Materialism across the life span: An age-period-cohort analysis.
Jaspers, Esther D T; Pieters, Rik G M
2016-09-01
This research examined the development of materialism across the life span. Two initial studies revealed that (a) lay beliefs were that materialism declines with age and (b) previous research findings also implied a modest, negative relationship between age and materialism. Yet, previous research has considered age only as a linear control variable, thereby precluding the possibility of more intricate relationships between age and materialism. Moreover, prior studies have relied on cross-sectional data and thus confound age and cohort effects. To improve on this, the main study used longitudinal data from 8 waves spanning 9 years of over 4,200 individuals (16 to 90 years) to examine age effects on materialism while controlling for cohort and period effects. Using a multivariate multilevel latent growth model, it found that materialism followed a curvilinear trajectory across the life span, with the lowest levels at middle age and higher levels before and after that. Thus, in contrast to lay beliefs, materialism increased in older age. Moreover, age effects on materialism differed markedly between 3 core themes of materialism: acquisition centrality, possession-defined success, and acquisition as the pursuit of happiness. In particular, acquisition centrality and possession-defined success were higher at younger and older age. Independent of these age effects, older birth cohorts were oriented more toward possession-defined success, whereas younger birth cohorts were oriented more toward acquisition centrality. The economic downturn since 2008 led to a decrease in acquisition as the pursuit of happiness and in desires for personal growth, but to an increase in desires for achievement. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
da Silva, Joaquim; Takahashi, Jessica; Nuňez, Juliana; Consani, Rafael; Mesquita, Marcelo
2012-09-01
To compare the effects of different ageing methods on the permanent deformation of two permanent soft liners. The materials selected were auto-polymerising acrylic resin and silicone-based reliners. Sealer coating was also evaluated. Sixty specimens of each reliner were manufactured (12.7 mm diameter and 19 mm length). Specimens were randomly distributed into 12 groups (n = 10) and submitted to one of the accelerated ageing processes. Permanent deformation tests were conducted with a mechanical device described within the American Dental Association specification number 18 with a compressive load of 750 gf applied for 30 s. All data were submitted for statistical analysis. Mann-Whitney test compared the effect of the surface sealer on each material and the permanent deformation of the materials in the same ageing group (p = 0.05). Kruskal-Wallis and Dunn tests compared all ageing groups of each material (p = 0.05). The silicone-based reliner presented a lower permanent deformation than the acrylic resin-based reliner, regardless of the ageing procedure. The surface sealer coating was effective only for the thermocycled silicone group and the accelerated ageing processes affected only the permanent deformation of the acrylic resin-based material. The silicone-based reliner presented superior elastic properties and the thermocycling was more effective in ageing the materials. © 2010 The Gerodontology Society and John Wiley & Sons A/S.
Miyata, Yoshiki; Minami, Masayo; Onbe, Shin; Sakamoto, Minoru; Matsuzaki, Hiroyuki; Nakamura, Toshio; Imamura, Mineo
2011-01-01
AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 (14)C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis.
Developmental reversals in false memory: Effects of emotional valence and arousal.
Brainerd, C J; Holliday, R E; Reyna, V F; Yang, Y; Toglia, M P
2010-10-01
Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true memory to total memory) decreased with age. These surprising developmental trends were more pronounced for negatively valenced materials than for positively valenced materials, they were more pronounced for high-arousal materials than for low-arousal materials, and developmental increases in the effects of arousal were small in comparison with developmental increases in the effects of valence. These findings have ramifications for legal applications of false memory research; materials that share the emotional hallmark of crimes (events that are negatively valenced and arousing) produced the largest age increases in false memory and the largest age declines in net accuracy. Copyright 2010 Elsevier Inc. All rights reserved.
Effect of shelf aging on vibration transmissibility of anti-vibration gloves
SHIBATA, Nobuyuki
2017-01-01
Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817
Effectiveness of rotary or manual techniques for removing a 6-year-old filling material.
Duarte, Marco Antônio Hungaro; Só, Marcus Vinícius Reis; Cimadon, Vanessa Buffon; Zucatto, Cristiane; Vier-Pelisser, Fabiana Vieira; Kuga, Milton Carlos
2010-01-01
The aim of this study was to evaluate the effectiveness of manual and rotary instrumentation techniques for removing root fillings after different storage times. Twenty-four canals from palatal roots of human maxillary molars were instrumented and filled with gutta-percha and zinc-oxide eugenol-based sealer (Endofill) , and were stored in saline for 6 years. Non-aged control specimens were treated in the same manner and stored for 1 week. All canals were retreated using hand files or ProTaper Universal NiTi rotary system. Radiographs were taken to determine the amount of remaining material in the canals. The roots were vertically split, the halves were examined with a clinical microscope and the obtained images were digitized. The images were evaluated with AutoCAD software and the percentage of residual material was calculated. Data were analyzed with two-way ANOVA and Tukey's test at 5% significance level. There was no statistically significant differences (p>0.05) between the manual and rotary techniques for filling material removal regardless the ageing effect on endodontic sealers. When only the age of the filling material was analyzed microscopically, non-aged fillings that remained on the middle third of the canals presented a higher percentage of material remaining (p<0.05) compared to the aged sealers and to the other thirds of the roots. The apical third showed a higher percentage of residual filling material in both radiographic and microscopic analysis when compared to the other root thirds. In conclusion, all canals presented residual filling material after endodontic retreatment procedures. Microscopic analysis was more effective than radiographs for detection of residual filling material.
Effect of artificial aging on the surface roughness and microhardness of resin-based materials.
Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C
2016-01-01
This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; Allison, J. E.; van Aken, D. C.
1995-12-01
The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10-4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.
The Effect of Artificial Aging on the Tensile Properties of Alclad 24S-T and 24S-T Aluminum Alloy
NASA Technical Reports Server (NTRS)
Kotanchik, Joseph N.; Woods, Walter; Zender, George W.
1943-01-01
An experimental study was made to determine the effect of artificial aging on the tensile properties of alclad 24S-T and 24S-T aluminum-alloy sheet material. The results of the tests show that certain combinations of aging time and temperature cause a marked increase in the yield strength and a small increase in the ultimate strength; these increases are accompanied by a very large decrease in elongation. A curve is presented that shows the maximum yield strengths that can be obtained by aging this material at various combinations of time and temperature. The higher values of yield stress are obtained in material aged at relatively longer times and lower temperatures.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1993-01-01
Two complimentary studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. The first of these studies, experimental in nature, used isothermal tensile creep/aging test techniques developed for polymers and adapted them for testing of the composite material. From these tests, the time dependent transverse (S22) and shear (S66) compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(sub g) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress. The second part of the study relied upon isothermal uniaxial tension tests of IM7/8320 to determine the effects of physical aging on the nonlinear material behavior at elevated temperature. An elastic/viscoplastic constitutive model was used to quantify the effects of aging on the rate-independent plastic and rate-dependent viscoplastic response. Sensitivity of the material constants required by the model to aging time were determined for aging times up to 65 hours. Verification of the analytical model indicated that the effects of prior aging on the nonlinear stress/strain/time data of matrix dominated laminates can be predicted.
Characterization of viscoelastic response and damping of composite materials used in flywheel rotors
NASA Astrophysics Data System (ADS)
Chen, Jianmin
The long-term goal for spacecraft flywheel systems with higher energy density at the system level requires new and innovative composite material concepts. Multi-Direction Composite (MDC) offers significant advantages over traditional filament-wound and multi-ring press-fit filament-wound wheels in providing higher energy density (i.e., less mass), better crack resistance, and enhanced safety. However there is a lack of systematic characterization for dynamic properties of MDC composite materials. In order to improve the flywheel materials reliability, durability and life time, it is very important to evaluate the time dependent aging effects and damping properties of MDC material, which are significant dynamic parameter for vibration and sound control, fatigue endurance, and impact resistance. The physical aging effects are quantified based on a set of creep curves measured at different aging time or different aging temperature. One parameter (tau) curve fit was proposed to represent the relationship of aging time and aging temperature between different master curves. The long term mechanical behavior was predicted by obtained master curves. The time and temperature shift factors of matrix were obtained from creep curves and the aging time shift rate were calculated. The aging effects on composite are obtained from experiments and compared with prediction. The mechanical quasi-behavior of MDC composite was analyzed. The correspondence principle was used to relate quasi-static elastic properties of composite materials to time-dependent properties of its constituent materials (i.e., fiber and matrix). The Prony series combined with the multi-data fitting method was applied to inverse Laplace transform and to calculate the time dependent stiffness matrix effectively. Accelerated time-dependent deformation of two flywheel rim designs were studied for a period equivalent to 31 years and are compared with hoop reinforcement only composite. Damping of pure resin and T700/epoxy composite lamina and laminate in longitudinal and transverse directions were investigated experimentally and analytically. The effect of aging on damping was also studied by placing samples at 60°C in an oven for extended periods. Damping master curves versus frequency were constructed from individual curves at different temperatures based on the Arrhenius equation. The damping response of the composite lamina was used to predict the response of laminate composites. Analytical results give close numerical values to experimental results from damping of cantilever beam laminated composite samples.
Kent, Richard; Lee, Sang-Hyun; Darvish, Kurosh; Wang, Stewart; Poster, Craig S; Lange, Aaron W; Brede, Chris; Lange, David; Matsuoka, Fumio
2005-11-01
The human body undergoes a variety of changes as it ages through adulthood. These include both morphological (structural) changes (e.g., increased thoracic kyphosis) and material changes (e.g., osteoporosis). The purpose of this study is to evaluate structural changes that occur in the aging bony thorax and to assess the importance of these changes relative to the well-established material changes. The study involved two primary components. First, full-thorax computed tomography (CT) scans of 161 patients, age 18 to 89 years, were analyzed to quantify the angle of the ribs in the sagittal plane. A significant association between the angle of the ribs and age was identified, with the ribs becoming more perpendicular to the spine as age increased (0.08 degrees/year, p=0.012). Next, a finite element model of the thorax was used to evaluate the importance of this rib angle change relative to other factors associated with aging. A three-factor, two-level factorial design was used to assess the relative importance of rib cage morphology ("young" and "old" rib angle), thickness of the cortical shell (thick = "young" and thin = "old"), and the bone material properties ("young" and "old") on the force-deflection response and injury tolerance of the thorax. The simulations showed that the structural and material changes played approximately equal roles in modulating the force-deflection response of the thorax. Changing the rib angle to be more perpendicular to the spine increased the effective thoracic stiffness, while the "old" material properties and the thin cortical shell decreased the effective stiffness. The offsetting effects of these traits resulted in similar effective thoracic stiffness for the "elderly" and baseline thoracic models, which is consistent with cadaver data available in the literature. All three effects tended to decrease chest deflection tolerance for rib fractures, though the material changes dominated (a four- to six-fold increase in elements eliminated using a maximum strain criterion). The primary conclusion, therefore, is that an older person's thorax, relative to a younger, does not necessarily deform more in response to an applied force. The tolerable sternal deflection level is, however, much less.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April
2013-10-01
Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition.more » From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.« less
NASA Astrophysics Data System (ADS)
Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.
2008-07-01
AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.
Aging and the Picture Superiority Effect in Recall.
ERIC Educational Resources Information Center
Winograd, Eugene; And Others
1982-01-01
Compared verbal and visual encoding using the picture superiority effect. One experiment found an interaction between age and type of material. In other experiments, the picture superiority effect was found in both age groups with no interaction. Performing a semantic-orienting task had no effect on recall. (Author/RC)
1992-08-01
Cleaning Aged EPDM Rubber Roofing Membrane Material for Patching: Laboratory Investigations and Recommendations Walter J. Rossiter, Jr. T N n-’T ic...condition of the aged EPDM rubber before bonding. This study assessed the effectiveness of different cleaning methods for preparing aged EPDM membranes for...REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1992 Final 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cleaning Aged EPDM Rubber Roofing Membrane
Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr
NASA Astrophysics Data System (ADS)
Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.
2011-07-01
The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correa, Miguel; Huang, Qian; Fifield, Leonard S.
Cross-linked polyethylene (XLPE) cable insulation samples were exposed to heat and gamma radiation at a series of temperatures, dose rates, and exposure times to evaluate the effects of these variables on material degradation. The samples were tested using the solvent incubation method to collect gel fraction and uptake factor data in order to assess the crosslinking and chain scission occurring in polymer samples with aging. Consistent with previous reports, gel fraction values were observed to increase and uptake factor values to decrease with radiation and thermal exposure. The trends seen were also more prominent as exposure time increased, suggesting thismore » to be a viable method of tracking structural changes in the XLPE-insulated cable material over extended periods. For the conditions explored, the cable insulation material evaluated did not indicate signs of anomalous aging such as inverse temperature effect in which radiation-induced aging is more severe at lower temperature. Ongoing aging under identical radiation conditions and at lower temperature will further inform conclusions regarding the importance of inverse temperature effects for this material under these conditions.« less
Suitability of asthma education materials for school-age children: Implications for health literacy.
Tzeng, Yu-Fen; Gau, Bih-Shya
2018-03-01
To investigate the suitability of asthma education materials for school-age children with asthma and elucidate how these children used their health-literacy abilities to identify whether the materials can be accepted, comprehended and applied. Effective asthma self-management education is influenced by the suitability of materials and an individual's health literacy. A mixed-method research design was developed using quantitative and qualitative surveys. The suitability of the materials was assessed on the basis of the Chinese version of the Suitability Assessment of Materials by five experts. In addition, five school-age children (age: 8-12 years) were recruited and interviewed. In total, 25 pieces of asthma education material for children were collected. On the basis of their type, the materials were categorised as nine brochures, 11 leaflets and five videos. Of the 25 materials, 17 were rated as superior materials, whereas eight were rated as adequate materials. The suitability scores of the video-based materials were significantly higher than those of the brochures and leaflets (p = .006). One print material was considered to have a reading level suitable for fifth-grade or younger children, whereas the remaining materials were considered suitable for sixth-grade or older children. The following six health-literacy domains were identified: recognising asthma through body knowledge, posing reflective questions, identifying self-care difficulties, receiving adult guidance, learning with enjoyment and addressing learning requirements. The video-based materials had integrated content and were appealing to children. Cartoon animations, interactive computer games, and skill demonstrations may enhance learning stimulation and motivation and increase learning effects in children. The present results may help healthcare providers to understand children's capacities to manage their disease, effectively address children's requirements and function as a key resource for children to strengthen their literacy in asthma management. © 2017 John Wiley & Sons Ltd.
Effect of artificial aging on the roughness and microhardness of sealed composites.
Catelan, Anderson; Briso, André L F; Sundfeld, Renato H; Dos Santos, Paulo H
2010-10-01
The application of surface sealant could improve the surface quality and success of composite restorations; however, it is important to assess the behavior of this material when subjected to aging procedures. To evaluate the effect of artificial aging on the surface roughness and microhardness of sealed microhybrids and nanofilled composites. One hundred disc-shaped specimens were made for each composite. After 24 hours, all samples were polished and surface sealant was applied to 50 specimens of each composite. Surface roughness (Ra) was determined with a profilometer and Knoop microhardness was assessed with a 50-g load for 15 seconds. Ten specimens of each group were aged during 252 hours in a UV-accelerated aging chamber or immersed for 28 days in cola soft drink, orange juice, red wine staining solutions, or distilled water. Data were analyzed by two-way analysis of variance and Fischer's test (α=0.05). Artificial aging decreased microhardness values for all materials, with the exceptions of Vit-l-escence (Ultradent Products Inc., South Jordan UT, USA) and Supreme XT (3M ESPE, St. Paul, MN, USA) sealed composites; surface roughness values were not altered. Water storage had less effect on microhardness, compared with the other aging processes. The sealed materials presented lower roughness and microhardness values, when compared with unsealed composites. Aging methods decreased the microhardness values of a number of composites, with the exception of some sealed composites, but did not alter the surface roughness of the materials. The long-term maintenance of the surface quality of materials is fundamental to improving the longevity of esthetic restorations. In this manner, the use of surface sealants could be an important step in the restorative procedure using resin-based materials. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.
Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads
NASA Astrophysics Data System (ADS)
Jiang, Can; Wang, Hongyu; Ma, Xiaobing
Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.
Test of the wire ageing induced by radiation for the CMS barrel muon chambers
NASA Astrophysics Data System (ADS)
Conti, E.; Gasparini, F.
2001-06-01
We have carried out laboratory tests to measure the ageing of a wire tube due to pollutants outgassed by various materials. The tested materials are those used in the barrel muon drift tubes of the CMS experiment at LHC. An X-ray gun irradiated the test tube to accelerate the ageing process. No ageing effect has been measured for a period equivalent to 10 years of operation at LHC.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1972-01-01
The mechanical properties are presented of solution treated and age hardened A-286 corrosion resistant steel bar stock. Material solution treated at 899 C or 982 C, each followed by an age hardening treatment of 718 C, was evaluated. Test specimens manufactured from 1.50 inch (3.81 cm) diameter bar stock were tested at temperatures from +649 C to -253 C. The test data indicated excellent tensile, yield, elongation and reduction-in-area properties at all testing temperatures for both solution treated and aged materials. Cryogenic temperature notched tensile, impact, and shear tests indicated excellent notch strength, ductility, and shear values. There was very little difference in the mechanical properties of the two solution treated and aged materials. The only exception was that the 962 C solution treated and aged material had superior stress rupture properties at 649 C.
The Flynn effect and memory function.
Baxendale, Sallie
2010-08-01
The Flynn effect refers to the steady increase in IQ that appears to date back at least to the inception of modern-day IQ tests. This study examined the possible Flynn effects on clinical memory tests involving the learning and recall of verbal and nonverbal material. Comparisons of the age-related norms on the list learning and design learning tasks from the Adult Memory and Information Processing Battery (AMIPB), published in 1985, and its successor, the BIRT (Brain Injury Rehabilitation Trust) Memory and Information Processing Battery (BMIPB) published in 2007, indicate that there is a significant Flynn effect on tests of memory function. This effect appears to be material specific with statistically significant improvements in all scores on tests involving the learning and recall of visual material in every age range evident over a 22-year period. Verbal memory abilities appear to be relatively stable with no significant differences between the scores in the majority of age ranges. The ramifications for the clinical interpretation of these tests are discussed.
NASA Astrophysics Data System (ADS)
Leonard, Keith J.; Busby, Jeremy T.; Hoelzer, David T.; Zinkle, Steven J.
2009-04-01
The proposed uses of fission reactors for manned or deep space missions have typically relied on the potential use of refractory metal alloys as structural materials. Throughout the history of these programs, a leading candidate has been Nb-1Zr, due to its good fabrication and welding characteristics. However, the less-than-optimal creep resistance of this alloy has encouraged interest in the more complex FS-85 (Nb-28Ta-10W-1Zr) alloy. Despite this interest, only a relatively small database exists for the properties of FS-85. Database gaps include the potential microstructural instabilities that can lead to mechanical property degradation. In this work, changes in the microstructure and mechanical properties of FS-85 were investigated following 1100 hours of thermal aging at 1098, 1248, and 1398 K. The changes in electrical resistivity, hardness, and tensile properties between the as-annealed and aged materials are compared. Evaluation of the microstructural changes was performed through optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The development of intragranular and grain-boundary precipitation of Zr-rich compounds as a function of aging temperature was followed. Brittle tensile behavior was measured in the material aged at 1248 K, while ductile behavior occurred in samples aged above and below this temperature. The effect of temperature on the under- and overaging of the grain-boundary particles is believed to have contributed to the mechanical property behavior of the aged materials.
Encapsulation materials research
NASA Technical Reports Server (NTRS)
Willis, P. B.
1984-01-01
Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.
Qian, Chunxiang; Chen, Huaicheng; Ren, Lifu; Luo, Mian
2015-01-01
This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+. PMID:26583014
Hahn, Hyung Jin; Jung, Ho Jung; Schrammek-Drusios, Med Christine; Lee, Sung Nae; Kim, Ji-Hyun; Kwon, Seung Bin; An, In-Sook; An, Sungkwan; Ahn, Kyu Joong
2016-08-01
Anti-aging cosmetics are widely used for improving signs of aged skin such as skin wrinkles, decreased elasticity, low dermal density and yellow skin tone. The present study evaluated the effects of cosmetic formulations, eye cream and facial cream, containing palmitoyl peptides, Silybum marianum ( S. marianum ) seed oil, vitamin E and other functional ingredients on the improvement of facial wrinkles, elasticity, dermal density and skin tone after 4 weeks period of application on aged human skin. Healthy volunteers (n=20) with aged skin were recruited to apply the test materials facially twice per day for 4 weeks. Skin wrinkles, elasticity, dermal density and skin tone were measured instrumentally for assessing the improvement of skin aging. All the measurements were conducted prior to the application of test materials and at 2 and 4 weeks of treatment. Crow's feet wrinkles were decreased 5.97% after 2 weeks of test material application and 14.07% after 4 weeks of application in comparison of pre-application. Skin elasticity was increased 6.81% after 2 weeks and 8.79% after 4 weeks. Dermal density was increased 16.74% after 2 weeks and 27.63% after 4 weeks. With the L* value indicating skin brightness and the a* value indicating erythema (redness), the results showed that brightness was increased 1.70% after 2 weeks and 2.14% after 4 weeks, and erythema was decreased 10.45% after 2 weeks and 22.39% after 4 weeks. Hence, the test materials appear to exert some degree of anti-aging effects on aged human skin. There were no abnormal skin responses from the participants during the trial period. We conclude that the facial and eye cream containing palmitoyl peptides and S. marianum seed oil, vitamin E and other ingredients have effects on the improvement of facial wrinkles, elasticity, dermal density and skin tone.
Strain-age cracking in Rene 41 alloy
NASA Technical Reports Server (NTRS)
Prager, M.; Thompson, E. G.
1969-01-01
Weldability test determines the effects of material and process variables on the occurrence of strain-age cracking, and demonstrates effective and practical means for its reduction. Studies consist of tensile, impact, and stress-rupture tests.
Phenomenological Modeling and Laboratory Simulation of Long-Term Aging of Asphalt Mixtures
NASA Astrophysics Data System (ADS)
Elwardany, Michael Dawoud
The accurate characterization of asphalt mixture properties as a function of pavement service life is becoming more important as more powerful pavement design and performance prediction methods are implemented. Oxidative aging is a major distress mechanism of asphalt pavements. Aging increases the stiffness and brittleness of the material, which leads to a high cracking potential. Thus, an improved understanding of the aging phenomenon and its effect on asphalt binder chemical and rheological properties will allow for the prediction of mixture properties as a function of pavement service life. Many researchers have conducted laboratory binder thin-film aging studies; however, this approach does not allow for studying the physicochemical effects of mineral fillers on age hardening rates in asphalt mixtures. Moreover, aging phenomenon in the field is governed by kinetics of binder oxidation, oxygen diffusion through mastic phase, and oxygen percolation throughout the air voids structure. In this study, laboratory aging trials were conducted on mixtures prepared using component materials of several field projects throughout the USA and Canada. Laboratory aged materials were compared against field cores sampled at different ages. Results suggested that oven aging of loose mixture at 95°C is the most promising laboratory long-term aging method. Additionally, an empirical model was developed in order to account for the effect of mineral fillers on age hardening rates in asphalt mixtures. Kinetics modeling was used to predict field aging levels throughout pavement thickness and to determine the required laboratory aging duration to match field aging. Kinetics model outputs are calibrated using measured data from the field to account for the effects of oxygen diffusion and percolation. Finally, the calibrated model was validated using independent set of field sections. This work is expected to provide basis for improved asphalt mixture and pavement design procedures in order to save taxpayers' money.
Dutra, Dam; Pereira, Gkr; Kantorski, K Z; Exterkate, Ram; Kleverlaan, C J; Valandro, L F; Zanatta, F B
The aim of this study was to evaluate the effect of grinding with diamond burs and low-temperature aging on the material surface characteristics and bacteria adhesion on a yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) surface. Y-TZP specimens were made from presintered blocks, sintered as recommended by the manufacturer, and assigned into six groups according to two factors-grinding (three levels: as sintered, grinding with extra-fine diamond bur [25-μm grit], and grinding with coarse diamond bur [181-μm grit]) and hydrothermal aging-to promote low-temperature degradation (two levels: presence/absence). Phase transformation (X-ray diffractometer), surface roughness, micromorphological patterns (atomic force microscopy), and contact angle (goniometer) were analyzed. Bacterial adhesion (colony-forming units [CFU]/biofilm) was quantified using an in vitro polymicrobial biofilm model. Both the surface treatment and hydrothermal aging promoted an increase in m-phase content. Roughness values increased as a function of increasing bur grit sizes. Grinding with a coarse diamond bur resulted in significantly lower values of contact angle (p<0.05) when compared with the extra-fine and control groups, while there were no differences (p<0.05) after hydrothermal aging simulation. The CFU/biofilm results showed that neither the surface treatment nor hydrothermal aging simulation significantly affected the bacteria adherence (p>0.05). Grinding with diamond burs and hydrothermal aging modified the Y-TZP surface properties; however, these properties had no effect on the amount of bacteria adhesion on the material surface.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareige, P.; Russell, K.F.; Stoller, R.E.
1998-03-01
Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less
Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds
NASA Astrophysics Data System (ADS)
Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.
2018-03-01
The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.
NASA Astrophysics Data System (ADS)
Johnson, G. R.; Norris, D. K.; Brusseau, M. L.
2008-12-01
This study investigates the effect of long-term contaminant aging on the sorption/desorption and transport of trichloroethene in a low organic-carbon content aquifer material collected from the source zone of a chlorinated-solvent contaminated federal Superfund site in Arizona. This was accomplished by comparing elution behavior for field-contaminated, synthetically-aged (contact times of approximately four years), and freshly-amended aquifer material. Elution of trichloroethene exhibited extensive low-concentration tailing, despite minimal retention of trichloroethene by the aquifer material. The observed nonideal behavior indicates significant mass-transfer constraints influenced trichloroethene transport in this aquifer material. The elution behavior of trichloroethene for the field-contaminated and aged treatments was essentially identical to that observed for the fresh treatments. In addition, the results of three independent mass- balance analyses, total mass eluted, solvent-extraction analysis of residual sorbed mass, and flow- interruption rebound, showed equivalent recoveries for the aged and fresh treatments. These results indicate that long-term contaminant aging did not significantly influence the transport and fate behavior of trichloroethene in this low organic-carbon aquifer material. The observed nonideal behavior of trichloroethene (i.e., nonlinear sorption and significantly rate-limited sorption/desorption) suggests physically condensed carbonaceous material, comprising 61% of this media's organic-carbon content, mediates the transport and fate behavior of trichloroethene in this low organic-carbon content aquifer material.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Lerch, Bradley A.
2001-01-01
The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Lerch, Bradley A.
2000-01-01
The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Lerch, Bradley A.
1999-01-01
The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.
Development and testing of a superconducting link for an IR detector
NASA Technical Reports Server (NTRS)
Caton, R.; Selim, R.
1991-01-01
The development and testing of a ceramic superconducting link for an infrared detector is summarized. Areas of study included the materials used, the electrical contacts, radiation and temperature cycling effects, aging, thermal conductivity, and computer models of an ideal link. Materials' samples were processed in a tube furnace at temperatures of 840 C to 865 C for periods up to 17 days and transition temperatures and critical current densities were recorded. The project achieved better quality high superconducting transition temperature material through improved processing and also achieved high quality electrical contacts. Studies on effects of electron irradiation, temperature cycling, and aging on superconducting properties indicate that the materials will be suitable for space applications. Various presentations and publications on the study's results are reported.
Evaluation of special surface treatment aged using UV, phase I.
DOT National Transportation Integrated Search
2011-08-01
Research was undertaken to evaluate the effectiveness of Tensars specialty polymer cement slurry : (coating) in reducing aging of asphalt binders and mixtures. The study was also aimed at evaluating the effect of this : material on performance cha...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola
Aging mechanisms and a nondestructive aging indicator of filled cross-linked polyethylene (XLPE) cable insulation material used in nuclear power plants (NPPs) are studied. Using various material characterization techniques, likely candidates and functions for the main additives in a commercial filled-XLPE insulation material have been identified. These include decabromodiphenyl ether and Sb2O3 as flame retardants, ZnS as white pigment and polymerized 1,2-dihydro-2,2,4-trimethylquinoline as antioxidant. Gas chromatography-mass spectrometry, differential scanning calorimetry, oxidation induction time and measurements of dielectric loss tangent are utilized to monitor property changes as a function of thermal and radiation exposure of the cable material. Small-molecular-weight hydrocarbons are evolvemore » with gamma radiation aging at 90 °C. The level of antioxidant decreases with aging by volatilization and chemical reaction with free radicals. Thermal aging at 90 °C for 25 days or less causes no observable change to the cross-linked polymer structure. Gamma radiation causes damage to crystalline polymer regions and introduces defects. Dielectric loss tangent is shown to be an effective and reliable nondestructive indicator of the aging severity of the filled-XLPE insulation material.« less
Video and Second Language Learning. Special Issue.
ERIC Educational Resources Information Center
Gillespie, Junetta B., Ed.
1985-01-01
The extent to which video has come of age with respect to language learning is the focus of this special issue, which provides information on sources of materials and offers practical ideas for the effective and creative use of those materials in second language instruction. Articles include: "Video and Language Learning: A Medium Comes of Age"…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, Stephanie H.; Patton, Kaara K.; Jubin, Robert Thomas
In off-gas treatment systems within a nuclear fuel reprocessing plant, capture materials will be exposed to a gas stream for extended periods during their lifetime. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents. For this reason, it is important to understand the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration for iodine sequestration is silver-functionalized silica aerogel (Ag 0-aerogel). The aim of this study was to determine the effect of extended exposure at 150°C to an air stream containing NO on themore » iodine capture capacity of Ag 0-aerogel. Ag 0-aerogel was provided by the Pacific Northwest National Laboratory (PNNL), which manufactures the material at a lab scale. Prior to aging, the material has an iodine loading capacity of approximately 290 mg I/g Ag 0-aerogel. Previous studies have aged the material in a dry air stream or in a moist air stream for up to 6 months. Both tests resulted in a 22% loss in iodine capacity. Aging the material in a static 2% NO 2 environment for up to 2 months results in a 15% loss of iodine capacity.3 In this study, exposure of Ag 0-aerogel to 1% NO at 150°C for 2 months produced a loss of 43% in iodine loading capacity. This is largest loss observed for aerogel aging studies to date. The performance of Ag 0-aerogel in this study was compared to the performance of reduced silver mordenite (Ag 0Z) in similar studies. Ag 0Z is a zeolite mineral considered to be the current standard technology for iodine removal from off-gas streams of a potential US used fuel processing plant. In an aging study exposing Ag 0Z to 1% NO for 2 months, an iodine capacity loss of over 80% was observed. This corresponds to a silver utilization of 13.5% for 2 month NO-aged Ag 0Z, compared to 57% silver utilization for 2 month NO-aged aerogel. While iodine loading capacity and silver utilization are critical parameters in evaluating these materials, other properties must also be considered when selecting the appropriate material (e.g., relative material densities and potential waste form production technology). The resistance of Ag 0-aerogel to NO is promising, and investigations of this material for use in iodine capture should continue to be pursued.« less
Jonsson, Frida; San Sebastian, Miguel; Strömsten, Lotta M. J.; Hammarström, Anne; Gustafsson, Per E.
2016-01-01
While research examining the health impact of early socioeconomic conditions suggests that effects may exist independently of or jointly with adult socioeconomic position, studies exploring other potential pathways are few. Following a chain of risk life course model, this prospective study seeks to examine whether pathways of occupational class as well as material and social adversities across the life course link socioeconomic disadvantage in adolescent to functional somatic symptoms in mid-adulthood. Applying path analysis, a multiple mediator model was assessed using prospective data collected during 26 years through the Northern Swedish Cohort. The sample contained 987 individuals residing in the municipality of Luleå, Sweden, who participated in questionnaire surveys at age 16, 21, 30 and 42. Socioeconomic conditions (high/low) in adolescence (age 16) were operationalized using the occupation of the parents, while occupational class in adulthood (manual/non-manual) was measured using the participant’s own occupation at age 21 and 30. The adversity measurements were constructed as separate age specific parcels at age 21 and 30. Social adversity included items pertaining to stressful life events that could potentially harm salient relationships, while material adversity was operationalized using items concerning unfavorable financial and material circumstances. Functional somatic symptoms at age 42 was a summary measure of self-reported physical symptoms, palpitation and sleeping difficulties that had occurred during the last 12 months. An association between socioeconomic conditions at age 16 and functional somatic symptoms at age 42 (r = 0.068) which was partially explained by people’s own occupational class at age 21 and then material as well as social adversity at age 30 was revealed. Rather than proposing a direct and independent health effect of the socioeconomic conditions of the family, the present study suggests that growing up in an unfavorable socioeconomic environment might be a source for a chain of adverse material and social living situations, which in turn affects adult health. PMID:27214206
NASA Technical Reports Server (NTRS)
Seale, M. D.; Madaras, E. I.
1999-01-01
Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.
Seale, M D; Madaras, E I
1999-09-01
Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.
US/UK second level panel discussions on the health and value of: Ageing and lifetime predictions (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Richard G
2011-01-18
Many healthy physics, engineering, and materials exchanges are being accomplished in ageing and lifetime prediction that directly supports US and UK Stockpile Management Programs. Lifetime assessment studies of silicon foams under compression - Joint AWE/LANLlLLNL study of compression set in stress cushions completed. Provides phenomenological prediction out to 50 years. Polymer volatile out-gassing studies - New exchange on the out-gassing of Ethylene Vinyl Acetate (EVA) using isotopic {sup 13}C labeling studies to interrogate mechanistic processes. Infra-red (IR) gas cell analytical capabilities developed by AWE will be used to monitor polymer out-gassing profiles. Pu Strength ageing Experiments and Constitutive Modeling -more » In recently compared modeling strategies for ageing effects on Pu yield strength at high strain rates, a US/UK consensus was reached on the general principle that the ageing effect is additive and not multiplicative. The fundamental mechanisms for age-strengthening in Pu remains unknown. Pu Surface and Interface Reactions - (1) US/UK secondment resulted in developing a metal-metal oxide model for radiation damaged studies consistent with a Modified Embedded Atom Method (MEAM) potential; and (2) Joint US/UK collaboration to study the role of impurities in hydride initiation. Detonator Ageing (wide range of activities) - (1) Long-term ageing study with field trials at Pantex incorporating materials from LANL, LLNL, SNL and AWE; (2) Characterization of PETN growth to detonation process; (3) Detonator performance modeling; and (4) Performance fault tree analysis. Benefits are a unified approach to lifetime prediction that Includes: materials characterization and the development of ageing models through improved understanding of the relationship between materials properties, ageing properties and detonator performance.« less
Relationship of Leadership/Delegation to Group Effectiveness in Youth Organizations.
ERIC Educational Resources Information Center
Gamon, Julia A.; Carter, Richard I.
1987-01-01
Instructional materials designed to teach high school age youth how to increase member involvement by delegating leadership were experimentally tested. New materials made a difference in one test situation. Positive correlations were found between group effectiveness and tendency toward delegation. (Author/CH)
Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael
2011-01-01
This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.
Situation Selection and Modification for Emotion Regulation in Younger and Older Adults.
Livingstone, Kimberly M; Isaacowitz, Derek M
2015-11-01
This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or "just view" condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation.
Wu, Victoria; East, Patricia; Delker, Erin; Blanco, Estela; Caballero, Gabriela; Delva, Jorge; Lozoff, Betsy; Gahagan, Sheila
2018-04-17
This study examined the associations among maternal depression, mothers' emotional and material investment in their child, and children's cognitive functioning. Middle-class Chilean mothers and children (N = 875; 52% males) were studied when children were 1, 5, 10, and 16 years (1991-2007). Results indicated that highly depressed mothers provided less emotional and material support to their child across all ages, which related to children's lower IQ. Children with lower mental abilities at age 1 received less learning-material support at age 5, which led to mothers' higher depression at child age 10. Mothers' low support was more strongly linked to maternal depression as children got older. Findings elucidate the dynamic and enduring effects of depression on mothers' parenting and children's development. © 2018 Society for Research in Child Development.
Thermophysical properties of hydrophobised lime plasters - The influence of ageing
NASA Astrophysics Data System (ADS)
Pavlíková, Milena; Zemanová, Lucie; Pavlík, Zbyšek
2017-07-01
The building envelope is a principal responsible for buildings energy loses. Lime plasters as the most popular finishing materials of historical buildings and culture monuments influence the thermal behaviour as well as construction material of masonry. On this account, the effect of ageing on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime plaster is tested. The ageing is accelerated with controlled carbonation process to simulate the final plasters properties. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity are experimentally assessed using a transient impulse method. The obtained data revealed the significant changes of the both studied thermal parameters in the dependence on plasters composition and age. The assessed material parameters will be stored in a material database, where will find use as an input data for computational modelling of heat transport in this type of porous building materials and evaluation of energy-savings and sustainability issues.
