understanding their formation and evolution. The relatively narrow Johnson U, F336W, and Stromgren and Sloan u filters have been crucial in exhibiting these MPs photometrically, but in Paper I we showed that the broader Washington C filter can more efficiently detect MPs in the test case GC NGC 1851. Additionally, In Paper I we detected a double main sequence (MS) that has not been detected in previous observations of NGC 1851. We now match this photometry to NGC 1851's published RGB abundances and find that the two RGB branches observed in C generally exhibit different abundance characteristics in a variety of elements (e.g., Ba, Na, and O) and in CN band strengths, but no single element can define the two RGB branches. However, simultaneously considering [Ba/Fe] or CN strength with either [Na/Fe], [O/Fe], or CN strength can separate the two photometric RGB branches into two distinct abundance groups. Matches of NGC 1851's published SGB and HB abundances to the Washington photometry shows consistent characterizations of the MPs, which can be defined as an O-rich/N-normal population and an O-poor/N-rich population. Photometric synthesis for both the Washington C filter and the F336W filter finds that these abundance characteristics, with appropriate variations in He, can reproduce for both filters the photometric observations in both the RGB and the MS. This photometric synthesis also confirms the throughput advantages that the C filter has in detecting MPs.

  12. Reception of Multiple Telemetry Signals via One Dish Antenna

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Vilnrotter, Victor

    2010-01-01

    A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates.

  13. Wireless zoned particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-10-04

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  14. Protect Yourself: Respirators

    MedlinePlus

    ... dust masks) can be used for dust, mists, welding fumes, etc. They do not provide protection from ... tion against most vapors, acid gases, dust or welding fumes. Cartridges/filters must match contaminant(s) and be ...

  15. Daytime adaptive optics for deep space optical communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.

    2003-01-01

    The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.

  16. Microchimerism decades after transfusion among combat-injured US veterans from the Vietnam, Korean, and World War II conflicts.

    PubMed

    Utter, Garth H; Lee, Tzong-Hae; Rivers, Ryan M; Montalvo, Lani; Wen, Li; Chafets, Daniel M; Reed, William F; Busch, Michael P

    2008-08-01

    Blood transfusion after traumatic injury can result in microchimerism (MC) of donor white cells (WBCs) in the recipient as late as 2 to 3 years postinjury, the longest prospective follow-up to date. The purpose of this study was to determine how long transfusion-associated MC lasts after traumatic injury. A group of US combat veterans who received transfusions who responded to a recruitment notice was retrospectively evaluated. Their blood was sampled, and MC was assessed by quantitative allele-specific polymerase chain reaction detection of differences at the HLA-DR locus or a panel of insertion-deletion polymorphism loci. Results of veterans were compared to those from an age- and gender-matched blood donor control group, from whom WBCs were retrieved from leukoreduction filters. Among 163 combat veterans who received transfusion and 150 control subjects who did not receive transfusions, 16 (9.8%) of the veterans and 1 (0.7%) control subject had evidence of MC (relative risk, 14.7; 95% confidence interval, 2.0-110). The veterans with MC included 3 who served in WWII (7% of subjects from that conflict), 5 in Korea (18%), and 6 in Vietnam (7%). Transfusion for combat-related injury can result in MC that lasts for 60 years, suggesting that it may involve permanent engraftment. MC is rare among male blood donors who did not receive transfusions, who are probably representative of individuals who have not had postnatal allogeneic exposures.

  17. Steady-state and dynamic characteristics of a 20-kHz spacecraft power system - Control of harmonic resonance

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.

    1990-01-01

    A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.

  18. Statewide Inferior Vena Cava Filter Placement, Complications, and Retrievals: Epidemiology and Recent Trends.

    PubMed

    Charalel, Resmi A; Durack, Jeremy C; Mao, Jialin; Ross, Joseph S; Meltzer, Andrew J; Sedrakyan, Art

    2018-03-01

    Public awareness of inferior vena cava (IVC) filter-related controversies has been elevated by the Food and Drug Administration (FDA) safety communication in 2010. To examine population level trends in IVC filter utilization, complications, retrieval rates, and subsequent pulmonary embolism (PE) risk. A retrospective cohort study. Patients receiving IVC filters during 2005-2014 in New York State. IVC filter-specific complications, new PE occurrences and IVC filter retrievals were evaluated as time-to-event data using Kaplan-Meier analysis. Estimated cumulative risks were obtained at various timepoints during follow-up. There were 91,873 patients receiving IVC filters between 2005 and 2014 in New York State included in the study. The average patient age was 67 years and 46.6% were male. Age-adjusted rates of IVC filter placement increased from 48 cases/100,000 in 2005 to 52 cases/100,000 in 2009, and decreased afterwards to 36 cases/100,000 in 2014. The estimated risks of having an IVC filter-related complication and filter retrieval within 1 year was 1.5% [95% confidence interval (CI), 1.4%-1.6%] and 3.5% (95% CI, 3.4%-3.6%). One-year retrieval rate was higher post-2010 when compared with pre-2010 years (hazard ratio, 2.70; 95% CI, 2.50-2.91). Among the 58,176 patients who did not have PE events before or at the time of IVC filter placement, the estimated risk of developing subsequent PE at 1 year was 2.0% (95% CI, 1.9%-2.1%). Our findings suggest that FDA communications may be effective in modifying statewide clinical practices. Given the 2% observed PE rate following prophylactic IVC filter placement, large scale pragmatic studies are needed to determine contemporary safety and effectiveness of IVC filters.

  19. Testing and performance analysis of a 650 Mbps QPPM modem for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Mortensen, Dale J.

    1994-08-01

    The testing and performance of a prototype modem developed at NASA Lewis Research Center for high-speed free-space direct detection optical communications is described. The testing was performed under laboratory conditions using computer control with specially developed test equipment that simulates free-space link conditions. The modem employs quaternary pulse position modulation (QPPM) at 325 Megabits per second (Mbps) on two optical channels, which are multiplexed to transmit a single 650 Mbps data stream. The measured results indicate that the receiver's automatic gain control (AGC), phased-locked-loop slot clock recovery, digital symbol clock recovery, matched filtering, and maximum likelihood data recovery circuits were found to have only 1.5 dB combined implementation loss during bit-error-rate (BER) performance measurements. Pseudo random bit sequences and real-time high quality video sources were used to supply 650 Mbps and 325 Mbps data streams to the modem. Additional testing revealed that Doppler frequency shifting can be easily tracked by the receiver, that simulated pointing errors are readily compensated for by the AGC circuits, and that channel timing skew affects the BER performance in an expected manner. Overall, the needed technologies for a high-speed laser communications modem were demonstrated.

  20. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  1. Highly-Effective Purification of Air on the Fibrous Filtering Nozzles

    NASA Astrophysics Data System (ADS)

    Galtseva, O. V.; Bordunov, S. V.; Torgaev, S. N.

    2016-02-01

    A series of experiments by air purification on fibrous filtering nozzles was made. It is experimentally shown that the fibrous filter can operate in a wide rate range. The degree of trapping of fine aerosols of glass was 99% at a linear rate of 0.01 m/s. the degree of capture decreased to 85% at the increasing of filtration rate up to 0.06 m/s. Dustiness of the air ranged from 3 to 5 g/m3 at the course of the experiment. Hydraulic resistance changed from 5 to 25 mm of water column. The calculated data of resistance and falling of pressure on fibrous filters are given; these data were received on the equations from various sources in comparison with experimentally obtained data. According to the results of series of experiments the amendment of the well-known Fuchsian equation is calculated for calculation of the resistance of fibrous air filter. This amendment considers a form and defects of surface of the fibers received by centrifugal-spinneret method.

  2. Reconfigurable Sensor Monitoring System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  3. Proposal 11913-IR Filter Wedge Check

    NASA Astrophysics Data System (ADS)

    Sabbi, E.; MacKenty, J.; Borders, T.

    2010-08-01

    Variations in the thickness of a filter alter the path of the incoming light beam, causing an apparent displacement of the observed sources. Proposal 11913 was designed to verify the coplanarity of the WFC3/ IR filters, i.e. whether any of them was wedged, and if so, to evaluate the impact on the astrometry. We found that, with the exception of the F098M and F126N filters, the positions of stars observed through different filters, without moving the telescope, differ on average by less then 0.14 ±0.06 pixels and match the CEI specifications. In addition we found that the positional shifts increase along the X-axis and decrease along the Y-axis as a function of wavelength. The observed shifts are consistent with the fact that the refractive corrector plate (RCP) is tilted ~8.6 degree to the center of the field center chief ray.

  4. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  5. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection

    PubMed Central

    Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335

  6. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    PubMed

    Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung

    2015-01-01

    The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  7. Mitigating Photon Jitter in Optical PPM Communication

    NASA Technical Reports Server (NTRS)

    Moision, Bruce

    2008-01-01

    A theoretical analysis of photon-arrival jitter in an optical pulse-position-modulation (PPM) communication channel has been performed, and now constitutes the basis of a methodology for designing receivers to compensate so that errors attributable to photon-arrival jitter would be minimized or nearly minimized. Photon-arrival jitter is an uncertainty in the estimated time of arrival of a photon relative to the boundaries of a PPM time slot. Photon-arrival jitter is attributable to two main causes: (1) receiver synchronization error [error in the receiver operation of partitioning time into PPM slots] and (2) random delay between the time of arrival of a photon at a detector and the generation, by the detector circuitry, of a pulse in response to the photon. For channels with sufficiently long time slots, photon-arrival jitter is negligible. However, as durations of PPM time slots are reduced in efforts to increase throughputs of optical PPM communication channels, photon-arrival jitter becomes a significant source of error, leading to significant degradation of performance if not taken into account in design. For the purpose of the analysis, a receiver was assumed to operate in a photon- starved regime, in which photon counts follow a Poisson distribution. The analysis included derivation of exact equations for symbol likelihoods in the presence of photon-arrival jitter. These equations describe what is well known in the art as a matched filter for a channel containing Gaussian noise. These equations would yield an optimum receiver if they could be implemented in practice. Because the exact equations may be too complex to implement in practice, approximations that would yield suboptimal receivers were also derived.

  8. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    PubMed

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass filter is found to be very much effective in edge enhancement whereas fuzzy conditional entropy efficiently distinguishes vessels of different widths. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning

    PubMed Central

    Bhawiyuga, Adhitya

    2018-01-01

    Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning. PMID:29617341

  10. Range resolution improvement in passive bistatic radars using nested FM channels and least squares approach

    NASA Astrophysics Data System (ADS)

    Arslan, Musa T.; Tofighi, Mohammad; Sevimli, Rasim A.; ćetin, Ahmet E.

    2015-05-01

    One of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented.

  11. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potentialmore » for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.« less

  12. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.

    PubMed

    Memari, Nogol; Ramli, Abd Rahman; Bin Saripan, M Iqbal; Mashohor, Syamsiah; Moghbel, Mehrdad

    2017-01-01

    The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England (CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.

  13. Improving Estimates Of Phase Parameters When Amplitude Fluctuates

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.; Brown, D. H.; Hurd, W. J.

    1989-01-01

    Adaptive inverse filter applied to incoming signal and noise. Time-varying inverse-filtering technique developed to improve digital estimate of phase of received carrier signal. Intended for use where received signal fluctuates in amplitude as well as in phase and signal tracked by digital phase-locked loop that keeps its phase error much smaller than 1 radian. Useful in navigation systems, reception of time- and frequency-standard signals, and possibly spread-spectrum communication systems.

  14. Passive filtration of air egressing from nuclear containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malloy, III, John D

    2017-09-26

    A nuclear reactor includes a reactor core comprising fissile material disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor. A containment compartment contains the radiological containment. A heat sink includes a chimney configured to develop an upward-flowing draft in response to heated fluid flowing into a lower portion of the chimney. A fluid conduit is arranged to receive fluid from the containment compartment and to discharge into the chimney. A filter may be provided, with the fluid conduit including a first fluid conduit arranged to receive fluid from the containment compartment and to discharge into anmore » inlet of the filter, and a second fluid conduit arranged to receive fluid from an outlet of the filter and to discharge into the chimney. As the draft is developed passively, there is no need for a blower or pump configured to move fluid through the fluid conduit.« less

  15. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  16. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  17. Analysis of a color-matching backlight system using a blazed grating and a lenticular lens array.