Reverse Aging of Composite Materials for Aeronautical Applications
NASA Astrophysics Data System (ADS)
lannone, Michele
2008-08-01
Hygro-thermal ageing of polymer matrix composite materials is a major issue for all the aeronautical structures. For carbon-epoxy composites generally used in aeronautical applications the major effect of ageing is the humidity absorption, which induces a plasticization effect, generally decreasing Tg and elastic moduli, and finally design allowables. A thermodynamical and kinetic study has been performed, aimed to establish a program of periodic heating of the composite part, able to reversing the ageing effect by inducing water desorption. The study was founded on a simple model based on Fick's law, coupled with a concept of "relative saturation coefficient" depending on the different temperature of the composite part and the environment. The behaviour of some structures exposed to humidity and "reverse aged" by heating has been virtually tested. The conclusion of the study allowed to issue a specific patent application for aeronautical structures to be designed on the basis of a "humidity free" concept which allows the use of higher design allowables; having as final results lighter composite structures with a simplified certification process.
Does Looking at the Positive Mean Feeling Good? Age and Individual Differences Matter.
Isaacowitz, Derek M; Noh, Soo Rim
2011-08-01
In this paper, we link age differences in gaze patterns toward emotional stimuli to later mood outcomes. While one might think that looking at more positive emotional material leads to better moods, and looking at more negative material leads to worse moods, it turns out that links between emotional looking and mood depend on age as well as individual differences. Though older people can feel good by looking more at positive material, in some cases young adults actually feel better by engaging visually with the negative. These age effects are further moderated by attentional abilities. Such findings suggest that different age groups may use looking differently, and this may reflect their preferences for using distinct emotion regulatory strategies. This work also serves as a reminder that regulatory efforts are not always successful at improving mood.
Kevlar 49/Epoxy COPV Aging Evaluation
NASA Technical Reports Server (NTRS)
Sutter, James K.; Salem, Jonathan L.; Thesken, John C.; Russell, Richard W.; Littell, Justin; Ruggeri, Charles; Leifeste, Mark R.
2008-01-01
NASA initiated an effort to determine if the aging of Kevlar 49/Epoxy composite overwrapped pressure vessels (COPV) affected their performance. This study briefly reviews the history and certification of composite pressure vessels employed on NASA Orbiters. Tests to evaluate overwrap tensile strength changes compared 30 year old samples from Orbiter vessels to new Kevlar/Epoxy pressure vessel materials. Other tests include transverse compression and thermal analyses (glass transition and moduli). Results from these tests do not indicate a noticeable effect due to aging of the overwrap materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.; Soppet, W.K.; Rink, D.L.
This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensilemore » properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.« less
Development of laboratory oxidative aging procedures for asphalt cements and asphalt mixtures.
DOT National Transportation Integrated Search
1986-12-01
An evaluation of an oxidative aging procedure for asphalt materials is described. Test results and the effectiveness of the aging device used are presented. The study was performed by Oregon State University and the Oregon Department of Transportatio...
O-Ring Installation for Underwater Components and Applications
1982-04-15
cure is effected and the heat source removed. AGING -- To undergo changes in physical properties with age or lapse of time. AIR CHECKS -- Surface...the use of heat and pressure, resulting in greatly increased strength and elasticity of rubber -like materials. VULCANIZING AGENT -- A material that...Cross Section Dia -- Diameter EP, EPM, EPDM -- Ethylene-Propylene Rubber F or ’F -- Degrees Fahrenheit FED -- Federal Specification FPM -- Fluorocarbon
The effects of stress and physical aging on the creep compliance of a polymeric composite
NASA Technical Reports Server (NTRS)
Gates, Thomas E.; Feldman, Mark
1993-01-01
An experimental study was performed to determine the effects of stress and physical aging on the matrix dominated viscoelastic properties of IM7/8320, a high temperature fiber reinforced thermoplastic composite. Established creep/aging test techniques developed for polymers were adapted for testing of the composite material. The transverse and shear compliance for an orthotropic plate were found from creep compliance measurements at constant, sub-Tg temperatures. These compliance terms were shown to be effected by physical aging. Aging time shift factors and shift rates were found to be a function of applied stress.
Molecular Weight Effects on the Viscoelastic Response of a Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.
DOT National Transportation Integrated Search
1977-01-01
This report gives a survey about selected material concerning age and aviation-related psychophysiological functions. The author analyzes the results obtained by many investigators from longitudinal and cross-sectional studies that may be useful for ...
NASA Astrophysics Data System (ADS)
Obert, J. Christina; Scholz, Denis; Felis, Thomas; Brocas, William M.; Jochum, Klaus P.; Andreae, Meinrat O.
2016-04-01
We compared the suitability of two skeletal materials of the Atlantic brain coral Diploria strigosa for 230Th/U-dating: the commonly used bulk material comprising all skeletal elements and the denser theca wall material. Eight fossil corals of presumably Last Interglacial age from Bonaire, southern Caribbean Sea, were investigated, and several sub-samples were dated from each coral. For four corals, both the ages and the activity ratios of the bulk material and theca wall agree within uncertainty. Three corals show significantly older ages for their bulk material than for their theca wall material as well as substantially elevated 232Th content and (230Th/238U) ratios. The bulk material samples of another coral show younger ages and lower (230Th/238U) ratios than the corresponding theca wall samples. This coral also contains a considerable amount of 232Th. The application of the available open-system models developed to account for post-depositional diagenetic effects in corals shows that none of the models can successfully be applied to the Bonaire corals. The most likely explanation for this observation is that the assumptions of the models are not fulfilled by our data set. Comparison of the theca wall and bulk material data enables us to obtain information about the open-system processes that affected the corals. The corals showing apparently older ages for their bulk material were probably affected by contamination with a secondary (detrital) phase. The most likely source of the detrital material is carbonate sand. The higher (230Th/232Th) ratio of this material implies that detrital contamination would have a much stronger impact on the ages than a contaminant with a bulk Earth (230Th/232Th) ratio and that the threshold for the commonly applied 232Th reliability criterion would be much lower than the generally used value of 1 ng g-1. The coral showing apparently younger ages for its bulk material was probably influenced by more than one diagenetic process. A potential scenario is a combination of detrital contamination and U addition by secondary pore infillings. Our results show that the dense theca wall material of D. strigosa is generally less affected by post-depositional open-system behaviour and better suited for 230Th/U-dating than the bulk material. This is also obvious from the fact that all ages of theca wall material reflect a Last Interglacial origin (∼125 ka), whereas the bulk material samples are either substantially older or younger. However, for some corals, the 230Th/U-ages and activity ratios of the bulk material and the theca wall samples are similar. This shows that strictly reliable 230Th/U-ages can also be obtained from bulk material samples of exceptionally well-preserved corals. However, the bulk material samples more frequently show elevated activity ratios and ages than the corresponding theca wall samples. Our findings should be generally applicable to brain corals (Mussidae) that are found in tropical oceans worldwide and may enable reliable 230Th/U-dating of fossil corals with similar skeletal architecture, even if their bulk skeleton is altered by diagenesis. The 230Th/U-ages we consider reliable (120-130 ka), along with a recently published age of 118 ka, provide the first comprehensive dating of the elevated lower reef terrace at Bonaire (118-130 ka), which is in agreement in timing and duration with other Last Interglacial records.
Dimensional-stability studies of candidate space-telescope mirror-substrate materials
NASA Technical Reports Server (NTRS)
Jerke, J. M.; Platt, R. J., Jr.
1972-01-01
The effects of aging, vacuum exposure, and thermal cycling on the dimensional stability of mirror-substrate materials, fused silica, Cer-Vit, Kanigen-coated beryllium, polycrystalline silicon, and U.L.E. fused silica were investigated. A multiple-beam interferometer was used to determine nonrecoverable surface-shape changes of the 12.7-cm-diameter mirrors with substrates of these materials. Thermal cycling and aging in vacuum produced the largest changes, but only a few were as large as 1/30 wavelength, where the wavelength was 632.8 nm.
Aging Effects in Polymer Composites
NASA Technical Reports Server (NTRS)
Chamis, Chistos C.; McManus, Hugh L.
1999-01-01
Simulation of composites degradation due to aging are described. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. Aging effects at the laminate, ply, and micro levels are evaluated, to determine failure of any kind. The results obtained show substantial ply stress built up as a result of aging accompanied by comparable laminate strength degradation in matrix dominated composite strengths.
Microstructure, Corrosion and Magnetic Behavior of an Aged Dual-Phase Stainless Steel
NASA Astrophysics Data System (ADS)
Ziouche, A.; Haddad, A.; Badji, R.; Zergoug, M.; Zoubiri, N.; Bedjaoui, W.; Abaidia, S.
2018-03-01
In the present work, the effect of the precipitation phenomena on corrosion and magnetic behavior of an aged dual-phase stainless steel was investigated. Aging treatment caused the precipitation of the σ phase, chromium carbides and secondary austenite, which was accompanied by the shifting of the δ/γ interfaces inside the δ ferrite grains. Aging between 700 and 850 °C strongly deteriorated the pitting corrosion resistance of the studied material. Magnetic investigation of the aged material using the vibration sample magnetic technique revealed the sensitivity of the intrinsic magnetic properties to the smallest microstructural change. This was confirmed by the Eddy current technique that led also to the evaluation of the aging-induced localized corrosion.
Wang, Hong; Masters, Sheldon; Edwards, Marc A; Falkinham, Joseph O; Pruden, Amy
2014-01-01
Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P < 0.05). Interactive effects of disinfectant, pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).
NASA Astrophysics Data System (ADS)
Gillen, K. T.; Celina, M.; Clough, R. L.
1999-10-01
Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.
Effect of mouthwash and accelerated aging on the color stability of esthetic restorative materials.
Lee, Y K; El Zawahry, M; Noaman, K M; Powers, J M
2000-06-01
To evaluate the color stability of esthetic restorative materials after immersion in mouthwashes and accelerated aging. Compomers and resin-based composites (RBC) were measured at baseline and repeatedly after immersion in three kinds of mouthwash (Listerine, Peridex, Rembrandt Age Defying) for 24 hrs and 7 days, and after aging for 150 kJ/m2. Color was measured according to CIE L*a*b* color scale on a reflection spectrophotometer. After immersion for 7 days, the mouthwash groups did not produce significantly higher color changes than the distilled water group, except with some mouthwashes used with Tetric-Ceram. After immersion for 7 days and aging for 150 kJ/m2, the mouthwash groups did not produce significantly higher color changes than the distilled water group. Aging in weathering chamber produced color change (deltaE*) of 1.1-3.9, which was mainly influenced by the material. With some exceptions, the color changes from immersion of the RBCs and compomers in mouthwashes were not perceptible (deltaE*<3.3).
ERIC Educational Resources Information Center
Carlo, Gustavo; Samper, Paula; Malonda, Elisabeth; Tur-Porcar, Ana M.; Davis, Alexandra
2018-01-01
We examined the links between perceived parental use of social and material rewards and prosocial behaviors across youth from two countries. Six hundred forty adolescents (297 girls; X-bar age = 15.32 years) from Valencia, Spain, and 552 adolescents (321 girls; X-bar age = 13.38 years) from the United States completed measures of their perceptions…
Effects of physical aging on long-term creep of polymers and polymer matrix composites
NASA Technical Reports Server (NTRS)
Brinson, L. Catherine; Gates, Thomas S.
1994-01-01
For many polymeric materials in use below the glass transition temperature, the long term viscoelastic behavior is greatly affected by physical aging. To use polymer matrix composites as critical structural components in existing and novel technological applications, this long term behavior of the material system must be understood. Towards that end, this study applied the concepts governing the mechanics of physical aging in a consistent manner to the study of laminated composite systems. Even in fiber-dominated lay-ups the effects of physical aging are found to be important in the long-term behavior of the composite. The basic concepts describing physical aging of polymers are discussed. Several aspects of physical aging which have not been previously documented are also explored in this study, namely the effects of aging into equilibrium and a relationship to the time-temperature shift factor. The physical aging theory is then extended to develop the long-term compliance/modulus of a single lamina with varying fiber orientation. The latter is then built into classical lamination theory to predict long-time response of general oriented lamina and laminates. It is illustrated that the long term response can be counterintuitive, stressing the need for consistent modeling efforts to make long term predictions of laminates to be used in structural situations.
Aging and the Haptic Perception of Material Properties.
Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N
2016-12-01
The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.
Effect of kenaf fiber age on PLLA composite properties
USDA-ARS?s Scientific Manuscript database
The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...
Situation Selection and Modification for Emotion Regulation in Younger and Older Adults
Livingstone, Kimberly M.; Isaacowitz, Derek M.
2016-01-01
This research investigated age differences in use and effectiveness of situation selection and situation modification for emotion regulation. Socioemotional selectivity theory suggests stronger emotional well-being goals in older age; emotion regulation may support this goal. Younger and older adults assigned to an emotion regulation or “just view” condition first freely chose to engage with negative, neutral, or positive material (situation selection), then chose to view or skip negative and positive material (situation modification), rating affect after each experience. In both tasks, older adults in both goal conditions demonstrated pro-hedonic emotion regulation, spending less time with negative material compared to younger adults. Younger adults in the regulate condition also engaged in pro-hedonic situation selection, but not modification. Whereas situation selection was related to affect, modification of negative material was not. This research supports more frequent pro-hedonic motivation in older age, as well as age differences in use of early-stage emotion regulation. PMID:26998196
NASA Technical Reports Server (NTRS)
Wilkes, G. L.
1982-01-01
The effects of physical aging on the material properties of some linear and network macromolecular glasses are discussed. The free volume concept is used to describe this behavior. The effect of physical aging on properties of some uniaxial graphite/fiber epoxy resin composites is investigated using stress relaxation in both tensile and flexural modes. The matrix polymers used were resins both of which are based on a 4,4-methylenedianiline derivative of epichlorohydrin with diamino diphenyl sulfone (DDS) as the curing agent. The matrix resin, as used in the practical application in composites, not fully cured and the glass transition of the network was dependent on the curing schedule. The physical aging of the bulk crosslinked epoxy was found to depend on the annealing temperature, and the T sub g of the resin. The physical aging of the composite, monitored by the stress relaxation method, was found to be dependent on the testing direction.
NASA Astrophysics Data System (ADS)
Singh, Aditya Narayan; Moitra, A.; Bhaskar, Pragna; Sasikala, G.; Dasgupta, Arup; Bhaduri, A. K.
2017-07-01
For the Alloy 617, the effect of aging on the fracture energy degradation has been investigated after aging for different time periods at 1023 K (750 °C). A sharp reduction in impact energy (by 55 pct vis-à-vis the as-received material) after 1000 hours of aging, as evaluated from room-temperature Charpy impact tests, has been observed. Further aging up to 10,000 hours has led to a degradation of fracture energy up to 78 pct. Fractographic examinations using scanning electron microscopy (SEM) have revealed a change in fracture mode from fibrous-ductile for the un-aged material to intergranular mode for the aged one. The extent of intergranular fracture increases with the increasing aging time, indicating a tendency of the material to undergo grain boundary embrittlement over long-term aging. Analysis of the transmission electron microscopy (TEM) micrographs along with selected area diffraction (SAD) patterns for the samples aged at 10,000 hours revealed finely dispersed γ' precipitates of size 30 to 40 nm, rich in Al and Ti, along with extensive precipitation of M23C6 at the grain boundaries. In addition, the presence of Ni3Si of size in the range of 110 to 120 nm also has been noticed. The extensive precipitation of M23C6 at the grain boundaries have been considered as a major reason for aging-induced embrittlement of this material.
NASA Astrophysics Data System (ADS)
Asrizal; Amran, A.; Ananda, A.; Festiyed; Khairani, S.
2018-04-01
Integrated science learning and literacy skills are relevant issues in Indonesian’s education. However, the use of the integrated science learning and the integration of literacy in learning cannot be implemented well. An alternative solution of this problem is to develop integrated science instructional material on pressure in daily life theme by integrating digital age literacy. Purpose of research is to investigate the effectiveness of the use of integrated science instructional material on pressure in daily life theme to improve knowledge competence, attitudes competence and literacy skills of students. This research was a part of development research which has been conducted. In the product testing stage of this research and development was used before and after design of treatment for one sample group. Instruments to collect the data consist of learning outcomes test sheet, attitude observation sheet, and performance assessment sheet of students. Data analysis techniques include descriptive statistics analysis, normality test, homogeneity test, and paired comparison test. Therefore, the important result of research is the use of integrated science instructional material on pressure in daily life theme is effective in scientific approach to improve knowledge competence, attitudes competence, and digital age literacy skills of grade VIII students at 95% confidence level.
Prevalence and distribution of dental restorative materials in US Air Force veterans.
Albertini, T F; Kingman, A; Brown, L J
1997-01-01
Millions of restorative procedures are performed annually in the United States, yet very little is known about their distribution in the general population. With increasing concern about potential adverse health effects of some restorative materials, a better understanding of the extent of exposure to these materials in the population is important. The purpose of this study is to report the prevalence, patterns, and distribution of dental restorative materials in a population of male veterans. This collaborative study with the US Air Force examined 1,166 male veterans to assess exposure to dental amalgam and other restorative materials. An inventory of dental materials in the study population was obtained through oral examinations. Dental materials were classified into five categories: (1) amalgam; (2) resin; (3) porcelain, cement, or temporary, including ionomer (PCT); (4) cast gold alloys/direct filling gold; and (5) other metals (OM). The mean age of the study participants was 52.9 years. Over 94 percent of the study participants were dentate. The study participants averaged 45.8 restored/replaced surfaces. Restored/replaced surfaces increased with age while the number of teeth decreased with age. The most frequently used restorative material was amalgam, averaging 19.89 surfaces per subject, followed by PCT (9.38), resins (8.99), OM (5.52), and gold (4.91). The distributions of restorative materials varied by age, arch type, and location in the mouth. The study population experienced substantial exposure to dental materials.
Effects of 8-Week Training on Aerobic Capacity and Swimming Performance of Boys Aged 12 Years
ERIC Educational Resources Information Center
Zarzeczny, Ryszard; Kuberski, Mariusz; Deska, Agnieszka; Zarzeczna, Dorota; Rydz, Katarzyna; Lewandowska, Anna; Balchanowski, Tomasz; Bosiacki, Janusz
2011-01-01
Study aim: To assess the effects of 8-week endurance training in swimming on work capacity of boys aged 12 years. Material and methods: The following groups of schoolboys aged 12 years were studied: untrained control (UC; n = 14) and those training swimming for two years. The latter ones were subjected to 8-week training in classical style (CS; n…
The age of the Galactic disk - Inflow, chemical evolution, astration, and radioactivity
NASA Technical Reports Server (NTRS)
Clayton, Donald D.
1989-01-01
Theoretical models of Galactic evolution and observational data on the age of the Galaxy are compared, with a focus on recent results. Topics addressed include the infall of material and its effects on the age-metallicity relation, the distribution of metallicity, the present gas fraction and metallicity, and the age spectrum of interstellar nuclei; the chemical evolution of the solar neighborhood; the key results of nuclear cosmochronology; and astration effects on Galactic age. It is found that both nuclear cosmochronology and detailed stellar and Galactic evolution models tend to support an age of 12-16 Gyr.
Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures
NASA Astrophysics Data System (ADS)
Liu, Yurong; Liu, Jia
2016-08-01
The present work was aimed to develop a new kind of stone conservation materials (TEOS/PDMS/F127 hybrid coating) by a facile sol-gel method for the protection of decayed sandstones of Chongqing Dazu stone sculptures in China. The hydrophobic property, surface morphology, water vapor permeability, ultraviolet aging resistance and mechanical properties were measured to evaluate the effectiveness of TEOS/PDMS/F127 hybrid coating as a stone conservation material. The results showed that the addition of hydroxyl-terminated polydimethylsiloxane (PDMS-OH) contributed to improve the hydrophobic properties and incorporation of PEO-PPO-PEO (F127) surfactant resulted in the formation of superficial protrusions with micro- and nanoscopic structures and overall alteration of surface morphology and roughness, thus preventing the coating materials from cracking. After treatment with TEOS/PDMS/F127 hybrid coating materials, the ultraviolet aging resistance and mechanical properties of stone were also improved without the obvious effects on the breathability and color of the stone, indicating promising applications of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures.
Wang, Hong; Masters, Sheldon; Hong, Yanjuan; Stallings, Jonathan; Falkinham, Joseph O; Edwards, Marc A; Pruden, Amy
2012-11-06
Opportunistic pathogens represent a unique challenge because they establish and grow within drinking water systems, yet the factors stimulating their proliferation are largely unknown. The purpose of this study was to examine the influence of pipe materials, disinfectant type, and water age on occurrence and persistence of three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa), broader genera (Legionella and mycobacteria), and two amoeba hosts (Acanthamoeba spp. and Hartmanella vermiformis). Triplicate simulated distribution systems (SDSs) compared iron, cement, and PVC pipe materials fed either chlorinated or chloraminated tap water and were sampled at water ages ranging from 1 day to 5.7 days. Quantitative polymerase chain reaction quantified gene copies of target microorganisms in both biofilm and bulk water. Legionella, mycobacteria, P. aeruginosa, and both amoebas naturally colonized the six SDSs, but L. pneumophila and M. avium were not detected. Disinfectant type and dose was observed to have the strongest influence on the microbiota. Disinfectant decay was noted with water age, particularly in chloraminated SDSs (due to nitrification), generally resulting in increased microbial detection frequencies and densities with water age. The influence of pipe material became apparent at water ages corresponding to low disinfectant residual. Each target microbe appeared to display a distinct response to disinfectant type, pipe materials, water age, and their interactions. Differences between the first and the second samplings (e.g., appearance of Legionella, reduction in P. aeruginosa and Acanthamoeba) suggest a temporally dynamic drinking water microbial community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.
1980-07-31
This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less
Lattice Modeling of Early-Age Behavior of Structural Concrete.
Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M; Bolander, John E
2017-02-25
The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential.
Lattice Modeling of Early-Age Behavior of Structural Concrete
Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.
2017-01-01
The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul
2014-01-09
Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon,more » humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.« less
Aging and the picture superiority effect in recall.
Winograd, E; Smith, A D; Simon, E W
1982-01-01
One recurrent theme in the literature on aging and memory is that the decline of memory for nonverbal information is steeper than for verbal information. This research compares verbal and visual encoding using the picture superiority effect, the finding that pictures are remembered better than words. In the first experiment, an interaction was found between age and type of material; younger subjects recalled more pictures than words while older subjects did not. However, the overall effect was small and two further experiments were conducted. In both of these experiments, the picture superiority effect was found in both age groups with no interaction. In addition, performing a semantic orienting task had no effect on recall. The finding of a picture superiority effect in older subjects indicates that nonverbal codes can be effectively used by subjects in all age groups to facilitate memory performance.
Effects of aging time and temperature of Fe-1wt.%Cu on magnetic Barkhausen noise and FORC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, Muad; Cao, Yue; Edwards, Danny J.
Magnetic Barkhausen noise (MBN), hysteresis measurements, first order reversal curves (FORC), Vickers microhardness, and Transmission Electron Microscopy (TEM) analyses were performed on Fe-1wt.%Cu (Fe-Cu) samples isothermally aged at 700°C for 0.5 – 25 hours to obtain samples with different sized Cu precipitates and dislocation structures. Fe-Cu is used to simulate the thermal and irradiation-induced defects in copper-containing nuclear reactor materials such as cooling system pipes and pressure vessel materials. The sample series showed an initial increase followed by a decrease in hardness and coercivity with aging time, which is explained by Cu precipitates formation and growth as observed by TEMmore » measurements. Further, the MBN envelope showed a continuous decrease in its magnitude and the appearance of a second peak with aging. Also, FORC diagrams showed multiple peaks whose intensity and location changed for different aging time. The changes in FORC diagrams are attributed to combined changes of the magnetic behavior due to Cu precipitate characteristics and dislocation structure. A second series of samples aged at 850°C, which is above the solid solution temperature of Fe-Cu, was studied to isolate the effects of dislocations. These samples showed a continuous decrease in MBN amplitude with aging time although the coercivity and hardness did not change significantly. The decrease of MBN amplitude and the appearance of the second MBN envelope peak are attributed to the changes in dislocation density and structure. This study shows that the effect of dislocations on MBN and FORC of Fe-Cu materials can vary significantly and should be considered in interpreting magnetic signatures.« less
Long-term aging of recycled binders : [summary].
DOT National Transportation Integrated Search
2015-10-01
At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...
Response of the Elderly to Disaster: An Age-Stratified Analysis.
ERIC Educational Resources Information Center
Bolin, Robert; Klenow, Daniel J.
1982-01-01
Analyzed the effect of age on elderly tornado victims' (N=62) responses to stress effects. Compared to younger victims (N=240), the elderly did not suffer disproportionate material losses, but were more likely to be injured and have a death in the household. Elderly victims had a lower incidene of emotional and family problems. (Author/JAC)
ERIC Educational Resources Information Center
Lindgren, Josefin
2018-01-01
This study investigates effects of age on character introductions in the oral narratives of seventy-two monolingual Swedish-speaking four- to six-year-olds, comparing results from the Multilingual Assessment Instrument for Narratives (MAIN; Gagarina "et al.," 2012, 2015), and the Edmonton Narrative Norms Instrument (ENNI; Schneider…
Reproducing ten years of road ageing--accelerated carbonation and leaching of EAF steel slag.
Suer, Pascal; Lindqvist, Jan-Erik; Arm, Maria; Frogner-Kockum, Paul
2009-09-01
Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO2) were used for accelerated ageing. Time (7-14 days), temperature (20-40 degrees C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO2 and seven days at 40 degrees C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO4, DOC and Cr were not reproduced.
Wang, Yanan; Zeng, Xibai; Lu, Yahai; Su, Shiming; Bai, Lingyu; Li, Lianfang; Wu, Cuixia
2015-12-01
The effects of aging time and soil parent materials on the bioavailability and fractionations of arsenic (As) in five red soils were studied. The results indicated that As bioavailability in all soils decreased during aging, especially with a sharp decline occurring in the first 30 days. After aging for 360 days, the highest available As concentration, which accounted for 12.3% of the total, was observed in soils derived from purple sandy shale. While 2.67% was the lowest proportion of the available As in soils derived from quaternary red clay. Furthermore, the best fit of the available As changing with aging time was obtained using the pseudo-second-order model (R(2) = 0.939-0.998, P < 0.05). Notably, Al oxides played a more crucial role (R(2) = 0.89, P<0.05) than did Fe oxides in controlling the rate of As aging. The non-specially and specially absorbed As constituted the primary forms of available As. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Yanwei; Huang, Li; Dong, Yan; Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua
2014-01-01
Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. The experimental material was prepared from a 2 : 1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4 : 3 : 1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution. Therefore, this material shows promise as a pulp capping material for vital pulp preservation in the treatment of deep caries.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1995-01-01
Experimental studies were performed to determine the effects of stress and physical aging on the matrix dominated time dependent properties of IM7/8320 composite. Isothermal tensile creep/aging test techniques developed for polymers were adapted for testing of the composite material. Time dependent transverse and shear compliance's for an orthotropic plate were found from short term creep compliance measurements at constant, sub-T(8) temperatures. These compliance terms were shown to be affected by physical aging. Aging time shift factors and shift rates were found to be a function of temperature and applied stress.
FY 2017 – Thermal Aging Effects on Advanced Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Natesan, K; Chen, Wei-Ying
This report provides an update on the evaluation of the effect of thermal aging on tensile properties of existing laboratory-sized heats of Alloy 709 austenitic stainless steel and the completion of effort on the thermal aging effect on the tensile properties of optimized G92 ferritic-martensitic steel. The report is a Level 3 deliverable in FY17 (M3AT-17AN1602081), under the Work Package AT-17AN160208, “Advanced Alloy Testing - ANL” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.
Studies of Conservation with Yoruba Children of Differing Ages and Experience
ERIC Educational Resources Information Center
Lloyd, Barbara B.
1971-01-01
Questions concerning the effects of familiar and alien materials, age and culture, and the etiology of conservation are examined in number and continous quantity tasks assessing conservation in Yoruba children from traditional and educationally advantaged homes. (Author/AJ)
Jayabalan, M.
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas
2010-01-01
An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.
Jayabalan, M
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.
Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner
2014-01-01
Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of inflammation or immune reactions were visible. Residual particles of the augmentation material could be observed within the specimens. An age-dependent difference in investigated parameters between the two age groups could not be documented. The histologic examinations confirm that the fully synthetic nanocrystalline bone augmentation material used in this study is biocompatible and allows maxillary sinus augmentation in patients aged 41 to 70 years.
Space Weathering Experiments on Spacecraft Materials
NASA Technical Reports Server (NTRS)
Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.
2017-01-01
A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.
Smart materials and structures
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Heyman, Joseph S.
1993-01-01
Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.
Age-Related Effects of Study Time Allocation on Memory Performance in a Verbal and a Spatial Task
ERIC Educational Resources Information Center
Krueger, Lacy E.
2012-01-01
Past studies have suggested that study time allocation partially mediates age relations on memory performance in a verbal task. To identify whether this applied to a different material modality, participants ages 20-87 completed a spatial task in addition to a traditional verbal task. In both the verbal and the spatial task, increased age was…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less
NASA Technical Reports Server (NTRS)
Chen, P. S.; Stanton, W. P.
1996-01-01
Marshall Space Flight Center (MSFC) has developed a new technique that can enhance cryogenic fracture toughness and reduce the statistical spread of toughness values in alloy 2195. This aging treatment can control the location and size of strengthening precipitate T1, making improvements possible in cryogenic fracture toughness (CFT) and fracture toughness ratio (FTR). At the start of this program, design of experiments (DOE) ingot No. 10 was used as a baseline for aging process development and optimization. The new aging treatment was found to be very effective, improving CFT by approximately 15 to 20 percent for DOE ingot No. 10. To further evaluate the repeatability and effectiveness of this new treatment, the investigators selected and tested three more lots of alloy 2195, using 1.75-in-thick gauge plates with FTR values ranging from 0.85 to 1.07. The new aging treatment effectively enhanced CFT and FTR values for all three lots. In one instance, the material was considered rejectable because it did not meet the minimum FTR value (1.0) of the super lightweight tank (SLWT). The new aging treatment improved its FTR from 0.85 to 1.01, making this material acceptable for use in the SLWT.
Johansson, Klara; San Sebastian, Miguel; Hammarström, Anne; Gustafsson, Per E
2015-05-01
This study tests if neighbourhood socioeconomic disadvantage and family social and material adversities during adolescence are independently related to total alcohol consumption from adolescence through to mid-life. Self-reports from the Northern Swedish Cohort (effective sample=950) at ages 16, 18, 21, 30 and 42 was combined with register data on the socioeconomic composition of neighbourhoods at age 16. Total volume of alcohol consumed between age 16-42 was estimated based on the five survey waves, and self-reported social and material adversities were computed as composite variables. Neighbourhood socioeconomic disadvantage at age 16 was associated with alcohol consumption age 16-42 for men but not for women. Social adversities at age 16 were associated with alcohol consumption age 16-42 for both women and men, but material adversity or parental class was not. In conclusion, neighbourhood socioeconomic disadvantage in adolescence has a significant relationship with later alcohol consumption among men, even independently from individual factors. On family level, social factors but not socioeconomic factors in adolescence independently predict later alcohol consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Forming an age hardenable aluminum alloy with intermediate annealing
NASA Astrophysics Data System (ADS)
Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan
2013-12-01
A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.
Emotion effects on implicit and explicit musical memory in normal aging.
Narme, Pauline; Peretz, Isabelle; Strub, Marie-Laure; Ergis, Anne-Marie
2016-12-01
Normal aging affects explicit memory while leaving implicit memory relatively spared. Normal aging also modifies how emotions are processed and experienced, with increasing evidence that older adults (OAs) focus more on positive information than younger adults (YAs). The aim of the present study was to investigate how age-related changes in emotion processing influence explicit and implicit memory. We used emotional melodies that differed in terms of valence (positive or negative) and arousal (high or low). Implicit memory was assessed with a preference task exploiting exposure effects, and explicit memory with a recognition task. Results indicated that effects of valence and arousal interacted to modulate both implicit and explicit memory in YAs. In OAs, recognition was poorer than in YAs; however, recognition of positive and high-arousal (happy) studied melodies was comparable. Insofar as socioemotional selectivity theory (SST) predicts a preservation of the recognition of positive information, our findings are not fully consistent with the extension of this theory to positive melodies since recognition of low-arousal (peaceful) studied melodies was poorer in OAs. In the preference task, YAs showed stronger exposure effects than OAs, suggesting an age-related decline of implicit memory. This impairment is smaller than the one observed for explicit memory (recognition), extending to the musical domain the dissociation between explicit memory decline and implicit memory relative preservation in aging. Finally, the disproportionate preference for positive material seen in OAs did not translate into stronger exposure effects for positive material suggesting no age-related emotional bias in implicit memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Tang, S.Y.; Vashishth, D.
2010-01-01
The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk. PMID:21056419
Effect of foam age on toxicity of pyrolysis gases from polyurethane flexible foams
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Murphy, R. M.
1978-01-01
The toxicity of the pyrolysis gases from some samples of polyurethane flexible foams appears to have decreased with age, while other samples seem to exhibit no significant change with age in this respect. The changes observed were greater than could be accounted for by variations in the material, or test variations or artifacts.
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.; McManus, Hugh L.
1996-01-01
It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.
[Health-related quality of life evaluation of elderly aged 65 years and over living at home].
Jalenques, I; Auclair, C; Rondepierre, F; Gerbaud, L; Tourtauchaux, R
2015-06-01
To assess health-related quality of life in French adults aged 65 years and over, living at home, with a specific self-administered questionnaire, the LEIPAD, cross-culturally adapted in French. Elderly completed socio-demographic and medical questionnaires, a questionnaire about negative life events during the last 12 months and the LEIPAD. Data of 195 subjects (mean age: 72.6 years, men: 56.5%) were analyzed. The response rates to the LEIPAD scales were superior to 90%. Elderly reported on the whole a good health-related quality of life. Age had a negative effect on quality on life, which deteriorates over years. Age was correlated to the scales "Physical function", "Self-care", "Cognitive functioning" and "Sexual functioning". Elderly hospitalized in the last year had worse quality of life with a significant difference for "Physical function" scale. The number of health problems was positively correlated to "Physical function" scale. Elderly declaring at least one health problem had worse quality of life for this scale. Problems in couple, materials and financial problems had also negative effects on health-related quality of life. Our study highlights a good health-related quality of life for the majority of these adults aged 65 years and over, as well as the negative effect of age, health, couple, materials and financial problems on their quality of life. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The effect of accelerated aging on the wear of UHMWPE.
Sakoda, H; Fisher, J; Lu, S; Buchanan, F
2001-01-01
Oxidative degradation of UHMWPE has been found to be a cause of elevated wear rate of the polymer in total joint replacement leading to failure of these devices. In order to evaluate long term stability of polymers, various accelerated aging methods have been developed. In this study, wear rates of shelf aged UHMWPE and "accelerated aged" UHMWPE were compared using a multi-directional pin-on-plate wear test machine in order to evaluate the effect of the accelerated aging on wear. Wear factors of the aged materials were found to depend on their density, which is a measure of oxidation level. Finally, accelerated aging was calibrated against shelf aging in terms of wear rate. Copyright 2001 Kluwer Academic Publishers
The effect of microstructure on the fracture toughness of titanium alloys
NASA Technical Reports Server (NTRS)
Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.
1974-01-01
The microstructure of the alpha titanium alloy Ti-5Al-2.5Sn and the metastable beta titanium alloy Beta 3 was examined. The material was from normal and extra low interstitial grade plates which were either air-cooled or furnace-cooled from an annealing treatment. Beta 3 was studied in alpha-aged and omega-aged plates which were heat treated to similar strength levels. Tensile and plane strain fracture toughness tests were conducted at room temperature on the alpha-aged material. The microstructure and fracture mechanisms of alloys were studied using optical metallography, electron microscopy, microprobe analyses, and texture pole figures. Future experiments are described.
Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola
Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.
Poverty and transitions in health in later life.
Adena, Maja; Myck, Michal
2014-09-01
Using a sample of Europeans aged 50+ from 12 countries in the Survey of Health, Ageing and Retirement in Europe (SHARE), we analyse the role of poor material conditions as a determinant of changes in health over a four- to five-year period. We find that poverty defined with respect to relative income has no effect on changes in health. However, broader measures of poor material conditions, such as subjective poverty or low wealth, significantly increase the probability of transition to poor health among the healthy and reduce the chance of recovery from poor health over the time interval analysed. In addition to this, the subjective measure of poverty has a significant effect on mortality, increasing it by 65% among men and by 68% among those aged 50-64. Material conditions affect health among older people. We suggest that if attempts to reduce poverty in later life and corresponding policy targets are to focus on the relevant measures, they should take into account broader definitions of poverty than those based only on relative incomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hyperspectral imaging as a technique for investigating the effect of consolidating materials on wood
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Serranti, Silvia; Capobianco, Giuseppe; Agresti, Giorgia; Calienno, Luca; Picchio, Rodolfo; Lo Monaco, Angela; Santamaria, Ulderico; Pelosi, Claudia
2017-01-01
The focus of this study was to investigate the potential of hyperspectral imaging (HSI) in the monitoring of commercial consolidant products applied on wood samples. Poplar (Populus spp.) and walnut (Juglans Regia L.) were chosen for the consolidant application. Both traditional and innovative products were selected, based on acrylic, epoxy, and aliphatic compounds. Wood samples were stressed by freeze/thaw cycles in order to cause material degradation without the loss of wood components. Then the consolidant was applied under vacuum. The samples were finally artificially aged for 168 h in a solar box chamber. The samples were acquired in the short wave infrared (1000 to 2500 nm) range by SISUChema XL™ device (Specim, Finland) after 168 h of irradiation. As comparison, color measurement was also used as an economic, simple, and noninvasive technique to evaluate the deterioration and consolidation effects on wood. All data were then processed adopting a chemometric approach finalized to define correlation models, HSI based, between consolidating materials, wood species, and short-time aging effects.
Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros
2014-07-01
To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α = 0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Correa, Miguel
Cross-linked polyethylene (XLPE) is the most common cable insulation found in nuclear containment, and is therefore a priority material for investigation of long term aging effect from elevated temperature combined with gamma radiation exposure. Prior work has identified the possibility of anomalous aging behavior in XLPE such as the inverse temperature effect in which radiation exposure is more damaging at lower temperatures than at higher temperatures. We explored simultaneous aging of XLPE insulation from modern Firewall® III nuclear cables at 60, 90, and 115 °C, at gamma dose rates from 116 to 540 Gy/h, for exposure periods up to 25more » d. XLPE samples exposed in this way were characterized using the percent gel and uptake factor method. For the conditions and material examine, degradation behavior was seen to track proportionally with increasing temperature, rather than to exhibit greater degradation at lower temperatures. Ongoing work including similar aging at 25 °C and characterization of the XLPE samples using other methods will further elucidate these initial results« less
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine
1996-01-01
Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.
Simulated Space Environment Effects on a Candidate Solar Sail Material
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.
When does prior knowledge disproportionately benefit older adults’ memory?
Badham, Stephen P.; Hay, Mhairi; Foxon, Natasha; Kaur, Kiran; Maylor, Elizabeth A.
2016-01-01
ABSTRACT Material consistent with knowledge/experience is generally more memorable than material inconsistent with knowledge/experience – an effect that can be more extreme in older adults. Four experiments investigated knowledge effects on memory with young and older adults. Memory for familiar and unfamiliar proverbs (Experiment 1) and for common and uncommon scenes (Experiment 2) showed similar knowledge effects across age groups. Memory for person-consistent and person-neutral actions (Experiment 3) showed a greater benefit of prior knowledge in older adults. For cued recall of related and unrelated word pairs (Experiment 4), older adults benefited more from prior knowledge only when it provided uniquely useful additional information beyond the episodic association itself. The current data and literature suggest that prior knowledge has the age-dissociable mnemonic properties of (1) improving memory for the episodes themselves (age invariant), and (2) providing conceptual information about the tasks/stimuli extrinsically to the actual episodic memory (particularly aiding older adults). PMID:26473767
Durability of crosslinked polydimethylsyloxanes: the case of composite insulators
NASA Astrophysics Data System (ADS)
Delor-Jestin, Florence; Tomer, Namrata S.; Pal Singh, Raj; Lacoste, Jacques
2008-04-01
Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material.
Stolz, Erwin; Mayerl, Hannes; Waxenegger, Anja; Freidl, Wolfgang
2017-12-01
Previous research found poverty to be associated with adverse health outcomes among older adults but the factors that translate low economic resources into poor physical health are not well understood. The goal of this analysis was to assess the impact of material, psychosocial, and behavioural factors as well as education in explaining the poverty-health link. In total, 28 360 observations from 11 390 community-dwelling respondents (65+) in the Survey of Health, Ageing and Retirement in Europe (2004-13, 10 countries) were analysed. Multilevel growth curve models were used to assess the impact of combined income and asset poverty risk on old-age frailty (frailty index) and associated pathway variables. In total, 61.8% of the variation of poverty risk on frailty level was explained by direct and indirect effects. Results stress the role of material and particularly psychosocial factors such as perceived control and social isolation, whereas the role of health behaviour was negligible. We suggest to strengthen social policy and public health efforts in order to fight poverty and its deleterious health effects from early age on as well as to broaden the scope of interventions with regard to psychosocial factors. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer
NASA Astrophysics Data System (ADS)
Diesendruck, Charles E.; Peterson, Gregory I.; Kulik, Heather J.; Kaitz, Joshua A.; Mar, Brendan D.; May, Preston A.; White, Scott R.; Martínez, Todd J.; Boydston, Andrew J.; Moore, Jeffrey S.
2014-07-01
Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization-repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended lifetimes. Here, we show that a metastable polymer, end-capped poly(o-phthalaldehyde), undergoes mechanically initiated depolymerization to revert the material to monomers. Trapping experiments and steered molecular dynamics simulations are consistent with a heterolytic scission mechanism. The obtained monomer was repolymerized by a chemical initiator, effectively completing a depolymerization-repolymerization cycle. By emulating remodelling of biomaterials, this model system suggests the possibility of smart materials where aging or mechanical damage triggers depolymerization, and orthogonal conditions regenerate the polymer when and where necessary.
Dikicier, Sibel; Ayyildiz, Simel; Ozen, Julide; Sipahi, Cumhur
2014-11-01
Clinicians should reserve all-ceramics with high translucency for clinical applications in which high-level esthetics are required. Furthermore, it is unclear whether a correlation exists between core thickness and color change. The aim of this study was to examine the effects of different core thicknesses and artificial aging on the color stability of three all-ceramic systems. Ninety disc-shaped cores with different thicknesses (0.5 mm, 0.8 mm and 1.0 mm) were prepared from three all-ceramic systems, In-Ceram Alumina (IC), IPS e.max Press (EM) and Katana (K). The colors of the samples were measured with a spectrophotometer and the color parameters (L*, a*, b*, ΔE) were calculated according to the CIE L*a*b* (Commission Internationale de L'Eclairage) color system before and after aging. The effects of aging on color parameters were statistically significant (p < 0.001), regardless of core thickness. For all systems, the CIE a* values increased as the thickness of the core increased. Conversely, such increases in core porcelain thickness were correlated with decreasing CIE L* and b* values. Core thickness had a statistically significant effect on color change among the groups. Different core thicknesses (from 1.0-0.5 mm) and artificial aging affected color stability of the all-ceramic materials tested.
The development and characterization of stimuli-responsive systems for performance materials
NASA Astrophysics Data System (ADS)
Gordon, Melissa B.
In nature, living organisms adjust to their surroundings by responding to environmental cues, such as light, temperature or force. Stimuli-triggered processes, such as the contraction of eyes in response to bright light or wound healing in skin after a cut, motivate the design of "smart" materials which are designed to respond to environmental stimuli. Responsive materials are used as self-healing materials, shape memory polymers and responsive coatings; moreover, responsive materials may also be employed as model systems, which enhance understanding of complex behavior. The overall goal of this work is to design a material that offers self-healing functionality, which will allow for self-repair following material fatigue or failure, and increased strength in response to ballistic or puncture threats through the incorporation of colloidal particles. The target application for this material is as a protective barrier in extreme environments, such as outer space. Towards this end, the dissertation is focused on the development and characterization of each component of the protective material by (1) designing and testing novel light- and force-sensitive polymers for self-healing applications and (2) examining and characterizing long-time behavior (i.e., aging) in model thermoreversible colloidal gels and glasses. Towards the development of novel stimuli-responsive materials, a photo-responsive polymer network is developed in which a dynamic bond is incorporated into the network architecture to enable a light-triggered, secondary polymerization, which increases the modulus by two orders of magnitude while strengthening the network by over 100%. Unlike traditional two-stage polymerization systems, in which the secondary polymerization is triggered by a leachable photoinitiator, the dynamic nature is imparted by the material itself via the dissociation of its own crosslinks to become stronger in response to light. Several attributes of the photo-responsive network are shown including: (1) photo-induced healing and strengthening of a specimen after it has been severed, (2) photopatterning for effecting spatially confined property changes on demand, and (3) locking in the film's 3D geometry using light after reshaping. The utility of the photo-responsive dynamic bond is enhanced by demonstrating that it is also responsive to mechanical force. Force-responsive materials are activated by the energy from the damage event itself, thereby enabling healing without human intervention. Specifically, selective cleavage of a polymer containing a dynamic trithiocarbonate group initiates a force-driven radical polymerization, thus enabling the material to constructively respond to force via gelation on an experimentally relevant timescale. To enhance the stress response of the self-healing materials described above, a protective material composed of colloidal particles is proposed. Toward this goal, the second half of this dissertation investigates the microstructural basis of rheological aging in colloidal gels and glasses using a model thermoreversible colloidal dispersion. In this work, rheological aging is quantitatively related to microstructural aging in glasses and gels by simultaneously measuring the bulk properties and sample microstructure using rheometry and small angle neutron scattering (Rheo-SANS), respectively. A one-to-one correspondence between the evolution in storage modulus and microstructure as the sample ages is observed, which is investigated as a function of thermal and shear history. The microstructural measurements are consistent with the hypothesis of aging as a trajectory in a free energy landscape, which combined with analysis with mode coupling theory, support local particle rearrangements as the mechanism of aging. Moreover, by using a system that is fully rejuvenated by thermal cycling, the effectiveness of shear as a rejuvenation method is investigated by directly comparing microstructure and bulk properties following thermal and mechanical rejuvenation. The conclusions of this study may be industrially relevant to products that age on commercial timescales, such as pharmaceuticals, applicable to other dynamically arrested systems, such as metallic glasses, and provide pathways to advanced composite materials such as those envisioned in this work.
Jarrold, Christopher; Citroën, Rebecca
2013-05-01
The size of an individual's phonological similarity effect for visually presented material is assumed to reflect his or her ability to recode, and by implication rehearse, information in verbal short-term memory. Many studies have shown that under these conditions, the size of this effect interacts with age, tending to be nonsignificant in children younger than 7 years and leading to the conclusion that children of this age do not rehearse. In the present study, the size of the phonological similarity effect was assessed in a total of 116 children aged between 5 and 9 years, manipulating the modality of both encoding and retrieval of the memoranda. Although the interaction between age and the size of the phonological similarity effect was replicated with visual presentation and verbal recall of material, this interaction was also present in other conditions that do not require recoding. In addition, the data from this "classic" condition were simulated by a model that assumed that the size of the similarity effect is (a) proportional to an individual's recall of dissimilar items and (b) constrained by a functional floor to recall of similar items. These findings undermine the evidence for a qualitative change in recoding and rehearsal at 7 years and question the extent to which rehearsal is necessary to explain the development of verbal short-term memory performance.
Gray, Janine C; Navarro-Coy, Nuria; Pavitt, Sue H; Hulme, Claire; Godfrey, Mary; Craddock, Helen L; Brunton, Paul A; Brown, Sarah; Dillon, Sean; Dukanovic, Gillian; Fernandez, Catherine; Wright, Jonathan; Collier, Howard; Swithenbank, Shirley; Lee, Carol; Hyde, T Paul
2012-08-31
According to the UK Adult Dental Health Survey (2009) 15% of adults aged 65-74, 30% aged 75-84 and 47% aged >85 years are edentulous and require complete dentures. Patients' quality of life and nutrition status are affected by poor dentures. The quality of the dental impression is the most important issue for improving the fit and comfort of new dentures. There is paucity of RCT evidence for which impression material is best for complete dentures construction. This study aims to compare two impression materials for effectiveness and cost effectiveness. IMPROVDENT is a double-blind crossover trial comparing the use of alginate and silicone, two commonly used denture impression materials, in terms of patient preference and cost-effectiveness. Eighty five edentulous patients will be recruited and provided with two sets of dentures, similar in all aspects except for the impression material used (alginate or silicone). Patients will try both sets of dentures for a two-week period, unadjusted, to become accustomed to the feel of the new dentures (habituation period). Patients will then wear each set of dentures for a period of 8 weeks (in random order) during which time the dentures will be adjusted for optimum comfort. Finally, patients will be given both sets of dentures for a further two weeks to wear whichever denture they prefer (confirmation period).Patients will be asked about quality of life and to rate dentures on function and comfort at the end of each trial period and asked which set they prefer at the end of the habituation period (unadjusted denture preference) and confirmation period (adjusted denture preference). A health economic evaluation will estimate incremental cost-effectiveness ratios of producing dentures from the two materials. A qualitative study will investigate the impact of dentures on behaviour and quality of life. IMPROVDENT is funded by NIHR RfPB (PB-PG-0408-16300). This trial aims to provide evidence on the costs and quality of dentures cast from two different commonly used impression materials; the intention is to significantly impact on the quality of denture production within NHS dentistry. ISRCTN Register: ISRCTN01528038 UKCRN Portfolio ID: 8305.
High Temperature, Long Service Life Fuel Cell Bladder Materials
2004-03-01
50 Table 19. Inner Liner Rubber , D471 Results – Fluid Aging in JP8+100 @ 225°F............................. 52 Table 20. Inner Liner Rubber ...Tensile Properties – Fluid Aging in JP8+100 @ 225°F ..................... 52 Table 21. Inner Liner Rubber , Tear Properties – Fluid Aging in JP8+100...samples in accordance with ASTM D 471: Test Method for Rubber Property - Effects of Liquids. Fluid aging experiments were performed in friction
The development of high strength corrosion resistant precipitation hardening cast steels
NASA Astrophysics Data System (ADS)
Abrahams, Rachel A.
Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels, give poor estimates of secondary phases in PHCSS. No measureable retained austenite was observed in any of the CB7Cu-1 steels studied, in spite of the fact that austenite is predicted by the constitution diagrams. A designed experiment using computationally derived phase equilibrium diagrams and actual experimental tests on CB7Cu of different compositions suggests that the ferrite phase is less stable than the constitution diagrams for austenitic stainless steels suggest. Delta ferrite was also more stable in slower-cooled sand cast material as compared to thin, fast-cooled investment cast material. High temperature solutionizing treatments were effective in dissolving delta ferrite at temperatures above 1900°F (˜1040°C). Delta ferrite dissolution was found to proceed at high rates during initial dissolution, and then was found to slow after 1 hour. Diffusion during the later stages is well-predicted by classical diffusion models. Repeated solution treatments were found to modestly increase both ductility and strength, likely due to subgrain refinement through austenite regrowth. Multistaged aging provided superior strength and toughness increases over similarly peak-aged and near peak-aged material aged at a single temperature. Peak-aged material fractography suggested that low energy quasi-cleavage fracture was likely due to age precipitate embrittlement along with some nucleation of MnS particulates at prior austenite grain boundaries. Yield strengths approaching 190 ksi (1310MPa) can be achieved in CB7Cu-1 if appropriate best-practices "+" processing techniques are used. This includes hot isostatic processing to reduce solidification segregation and heal microporosity, high temperature homogenization for effective age hardening and ferrite reduction, double-cycle solutionizing for structure refinement, and multistaged age strengthening for finer precipitate control. The experimental prototype 11-11PH (Fe-Ni-Cr-Ti-Mo) casting alloys was cast and was found to be delta-ferrite free in the as-cast condition. In this material, proper quench processing to eliminate excessive retained austenite was found to be most influential in terms of high strengths. It was also found that cooling below 0°C provided the best combination of strength and toughness, with the specific strength of the material exceeding that of cast Ti-6Al-4V material. Fractography studies suggest that titanium carbonitride and titanium carbon-nitride-sulfide inclusions limit the toughness of cast materials due to long exposures to ideal growth conditions during initial cooling. OIM studies also suggest that the retained austenite in properly processed 11-11PH alloy takes on an interlath structure, which likely contributes to toughness of the alloy, even at high-strength, peak aged conditions. Yield strengths approaching 235 ksi (1620 MPa) were achieved during initial heat treatment trials. It is expected that further improvements in properties can be achieved with continued improvement of processing for this new cast alloy system.
Wang, Linlin; Liu, Qi; Jing, Dongdong; Zhou, Shanyu; Shao, Longquan
2014-04-01
The aim of this study was to evaluate the effect of TiO2 nanoparticles on the mechanical and anti-ageing properties of a medical silicone elastomer and to assess the biocompatibility of this novel combination. TiO2 (P25, Degussa, Germany) nanoparticles were mixed with the silicone elastomer (MDX4-4210, Dow Corning, USA) at 2%, 4%, and 6% (w/w) using silicone fluid as diluent (Q7-9180, Dow Corning, USA). Blank silicone elastomer served as the control material. The physical properties and biocompatibility of the composites were examined. The tensile strength was tested for 0% and 6% (w/w) before and after artificial ageing. SEM analysis was performed. TiO2 nanoparticles improved the tensile strength and Shore A hardness of the silicone elastomer (P<0.05). However, a decrease in the elongation at break and tear strength was found for the 6% (w/w) composite (P<0.05). All the ageing methods had no effect on the tensile strength of the 6% (w/w) composite (P>0.05), but thermal ageing significantly decreased the tensile strength of the control group (P<0.05). Cellular viability assays indicated that the composite exhibited biocompatibility. We obtained a promising restorative material which yields favourable physical and anti-ageing properties and is biocompatible in our in vitro cellular studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potential effects of regional pumpage on groundwater age distribution
Zinn, Brendan A.; Konikow, Leonard F.
2007-01-01
Groundwater ages estimated from environmental tracers can help calibrate groundwater flow models. Groundwater age represents a mixture of traveltimes, with the distribution of ages determined by the detailed structure of the flow field, which can be prone to significant transient variability. Effects of pumping on age distribution were assessed using direct age simulation in a hypothetical layered aquifer system. A steady state predevelopment age distribution was computed first. A well field was then introduced, and pumpage caused leakage into the confined aquifer of older water from an overlying confining unit. Large changes in simulated groundwater ages occurred in both the aquifer and the confining unit at high pumping rates, and the effects propagated a substantial distance downgradient from the wells. The range and variance of ages contributing to the well increased substantially during pumping. The results suggest that the groundwater age distribution in developed aquifers may be affected by transient leakage from low‐permeability material, such as confining units, under certain hydrogeologic conditions.
Simulated Space Environment Effects on a Candidate Solar Sail Material
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sail vehicles, the sail material needs to survive the harsh space environment as the degradation of the sail material determines its operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, the effect of simulated space environments of ionizing radiation and thermal aging were investigated. In order to assess some of the potential damage effects on the mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane. The solar sail membrane was exposed to high energy electrons [about 70 keV and 10 nA/cm(exp. 2)], and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by 20 to 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The mechanical properties of a precracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film, will be discussed.
Age, Gender and Social Class in ELT Coursebooks: A Critical Study
ERIC Educational Resources Information Center
Arikan, Arda
2004-01-01
Recent trends in English Language Teaching (ELT) research necessitates the study of course books and instructional materials from various perspectives including but not limited to their cultural, social, and psychological qualities and effects (Kramsch 2000). Age, social class, and gender, as represented in course books are studied because…
Age, Gender and Social Class in ELT Coursebooks: A Critical Study
ERIC Educational Resources Information Center
Arikan, Arda
2005-01-01
Recent trends in English Language Teaching (ELT) research necessitates the study of coursebooks and instructional materials from various perspectives including but not limited to their cultural, social, and psychological qualities and effects (Kramsch 2000). Age, social class, and gender, as represented in coursebooks are studied because teachers…
Space Weathering Experiments on Spacecraft Materials
NASA Technical Reports Server (NTRS)
Cooper, R.; Cowardin, H.; Engelhar, D.; Plis, Elena; Hoffman, R.
2017-01-01
A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers and Mylar, specifically those found in multi-layered spacecraft insulation, due to electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons. Among other properties these chemical changes altered the optical reflectance as documented in laboratory analysis. This paper presents results of the initial experiment results focused on the exposure of materials to various fluences of high energy electrons, used to simulate a portion of the geosynchronous space environment. The paper illustrates how the spectral reflectance changes as a function of time on orbit with respect to GEO environmental factors and investigates the survivability of the material after multiple electron doses. These results provide a baseline for analysis of aging effects on satellite systems used for remote sensing. They also provide preliminary analysis on what materials are most likely to encompass the high area-to-mass population of space debris in the geosynchronous environment. Lastly, the paper provides the results of the initial experimentation as a proof of concept for space aging on polymers and Mylar for conducting more experiments with a larger subset of spacecraft materials.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1981-01-01
Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds
NASA Astrophysics Data System (ADS)
Hoeller, Timothy
2007-06-01
Samples of EVOH films from compositions of 29 - 44 mol% ethylene content were exposed to thermal aging with and without light exposure. The results of Dielectric Spectroscopy on select samples showed Cole-Cole plots of skewed dielectric constant indicating multiple distributions of dipole relaxation times. The onset for decreases in dielectric response occurs earlier in samples exposed to elevated temperature under light exposure. Lower permittivity is exhibited in samples of higher ethylene content. Results from heat exposed samples are presented. Colorimetric analysis indicates only a slight film yellowing in one case. Raman spectroscopy on untreated films discerns changes in the C-C-O stretch associated with the alcohol. The effects of aging on microstructure may cause hindrance of molecular motion from moisture desorption. Slight material degradation occurs from film hardening presumably due to crosslinking. An electrical circuit model of the conduction processes associated with the EVOH films is presented. Dielectric analysis shows promise for monitoring material changes related to deterioration. We are also using these methods to understand Fluorescence Imaging which has been recently released for paper and plastic materials analysis. Future work may include refinement of these techniques for identification of changes in material properties correlated to packaging material barrier resistance.
Processing Issues for Preliminary Melts of the Intermetallic Compound 60-NITINOL
NASA Technical Reports Server (NTRS)
Stanford, Malcolm K.; Thomas, Fransua; DellaCorte, Christopher
2012-01-01
The effect of various high temperature heat treatments and cooling rates on the hardness of cast 60-NITINOL (60wt%Ni- 40wt%Ti) was studied. The hardness ranged from approximately 33 HRC for annealed specimens to 63 HRC for water quenched specimens. Aging did not have a further effect on the hardness of the heat-treated and quenched material. The issue of material contamination and its possible effect on quench cracking during heat treatment above 1000 C was explored. The Charpy impact energy of the material was found to be relatively low (ranging from 0.4 to 1.0 J) and comparable to that of cast magnesium. Selection of service environments and applications for this material based on these findings should consider the processing route by which it was produced.
NASA Technical Reports Server (NTRS)
Hall, A. M.; Beuhring, V. F.
1972-01-01
This report deals with heat treating and working nickel and nickel-base alloys, and with the effects of these operations on the mechanical properties of the materials. The subjects covered are annealing, solution treating, stress relieving, stress equalizing, age hardening, hot working, cold working, combinations of working and heat treating (often referred to as thermomechanical treating), and properties of the materials at various temperatures. The equipment and procedures used in working the materials are discussed, along with the common problems that may be encountered and the precautions and corrective measures that are available.
Edidin, A A; Herr, M P; Villarraga, M L; Muth, J; Yau, S S; Kurtz, S M
2002-08-01
The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials. Copyright 2002 Wiley Periodicals, Inc.
Age Differences in Learning from Text: The Effects of Content Preexposure on Reading
ERIC Educational Resources Information Center
Noh, Soo Rim; Shake, Matthew C.; Parisi, Jeanine M.; Joncich, Adam D.; Morrow, Daniel G.; Stine-Morrow, Elizabeth A. L.
2007-01-01
This study investigated age differences in the way in which attentional resources are allocated to expository text and whether these differences are moderated by content preexposure. The organization of the preexposure materials was manipulated to test the hypothesis that a change in organization across two presentations would evoke more…
Effect of Prestrain on Precipitation Behaviors of Ti-2.5Cu Alloy
NASA Astrophysics Data System (ADS)
Lincai, Zhang; Xiaoming, Ding; Wei, Ye; Man, Zhang; Zhenya, Song
2018-04-01
As a special hardenable α titanium alloy, Ti-2.5 Cu alloy was a candidate material for high temperature components requiring high strength and plasticity. The effect of prestrain on the precipitation behaviors was investigated in the present study. Tensile tests show that elongation up to 22 % can be obtained after solid solution (SS) treatment. Thereafter, prestrain in tension with 5 %, 10 %, 15 % and 20 % was carried out for the SS samples and then duplex aging was applied. Transmitting electron microscopy (TEM) investigations show that larger Ti2Cu particles were observed in the prestrained condition than free aging one, as prestrain significantly speeds up the precipitation kinetics. The strength firstly increases and then decreases for the prestrained samples after duplex aging, where the competition between precipitation hardening and recovery softening should be responsible. With the consideration of SS, precipitation and recovery, a strength model for duplex aging combined with prestrain was established, which is in well agreement with experiments. Present study may provide a promising way to obtain the strength of deformed hcp materials in industry application.
Choura, M; Keskes, M; Tayibi, H; Rouis, J
2011-04-01
Metal hydroxide sludges are classified as hazardous wastes in the European Hazardous Waste Catalogue (EHWC) because of their high heavy metal contents (Zn, Cr, Fe, Cu, etc.) and the release of these pollutants to the environment. Thereby, the disposal of this waste without any treatment is a substantial environmental problem. Stabilization/solidification technologies are widely used for the treatment of wastes and residues in order to obtain inert materials. This work aims to assess the effectiveness of the chemical fixation and solidification of a metal hydroxide sludge generated by the electrotyping surface treatment industry, using Portland Artificial Cement. In order to predict the medium- and long-term behaviour of the solidified waste, an artificial ageing by means of thermal shocks and humidity variation cycles was applied. Scanning Electron Microscopy (SEM) and X-ray Diffraction studies revealed a considerable increase in calcite within the solid matrix after the artificial ageing, which can be attributed to the phenomenon of carbonation. It was also found that the mechanical properties of the solidified material, after ageing, were improved by up to 30%.
Nuclear power plant cable materials :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard
2013-05-01
A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.« less
Challenges of accelerated aging techniques for elastomer lifetime predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, Kenneth T.; Bernstein, R.; Celina, M.
Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less
Challenges of accelerated aging techniques for elastomer lifetime predictions
Gillen, Kenneth T.; Bernstein, R.; Celina, M.
2015-03-01
Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less
Translucency of Zirconia Ceramics before and after Artificial Aging.
Walczak, Katarzyna; Meißner, Heike; Range, Ursula; Sakkas, Andreas; Boening, Klaus; Wieckiewicz, Mieszko; Konstantinidis, Ioannis
2018-03-11
The aging of zirconia ceramics (Y-TZP) is associated with tetragonal to monoclinic phase transformation. This change in microstructure may affect the optical properties of the ceramic. This study examines the effect of aging on the translucency of different zirconia materials. 120 disc-shaped specimens were fabricated from four zirconia materials: Cercon ht white, BruxZir Solid Zirconia, Zenostar T0, Lava Plus (n = 30 per group). Accelerated aging was performed in a steam autoclave (134°C, 0.2 MPa, 5 hours). CIELab coordinates (L*, a*, b*) and luminous reflectance (Y) were measured with a spectrophotometer before and after aging. Contrast ratio (CR) and translucency parameter (TP) were calculated from the L*, a*, b*, and Y tristimulus values. The general linear model (Bonferroni adjusted) was used to compare both parameters before and after aging, as well as between the different zirconia materials (p ≤ 0.05). CR and TP differed significantly before and after aging in all groups tested. Before aging, Zenostar T showed the highest and Lava Plus showed the lowest translucency. After aging, Cercon ht and Zenostar T showed the highest and BruxZir and Lava Plus the lowest translucency. Aging reduced the translucency in all specimens tested. Furthermore, translucency differed between the zirconia brands tested. Nevertheless, the differences were below the detectability threshold of the human eye. The aging process can influence the translucency and thus the esthetic outcome of zirconia restorations; however, the changes in translucency were minimal and probably undetectable by the human eye. © 2018 by the American College of Prosthodontists.
SMALL COLOUR VISION VARIATIONS AND THEIR EFFECT IN VISUAL COLORIMETRY,
COLOR VISION, PERFORMANCE(HUMAN), TEST EQUIPMENT, PERFORMANCE(HUMAN), CORRELATION TECHNIQUES, STATISTICAL PROCESSES, COLORS, ANALYSIS OF VARIANCE, AGING(MATERIALS), COLORIMETRY , BRIGHTNESS, ANOMALIES, PLASTICS, UNITED KINGDOM.
(Durability of building materials and components)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.
1990-11-27
The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications inmore » Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.« less
In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging.
Bal, Bilge Turhan; Yilmaz, Handan; Aydin, Cemal; Karakoca, Seçil; Yilmaz, Sükran
2009-04-01
The purpose of this in vitro study was to evaluate the cytotoxicity of three maxillofacial silicone elastomers at 24, 48, and 72 h on L-929 cells and to determine the effect of accelerated aging on the cytotoxicity of these silicone elastomers. Disc-shaped test samples of maxillofacial silicone elastomers (Cosmesil, Episil, Multisil) were fabricated according to manufacturers' instructions under aseptic conditions. Samples were then divided into three groups: (1) not aged; (2) aged for 150 h with an accelerated weathering tester; and (3) aged for 300 h. Then the samples were placed in Dulbecco's Modified Eagle Medium/Ham's F12 (DMEM/F12) for 24, 48, and 72 h. After the incubation periods, cytotoxicity of the extracts to cultured fibroblasts (L-929) was measured by MTT assay. The degree of cytotoxicity of each sample was determined according to the reference value represented by the cells with a control (culture without sample). Statistical significance was determined by repeated measurement ANOVA (p < 0.01) followed by Duncan's test (p < 0.05). All test materials in each group demonstrated high survival rates in MTT assay (Episil; 93.84%, Multisil; 88.30%, Cosmesil; 87.50%, respectively); however, in all groups, Episil material demonstrated significantly higher cell survival rate after each of the experimental incubation periods (p < 0.05). Accelerated aging for 150 and 300 h had no significant effect on the biocompatibility of maxillofacial silicone elastomers tested (p > 0.05).
A systematic approach to standardize artificial aging of resin composite cements.
Blumer, Lukas; Schmidli, Fredy; Weiger, Roland; Fischer, Jens
2015-07-01
The aim of the investigation was to contribute to the ongoing discussion at the international standardization committee on how to artificially age dental resin composite cements. Indirect tensile strength (n=30) of a dual-cured resin composite cement (Panavia F2.0) was measured to evaluate the effect of water storage at 37°C or thermal cycling (5°C/55°C/1min) for up to 64 days. The influence of water temperature (5-65°C) after 16 days and the effect of 1 day water storage at 37°C prior to aging were assessed. Storage in air at 37°C served as control. Thermal cycling affected the indirect tensile strength most, followed by water storage at 55°C, whereas water storage at 37°C had only little influence. Major deterioration occurred before day 4 (≈6000 cycles). A 1-day pre-treatment by water storage at 37°C prior to thermal cycling attenuated the effect of aging. For the material investigated, thermal cycling for 4 days is the most efficient aging procedure. A 1-day water storage at 37°C prior to thermal cycling is recommended to allow complete polymerization. A 4-day water storage at 55°C may be considered as a viable alternative to thermal cycling. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sarac, Hakan; Tarhan, Devrim
2017-01-01
In the rapidly developing age of technology, the contribution of using multimedia-supported instructional materials in the field of teaching technologies to science education has been increasing steadily. The purpose of this research is to compare the multimedia learning instructional materials prepared according to the 7E learning model and the…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... amended by CBP Dec. 08-40, are due to expire on September 19, 2013, unless extended. The Assistant...: Effective Date: September 19, 2013. FOR FURTHER INFORMATION CONTACT: For legal aspects, Lisa Burley, Cargo... until September 19, 2013, and amended them to include archaeological material from the Bronze Age...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Montoya, Donald Raymond
For more than 20 years the science and engineering capabilities of the nation’s Stockpile Stewardship Program have allowed the United States to sustain a safe, secure, and effective nuclear deterrent. Most of the problems identifi ed within the nuclear stockpile are related to its aging materials. MaRIE will advance this record of excellence in addressing such materials problems.
Cutaneous Wound Closure Materials: An Overview and Update
Al-Mubarak, Luluah; Al-Haddab, Mohammed
2013-01-01
Introduction: On a daily basis, dermasurgeons are faced with different kinds of wounds that have to be closed. With a plethora of skin closure materials currently available, choosing a solution that combines excellent and rapid cosmetic results with practicality and cost-effectiveness can be difficult, if not tricky. Objectives: We aimed to review the available skin closure materials over the past 20 years and the scientific claims behind their effectiveness in repairing various kinds of wounds. Materials and Methods: The two authors independently searched and scrutinised the literature. The search was performed electronically using Pub Med, the Cochrane Database, Google Scholar and Ovid as search engines to find articles concerning skin closure materials written since 1990. Conclusion: Many factors are involved in the choice of skin closure material, including the type and place of the wound, available materials, physician expertise and preferences, and patient age and health. Evidence-based main uses of different skin closure materials are provided to help surgeons choose the appropriate material for different wounds. PMID:24470712
Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo
2010-10-01
The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements
Photovoltaic module encapsulation design and materials section, volume 2
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1984-01-01
Tests for chemical structure, material properties, water absorption, aging and curing agent of Ethylene Vinyl Acetate (EVA) and UV absorption studies are carried out. A computer model was developed for thermal optical modeling, to investigate dependence between module operating temperature and solar insolation, and heat dissapation behavior. Structural analyses were performed in order to determine the stress distribution under wind and heat conditions. Curves are shown for thermal loading conditions. An electrical isolation was carried out to investigate electrical stress aging of non-metallic encapsulation materials and limiting material flaws, and to develop a computer model of electrical fields and stresses in encapsulation materials. In addition, a mathematical model was developed and tests were conducted to predict hygroscopic and thermal expansion and contraction on a plastic coated wooden substrate. Thermal cycle and humidity freezing cycle tests, partial discharge tests, and hail impact tests were also carried out. Finally, the effects of soiling on the surface of photovoltaic modules were investigated. Two antisoiling coatings, a fluorinated silane and perflourodecanoic acid were considered.
Effect of Americium-241 Content on Plutonium Radiation Source Terms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainisch, R.
1998-12-28
The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials andmore » will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.« less
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1983-01-01
A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.
Lower life satisfaction related to materialism in children frequently exposed to advertising.
Opree, Suzanna J; Buijzen, Moniek; Valkenburg, Patti M
2012-09-01
Research among adults suggests that materialism and life satisfaction negatively influence each other, causing a downward spiral. So far, cross-sectional research among children has indicated that materialistic children are less happy, but causality remains uncertain. This study adds to the literature by investigating the longitudinal relation between materialism and life satisfaction. We also investigated whether their relation depended on children's level of exposure to advertising. A sample of 466 children (aged 8-11; 55% girls) participated in a 2-wave online survey with a 1-year interval. We asked children questions about material possessions, life satisfaction, and advertising. We used structural equation modeling to study the relationship between these variables. For the children in our sample, no effect of materialism on life satisfaction was observed. However, life satisfaction did have a negative effect on materialism. Exposure to advertising facilitated this effect: We only found an effect of life satisfaction on materialism for children who were frequently exposed to advertising. Among 8- to 11-year-old children, life satisfaction leads to decreased materialism and not the other way around. However, this effect only holds for children who are frequently exposed to television advertising. It is plausible that the material values portrayed in advertising teach children that material possessions are a way to cope with decreased life satisfaction. It is important to reduce this effect, because findings among adults suggest that materialistic children may become less happy later in life. Various intervention strategies are discussed.
Aging effects on airflow dynamics and lung function in human bronchioles
Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.
2017-01-01
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies. PMID:28846719
The choices we make: An examination of situation selection in younger and older adults
Rovenpor, Daniel R.; Skogsberg, Nikolaus J.; Isaacowitz, Derek M.
2013-01-01
The current study examined the effects of age and control beliefs on the use of situation selection. Younger and older adults spent 15 minutes in a room containing multiple affective streams that varied in emotional valence, and were given free choice to engage with whatever they wanted. No significant main effect of age emerged on the number of choices of, or time spent with, material of each valence. However, age and beliefs interacted such that older adults with strong emotion regulation self-efficacy and general control beliefs chose fewer negative stimuli, whereas younger adults with strong beliefs chose more negative stimuli. Results are discussed from aging and individual differences perspectives. PMID:23088197
D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore
2016-06-01
The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in particular, if these are used after inappropriate storage conditions.
2012-01-01
Background According to the UK Adult Dental Health Survey (2009) 15% of adults aged 65–74, 30% aged 75–84 and 47% aged >85 years are edentulous and require complete dentures. Patients’ quality of life and nutrition status are affected by poor dentures. The quality of the dental impression is the most important issue for improving the fit and comfort of new dentures. There is paucity of RCT evidence for which impression material is best for complete dentures construction. This study aims to compare two impression materials for effectiveness and cost effectiveness. Methods/Design IMPROVDENT is a double-blind crossover trial comparing the use of alginate and silicone, two commonly used denture impression materials, in terms of patient preference and cost-effectiveness. Eighty five edentulous patients will be recruited and provided with two sets of dentures, similar in all aspects except for the impression material used (alginate or silicone). Patients will try both sets of dentures for a two-week period, unadjusted, to become accustomed to the feel of the new dentures (habituation period). Patients will then wear each set of dentures for a period of 8 weeks (in random order) during which time the dentures will be adjusted for optimum comfort. Finally, patients will be given both sets of dentures for a further two weeks to wear whichever denture they prefer (confirmation period). Patients will be asked about quality of life and to rate dentures on function and comfort at the end of each trial period and asked which set they prefer at the end of the habituation period (unadjusted denture preference) and confirmation period (adjusted denture preference). A health economic evaluation will estimate incremental cost-effectiveness ratios of producing dentures from the two materials. A qualitative study will investigate the impact of dentures on behaviour and quality of life. Funding: IMPROVDENT is funded by NIHR RfPB (PB-PG-0408-16300). Discussion This trial aims to provide evidence on the costs and quality of dentures cast from two different commonly used impression materials; the intention is to significantly impact on the quality of denture production within NHS dentistry. Trial Registration ISRCTN Register: ISRCTN01528038 UKCRN Portfolio ID: 8305 PMID:22937901
D'Alpino, Paulo Henrique Perlatti; Vismara, Marcus Vinícius Gonçalves; Mello, Luciano Marcelo de Medeiros; Di Hipólito, Vinicius; González, Alejandra Hortencia Miranda; Graeff, Carlos Frederico de Oliveira
2014-07-01
This study evaluated the mechanical, thermal, and morphological characteristics of different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to these factors: Composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and Material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The flexural strength (FS) and flexural modulus (E) were obtained. The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed and the glass transition temperature (Tg) and the weight loss calculated. Topographic analysis of the composites was performed under SEM. The material conditions influenced the mechanical properties of the composites. The silorane composite exhibited a characteristic thermal behavior different from that of the methacrylates. In general, the Tg increased after the accelerated aging protocol and decreased for expired ones, compared to the new composites. A significant increase in FS of Filtek Z350XT after aging was accompanied by an increase in the Tg. The filler packings were in accordance with the manufacture׳s information. The topographic aspects of the composites were modified as a function of the material condition. The mechanical properties of the composites following a simplified protocol of accelerated aging varied as a function of the expiration date. The silorane composite presented a characteristic thermal behavior. Although the dental manufacturers may not be able to control variables as storage temperature and transportation conditions, these effects on the composite clinical performance can be minimized if properly considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative Thermal Aging Effects on PM-HIP and Forged Inconel 690
NASA Astrophysics Data System (ADS)
Bullens, Alexander L.; Bautista, Esteban; Jaye, Elizabeth H.; Vas, Nathaniel L.; Cain, Nathan B.; Mao, Keyou; Gandy, David W.; Wharry, Janelle P.