    PubMed

    Son, Chang-Gyun; Gwag, Jin Seok; Lee, Jong Hoon; Kwon, Jin Hyuk

    2012-12-20

    A high efficiency LCD employing a color-matching backlight system that consists of a collimation lenticular lens sheet, a blazed grating, and a focusing lenticular lens array is proposed and analyzed. The RGB lights that are collimated and dispersed from the collimation lenticular lens sheet and the blazed grating are incident on the RGB color filters by the focusing lenticular lens array. The color-matched transmittance was increased 183% and 121% for divergence angles of 2° and 11°, respectively, compared to a conventional backlight that does not use a blazed grating. The design, simulation, and experimental results for the prototype color-matching backlight system are presented.

  18. Improving ontology matching with propagation strategy and user feedback

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Cui, Zhiming; Zhao, Pengpeng; Wu, Jian; Xin, Jie; He, Tianxu

    2015-07-01

    Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. The existing approach requires a threshold to produce matching candidates and use a small set of constraints acting as filter to select the final alignments. We introduce novel match propagation strategy to model the influences between potential entity mappings across ontologies, which can help to identify the correct correspondences and produce missed correspondences. The estimation of appropriate threshold is a difficult task. We propose an interactive method for threshold selection through which we obtain an additional measurable improvement. Running experiments on a public dataset has demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  19. On combination of strict Bayesian principles with model reduction technique or how stochastic model calibration can become feasible for large-scale applications

    NASA Astrophysics Data System (ADS)

    Oladyshkin, S.; Schroeder, P.; Class, H.; Nowak, W.

    2013-12-01

    Predicting underground carbon dioxide (CO2) storage represents a challenging problem in a complex dynamic system. Due to lacking information about reservoir parameters, quantification of uncertainties may become the dominant question in risk assessment. Calibration on past observed data from pilot-scale test injection can improve the predictive power of the involved geological, flow, and transport models. The current work performs history matching to pressure time series from a pilot storage site operated in Europe, maintained during an injection period. Simulation of compressible two-phase flow and transport (CO2/brine) in the considered site is computationally very demanding, requiring about 12 days of CPU time for an individual model run. For that reason, brute-force approaches for calibration are not feasible. In the current work, we explore an advanced framework for history matching based on the arbitrary polynomial chaos expansion (aPC) and strict Bayesian principles. The aPC [1] offers a drastic but accurate stochastic model reduction. Unlike many previous chaos expansions, it can handle arbitrary probability distribution shapes of uncertain parameters, and can therefore handle directly the statistical information appearing during the matching procedure. We capture the dependence of model output on these multipliers with the expansion-based reduced model. In our study we keep the spatial heterogeneity suggested by geophysical methods, but consider uncertainty in the magnitude of permeability trough zone-wise permeability multipliers. Next combined the aPC with Bootstrap filtering (a brute-force but fully accurate Bayesian updating mechanism) in order to perform the matching. In comparison to (Ensemble) Kalman Filters, our method accounts for higher-order statistical moments and for the non-linearity of both the forward model and the inversion, and thus allows a rigorous quantification of calibrated model uncertainty. The usually high computational costs of accurate filtering become very feasible for our suggested aPC-based calibration framework. However, the power of aPC-based Bayesian updating strongly depends on the accuracy of prior information. In the current study, the prior assumptions on the model parameters were not satisfactory and strongly underestimate the reservoir pressure. Thus, the aPC-based response surface used in Bootstrap filtering is fitted to a distant and poorly chosen region within the parameter space. Thanks to the iterative procedure suggested in [2] we overcome this drawback with small computational costs. The iteration successively improves the accuracy of the expansion around the current estimation of the posterior distribution. The final result is a calibrated model of the site that can be used for further studies, with an excellent match to the data. References [1] Oladyshkin S. and Nowak W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering and System Safety, 106:179-190, 2012. [2] Oladyshkin S., Class H., Nowak W. Bayesian updating via Bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Computational Geosciences, 17 (4), 671-687, 2013.

  20. Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Gili, Christopher; De Young, Russell

    2006-01-01

    A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements.

  1. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    PubMed

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  2. Attentional Filter Training but Not Memory Training Improves Decision-Making.

    PubMed

    Schmicker, Marlen; Müller, Patrick; Schwefel, Melanie; Müller, Notger G

    2017-01-01

    Decision-making has a high practical relevance for daily performance. Its relation to other cognitive abilities such as executive control and memory is not fully understood. Here we asked whether training of either attentional filtering or memory storage would influence decision-making as indexed by repetitive assessments of the Iowa Gambling Task (IGT). The IGT was developed to assess and simulate real-life decision-making (Bechara et al., 2005). In this task, participants gain or lose money by developing advantageous or disadvantageous decision strategies. On five consecutive days we trained 29 healthy young adults (20-30 years) either in working memory (WM) storage or attentional filtering and measured their IGT scores after each training session. During memory training (MT) subjects performed a computerized delayed match-to-sample task where two displays of bars were presented in succession. During filter training (FT) participants had to indicate whether two simultaneously presented displays of bars matched or not. Whereas in MT the relevant target stimuli stood alone, in FT the targets were embedded within irrelevant distractors (bars in a different color). All subjects within each group improved their performance in the trained cognitive task. For the IGT, we observed an increase over time in the amount of money gained in the FT group only. Decision-making seems to be influenced more by training to filter out irrelevant distractors than by training to store items in WM. Selective attention could be responsible for the previously noted relationship between IGT performance and WM and is therefore more important for enhancing efficiency in decision-making.

  3. Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil

    2015-01-01

    Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.

  4. Image denoising for real-time MRI.

    PubMed

    Klosowski, Jakob; Frahm, Jens

    2017-03-01

    To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Acceptance and Impact of Point-of-Use Water Filtration Systems in Rural Guatemala.

    PubMed

    Larson, Kim L; Hansen, Corrie; Ritz, Michala; Carreño, Diego

    2017-01-01

    Infants and children in developing countries bear the burden of diarrheal disease. Diarrheal disease is linked to unsafe drinking water and can result in serious long-term consequences, such as impaired immune function and brain growth. There is evidence that point-of-use water filtration systems reduce the prevalence of diarrhea in developing countries. In the summer of 2014, following community forums and interactive workshops, water filters were distributed to 71 households in a rural Maya community in Guatemala. The purpose of this study was to evaluate the uptake of tabletop water filtration systems to reduce diarrheal diseases. A descriptive correlational study was used that employed community partnership and empowerment strategies. One year postintervention, in the summer of 2015, a bilingual, interdisciplinary research team conducted a house-to-house survey with families who received water filters. Survey data were gathered from the head of household on family demographics, current family health, water filter usage, and type of flooring in the home. Interviews were conducted in Spanish and in partnership with a village leader. Each family received a food package of household staples for their participation. Descriptive statistics were calculated for all responses. Fisher's exact test and odds ratios were used to determine relationships between variables. Seventy-nine percent (n = 56) of the 71 households that received a water filter in 2014 participated in the study. The majority of families (71.4%; n = 40) were using the water filters and 16 families (28.6%) had broken water filters. Of the families with working water filters, 15% reported diarrhea, while 31% of families with a broken water filter reported diarrhea. Only 55.4% of the homes had concrete flooring. More households with dirt flooring and broken water filters reported a current case of diarrhea. A record review of attendees at an outreach clinic in this village noted a decrease in intestinal infections from 2014 (53%) to 2015 (32%). A trend suggests that water filter usage was both practically and clinically significant in reducing the incidence of diarrheal disease in this sample. Some homes did not have flat surfaces for water filter storage. Housing conditions should be taken into consideration for future diarrheal disease prevention initiatives. Point-of-use water filters using a community-university partnership can reduce diarrheal disease in rural regions of Guatemala. © 2016 Sigma Theta Tau International.

  6. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China.

    PubMed

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-08-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of 85% in A/O process and 60-77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Automated facial recognition of manually generated clay facial approximations: Potential application in unidentified persons data repositories.

    PubMed

    Parks, Connie L; Monson, Keith L

    2018-01-01

    This research examined how accurately 2D images (i.e., photographs) of 3D clay facial approximations were matched to corresponding photographs of the approximated individuals using an objective automated facial recognition system. Irrespective of search filter (i.e., blind, sex, or ancestry) or rank class (R 1 , R 10 , R 25 , and R 50 ) employed, few operationally informative results were observed. In only a single instance of 48 potential match opportunities was a clay approximation matched to a corresponding life photograph within the top 50 images (R 50 ) of a candidate list, even with relatively small gallery sizes created from the application of search filters (e.g., sex or ancestry search restrictions). Increasing the candidate lists to include the top 100 images (R 100 ) resulted in only two additional instances of correct match. Although other untested variables (e.g., approximation method, 2D photographic process, and practitioner skill level) may have impacted the observed results, this study suggests that 2D images of manually generated clay approximations are not readily matched to life photos by automated facial recognition systems. Further investigation is necessary in order to identify the underlying cause(s), if any, of the poor recognition results observed in this study (e.g., potential inferior facial feature detection and extraction). Additional inquiry exploring prospective remedial measures (e.g., stronger feature differentiation) is also warranted, particularly given the prominent use of clay approximations in unidentified persons casework. Copyright © 2017. Published by Elsevier B.V.

  8. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.

  9. Parallel Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  10. Effect of post-filter anticoagulation on mortality in patients with cancer-associated pulmonary embolism.

    PubMed

    Kang, Jieun; Kim, Seon Ok; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Jae Seung

    2018-05-17

    Malignancy is associated with an increased risk of venous thromboembolism. Inferior vena cava filters are a viable alternative when anticoagulation is infeasible because of the risk of bleeding. Although the current guidelines recommend that all patients with a vena cava filter be treated with anticoagulation treatment when the risk of bleeding is reduced, studies concerning the role of concomitant anticoagulation after vena cava filter insertion in high-risk patients are scarce. Since many cancer patients suffer from a high risk of hemorrhagic complications, we aimed to determine the effect of post-filter anticoagulation on mortality in patients with a malignant solid tumor. A retrospective cohort study of patients with pulmonary embolism was performed between January 2010 and May 2016. Patients with a solid tumor and vena cava filter inserted because of pulmonary embolism were included. Using Cox proportional hazards model, the prognostic effect of clinical variables was analyzed. A total of 180 patients were analyzed, with 143 patients receiving and 37 patients not receiving post-filter anticoagulation treatment. Mortality was not significantly different between the two groups. The presence of metastatic cancer and that of pancreatobiliary cancer were significant risk factors for mortality. However, post-filter anticoagulation did not show significant effect on mortality regardless of the stage of cancer. In patients with cancer-associated pulmonary embolism, the effect of post-filter anticoagulation on mortality may not be critical, especially in patients with a short life expectancy.

  11. Project Report: Reducing Color Rivalry in Imagery for Conjugated Multiple Bandpass Filter Based Stereo Endoscopy

    NASA Technical Reports Server (NTRS)

    Ream, Allen

    2011-01-01

    A pair of conjugated multiple bandpass filters (CMBF) can be used to create spatially separated pupils in a traditional lens and imaging sensor system allowing for the passive capture of stereo video. This method is especially useful for surgical endoscopy where smaller cameras are needed to provide ample room for manipulating tools while also granting improved visualizations of scene depth. The significant issue in this process is that, due to the complimentary nature of the filters, the colors seen through each filter do not match each other, and also differ from colors as seen under a white illumination source. A color correction model was implemented that included optimized filter selection, such that the degree of necessary post-processing correction was minimized, and a chromatic adaptation transformation that attempted to fix the imaged colors tristimulus indices based on the principle of color constancy. Due to fabrication constraints, only dual bandpass filters were feasible. The theoretical average color error after correction between these filters was still above the fusion limit meaning that rivalry conditions are possible during viewing. This error can be minimized further by designing the filters for a subset of colors corresponding to specific working environments.