2018-03-01
This study compares thermal aging effects in Inconel 690 (IN690) produced by forging and powder metallurgy with hot isostatic pressing (PM-HIP). Isothermal aging is carried out over 400-800°C for up to 1000 h and then metallography and nanoindentation are utilized to relate grain microstructure with hardness and yield strength. The PM-HIP IN690 maintains a constant grain size through all aging conditions, while the forged IN690 exhibits limited grain growth at the highest aging temperature and longest aging time. The PM-HIP IN690 exhibits comparable mechanical integrity as the forged material throughout aging: hardness and yield strength are unchanged with 100 h aging, but increase after 1000 h aging at all temperatures. In both the PM-HIP and forged IN690, the Hall-Petch relationship for Ni-based superalloys predicts yield strength for 0-100 h aged specimens, but underestimates yield strength in the 1000 h aged specimens because of thermally induced precipitation.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.
Structural adhesives for missile external protection material
NASA Astrophysics Data System (ADS)
Banta, F. L.; Garzolini, J. A.
1981-07-01
Two basic rubber materials are examined as possible external substrate protection materials (EPM) for missiles. The analysis provided a data base for selection of the optimum adhesives which are compatible with the substrate, loads applied and predicted bondline temperatures. Under the test conditions, EA934/NA was found to be the optimum adhesive to bond VAMAC 2273 and/or NBR/EPDM 9969A to aluminum substrate. The optimum adhesive for composite structures was EA956. Both of these adhesives are two-part epoxy systems with a pot life of approximately two hours. Further research is suggested on field repair criteria, nuclear hardness and survivability effects on bondline, and ageing effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulm, Franz-Josef
2000-06-30
OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 4. The analysis of the effect of cracks on the acceleration of the calcium leaching process of cement-based materials has been pursued. During the last period (Technical Progress Report No 3), we have introduced a modeling accounting for the high diffusivity of fractures in comparison with the weak solid material diffusivity. It has been shown through dimensional and asymptotic analysis that small fractures do not significantly accelerate the material aging process. This important result for the overall structural aging kinetics of containment structure has beenmore » developed in a paper submitted to the international journal ''Transport in Porous Media''.« less
Misdaq, M A; Bourzik, W
2004-12-01
Uranium (238U) and thorium (232Th) concentrations were measured in different foods widely consumed in Morocco by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). Annual committed effective doses due to 238U and 232Th intakes from the ingestion of the studied food materials were evaluated for different age groups of individuals, using the ICRP ingestion dose coefficients. The influence of the 238U and 232Th intakes and ages of individuals on the committed effective dose was investigated. Total annual intakes of 238U and 232Th for a typical food basket for adult members of the Moroccan population were estimated to be 451 +/- 27 Bq y(-1) and 359 +/- 20 Bq y(-1), corresponding to committed effective doses of (20 +/- 1) x 10(-6) Sv y(-1) and (83 +/- 5) x 10(-6) Sv y(-1), respectively.
Mechanical Properties of Degraded PMR-15 Resin
NASA Technical Reports Server (NTRS)
Tsuji, Luis C.
2000-01-01
Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.
Effects of physical aging on long-term behavior of composites
NASA Technical Reports Server (NTRS)
Brinson, L. Catherine
1993-01-01
The HSCT plane, envisioned to have a lifetime of over 60,000 flight hours and to travel at speeds in excess of Mach 2, is the source of intensive study at NASA. In particular, polymer matrix composites are being strongly considered for use in primary and secondary structures due to their high strength to weight ratio and the options of property tailoring. However, an added difficulty in the use of polymer based materials is that their properties change significantly over time, especially at the elevated temperatures that will be experienced during flight, and prediction of properties based on irregular thermal and mechanical loading is extremely difficult. This study focused on one aspect of long-term polymer composite behavior: physical aging. When a polymer is cooled to below its glass transition temperature, the material is not in thermodynamic equilibrium and the free volume and enthalpy evolve over time to approach their equilibrium values. During this time, the mechanical properties change significantly and this change is termed physical aging. This work begins with a review of the concepts of physical aging on a pure polymer system. The effective time theory, which can be used to predict long term behavior based on short term data, is mathematically formalized. The effects of aging to equilibrium are proven and discussed. The theory developed for polymers is then applied first to a unidirectional composite, then to a general laminate. Comparison to experimental data is excellent. It is shown that the effects of aging on the long-term properties of composites can be counter-intuitive, stressing the importance of the development and use of a predictive theory to analyze structures.
Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.; Rejent, J.A.
1997-10-01
The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate withmore » the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.« less
Effects of Aging-Time Reference on the Long Term Behavior of the IM7/K3B Composite
NASA Technical Reports Server (NTRS)
Veazie, David R.; Gates, Thomas S.
1998-01-01
An analytical study was undertaken to investigate the effects of the time-based shift reference on the long term behavior of the graphite reinforced thermoplastic polyimide composite IM7/K3B at elevated temperature. Creep compliance and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(sub g). Two matrix dominated loading modes, shear and transverse, were investigated in tension and compression. The momentary sequenced creep/aging curves were collapsed through a horizontal (time) shift using the shortest, middle and longest aging time curve as the reference curve. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. The use of effective time expressions in a laminated plate model allowed for the prediction of long term creep compliance. The effect of using different reference curves with time/aging-time superposition was most sensitive to the physical aging shift rate at lower test temperatures. Depending on the loading mode, the reference curve used can result in a more accurate long term prediction, especially at lower test temperatures.
Method and apparatus for welding precipitation hardenable materials
Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.
1994-01-01
A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.
Method and apparatus for welding precipitation hardenable materials
Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.
1994-06-28
A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.
Physical aging in pharmaceutical polymers and the effect on solid oral dosage form stability.
Kucera, Shawn A; Felton, Linda A; McGinity, James W
2013-12-05
The application of a polymeric film to a solid oral dosage form can be an effective technique to modify drug release. Most polymers used for such purposes are amorphous in nature and are subject to physical aging. This physical aging phenomenon has been shown to cause changes not only in the mechanical and drug release properties of polymeric films, but also the permeability of these films due to a densification and decrease in free volume of the polymer as the material relaxes to an equilibrated thermodynamic state. Temperature, humidity, and additional excipients in the coating formulations have been shown to influence the aging process. This review article discusses the process of physical aging in films prepared from aqueous dispersions, describes various analytical techniques that can be used to investigate the aging process, and highlights strategies to prevent such aging. Copyright © 2013 Elsevier B.V. All rights reserved.
First Exploratory Study on the Ageing of Rammed Earth Material
Bui, Quoc-Bao; Morel, Jean-Claude
2014-01-01
Rammed earth (RE) is attracting renewed interest throughout the world thanks to its “green” characteristics in the context of sustainable building. In this study, the ageing effects on RE material are studied on the walls which have been constructed and exposed for 22 years to natural weathering. First, mechanical characteristics of the “old” walls were determined by two approaches: in-situ dynamic measurements on the walls; laboratory tests on specimens which had been cut from the walls. Then, the walls’ soil was recycled and reused for manufacturing of new specimens which represented the initial state. Comparison between the compressive strength, the Young modulus of the walls after 22 years on site and that of the initial state enables to assess the ageing of the studied walls. PMID:28787920
First Exploratory Study on the Ageing of Rammed Earth Material.
Bui, Quoc-Bao; Morel, Jean-Claude
2014-12-23
Rammed earth (RE) is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable building. In this study, the ageing effects on RE material are studied on the walls which have been constructed and exposed for 22 years to natural weathering. First, mechanical characteristics of the "old" walls were determined by two approaches: in-situ dynamic measurements on the walls; laboratory tests on specimens which had been cut from the walls. Then, the walls' soil was recycled and reused for manufacturing of new specimens which represented the initial state. Comparison between the compressive strength, the Young modulus of the walls after 22 years on site and that of the initial state enables to assess the ageing of the studied walls.
A modelling approach for the heterogeneous oxidation of elastomers
NASA Astrophysics Data System (ADS)
Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.
2017-09-01
The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side, further diffusion of oxygen into the material is described by a model based on Fick's law, which is modified by a reaction term. The evolved diffusion-reaction equation depends on the ageing temperature as well as on the progress of ageing and is able to describe diffusion-limited oxidation.
Effects of terrestrial UV radiation on selected outdoor materials: an interdisciplinary approach
NASA Astrophysics Data System (ADS)
Heikkilä, A.; Kazadzis, S.; Tolonen-Kivimäki, O.; Meinander, O.; Lindfors, A.; Lakkala, K.; Koskela, T.; Kaurola, J.; Sormanen, A.; Kärhä, P.; Naula-Iltanen, A.; Syrjälä, S.; Kaunismaa, M.; Juhola, J.; Ture, T.; Feister, U.; Kouremeti, N.; Bais, A.; Vilaplana, J. M.; Rodriguez, J. J.; Guirado, C.; Cuevas, E.; Koskinen, J.
2009-08-01
Modern polymeric materials possess an ever increasing potential in a large variety of outdoor objects and structures offering an alternative for many traditional materials. In outdoor applications, however, polymers are subject to a phenomenon called weathering. This is primarily observed as unwanted property changes: yellowing or fading, chalking, blistering, and even severe erosion of the material surface. One of the major weathering factors is UV radiation. In spring 2005, the Finnish Meteorological Institute with its research and industrial partners launched a five-year material research project named UVEMA (UV radiation Effects on MAterials). Within the framework of the project, a weathering network of seven European sites was established. The network extends from the Canary Islands of Spain (latitude 28.5°N) to the Lapland of Finland (latitude 67.4°N), covering a wide range of UV radiation conditions. Since autumn 2005, the sites of the network have been maintaining weathering platforms of specimens of different kinds of polymeric materials. At the same time, the sites have been maintaining their long-term monitoring programmes for spectrally resolved UV radiation. Within UVEMA, these data are used for explaining the differences between the degradation rates of the materials at each site and for correlating the UV conditions in accelerated ageing tests to those under the Sun. We will present the objectives of the UVEMA project aiming at deeper understanding of the ageing of polymers and more reliable assessments for their service life time. Methodologies adopted within the project and the first results of the project will be summarized.
New Ca-Tims and La-Icp Analyses of GJ-1, Plesovice, and FC1 Reference Materials
NASA Astrophysics Data System (ADS)
Feldman, J. D.; Möller, A.; Walker, J. D.
2014-12-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology relies on external reference standards to monitor and correct for different mass fractionation effects and instrument drift. Common zircon reference materials used within the community, including the KU Isotope Geochemistry Laboratory, are GJ-1 (207Pb/206Pb age: 608.53 +/- 0.37Ma; Jackson et al., 2004), Plesovice (337.13 +/- 0.37 Ma; Slama et al., 2008), and FC-1 (1099.0 +/-0.6 Ma; Paces and Miller, 1993). The age distribution of zircon reference material varies slightly from sample fraction to sample fraction, and the published results for GJ-1 are slightly discordant. As a result, using the published data for the distributed standard splits can lead to small systematic variations when comparing datasets from different labs, and more high precision data are needed to evaluate potential inhomogeneity of sample splits used in different laboratories. Here we characterize these reference materials with cathodoluminescence, LA-ICP-MS traverses across grains, and high precision CA-TIMS to better constrain the ages and assess zoning of these standards, and present the data for comparison with other laboratories. Reducing systematic error by dating our own reference material lends confidence to our analyses and allows for inter-laboratory age reproducibility of unknowns. Additionally, the reduction in propagated uncertainties (especially in GJ-1, for which both the red and yellow variety will be analyzed) will be used to improve long-term reproducibility, comparisons between samples of similar age, detrital populations and composite pluton zircons. Jackson, S.E., et al., 2004, Chemical Geology, v. 211, p. 47-69. Paces, J.B. & Miller, J.D., 1993, Journal of Geophysical Research, v. 80, p. 13997-14013. Slama, J., et al., 2008, Chemical Geology, v. 249. p. 1-35.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Rao, A. S.
2016-04-28
Cast austenitic stainless steel (CASS) materials, which have a duplex structure consisting of austenite and ferrite phases, are susceptible to thermal embrittlement during reactor service. In addition, the prolonged exposure of these materials, which are used in reactor core internals, to neutron irradiation changes their microstructure and microchemistry, and these changes degrade their fracture properties even further. This paper presents a revision of the procedure and correlations presented in NUREG/CR-4513, Rev. 1 (Aug. 1994) for predicting the change in fracture toughness and tensile properties of CASS components due to thermal aging during service in light water reactors (LWRs) at 280–330more » °C (535–625 °F). The methodology is applicable to CF-3, CF-3M, CF-8, and CF-8M materials with a ferrite content of up to 40%. The fracture toughness, tensile strength, and Charpy-impact energy of aged CASS materials are estimated from known material information. Embrittlement is characterized in terms of room-temperature (RT) Charpy-impact energy. The extent or degree of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a material after long-term aging) is determined from the chemical composition of the material. Charpy-impact energy as a function of the time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The fracture toughness J-R curve for the aged material is then obtained by correlating RT Charpy-impact energy with fracture toughness parameters. A common “predicted lower-bound” J-R curve for CASS materials of unknown chemical composition is also defined for a given grade of material, range of ferrite content, and temperature. In addition, guidance is provided for evaluating the combined effects of thermal and neutron embrittlement of CASS materials used in the reactor core internal components. The correlations for estimating the change in tensile strength, including the Ramberg/Osgood parameters for strain hardening, are also described.« less
[Novel resources utilization technique for rural domestic refuse].
Qiu, Cai-Di; He, Ruo; Chen, Song-Mei; Lou, Bin; Shen, Dong-Sheng
2009-03-15
In order to speed up rural domestic refuse resources utilization, intermittent aeration and continuous aeration were applied to treat rural domestic refuse after anaerobic fermentation. Three kinds of refuse were selected on base of fermentative age, i.e. three months, five months and seven months. Results showed that aeration could remove water and organic materials of the refuse effectively. Points of view on aeration, continuous aeration was better than intermittent aeration, and on the other side, water removal rate increased with ventilation and decreased with fermentative age in the condition of intermittent aeration. On organic materials removal point, it was affected by fermentative age significantly, i. e. increase of fermentative age could resulted in decrease in the removal efficiency. In conclusion, intermittent aeration of 0.06 m3/(min x m3) was considered to be feasible for treatment. The water removal efficiency of three months, five months and seven months fermentative age refuse could be up to 49.1%, 45.3% and 44.0%, and organic compound removal efficiency was 41.9%, 24.8% and 13.1%, respectively, after intermittent aeration for 21 d. Moreover, concentrated effect was presented on major nutrient ingredients, such as total nitrogen, phosphorus, and potassium during the aeration, which realized for resources utilization.
ERIC Educational Resources Information Center
Huang, William C. W.; Lin, Yi-MeiJoy; Chiu, Ching Che J.; Chiu, Chia-Huei; Chang, Fu-Sheng
2017-01-01
Purpose: This study was to investigate whether there is an age dependent effect on the association between ADIPPOR1 SNP and hypertriglyceridemia for each gender. Materials and Methods: 116 individuals aged 20 and above who claimed to be healthy were enrolled and grouped into male and female populations. Blood samples were taken to determine…
NASA Technical Reports Server (NTRS)
Jacobs, J. A.
1976-01-01
A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.
Out-Life Characteristics of IM7/977-3 Composites
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Sutter, James K.; Hou, Tan-Hung; Scheiman, Daniel A.; Martin, Richard E.; Maryanski, Michael; Schlea, Michelle; Gardner, John M.; Schiferl, Zack R.
2010-01-01
The capability to manufacture large structures leads to weight savings and reduced risk relative to joining smaller components. However, manufacture of increasingly large composite components is pushing the out-time limits of epoxy/ carbon fiber prepreg. IM7/977-3 is an autoclave processable prepreg material, commonly used in aerospace structures. The out-time limit is reported as 30 days by the manufacturer. The purpose of this work was to evaluate the material processability and composite properties of 977-3 resin and IM7/977-3 prepreg that had been aged at room temperature for up to 60 days. The effects of room temperature aging on the thermal and visco-elastic properties of the materials were investigated. Neat resin was evaluated by differential scanning calorimetry to characterize thermal properties and change in activation energy of cure. Neat resin was also evaluated by rheometry to characterize its processability in composite fabrication. IM7/977-3 prepreg was evaluated by dynamic mechanical analysis to characterize the curing behavior. Prepreg tack was also evaluated over 60 days. The overall test results suggested that IM7/977-3 was a robust material that offered quality laminates throughout this aging process when processed by autoclave.
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041
NASA Astrophysics Data System (ADS)
Moon, Kyoung-Sik; Liong, Silvia; Li, Haiying; Wong, C. P.
2004-11-01
The contact resistance stability of isotropically conductive adhesives (ICAs) on non-noble metal surfaces under the 85°C/85% relative humidity (RH) aging test was investigated. Previously, we demonstrated that galvanic corrosion has been shown as the main mechanism of the unstable contact resistance of ICAs on non-noble metal surfaces. A sacrificial anode was introduced into the ICA joint for cathodic protection. Zinc, chromium, and magnesium were employed in the ICA formulations as sacrificial anode materials that have much lower electrode-potential values than the metal pad surface, such as tin or tin-based alloys. The effect of particle sizes and loading levels of sacrificial anode materials were studied. Chromium was not as effective in suppressing corrosion as magnesium or zinc because of its strong tendency to self-passivate. The corrosion potential of ICAs was reduced by half with the addition of zinc and magnesium into the ICA formulation. The addition of zinc and magnesium was very effective in controlling galvanic corrosion that takes place in the ICA joints, resulting in stabilized contact resistance of ICAs on Sn, SnPb, and SnAgCu surfaces during the 85°C/85% RH aging test.
LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.
Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy Office (DOE) of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.« less
Effects of a Regular Motor Activity on Somatic and Fitness Variables in Boys Aged 17-18 Years
ERIC Educational Resources Information Center
Piotrowska, Joanna
2011-01-01
Study aim: To assess the somatic and fitness changes in semisedentary boys persuaded to undertake Nordic Walking activities throughout a school year. Material and methods: Two groups of schoolboys aged 17-18 years were studied: regularly attending physical education (PE) classes (Group A; n = 46) and those who avoided PE classes by submitting sick…
Acoustic emission: A useful tool for damage evaluation in composite materials
NASA Astrophysics Data System (ADS)
Mouzakis, Dionysios E.; Dimogianopoulos, Dimitrios G.
2018-02-01
High performance composites for aviation-related structures are prone to constant aging by environmental agents. Previous data from our work reported on the stiffening behaviour of glass fibre polyester composites used in the manufacturing of wind turbine blades. Airplanes from such composites are already on service nowadays. This justifies the detailed study of the exposure of high performance materials to environmental conditions such as varying temperature, humidity, ultraviolet radiation, in order to assess the impact of these important aging factors on their mechanical behaviour. The dramatic changes in the dynamic mechanical response of polymer matrix carbon fibre composites upon exposure to acceleration aging has been assessed in the present study. In order to assess the synergistic effect action of temperature and humidity on composites subjected to changes of temperature from -35 to +40 °C and humidity variations from <10% to 95% RH (non-condensing) specimens were stored in a climatic chamber for 60 days. Conditions were cycled, as if actual flight cycles of 3-4 hours per flight, were to be simulated. Dynamic mechanical analysis tests were performed in three point bending mode. Scanning of frequency and temperature were performed in order to determine both the viscoelastic response as well as the time-dependent behaviour of the aged materials. All tests were run both for aged and pristine materials for comparison purposes. Three point bending testing was performed in both static as well as in Dynamic mechanical analysis, for a range of temperatures and frequencies. Acoustic Emission damage detection was also performed during the three point bending test both in static and dynamic mode. The aged materials had gained in dynamic stiffness. In addition, that, the gain in the storage moduli, was accompanied by a decrease in the material damping ability, as determined by the tanδ parameter. In the final stages of the study, impact testing was performed on both pristine and aged specimens. The experimentally recorded force/time signals were utilized for concluding on the specimens' condition, by means of signal based damage detection methodologies. Effort was invested in utilizing signal analysis in order to get comparative aging-related information on the tested specimens in order to ultimately validate results of mechanical testing.
Local geology controlled the feasibility of vitrifying Iron Age buildings.
Wadsworth, Fabian B; Heap, Michael J; Damby, David E; Hess, Kai-Uwe; Najorka, Jens; Vasseur, Jérémie; Fahrner, Dominik; Dingwell, Donald B
2017-01-12
During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called 'vitrified forts'. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.
NASA Astrophysics Data System (ADS)
Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu
2016-08-01
Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.
Kim, Junkyeong; Lee, Chaggil; Park, Seunghee
2017-06-07
Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.
Kim, Junkyeong; Lee, Chaggil; Park, Seunghee
2017-01-01
Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process. PMID:28590456
Mechanical behavior of a triaxially braided textile composite at high temperature
NASA Astrophysics Data System (ADS)
El Mourid, Amine
The work presented in this thesis aimed at understanding the influence of viscoelasticity, temperature and aging on the mechanical behaviour of a textile composite using experimental, analytical and numerical tools. The studied material was a triaxially braided composite with fibres in the 0°/+/-60° directions. The yarns were made of carbon fibres, embedded in an MVK10 temperature resistant polyimide matrix. The first step consisted in developing analytical and numerical frameworks to predict viscoelastic behaviour in textile composites. Simulations were performed for both braided and woven textile architectures, at different stiffness contrasts and yarns volume fractions. The analytical framework accuracy was verified with the help of the numerical simulations. An important finding of this study was that the analytical framework, combined with the Mori-Tanaka model, leads to relatively accurate predictions for both the permanent and transient parts. Therefore, the authors believe that the Mori-Tanaka model with an adjusted aspect ratio to take into account yarn curvature is reliable for predicting viscoelastic behaviour in textile composites. The textile composite that was studied in this project did not display viscoelastic behaviour, due to the high yarn volume fraction. However, the framework remains relevant for higher temperature applications or lower yarn volume fractions. The second step was to investigate the temperature effect on the tensile behavior of the carbon/MVK10 triaxially braided composite material studied in this project. To achieve this goal, a series of room and high temperature tensile tests on both matrix and composite samples were performed. The tests on composite samples were performed along two different material directions at the maximum service temperature allowed by the Federal Aviation Administration for aircraft components, and a dedicated replication technique was developed in order to track crack densities as a function of loading, for both test temperatures. Then, both analytical and numerical homogenization models were used to quantify the stress distribution at the yarns level as a function of the applied temperature. Finally, the homogenization models were used to explain the failure mechanisms obtained at both temperatures, for the two material directions tested. The study revealed that the impact of the temperature on the failure mechanisms of the textile composite was dependent on the loading direction. It was observed that the yarns and matrix were more compliant at high temperature, especially for the transverse and shear properties. These changes had negligible effects on the elastic properties of the composite in both directions. However, they created local stress redistributions at the yarns level, which in turn affected the ultimate tensile strength of the composite. The concentration of stress in specific yarns decreased the UTS of the composite and changed the damage profile during loading. The analysis showed the potential of analytical and numerical models to explain failure paths in textile composites. At high temperature, the evolution in the constituent elastic properties was responsible for the changes in the stress profile in the material. The final step consisted in the study of the aging effect on the tensile strength and the failure mechanisms of a carbon/MVK10 triaxially braided composite for two material directions. The damage evolution was monitored with the help of edge and cross-section microscopical observations. At the maximum service temperature, the effect of physical aging on the composite's stiffness and density was negligible while the effect of chemical aging was gradually detrimental to the UTS. It was found that the UTS decreased by 30% in Direction 1 and by 20% in Direction 2 after 9 months of aging. Cracks initiated after 1 month of aging, preferentially on the edge surfaces of the specimen and grew inward as aging time increased. The yarns that were transverse to the sample cutting direction acted as catalyst to the aging process, creating anisotropy in the reduction of mechanical properties. Thermal oxidation was the main agent behind UTS degradation in the triaxially braided composite, causing the initiation of transverse cracks on transverse yarns at the surface of the specimen. The crack density and depth increased during aging, further weakening the material. The FAA requirement for a maximum service temperature is suitable to prevent physical aging. However, it does not prevent UTS degradation caused by chemical aging when fibres are in contact with the oxidizing environment. Nevertheless, the MVK10 matrix tested in this work exhibited relative properties retention similar to that of PMR15, which might make this matrix a suitable replacement. (Abstract shortened by UMI.).
Time perspective and positivity effects in Alzheimer's disease.
Bohn, Linzy; Kwong See, Sheree T; Fung, Helene H
2016-09-01
This study tested whether time perspective, a central tenant of socioemotional selectivity theory (Carstensen, 2006), moderates positivity effects in emotional memory. To provide measures of time perspective, young (YA; M = 22.48 years), young-old (YO; M = 67.56 years), old-old adults (OO; M = 80.24 years), and participants with moderate severity Alzheimer's disease (PAD; M = 84.28 years) completed a line task and reported subjective age. As expected, YA, YO, and OO reported successively more constrained future time perspectives. PAD showed distortion in time perspective, envisioning a future comparable with the YO, although closer matched in chronological age to OO adults. To evince positivity effects, participants were oriented to pairs of emotional images and were then tested for memory (recall and recognition) of the images. Recall and recognition memory for the images indicated an age-related advantage for positive over negative material (positivity effects). Time perspective, however, did not moderate these age effects. In memory performance, PAD were more comparable with OO adults with whom they shared a similar chronological age, rather than YO adults, who had a corresponding time perspective. These results suggest that age correlates that are shared by PAD and OO, such as reduced processing resources, rather than time perspective, may drive the age associated positivity effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The effect of alpha-tocopherol on the oxidation and free radical decay in irradiated UHMWPE.
Oral, Ebru; Rowell, Shannon L; Muratoglu, Orhun K
2006-11-01
We developed a radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) stabilized with alpha-tocopherol (Vitamin E) as a bearing material in total joint replacements. The stabilizing effect of alpha-tocopherol on free radical reactions in UHMWPE is not well understood. We investigated the effect of alpha-tocopherol on the oxidation and transformation of residual free radicals during real-time aging of alpha-tocopherol-doped, irradiated UHMWPE (alphaTPE) and irradiated UHMWPE (control). Samples were aged at 22 degrees C (room temperature) in air, at 40 degrees C in air and at 40 degrees C in water for 7 months. During the first month, alphaTPE showed some oxidation at the surface, which stayed constant thereafter. Control exhibited substantial oxidation in the subsurface region, which increased with time. The alkyl/allyl free radicals transformed to oxygen centered ones in both materials; this transformation occurred faster in alpha-TPE. In summary, the real-time oxidation behavior of alpha-TPE was consistent with that observed using accelerated aging methods. This new UHMWPE is oxidation resistant and is expected to maintain its properties in the long term.
In vitro cytotoxicity of traditional versus contemporary dental ceramics.
Messer, Regina L W; Lockwood, Petra E; Wataha, John C; Lewis, Jill B; Norris, Samuel; Bouillaguet, Serge
2003-11-01
The biocompatibility of new dental ceramics has not been assessed with the same scrutiny as has been applied to alloys and composites. Yet, the biocompatibility of ceramics is critical to the long-term success of dental prostheses because ceramics are in close contact with oral tissues for extended periods. Five dental ceramics (2 traditional feldspathic veneer porcelains [Vita Omega and Duceragold], 2 lithium disilicate pressable materials [Stylepress and Empress-2], and a pressable leucite-based material [Empress-1]) were tested for their ability to alter cellular mitochondrial dehydrogenase activity after fabrication using a tetrazolium assay, after aging for 2 weeks in a biologic solution and after post-aging polishing with either a fine diamond or diamond polishing paste. Cellular responses were compared with polytetrafluoroethylene controls (analysis of variance, Tukey pairwise post-hoc comparison, alpha=.05). The feldspathic porcelains caused only mild (<25% of controls) mitochondrial suppression regardless of aging or polishing. The pressable leucite-based material initially caused a 5% stimulation (not significant) of mitochondrial activity, which decreased significantly (P<.05) by 30% with aging to levels comparable to the feldspathic porcelains, and did not change with polishing. Both lithium disilicate materials caused an initial suppression of mitochondrial activity that decreased significantly with aging, but Empress-2 was severely cytotoxic initially (<20% of controls, P<.01), and became more cytotoxic again after polishing. Stylepress was less cytotoxic initially (85% of controls, not significant) and did not become cytotoxic again after polishing. Dental ceramics are not equivalent in their in vitro biologic effects, even within the same class of material, and biologic safety should not be assumed. Most ceramics caused only mild in vitro suppression of cell function to levels that would be acceptable on the basis of standards used to evaluate alloys and composites. However, 1 Li-disilicate material (Empress-2) exhibited cytotoxicity that would not be deemed biologically acceptable on the basis of prevailing empirical standards for dental alloys and composites.
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman
2010-01-01
Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola
Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.
Mechanical characterization of commercial biodegradable plastic films
NASA Astrophysics Data System (ADS)
Vanstrom, Joseph R.
Polylactic acid (PLA) is a biodegradable plastic that is relatively new compared to other plastics in use throughout industry. The material is produced by the polymerization of lactic acid which is produced by the fermentation of starches derived from renewable feedstocks such as corn. Polylactic acid can be manufactured to fit a wide variety of applications. This study details the mechanical and morphological properties of selected commercially available PLA film products. Testing was conducted at Iowa State University and in conjunction with the United States Department of Agriculture (USDA) BioPreferred ProgramRTM. Results acquired by Iowa State were compared to a similar study performed by the Cortec Corporation in 2006. The PLA films tested at Iowa State were acquired in 2009 and 2010. In addition to these two studies at ISU, the films that were acquired in 2009 were aged for a year in a controlled environment and then re-tested to determine effects of time (ageing) on the mechanical properties. All films displayed anisotropic properties which were confirmed by inspection of the films with polarized light. The mechanical testing of the films followed American Society for Testing and Materials (ASTM) standards. Mechanical characteristics included: tensile strength (ASTM D882), elongation of material at failure (ASTM D882), impact resistance (ASTM D1922), and tear resistance (ASTM D4272). The observed values amongst all the films ranged as followed: tensile strength 33.65--8.54 MPa; elongation at failure 1,665.1%--47.2%; tear resistance 3.61--0.46 N; and puncture resistance 2.22--0.28 J. There were significant differences between the observed data for a number of films and the reported data published by the Cortec Corp. In addition, there were significant differences between the newly acquired material from 2009 and 2010, as well as the newly acquired materials in 2009 and the aged 2009 materials, suggesting that ageing and manufacturing date had an effect on the mechanical properties. The morphological properties were tested using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The material properties examined were: glass transition temperature (Tg), degree of crystallinity (Wc), and material composition in terms of inorganic content. Results from DSC testing revealed that the glass transition temperatures ranged from 43.2--52.2 °C, the degree of crystallintiy ranged from 4.1--13.8%, and material composition of the films ranged from 89.9--100% organic materials. The morphological examination of the polymers also indicated that the mechanical properties of the films may have been altered by the manufacturing and processing of the film material or by the addition of filler or plasticizers.
ERIC Educational Resources Information Center
Stansell, John C.; And Others
Studies were conducted to investigate cue system utilization by three groups of readers--six second graders, six ninth graders, and four adults past the age of sixty who were rated as mature readers. The second graders read materials that varied according to organizational structure, while the other groups read materials that differed in the…
Evaluation of the durability of composite tidal turbine blades.
Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique
2013-02-28
The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.
Dose rate effects in radiation degradation of polymer-based cable materials
NASA Astrophysics Data System (ADS)
Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.
2003-08-01
Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.
Kim, So-Yeon; Giovanello, Kelly S.
2011-01-01
Healthy aging is often accompanied by episodic memory decline. Prior studies have consistently demonstrated that older adults show disproportionate deficits in relational memory (RM) relative to item memory (IM). Despite rich evidence of an age-related RM deficit, the source of this deficit remains unspecified. One of the most widely investigated factors of age-related RM impairment is a reduction in attentional resources. However, no prior studies have demonstrated that reduced attentional resources are the critical source of age-related RM deficits. Here, we utilized qualitatively different attention tasks, and tested whether reduced attention for relational processing underlies the RM deficit observed in aging. In Experiment 1, we imposed either item-detection or relation-detection attention tasks on young adults during episodic memory encoding, and found that only the concurrent attention task involving relational processing disproportionately impaired RM performance in young adults. Moreover, by ruling out the possible confound of task-difficulty on the disproportionate RM impairment, we further demonstrated that reduced relational attention is a key factor for the age-related RM deficit. In Experiment 2, we replicated the results from Experiment 1 using different materials of stimuli and found that the effect of relational attention on RM is material-general. The results of Experiment 2 also showed that reducing attentional resources for relational processing in young adults strikingly equated their RM performance to that of older adults. Thus, the current study documents the first evidence that reduced attentional resources for relational processing are a critical factor for the relational memory impairment observed in aging. PMID:21707178
The Long-Term Effectiveness of Chemical vs. Polymeric Antiozonants in Rubber
1976-02-01
August 1954. 2. Lerner, M.E., Rubber Age . 105, 57, December 1973. 3. Buist, J., British Patent 939, 359 (Application made in Canada, No. 802, 137...J.M., Kindle, R.W., and Mazzeo, R.A., Rubber World. 98. 67, 1966 (Abstract only). 6 Samuels, M.E., and Wirth, K.H., Rubber Age . 99. 73, 1967. 7... Age . 101. 47, 1969. 12 ASTM Standards on Rubber Products, March 1968, American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackwell, B.; Rutter, N.W.
Detailed amino acid analysis of bones, teeth, and antler from several mammal species have shown that concentrations of several amino acids can be related to three factors: type of material analyzed, diagenetic alteration of the material, and relative age of the fossil. Concentrations of several amino acids are significantly different in enamel compared to those of dentine or cement. This can be used to check that no contamination of one material by another has occurred, which is critical for using the data for amino acid dating, since all three materials have different racemization rates for some acids. With increased inmore » growth of secondary minerals, generally reduced amino acid concentrations are observed. Interacid ratios and concentrations vary significantly the norms expected for the type of material with increasing degrees of alteration. These effects can be linked to abnormal racemization ratios observed in the same samples. Therefore, abnormal concentrations and/or interacid ratios can be used to detect samples in which the D/L amino acid ratios otherwise appear normal, thereby insuring better accuracy of amino acid racemization analysis. For unaltered fossils, with increasing sample age regardless the type of material, some amino acids steadily degrade, while others actually increase in concentration initially due to their generation as by-products of decay. Preliminary studies indicate that this progressive alteration can used to complement racemization data for determining relative stratigraphic sequences.« less
NASA Astrophysics Data System (ADS)
Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu
2013-06-01
Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.
ERIC Educational Resources Information Center
O'Malley, William
1969-01-01
Discussed are the exciting advantages and possibilities of using polystyrene trays found in meat packaging for printmaking. Among them are ease of use, low cost and quick availability of materials, beautiful textural effects. Procedures are explained for various age levels. (BF)
Materials Centered Science and Manipulative Skill
ERIC Educational Resources Information Center
Struve, Nancy L.; And Others
1974-01-01
Evaluated were effects of experience with two physical science units adapted for use by the visually impaired on the manipulative skills of 14 visually impaired low income students from 9 to 19 years of age. (DB)
Choi, Kelvin; Forster, Jean L
2014-11-01
We examined the exposure to tobacco direct mail marketing and its effect on subsequent smoking behaviors in a US Midwest regional cohort of young adults. Data were collected from 2622 young adults (mean age = 24 years) in 2010 to 2011 (baseline) and 2011 to 2012 (follow-up). We collected information on demographics, tobacco use, and exposure to tobacco direct mail materials in the previous 6 months at baseline. Smoking behaviors were reassessed at follow-up. We investigated the characteristics associated with receiving these materials at baseline, and the associations between receiving cigarette coupons in the mail at baseline and smoking behaviors at follow-up. Thirteen percent of participants reported receiving tobacco direct mail materials in the previous 6 months. Receipt of these materials was associated with age, education, and tobacco use (P < .05). Among those who received these materials, 77% and 56% reported receiving coupons for cigarettes and other tobacco products, respectively. Among baseline nonsmokers and ex-smokers, receiving coupons was associated with becoming current smokers at follow-up (P < .05). Among baseline current smokers, receiving coupons was associated with lower likelihood of smoking cessation at follow-up (P < .05). Tobacco direct mail marketing promoted and sustained smoking behaviors among US Midwest young adults. Regulating this marketing strategy might reduce the prevalence of smoking in this population.
Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths
Jiao, Z. B.; Luan, J. H.; Miller, M. K.; ...
2016-02-19
The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less
Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths
Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.
2016-01-01
The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for two interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. The co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications. PMID:26892834
Advances in Integrated Computational Materials Engineering "ICME"
NASA Astrophysics Data System (ADS)
Hirsch, Jürgen
The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined. The use of a unified constitutive model for hot section component analyses was demonstrated by applying the Walker model and the MARC finite-element code to a B1900+Hf airfoil problem.
Slowing dynamics in supercooled liquids and other soft materials
NASA Astrophysics Data System (ADS)
Yardimci, Hasan
The slow structural dynamics displayed by supercooled liquids and the transition to an out-of-equilibrium glass state that they engender are among the most challenging issues in condensed matter physics. This thesis reports experimental studies designed to elucidate central aspects of these slow dynamics and the nature of the glass state. The subjects of these studies include glass forming molecular liquids and other soft materials that have been advanced as model glassy systems such as clay suspensions and block copolymer micelle solutions. The main experimental techniques employed in these investigations have been dielectric susceptibility and neutron scattering. In the first half of this thesis, we report frequency-dependent dielectric susceptibility measurements characterizing the evolution in the dynamical properties, or aging, of two supercooled liquids, sorbitol and xylitol, quenched below their calorimetric glass transition temperatures, Tg. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibilities of both liquids possess a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench below Tg, the susceptibility slowly approaches equilibrium behavior. For both liquids features of the Johari-Goldstein relaxation display a dependence on the time since the quench, or aging time, that is very similar to the age dependence of the alpha peak. Implications of these findings for aging in glasses and the nature of Johari-Goldstein relaxation are discussed. Further investigation of the aging in sorbitol reveals that it displays memory strikingly similar to that of a variety of glassy materials, particularly spin glasses. During a temporary stop in cooling, the susceptibility changes with time due to aging. The memory is revealed upon reheating as the susceptibility retraces these changes. To investigate the out-of-equilibrium state of the liquid as it displays this memory, we have employed a set of intricate thermal histories by interrupting the heating stage of the cycle and characterizing the subsequent aging. At temperatures above that of the original cooling stop, the liquid enters a state on heating with an effective age that is proportional to the duration of the stop, while at lower temperatures no effective age can be assigned and subtler behavior emerges. These results, which reveal differences with memory displayed by spin glasses, are discussed in the context of the liquid's energy landscape. In the second half of the thesis, we report neutron scattering measurements and dielectric studies on a set of disordered soft materials. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; van Aken, D. C.; Allison, J. E.
1995-12-01
The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ' strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles.
Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel
NASA Astrophysics Data System (ADS)
Kolluri, M.; Kryukov, A.; Magielsen, A. J.; Hähner, P.; Petrosyan, V.; Sevikyan, G.; Szaraz, Z.
2017-04-01
The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T41 value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high thermal stability.
Influence of different litter materials on cecal microbiota colonization in broiler chickens.
Torok, V A; Hughes, R J; Ophel-Keller, K; Ali, M; Macalpine, R
2009-12-01
A chicken growth study was conducted to determine if litter type influenced gut microbiota and performance in broilers. Seven bedding materials were investigated and included soft and hardwood sawdust, softwood shavings, shredded paper, chopped straw, rice hulls, and reused softwood shavings. Microbial profiling was done to investigate changes in cecal bacterial communities associated with litter material and age. Cecal microbiota were investigated at 14 and 28 d of age (n = 12 birds/litter material). At both ages, the cecal microbiota of chickens raised on reused litter was significantly (P < 0.05) different from that of chickens raised on any of the other litter materials, except softwood shavings at d 28. Cecal microbiota was also significantly different between birds raised on shredded paper and rice hulls at both ages. Age had a significant influence on cecal microbiota composition regardless of litter material. Similarity in cecal microbial communities among birds raised on the same litter treatment was greater at 28 d of age (29 to 40%) than at 14 d of age (25 to 32%). Bird performance on the different litter materials was measured by feed conversion ratio, live weight, and feed intake. Significant (P < 0.05) differences were detected in live weight at 14 d of age and feed intake at 14 and 28 d of age among birds (n = 160/treatment) raised on some of the different litter materials. However, no significant (P > 0.05) differences were observed in feed conversion ratio among birds raised on any of the 7 different litter materials at either 14 or 28 d of age. The type of litter material can influence colonization and development of cecal microbiota in chickens. Litter-induced changes in the gut microbiota may be partially responsible for some of the significant differences observed in early rates of growth; therefore, litter choice may have an important role in poultry gut health particularly in the absence of in-feed antibiotics.
NASA Astrophysics Data System (ADS)
Sant, Gaurav Niteen
The increased use of high-performance, low water-to-cement (w/c) ratio concretes has led to increased occurrences of early-age shrinkage cracking in civil engineering structures. To reduce the magnitude of early-age shrinkage and the potential for cracking, mitigation strategies using shrinkage reducing admixtures (SRAs), saturated lightweight aggregates, expansive cements and extended moist curing durations in construction have been recommended. However, to appropriately utilize these strategies, it is important to have a complete understanding of the driving forces of early-age volume change and how these methods work from a materials perspective to reduce shrinkage. This dissertation uses a first-principles approach to understand the mechanism of shrinkage reducing admixtures (SRAs) to generate an expansion and mitigate shrinkage at early-ages, quantify the influence of a CaO-based expansive additive in reducing unrestrained shrinkage, residual stress development and the cracking potential at early-ages and quantify the influence of shrinkage reducing admixtures (SRAs) and cement hydration (pore structure refinement) on the reduction induced in the fluid transport properties of the material. The effects of shrinkage reducing admixtures (SRAs) are described in terms of inducing autogenous expansions in cement pastes at early ages. An evaluation comprising measurements of autogenous deformation, x-ray diffraction (Rietveld analysis), pore solution and thermogravimetric analysis and electron microscopy is performed to understand the chemical nature and physical effects of the expansion. Thermodynamic calculations performed on the measured liquid-phase compositions indicate the SRA produces elevated Portlandite super-saturations in the pore solution which results in crystallization stress driven expansions. The thermodynamic calculations are supported by deformation measurements performed on cement pastes mixed in solutions saturated with Portlandite or containing additional Sodium Hydroxide. Further, to quantify the influence of temperature on volume changes in SRA containing materials, deformation measurements are performed at different temperatures. The results indicate maturity transformations are incapable of simulating volume changes over any temperature regime due to the influence of temperature on salt solubility and pore solution composition, crystallization stresses and self-desiccation. The performance of a CaO-based expansive additive is evaluated over a range of additive concentrations and curing conditions to quantify the reduction in restrained and unrestrained volume changes effected in low w/c cement pastes. The results suggest, under unrestrained sealed conditions the additive generates an expansion and reduces the magnitude of total shrinkage experienced by the material. However, the extent of drying shrinkage developed is noted to be similar in all systems and independent of the additive dosage. Under restrained sealed conditions, the additive induces a significant compressive stress which delays tensile stress development in the system. However, a critical additive concentration (around four percent) needs to be exceeded to appreciably reduce the risk of cracking at early-ages. The influence of shrinkage reducing admixtures (SRAs) is quantified in terms of the effects of SRA addition on fluid transport in cement-based materials. The change in the cement paste's pore solution properties, i.e., the surface tension and fluid-viscosity, induced by the addition of a SRA is observed to depress the fluid-sorption and wetting moisture diffusion coefficients, with the depression being a function of the SRA concentration. The experimental results are compared to analytical descriptions of water sorption and a good correlation is observed. These results allow for the change in pore-solution and fluid-transport properties to be incorporated from a fundamental perspective in models which aim to describe the service-life of structures. Several experimental techniques such as chemical shrinkage, low temperature calorimetry and electrical impedance spectroscopy are evaluated in terms of their suitability to identify capillary porosity depercolation in cement pastes. The evidence provided by the experiments is: (1) that there exists a capillary porosity depercolation threshold around 20% capillary porosity in cement pastes and (2) low temperature calorimetry is not suitable to detect porosity depercolation in cement pastes containing SRAs. Finally, the influence of porosity depercolation is demonstrated in terms of the reduction effected in the transport properties (i.e., the fluid-sorption coefficient) of the material as quantified using x-ray attenuation measurements. The study relates the connectivity of the pore structure to the fluid transport response providing insights related to the development of curing technologies and the specification of wet curing regimes during construction.
The electro-mechanical effect from charge dynamics on polymeric insulation lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alghamdi, H., E-mail: haalghamdi@nu.edu.sa; Faculty of Engineering, Najran University, Najran, P.O.Box 1988; Chen, G.
For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surroundingmore » the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.« less
Age of acquisition affects the retrieval of grammatical category information.
Bai, Lili; Ma, Tengfei; Dunlap, Susan; Chen, Baoguo
2013-01-01
This study investigated age of acquisition (AoA) effects on processing grammatical category information of Chinese single-character words. In Experiment 1, nouns and verbs that were acquired at different ages were used as materials in a grammatical category decision task. Results showed that the grammatical category information of earlier acquired nouns and verbs was easier to retrieve. In Experiment 2, AoA and predictability from orthography to grammatical category were manipulated in a grammatical category decision task. Results showed larger AoA effects under lower predictability conditions. In Experiment 3, a semantic category decision task was used with the same materials as those in Experiment 2. Different results were found from Experiment 2, suggesting that the grammatical category decision task is not merely the same as the semantic category decision task, but rather involves additional processing of grammatical category information. Therefore the conclusions of Experiments 1 and 2 were strengthened. In summary, it was found for the first time that AoA affects the retrieval of grammatical category information, thus providing new evidence in support of the arbitrary mapping hypothesis.
Ageing of a neutron shielding used in transport/storage casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizeyiman, Fidele; Alami, Aatif; Issard, Herve
2012-07-11
In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.
Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys
NASA Astrophysics Data System (ADS)
Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.
2018-04-01
10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.
A General Class of Test Statistics for Van Valen’s Red Queen Hypothesis
Wiltshire, Jelani; Huffer, Fred W.; Parker, William C.
2014-01-01
Van Valen’s Red Queen hypothesis states that within a homogeneous taxonomic group the age is statistically independent of the rate of extinction. The case of the Red Queen hypothesis being addressed here is when the homogeneous taxonomic group is a group of similar species. Since Van Valen’s work, various statistical approaches have been used to address the relationship between taxon age and the rate of extinction. We propose a general class of test statistics that can be used to test for the effect of age on the rate of extinction. These test statistics allow for a varying background rate of extinction and attempt to remove the effects of other covariates when assessing the effect of age on extinction. No model is assumed for the covariate effects. Instead we control for covariate effects by pairing or grouping together similar species. Simulations are used to compare the power of the statistics. We apply the test statistics to data on Foram extinctions and find that age has a positive effect on the rate of extinction. A derivation of the null distribution of one of the test statistics is provided in the supplementary material. PMID:24910489
A General Class of Test Statistics for Van Valen's Red Queen Hypothesis.
Wiltshire, Jelani; Huffer, Fred W; Parker, William C
2014-09-01
Van Valen's Red Queen hypothesis states that within a homogeneous taxonomic group the age is statistically independent of the rate of extinction. The case of the Red Queen hypothesis being addressed here is when the homogeneous taxonomic group is a group of similar species. Since Van Valen's work, various statistical approaches have been used to address the relationship between taxon age and the rate of extinction. We propose a general class of test statistics that can be used to test for the effect of age on the rate of extinction. These test statistics allow for a varying background rate of extinction and attempt to remove the effects of other covariates when assessing the effect of age on extinction. No model is assumed for the covariate effects. Instead we control for covariate effects by pairing or grouping together similar species. Simulations are used to compare the power of the statistics. We apply the test statistics to data on Foram extinctions and find that age has a positive effect on the rate of extinction. A derivation of the null distribution of one of the test statistics is provided in the supplementary material.
Effects of SiC whiskers and particles on precipitation in aluminum matrix composites
NASA Astrophysics Data System (ADS)
Papazian, John M.
1988-12-01
The age-hardening precipitation reactions in aluminum matrix composites reinforced with discontinuous SiC were studied using a calorimetric technique. Composites fabricated with 2124, 2219, 6061, and 7475 alloy matrices were obtained from commercial sources along with unreinforced control materials fabricated in a similar manner. The 7475 materials were made by a casting process while the others were made by powder metallurgy: the SiC reinforcement was in the form of whiskers or particulate. It was found that the overall age-hardening sequence of the alloy was not changed by the addition of SiC, but that the volume fractions of various phases and the precipitation kinetics were substantially modified. Precipitation and dissolution kinetics were generally accelerated. A substantial portion of this acceleration was found to be due to the powder metallurgy process employed to make the composites, but the formation kinetics of some particular precipitate phases were also strongly affected by the presence of SiC. It was observed that the volume fraction of GP zones able to form in the SiC containing materials was significantly reduced. The presence of SiC particles also caused normally quench insensitive materials such as 6061 to become quench sensitive. The microstructural origins of these effects are discussed.
DOT National Transportation Integrated Search
2010-12-01
Bridges are continuously subjected to destructive effects of material aging, widespread corrosion of steel : reinforcing bars in concrete structures, corrosion of steel structures and components, increasing traffic : volume and overloading, or simply...
Long-term aging of recycled binders.
DOT National Transportation Integrated Search
2015-07-01
Asphalt pavement is Americas most recycled material. Eighty million tons of asphalt, nearly 80% of all milled asphalt pavement, : is recycled every year [1]. To effectively maintain its 40,000 miles of paved roads, the Florida Department of Transp...
Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves
2010-12-01
Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.
NASA Astrophysics Data System (ADS)
Liang, Yanli; Ding, Xinmei; Zhao, Ming; Wang, Jianli; Chen, Yaoqiang
2018-06-01
To stabilize Pt, Magnesium-modified SiO2-Al2O3 materials was used to impregnate with Pt, which could strengthen the bonding effect between Pt and Mg. Before and after aging, both showed a higher dispersion. High valence state of Pt in fresh modified catalyst was unfavorable of NO oxidation, indicating that the valence state of Pt was the leader factor in fresh catalytic performance. While for the aged Mg-modified sample, its reaction temperature of 30% NO conversion lowered by around 30 °C. The Pt stabilization via interacting with Mg derives a relation that the variation of Pt valence state and its exposed sites played a significant role in fresh and aged catalytic NO activity, respectively.
Effects of Selected Meditative Asanas on Kinaesthetic Perception and Speed of Movement
ERIC Educational Resources Information Center
Singh, Kanwaljeet; Bal, Baljinder S.; Deol, Nishan S.
2009-01-01
Study aim: To assess the effects of selected meditative "asanas" on kinesthetic perception and movement speed. Material and methods: Thirty randomly selected male students aged 18-24 years volunteered to participate in the study. They were randomly assigned into two groups: A (medidative) and B (control). The Nelson's movement speed and…
Age- and sex-specific thorax finite element model development and simulation.
Schoell, Samantha L; Weaver, Ashley A; Vavalle, Nicholas A; Stitzel, Joel D
2015-01-01
The shape, size, bone density, and cortical thickness of the thoracic skeleton vary significantly with age and sex, which can affect the injury tolerance, especially in at-risk populations such as the elderly. Computational modeling has emerged as a powerful and versatile tool to assess injury risk. However, current computational models only represent certain ages and sexes in the population. The purpose of this study was to morph an existing finite element (FE) model of the thorax to depict thorax morphology for males and females of ages 30 and 70 years old (YO) and to investigate the effect on injury risk. Age- and sex-specific FE models were developed using thin-plate spline interpolation. In order to execute the thin-plate spline interpolation, homologous landmarks on the reference, target, and FE model are required. An image segmentation and registration algorithm was used to collect homologous rib and sternum landmark data from males and females aged 0-100 years. The Generalized Procrustes Analysis was applied to the homologous landmark data to quantify age- and sex-specific isolated shape changes in the thorax. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant model was morphed to create age- and sex-specific thoracic shape change models (scaled to a 50th percentile male size). To evaluate the thoracic response, 2 loading cases (frontal hub impact and lateral impact) were simulated to assess the importance of geometric and material property changes with age and sex. Due to the geometric and material property changes with age and sex, there were observed differences in the response of the thorax in both the frontal and lateral impacts. Material property changes alone had little to no effect on the maximum thoracic force or the maximum percent compression. With age, the thorax becomes stiffer due to superior rotation of the ribs, which can result in increased bone strain that can increase the risk of fracture. For the 70-YO models, the simulations predicted a higher number of rib fractures in comparison to the 30-YO models. The male models experienced more superior rotation of the ribs in comparison to the female models, which resulted in a higher number of rib fractures for the males. In this study, age- and sex-specific thoracic models were developed and the biomechanical response was studied using frontal and lateral impact simulations. The development of these age- and sex-specific FE models of the thorax will lead to an improved understanding of the complex relationship between thoracic geometry, age, sex, and injury risk.
Bracco, Laura; Bessi, Valentina; Alari, Fabiana; Sforza, Angela; Barilaro, Alessandro; Marinoni, Marinella
2011-06-01
Previous neuropsychological, lesional and functional imaging studies deal with the lateralization of memory processes, suggesting that they could be determined by the stage of processing (encoding vs retrieval) or by content (verbal vs non-verbal stimuli). The aims of the present study were: 1) to investigate if tasks that can be carried out using different strategies depending on the verbalizability of the material induce a lateralization of the mean cerebral blood flow velocity (mCBFV) in the middle cerebral arteries (MCAs), as monitored by a functional transcranial Doppler (fTCD); 2) to evaluate if these patterns of cerebral activation differ in relation to age, gender and task performance. Using TCD bilateral monitoring, we recorded mCBFV variations in 35 male and 35 female healthy, right-handed volunteers, classified as "young" (age range 21-40 years, n=35) or "old"(age range 41-60 years, n=35), performing four different cognitive tasks: encoding and recognition of Geometric Figures (GF), encoding and recall of Object Localization (OL) on a picture, encoding of a verbal Room Description (RD) and Arithmetic Skill (AS). We found a significant right lateralization for the OL recall phase, and a significant left lateralization for RD and AS. When we took into consideration gender, age and performance, there was a strong effect of age on both OL encoding and recall phase, with significant right lateralization in young volunteers not seen in the older ones. No difference in gender was detected. We found a gender×performance interaction for RD, with poor performance females showing significant left lateralization. According to our findings, hemispheric lateralization during memory encoding is material specific in both men and women, depending on the verbalizability of the material. mCBFV right lateralization during scene encoding and recall appears lost in older people, suggesting that healthy elderly could take advantage of mixed verbal and non-verbal strategies. Copyright © 2010 Elsevier Srl. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Yunlong
This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves was also performed. The temperature shift factors and aging shift rates for both PEEK and PPS were consistent for both creep and stress relaxation test results. Nonisothermal physical aging was monitored by sequential short-term creep tests after a series of temperature jumps; the resulting strain histories were analyzed to determine aging shift factors (ate) for each of the creep tests. The nonisothermal aging response was predicted using the KAHR-ate model, which combines the KAHR model of volume recovery with a suitable linear relationship between aging shift factors and specific volume. The KAHR-ate model can be utilized to both predict aging response and to determine necessary model parameters from a set of aging shift factor data. For the PEEK and PPS materials considered in the current study, predictions of mechanical response were demonstrated to be in good agreement with the experimental results for several complicated thermal histories. In addition to short-term nonisothermal aging, long-term creep tests under identical thermal conditions were also analyzed. Effective time theory was unitized to predict long-term response under both isothermal and nonisothermal temperature histories. The long-term compliance after a series of temperature changes was predicted by the KAHR- ate model, and the theoretical predictions and experimental data showed good agreement for various thermal histories. Lastly, physical aging behavior of PPS near the glass transition temperature was investigated, in order to observe the mechanical response in the process of the evolution of the material into equilibrium. At several temperatures near Tg, the time need to reach equilibrium were determined by the creep test results at various aging times. In addition to isothermal physical aging, mechanical shift factors in the period of approaching equilibrium at a common temperature after temperature up-jumps and down-jumps are monitored from creep tests; prior to these temperature jumps, the materials were aged to reach equilibrium states. From these tests, asymmetry of approaching equilibrium phenomenon in ate was observed, which is first-time reported in the literature. This finding shows the similarity between the thermodynamic and mechanical properties during structural relaxation. This work will lead to improved understanding of the viscoelastic behavior of glassy polymers, which is important for better understanding and design of PMCs in elevated temperature applications. With the above findings, this dissertation deals with nonisothermal physical aging of glassy polymers, including both experimental characterization and constructing a framework for predictions of mechanical behavior of polymeric materials under complicated thermal conditions. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Elise B.; Smith, L. Taylor; Williamson, Tyler K.
2013-11-21
Ionic liquids (ILs) are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long-term aging effect of the temperature on these materials. Imizadolium-, quaternary ammonium-, pyridinium-, and pyrrolidnium-based ILs with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 h (15 weeks) at 200 °C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. Finally, it was found that the minor changes in the cation chemistry could greatlymore » affect the properties of the ILs over time.« less
Effect of aging on the piezoelectric properties of sol-gel derived lead-free BCZT ceramics
NASA Astrophysics Data System (ADS)
Chandrakala, E.; Hazra, Binoy Krishna; Praveen, J. Paul; Das, Dibakar
2018-04-01
Aging is well observed in piezoelectric materials and plays a major role in determining the sustainabilityand performance issues of the piezoelectric based devices. Aging behavior is usually defined as the spontaneous decay of the piezoelectric properties with time. In this present study, the effect of aging on the piezoelectric properties of sol-gel derived lead-free BCZT ceramics has been investigated. During the aging process, the ferroelectric hysteresis loop was shifted along the field axis. The results revealed that the piezoelectric and dielectric properties were rapidly decreased linearly with increasing aging time and become stable with further increase in aging time. Piezoelectric (d33, g33 &kp) and dielectric properties (ɛr) were decreased approximately by 18% after 70 days. This could be due to the gradual stabilization of the ferroelectric domain structurewhich originates from the reorientation of the local defect dipoles and the migration of free oxygen vacancies towards the grain boundaries.
Sheridan, Kimberly M; Konopasky, Abigail W; Kirkwood, Sophie; Defeyter, Margaret A
2016-03-19
Research indicates that in experimental settings, young children of 3-7 years old are unlikely to devise a simple tool to solve a problem. This series of exploratory studies done in museums in the US and UK explores how environment and ownership of materials may improve children's ability and inclination for (i) tool material selection and (ii) innovation. The first study takes place in a children's museum, an environment where children can use tools and materials freely. We replicated a tool innovation task in this environment and found that while 3-4 year olds showed the predicted low levels of innovation rates, 4-7 year olds showed higher rates of innovation than the younger children and than reported in prior studies. The second study explores the effect of whether the experimental materials are owned by the experimenter or the child on tool selection and innovation. Results showed that 5-6 year olds and 6-7 year olds were more likely to select tool material they owned compared to tool material owned by the experimenter, although ownership had no effect on tool innovation. We argue that learning environments supporting tool exploration and invention and conveying ownership over materials may encourage successful tool innovation at earlier ages. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopoulos, Demetrios; Inghram, Linda; McCorkle, Linda
1997-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and (I) fiber-matrix bonding, (2) Mode II interlaminar fracture toughness, and (3) failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests definitely showed that, for aging times up to 1000 hr, the aging process caused no observable changes in the bulk of the three composite materials that---would degrade the shear properties of the material. Comparisons between the interlaminar shear strength (ILSS) measured by the short beam shear tests and the GII c test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU-4 fiber resulted in weight losses about twice those experienced by the AS-4 reinforced composites, the ones with the best TOS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beppler, Christina L
2015-12-01
A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less
Paul, C L; Redman, S; Sanson-Fisher, R W
2004-12-01
Printed materials have been a primary mode of communication in public health education. Three major approaches to the development of these materials--the application of characteristics identified in the literature, behavioral strategies and marketing strategies--have major implications for both the effectiveness and cost of materials. However, little attention has been directed towards the cost-effectiveness of such approaches. In the present study, three pamphlets were developed using successive addition of each approach: first literature characteristics only ('C' pamphlet), then behavioral strategies ('C + B' pamphlet) and then marketing strategies ('C + B + M' pamphlet). Each pamphlet encouraged women to join a Pap Test Reminder Service (PTRS). Each pamphlet was mailed to a randomly selected sample of 2700 women aged 50-69 years. Registrations with the PTRS were monitored and 420 women in each pamphlet group were surveyed by telephone. It was reported that the 'C + B' and 'C + B + M' pamphlets were significantly more effective than the 'C' pamphlet. The 'C + B' pamphlet was the most cost-effective of the three pamphlets. There were no significant differences between any of the pamphlet groups on acceptability, knowledge or attitudes. It was suggested that the inclusion of behavioral strategies is likely to be a cost-effective approach to the development of printed health education materials.
Sehgal, Manoti; Bhargava, Akshay; Gupta, Sharad; Gupta, Prateek
2016-01-01
A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope) analysis were done to estimate the phase transformation (m-phase fraction) and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.
NASA Technical Reports Server (NTRS)
1993-01-01
Small Business Innovation Research (SBIR) contracts led to two commercial instruments and a new subsidiary for Physical Sciences, Inc. (PSI). The FAST system, originally developed for testing the effect of space environment on materials, is now sold commercially for use in aging certification of materials intended for orbital operation. The Optical Temperature Monitor was designed for precise measurement of high temperatures on certain materials to be manufactured in space. The original research was extended to the development of a commercial instrument that measures and controls fuel gas temperatures in industrial boilers. PSI created PSI Environmental Instruments to market the system. The company also offers an Aerospace Measurement Service that has evolved from other SBIR contracts.
[Research on the aging of all-ceramics restoration materials].
Zhang, Dongjiao; Chen, Xinmin
2011-10-01
All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.
Age differences in memory for meaningful and arbitrary associations: A memory retrieval account.
Amer, Tarek; Giovanello, Kelly S; Grady, Cheryl L; Hasher, Lynn
2018-02-01
Older adults typically show poor associative memory performance relative to younger adults. This age-related effect, however, is mediated by the meaningfulness of the materials used, such that age differences are minimized with the use of information that is consistent with prior knowledge. While this effect has been interpreted as facilitative learning through schematic support, the role of memory retrieval on this effect has yet to be explored. Using an associative memory paradigm that varied the extent of controlled retrieval for previously studied meaningful or arbitrary associations, older and younger adults in the present study retrieved realistic and unrealistic grocery item prices in a speeded, or in a slow, more control-based retrieval condition. There were no age differences in memory for realistic (meaningful) prices in either condition; however, younger adults showed better memory than older adults for unrealistic prices in the controlled retrieval condition only. These results suggest that age differences in memory for arbitrary associations can, at least partly, be accounted for by age reductions in strategic, controlled retrieval. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II
2017-01-01
In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.
Local geology controlled the feasibility of vitrifying Iron Age buildings
Fabian B Wadsworth,; Michael J Heap,; Damby, David; Kai-Uwe Hess,; Jens Najorka,; Jérémie Vasseur,; Dominik Fahrner,; Donald B Dingwell,
2017-01-01
During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called ‘vitrified forts’. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.
Katz, Jennifer; Crean, Hugh F; Cerulli, Catherine; Poleshuck, Ellen L
2018-03-14
Introduction Although poverty is an established correlate of poorer mental health for pregnant women, limited research has examined the mental health effects of material hardship (i.e., difficulties meeting basic needs such as for food, transportation, or stable housing) during pregnancy. Methods The current research examined rates of material hardship among pregnant women seeking prenatal care and the relationships of both income and material hardship with depression and anxiety during pregnancy. Pregnant women (N = 892) responded to self-report measures of mental health symptoms, annual household income, and current material hardship in the waiting areas of community-based obstetrics/gynecology practices serving primarily financially disadvantaged patients. Results About 56% of the sample reported some form of material hardship. About 19% of the sample reported elevated depression, and 17% reported elevated anxiety. Both depression and anxiety were uniquely associated with lower income and greater material hardship, even after controlling for age, race/ethnicity, relationship status, and number of children in the home. Furthermore, material hardship partially mediated the effect of income on mental health symptoms. Discussion The physical, emotional, and social effects of deprivation of basic daily needs may contribute to pregnant women's experiences of mental health symptoms. These results converge with the broader literature focused on the social determinants of physical and mental health. When symptoms of depression and anxiety reflect distress related to material hardship, addressing unmet social needs may be more effective than mental health treatment.
Is there an age-related positivity effect in visual attention? A comparison of two methodologies.
Isaacowitz, Derek M; Wadlinger, Heather A; Goren, Deborah; Wilson, Hugh R
2006-08-01
Research suggests a positivity effect in older adults' memory for emotional material, but the evidence from the attentional domain is mixed. The present study combined 2 methodologies for studying preferences in visual attention, eye tracking, and dot-probe, as younger and older adults viewed synthetic emotional faces. Eye tracking most consistently revealed a positivity effect in older adults' attention, so that older adults showed preferential looking toward happy faces and away from sad faces. Dot-probe results were less robust, but in the same direction. Methodological and theoretical implications for the study of socioemotional aging are discussed. (c) 2006 APA, all rights reserved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A.; Weisgraber, T. H.; Gee, R. H.
M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned aboutmore » are: compression set, load retention, and stress-strain response (modulus).« less
Adverse reactions to orthodontic materials.
Sifakakis, I; Eliades, T
2017-03-01
Adverse effects can arise from the clinical use of orthodontic materials, due to the release of constituent substances (ions from alloys and monomers, degradation by-products, and additives from polymers). Moreover, intraoral aging affects the biologic properties of materials. The aim of this review is to present the currently identified major adverse effects of the metallic and polymeric components found in orthodontic appliances and materials. Corrosion in metallic orthodontic attachments releases metal ions, mainly iron, chromium, and nickel. The latter has received the greatest attention because of its reported potential for an allergic response. The formation of an oxide layer may inhibit the outward movement of ions, thereby acting as an obstacle for release. Titanium alloys have superior corrosion resistance than stainless steel. The efficiency of polymerisation is considered an essential property for all polymers. A poor polymer network is susceptible to the release of biologically reactive substances, such as bisphenol-A (BPA), which is capable of inducing hormone-related effects. The close proximity of a light-curing tip to the adhesive, pumice prophylaxis after bonding, indirect irradiation and mouth rinsing during the first hour after bonding may decrease BPA release. The adverse effects of some orthodontic materials should be considered during material selection and throughout orthodontic treatment, in order to minimise possible undesirable implications. © 2017 Australian Dental Association.
Poverty, deprivation, and depressive symptoms among older adults in Hong Kong.
Cheung, Kelvin Chi Kin; Chou, Kee-Lee
2017-10-31
Examine the association of income poverty and material deprivation with depression in old age. Our data contains a survey of 1,959 older Chinese adults in Hong Kong. We used the Geriatric Depression Scale - Short Form to assess their depressive symptoms. Income poverty was defined as having household income below half the median household income (adjusted by household size); material deprivation was measured by a validated 28-item material deprivation. In addition to income poverty and material deprivation, we also assessed the effect of socio-demographic variables, financial strain, health indicators, and social and community resources on depressive symptoms. Those who experienced material deprivation reported a significantly more severe depressive symptoms, even after income poverty and all other covariates were controlled for; the bivariate association between income poverty and depressive symptoms disappeared once material deprivation was controlled for. Further, we found a significant interaction effect between income poverty and material deprivation on depressive symptoms; and both engagement in cultural activities and neighborhood collective efficacy moderated the impact of being materially deprived on depressive symptoms. Our results have important policy implications for the measurement of poverty and for the development of anti-poverty measures for materially deprived older adults.
Effect of age and rainfall pH on contaminant yields from metal roofs.
Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark
2014-01-01
Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.
2016-01-01
An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration threshold. There was also an increase in the penetration resistance of the PR520 system impacted under cryogenic conditions.
The rheology and microstructure of aging thermoreversible colloidal gels & attractive driven glasses
NASA Astrophysics Data System (ADS)
Wagner, Norman; Gordon, Melissa; Kloxin, Christopher
The properties of colloidal gels and glasses are known to change with age, but the particle-level mechanisms by which aging occurs is are fully understood, which limits our ability to predict macroscopic behavior in these systems. In this work, we quantitatively relate rheological aging to structural aging of a model, homogenous gel and attractive driven glass by simultaneously measuring the bulk properties and gel microstructure using rheometry and small angle neutron scattering (Rheo-SANS), respectively. Specifically, we develop a quantitative and predictive relationship between the macroscopic properties and the underlying microstructure (i . e . , the effective strength of attraction) of an aging colloidal gel and attractive driven glass and study it as a function of the thermal and shear history. Analysis with mode coupling theory is consistent with local particle rearrangements as the mechanism of aging, which lead to monotonically increasing interaction strengths in a continuously evolving material and strongly supports aging as a trajectory in the free energy landscape dominated by local particle relaxations. The analyses and conclusions of this study may be 1) industrially relevant to products that age on commercial timescales, such as paints and pharmaceuticals, 2) applicable to other dynamically arrested systems, such as metallic glasses, and 3) used in the design of new materials. NIST Center for Neutron Research CNS cooperative agreement number #70NANB12H239 and NASA Grant No. NNX15AI19H.
The Effect of Switch-Loading Fuels on Fuel-Wetted Elastomers
2007-01-10
material and age of the material”. In summing up past experience, the bulletin stated that “the common denominator is expected to be nitrile rubber ...The expert also noted that “most, if not all manufacturers, responded by eliminating nitrile rubber seals and replacing them with fluorocarbon...materials identified as from the Acrylonitrile- 4 Viton is a name trademarked by DuPont Performance Elastomers L.L.C. Butadiene family (nitrile, NBR
Minimizing material damage using low temperature irradiation
NASA Astrophysics Data System (ADS)
Craven, E.; Hasanain, F.; Winters, M.
2012-08-01
Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.
Reducing the age range of tsunami deposits by 14C dating of rip-up clasts
NASA Astrophysics Data System (ADS)
Ishizawa, Takashi; Goto, Kazuhisa; Yokoyama, Yusuke; Miyairi, Yosuke; Sawada, Chikako; Takada, Keita
2018-02-01
Erosion by tsunami waves represents an important issue when determining the age of a tsunami deposit, because the age is usually estimated using dating of sediments above and below the deposit. Dating of material within the tsunami deposit, if suitable material is obtainable, can be used to further constrain its age. Eroded sediments are sometimes incorporated within the tsunami deposits as rip-up clasts, which might therefore be used as minimum age dating material. However, the single calibrated 14C age often shows a wide age range because of fluctuations in the calibration curve. Therefore, it remains uncertain whether rip-up clast measurements are useful to constrain the depositional age of tsunami deposits, or not. In this study, we carried out high-resolution 14C dating of tsunami deposits, including rip-up clasts of peat, in Rikuzentakata, northeastern Japan, where numerous rip-up clasts were observed within a tsunami deposit. Sediments above and below the tsunami deposit and a 5 cm large rip-up clast were dated sequentially. Comparison of these dating results with the calibration curve revealed that the clast was inverted. Its age was better constrained based on the stratigraphic order, and we infer that the clast corresponds to approximately 100 years of sedimentation. The oldest age of the clast was consistent with the age of the peat immediately below the tsunami deposit, suggesting that surface sediments probably formed the rip-up clast at the time of the tsunami. Thus, the dating of the rip-up clast was useful to further constrain the depositional age of the tsunami deposit, as we narrowed the tsunami deposit age range by approximately 100 years. Results show that ignoring tsunami-related erosion might lead to overestimation of the tsunami deposit age. For this reason, an appropriate dating site, which is less affected by minor tsunami-related erosion with regards to the paleo-topography, should be explored. We therefore propose a more effective sampling strategy for better age estimation of tsunami deposits.
Evaluation and prediction of long-term environmental effects of nonmetallic materials
NASA Technical Reports Server (NTRS)
Papazian, H.
1985-01-01
The properties of a number of nonmetallic materials were evaluated experimentally in simulated space environments in order to develop models for accelerated test methods useful for predicting such behavioral changes. Graphite-epoxy composites were exposed to thermal cycling. Adhesive foam tapes were subjected to a vacuum environment. Metal-matrix composites were tested for baseline data. Predictive modeling designed to include strength and aging effects on composites, polymeric films, and metals under such space conditions (including the atomic oxygen environment) is discussed. The Korel 8031-00 high strength adhesive foam tape was shown to be superior to the other two tested.