  12. Glass Particulate Contamination from Medications Aspirated from Glass Ampules: Comparison of Filtered Versus Non-Filtered Needles

    DTIC Science & Technology

    1994-09-01

    with giant cells found in the spleen and lungs. A second experiment 3 (Brewer & Dunning, 1947) was conducted where 1,089 mice were injected...crystals, or starch. They conducted experiments where rabbits received I I.V. normal saline via the ear vein. Each rabbit received a different volume...conducted a similar experiment examining the incidence of drug contamination with particles from the external surface of glass ampules. Methylene blue

  13. Implementation of a Parameterized Interacting Multiple Model Filter on an FPGA for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2016-01-01

    In a communications channel, the space environment between a spacecraft and an Earth ground station can potentially cause the loss of a data link or at least degrade its performance due to atmospheric effects, shadowing, multipath, or other impairments. In adaptive and coded modulation, the signal power level at the receiver can be used in order to choose a modulation-coding technique that maximizes throughput while meeting bit error rate (BER) and other performance requirements. It is the goal of this research to implement a generalized interacting multiple model (IMM) filter based on Kalman filters for improved received power estimation on software-dened radio (SDR) technology for satellite communications applications. The IMM filter has been implemented in Verilog consisting of a customizable bank of Kalman filters for choosing between performance and resource utilization. Each Kalman filter can be implemented using either solely a Schur complement module (for high area efficiency) or with Schur complement, matrix multiplication, and matrix addition modules (for high performance). These modules were simulated and synthesized for the Virtex II platform on the JPL Radio Experimenter Development System (EDS) at NASA Glenn Research Center. The results for simulation, synthesis, and hardware testing are presented.

  14. A novel filtering mutualism between a sponge host and its endosymbiotic bivalves.

    PubMed

    Tsubaki, Remi; Kato, Makoto

    2014-01-01

    Sponges, porous filter-feeding organisms consisting of vast canal systems, provide unique substrates for diverse symbiotic organisms. The Spongia (Spongia) sp. massive sponge is obligately inhabited by the host-specific endosymbiotic bivalve Vulsella vulsella, which benefits from this symbiosis by receiving protection from predators. However, whether the host sponge gains any benefit from this association is unclear. Considering that the bivalves exhale filtered water into the sponge body rather than the ambient environment, the sponge is hypothesized to utilize water exhaled by the bivalves to circulate water around its body more efficiently. We tested this hypothesis by observing the sponge aquiferous structure and comparing the pumping rates of sponges and bivalves. Observations of water currents and the sponge aquiferous structure revealed that the sponge had a unique canal system enabling it to inhale water exhaled from bivalves, indicating that the host sponge adapted morphologically to receive water from the bivalves. In addition, the volume of water circulating in the sponge body was dramatically increased by the water exhaled from bivalves. Therefore, this sponge-bivalve association can be regarded as a novel mutualism in which two filter-feeding symbionts promote mutual filtering rates. This symbiotic association should be called a "filtering mutualism".

  15. Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.

    PubMed

    Carrière, Olivier; Hermand, Jean-Pierre

    2012-04-01

    Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.

  16. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  17. Centroid stabilization in alignment of FOA corner cube: designing of a matched filter

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul; Wilhelmsen, Karl; Roberts, Randy; Leach, Richard; Miller Kamm, Victoria; Ngo, Tony; Lowe-Webb, Roger

    2015-02-01

    The current automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. An important aspect of performing multiple shots in a day is to reduce additional time spent aligning specific beams due to perturbations in those beam images. One such alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes to represent the beam center. The FOA houses the frequency conversion crystals for third harmonic generation as the beams enters the target chamber. Beam-to-beam variations and systematic beam changes over time in the FOA corner-cube images can lead to a reduction in accuracy as well as increased convergence durations for the template based centroid detector. This work presents a systematic approach of maintaining FOA corner cube centroid templates so that stable position estimation is applied thereby leading to fast convergence of alignment control loops. In the matched filtering approach, a template is designed based on most recent images taken in the last 60 days. The results show that new filter reduces the divergence of the position estimation of FOA images.

  18. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  19. HYBRID SILICON-ON-SAPPHIRE/SCALED CMOS INTERFERENCE MITIGATION FRONT END BASED ON SIMULTANEOUS NOISE CANCELLATION, ACTIVE-INTERFERENCE CANCELLATION AND N-PATH-MIXER FILTERING

    DTIC Science & Technology

    2017-04-01

    INTERFERENCE-CANCELLATION AND N-PATH-MIXER FILTERING Harish Krishnaswamy, Negar Reiskarimian, and Linxiao Zhang Columbia University APRIL 2017 Final...INTERFERENCE-CANCELLATION AND N- PATH-MIXER FILTERING 5a. CONTRACT NUMBER FA8650-14-1-7414 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E/62716E 6...techniques for developing interference mitigation technology (IMT) enabling frequency-agile, reconfigurable filter -less receivers. Wideband noise

  20. Electrically heated particulate filter embedded heater design

    DOEpatents

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  1. Matched Filtering of Visual Evoked Potentials to Detect Acceleration (+Gz) Induced Blackout

    DTIC Science & Technology

    1985-01-03

    FILTERING OF VISUAL EVOKED POTENTIALS rO DETECT ACCELERATION ( + Gz) INDUCED BLACKOUT John Q. Nelson, Leonid Hrebien and Joseph P. Cammarota Aircraft...8217: , r .,.V -. 1-». .v. IE •> _"->.-"*« A^V :j% _"«;_"V X~«. _~»^"V.i.~» iuTtuTii i."»..-^. .-*._> r /; NOTICES REPORT NUMBERING SYSTEM - The...Potentials to Detect Acceleration (+G2) Induced Blackout 12 PERSONAL AUTHOR(S) John G. Nelson, Leonid Hrebien, Joseph P. Cammarota 13* TYPE OF REPORT

  2. Recent progress in invariant pattern recognition

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  3. SAW devices for consumer communication applications.

    PubMed

    Ruppel, C W; Dill, R; Fischerauer, A; Fischerauer, G; Gawlik, A; Machui, J; Muller, F; Reindl, L; Ruile, W; Scholl, G; Schropp, I; Wagner, K C

    1993-01-01

    An overview of surface acoustic wave (SAW) filter techniques available for different applications is given. Techniques for TV IF applications are outlined, and typical structures are presented. This is followed by a discussion of applications for SAW resonators. Low-loss devices for mobile communication systems and pager applications are examined. Tapped delay lines (matched filters) and convolvers for code-division multiaccess (CDMA) systems are also covered. Although simulation procedures are not considered, for many devices the theoretical frequency response is presented along with the measurement curve.

  4. Building and Testing a Portable VLF Receiver

    NASA Technical Reports Server (NTRS)

    McLaughlin, Robert; Krause, L.

    2014-01-01

    Unwanted emissions or signal noise is a major problem for VLF radio receivers. These can occur from man made sources such as power line hum, which can be prevalent for many harmonics after the fundamental 50 or 60 Hz AC source or from VLF radio transmissions such as LORAN, used for navigation and communications. Natural emissions can also be detrimental to the quality of recordings as some of the more interesting natural emissions such as whistlers or auroral chorus may be drowned out by the more common sferic emissions. VLF receivers must selectively filter out unwanted emissions and amplify the filtered signal to a record-able level without degrading the quality.

  5. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  6. Song matching, overlapping, and switching in the banded wren: the sender’s perspective

    PubMed Central

    Vehrencamp, Sandra L.; Hall, Michelle L.; Bohman, Erin R.; Depeine, Catherine D.; Dalziell, Anastasia H.

    2008-01-01

    Interpreting receiver responses to on-territory playback of aggressive signals is problematic. One solution is to combine such receiver-perspective experiments with a sender-perspective experiment that allows subjects to demonstrate how their choice of singing strategies is associated with their approach behavior. Here we report the results of a sender-perspective study on the banded wren (Thryothorus pleurostictus), and combine information on context and results of previous receiver-perspective experiments to clarify function. Territorial males were presented with a 5-min playback consisting of song types present in their repertoire. We assessed the degree to which the subjects’ song matching rate, overlapping rate, and song-type versatility were correlated with their approach latency, closeness of approach, latency to first retreat, and time spent close to the speaker. Male age, breeding stage, and features of the playback stimuli were also considered. Song matching was associated with rapid and close approach, consistent with the receiver-perspective interpretation of type matching as a conventional signal of aggressive motivation. Overlapping was associated with earlier retreat, and together with the aversive receiver response to our previous overlapping playback experiment suggests that overlapping is a defensive withdrawal signal. High versatility was associated with slower first retreat from the speaker and high levels of reciprocal matching between subject and playback. Males with fledglings sang with particularly low versatility and approached the speaker aggressively, whereas males with nestlings overlapped more and retreated quickly. Finally, older males matched more but overlapped less. PMID:18392112

  7. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  8. Geomagnetic modeling by optimal recursive filtering

    NASA Technical Reports Server (NTRS)

    Gibbs, B. P.; Estes, R. H.

    1981-01-01

    The results of a preliminary study to determine the feasibility of using Kalman filter techniques for geomagnetic field modeling are given. Specifically, five separate field models were computed using observatory annual means, satellite, survey and airborne data for the years 1950 to 1976. Each of the individual field models used approximately five years of data. These five models were combined using a recursive information filter (a Kalman filter written in terms of information matrices rather than covariance matrices.) The resulting estimate of the geomagnetic field and its secular variation was propogated four years past the data to the time of the MAGSAT data. The accuracy with which this field model matched the MAGSAT data was evaluated by comparisons with predictions from other pre-MAGSAT field models. The field estimate obtained by recursive estimation was found to be superior to all other models.

  9. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  10. Flight Test Results from Real-Time Relative Global Positioning System Flight Experiment on STS-69

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Brazzel, Jack P., Jr.; Carpenter, J. Russell; Hinkel, Heather D.; Newman, James H.

    1996-01-01

    A real-time global positioning system (GPS) Kalman filter has been developed to support automated rendezvous with the International Space Station (ISS). The filter is integrated with existing Shuttle rendezvous software running on a 486 laptop computer under Windows. In this work, we present real-time and postflight results achieved with the filter on STS-69. The experiment used GPS data from an Osborne/Jet propulsion Laboratory TurboRouge receiver carried on the Wake Shield Facility (WSF) free flyer and a Rockwell Collins 3M receiver carried on the Orbiter. Real time filter results, processed onboard the Shuttle and replayed in near-time on the ground, are based on single vehicle mode operation and on 5 to 20 minute snapshots of telemetry provided by WSF for dual-vehicle mode operation. The Orbiter and WSF state vectors calculated using our filter compare favorably with precise reference orbits determined by the University of Texas Center for Space Research. The lessons learned from this experiment will be used in conjunction with future experiments to mitigate the technology risk posed by automated rendezvous and docking to the ISS.

  11. Communications/Electronics Receiver Performance Degradation Handbook (Second Edition)

    DTIC Science & Technology

    1975-08-01

    receiver to another in the Rf and IF filter characteristics modify the transfer of inter- forence power through the receiver to the IF output, and so the...modulation system the transmitted and received messages arce in general different bemaus* of small inte, forence or noise perturbations. The probability of

  12. Impedance self-matching ultra-narrow linewidth fiber resonator by use of a tunable π-phase-shifted FBG.

    PubMed

    Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang

    2017-05-15

    In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.

  13. MR Image Reconstruction Using Block Matching and Adaptive Kernel Methods.

    PubMed

    Schmidt, Johannes F M; Santelli, Claudio; Kozerke, Sebastian

    2016-01-01

    An approach to Magnetic Resonance (MR) image reconstruction from undersampled data is proposed. Undersampling artifacts are removed using an iterative thresholding algorithm applied to nonlinearly transformed image block arrays. Each block array is transformed using kernel principal component analysis where the contribution of each image block to the transform depends in a nonlinear fashion on the distance to other image blocks. Elimination of undersampling artifacts is achieved by conventional principal component analysis in the nonlinear transform domain, projection onto the main components and back-mapping into the image domain. Iterative image reconstruction is performed by interleaving the proposed undersampling artifact removal step and gradient updates enforcing consistency with acquired k-space data. The algorithm is evaluated using retrospectively undersampled MR cardiac cine data and compared to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT reconstruction. Evaluation of image quality and root-mean-squared-error (RMSE) reveal improved image reconstruction for up to 8-fold undersampled data with the proposed approach relative to k-t SPARSE-SENSE, block matching with spatial Fourier filtering and k-t ℓ1-SPIRiT. In conclusion, block matching and kernel methods can be used for effective removal of undersampling artifacts in MR image reconstruction and outperform methods using standard compressed sensing and ℓ1-regularized parallel imaging methods.

  14. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    NASA Astrophysics Data System (ADS)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  15. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners.

    PubMed

    Batterman, S; Du, L; Mentz, G; Mukherjee, B; Parker, E; Godwin, C; Chin, J-Y; O'Toole, A; Robins, T; Rowe, Z; Lewis, T

    2012-06-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84±27%, but dropped to 63±33% in subsequent seasons. In months when households were not visited, use averaged only 34±30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m3 and was often detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and thus strategies are needed to encourage and maintain use of filters. The variability in filter use suggests that exposure misclassification is a potential problem in intervention studies using filters. The installation of a room AC in the bedroom, intended to limit air exchange ratios, along with an air filter, did not lower PM levels more than the filter alone. © 2011 John Wiley & Sons A/S.

  16. OS2: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain

    PubMed Central

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search (OS2) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, OS2 ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables OS2 to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of OS2 is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations. PMID:28692697

  17. [Formula: see text]: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain.

    PubMed

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem; Khan, Wajahat Ali

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search ([Formula: see text]) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, [Formula: see text] ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables [Formula: see text] to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of [Formula: see text] is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations.

  18. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.; Simpson, C.J.

    2005-01-01

    Spectral measurements made in the Mordor Pound, NT, Australia study area using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in the laboratory and in situ show dominantly Al-OH and ferric-iron VNIR-SWIR absorption features in felsic rock spectra and ferrous-iron and Fe,Mg-OH features in the mafic-ultramafic rock spectra. ASTER ratio images, matched-filter, and spectral-angle mapper processing (SAM) were evaluated for mapping the lithologies. Matched-filter processing in which VNIR + SWIR image spectra were used for reference resulted in 4 felsic classes and 4 mafic-ultramafic classes based on Al-OH or Fe,Mg-OH absorption features and, in some, subtle reflectance differences related to differential weathering and vegetation. These results were similar to those obtained by match-filter analysis of HyMap data from a previous study, but the units were more clearly demarcated in the HyMap image. ASTER TIR spectral emittance data and laboratory emissivity measurements document a wide wavelength range of Si-O spectral features, which reflect the lithological diversity of the Mordor ultramafic complex and adjacent rocks. SAM processing of the spectral emittance data distinguished 2 classes representing the mafic-ultramafic rocks and 4 classes comprising the quartzose to intermediate composition rocks. Utilization of the complementary attributes of the spectral reflectance and spectral emittance data resulted in discrimination of 4 mafic-ultramafic categories; 3 categories of alluvial-colluvial deposits; and a significantly more completely mapped quartzite unit than could be accomplished by using either data set alone. ?? 2005 Elsevier Inc. All rights reserved.

  19. Reconfigurable RF Systems Using Commercially Available Digital Capacitor Arrays

    DTIC Science & Technology

    2013-03-01

    for changing antenna loading. Note that for the receiver circuitry, the path through the FEM is reversed and the wideband RF engine is given...Network A tunable impedance-matching network is commonly used to match variable antenna impedance to the transmitter output or receiver input [1...2]. There are multiple utilities for this device. In one, the so-called static mode, the antenna can be matched to the rest of the system before

  20. Singular value decomposition based impulsive noise reduction in multi-frequency phase-sensitive demodulation of electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Cui, Ziqiang; Yue, Shihong; Wang, Huaxiang

    2018-06-01

    As an important means in electrical impedance tomography (EIT), multi-frequency phase-sensitive demodulation (PSD) can be viewed as a matched filter for measurement signals and as an optimal linear filter in the case of Gaussian-type noise. However, the additive noise usually possesses impulsive noise characteristics, so it is a challenging task to reduce the impulsive noise in multi-frequency PSD effectively. In this paper, an approach for impulsive noise reduction in multi-frequency PSD of EIT is presented. Instead of linear filters, a singular value decomposition filter is employed as the pre-stage filtering module prior to PSD, which has advantages of zero phase shift, little distortion, and a high signal-to-noise ratio (SNR) in digital signal processing. Simulation and experimental results demonstrated that the proposed method can effectively eliminate the influence of impulsive noise in multi-frequency PSD, and it was capable of achieving a higher SNR and smaller demodulation error.

  1. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  2. Improvement of Vehicle Positioning Using Car-to-Car Communications in Consideration of Communication Delay

    NASA Astrophysics Data System (ADS)

    Hontani, Hidekata; Higuchi, Yuya

    In this article, we propose a vehicle positioning method that can estimate positions of cars even in areas where the GPS is not available. For the estimation, each car measures the relative distance to a car running in front, communicates the measurements with other cars, and uses the received measurements for estimating its position. In order to estimate the position even if the measurements are received with time-delay, we employed the time-delay tolerant Kalman filtering. For sharing the measurements, it is assumed that a car-to-car communication system is used. Then, the measurements sent from farther cars are received with larger time-delay. It follows that the accuracy of the estimates of farther cars become worse. Hence, the proposed method manages only the states of nearby cars to reduce computing effort. The authors simulated the proposed filtering method and found that the proposed method estimates the positions of nearby cars as accurate as the distributed Kalman filtering.

  3. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  4. A single active nanoelectromechanical tuning fork front-end radio-frequency receiver

    NASA Astrophysics Data System (ADS)

    Bartsch, Sebastian T.; Rusu, A.; Ionescu, Adrian M.

    2012-06-01

    Nanoelectromechanical systems (NEMS) offer the potential to revolutionize fundamental methods employed for signal processing in today’s telecommunication systems, owing to their spectral purity and the prospect of integration with existing technology. In this work we present a novel, front-end receiver topology based on a single device silicon nanoelectromechanical mixer-filter. The operation is demonstrated by using the signal amplification in a field effect transistor (FET) merged into a tuning fork resonator. The combination of both a transistor and a mechanical element into a hybrid unit enables on-chip functionality and performance previously unachievable in silicon. Signal mixing, filtering and demodulation are experimentally demonstrated at very high frequencies ( > 100 MHz), maintaining a high quality factor of Q = 800 and stable operation at near ambient pressure (0.1 atm) and room temperature (T = 300 K). The results show that, ultimately miniaturized, silicon NEMS can be utilized to realize multi-band, single-chip receiver systems based on NEMS mixer-filter arrays with reduced system complexity and power consumption.

  5. 78 FR 16048 - Proposed Collection; Comment Request for e-Services Registration TIN Matching-Application and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ...-Services Registration TIN Matching--Application and Screens for TIN Matching Interactive AGENCY: Internal...(c)(2)(A)). Currently, the IRS is soliciting comments concerning e- Services registration TIN matching--application and screens for TIN matching interactive. DATES: Written comments should be received...

  6. 75 FR 5854 - Proposed Collection; Comment Request for e-Services Registration TIN Matching-Application and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ...-Services Registration TIN Matching--Application and Screens for TIN Matching Interactive AGENCY: Internal...(c)(2)(A)). Currently, the IRS is soliciting comments concerning e- Services Registration TIN Matching--Application and Screens for TIN Matching Interactive. DATES: Written comments should be received...

  7. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  8. Detailed noise statistics for an optically preamplified direct detection receiver

    NASA Astrophysics Data System (ADS)

    Danielsen, Soeren Lykke; Mikkelsen, Benny; Durhuus, Terji; Joergensen, Carsten; Stubkjaer, Kristian E.

    We describe the exact statistics of an optically preamplified direct detection receiver by means of the moment generating function. The theory allows an arbitrary shaped electrical filter in the receiver circuit. The moment generating function (MGF) allows for a precise calculation of the error rate by using the inverse Fast Fourier transform (FFT). The exact results are compared with the usual Gaussian approximation (GA), the saddlepoint approximation (SAP) and the modified Chernoff bound (MCB). This comparison shows that the noise is not Gaussian distributed for all values of the optical amplifier gain. In the region from 20-30 dB gain, calculations shows that the GA underestimates the receiver sensitivity while the SAP is very close to the results of our exact model. Using the MGF derived in the article we then find the optimal bandwidth of the electrical filter in the receiver circuit and calculate the sensitivity degradation due to inter symbol interference (ISI).

  9. Inductively heated particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  10. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  11. Asynchronous parallel status comparator

    DOEpatents

    Arnold, Jeffrey W.; Hart, Mark M.

    1992-01-01

    Apparatus for matching asynchronously received signals and determining whether two or more out of a total number of possible signals match. The apparatus comprises, in one embodiment, an array of sensors positioned in discrete locations and in communication with one or more processors. The processors will receive signals if the sensors detect a change in the variable sensed from a nominal to a special condition and will transmit location information in the form of a digital data set to two or more receivers. The receivers collect, read, latch and acknowledge the data sets and forward them to decoders that produce an output signal for each data set received. The receivers also periodically reset the system following each scan of the sensor array. A comparator then determines if any two or more, as specified by the user, of the output signals corresponds to the same location. A sufficient number of matches produces a system output signal that activates a system to restore the array to its nominal condition.

  12. Asynchronous parallel status comparator

    DOEpatents

    Arnold, J.W.; Hart, M.M.

    1992-12-15

    Disclosed is an apparatus for matching asynchronously received signals and determining whether two or more out of a total number of possible signals match. The apparatus comprises, in one embodiment, an array of sensors positioned in discrete locations and in communication with one or more processors. The processors will receive signals if the sensors detect a change in the variable sensed from a nominal to a special condition and will transmit location information in the form of a digital data set to two or more receivers. The receivers collect, read, latch and acknowledge the data sets and forward them to decoders that produce an output signal for each data set received. The receivers also periodically reset the system following each scan of the sensor array. A comparator then determines if any two or more, as specified by the user, of the output signals corresponds to the same location. A sufficient number of matches produces a system output signal that activates a system to restore the array to its nominal condition. 4 figs.

  13. Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor

    2010-01-01

    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.

  14. Developing a Short-Period, Fundamental-Mode Rayleigh-Wave Attenuation Model for Asia

    NASA Astrophysics Data System (ADS)

    Yang, X.; Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.