Prado, Rodrigo Diniz; Pereira, Gabriel Kalil Rocha; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe
2017-11-06
Monolithic restorations of Y-TZP have been recommended as a restorative alternative on prosthetic dentistry as it allows a substantial reduction of ceramic thickness, which means a greater preservation of tooth structure. However, the influence of grinding and aging when using a thinner layer of the material is unclear. This investigation aimed to evaluate and compare the effects of ceramic thickness (0.5 mm and 1.0 mm), grinding and aging (low-temperature degradation) on the mechanical behavior and surface characteristics of a full-contour Y-TZP ceramic. Y-TZP disc-shaped specimens (15 mm diameter) were manufactured with both thicknesses and randomly assigned into 4 groups considering the factors 'grinding with diamond bur' and 'aging in autoclave'. Surface topography (roughness, 3D profilometry and SEM), phase transformation, flexural strength and structural reliability (Weibull) analyses were executed. Grinding affected the surface topography, while aging did not promote any effect. An increase in m-phase content was observed after grinding and aging, although different susceptibilities were observed. Regardless of zirconia's thickness, no deleterious effect of grinding or aging on the mechanical properties was observed. Thus, in our testing assembly, reducing the thickness of the Y-TZP ceramic did not alter its response to grinding and low temperature degradation and did not impair its mechanical performance.
Decreases in bone blood flow and bone material properties in aging Fischer-344 rats
NASA Technical Reports Server (NTRS)
Bloomfield, Susan A.; Hogan, Harry A.; Delp, Michael D.
2002-01-01
The purpose of this study was to quantify precisely aging-induced changes in skeletal perfusion and bone mechanical properties in a small rodent model. Blood flow was measured in conscious juvenile (2 months old), adult (6 months old), and aged (24 months old) male Fischer-344 rats using radiolabeled microspheres. There were no significant differences in bone perfusion rate or vascular resistance between juvenile and adult rats. However, blood flow was lower in aged versus adult rats in the forelimb bones, scapulas, and femurs. To test for functional effects of this decline in blood flow, bone mineral density and mechanical properties were measured in rats from these two age groups. Bone mineral density and cross-sectional moment of inertia in femoral and tibial shafts and the femoral neck were significantly larger in the aged versus adult rats, resulting in increased (+14%-53%) breaking strength and stiffness. However, intrinsic material properties at midshaft of the long bones were 12% to 25% lower in the aged rats. Although these data are consistent with a potential link between decreased perfusion and focal alterations in bone remodeling activity related to clinically relevant bone loss, additional studies are required to establish the mechanisms for this putative relationship.
ERIC Educational Resources Information Center
Jarrold, Christopher; Citroen, Rebecca
2013-01-01
The size of an individual's phonological similarity effect for visually presented material is assumed to reflect his or her ability to recode, and by implication rehearse, information in verbal short-term memory. Many studies have shown that under these conditions, the size of this effect interacts with age, tending to be nonsignificant in…
The natural aging of austenitic stainless steels irradiated with fast neutrons
NASA Astrophysics Data System (ADS)
Rofman, O. V.; Maksimkin, O. P.; Tsay, K. V.; Koyanbayev, Ye. T.; Short, M. P.
2018-02-01
Much of today's research in nuclear materials relies heavily on archived, historical specimens, as neutron irradiation facilities become ever more scarce. These materials are subject to many processes of stress- and irradiation-induced microstructural evolution, including those during and after irradiation. The latter of these, referring to specimens "naturally aged" in ambient laboratory conditions, receives far less attention. The long and slow set of rare defect migration and interaction events during natural aging can significantly change material properties over decadal timescales. This paper presents the results of natural aging carried out over 15 years on austenitic stainless steels from a BN-350 fast breeder reactor, each with its own irradiation, stress state, and natural aging history. Natural aging is shown to significantly reduce hardness in these steels by 10-25% and partially alleviate stress-induced hardening over this timescale, showing that materials evolve back towards equilibrium even at such a low temperature. The results in this study have significant implications to any nuclear materials research program which uses historical specimens from previous irradiations, challenging the commonly held assumption that materials "on the shelf" do not evolve.
Aging Behavior and Performance Projections for a Polysulfide Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Giron, Nicholas Henry; Quintana, Adam
The accelerated aging behavior and aging state of a 30 year old field retrieved polysulfide elastomer was examined. The material is used as an environmental thread sealant for a stainless steel bolt in a steel threaded insert in an aluminum assembly. It is a two component curable polysulfide elastomer that is commercially available in a similar formulation as was applied 30 years ago. The primary goal of this study was to establish if aging over 30 years under moderate aging conditions (mostly ambient temperature and humidity) resulted in significant property changes, or if accelerated aging could identify developing aging pathwaysmore » which would prevent the extended use of this material. The aging behavior of this material was examined in three ways: A traditional accelerated thermo-oxidative aging study between 95 to 140°C which focused on physical and chemical properties changes, an evaluation of the underlying oxidation rates between RT and 125°C, and an assessment of the aging state of a small 30 year old sample. All three data sets were used to establish aging characteristics, their time evolution, and to extrapolate the observed behavior to predict performance limits at RT. The accelerated aging study revealed a relatively high average activation energy of ~130 kJ/mol which gives overconfident performance predictions. Oxidation rates showed a decreasing behavior with aging time and a lower E a of ~84 kJ/mol from time - temperature superposition , but also predicted sufficient additional performance at RT. Consistent with these projections for extended RT performance, only small changes were observed for the 30 year old material. Extrapolations using this partially aged material also predict ongoing use as a viable option. Unexpected RT degradation could only develop into a concern should the oxidation rate not trend lower over time as was observed at elevated temperature. Considering all data acquired in this limited aging study , there are no immediately apparent concerns with this material for ongoing use. ACKNOWLEDGEMENTS We thank Lisa Deibler for providing us with a small sample of field aged and new commercial material.« less
Seol, Ja Young; Yoon, Ji Young; Jeong, Hee Sun; Joo, Nami; Choi, Soon Young
2016-01-01
Many researchers revealed that collagen contribute to maintaining the skin's elasticity and inhibit wrinkling of skin. Korean native cattle (Hanwoo) bone (leg bone, foot and tail) infusion contains the various inorganic materials, collagen and chondroitin sulfate. All of this, a large quantity of collagen is included in Hanwoo infusion. Therefore, this study emphasized on the effects of collagen in the Hanwoo bone infusion. For the first time, Hanwoo bone infusions were directly added to the media of Human Dermal Fibroblast (NHDF-c) to test anti-aging effects. First, it was identified that growth rate of skin fibroblast was increased. Furthermore, the Hanwoo bone infusion increased a 50% of fibroblast collagen synthesis. Also, suppression of skin fibroblast aging was confirmed by treatment Hanwoo bone infusion. In conclusion, this study demonstrates the effects of infusion made from Hanwoo leg bone, foot and tail on anti-aging, wrinkle inhibiting and skin fibroblast elasticity maintaining. Therefore, this study identified that traditional infusion has effects that are good for skin elasticity.
Color stability of restorative materials in response to Arabic coffee, Turkish coffee and Nescafe.
Al-Samadani, Khalid H
2013-07-01
To evaluate the effect of Arabic coffee, Turkish coffee and Nescafe on the color stability of four different composite resins after a period of aging time 1, 7 and 30 days. Twenty specimens from each type of tested composite resin material were prepared. Five specimens from each tested material (Z350 XT, Artist, GC and Z250) was evaluated after storage in Arabic coffee, Turkish coffee, Nescafe and distil water (control) at 37°C in a dark container for 1, 7 and 30 days. Color measurement was done using colorimeter based on the CIE L* a* b* color scale. Color differences ΔE*ab, Δb* and Δa* among specimens immersed in distil water and staining coffee beverages were evaluated overtime. Mean values were statistically analyzed with one-way analysis of variance (ANOVA), followed by Tukey test with p < 0.05 as significance level. All tested composite resins showed increase color change after a period of 1, 7 and 30 days. The color change ΔE*ab , Δb* and Δa* exhibited by Arabic coffee, in Turkish coffee and Nescafe except Δa*. The highest total color difference ΔE*ab after 30 days was in group A Arabic coffee (ΔE > 1.5 perceivable) and not perceivable in group B Turkish coffee and group C Nescafe. For Δb* all materials discolored toward yellowness after 30 days except Arabic coffee group which shifted from yellowness toward blueness (Δb*> 1.5 perceivable). The effect of staining beverages on the resin composite materials increases with time of aging toward yellowness and not perceivable in all groups except with Arabic coffee which had highest effect after 30 days and the discoloration shifted from yellowness to blueness perceivable.
EFFECTS AND MECHANISMS OF A NEW MULTIVITAMIN ON CHRONIC METABOLIC SYNDROMES AND AGING
Wu, Su-xi; Jiang, Xuewei; Liu, Yu-ying; Chen, Lin-feng; Tao, Jun
2017-01-01
Background: Increased occurrence of chronic syndromes has prompted researchers to investigate and develop drugs and methods for controlling chronic syndromes with a view to improve human health and reduce early aging. Material and methods: Human trials: After the allotted multivitamin pills or placebo pills had been taken for a stipulated period of about 2 months, the volunteers filled out feedback forms on curative effects of the pills in line with the health examination reports. The effects of the multivitamin on various symptoms or diseases and dysfunctions of the chronic metabolic syndromes were noted and evaluated based on the information provided in forms. Animal experiments: Mouse aging model induced by D-galactose were administered the multivitamin by oral gavage every morning. At the end of the sixth week, activity or content of the components associated with ageing and anti-aging in the brain and liver of the aging mice were determined to investigate the mechanisms of the new multivitamin on chronic metabolic syndromes and aging. Results: We found that multivitamin can eliminate or attenuate 38 types of symptoms or dysfunctions of the investigated metabolic syndromes; and that it has both preventive and curative/adjunctive therapeutic effects on the metabolic syndromes. The effects of this multivitamin on components associated with aging and anti-aging were significantly decreased - malondialdehyde content and monoamine oxidase activity but significantly increased activity of superoxide dismutase and glutathione peroxidase. This multivitamin has significant anti-aging effects. Conclusion: Supplementing with this multivitamin can prevent and provide treatment/adjunctive therapy for these chronic metabolic syndromes and delay the aging process. List of Abbreviations BW body weight; Cu/Zn-SOD, cuprum/zinc-superoxide dismutase MAO monoamine oxidase MDA malondialdehyde; Mn-SOD, manganese-superoxide dismutase; T-SOD, total superoxide dismutase; TP, total protein PMID:28331914
Mechanical Properties of Degraded PMR-15 Resin
NASA Technical Reports Server (NTRS)
Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.
1998-01-01
Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.
Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging
NASA Astrophysics Data System (ADS)
Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong
2017-04-01
To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.
Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Madaras, Eric I.
2004-01-01
The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for a duration of 10,000 hours are reported.
Yu, Hyeonghwa; Zhang, Yingjie; Cho, Yong Joo; Aziz, Hany
2017-04-26
We investigate the origins of the long-wavelength bands that appear in the emission spectra of carbazole-based host materials and play a role in the electroluminescence (EL) spectral changes of phosphorescent organic light emitting devices (PhOLEDs) with electrical aging. 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) is used as a model carbazole host material and is studied using photoluminescence, EL, and atomic force microscopy measurements under various stress scenarios in both single and bilayer devices and in combination with various electron transport layer (ETL) materials. Results show that exciton-induced morphological aggregation of CBP is behind the appearance of those long-wavelength bands and that complexation between the aggregated CBP molecules and ETL molecules plays a role in this phenomenon. Comparisons between the effects of exciton and thermal stress suggest that exciton-induced aggregation may be limited to short-range molecular ordering or pairing (e.g., dimer or trimer species formation) versus longer-range ordering (crystallization) in the case of thermal stress. The findings provide new insights into exciton-induced degradation in wide band gap host materials and its role in limiting the stability of PhOLEDs.
Mechanical stress modified ferroelectric aging behavior
NASA Astrophysics Data System (ADS)
Xu, Tingting; Kan, Yi; Jin, Yaming; Sun, Hui; Du, Yingchao; Wu, Xiumei; Bo, Huifeng; Cai, Wei; Huang, Fengzhen; Lu, Xiaomei; Zhu, Jinsong
2013-05-01
Mechanical stress effect on aging behavior of Bi3.25La0.75Ti3O12 (BLT) and PbZr0.53Ti0.47O3 (PZT) films was investigated. It is found that the remnant polarization decreases with time while the coercive field increases in stress-free BLT films. For unconfined PZT films, both the remnant polarization and the coercive field decrease as time elapses. The applied tensile stress weakens the aging of remnant polarization of BLT films but strengthens the aging of coercive field, while the applied tensile stress possesses opposite effect. In contrary, the applied compressive stress simultaneously improves the aging behavior of both remnant polarization and coercive field of PZT films. Mechanical-stress-induced variation of domain wall mobility in different materials was suggested as the possible origin of these observations. This work indicates that the aging behavior modification using stress could be realized, and it is helpful for promoting the reliability of ferroelectric films for industrial applications.
Thompson, Geoffrey A; Luo, Qing
2014-09-01
Because polymer-based interim restorative materials are weak, even well-made restorations sometimes fail before the definitive restoration is ready for insertion. Therefore, knowing which fabrication procedures and service conditions affect mechanical properties is important, particularly over an extended period. The purpose of this study was to evaluate the effect of thermal treatment, surface sealing, thermocycling, storage media, storage temperature, and age on autopolymerizing poly(methylmethacrylate) and bis-acryl interim restorative materials. Outcome measures were flexural strength, Vickers surface microhardness, and impact strength. Flexural strength and microhardness of poly(methylmethacrylate) (Jet Acrylic) and 2 bis-acryl-composite resin (Protemp 3 Garant and Integrity) interim restorative materials were evaluated as affected by storage media, storage temperature, storage time, thermocycling, postpolymerization thermal treatment, or application of a surface sealer. In total, 2880 beam specimens (25×2×2 mm) were fabricated. Mechanical property analyses were made at 10 days, 30 days, 6 months, and 1 year after specimen preparation. Flexural strength was determined by using a 3-point bending test in a universal testing machine with a 1 kN load cell at a crosshead speed of 5.0 mm min(-1). Fracture specimens were recovered and used for determining Vickers microhardness. Measurements were made with a 0.1 N load and 15 second dwell time. Three microhardness measurements were made for each specimen, and the mean was used for reporting Vickers microhardness. Notched impact specimens (64×12.7×6.35 mm) were fabricated from Jet, Protemp 3 Garant, and Integrity interim restorative materials, yielding 288 impact specimens. Impact strengths were assessed at 10 days, 30 days, 6 months, and 1 year with a 2 J pendulum. The effects of the various experimental treatments were determined and rank ordered with analysis of variance, F ratios, and least square means differences Student t tests (α=.05). All experimental treatments investigated had significant effects on flexural strength, with material (P<.001) and thermocycling (P<.001) being dominant. Moreover, all experimental treatments investigated had a significant overall impact on Vickers microhardness with material (P<.001) and Palaseal glaze (P<.001) showing large effects. Material (P<.001) and age (P=.010) had a significant effect on impact strength. Mechanical properties of some interim polymeric materials can be improved by postpolymerization heat treatments or surface glazing. This procedure may extend the useful lifetime of some bis-acryl interim restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Aging of Iodine-Loaded Silver Mordenite in NO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, Stephanie H.; Jubin, Robert Thomas; Patton, Kaara K.
2014-04-01
Used nuclear fuel facilities need to control and minimize radioactive emissions. Off-gas systems are designed to remove radioactive contaminants, such as 85Kr, 14C, 3H, and 129I. In an off-gas system, any capture material will be exposed to a gas stream for months at a time. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents comprising the dissolver off-gas stream in a nuclear fuel reprocessing plant. For this reason, it is important to evaluate the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration ismore » reduced silver mordenite (Ag0Z), which is recognized for its efficient iodine capture properties. Iodine is immobilized on Ag0Z as AgI, a solid with low volatility (m.p. ≥ 500°C). The aim of this study was to determine whether extended aging at elevated temperature in a nominally 2% NO2 environment would result in a loss of immobilized iodine from this material due to either physical or chemical changes that might occur during aging. Charges of iodine-loaded reduced silver mordenite (I2-Ag0Z) were exposed to a 2% NO2 environment for 1, 2, 3, and 4 months at 150°C, then analyzed for iodine losses The aging study was completed successfully. The material did not visibly change color or form. The results demonstrate that no significant iodine loss was observed over the course of 4 months of 2% NO2 aging of I2-Ag0Z at elevated temperature within the margin of error and the variability (~10%) in the loading along the beds. This provides assurance that iodine will remain immobilized on Ag0Z during extended online use in an off-gas capture treatment system. Future tests should expose I2-Ag0Z to progressively more complex feed gases in an effort to accurately replicate the conditions expected in a reprocessing facility.« less
Crystal Growth and Characterization of THO2 and UxTh1-xO2
2013-03-01
bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2
Dynamic Effective Mass of Granular Media
NASA Astrophysics Data System (ADS)
Hsu, Chaur-Jian; Johnson, David L.; Ingale, Rohit A.; Valenza, John J.; Gland, Nicolas; Makse, Hernán A.
2009-02-01
We develop the concept of frequency dependent effective mass, Mtilde (ω), of jammed granular materials which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of normal room condition or controlled humidity. The dominant features of Mtilde (ω) provide signatures of the dissipation of acoustic modes, elasticity, and aging effects in the granular medium. We perform humidity controlled experiments and interpret the data in terms of a continuum model and a “trap” model of thermally activated capillary bridges at the contact points. The results suggest that attenuation of acoustic waves in granular materials can be influenced significantly by the kinetics of capillary condensation between the asperities at the contacts.
RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.
Latkovich, Vito J.
1985-01-01
The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.
Fire retardancy using applied materials
NASA Technical Reports Server (NTRS)
Feldman, R.
1971-01-01
An example of advanced technology transfer from the Little Joe, Surveyor, Comsat, re-entry and Apollo age to everyday fire protection needs is presented. Utilizing the principle of sublimation cooling for thermostatic temperature control, the material meets a wide range of fire retardancy and heat transmission control requirements. Properties vary from flexible tape for conduits and electrical cables to rigid coatings for column protection, with a broad spectrum of sublimation temperatures available. The material can be applied in the field or in the factory, utilizing mass production techniques, yielding a product that is reliable, effective, widely available and low in cost.
X-band noise temperature effects of rain on DSN antenna feedhorns
NASA Technical Reports Server (NTRS)
Slobin, S. D.; Franco, M. M.; Clauss, R. C.
1982-01-01
Simulated rain tests were carried out to determine the noise temperature contribution of liquid water adhering to the aperture cover material on both a standard DSN X-band feedhorn and on an S/X-band common aperture feedhorn. It was found that for the particular common aperture feedhorn tested, system noise temperature increases were much greater when the plastic horn cover material was old and weathered than when it was new. The age and condition of the aperture cover material is believed to be a major factor in the amount of degradation experienced by a telecommunications system during rain events.
Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouzes, Richard T.
Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.
1982-01-01
The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.
Pereira, G K R; Silvestri, T; Amaral, M; Rippe, M P; Kleverlaan, C J; Valandro, L F
2016-08-01
The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to ISO:6872-2008 and assigned in accordance with two factors: (1) "surface treatment"-without treatment (as-sintered, Ctrl), grinding with coarse diamond bur (181µm; Grinding); and (2) "low-temperature aging (LTD)" - presence and absence. Grinding was performed using a contra-angle handpiece under constant water-cooling. LTD was simulated in an autoclave at 134°C under 2-bar pressure for 20h. Mean flexural fatigue limits (20,000 cycles) were determined under sinusoidal loading using stair case approach. For Lava ceramic, it was observed a statistical increase after grinding procedure and different behavior after LTD stimuli (Ctrl
Strength of initially virgin martensites at - 196 °C after aging and tempering
NASA Astrophysics Data System (ADS)
Eldis, George T.; Cohen, Morris
1983-06-01
The compressive strength at -196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero M temperatures, has been determined in the virgin condition and after one hour at temperatures from -80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to a°Count for this effect of molybdenum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, F.F.; Lash, R.P.
A phosphazene polymer with three pendant groups was synthesized and characterized as a membrane material. Substitution of the phosphazene with 64% 2-(2-methoxyethoxy)ethanol (MEE), 27% 4-methoxyphenol, and 9% 2-allyphenol yielded a hydrophilic elastomer with considerable flow at room temperature. Solution behavior showed significant aging effects where, using fresh solutions, membranes could not cast on porous ceramic supports (0.2-micron pore size) without significant polymer penetration into the pores. Solutions aged for two weeks were found to readily penetrate into the pores of the ceramic support. Analysis of fresh and aged solutions by laser light scattering showed significant loss in molecular weight withmore » time. Pervaporation of water-dye solutions using dimensionally stabilized membranes revealed in inverse correlation between flux and temperature, suggesting thermally induced morphological changes within the polymer. This polymer was found to exhibit, in the bulk state, lower critical solubility temperature (LCST) behavior where the material becomes less hydrophilic with increasing temperature. LCST behavior was probed thermally and gravimetrically and has been attributed to the anomalous pervaporation results. The degree to which LCST effects membrane transport was influenced by changes in the crosslink density and permeate side pressure.« less
Long-Term Soft Denture Lining Materials
Chladek, Grzegorz; Żmudzki, Jarosław; Kasperski, Jacek
2014-01-01
Long-term soft denture lining (LTSDL) materials are used to alleviate the trauma associated with wearing complete dentures. Despite their established clinical efficacy, the use of LTSDLs has been limited due to the unfavorable effects of the oral environment on some of their mechanical and performance characteristics. The unresolved issue of LTSDL colonization by Candida albicans is particularly problematic. Silicone-based LTSDL (SLTSDL) materials, which are characterized by more stable hardness, sorption and solubility than acrylic-based LTSDLs (ALTSDLs), are currently the most commonly used LTSDLs. However, SLTSDLs are more prone to debonding from the denture base. Moreover, due to their limitations, the available methods for determining bond strength do not fully reflect the actual stability of these materials under clinical conditions. SLTSDL materials exhibit favorable viscoelastic properties compared with ALTSDLs. Furthermore, all of the lining materials exhibit an aging solution-specific tendency toward discoloration, and the available cleansers are not fully effective and can alter the mechanical properties of LTSDLs. Future studies are needed to improve the microbiological resistance of LTSDLs, as well as some of their performance characteristics. PMID:28788163
Optical response of strongly absorbing inhomogeneous materials: Application to paper degradation
NASA Astrophysics Data System (ADS)
Missori, M.; Pulci, O.; Teodonio, L.; Violante, C.; Kupchak, I.; Bagniuk, J.; Łojewska, J.; Conte, A. Mosca
2014-02-01
In this paper, we present a new noninvasive and nondestructive approach to recover scattering and absorption coefficients from reflectance measurements of highly absorbing and optically inhomogeneous media. Our approach is based on the Yang and Miklavcic theoretical model of light propagation through turbid media, which is a generalization of the Kubelka-Munk theory, extended to accommodate optically thick samples. We show its applications to paper, a material primarily composed of a web of fibers of cellulose, whose optical properties are strongly governed by light scattering effects. Samples studied were ancient and industrial paper sheets, aged in different conditions and highly absorbing in the ultraviolet region. The recovered experimental absorptions of cellulose fibers have been compared to theoretical ab initio quantum-mechanical computational simulations carried out within time-dependent density functional theory. In this way, for each sample, we evaluate the absolute concentration of different kinds of oxidized groups formed upon aging and acting as chromophores causing paper discoloration. We found that the relative concentration of different chromophores in cellulose fibers depends on the aging temperature endured by samples. This clearly indicates that the oxidation of cellulose follows temperature-dependent reaction pathways. Our approach has a wide range of applications for cellulose-based materials, like paper, textiles, and other manufactured products of great industrial and cultural interest, and can potentially be extended to other strongly absorbing inhomogeneous materials.
Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias
2012-06-01
While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved
State/Trait Anxiety and Anxiolytic Effects of Acute Physical Exercises
ERIC Educational Resources Information Center
Guszkowska, Monika
2009-01-01
Study aim: To determine anxiolytic effects of acute physical exertions in relation to the initial anxiety state and trait in women. Material and methods: A group of 163 women aged 16-56 years, attending fitness clubs in Warsaw, participated in the study. They selected a single exercise to perform--strength, aerobic or mixed, lasting 30 to over 60…
Effects of Indoor Cycling Associated with Diet on Body Composition and Serum Lipids
ERIC Educational Resources Information Center
do Valle, Valeria S.; de Mello, Danielli B.; Fortes, Marcos de Sa R.; Dantas, Estelio H. M.
2009-01-01
Study aim: To determine the effects of indoor cycling training combined with restricted diet, lasting 12 weeks, on serum lipid concentrations in obese women. Material and methods: Twenty women aged 23.8 [plus or minus] 3.6 years were randomly assigned into two groups: control (C) and experimental (E), the latter subjected to indoor cycling at…
Early detection of critical material degradation by means of electromagnetic multi-parametric NDE
NASA Astrophysics Data System (ADS)
Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Seiler, Georg; Altpeter, Iris; Dobmann, Gerd; Herrmann, Hans-Georg; Boller, Christian
2014-02-01
With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.
Early detection of critical material degradation by means of electromagnetic multi-parametric NDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina
2014-02-18
With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration undermore » thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.« less
Patient-specific Radiation Dose and Cancer Risk for Pediatric Chest CT
Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.
2011-01-01
Purpose: To estimate patient-specific radiation dose and cancer risk for pediatric chest computed tomography (CT) and to evaluate factors affecting dose and risk, including patient size, patient age, and scanning parameters. Materials and Methods: The institutional review board approved this study and waived informed consent. This study was HIPAA compliant. The study included 30 patients (0–16 years old), for whom full-body computer models were recently created from clinical CT data. A validated Monte Carlo program was used to estimate organ dose from eight chest protocols, representing clinically relevant combinations of bow tie filter, collimation, pitch, and tube potential. Organ dose was used to calculate effective dose and risk index (an index of total cancer incidence risk). The dose and risk estimates before and after normalization by volume-weighted CT dose index (CTDIvol) or dose–length product (DLP) were correlated with patient size and age. The effect of each scanning parameter was studied. Results: Organ dose normalized by tube current–time product or CTDIvol decreased exponentially with increasing average chest diameter. Effective dose normalized by tube current–time product or DLP decreased exponentially with increasing chest diameter. Chest diameter was a stronger predictor of dose than weight and total scan length. Risk index normalized by tube current–time product or DLP decreased exponentially with both chest diameter and age. When normalized by DLP, effective dose and risk index were independent of collimation, pitch, and tube potential (<10% variation). Conclusion: The correlations of dose and risk with patient size and age can be used to estimate patient-specific dose and risk. They can further guide the design and optimization of pediatric chest CT protocols. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101900/-/DC1 PMID:21467251
Communication: Effect of density on the physical aging of pressure-densified polymethylmethacrylate
NASA Astrophysics Data System (ADS)
Casalini, R.; Roland, C. M.
2017-09-01
The rate of physical aging of glassy polymethylmethacrylate (PMMA), followed from the change in the secondary relaxation with aging, is found to be independent of the density, the latter controlled by the pressure during glass formation. Thus, the aging behavior of the secondary relaxation is the same whether the glass is more compacted or less dense than the corresponding equilibrium liquid. This equivalence in aging of glasses formed under different pressures indicates that local packing is the dominant variable governing the glassy dynamics. The fact that pressure densification yields different glass structures is at odds with a model for non-associated materials having dynamic properties exhibited by PMMA, such as density scaling of the relaxation time and isochronal superposition of the relaxation dispersion.
Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Washer, Glenn; Brooks, Thomas; Saulsberry, Regor
2007-01-01
This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.
NASA Astrophysics Data System (ADS)
Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A.
2018-04-01
The incorporation of plant crops in construction materials offers very good hygrothermal performance to the building, ensuring substantial environmental and ecological benefits. This paper focuses on studying the evolution of hygrothermal properties of hemp concrete over age (7, 30 and 60 days). The analysis is done with respect to two main hygric and thermal properties, respectively: sorption isotherms, water vapor permeability, thermal conductivity and heat capacity. In fact, most of these parameters are very susceptible to change function of the age of the material. This influence of the aging is mainly due to the evolution of the microstructure with the binder hydration over time and the creation of new hydrates which can reduces the porosity of the material and consequently modify its properties. All the tested hemp concrete samples presented high moisture storage capacity and high-water vapor permeability whatever the age of such hygroscopic material. These hygric parameters increase significantly for high relative humidity requiring more consideration of such variability during the modeling of coupled heat and mass transfer within the material. By the same, the thermal conductivity and heat capacity tests highlighted the impact of the temperature and hygric state of the studied material.
Translucency changes of direct esthetic restorative materials after curing, aging and treatment
2016-01-01
The purpose of this article was to review the changes in translucency of direct esthetic restorative materials after curing, aging and treatment. As a criterion for the evaluation of clinical translucency changes, visual perceptibility threshold in translucency parameter difference (ΔTP) of 2 was used. Translucency changes after curing were perceivable depending on experimental methods and products (largest ΔTP in resin composites = 15.9). Translucency changes after aging were reported as either relatively stable or showed perceivable changes by aging protocols (largest ΔTP in resin composites = -3.8). Translucency changes after curing, aging and treatment were perceivable in several products and experimental methods. Therefore, shade matching of direct esthetic materials should be performed considering these instabilities of translucency in direct esthetic materials. PMID:27847744
The material convoy after age 50.
Ekerdt, David J; Baker, Lindsey A
2014-05-01
Possessions constitute a dynamic "material convoy" that accumulates across adulthood to furnish role enactments and the development of the self. Following a familiar life course arc, older people should hypothetically release the possessions that equipped the daily lives that they no longer have. We use new survey data on possession divestment from the 2010 Health and Retirement Study to assess activity on behalf of the material convoy after age 50. After age 50, people are progressively less likely to divest themselves of belongings. After age 70, about 30% of persons say that they have done nothing in the past year to clean out, give away, or donate things, and over 80% have sold nothing. We tested whether divestments diminish with age because they do not seem necessary or because of health limitations, but the age pattern is robust, suggesting retention of the material convoy in later life. Further research on this age pattern might consider housing, the construction of the self, and social networks as explanations for retention. Inertia toward the material convoy maintains the availability and comfort of things, but it may also lead to a predicament wherein the collection becomes a worry for self and others.
Experimental pretesting of public health campaigns: a case study.
Whittingham, Jill; Ruiter, Robert A C; Zimbile, Filippo; Kok, Gerjo
2008-01-01
The aim of the present study is to demonstrate the merits of evaluating new public health campaign materials in the developmental phase using an experimental design. This is referred to as experimental pretesting. In practice, most new materials are tested only after they have been distributed using nonexperimental or quasiexperimental designs. In cases where materials are pretested prior to distribution, pretesting is usually done using qualitative research methods such as focus groups. Although these methods are useful, they cannot reliably predict the effectiveness of new campaign materials in a developmental phase. Therefore, we suggest when pretesting new materials, not only qualitative research methods but also experimental research methods must be used. The present study discusses an experimental pretest study of new campaign materials intended for distribution in a national sexually transmitted infection (STI) AIDS prevention campaign in the Netherlands. The campaign material tested was the storyline of a planned television commercial on safe sex. A storyboard that consisted of drawings and text was presented to members of the target population, namely, students between the ages of 14 and 16 enrolled in vocational schools. Results showed positive effects on targeted determinants of safe sexual behavior. The advantages, practical implications, and limitations of experimental pretesting are discussed.
Betts, Robert E.; Crawford, John F.
1989-04-04
An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.
Betts, Robert E.; Crawford, John F.
1989-01-01
An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.
Gomes, Susana I L; Roca, Carlos P; Pegoraro, Natália; Trindade, Tito; Scott-Fordsmand, Janeck J; Amorim, Mónica J B
2018-05-01
The current testing of nanomaterials (NMs) via standard toxicity tests does not cover many of the NMs specificities. One of the recommendations lays on understanding the mechanisms of action, as these can help predicting long-term effects and safe-by-design production. In the present study, we used the high-throughput gene expression tool, developed for Enchytraeus crypticus (4 × 44k Agilent microarray), to study the effects of exposure to several copper (Cu) forms. The Cu treatments included two NMs (spherical and wires) and two copper-salt treatments (CuNO 3 spiked and Cu salt field historical contamination). To relate gene expression with higher effect level, testing was done with reproduction effect concentrations (EC 20 , EC 50 ), using 3 and 7 days as exposure periods. Results showed that time plays a major role in the transcriptomic response, most of it occurring after 3 days. Analysis of gene expression profiles showed that Cu-salt-aged and Cu-nanowires (Nwires) differed from CuNO 3 and Cu-nanoparticles (NPs). Functional analysis revealed specific mechanisms: Cu-NPs uniquely affected senescence and cuticle pattern formation, which can result from the contact of the NPs with the worms' tegument. Cu-Nwires affected reproduction via male gamete generation and hermaphrodite genitalia development. CuNO 3 affected neurotransmission and locomotory behavior, both of which can be related with avoidance response. Cu salt-aged uniquely affected phagocytosis and reproductive system development (via different mechanisms than Cu-Nwires). For the first time for Cu (nano)materials, the adverse outcome pathways (AOPs) drafted here provide an overview for common and unique effects per material and linkage with apical effects.
Working memory capacity predicts listwise directed forgetting in adults and children.
Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T
2010-05-01
In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.
Saboury, Aboulfazl; Sadr, Seyed Jalil; Fayaz, Ali; Mahshid, Minoo
2013-01-01
Objective: High variability in delivering the target torque is reported for friction-style mechanical torque limiting devices (F-S MTLDs). The effect of aging (number of use) on the accuracy of these devices is not clear. The purpose of this study was to assess the effect of aging on the accuracy (±10% of the target torque) of F-S MTLDs. Materials and Methods: Fifteen new F-S MTLDs and their appropriate drivers from three different implant manufacturers (Astra Tech, Biohorizon and Dr Idhe), five for each type, were selected. The procedure of peak torque measurement was performed in ten sequences before and after aging. In each sequence, ten repetitions of peak torque values were registered for the aging procedure. To measure the output of each device, a Tohnichi torque gauge was used. Results: Before aging, peak torque measurements of all the devices tested in this study falled within 10% of their preset target values. After aging, a significant difference was seen between raw error values of three groups of MTLDs (P<0.05). More than 50% of all peak torque measurements demonstrated more than 10% difference from their torque values after aging. Conclusion: Within the limitation of this study, aging as an independent factor affects the accuracy of F-S MTLDs. Astra Tech MTLDs presented the most consistent torque output for 25 Ncm target torque. PMID:23724202
Varga, Z.; Mayer, K.; Bonamici, C. E.; ...
2015-05-11
The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Z.; Mayer, K.; Bonamici, C. E.
The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less
Intermetallic Precipitation in Low-Density Steel
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Chatterjee, A.; Chakrabarti, D.
2018-06-01
Low-density steels (LDS) represent a relatively new class of material that contains a large concentration of aluminum. In the present work, we studied the effect of copper addition to these steels. Microanalysis and electron diffraction study were used to demonstrate that on the contrary to the theoretical expectation, copper formed a variety of intermetallic, instead of metallic, precipitates on reaction with aluminum. The precipitation led to a significant age-hardening response that imparted a special characteristic to this material, which had never been reported previously.
2014-12-01
with nickel coatings can result in compressive stresses, and the deposition of gold with small amounts of cobalt increase the coating hardness/wear...magnetic metal. In the literature, there are a few different approaches to allow for the sputter deposition of magnetic materials including: doping ...the target (i.e., nickel doped with vanadium, typically on the order of 7- 9% [19]) to the point that it is no longer magnetic, heating the target
The effect of oxidation on the mechanical response and microstructure of porcine aortas.
Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D Timmie
2014-09-01
Reactive oxygen species (ROS), a product of many cellular functions, has been implicated in many age-related pathophysiological processes, including cardiovascular disease. The arterial proteins collagen and elastin may also undergo structural and functional changes due to damage caused by ROS. This study examined the effect of oxidation on the mechanical response of porcine aortas and aorta elastin and the associated changes in structural protein ultrastructure as a step in exploring the role of molecular changes in structural proteins with aging on elastic artery function. We examined the change in mechanical properties of aorta samples after various oxidation times as a first step in understanding how the oxidative environment associated with aging could impact mechanical properties of arterial structural proteins. We used confocal microscopy to visualize how the microstructure of isolated elastin changed with oxidation. We find that short term oxidation of elastin isolated from aortas leads to an increase in material stiffness, but also an increase in the fiber diameter, increase in void space in the matrix, and a decrease in the fiber orientation, possibly due to fiber cross-linking. The short term effects of oxidation on arterial collagen is more complex, with increase in material stiffness seen in the collagen region of the stress stretch curve at low extents of oxidation, but not at high levels of oxidation. These results may provide insight into the relationship between oxidative damage to tissue associated with aging and disease, structure of the arterial proteins elastin and collagen, and arterial mechanical properties and function. © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopolous, Demetrios S.; Inghram, Linda; Mccorkle, Linda
1995-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and fiber-matrix bonding, Mode 2 interlaminar fracture toughness, and failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests showed that, for times up to 1000 hr, the aging process caused no changes in the bulk of the three composite materials that would degrade the shear properties of the material. Comparisons between the interlaminar shear strengths (ILSS) measured by the short beam shear tests and the GIIC test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU 1 fiber resulted in weight losses about twice those experienced by the AS 1 reinforced composites, the ones with the best TOS.