    2008-12-01

    We are developing a 2D, short-period (12 - 22 s), fundamental-mode Rayleigh-wave attenuation model for Asia. This model can be used to invert for a 3D attenuation model of the Earth's crust and upper mantle as well as to implement more accurate path corrections in regional surface-wave magnitude calculations. The prerequisite for developing a reliable Rayleigh-wave attenuation model is the availability of accurate fundamental-mode Rayleigh-wave amplitude measurements. Fundamental-mode Rayleigh-wave amplitudes could be contaminated by a variety of sources such as multipathing, focusing and defocusing, body wave, higher-mode surface wave, and other noise sources. These contaminations must be reduced to the largest extent possible. To achieve this, we designed a procedure by taking advantage of certain Rayleigh-wave characteristics, such as dispersion and elliptical particle motion, for accurate amplitude measurements. We first analyze the dispersion of the surface-wave data using a spectrogram. Based on the characteristics of the data dispersion, we design a phase-matched filter by using either a manually picked dispersion curve, or a group-velocity-model predicted dispersion curve, or the dispersion of the data, and apply the filter to the seismogram. Intelligent filtering of the seismogram and windowing of the resulting cross-correlation based on the spectrogram analysis and the comparison between the phase-match filtered data spectrum, the raw-data spectrum and the theoretical source spectrum effectively reduces amplitude contaminations and results in reliable amplitude measurements in many cases. We implemented these measuring techniques in a graphic-user-interface tool called Surface Wave Amplitude Measurement Tool (SWAMTOOL). Using the tool, we collected and processed waveform data for 200 earthquakes occurring throughout 2003-2006 inside and around Eurasia. The records from 135 broadband stations were used. After obtaining the Rayleigh-wave amplitude measurements, we analyzed the attenuation behavior of the amplitudes using source- and receiver-specific terms calculated from a 3D velocity model of the region. Based on the results, we removed amplitudes that yielded negative average attenuation coefficients, and included an additional parameter in the inversion to account for the possible bias of the CMT moments. Using the high-quality amplitude measurements in a tomographic inversion, we obtained a fundamental-mode Rayleigh-wave attenuation- coefficient model for periods between 12 and 22 s for Asia and surrounding regions. The inverted attenuation model is consistent with the geological features of Asia. We observe low attenuation in stable regions such as eastern Europe, the Siberian platforms, the Indian shield, the Arabian platform, the Yangtze craton, and others. High attenuation is observed in tectonically active regions such as the Himalayas, the Tian Shan, Pamir and Zagros mountains.

  15. Retrospective analysis of outcomes following inferior vena cava (IVC) filter placement in a managed care population.

    PubMed

    Everhart, Damian; Vaccaro, Jamieson; Worley, Karen; Rogstad, Teresa L; Seleznick, Mitchel

    2017-08-01

    The role of inferior vena cava filter (IVC) filters for prevention of pulmonary embolism (PE) is controversial. This study evaluated outcomes of IVC filter placement in a managed care population. This retrospective cohort study evaluated data for individuals with Humana healthcare coverage 2013-2014. The study population included 435 recipients of prophylactic IVC filters, 4376 recipients of therapeutic filters, and two control groups, each matched to filter recipients. Patients were followed for up to 2 years. Post-index anticoagulant use, mortality, filter removal, device-related complications, and all-cause utilization. Adjusted regression analyses showed a positive association between filter placement and anticoagulant use at 3 months: odds ratio (ORs) 3.403 (95% CI 1.912-6.059), prophylactic; OR, 1.356 (95% CI 1.164-1.58), therapeutic. Filters were removed in 15.67% of prophylactic and 5.69% of therapeutic filter cases. Complication rates were higher with prophylactic procedures than with therapeutic procedures and typically exceeded 2% in the prophylactic group. Each form of filter placement was associated with increases in all-cause hospitalization (regression coefficient 0.295 [95% CI 0.093-0.498], prophylactic; 0.673 [95% CI 0.547-0.798], therapeutic) and readmissions (OR 2.444 [95% CI 1.298-4.602], prophylactic; 2.074 [95% CI 1.644-2.616], therapeutic). IVC filter placement in this managed care population was associated with increased use of anticoagulants and greater healthcare utilization compared to controls, low rates of retrieval, and notable rates of device-related complications, with effects especially pronounced in assessments of prophylactic filters. These findings underscore the need for appropriate use of IVC filters.

  16. The Use of Match Statistics that Discriminate Between Successful and Unsuccessful Soccer Teams

    PubMed Central

    Castellano, Julen; Casamichana, David; Lago, Carlos

    2012-01-01

    Three soccer World Cups were analysed with the aim of identifying the match statistics which best discriminated between winning, drawing and losing teams. The analysis was based on 177 matches played during the three most recent World Cup tournaments: Korea/Japan 2002 (59), Germany 2006 (59) and South Africa 2010 (59). Two categories of variables were studied: 1) those related to attacking play: goals scored, total shots, shots on target, shots off target, ball possession, number of off-sides committed, fouls received and corners; and 2) those related to defence: total shots received, shots on target received, shots off target received, off-sides received, fouls committed, corners against, yellow cards and red cards. Discriminant analysis of these matches revealed the following: (a) the variables related to attacking play that best differentiated between winning, drawing and losing teams were total shots, shots on target and ball possession; and (b) the most discriminating variables related to defence were total shots received and shots on target received. These results suggest that winning, drawing and losing national teams may be discriminated from one another on the basis of variables such as ball possession and the effectiveness of their attacking play. This information may be of benefit to both coaches and players, adding to their knowledge about soccer performance indicators and helping to guide the training process. PMID:23487020

  17. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s SLR standard, MOBLAS 7, for the purposes of data comparison and identification of biases. Work continues to optimize the receive optics; upgrade or replace the laser transmitter; calibrate the quadrant detector, the point ahead Risley prisms, and event timer verniers; and test normal point generation with SLR2000 data. This paper will report on the satellite tracking results to date, issues yet to be resolved, and future plans for the SLR2000 system.

  18. Impact of donor-recipient sex match on long-term survival after heart transplantation in children: An analysis of 5797 pediatric heart transplants.

    PubMed

    Kemna, Mariska; Albers, Erin; Bradford, Miranda C; Law, Sabrina; Permut, Lester; McMullan, D Mike; Law, Yuk

    2016-03-01

    The effect of donor-recipient sex matching on long-term survival in pediatric heart transplantation is not well known. Adult data have shown worse survival when male recipients receive a sex-mismatched heart, with conflicting results in female recipients. We analyzed 5795 heart transplant recipients ≤ 18 yr in the Scientific Registry of Transplant Recipients (1990-2012). Recipients were stratified based on donor and recipient sex, creating four groups: MM (N = 1888), FM (N = 1384), FF (N = 1082), and MF (N = 1441). Males receiving sex-matched donor hearts had increased unadjusted allograft survival at five yr (73.2 vs. 71%, p = 0.01). However, this survival advantage disappeared with longer follow-up and when adjusted for additional risk factors by multivariable Cox regression analysis. In contrast, for females, receiving a sex-mismatched heart was associated with an 18% higher risk of allograft loss over time compared to receiving a sex-matched heart (HR 1.18, 95% CI: 1.00-1.38) and a 26% higher risk compared to sex-matched male recipients (HR 1.26, 95% CI: 1.10-1.45). Females who receive a heart from a male donor appear to have a distinct long-term survival disadvantage compared to all other groups. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Fusion of Inertial Sensors and Orthogonal Frequency Division Multiplexed (OFDM) Signals of Opportunity for Unassisted Navigation

    DTIC Science & Technology

    2009-03-01

    P Hwang . Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, New York, 1997. ISBN 0-471-12839-2. 4. Burr, A. “The...communication signals, the need for the ref- erence receiver is reduced or possibly removed entirely. This research uses a Kalman Filter (KF) to optimally...15 2.5 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 State Propogation

  20. Receiver-Coupling Schemes Based On Optimal-Estimation Theory

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1992-01-01

    Two schemes for reception of weak radio signals conveying digital data via phase modulation provide for mutual coupling of multiple receivers, and coherent combination of outputs of receivers. In both schemes, optimal mutual-coupling weights computed according to Kalman-filter theory, but differ in manner of transmission and combination of outputs of receivers.

  1. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transmissions to analog voice audio. (2) Be designed so that the tuning, control and filtering circuitry is inaccessible. The design must be such that any attempts to modify the equipment to receive transmissions from... Radiotelephone Service transmissions. (e) Scanning receivers and frequency converters designed for use with...

  2. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transmissions to analog voice audio. (2) Be designed so that the tuning, control and filtering circuitry is inaccessible. The design must be such that any attempts to modify the equipment to receive transmissions from... Radiotelephone Service transmissions. (e) Scanning receivers and frequency converters designed for use with...

  3. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmissions to analog voice audio. (2) Be designed so that the tuning, control and filtering circuitry is inaccessible. The design must be such that any attempts to modify the equipment to receive transmissions from... Radiotelephone Service transmissions. (e) Scanning receivers and frequency converters designed for use with...

  4. 47 CFR 15.121 - Scanning receivers and frequency converters used with scanning receivers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transmissions to analog voice audio. (2) Be designed so that the tuning, control and filtering circuitry is inaccessible. The design must be such that any attempts to modify the equipment to receive transmissions from... Radiotelephone Service transmissions. (e) Scanning receivers and frequency converters designed for use with...

  5. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver

    NASA Astrophysics Data System (ADS)

    Gruneisen, Mark T.; Sickmiller, Brett A.; Flanagan, Michael B.; Black, James P.; Stoltenberg, Kurt E.; Duchane, Alexander W.

    2016-02-01

    Spatial filtering is an important technique for reducing sky background noise in a satellite quantum key distribution downlink receiver. Atmospheric turbulence limits the extent to which spatial filtering can reduce sky noise without introducing signal losses. Using atmospheric propagation and compensation simulations, the potential benefit of adaptive optics (AO) to secure key generation (SKG) is quantified. Simulations are performed assuming optical propagation from a low-Earth-orbit satellite to a terrestrial receiver that includes AO. Higher-order AO correction is modeled assuming a Shack-Hartmann wavefront sensor and a continuous-face-sheet deformable mirror. The effects of atmospheric turbulence, tracking, and higher-order AO on the photon capture efficiency are simulated using statistical representations of turbulence and a time-domain wave-optics hardware emulator. SKG rates are calculated for a decoy-state protocol as a function of the receiver field of view for various strengths of turbulence, sky radiances, and pointing angles. The results show that at fields of view smaller than those discussed by others, AO technologies can enhance SKG rates in daylight and enable SKG where it would otherwise be prohibited as a consequence of background optical noise and signal loss due to propagation and turbulence effects.

  6. Tailoring noise frequency spectrum between two consecutive second derivative filtering procedures to improve liquid chromatography-mass spectrometry determinations.

    PubMed

    Wang, Shau-Chun; Lin, Chiao-Juan; Chiang, Shu-Min; Yu, Sung-Nien

    2008-03-15

    This paper reports a simple chemometric technique to alter the noise spectrum of a liquid chromatography-mass spectrometry (LC-MS) chromatogram between two consecutive second-derivative filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one second-derivative filtered LC-MS chromatogram with another artificial chromatogram added with thermal noises prior to the other second-derivative filter. Because the second-derivative filter cannot eliminate frequency components within its own filter bandwidth, more efficient peak S/N ratio improvement cannot be accomplished using consecutive second-derivative filter procedures to process LC-MS chromatograms. In contrast, when the second-derivative filtered LC-MS chromatogram is conditioned with the multiplication alteration prior to the other second-derivative filter, much better ratio improvement is achieved. The noise frequency spectrum of the second-derivative filtered chromatogram, which originally contains frequency components within the filter bandwidth, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the other regimes, the other second-derivative filter, working as a band-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS chromatograms, of which 5-fold peak S/N ratio improvement achieved with two consecutive second-derivative filters remains the same S/N ratio improvement using a one-step second-derivative filter, are improved to accomplish much better ratio enhancement, approximately 25-fold or higher when the noise frequency spectrum is modified between two matched filters. The linear standard curve using the filtered LC-MS signals is validated. The filtered LC-MS signals are also more reproducible. The more accurate determinations of very low-concentration samples (S/N ratio about 5-7) are obtained via standard addition procedures using the filtered signals rather than the determinations using the original signals.

  7. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  8. Single-frequency oscillation of thin-disk lasers due to phase-matched pumping.

    PubMed

    Vorholt, Christian; Wittrock, Ulrich

    2017-09-04

    We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.

  9. 77 FR 75499 - Privacy Act of 1974: Computer Matching Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... education benefit payments under the Montgomery GI Bill and Post-9/11 GI Bill. The purpose of the match is... have applied for and/or are receiving, or have received education benefit payments under the Montgomery... and Legislative Development Team Leader, Education Service (225B), Veterans Benefits Administration...

  10. Experimental demonstration of tri-aperture Differential Synthetic Aperture Ladar

    NASA Astrophysics Data System (ADS)

    Zhao, Zhilong; Huang, Jianyu; Wu, Shudong; Wang, Kunpeng; Bai, Tao; Dai, Ze; Kong, Xinyi; Wu, Jin

    2017-04-01

    A tri-aperture Differential Synthetic Aperture Ladar (DSAL) is demonstrated in laboratory, which is configured by using one common aperture to transmit the illuminating laser and another two along-track receiving apertures to collect back-scattered laser signal for optical heterodyne detection. The image formation theory on this tri-aperture DSAL shows that there are two possible methods to reconstruct the azimuth Phase History Data (PHD) for aperture synthesis by following standard DSAL principle, either method resulting in a different matched filter as well as an azimuth image resolution. The experimental setup of the tri-aperture DSAL adopts a frequency chirped laser of about 40 mW in 1550 nm wavelength range as the illuminating source and an optical isolator composed of a polarizing beam-splitter and a quarter wave plate to virtually line the three apertures in the along-track direction. Various DSAL images up to target distance of 12.9 m are demonstrated using both PHD reconstructing methods.

  11. Localization of a small change in a multiple scattering environment without modeling of the actual medium.

    PubMed

    Rakotonarivo, S T; Walker, S C; Kuperman, W A; Roux, P

    2011-12-01

    A method to actively localize a small perturbation in a multiple scattering medium using a collection of remote acoustic sensors is presented. The approach requires only minimal modeling and no knowledge of the scatterer distribution and properties of the scattering medium and the perturbation. The medium is ensonified before and after a perturbation is introduced. The coherent difference between the measured signals then reveals all field components that have interacted with the perturbation. A simple single scatter filter (that ignores the presence of the medium scatterers) is matched to the earliest change of the coherent difference to localize the perturbation. Using a multi-source/receiver laboratory setup in air, the technique has been successfully tested with experimental data at frequencies varying from 30 to 60 kHz (wavelength ranging from 0.5 to 1 cm) for cm-scale scatterers in a scattering medium with a size two to five times bigger than its transport mean free path. © 2011 Acoustical Society of America

  12. Application of Digital Troposcatter to the DCS.

    DTIC Science & Technology

    1980-09-01

    DISTORTED BY QUASI TIME-INVARIANT CHANNEL) RELATIVE PHASE 0 Tn; MATCHED FILTER VIDEO OUTPUT MULTIPLIER , INTEGRATEAND DUMP EPOCH TIMING RELATIVE...characterizations such as Pedo not directly reflect this behavior, they cannot provide the insight necessary for the development of effective system

  13. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  14. WDM hybrid microoptical transceiver with Bragg volume grating

    NASA Astrophysics Data System (ADS)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2012-02-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  15. WDM hybrid microoptical transceiver with Bragg volume grating

    NASA Astrophysics Data System (ADS)

    Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav

    2011-09-01

    The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.

  16. Testing and performance analysis of a 650-Mbps quaternary pulse position modulation (QPPM) modem for free-space laser communications

    NASA Astrophysics Data System (ADS)

    Mortensen, Dale J.

    1995-04-01

    The testing and performance of a prototype modem developed at NASA Lewis Research Center for high-speed free-space direct detection optical communications is described. The testing was performed under laboratory conditions using computer control with specially developed test equipment that simulates free-space link conditions. The modem employs quaternary pulse position modulation at 325 Megabits per second (Mbps) on two optical channels, which are multiplexed to transmit a single 650 Mbps data stream. The measured results indicate that the receiver's automatic gain control (AGC), phased-locked-loop slot clock recovery, digital symbol clock recovery, matched filtering, and maximum likelihood data recovery circuits were found to have only 1.5 dB combined implementation loss during bit-error-rate (BER) performance measurements. Pseudo random bit sequences and real-time high quality video sources were used to supply 650 Mbps and 325 Mbps data streams to the modem. Additional testing revealed that Doppler frequency shifting can be easily tracked by the receiver, that simulated pointing errors are readily compensated for by the AGC circuits, and that channel timing skew affects the BER performance in an expected manner. Overall, the needed technologies for a high-speed laser communications modem were demonstrated.

  17. Results of using the global positioning system to maintain the time and frequency synchronization in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Kirk, A.; Unglaub, R.

    1987-01-01

    There are two hydrogen maser clocks located at each signal processing center (SPC) in the DSN. Close coordination of the time and frequency of the SPC clocks is needed to navigate spacecraft to the outer planets. A recent example was the Voyager spacecraft's encounter with Uranus in January 1986. The clocks were adjusted with the goal of minimizing time and frequency offsets between the SPCs at encounter. How time and frequency at each SPC is estimated using data acquired from the Global Positioning System Timing Receivers operating on the NBS-BIH (National Bureau of Standards-Bureau International de l'Heure) tracking schedule is described. These data are combined with other available timing receiver data to calculate the time offset estimates. The adjustment of the clocks is described. It was determined that long range hydrogen maser drift is quite predictable and adjustable within limits. This enables one to minimize time and frequency differences between the three SPCs for many months by matching the drift rates of the three standards. Data acquisition and processing techniques using a Kalman filter to make estimates of time and frequency offsets between the clocks at the SPCs and UTC(NBS) (Coordinated Universal Time realized at NBS) are described.

  18. A research and experimentation framework for exploiting VoI-based methods within analyst workflows in tactical operation centers

    NASA Astrophysics Data System (ADS)

    Sadler, Laurel

    2017-05-01

    In today's battlefield environments, analysts are inundated with real-time data received from the tactical edge that must be evaluated and used for managing and modifying current missions as well as planning for future missions. This paper describes a framework that facilitates a Value of Information (VoI) based data analytics tool for information object (IO) analysis in a tactical and command and control (C2) environment, which reduces analyst work load by providing automated or analyst assisted applications. It allows the analyst to adjust parameters for data matching of the IOs that will be received and provides agents for further filtering or fusing of the incoming data. It allows for analyst enhancement and markup to be made to and/or comments to be attached to the incoming IOs, which can then be re-disseminated utilizing the VoI based dissemination service. The analyst may also adjust the underlying parameters before re-dissemination of an IO, which will subsequently adjust the value of the IO based on this new/additional information that has been added, possibly increasing the value from the original. The framework is flexible and extendable, providing an easy to use, dynamically changing Command and Control decision aid that focuses and enhances the analyst workflow.

  19. T Cell-Replete Peripheral Blood Haploidentical Hematopoietic Cell Transplantation with Post-Transplantation Cyclophosphamide Results in Outcomes Similar to Transplantation from Traditionally Matched Donors in Active Disease Acute Myeloid Leukemia.

    PubMed

    How, Joan; Slade, Michael; Vu, Khoan; DiPersio, John F; Westervelt, Peter; Uy, Geoffrey L; Abboud, Camille N; Vij, Ravi; Schroeder, Mark A; Fehniger, Todd A; Romee, Rizwan

    2017-04-01

    Outcomes for patients with acute myeloid leukemia (AML) who fail to achieve complete remission remain poor. Hematopoietic cell transplantation (HCT) has been shown to induce long-term survival in AML patients with active disease. HCT is largely performed with HLA-matched unrelated or HLA-matched related donors. Recently, HCT with HLA-haploidentical related donors has been identified as a feasible option when HLA-matched donors are not immediately available. However, there are little data comparing outcomes for AML patients with active disease who receive haploidentical versus traditionally matched HCT. We retrospectively analyzed data from 99 AML patients with active disease undergoing allogeneic HCT at a single institution. Forty-three patients received unrelated donor HCT, 32 patients received matched related donor HCT, and 24 patients received peripheral blood haploidentical HCT with post-transplantation cyclophosphamide. We found no significant differences between treatment groups in terms of overall survival (OS), event-free survival, transplantation-related mortality, cumulative incidence of relapse, and cumulative incidence of acute and chronic graft-versus-host disease (GVHD). We performed univariate regression analysis of variables that modified OS in all patients and found only younger age at transplantation and development of chronic GVHD significantly improved outcome. Although limited by our relatively small sample size, these results indicate that haploidentical HCT in active AML patients have comparable outcomes to HCT with traditionally matched donors. Haploidentical HCT can be considered in this population of high-risk patients when matched donors are unavailable or when wait times for transplantation are unacceptably long. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Ultrasonic imaging system for in-process fabric defect detection

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Lawrence, William P.; Raptis, Apostolos C.

    1997-01-01

    An ultrasonic method and system are provided for monitoring a fabric to identify a defect. A plurality of ultrasonic transmitters generate ultrasonic waves relative to the fabric. An ultrasonic receiver means responsive to the generated ultrasonic waves from the transmitters receives ultrasonic waves coupled through the fabric and generates a signal. An integrated peak value of the generated signal is applied to a digital signal processor and is digitized. The digitized signal is processed to identify a defect in the fabric. The digitized signal processing includes a median value filtering step to filter out high frequency noise. Then a mean value and standard deviation of the median value filtered signal is calculated. The calculated mean value and standard deviation are compared with predetermined threshold values to identify a defect in the fabric.

  1. Structured FBG filters for 10-Gb/s DPSK signal demodulation in single ended applications

    NASA Astrophysics Data System (ADS)

    Marazzi, L.; Boffi, P.; Parolari, P.; Martinelli, M.; Gatti, D.; Coluccelli, N.; Longhi, S.

    2011-05-01

    Differential phase-shift keying (DPSK) demodulations operated by a structured fiber Bragg grating (FBG) filter and by a Mach-Zehnder delay interferometer (MZDI) in a single-ended configuration are compared. Experimental measurements at 10 Gb/s demonstrate that a specially designed FBG outperforms an integrated-optic MZDI of ˜4 dB and ˜3.5 dB in back-to-back and after 25-km propagation, respectively. Both demodulators show low polarization sensitivity and signal frequency detuning dependence, but only MZDI operating point requires a thermal control. FBG filter proves an interesting solution for DPSK demodulation in low-cost applications and, moreover, can be designed to match colorless requirements of wave division multiplexed passive optical network (WDM-PON) applications.

  2. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    PubMed

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.

  3. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers

    PubMed Central

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-01-01

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581

  4. Iris recognition using possibilistic fuzzy matching on local features.

    PubMed

    Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang

    2012-02-01

    In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.

  5. Polyimide Aerogels and Porous Membranes for Ultrasonic Impedance Matching to Air

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.; Sands, Obed S.; Meador, Mary Ann B.

    2014-01-01

    This work investigates acoustic impedance matching materials for coupling 200 kHz ultrasonic signals from air to materials with similar acoustic properties to that of water, flesh, rubber and plastics. Porous filter membranes as well as a new class of cross-linked polyimide aerogels are evaluated. The results indicate that a single impedance matching layer consisting of these new aerogel materials will recover nearly half of the loss in the incident-to-transmitted ultrasound intensity associated with an air/water, air/flesh or air/gelatin boundary. Furthermore, the experimental results are obtained where other uncertainties of the "real world" are present such that the observed impedance matching gains are representative of real-world applications. Performance of the matching layer devices is assessed using the idealized 3-layer model of infinite half spaces, yet the experiments conducted use a finite gelatin block as the destination medium.

  6. Crack displacement sensing and measurement in concrete using circular grating moire fringes and pattern matching

    NASA Astrophysics Data System (ADS)

    Chan, H. M.; Yen, K. S.; Ratnam, M. M.

    2008-09-01

    The moire method has been extensively studied in the past and applied in various engineering applications. Several techniques are available for generating the moire fringes in these applications, which include moire interferometry, projection moire, shadow moire, moire deflectometry etc. Most of these methods use the superposition of linear gratings to generate the moire patterns. The use of non-linear gratings, such as circular, radial and elongated gratings has received less attention from the research community. The potential of non-linear gratings in engineering measurement has been realized in a limited number of applications, such as rotation measurement, measurement of linear displacement, measurement of expansion coefficients of materials and measurement of strain distribution. In this work, circular gratings of different pitch were applied to the sensing and measurement of crack displacement in concrete structures. Gratings of pitch 0.50 mm and 0.55 mm were generated using computer software and attached to two overlapping acrylic plates that were bonded to either side of the crack. The resulting moire patterns were captured using a standard digital camera and compared with a set of reference patterns generated using a precision positioning stage. Using several image pre-processing stages, such as filtering and morphological operations, and pattern matching the magnitude displacements along two orthogonal axes can be detected with a resolution of 0.05 mm.