Mazella, Anaïs; Albaret, Jean-Michel; Picard, Delphine
2016-01-01
To fill an important gap in the psychometric assessment of children and adolescents with impaired vision, we designed a new battery of haptic tests, called Haptic-2D, for visually impaired and sighted individuals aged five to 18 years. Unlike existing batteries, ours uses only two-dimensional raised materials that participants explore using active touch. It is composed of 11 haptic tests, measuring scanning skills, tactile discrimination skills, spatial comprehension skills, short-term tactile memory, and comprehension of tactile pictures. We administered this battery to 138 participants, half of whom were sighted (n=69), and half visually impaired (blind, n=16; low vision, n=53). Results indicated a significant main effect of age on haptic scores, but no main effect of vision or Age × Vision interaction effect. Reliability of test items was satisfactory (Cronbach's alpha, α=0.51-0.84). Convergent validity was good, as shown by a significant correlation (age partialled out) between total haptic scores and scores on the B101 test (rp=0.51, n=47). Discriminant validity was also satisfactory, as attested by a lower but still significant partial correlation between total haptic scores and the raw score on the verbal WISC (rp=0.43, n=62). Finally, test-retest reliability was good (rs=0.93, n=12; interval of one to two months). This new psychometric tool should prove useful to practitioners working with young people with impaired vision. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite
NASA Technical Reports Server (NTRS)
Veazie, David R.; Gates, Thomas S.
1995-01-01
An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary
An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micromore » CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.« less
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.
1996-01-01
A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.
Aging effects in bulk and fiber TlBr-TlI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, J.A.; Wilson, R.G.; Standlee, A.G.
1988-05-01
A study of optical aging in bulk and extruded fibers of thallium bromo-iodide (TlBr-TlI) is presented. A variety of techniques including secondary ion mass spectrometry (SIMS), powder neutron and x-ray diffraction, infrared spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy are used to probe the chemical and structural properties of both pristine and aged material. High concentration levels of a hydrogen bearing impurity have been detected by SIMS and neutron scattering in aged TlBr-TlI, and have been shown to be localized in the surface layers of fibers as well as bulk samples. We present EPR evidence which indicates that the hydrogenmore » bearing impurity is water.« less
U-series dating of impure carbonates: An isochron technique using total-sample dissolution
Bischoff, J.L.; Fitzpatrick, J.A.
1991-01-01
U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. We propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate in commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only. ?? 1991.
Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB)
NASA Astrophysics Data System (ADS)
Farris, Giuseppe; Cinelli, Patrizia; Anguillesi, Irene; Salvadori, Sara; Coltelli, Maria-Beatrice; Lazzeri, Andrea
2014-05-01
Polyhydroxybutyrate (PHB) based materials were prepared by melt extrusion by using different plasticizers, such as poly(ethylene glycol)s (PEG)s having different molecular weight (400, 1500 and 4000). The plasticizers content was varied in the range 10-20% by weight versus the PHB polymeric matrix. The variation of tensile properties of the different samples was monitored as a function of time of ageing to study the stability of the material. The elastic modulus and tensile strength increased as a function of time, whereas the strain at break decreased. The experimental results were explained by considering both the demixing of the plasticizers and the occurring of secondary crystallization. Moreover the variation in mechanical properties was correlated to the structure and concentration of the different plasticizers employed.
Płuciennik-Stronias, Małgorzata; Sakowska, Danuta; Paul-Stalmaszczyk, Małgorzata; Bołtacz-Rzepkowska, Elzbieta
2012-01-01
In the aging population, the prevalence of root caries has been observed, which is a characteristic feature of the elderly people. The most important element used in caries prevention is fluoride, which is derived from the air, diet or fluoride-containing preparations and materials, e.g. glass-ionomer restorations. The aim of the study was to evaluate the effect of Ketac Molar Aplicap glass-ionomer on the growth of Lactobacillus sp. bacteria, one of the species most frequently found in the carietic focus of the tooth root. The study was carried out in 15 patients with good oral hygiene, in whom 35 fillings from Ketac Molar Aplicap conventional glass-ionomer material were performed. After 6 months, three-day dental plaque from these fillings and from the tooth enamel of the control group was examined. No statistically significant differences (p = 0.554) in the amounts of Lactobacillus sp. between the study and control group were revealed. Lack of inhibiting effect of glass-ionomer material on the growth of the dental plaque with Lactobacillus sp. after the time of observation is implied.
Functional Anatomy of Listening and Reading Comprehension during Development
ERIC Educational Resources Information Center
Berl, Madison M.; Duke, Elizabeth S.; Mayo, Jessica; Rosenberger, Lisa R.; Moore, Erin N.; VanMeter, John; Ratner, Nan Bernstein; Vaidya, Chandan J.; Gaillard, William Davis
2010-01-01
Listening and reading comprehension of paragraph-length material are considered higher-order language skills fundamental to social and academic functioning. Using ecologically relevant language stimuli that were matched for difficulty according to developmental level, we analyze the effects of task, age, neuropsychological skills, and post-task…
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2017-03-01
Thermal aging of cross-linked polyethylene (XLPE) can cause serious concerns in the safety operation in high voltage system. To get a more detailed picture on the effect of thermal aging on the trapping and detrapping process of XLPE in the melting temperature range, Thermal Stimulated Current (TSC) have been implemented in a Scanning Electron Microscope (SEM) with a specific arrangement. The XLPE specimens are molded and aged at two temperatures (120 °C and 140 °C) situated close to the melting temperature of the material. The use of SEM allows us to measure both leakage and displacement currents induced in samples under electron irradiation. The first represents the conduction process of XLPE and the second gives information on the trapping of charges in the bulk of the material. TSC associated to the SEM leads to show spectra of XLPE discharge under thermal stimulation using both currents measured after electron irradiation. It was found that leakage current in the charging process may be related to the physical defects resulting in crystallinity variation under thermal aging. However the trapped charge can be affected by the carbonyl groups resulting from the thermo-oxidation degradation and the disorder in the material. It is evidenced from the TSC spectra of unaged XLPE that there is no detrapping charge under heat stimulation. Whereas the presence of peaks in the TSC spectra of thermally aged samples indicates that there is some amount of trapped charge released by heating. The detrapping behavior of aged XLPE is supported by the supposition of the existence of two trap levels: shallow traps and deep traps. Overall, physico-chemical reactions under thermal aging at high temperatures leads to the enhancement of shallow traps density and changes in range of traps depth. These changes induce degradation of electrical properties of XLPE.
ERIC Educational Resources Information Center
Kennedy, Mary Ann Rhoads
2004-01-01
Testing materials for high school students whose reading is below grade level might not be age-appropriate or sufficiently motivating. The first step in finding appropriate material would be to talk with the student to learn his or her interests. To find age-appropriate material the author searched Internet resources and then used Microsoft Word…
Investigation of Test Methods, Material Properties and Processes for Solar Cell Encapsulants
NASA Technical Reports Server (NTRS)
Willis, P.; Baum, B.
1982-01-01
The evaluation of potentially useful low cost encapsulation materials is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost effective, long life solar cell modules. Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatment, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. Two component aliphatic urethane casting syrups were evaluated for suitability as solar module pottants on the basis of optical, physical and fabrication characteristics.
Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials
NASA Technical Reports Server (NTRS)
Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor
2007-01-01
This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.
Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.
Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P
2015-01-01
Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants. Observed associations between high cord adducts and reduced IQ were significant only among the group of children whose mothers reported high material hardship. These results indicate the need for a multifaceted approach to prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
Nondestructive ultrasonic testing of materials
Hildebrand, Bernard P.
1994-01-01
Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.
Nondestructive ultrasonic testing of materials
Hildebrand, B.P.
1994-08-02
Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.
Long term effects of early adversity on cognitive function.
Richards, M; Wadsworth, M E J
2004-10-01
To investigate long term effects of early adverse circumstances on cognitive function. Associations between early material home circumstances, parental divorce, maternal management and understanding, and cognitive function in childhood, adolescence, and adulthood were analysed using multiple linear regression, controlling for sex, parental SES, and birth order in 1339 males and females from the MRC National Survey of Health and Development. Early adverse circumstances were strongly associated with lower cognitive ability in childhood and adolescence, and were detectable on measures of verbal ability, memory, and speed and concentration in midlife. However, these long term effects were mostly explained by the effects of adversity on childhood or adolescent cognitive ability or by differences in educational attainment and adult social class. An exception was the effect of poor material home conditions on visual search speed at 53 years, which was maintained after controlling for adolescent ability, as well as further control for educational attainment, adult social class, physical growth, cigarette smoking, and affective state. There was no evidence of more rapid decline in memory and psychomotor function across middle age in those exposed to early adversity. The effect of early adversity on cognitive function tracks across the life course at least as far as middle age, although there was little evidence from this study of effect amplification over this interval. Nevertheless, in view of the persistence of child poverty in the industrialised world, these findings give cause for concern.
Soldo, Beth J.; Pagán, José A.; McCabe, John; deBlois, Madeleine; Field, Samuel H.; Asch, David A.; Cannuscio, Carolyn
2009-01-01
Objectives. We examined associations between material resources and late-life declines in health. Methods. We used logistic regression to estimate the odds of declines in self-rated health and incident walking limitations associated with material disadvantages in a prospective panel representative of US adults aged 51 years and older (N = 15 441). Results. Disadvantages in health care (odds ratio [OR] = 1.39; 95% confidence interval [CI] = 1.23, 1.58), food (OR = 1.69; 95% CI = 1.29, 2.22), and housing (OR = 1.20; 95% CI = 1.07, 1.35) were independently associated with declines in self-rated health, whereas only health care (OR = 1.43; 95% CI = 1.29, 1.58) and food (OR = 1.64; 95% CI = 1.31, 2.05) disadvantage predicted incident walking limitations. Participants experiencing multiple material disadvantages were particularly susceptible to worsening health and functional decline. These effects were sustained after we controlled for numerous covariates, including baseline health status and comorbidities. The relations between health declines and non-Hispanic Black race/ethnicity, poverty, marital status, and education were attenuated or eliminated after we controlled for material disadvantage. Conclusions. Material disadvantages, which are highly policy relevant, appear related to health in ways not captured by education and poverty. Policies to improve health should address a range of basic human needs, rather than health care alone. PMID:19890175
Pereira, Gabriel K R; Guilardi, Luís F; Dapieve, Kiara S; Kleverlaan, Cornelis J; Rippe, Marília P; Valandro, Luiz Felipe
2018-05-23
This study characterized the mechanical properties (static and under fatigue), the crystalline microstructure (monoclinic - m, tetragonal - t and cubic - c phase contents) and the surface topography of three yttrium-stabilized zirconia (YSZ) materials with different translucent properties, before and after aging in an autoclave (low temperature degradation). Disc-shaped specimens were produced from second generation (Katana ML/HT - high-translucent) and third generations (Katana STML - super-translucent and UTML - ultra-translucent) YSZ ceramics (Kuraray Noritake Dental Inc.), following ISO 6872-2015 guidelines for biaxial flexural strength testing (final dimensions: 15 mm in diameter and 1.2 ± 0.2 mm in thickness), and then subjected to the respective tests and analyses. ML was mainly composed of tetragonal crystals, while STML and UTML presented cubic content. Aging increased the monoclinic content for ML and did not affect STML and UTML. Topographical analysis highlights different grain sizes on the ceramic surface (UTML > STML > ML) and aging had no effect on this outcome. Weibull analysis showed the highest characteristic strength for ML both before and after aging, and statistically similar Weibull moduli for all groups. ML material also obtained the highest survival rates (ML > STML > UTML) for both fatigue strength and number of cycles to failure. All fractures originated from surface defects on the tensile side. Third generation zirconia (Katana STML and UTML) are fully stabilized materials (with tetragonal and cubic crystals), being totally inert to the autoclave aging, and presented lower mechanical properties than the second-generation zirconia (Katana ML - metastable zirconia). Copyright © 2018 Elsevier Ltd. All rights reserved.
High Temperature Composites: Properties, Processing and Performance
1998-05-21
of Titanium Matrix Composite: Models and Mechanisms Schroedter, Robert D. M.S. Mesoscale Damage Modeling of the Laminated Carbon Fiber- Polyimide...materials are between 800 and 1000 °C. Therefor, understanding the effects of high temperature aging on the mechanical properties is essential. Fig...will grow. Our approach was to isolate the effect of each sintering phenomena in order to understand how they related to mechanical properties
Siarampi, Eleni; Kontonasaki, Eleana; Andrikopoulos, Konstantinos S; Kantiranis, Nikolaos; Voyiatzis, George A; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros
2014-12-01
Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (P<0.05). The variability of the flexural strength values was analyzed using the two-parameter Weibull distribution function, which was applied for the estimation of Weibull modulus (m) and characteristic strength (σ0). The crystalline phase polymorphs of the materials (tetragonal, t, and monoclinic, m, zirconia) were investigated by X-ray diffraction (XRD) analysis, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. A slight increase of the flexural strength after 5h, and a decrease after 10h of aging, was recorded for both ceramics, however statistically significant was for the WI group (P<0.05). Both ceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
An eye movement corpus study of the age-of-acquisition effect.
Dirix, Nicolas; Duyck, Wouter
2017-12-01
In the present study, we investigated the effects of word-level age of acquisition (AoA) on natural reading. Previous studies, using multiple language modalities, showed that earlier-learned words are recognized, read, spoken, and responded to faster than words learned later in life. Until now, in visual word recognition the experimental materials were limited to single-word or sentence studies. We analyzed the data of the Ghent Eye-tracking Corpus (GECO; Cop, Dirix, Drieghe, & Duyck, in press), an eyetracking corpus of participants reading an entire novel, resulting in the first eye movement megastudy of AoA effects in natural reading. We found that the ages at which specific words were learned indeed influenced reading times, above other important (correlated) lexical variables, such as word frequency and length. Shorter fixations for earlier-learned words were consistently found throughout the reading process, in both early (single-fixation durations, first-fixation durations, gaze durations) and late (total reading times) measures. Implications for theoretical accounts of AoA effects and eye movements are discussed.
Bagheri, R; Palamara, Jea; Mese, A; Manton, D J
2017-03-01
The aim of this study was to compare the flexural strength and Vickers hardness of tooth-coloured restorative materials with and without applying a self-adhesive coating for up to 6 months. Specimens were prepared from three resin composites (RC), two resin-modified glass-ionomer cements (RM-GIC) and two conventional glass-ionomer cements (CGIC). All materials were tested both with and without applying G-Coat Plus (GCP). Specimens were conditioned in 37 °C distilled deionized water for 24 h, and 1, 3 and 6 months. The specimens were strength tested using a four-point bend test jig in a universal testing machine. The broken specimen's halves were used for Vickers hardness testing. Representative specimens were examined under an environmental scanning electron microscope. Data analysis showed that regardless of time and materials, generally the surface coating was associated with a significant increase in the flexural strength of the materials. Applying the GCP decreased the hardness of almost all materials significantly (P < 0.05) and effect of time intervals on hardness was material dependent. The load-bearing capacity of the restorative materials was affected by applying self-adhesive coating and ageing. The CGIC had significantly higher hardness but lower flexural strength than the RM-GIC and RC. © 2016 Australian Dental Association.
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.; Baum, B.
1977-01-01
The potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project were studied to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Materials for study were chosen on the basis of existing knowledge of generic chemical types having high resistance to environmental weathering. The materials varied from rubbers to thermoplastics and presented a broad range of mechanical properties and processing requirements. Basic physical and optical properties were measured on the polymers and were redetermined after exposure to indoor artificial accelerated aging conditions covering four time periods. Strengths and weaknesses of the various materials were revealed and data was accumulated for the development of predictive methodologies. To date, silicone rubbers, fluorocarbons, and acrylic polymers appear to have the most promising combination of characteristics. The fluorocarbons may be used only as films, however, because of their high cost.
Photothermal characterization of encapsulant materials for photovoltaic modules
NASA Technical Reports Server (NTRS)
Liang, R. H.; Gupta, A.; Distefano, S.
1982-01-01
A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.
NASA Technical Reports Server (NTRS)
Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.
2008-01-01
A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.
Aging effects on airflow dynamics and lung function in human bronchioles.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-01-01
The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media
NASA Astrophysics Data System (ADS)
Sheldon, Robert T.
Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (<1 MHz) capacitive sensors, are designed for permittivity characterization in their respective frequency regimes. In the first part of this work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method of resonant frequency and quality factor determination from measured data is presented. Excellent agreement between calculated and measured values of sensor resonant frequency was obtained for the samples studied. Agreement between calculated and measured quality factor was good in some cases but incurred the particular challenge of accurately quantifying multiple contributions to loss from the sensor structure itself, which at times dominates the contribution due to the sample material. Two later chapters describe the development of capacitive sensors to quantify the low-frequency changes in material permittivity due to environmental aging mechanisms. One embodiment involves the application of coplanar concentric interdigital electrode sensors for the purpose of investigating polymer-matrix degradation in glass-fiber composites due to isothermal aging. Samples of bismaleimide-matrix glass-fiber composites were aged at several high temperatures to induce thermal degradation and capacitive sensors were used to measure the sensor capacitance and dissipation factor, parameters that are directly proportional to the real and imaginary components of complex permittivity, respectively. It was shown that real permittivity and dissipation factor decreased with increasing aging temperature, a trend that was common to both interdigital sensor measurements and standard parallel plate electrode measurements. The second piece of work involves the development of cylindrical interdigital electrode sensors to characterize complex permittivity changes in wire insulation due to aging-related degradation. The sensor was proven effective in detecting changes in irradiated nuclear power plant wiring insulation and in aircraft wiring insulation due to liquid chemical immersion. In all three cases, the results indicate a clear correlation of measured capacitance and dissipation factor with increased degradation.
Sinder, Benjamin P.; Lloyd, William R.; Salemi, Joseph D.; Marini, Joan C.; Caird, Michelle S.; Morris, Michael D.; Kozloff, Kenneth M.
2016-01-01
Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as Osteogenesis Imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly→Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5 weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2–4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages >3wk) and rapidly growing Brtl/+ (at tissue ages > 4wk) mice compared to WT. At identical tissue ages defined by fluorescent labels adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. PMID:26769006
Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M
2016-03-01
Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality. Copyright © 2016 Elsevier Inc. All rights reserved.
Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials
NASA Astrophysics Data System (ADS)
Ju, Taeho
To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear mixing technique is adapted to develop an NDE technique for characterizing thermal aging of adhesive joints. To this end, a nonlinear spring model is used to simulate the effect of the adhesive layer. Based on this nonlinear spring model, analytical expressions of the resonant wave generated by the adhesive layers is obtained through an asymptotic analysis when the adhesive layer thickness is much smaller than the pertinent wavelength. The solutions are expressed in terms of the properties of the adhesive layer. The nonlinear spring model shows a good agreement with the finite layer model solutions in the limit of a small thickness to wavelength ratio. Third, to demonstrate the effectiveness of this newly developed technique, measurements are conducted on adhesive joint samples made of two aluminum adherends bonded together by a polymer adhesive tape. The samples are aged in a thermal chamber to induce thermal ageing degradation in the adhesive layer. Using the developed wave-mixing technique in conjunction with the nonlinear spring model, we show that the thermal aging damage of the adhesive layer can be quantified from only one side of the sample. Finally, by mixing two L-waves, we develop a mixing technique to nondestructively evaluate the damage induced by alkali-silica reaction (ASR) in concrete. Experimental measurements are conducted on concrete prism samples that contain reactive aggregates and have been subjected to different ASR conditioning. This new technique takes into consideration of the significant attenuation caused by ASR-induced microcracks and scattering by the aggregates. The measurement results show that the ANLP has a much greater sensitivity to ASR damage than other parameters such as attenuation and wave speed. More remarkably, it is also found that the measured acoustic nonlinearity parameter is well-correlated with the reduction of the compressive strength induced by ASR damage. Thus, ANLP can be used to nondestructively track ASR damage in concrete.
Memory Functions following Surgery for Temporal Lobe Epilepsy in Children
ERIC Educational Resources Information Center
Jambaque, Isabelle; Dellatolas, Georges; Fohlen, Martine; Bulteau, Christine; Watier, Laurence; Dorfmuller, Georg; Chiron, Catherine; Delalande, Olivier
2007-01-01
Surgical treatment appears to improve the cognitive prognosis in children undergoing surgery for temporal lobe epilepsy (TLE). The beneficial effects of surgery on memory functions, particularly on material-specific memory, are more difficult to assess because of potentially interacting factors such as age range, intellectual level,…
Life-Writing: Writing Workshops and Outreach Procedures.
ERIC Educational Resources Information Center
Gillis, Candida; Wagner, Linda
The ongoing project described in this paper seeks to develop an economical, effective means through which communities can establish writing workshops that will provide the aged with constructive environments for life review. It is aimed at identifying the methods and materials useful in a workshop setting for stimulating reminiscence and personal…
Parental Distancing Strategies and Children's Fantasy Play.
ERIC Educational Resources Information Center
Perlmutter, Jane C.; Pellegrini, Anthony D.
Effects of age and gender of preschool children and sex of parent on parental teaching strategies in a fantasy play situation were examined. Relations of parental strategies to children's fantasy play were assessed. Play sessions were held in a small playroom equipped with materials which facilitated dramatic production. The linguistic strategies…
Aging mechanisms in amorphous phase-change materials.
Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias
2015-06-24
Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.
Pregnancy Outcome of Multiparous Women Aged over 40 Years
Ates, Seda; Batmaz, Gonca; Sevket, Osman; Molla, Taner; Dane, Cem; Dane, Banu
2013-01-01
Objective. The aim of this study was to evaluate the effect of maternal age on prenatal and obstetric outcome in multiparaous women. Materials and Methods. A retrospective case control study was conducted, including women aged 40 years and over (study group, n = 97) who delivered at 20 week's gestation or beyond and women aged 20–29 years (control group, n = 97). Results. The mean age of women in the study group was 41.2 ± 1.7 years versus 25.4 ± 2.3 years in the control group. Advanced maternal age was associated with a significantly higher rate of hypertension, diabetes mellitus, fetal complication, and 5-minute Apgar scores <7 (P < 0.05). Caeserean section rate, incidence of placental abruption, preterm delivery, and neonatal intensive care unit admission were more common in the older group, but the differences were not statistically significant. Conclusions. Advanced maternal age is related to maternal and neonatal complications. PMID:25954770
Aging experiences of older immigrant women in Québec (Canada): From deskilling to liberation.
Charpentier, Michèle; Quéniart, Anne
2017-01-01
This article examines experiences of aging of older immigrant women. The data are based on qualitative research that was conducted in Québec, Canada with 83 elderly women from different ethnocultural backgrounds (Arab, African, Haitian, Japanese, Chinese, Portuguese, Romanian, etc.). The results on how such immigrant women deal with material conditions of existence such as deskilling, aging alone, being more economically independent, and the combined effects of liberation from social and family norms associated with age and gender in the light of the migration route, will be presented. For the majority, migration opened up possibilities for personal development and self-affirmation. The findings demonstrated the relevance of the intersectional approach in understanding the complexity and social conditionings of women's experiences of aging.
Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; McGrath, P.B.; Burns, C.W.
1996-12-31
Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less
NASA Astrophysics Data System (ADS)
Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume
2017-06-01
In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.
Asthma education material for children and their families; a global survey of current resources.
Everard, Mark L; Wahn, Ulrich; Dorsano, Sofia; Hossny, Elham; Le Souef, Peter
2015-01-01
One of the keys to high quality paediatric asthma management is the provision of age appropriate information regarding the disease and its management. In order to determine whether the generation of a minimum dataset of information which can be translated into a wide range of languages might be used to assist children and their parents around the world, we undertook a survey of national Member Societies of the World Allergy Organization (WAO) to determine what educational material on asthma for children and their families already exists. A questionnaire was developed using Survey Monkey and distributed in 2014 to 263 representatives of the WAO member Societies from 95 countries. Thirty-three replies were received from thirty-one countries. The survey highlighted a considerable disparity in availability of material among the responding countries, with some countries reporting that information was freely available in hard copy and online and others reporting a lack of suitable material locally. The results highlight the need to develop a core set of simple, clear and consistent age appropriate information that can be easily translated and delivered in a cultural and educationally effective format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A; Weisgraber, T. H.; Dinh, L. N.
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-, thermal-, and electrical barriers. External factors like mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a controlled manner. In this report we summarize ourmore » modeling efforts on a polysiloxane elastomer TR-55, which is an important component in several of our systems, and representative of a wide class of filled rubber materials. The primary aging driver in this work has been γ-radiation, and a variety of modeling approaches have been employed, including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data, including mechanical stress-strain and compression set measurements, as well as MWD measurements using multiquantum NMR.« less
Corrosive effect of environmental change on selected properties of polymer composites
NASA Astrophysics Data System (ADS)
Markovičová, L.; Zatkalíková, V.
2017-11-01
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.
Gordon-Salant, Sandra; Cole, Stacey Samuels
2016-01-01
This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.
Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE
NASA Astrophysics Data System (ADS)
Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.
2015-08-01
High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.
English, Tammy; Carstensen, Laura L
2015-06-01
Research and theory suggest that emotional goals are increasingly prioritized with age. Related empirical work has shown that, compared with younger adults, older adults attend to and remember positive information more than negative information. This age-related positivity effect has been eliminated in experiments that have explicitly demanded processing of both positive and negative information. In the present study, we explored whether a reduction of the preference for positive information over negative information appears when the material being reviewed holds personal relevance for the individual. Older participants whose health varied from poor to very good reviewed written material prior to making decisions about health related and non-health-related issues. As predicted, older adults in relatively poor health (compared with those in relatively good health) showed less positivity in review of information while making health-related decisions. In contrast, positivity emerged regardless of health status for decisions that were unrelated to health. Across decision contexts, those individuals who focused more on positive information than negative information reported better postdecisional mood and greater decision satisfaction. Results are consistent with the theoretical argument that the age-related positivity effect reflects goal-directed cognitive processing and, furthermore, suggests that personal relevance and contextual factors determine whether positivity emerges. (c) 2015 APA, all rights reserved.
Kendrick, Katherine J.; Camille Partin,; Graham, Robert C.
2016-01-01
Rock surface erosion by wildfire is significant and widespread but has not been quantified in southern California or for chaparral ecosystems. Quantifying the surface erosion of bedrock outcrops and boulders is critical for determination of age using cosmogenic radionuclide techniques, as even modest surface erosion removes the accumulation of the cosmogenic radionuclides and causes significant underestimate of age. This study documents the effects on three large granitic boulders following the Esperanza Fire of 2006 in southern California. Spalled rock fragments were quantified by measuring the removed rock volume from each measured boulder. Between 7% and 55% of the total surface area of the boulders spalled in this single fire. The volume of spalled material, when normalized across the entire surface area, represents a mean surface lowering of 0.7–12.3 mm. Spalled material was thicker on the flanks of the boulders, and the height of the fire effects significantly exceeded the height of the vegetation prior to the wildfire. Surface erosion of boulders and bedrock outcrops as a result of wildfire spalling results in fresh surfaces that appear unaffected by chemical weathering. Such surfaces may be preferentially selected by researchers for cosmogenic surface dating because of their fresh appearance, leading to an underestimate of age.
Thermal abuse performance of high-power 18650 Li-ion cells
NASA Astrophysics Data System (ADS)
Roth, E. P.; Doughty, D. H.
High-power 18650 Li-ion cells have been developed for hybrid electric vehicle applications as part of the DOE Advanced Technology Development (ATD) program. The thermal abuse response of two advanced chemistries (Gen1 and Gen2) were measured and compared with commercial Sony 18650 cells. Gen1 cells consisted of an MCMB graphite based anode and a LiNi 0.85Co 0.15O 2 cathode material while the Gen2 cells consisted of a MAG10 anode graphite and a LiNi 0.80Co 0.15 Al 0.05O 2 cathode. Accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC) were used to measure the thermal response and properties of the cells and cell materials up to 400 °C. The MCMB graphite was found to result in increased thermal stability of the cells due to more effective solid electrolyte interface (SEI) formation. The Al stabilized cathodes were seen to have higher peak reaction temperatures that also gave improved cell thermal response. The effects of accelerated aging on cell properties were also determined. Aging resulted in improved cell thermal stability with the anodes showing a rapid reduction in exothermic reactions while the cathodes only showed reduced reactions after more extended aging.
English, Tammy; Carstensen, Laura L.
2015-01-01
Research and theory suggest that emotional goals are increasingly prioritized with age. Related empirical work has shown that, compared to younger adults, older adults attend to and remember positive information more than negative information. This age-related positivity effect has been eliminated in experiments that have explicitly demanded processing of both positive and negative information. In the present study, we explored whether a reduction of the preference for positive information over negative information appears when the material being reviewed holds personal relevance for the individual. Older participants whose health varied from poor to very good reviewed written material prior to making decisions about health related and non-health related issues. As predicted, older adults in relatively poor health (compared with those in relatively good health) showed less positivity in review of information while making health-related decisions. In contrast, positivity emerged regardless of health status for decisions that were unrelated to health. Across decision contexts, those individuals who focused more on positive information than negative information reported better post-decisional mood and greater decision satisfaction. Results are consistent with the theoretical argument that the age-related positivity effect reflects goal-directed cognitive processing and, furthermore, suggests that personal relevance and contextual factors determine whether or not positivity emerges. PMID:25894484
Walczak, Adam; Ahlstrom, Jayne; Denslow, Stewart; Horwitz, Amy; Dubno, Judy R.
2008-01-01
Speech recognition can be difficult and effortful for older adults, even for those with normal hearing. Declining frontal lobe cognitive control has been hypothesized to cause age-related speech recognition problems. This study examined age-related changes in frontal lobe function for 15 clinically normal hearing adults (21–75 years) when they performed a word recognition task that was made challenging by decreasing word intelligibility. Although there were no age-related changes in word recognition, there were age-related changes in the degree of activity within left middle frontal gyrus (MFG) and anterior cingulate (ACC) regions during word recognition. Older adults engaged left MFG and ACC regions when words were most intelligible compared to younger adults who engaged these regions when words were least intelligible. Declining gray matter volume within temporal lobe regions responsive to word intelligibility significantly predicted left MFG activity, even after controlling for total gray matter volume, suggesting that declining structural integrity of brain regions responsive to speech leads to the recruitment of frontal regions when words are easily understood. Electronic supplementary material The online version of this article (doi:10.1007/s10162-008-0113-3) contains supplementary material, which is available to authorized users. PMID:18274825
Test method for mechanical properties of implantable catheters according to DIN 10555-3.
Busch, J D; Schröder, H; Sellenschloh, K; Adam, G; Ittrich, H; Huber, G
2018-06-01
To enable causal analysis of port catheter failure, this study aimed to develop an experimental setup for uniaxial tensile tests that addresses the specific requirements of highly elastic medical catheters; and to quantify parameters of the catheters' mechanical competence with respect to effects of artificial aging. Segments of 6F-polyurethane catheters were tested in their native status, after chemical and after mechanical aging. Tension experiments were performed with a rate of 220 mm/min until catheter failure. Material behavior was analyzed based on load cell measurements of the universal test system and an additional optical distance registration. The Young's modulus, the ultimate stress and the ultimate strain were determined. Chemical aging significantly decreased Young's modulus (84%; p = 0.001) and ultimate stress (83%; p < 0.001), whereas mechanical aged samples demonstrated similar results for the Young's modulus (p = 0.772) and a non-significant rise of ultimate stress (13%; p = 0.128). Ultimate strain did not differ significantly regardless of the pretreatment. The results proof reliability, reproducibility and sensitivity to quantify artificial aging induced variations and also promise to detect deviations in material features caused by long-term clinical usage of catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Learning facts during aging: the benefits of curiosity.
Galli, Giulia; Sirota, Miroslav; Gruber, Matthias J; Ivanof, Bianca Elena; Ganesh, Janani; Materassi, Maurizio; Thorpe, Alistair; Loaiza, Vanessa; Cappelletti, Marinella; Craik, Fergus I M
2018-05-22
Background/study context: Recent studies have shown that young adults better remember factual information they are curious about. It is not entirely clear, however, whether this effect is retained during aging. Here, the authors investigated curiosity-driven memory benefits in young and elderly individuals. In two experiments, young (age range 18-26) and older (age range 65-89) adults read trivia questions and rated their curiosity to find out the answer. They also attended to task-irrelevant faces presented between the trivia question and the answer. The authors then administered a surprise memory test to assess recall accuracy for trivia answers and recognition memory performance for the incidentally learned faces. In both young and elderly adults, recall performance was higher for answers to questions that elicited high levels of curiosity. In Experiment 1, the authors also found that faces presented in temporal proximity to curiosity-eliciting trivia questions were better recognized, indicating that the beneficial effects of curiosity extended to the encoding of task-irrelevant material. These findings show that elderly individuals benefit from the memory-enhancing effects of curiosity. This may lead to the implementation of learning strategies that target and stimulate curiosity in aging.
Freire, T S; Aguilar, F G; Garcia, L da Fonseca Roberti; Pires-de-Souza, F de Carvalho Panzeri
2014-03-01
Acrylic resin is widely used for artificial teeth manufacturing due to several important characteristics; however, this material do not present acceptable colour stability over the course of time. This study evaluated the effect of different cleaning protocols and accelerated artificial aging on colour stability of denture teeth made of acrylic resin. Sixty denture teeth in dark and light shades were used, and separated according to the treatment to which they were submitted. Results demonstrated that colour stability of artificial teeth is influenced by the cleaning solution and artificial aging, being dark teeth more susceptible to colour alteration than lighter ones.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.
2016-01-01
In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.
The effect of glycation on arterial microstructure and mechanical response.
Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D T
2014-08-01
Like engineered materials, an artery's biomechanical behavior and function depend on its microstructure. Glycation is associated with both normal aging and diabetes and has been shown to increase arterial stiffness. In this study we examined the direct effect of glycation on the mechanical response of intact arteries and on the mechanical response and structure of elastin isolated from the arteries. Samples of intact arteries and isolated elastin were prepared from porcine aortas and glycated. The mechanical response of all samples was completed using a uniaxial material test system. Glycation levels were measured using ELISA. A confocal microscope was used to image differences in the structure of the glycated and untreated elastin fibers. We found that, under the conditions used in this study, glycation led to decreased stiffness of elastin isolated from arteries, which was associated with a thinning of elastin fibers as imaged by confocal microscopy. We observed no effect of glycation on collagen fibers under our treatment conditions. These results suggest that glycation leads to weakening of the elastin component of arteries that could contribute to vascular defects seen in diabetes and aging. Prevention of glycation reactions may be an important consideration for vascular health later in life. © 2013 Wiley Periodicals, Inc.
Fat-plug myringoplasty of ear lobule vs abdominal donor sites.
Acar, Mustafa; Yazıcı, Demet; San, Turhan; Muluk, Nuray Bayar; Cingi, Cemal
2015-04-01
The purpose of this study is to compare the success rates of fat-graft myringoplasties harvesting adipose grafts from different donor sites (ear lobule vs abdomen). The clinical records of 61 patients (24 males and 37 females) who underwent fat-plug myringoplasty (FPM) were reviewed retrospectively. Fat from ear lobule (FEL) and abdominal fat were used as graft materials. The impact of age, gender, systemic diseases, topography of the perforation, utilization of fat graft materials of different origin on the tympanic membrane closure rate and the effect of FPM on hearing gain was analyzed. Our tympanic membrane (TM) closure rate was 82 %. No statistical significant difference was observed regarding age, gender, comorbidities (septal deviation, hypertension and diabetes mellitus) or habits (smoking). Posterior TM perforations had significantly lower healing rate. The change in TM closure rate considering different adipose tissue donor sites was not statistically significant. The hearing gain of the patients was mostly below 20 dB. Fat-plug myringoplasty (FPM) is a safe, cost-effective and easy operation for selected patients. Abdominal fat graft is as effective as ear lobe fat graft on tympanic membrane healing, has cosmetic advantages and should be taken into consideration when planning fat as the graft source.
NASA Astrophysics Data System (ADS)
Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.
2016-06-01
The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.
NASA Technical Reports Server (NTRS)
Chen, P. S.; Stanton, W. P.
2002-01-01
In 1996, Marshall Space Flight Center developed a multistep heating rate-controlled (MSRC) aging technique that significantly enhanced cryogenic fracture toughness (CFT) and reduced the statistical spread of fracture toughness values in alloy 2195 by controlling the location and size of strengthening precipitate T1. However, it could not be readily applied to flight-related hardware production, primarily because large-scale production furnaces are unable to maintain a heating rate of 0.6 C (1 F)/hr. In August 1996, a new program was initiated to determine whether the MSRC aging treatment could be further modified to facilitate its implementation to flight hardware production. It was successfully redesigned into a simplified two-step aging treatment consisting of 132 C (270 F)/20 hr + 138 C (280 F)/40 hr. Results indicated that two-step aging can achieve the same yield strength levels as those produced by conventional aging while providing greatly improved ductility. Two-step aging proved to be very effective at enhancing CFT, enabling previously rejected materials to meet simulated service requirements. Cryogenic properties are improved by controlling T1 nucleation and growth so that they are promoted in the matrix and suppressed in the subgrain boundaries.
Training Materials in Aging. An Annotated International Bibliography.
ERIC Educational Resources Information Center
Brookes, Toby, Comp.
This bibliography lists training programs and training materials, both print and audiovisual, related to aging irrespective of the source of language used. Materials emanate from Australia, Canada, Chile, Israel, New Zealand, Norway, the former Soviet Union, Thailand, the United Kingdom, and the United States as well as from several international…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez-Bustamante, R.