  7. Purification of photon subtraction from continuous squeezed light by filtering

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Asavanant, Warit; Furusawa, Akira

    2017-11-01

    Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.

  8. Air gap resonant tunneling bandpass filter and polarizer.

    PubMed

    Melnyk, A; Bitarafan, M H; Allen, T W; DeCorby, R G

    2016-04-15

    We describe a bandpass filter based on resonant tunneling through an air layer in the frustrated total internal reflection regime, and show that the concept of induced transmission can be applied to the design of thin film matching stacks. Experimental results are reported for Si/SiO2-based devices exhibiting a polarization-dependent passband, with bandwidth on the order of 10 nm in the 1550 nm wavelength range, peak transmittance on the order of 80%, and optical density greater than 5 over most of the near infrared region.

  9. Gate-tunable valley-spin filtering in silicene with magnetic barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, X. Q., E-mail: xianqiangzhe@126.com; Meng, H.

    2015-05-28

    We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.

  10. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  11. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Parker, Edith; Godwin, Christopher; Chin, Jo-Yu; O'Toole, Ashley; Robins, Thomas; Brakefield-Caldwell, Wilma; Lewis, Toby

    2011-01-01

    Asthma can be exacerbated by environmental factors including airborne particulate matter (PM) and environmental tobacco smoke (ETS). We report on a study designed to characterize PM levels and the effectiveness of filters on pollutant exposures of children with asthma. 126 households with an asthmatic child in Detroit, Michigan, were recruited and randomized into control or treatment groups. Both groups received asthma education; the latter also received a free-standing high efficiency air filter placed in the child’s bedroom. Information regarding the home, emission sources, and occupant activities was obtained using surveys administered to the child's caregiver and a household inspection. Over a one-week period, we measured PM, carbon dioxide (CO2), environmental tobacco smoke (ETS) tracers, and air exchange rates (AERs). Filters were installed at midweek. Before filter installation, PM concentrations averaged 28 µg m−3, number concentrations averaged 70,777 and 1,471 L−1 in 0.3–1.0 and 1–5 µm size ranges, respectively, and the median CO2 concentration was 1,018 ppm. ETS tracers were detected in 23 of 38 homes where smoking was unrestricted and occupants included smokers and, when detected, PM concentrations were elevated by an average of 15 µg m−3. Filter use reduced PM concentrations by an average of 69 to 80%. Simulation models representing location conditions show that filter air flow, room volume and AERs are the key parameters affecting PM removal, however, filters can achieve substantial removal in even "worst" case applications. While PM levels in homes with asthmatic children can be high, levels can be dramatically reduced using filters. PMID:21874085

  12. Particle Concentrations and Effectiveness of Free-Standing Air Filters in Bedrooms of Children with Asthma in Detroit, Michigan.

    PubMed

    Du, Liuliu; Batterman, Stuart; Parker, Edith; Godwin, Christopher; Chin, Jo-Yu; O'Toole, Ashley; Robins, Thomas; Brakefield-Caldwell, Wilma; Lewis, Toby

    2011-10-01

    Asthma can be exacerbated by environmental factors including airborne particulate matter (PM) and environmental tobacco smoke (ETS). We report on a study designed to characterize PM levels and the effectiveness of filters on pollutant exposures of children with asthma. 126 households with an asthmatic child in Detroit, Michigan, were recruited and randomized into control or treatment groups. Both groups received asthma education; the latter also received a free-standing high efficiency air filter placed in the child's bedroom. Information regarding the home, emission sources, and occupant activities was obtained using surveys administered to the child's caregiver and a household inspection. Over a one-week period, we measured PM, carbon dioxide (CO(2)), environmental tobacco smoke (ETS) tracers, and air exchange rates (AERs). Filters were installed at midweek. Before filter installation, PM concentrations averaged 28 µg m(-3), number concentrations averaged 70,777 and 1,471 L(-1) in 0.3-1.0 and 1-5 µm size ranges, respectively, and the median CO(2) concentration was 1,018 ppm. ETS tracers were detected in 23 of 38 homes where smoking was unrestricted and occupants included smokers and, when detected, PM concentrations were elevated by an average of 15 µg m(-3). Filter use reduced PM concentrations by an average of 69 to 80%. Simulation models representing location conditions show that filter air flow, room volume and AERs are the key parameters affecting PM removal, however, filters can achieve substantial removal in even "worst" case applications. While PM levels in homes with asthmatic children can be high, levels can be dramatically reduced using filters.

  13. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  14. Diesel particulate filter regeneration via resistive surface heating

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  15. What Are We Protecting Them From?

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    The Children's Internet Protection Act (CIPA) requires any school or library receiving funding from the federal E-Rate program to deploy web filtering technology to prevent users from viewing objectionable material while they are using the institution's computers. However, opponents of web filtering legislation question whether or not mandated…

  16. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    PubMed

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  17. The PARIGA server for real time filtering and analysis of reciprocal BLAST results.

    PubMed

    Orsini, Massimiliano; Carcangiu, Simone; Cuccuru, Gianmauro; Uva, Paolo; Tramontano, Anna

    2013-01-01

    BLAST-based similarity searches are commonly used in several applications involving both nucleotide and protein sequences. These applications span from simple tasks such as mapping sequences over a database to more complex procedures as clustering or annotation processes. When the amount of analysed data increases, manual inspection of BLAST results become a tedious procedure. Tools for parsing or filtering BLAST results for different purposes are then required. We describe here PARIGA (http://resources.bioinformatica.crs4.it/pariga/), a server that enables users to perform all-against-all BLAST searches on two sets of sequences selected by the user. Moreover, since it stores the two BLAST output in a python-serialized-objects database, results can be filtered according to several parameters in real-time fashion, without re-running the process and avoiding additional programming efforts. Results can be interrogated by the user using logical operations, for example to retrieve cases where two queries match same targets, or when sequences from the two datasets are reciprocal best hits, or when a query matches a target in multiple regions. The Pariga web server is designed to be a helpful tool for managing the results of sequence similarity searches. The design and implementation of the server renders all operations very fast and easy to use.

  18. Matched-filtering line search methods applied to Suzaku data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Naoto; Yamada, Shin'ya; Enoto, Teruaki; Axelsson, Magnus; Ohashi, Takaya

    2016-12-01

    A detailed search for emission and absorption lines and an assessment of their upper limits are performed for Suzaku data. The method utilizes a matched-filtering approach to maximize the signal-to-noise ratio for a given energy resolution, which could be applicable to many types of line search. We first applied it to well-known active galactic nuclei spectra that have been reported to have ultra-fast outflows, and find that our results are consistent with previous findings at the ˜3σ level. We proceeded to search for emission and absorption features in two bright magnetars 4U 0142+61 and 1RXS J1708-4009, applying the filtering method to Suzaku data. We found that neither source showed any significant indication of line features, even using long-term Suzaku observations or dividing their spectra into spin phases. The upper limits on the equivalent width of emission/absorption lines are constrained to be a few eV at ˜1 keV and a few hundreds of eV at ˜10 keV. This strengthens previous reports that persistently bright magnetars do not show proton cyclotron absorption features in soft X-rays and, even if they exist, they would be broadened or much weaker than below the detection limit of X-ray CCD.

  19. Talker identification across source mechanisms: experiments with laryngeal and electrolarynx speech.

    PubMed

    Perrachione, Tyler K; Stepp, Cara E; Hillman, Robert E; Wong, Patrick C M

    2014-10-01

    The purpose of this study was to determine listeners' ability to learn talker identity from speech produced with an electrolarynx, explore source and filter differentiation in talker identification, and describe acoustic-phonetic changes associated with electrolarynx use. Healthy adult control listeners learned to identify talkers from speech recordings produced using talkers' normal laryngeal vocal source or an electrolarynx. Listeners' abilities to identify talkers from the trained vocal source (Experiment 1) and generalize this knowledge to the untrained source (Experiment 2) were assessed. Acoustic-phonetic measurements of spectral differences between source mechanisms were performed. Additional listeners attempted to match recordings from different source mechanisms to a single talker (Experiment 3). Listeners successfully learned talker identity from electrolarynx speech but less accurately than from laryngeal speech. Listeners were unable to generalize talker identity to the untrained source mechanism. Electrolarynx use resulted in vowels with higher F1 frequencies compared with laryngeal speech. Listeners matched recordings from different sources to a single talker better than chance. Electrolarynx speech, although lacking individual differences in voice quality, nevertheless conveys sufficient indexical information related to the vocal filter and articulation for listeners to identify individual talkers. Psychologically, perception of talker identity arises from a "gestalt" of the vocal source and filter.

  20. Foveated model observers to predict human performance in 3D images

    NASA Astrophysics Data System (ADS)

    Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.

    2017-03-01

    We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.

  1. Talker identification across source mechanisms: Experiments with laryngeal and electrolarynx speech

    PubMed Central

    Perrachione, Tyler K.; Stepp, Cara E.; Hillman, Robert E.; Wong, Patrick C.M.

    2015-01-01

    Purpose To determine listeners' ability to learn talker identity from speech produced with an electrolarynx, explore source and filter differentiation in talker identification, and describe acoustic-phonetic changes associated with electrolarynx use. Method Healthy adult control listeners learned to identify talkers from speech recordings produced using talkers' normal laryngeal vocal source or an electrolarynx. Listeners' abilities to identify talkers from the trained vocal source (Experiment 1) and generalize this knowledge to the untrained source (Experiment 2) were assessed. Acoustic-phonetic measurements of spectral differences between source mechanisms were performed. Additional listeners attempted to match recordings from different source mechanisms to a single talker (Experiment 3). Results Listeners successfully learned talker identity from electrolarynx speech, but less accurately than from laryngeal speech. Listeners were unable to generalize talker identity to the untrained source mechanism. Electrolarynx use resulted in vowels with higher F1 frequencies compared to laryngeal speech. Listeners matched recordings from different sources to a single talker better than chance. Conclusions Electrolarynx speech, though lacking individual differences in voice quality, nevertheless conveys sufficient indexical information related to the vocal filter and articulation for listeners to identify individual talkers. Psychologically, perception of talker identity arises from a “gestalt” of the vocal source and filter. PMID:24801962

  2. A Matched Filter Hypothesis for Cognitive Control

    PubMed Central

    Thompson-Schill, Sharon L.

    2013-01-01

    The prefrontal cortex exerts top-down influences on several aspects of higher-order cognition by functioning as a filtering mechanism that biases bottom-up sensory information toward a response that is optimal in context. However, research also indicates that not all aspects of complex cognition benefit from prefrontal regulation. Here we review and synthesize this research with an emphasis on the domains of learning and creative cognition, and outline how the appropriate level of cognitive control in a given situation can vary depending on the organism's goals and the characteristics of the given task. We offer a Matched Filter Hypothesis for cognitive control, which proposes that the optimal level of cognitive control is task-dependent, with high levels of cognitive control best suited to tasks that are explicit, rule-based, verbal or abstract, and can be accomplished given the capacity limits of working memory and with low levels of cognitive control best suited to tasks that are implicit, reward-based, non-verbal or intuitive, and which can be accomplished irrespective of working memory limitations. Our approach promotes a view of cognitive control as a tool adapted to a subset of common challenges, rather than an all-purpose optimization system suited to every problem the organism might encounter. PMID:24200920

  3. Attention-Deficit/Hyperactivity Disorder Medication Treatment Impact on Response to Growth Hormone Therapy: Results from the ANSWER Program, a Non-Interventional Study.

    PubMed

    Rose, Susan R; Reeves, Grafton; Gut, Robert; Germak, John

    2015-12-01

    To examine whether attention-deficit/hyperactivity disorder (ADHD) stimulant medication modified the linear growth response to growth hormone (GH) treatment in children enrolled in the American Norditropin Studies: Web-Enabled Research Program. Short, GH treatment-naive children with or without GH deficiency (GHD) received GH therapy. A subset also received ADHD stimulant medication (n = 1190), and others did not (n = 7230). Linear mixed models (adjusted means) examined height SDS (HSDS) and body mass index (BMI) SDS from baseline through year 4. Analyses were repeated with ADHD groups matched for baseline age, height, weight, BMI, and sex. Groups with and without GHD were compared between ADHD groups. Adjusted change in HSDS for the group receiving ADHD stimulant medication was slightly lower than that for patients not receiving stimulant medication at years 1 to 4 (P < .05). However, adjusted change in HSDS was similar between children receiving and not receiving ADHD stimulant medication when matched for baseline measurements. At year 4, 86.7% of patients receiving ADHD stimulant medication, 86.8% of total patients not receiving ADHD stimulant medication, and 84.6% of matched group patients not receiving ADHD stimulant medication achieved HSDS >-2. Year 4 adjusted change in BMI SDS was greater in the patients receiving ADHD stimulant medication compared with both groups not receiving ADHD stimulant medication (P < .05). Patients with GHD showed comparable differences in adjusted change in BMI SDS among the ADHD groups at year 4, whereas patients without GHD showed no significant differences. ADHD medication did not affect the linear growth response of children treated with GH when those receiving or not receiving ADHD stimulant medication were matched for baseline measurements. Underlying reasons for the observed greater increase in BMI in patients with GHD concomitantly treated with ADHD medication remain to be elucidated. ClinicalTrials.gov: NCT01009905. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Speckle-reducing scale-invariant feature transform match for synthetic aperture radar image registration

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Li, Bo; Xu, Qizhi

    2016-07-01

    The anisotropic scale space (ASS) is often used to enhance the performance of a scale-invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR) images. The existing ASS-based methods usually suffer from unstable keypoints and false matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise from SAR images while building the ASS image representation. We proposed a speckle reducing SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image registration. First, the keypoints are detected in a speckle reducing anisotropic scale space constructed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced and prominent structures of the images are preserved, consequently the stable keypoints can be derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches of the keypoints then the correct match rate of the keypoints is significantly increased. Experiments conducted on simulated speckled images and real SAR images demonstrate the effectiveness of the proposed method.

  5. Applying six classifiers to airborne hyperspectral imagery for detecting giant reed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated and compared six different image classifiers, including minimum distance (MD), Mahalanobis distance (MAHD), maximum likelihood (ML), spectral angle mapper (SAM), mixture tuned matched filtering (MTMF) and support vector machine (SVM), for detecting and mapping giant reed (Arundo...

  6. 76 FR 14669 - Privacy Act of 1974; CMS Computer Match No. 2011-02; HHS Computer Match No. 1007

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... (CMS); and Department of Defense (DoD), Manpower Data Center (DMDC), Defense Enrollment and Eligibility... the results of the computer match and provide the information to TMA for use in its matching program... under TRICARE. DEERS will receive the results of the computer match and provide the information provided...

  7. 45 CFR 205.56 - Requirements governing the use of income and eligibility information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) of the Social Security Act must provide that: (a) The State agency will use the information obtained... received from the Internal Revenue Service, and earnings information received from the Social Security... Federal computer matching program that is subject to the requirements in the Computer Matching and Privacy...

  8. 45 CFR 205.56 - Requirements governing the use of income and eligibility information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) of the Social Security Act must provide that: (a) The State agency will use the information obtained... received from the Internal Revenue Service, and earnings information received from the Social Security... Federal computer matching program that is subject to the requirements in the Computer Matching and Privacy...

  9. 45 CFR 205.56 - Requirements governing the use of income and eligibility information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) of the Social Security Act must provide that: (a) The State agency will use the information obtained... received from the Internal Revenue Service, and earnings information received from the Social Security... Federal computer matching program that is subject to the requirements in the Computer Matching and Privacy...

  10. 45 CFR 205.56 - Requirements governing the use of income and eligibility information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) of the Social Security Act must provide that: (a) The State agency will use the information obtained... received from the Internal Revenue Service, and earnings information received from the Social Security... Federal computer matching program that is subject to the requirements in the Computer Matching and Privacy...

  11. 45 CFR 205.56 - Requirements governing the use of income and eligibility information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) of the Social Security Act must provide that: (a) The State agency will use the information obtained... received from the Internal Revenue Service, and earnings information received from the Social Security... Federal computer matching program that is subject to the requirements in the Computer Matching and Privacy...

  12. Message passing with queues and channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer

    In an embodiment, a reception thread receives a source node identifier, a type, and a data pointer from an application and, in response, creates a receive request. If the source node identifier specifies a source node, the reception thread adds the receive request to a fast-post queue. If a message received from a network does not match a receive request on a posted queue, a polling thread adds a receive request that represents the message to an unexpected queue. If the fast-post queue contains the receive request, the polling thread removes the receive request from the fast-post queue. If themore » receive request that was removed from the fast-post queue does not match the receive request on the unexpected queue, the polling thread adds the receive request that was removed from the fast-post queue to the posted queue. The reception thread and the polling thread execute asynchronously from each other.« less

  13. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  14. Content Based Image Matching for Planetary Science

    NASA Astrophysics Data System (ADS)

    Deans, M. C.; Meyer, C.

    2006-12-01

    Planetary missions generate large volumes of data. With the MER rovers still functioning on Mars, PDS contains over 7200 released images from the Microscopic Imagers alone. These data products are only searchable by keys such as the Sol, spacecraft clock, or rover motion counter index, with little connection to the semantic content of the images. We have developed a method for matching images based on the visual textures in images. For every image in a database, a series of filters compute the image response to localized frequencies and orientations. Filter responses are turned into a low dimensional descriptor vector, generating a 37 dimensional fingerprint. For images such as the MER MI, this represents a compression ratio of 99.9965% (the fingerprint is approximately 0.0035% the size of the original image). At query time, fingerprints are quickly matched to find images with similar appearance. Image databases containing several thousand images are preprocessed offline in a matter of hours. Image matches from the database are found in a matter of seconds. We have demonstrated this image matching technique using three sources of data. The first database consists of 7200 images from the MER Microscopic Imager. The second database consists of 3500 images from the Narrow Angle Mars Orbital Camera (MOC-NA), which were cropped into 1024×1024 sub-images for consistency. The third database consists of 7500 scanned archival photos from the Apollo Metric Camera. Example query results from all three data sources are shown. We have also carried out user tests to evaluate matching performance by hand labeling results. User tests verify approximately 20% false positive rate for the top 14 results for MOC NA and MER MI data. This means typically 10 to 12 results out of 14 match the query image sufficiently. This represents a powerful search tool for databases of thousands of images where the a priori match probability for an image might be less than 1%. Qualitatively, correct matches can also be confirmed by verifying MI images taken in the same z-stack, or MOC image tiles taken from the same image strip. False negatives are difficult to quantify as it would mean finding matches in the database of thousands of images that the algorithm did not detect.

  15. The Elementary Operations of Human Vision Are Not Reducible to Template-Matching

    PubMed Central

    Neri, Peter

    2015-01-01

    It is generally acknowledged that biological vision presents nonlinear characteristics, yet linear filtering accounts of visual processing are ubiquitous. The template-matching operation implemented by the linear-nonlinear cascade (linear filter followed by static nonlinearity) is the most widely adopted computational tool in systems neuroscience. This simple model achieves remarkable explanatory power while retaining analytical tractability, potentially extending its reach to a wide range of systems and levels in sensory processing. The extent of its applicability to human behaviour, however, remains unclear. Because sensory stimuli possess multiple attributes (e.g. position, orientation, size), the issue of applicability may be asked by considering each attribute one at a time in relation to a family of linear-nonlinear models, or by considering all attributes collectively in relation to a specified implementation of the linear-nonlinear cascade. We demonstrate that human visual processing can operate under conditions that are indistinguishable from linear-nonlinear transduction with respect to substantially different stimulus attributes of a uniquely specified target signal with associated behavioural task. However, no specific implementation of a linear-nonlinear cascade is able to account for the entire collection of results across attributes; a satisfactory account at this level requires the introduction of a small gain-control circuit, resulting in a model that no longer belongs to the linear-nonlinear family. Our results inform and constrain efforts at obtaining and interpreting comprehensive characterizations of the human sensory process by demonstrating its inescapably nonlinear nature, even under conditions that have been painstakingly fine-tuned to facilitate template-matching behaviour and to produce results that, at some level of inspection, do conform to linear filtering predictions. They also suggest that compliance with linear transduction may be the targeted outcome of carefully crafted nonlinear circuits, rather than default behaviour exhibited by basic components. PMID:26556758

  16. Perceptual precision of passive body tilt is consistent with statistically optimal cue integration

    PubMed Central

    Karmali, Faisal; Nicoucar, Keyvan; Merfeld, Daniel M.

    2017-01-01

    When making perceptual decisions, humans have been shown to optimally integrate independent noisy multisensory information, matching maximum-likelihood (ML) limits. Such ML estimators provide a theoretic limit to perceptual precision (i.e., minimal thresholds). However, how the brain combines two interacting (i.e., not independent) sensory cues remains an open question. To study the precision achieved when combining interacting sensory signals, we measured perceptual roll tilt and roll rotation thresholds between 0 and 5 Hz in six normal human subjects. Primary results show that roll tilt thresholds between 0.2 and 0.5 Hz were significantly lower than predicted by a ML estimator that includes only vestibular contributions that do not interact. In this paper, we show how other cues (e.g., somatosensation) and an internal representation of sensory and body dynamics might independently contribute to the observed performance enhancement. In short, a Kalman filter was combined with an ML estimator to match human performance, whereas the potential contribution of nonvestibular cues was assessed using published bilateral loss patient data. Our results show that a Kalman filter model including previously proven canal-otolith interactions alone (without nonvestibular cues) can explain the observed performance enhancements as can a model that includes nonvestibular contributions. NEW & NOTEWORTHY We found that human whole body self-motion direction-recognition thresholds measured during dynamic roll tilts were significantly lower than those predicted by a conventional maximum-likelihood weighting of the roll angular velocity and quasistatic roll tilt cues. Here, we show that two models can each match this “apparent” better-than-optimal performance: 1) inclusion of a somatosensory contribution and 2) inclusion of a dynamic sensory interaction between canal and otolith cues via a Kalman filter model. PMID:28179477

  17. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  18. Counting digital filters

    NASA Technical Reports Server (NTRS)

    Zohar, S. (Inventor)

    1973-01-01

    Several embodiments of a counting digital filter of the non-recursive type are disclosed. In each embodiment two registers, at least one of which is a shift register, are included. The shift register received j sub x-bit data input words bit by bit. The kth data word is represented by the integer.

  19. Ranging through Gabor logons-a consistent, hierarchical approach.

    PubMed

    Chang, C; Chatterjee, S

    1993-01-01

    In this work, the correspondence problem in stereo vision is handled by matching two sets of dense feature vectors. Inspired by biological evidence, these feature vectors are generated by a correlation between a bank of Gabor sensors and the intensity image. The sensors consist of two-dimensional Gabor filters at various scales (spatial frequencies) and orientations, which bear close resemblance to the receptive field profiles of simple V1 cells in visual cortex. A hierarchical, stochastic relaxation method is then used to obtain the dense stereo disparities. Unlike traditional hierarchical methods for stereo, feature based hierarchical processing yields consistent disparities. To avoid false matchings due to static occlusion, a dual matching, based on the imaging geometry, is used.

  20. Frequency Agile Lidar Receiver for Chem-Bio Sensing

    DTIC Science & Technology

    2010-06-01

    receiver module design is based on the following key attributes: 1) The use of an inexpensive COTS PV MCT , 2) A custom detector amplifier with ultra low...input-referenced noise density of 0.8 nV/ Hz0.5 that is carefully matched to the electrical properties of the detector and temporal characteristics of...LIDAR transmitter. The low- noise amplifier matched to the receiver detector was developed in order to realize the BLIP noise reduction resulting from

Top