Although carbon nanotubes/aluminum (CNT/Al) composites are promising materials in the production of structural components, their mechanical behavior under overaging conditions has not been considered. In this paper the effect of CNTs on the microstructural and mechanical behavior of a 2024 aluminum alloy (Al2024) synthesized by mechanical alloying (MA) and powder metallurgy routes is discussed, as well as the effect of aging heat treatments at different temperatures and aging times. The mechanical behavior of composites was screened by hardness measurements as function of aging time. After 96 h of aging time, composites showed mechanical stability in their hardness performance. Images frommore » transmission electron microscopy showed that the mechanical stability of composites was due to a homogeneous dispersion of CNTs in the aluminum matrix and a subsequent alteration in the kinetics of precipitation is due to their presence in the aluminum matrix. Even though strengthening precipitation took place during aging, this was not the main strengthening mechanism observed in composites. - Highlights: • Dispersion of carbon nanotubes during mechanical alloying • Microstructural evolution observed by HRTEM. • Mechanical performance evaluated through micro-hardness test. • Increased mechanical performance at high working temperatures • Acceleration of kinetics of precipitation due to CNTs, and milling conditions.« less
Investigation of HP Turbine Blade Failure in a Military Turbofan Engine
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Thomas, Johny; Srinivasan, K.; Nandi, Vaishakhi; Bhatt, R. Raghavendra
2017-04-01
Failure of a high pressure (HP) turbine blade in a military turbofan engine is investigated to determine the root cause of failure. Forensic and metallurgical investigations are carried out on the affected blades. The loss of coating and the presence of heavily oxidized intergranular fracture features including substrate material aging and airfoil curling in the trailing edge of a representative blade indicate that the coating is not providing adequate oxidation protection and the blade material substrate is not suitable for the application at hand. Coating spallation followed by substrate oxidation and aging leading to intergranular cracking and localized trailing edge curling is the root cause of the blade failure. The remaining portion of the blade fracture surface showed ductile overload features in the final failure. The damage observed in downstream components is due to secondary effects.
Physical aging of linear and network epoxy resins
NASA Technical Reports Server (NTRS)
Kong, E. S.-W.; Wilkes, G. L.; Mcgrath, J. E.; Banthia, A. K.; Mohajer, Y.; Tant, M. R.
1981-01-01
Network and linear epoxy resins principally based on the diglycidyl ether of bisphenol-A and its oligomers are prepared and studied using diamine and anhydride crosslinking agents. Rubber modified epoxies and a carbon fiber reinforced composite are also investigated. All materials display time-dependent changes when stored at temperatures below the glass transition temperature after quenching (sub-T/g/ annealing). Solvent sorption experiments initiated after different sub-T(g) annealing times demonstrate that the rate of solvent uptake can be indirectly related to the free volume of the epoxy resins. Residual thermal stresses and water are found to have little effect on the physical aging process, which affects the sub-T(g) properties of uniaxial carbon fiber reinforced epoxy material. Finally, the importance of the recovery phenomenon which affects the durability of epoxy glasses is considered.
The Effect of Smoking on the Physical Fitness of Elderly Male Subjects
ERIC Educational Resources Information Center
Eroglu, Hüseyin; Yüksek, Selami
2018-01-01
Introduction: This study was conducted to analyze the effect of the smoking habit on the physical fitness of elderly male subjects. Material and Method: The study was conducted on 849 (age 68.7 ± 6.1 years, height 169.4 ± 6.4 cm, 76.4 ± 11.00 kg) elderly male volunteers who could independently perform their daily activities and did not suffer from…
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.
2011-01-01
The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.
Age Modifies the Effect of 2-MeV Fast Neutrons on Rat Mammary Carcinogenesis.
Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Hosoki, Ayaka; Takabatake, Masaru; Kokubo, Toshiaki; Doi, Kazutaka; Showler, Kaye; Nishimura, Yukiko; Moriyama, Hitomi; Morioka, Takamitsu; Shimada, Yoshiya; Kakinuma, Shizuko
2017-10-01
The relative biological effectiveness (RBE) of neutrons depends on their physical nature (e.g., energy) and the biological context (e.g., end points, materials). From the perspective of radiological protection, age is an important biological context that influences radiation-related cancer risk, but very few studies have addressed its potential impact on neutron effects. We therefore investigated the influence of age on the effect of accelerator-generated fast neutrons (mean energy, ∼2 MeV) in an animal model of breast carcinogenesis. Female Sprague-Dawley rats at 1, 3 and 7 weeks of age were irradiated with fast neutrons at absorbed doses of 0.0485-0.97 Gy. All animals were kept under specific pathogen-free conditions and screened weekly for mammary tumors by palpation until they were 90 weeks old. Tumors were diagnosed based on histology. Mathematical modeling was used to analyze mammary cancer incidence, collectively using data from this study and a previously reported experiment on 137 Cs gamma rays. The results indicate that neutron irradiation elevated the risk of palpable mammary carcinoma with a linear dose response, the slope of which depended on age at time of irradiation. The RBE of neutron radiation was 7.5 ± 3.4, 9.3 ± 3.5 and 26.1 ± 8.9 (mean ± SE) for animals exposed at 1, 3 and 7 weeks of age, respectively. Our results indicate that age of the animal is an important factor influencing the effect of fast neutrons on breast cancer risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jianmin
Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less
Crystal River 3 Cable Materials for Thermal and Gamma Radiation Aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Correa, Miguel; Zwoster, Andy
The Expanded Materials Degradation Assessment Volume 5: Aging of Cables and Cable Systems (EMDA) summarizes the state of knowledge of materials, constructions, operating environments, and aging behavior of low voltage and medium cables in nuclear power plants (NPPs) and identifies potential knowledge gaps with regard to cable operation beyond 60 years. The greatest area of uncertainty relates to how well the accelerated aging used in the original equipment qualification (EQ) processes predicts the performance of cable materials in extended operation. General opinion and utility experience have indicated that actual operating environments of in-plant cables are not as severe, however, asmore » the operating and design basis environments used in the qualification process. Better understanding of the long term aging behavior of cable insulation materials in service conditions and the analysis of actual cable operating environments are the objectives of ongoing research to support subsequent license renewal activities in particular and long term cable aging management in general. A key component of the effort to better understand cable material aging behavior is the availability of representative samples of cables that have been installed in operating light water reactors and have experienced long term service. Unique access to long term service cables, including relatively rich information on cable identity and history, occurred in 2016 through the assistance of the Electric Power Research Institute (EPRI). EPRI facilitated DOE receipt of harvested cables from the decommissioned Crystal River Unit 3 (CR3) pressurized water reactor representing six of the nine most common low voltage cable manufacturers (EPRI 103841R1): Rockbestos, Anaconda Wire and Cable Company (Anaconda), Boston Insulated Wire (BIW), Brand-Rex, Kerite and Okonite. Cable samples received had been installed in the operating plant for durations ranging from 10 years to 36 years. These cables provide the opportunity to assess actual in-plant material aging and compare it to the expectations for service aging implied in original equipment qualification. The received samples are from cables manufactured as early as 1971 and as late as 1998. Of the original manufacturers, BIW, Anaconda and Kerite no longer supply low-voltage cables to the nuclear industry. Okonite, Rockbestos, and Brand-Rex do still supply nuclear-grade low-voltage cables, but most cable insulation formulations have changed over the years. Thus the availability of the CR3 samples representative of cables installed in existing U.S. NPPs also presents the opportunity for additional aging studies on the most relevant insulation and jacketing materials. This report describes the cables received from CR3 through EPRI assistance, some of the specific knowledge gaps that study of these cable materials can be used to address, and experimental plans for addressing those gaps using these materials. Harvested cables from CR3 and other NPPs that have experienced long term service, new old stock cables (manufactured before 2000, but never put in service), and relevant modern nuclear cables and materials from cable manufacturers are enabling research to address identified knowledge gaps and better understand long term aging behavior for cable materials currently installed in NPPs. This research, combined with refined understanding of actual service environments and conditions, will both support subsequent licensing activities and more efficient plant cable aging management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin
2014-09-20
This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the Department of Energy LWRS program for developing tools to understand the aging/failure mechanism and to predictmore » the remaining life of LWR components for anticipated 60-80 year operation.« less
Release of (14)C-labelled carbon nanotubes from polycarbonate composites.
Rhiem, Stefan; Barthel, Anne-Kathrin; Meyer-Plath, Asmus; Hennig, Michael P; Wachtendorf, Volker; Sturm, Heinz; Schäffer, Andreas; Maes, Hanna M
2016-08-01
Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. Copyright © 2016. Published by Elsevier Ltd.
The effect of aging on the fracture toughness of esthetic restorative materials.
Bagheri, Rafat; Azar, Mohammad R; Tyas, Martin J; Burrow, Michael F
2010-06-01
To compare the fracture toughness (KIc) of tooth-colored restorative materials based on a four-point bending; to assess the effect of distilled water and a resin surface sealant (G-Coat Plus) on the resistance of the materials to fracture. Specimens were prepared from six materials: Quix Fil; Dyract (Dentsply), Freedom (SDI), Fuji VII (GC), Fuji IX (GC); Fuji II LC (GC). Fuji II LC and Fuji IX were tested both with and without applying G-Coat Plus (GC). The specimens were divided into the three groups which were conditioned in distilled water at 37 degrees C for 48 hours, 4 and 8 weeks. The specimens were loaded in a four-point bending test using a universal testing machine. The maximum load to specimen failure was recorded and the fracture toughness calculated. There were significant differences among most of the materials (P < 0.001). Quix Fil had the highest mean KIc value and Fuji VII the lowest. Immersion in distilled water for the resin composite and polyacid-modified resin composites caused a significant decrease in KIc as the time interval increased. For glass-ionomer cements, KIc decreased significantly after 4 weeks, and after 8 weeks immersion slightly increased. G-Coat Plus affected Fuji II LC positively while it had no effect on the Fuji IX.
Heintze, Siegward D; Ilie, Nicoleta; Hickel, Reinhard; Reis, Alessandra; Loguercio, Alessandro; Rousson, Valentin
2017-03-01
To evaluate a range of mechanical parameters of composite resins and compare the data to the frequency of fractures and wear in clinical studies. Based on a search of PubMed and SCOPUS, clinical studies on posterior composite restorations were investigated with regard to bias by two independent reviewers using Cochrane Collaboration's tool for assessing risk of bias in randomized trials. The target variables were chipping and/or fracture, loss of anatomical form (wear) and a combination of both (summary clinical index). These outcomes were modelled by time and material in a linear mixed effect model including random study and experiment effects. The laboratory data from one test institute were used: flexural strength, flexural modulus, compressive strength, and fracture toughness (all after 24-h storage in distilled water). For some materials flexural strength data after aging in water/saliva/ethanol were available. Besides calculating correlations between clinical and laboratory outcomes, we explored whether a model including a laboratory predictor dichotomized at a cut-off value better predicted a clinical outcome than a linear model. A total of 74 clinical experiments from 45 studies were included involving 31 materials for which laboratory data were also available. A weak positive correlation between fracture toughness and clinical fractures was found (Spearman rho=0.34, p=0.11) in addition to a moderate and statistically significant correlation between flexural strength and clinical wear (Spearman rho=0.46, p=0.01). When excluding those studies with "high" risk of bias (n=18), the correlations were generally weaker with no statistically significant correlation. For aging in ethanol, a very strong correlation was found between flexural strength decrease and clinical index, but this finding was based on only 7 materials (Spearman rho=0.96, p=0.0001). Prediction was not consistently improved with cutoff values. Correlations between clinical and laboratory outcomes were moderately positive with few significant results, fracture toughness being correlated with clinical fractures and flexural strength with clinical wear. Whether artificial aging enhances the prognostic value needs further investigations. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ehret, R. M.; Scanlan, P. R.; Rosen, C. D.
1982-01-01
A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F).
Are the memories of older adults positively biased?
Fernandes, Myra; Ross, Michael; Wiegand, Melanie; Schryer, Emily
2008-06-01
There is disagreement in the literature about whether a "positivity effect" in memory performance exists in older adults. To assess the generalizability of the effect, the authors examined memory for autobiographical, picture, and word information in a group of younger (17-29 years old) and older (60-84 years old) adults. For the autobiographical memory task, the authors asked participants to produce 4 positive, 4 negative, and 4 neutral recent autobiographical memories and to recall these a week later. For the picture and word tasks, participants studied photos or words of different valences (positive, negative, neutral) and later remembered them on a free-recall test. The authors found significant correlations in memory performance, across task material, for recall of both positive and neutral valence autobiographical events, pictures, and words. When the authors examined accurate memories, they failed to find consistent evidence, across the different types of material, of a positivity effect in either age group. However, the false memory findings offer more consistent support for a positivity effect in older adults. During recall of all 3 types of material, older participants recalled more false positive than false negative memories.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Abstracts of AF Materials Laboratory Reports. January 1973 - December 1973
1974-07-01
substituted polymers with aryl ether , ketone and sulfone units in the backbone has been studied. The best resins seem to have come from simple...exposed to hostile environments such as heat aging plus salt spray, humid aging , humid aging and elevated temperature cycling, and fatigue...unclassified results of materials and process and radome characterization effort. Environmental exposure including thermal aging resulted in significant
Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints
NASA Astrophysics Data System (ADS)
Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun
2015-04-01
In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.
Renoprotective effect of aged garlic extract in streptozotocin-induced diabetic rats
Shiju, T. M.; Rajesh, N. G.; Viswanathan, Pragasam
2013-01-01
Objective: Aged garlic extract (AGE) has been proven to exhibit antioxidant, hypolipidemic, hypoglycemic and antidiabetic properties. However, its effect on diabetic nephropathy was unexplored. Therefore, the present study was designed to investigate the renoprotective effect of AGE in streptozotocin-induced diabetic rats. Materials and Methods: Albino Wistar rats were induced with diabetes by a single intraperitoneal injection of 45 mg/kg b.w. of streptozotocin. Commercially available AGE was supplemented orally at a dose of 500 mg/kg body weight/day. Aminoguanidine, which has been proven to be an anti-glycation agent was used as positive control and was supplemented at a dose of 1 g/L in drinking water. The serum and urinary biochemical parameters were analyzed in all the groups and at the end of 12 weeks follow up, the renal histological examination were performed using H & E and PAS staining. Results: The diabetic rats showed a significant change in the urine (P < 0.001) and serum (P < 0.01) constituents such as albumin, creatinine, urea nitrogen and glycated hemoglobin. In addition, the serum lipid profile of the diabetic rats were altered significantly (P < 0.05) compared to that of the control rats. However, the diabetic rats supplemented with aged garlic extract restored all these biochemical changes. The efficacy of the extract was substantiated by the histopathological changes in the kidney. Conclusion: From our results, we conclude that aged garlic extract has the ability to ameliorate kidney damage in diabetic rats and the renoprotective effect of AGE may be attributed to its anti-glycation and hypolipidemic activities. PMID:23543654
Effect of γ-IRRADIATION on the Mechanical Properties of Al-Cu Alloy
NASA Astrophysics Data System (ADS)
Abo-Elsoud, M.; Ismail, H.; Sobhy, Maged S.
SEM observations and Vickers hardness tests were performed to identify the irradiation effects. γ-irradiation effect during the aging hardening process can be explained depending on the composition of the alloy and is used to derive quantitative information on the kinetics of the transformation precipitates. Increasing the Cu content of an Al-Cu alloy can improve the aging hardness. The present results of the hardness behavior, with SEM observations of surveillance specimens at different doses, suggest that the radiation-induced defects are probably complex valence-solute clusters. These clusters act as nuclei for the precipitation of θ-Al2Cu type. This can be effectively utilized to study the systematics of nucleation of precipitates at vacancy-type defects. γ-irradiation probably plays the key role in defects responsible for material strengthening and embrittlement.
Ebrahimpour, Soheil; Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Aghajanzadeh, Hamid; Behzadi, Manijeh Yousefi
2013-01-01
Background: Garlic, a medicinal plant, and Naltrexone (NTX), an opioid receptor antagonist, both have immunomodulatory and antitumor effects. Current study was designed to evaluate synergistic antitumor effects of aged garlic extract (AGE) and NTX. Materials and Methods: WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into right flank of 80 BALB/c mice at age of 8 weeks. Mice were randomly categorized in four separate groups: The first group received AGE (100 mg/kg, i.p.), the second group received NTX (0.5 mg/kg, i.p.), the third group received both of them, and the fourth group received phosphate buffered saline as control group. Treatments were administered three times per week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flowcytometery. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) cytokines were measured. All statistical analyses were conducted with SPSS 16 software and P < 0.05 was considered to be statistically significant. Results: The mice who received AGE+NTX had significantly longer survival time compared with the mice treated with AGE or NTX alone. An enhanced inhibitory effect on tumor growth was seen in combination therapy group. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE+NTX and NTX groups. WEHI-164 specific cytotoxicity of splenocytes was also significantly increased at 25:1 E:T ratio in AGE+NTX treated mice. Coadministration of AGE with NTX resulted in improvement of immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. Conclusions: AGE showed synergistic effects with NTX on inhibition of tumor growth and increment of survival times. PMID:23901215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Natesan, K.; Chen, Weiying
This report provides an update on understanding and predicting the effects of long-term thermal aging on microstructure and tensile properties of G91 to corroborate the ASME Code rules in strength reduction due to elevated temperature service. The research is to support the design and long-term operation of G91 structural components in sodium-cooled fast reactors (SFRs). The report is a Level 2 deliverable in FY17 (M2AT-17AN1602017), under the Work Package AT-17AN160201, “SFR Materials Testing” performed by the Argonne National Laboratory (ANL), as part of the Advanced Reactor Technologies Program.
ac aging and space-charge characteristics in low-density polyethylene polymeric insulation
NASA Astrophysics Data System (ADS)
Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.
2005-04-01
In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.
Etude des defauts apparaissant dans les amenagements interieurs des avions d'affaires
NASA Astrophysics Data System (ADS)
Charette, Emilie
The evolution of the aeronautic industry led to the development of new materials for these high performance applications. Among other examples, composite sandwich structures are increasingly used for interior body panels of business airplanes. These structures are assembled and fixed to the fuselage using metallic inserts bonded inside the sandwich panels with an epoxy resin adhesive. A thin film of wood veneer covers the visible side of interior furniture in order to bring sophistication and esthetic to the interior design. However, due to multiple factors, surface defects frequently appear on the veneered side of the panel where inserts are located. Moreover the defects tend to appear months after the airplane delivery causing costly reparations. The sources of defects can be mechanical ( deformation due to an excessive tightening), chemical (shrinkage of the epoxy adhesive) or the result of hygrothermal exposition. It is therefore important to understand the source of such surface defects and ultimately prevent or control their appearance. The present thesis deals with defects from chemical and hygrothermal sources appearing on the composite panels used on the interior body of business jets after aging. The main objective was to identify and quantify phenomena causing the defects on the interior panels of business planes. This research project is the first part of a project sponsored by CRIAQ and NSERC. The interaction of several materials can lead to various phenomena causing the apparition of surface defects. The project was thus divided into three parts in order to study an increasingly complex problem. the first study deals with the characterization of the different constitutive materials taken separately. This first part focused on thermal, rheological and mechanical aspects of epoxy adhesives. It was shown that the two adhesives used have different mechanical properties and cure kinetic reactions. In addition, the mechanical properties of sandwich composites panels were studied. The second study focused on the analysis of hygrothermal influence on the adhesive and the composite sandwich panels taken separately. Humidity and temperature can have an important effect on the constitutive materials, it is therefore important to know their influence. Finally, the third part deals with the influence of hygrothermal aging on a structure combining all the different materials. Sample panels including fixing zones (insert and resin) were made at the industrial partner's facility according to the industrial procedure. Subsequently, the samples have undergone an accelerated aging. By using deflectometry system, changes in local curvatures with respect to the aging conditions were observed. A correlation between the material characterization results, the aging effects and the surface defect gravity was performed to evaluate the sources and the occurrence of defects. Recommendations have also been made to ensure the project continuity. This project, carried out in an industrial context with the collaboration of Centre de Recherche Industrielle du Quebec ( CRIQ), 3M Canada and the Chaire de recherche sur les composites hautes performances (CCHP) of the department of mechanical engineering of Ecole Polytechnique de Montreal, highlights the importance of the choice of methods and materials in the manufacturing of composite structures.
[Ageing and work: technical standards].
De Vito, G; Riva, M A; Meroni, R; Cesana, G C
2010-01-01
Over the last few years, studies on the relationship between ageing and work have attracted growing interest due to the increased probability among workers of developing major health problems as a consequence of ageing of the working population. Negative outcomes for health are possible when an age-related imbalance appears between physical workload and physical work capacity. Interventions based on workload reductions should help to keep workers on the job for as long as allowed by law. Reference masses by age and sex are suggested by the technical standards of the ISO 11228 series, which are also quoted by Italian law D.Lgs. 81/2008, and EN 1005 series, which recommend limits valid also for manual material handling, and pushing and pulling. Decreasing low back pain prevalence or recurrence, in an ageing population with high prevalence of back disorders, could be more effective than many other approaches to enhance workers' quality of life and consequently maintain and improve workers' performance.
How accelerated biological aging can affect solar reflective polymeric based building materials
NASA Astrophysics Data System (ADS)
Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.
2017-11-01
Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.
Leblond, Mona; Laisney, Mickaël; Lamidey, Virginie; Egret, Stéphanie; de La Sayette, Vincent; Chételat, Gaël; Piolino, Pascale; Rauchs, Géraldine; Desgranges, Béatrice; Eustache, Francis
2016-01-01
The self-reference effect (SRE) has been shown to benefit episodic memory in healthy individuals. In healthy aging, its preservation is acknowledged, but in Alzheimer's disease (AD), the jury is still out. Furthermore, there has yet to be a study of the SRE in amnestic mild cognitive impairment (aMCI). As self-reference implies subjective self-representations, and positive information enhance memory performance, we set out to examine the effects of 1) material and 2) identity valence on the SRE across the early stages of AD. Twenty healthy older individuals and 40 patients (20 diagnosed with aMCI and 20 diagnosed with mild AD) performed a memory task. Participants had to judge positive and negative personality trait adjectives with reference to themselves or to another person, or else process these adjectives semantically. We then administered a recognition task. Participants also completed a questionnaire on identity valence. Among healthy older individuals, the SRE benefited episodic memory independently of material and identity valence. By contrast, among aMCI patients, we only observed the SRE when the material was positive. When self-referential material was negative, patients' performance depended on the valence of their self-representations: negative self-representations correlated with poor recognition of negative self-referential adjectives. Finally, performance of patients with mild AD by condition and material valence were too low and inappropriate to be subjected to relevant analyses. The persistence of an SRE for positive adjectives in aMCI suggests the existence of a positivity effect for self-related information, which contributes to wellbeing. The absence of an SRE for negative adjectives, which led aMCI patients to dismiss negative self-related information, could be due to low self-esteem. These results corroborate the mnenic neglect model and point out the importance of the psychoaffective dimension in patients with aMCI, which could constitute a major factor for the preservation of their self-esteem and self-related memory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visual Distinctiveness and the Development of Children's False Memories
ERIC Educational Resources Information Center
Howe, Mark L.
2008-01-01
Distinctiveness effects in children's (5-, 7-, and 11-year-olds) false memory illusions were examined using visual materials. In Experiment 1, developmental trends (increasing false memories with age) were obtained using Deese-Roediger-McDermott lists presented as words and color photographs but not line drawings. In Experiment 2, when items were…
USDA-ARS?s Scientific Manuscript database
Inorganic emissions from livestock production and subsequent deposition of these ions can be a major source of pollution, causing nitrogen enrichment, eutrophication, acidification of soils and surface waters, and aerosol formation. In the poultry house, ammonia and hydrogen sulfide emissions can a...
Listeriosis Prevention for Older Adults: Effective Messages and Delivery Methods
ERIC Educational Resources Information Center
Cates, Sheryl C.; Kosa, Katherine M.; Moore, Christina M.; Jaykus, Lee-Ann; Ten Eyck, Toby A.; Cowen, Peter
2007-01-01
Individuals aged 60 years and older are at an increased risk for listeriosis and other foodborne illnesses. They can reduce their risk by following recommended food safety practices. A total of 8 focus groups were conducted to characterize older adults' food safety knowledge and practices, their impressions of educational materials on listeriosis…
ERIC Educational Resources Information Center
Marty, Phillip J.; McDermott, Robert J.
1985-01-01
This study compared instructional outcomes of two education programs about testicular cancer and testicular self-examination. Instruction facilitated by a former testicular cancer patient was compared to information provided by printed materials. There was no difference in information dissemination, but possible differences in attitude resulted.…
Application of Network Planning to Teaching Wind-Surfing
ERIC Educational Resources Information Center
Zybko, Przemyslaw; Jaczynowski, Lech
2008-01-01
Study aim: To determine the effects of network planning on teaching untrained subjects windsurfing. Material and methods: Untrained physical education students (n = 390), aged 19-23 years, took part in the study while staying on a summer camp. They were randomly assigned into two groups: experimental (n = 216) and control (n = 174). Two methods of…
When Mothers Are No Longer Respected.
ERIC Educational Resources Information Center
Jones, Carole
1997-01-01
A former childcare worker addresses the connection between social problems plaguing modern life and society's attitudes toward the role of women and mothering. She describes the detrimental effects on children who are placed in day care at an early age and urges that families abandon materialism and work toward improving the quality of their own…
Misconceptions in the Earth Sciences: A Cross-Age Study.
ERIC Educational Resources Information Center
Schoon, Kenneth J.
Misconceptions interfere with the formation of new insights and provide a faulty foundation. This causes difficulty in the learning of new materials. Therefore, effective teachers strive to know which misconceptions students have, and then develop a plan by which these suspected misconceptions can be corrected or averted. This paper reports on an…
ERIC Educational Resources Information Center
Barratt, Barnaby B.
1975-01-01
This study investigated the emergence of combinatorial competence in early adolescence and the effectiveness of a programmed discovery training procedure. Significant increases in combinatorial skill with age were shown; it was found that the expression of this skill was significantly facilitated if problems involved concrete material of low…
Influence of Domain Knowledge on Monitoring Performance across the Life Span
ERIC Educational Resources Information Center
Löffler, Elisabeth; von der Linden, Nicole; Schneider, Wolfgang
2016-01-01
Two studies were conducted to investigate effects of domain knowledge on metacognitive monitoring across the life span in materials of different complexity. Participants from 4 age groups (3rd-grade children, adolescents, younger and older adults) were compared using an expert-novice paradigm. In Study 1, soccer experts' and novices'…
Learning Disabilities and the Auditory and Visual Matching Computer Program
ERIC Educational Resources Information Center
Tormanen, Minna R. K.; Takala, Marjatta; Sajaniemi, Nina
2008-01-01
This study examined whether audiovisual computer training without linguistic material had a remedial effect on different learning disabilities, like dyslexia and ADD (Attention Deficit Disorder). This study applied a pre-test-intervention-post-test design with students (N = 62) between the ages of 7 and 19. The computer training lasted eight weeks…
Hyphens for Disambiguating Phrases: Effectiveness for Young and Older Adults
ERIC Educational Resources Information Center
Anema, Inge; Obler, Loraine K.
2012-01-01
The purpose of this study was to investigate whether hyphens that disambiguate phrasing in ambiguous sentences influence reading rate and reading comprehension for younger and older adults. Moreover, as working memory (WM) has been implicated in age-related changes in sentence comprehension for both auditory and written materials, we asked if it…
Effect of Prior Aging on Fatigue Behavior of IM7/BMI 5250-4 Composite at 191 C
2007-06-01
6 Figure 4. Three stages of fatigue life cycle for general material ....................................... 9 Figure 5...calibration ........ 24 vii Figure 17. Omega thermocouple reader setup .................................................................. 26 Figure...cost and fleet readiness. To assure long- term durability and structural integrity of HTPMC components, reliable experimentally- based life -prediction
Response Bias in "Remembering" Emotional Stimuli: A New Perspective on Age Differences
ERIC Educational Resources Information Center
Kapucu, Aycan; Rotello, Caren M.; Ready, Rebecca E.; Seidl, Katharina N.
2008-01-01
Older adults sometimes show a recall advantage for emotionally positive, rather than neutral or negative, stimuli (S. T. Charles, M. Mather, & L. L. Carstensen, 2003). In contrast, younger adults respond "old" and "remember" more often to negative materials in recognition tests. For younger adults, both effects are due to…
Geographic Variations in Cost of Living: Associations with Family and Child Well-Being
ERIC Educational Resources Information Center
Chien, Nina C.; Mistry, Rashmita S.
2013-01-01
The effects of geographic variations in cost of living and family income on children's academic achievement and social competence in first grade (mean age = 86.9 months) were examined, mediated through material hardship, parental investments, family stress, and school resources. Using data from the Early Childhood Longitudinal Study-Kindergarten…
Polymethylmethacrylate (PMMA) Material Test Results for the Capillary Flow Experiments (CFE)
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Thesken, John C.; Bunnell, Charles T.
2007-01-01
In support of the Capillary Flow Experiments (CFE) program, several polymethylmethacrylate (PMMA) flight vessels were constructed. Some vessels used a multipiece design, which was chemically welded together. Due to questions regarding the effects of the experiment fluid (silicone oil) on the weld integrity, a series of tests were conducted to provide evidence of the adequacy of the current vessel design. Tensile tests were conducted on PMMA samples that were both in the as-received condition, and also aged in air or oil for up to 8 weeks. Both welded and unwelded samples were examined. Fracture of the joints was studied using notched tensile specimens and Brazilian disk tests. Results showed that aging had no effect on tensile properties. While the welded samples were weaker than the base parent material, the weld strength was found to be further degraded by bubbles in the weld zone. Finally a fracture analysis using the worst-case fracture conditions of the vessel was performed, and the vessel design was found to have a factor of three safety margin.
Yield stress materials in soft condensed matter
NASA Astrophysics Data System (ADS)
Bonn, Daniel; Denn, Morton M.; Berthier, Ludovic; Divoux, Thibaut; Manneville, Sébastien
2017-07-01
A comprehensive review is presented of the physical behavior of yield stress materials in soft condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow behavior in response to external mechanical forces due to the existence of a finite force threshold for flow to occur: the yield stress. Both the physical origin and rheological consequences associated with this nonlinear behavior are discussed and an overview is given of experimental techniques available to measure the yield stress. Recent progress is discussed concerning a microscopic theoretical description of the flow dynamics of yield stress materials, emphasizing, in particular, the role played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.
Plastic wall materials in the home and respiratory health in young children.
Jaakkola, J J; Verkasalo, P K; Jaakkola, N
2000-01-01
OBJECTIVES: The relation between the presence of plastic wall materials in the home and respiratory health in children was assessed. METHODS: This population-based cross-sectional study involved 2568 Finnish children aged 1 to 7 years. RESULTS: In logistic regression models, lower respiratory tract symptoms--persistent wheezing (adjusted odds ratio [OR] = 3.42, 95% confidence interval [CI] = 1.13, 10.36), cough (OR = 2.41, 95% CI = 1.04, 5.63), and phlegm (OR = 2.76, 95% CI = 1.03, 7.41)--were strongly related to the presence of plastic wall materials, whereas upper respiratory symptoms were not. The risk of asthma (OR = 1.52, 95% CI = 0.35, 6.71) and pneumonia (OR = 1.81, 95% CI = 0.62, 5.29) was also increased in children exposed to such materials. CONCLUSIONS: Emissions from plastic materials indoors may have adverse effects on the lower respiratory tracts of small children. PMID:10800434
NASA Astrophysics Data System (ADS)
Honorio, Tulio
2017-11-01
Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.
Sidestream cigarette smoke toxicity increases with aging and exposure duration
Schick, Suzaynn; Glantz, Stanton A
2006-01-01
Objectives To determine the effects of aging on the toxicity of sidestream tobacco smoke, the complex chemical mixture that enters the air from the lit end of burning cigarettes and constitutes the vast bulk of secondhand smoke. Design Statistical analysis of data from controlled experimental exposures of Sprague Dawley rats to fresh and aged (for more than 30 minutes) sidestream smoke for up to 90 days followed by histological sectioning of the respiratory epithelium. The data were obtained from a series of experiments conducted at Philip Morris' formerly secret INBIFO (Institut für Biologische Forschung) laboratory in Germany. Results Using total particulate material as the measure of smoke exposure, aging sidestream cigarette smoke for at least 30 minutes increases its toxicity fourfold for 21 day exposures and doubles the toxicity for 90 day exposures, relative to fresh sidestream smoke. Conclusions These results help explain the relatively large biological effects of secondhand smoke compared to equivalent mass doses of mainstream smoke. PMID:17130369
Leaching of additives from construction materials to urban storm water runoff.
Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M
2011-01-01
Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.
The Effects of Terrain Properties on Determining Crater Model Ages of Lunar Surfaces
NASA Astrophysics Data System (ADS)
Kirchoff, M. R.; Marchi, S.
2017-12-01
Analyzing crater size-frequency distributions (SFDs) and using them to determine model ages of surfaces is an important technique for understanding the Moon's geologic history and evolution. Small craters with diameters (D) < 1 km are frequently used, especially given the very high resolution imaging now available from Lunar Reconnaissance Orbiter Narrow and Wide Angle Cameras (LROC-NAC/WAC) and the Selene Terrain Camera. However, for these diameters, final crater sizes and shapes are affected by the properties of the terrains on which they are formed [1], which alters crater SFD shapes [2]. We use the Model Production Function (MPF; [2]), which includes terrain properties in computing crater production functions, to explore how incorporating terrain properties affects the estimation of crater model ages. First, crater SFDs are compiled utilizing LROC-WAC/NAC images to measure craters with diameters from 10 m up to 20 km (size of largest crater measured depends on the terrain). A nested technique is used to obtain this wide diameter range: D ≥ 0.5 km craters are measured in the largest area, D = 0.09-0.5 km craters are measured in a smaller area within the largest area, and D = 0.01-0.1 km craters are measured in the smallest area located in both of the larger areas. Then, we quantitatively fit the crater SFD with distinct MPFs that use broadly different terrain properties. Terrain properties are varied through coarsely altering the parameters in the crater scaling law [1] that represent material type (consolidated, unconsolidated, porous), material tensile strength, and material density (for further details see [2]). We also discuss the effect of changing terrain properties with depth (i.e., layering). Finally, fits are used to compute the D = 1 km crater model ages for the terrains. We discuss the new constraints on how terrain properties affect crater model ages from our analyses of a variety of lunar terrains from highlands to mare and impact melt to continuous ejecta deposits. References: [1] Holsapple, K. A & Housen, K. R., Icarus 187, 345-356, 2007. [2] Marchi, S., et al., AJ 137, 4936-4948, 2009.
Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei
2017-07-01
Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Veazie, David R.
1998-01-01
Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.
Color stability and degree of cure of direct composite restoratives after accelerated aging.
Sarafianou, Aspasia; Iosifidou, Soultana; Papadopoulos, Triantafillos; Eliades, George
2007-01-01
This study evaluated the color changes and amount of remaining C = C bonds (%RDB) in three dental composites after hydrothermal- and photoaging. The materials tested were Estelite sigma, Filtek Supreme and Tetric Ceram. Specimens were fabricated from each material and subjected to L* a* b* colorimetry and FTIR spectroscopy before and after aging. Statistical evaluation of the deltaL,* deltaa,* deltab,* deltaE and %deltaRDB data was performed by one-way ANOVA and Tukey's test. The %RDB data before and after aging were statistically analyzed using two-way ANOVA and Student-Newman-Keuls test. In all cases an alpha = 0.05 significance level was used. No statistically significant differences were found in deltaL*, deltaa*, deltaE and %deltaRDB among the materials tested. Tetric Ceram demonstrated a significant difference in deltab*. All the materials showed visually perceptible (deltaE >1) but clinically acceptable values (deltaE < 3.3). Within each material group, statistically significant differences in %RDB were noticed before and after aging (p < 0.05). Filtek Supreme presented the lowest %RDB before aging, with Tetric Ceram presenting the lowest %RDB after aging (p < 0.05). The %deltaRDB mean values were statistically significantly different among all the groups tested. No correlation was found between deltaE and %deltaRDB.
Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool tomore » locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.« less
The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics.
Müller, Axel; Becker, Roland; Dorgerloh, Ute; Simon, Franz-Georg; Braun, Ulrike
2018-05-14
Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 μg L -1 for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's K ow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rowlands, Gillian; Protheroe, Joanne; Winkley, John; Richardson, Marty; Seed, Paul T; Rudd, Rima
2015-06-01
Low health literacy is associated with poorer health and higher mortality. Complex health materials are a barrier to health. To assess the literacy and numeracy skills required to understand and use commonly used English health information materials, and to describe population skills in relation to these. An English observational study comparing health materials with national working-age population skills. Health materials were sampled using a health literacy framework. Competency thresholds to understand and use the materials were identified. The proportion of the population above and below these thresholds, and the sociodemographic variables associated with a greater risk of being below the thresholds, were described. Sixty-four health materials were sampled. Two competency thresholds were identified: text (literacy) only, and text + numeracy; 2515/5795 participants (43%) were below the text-only threshold, while 2905/4767 (61%) were below the text + numeracy threshold. Univariable analyses of social determinants of health showed that those groups more at risk of socioeconomic deprivation had higher odds of being below the health literacy competency threshold than those at lower risk of deprivation. Multivariable analysis resulted in some variables becoming non-significant or reduced in effect. Levels of low health literacy mirror those found in other industrialised countries, with a mismatch between the complexity of health materials and the skills of the English adult working-age population. Those most in need of health information have the least access to it. Efficacious strategies are building population skills, improving health professionals' communication, and improving written health information. © British Journal of General Practice 2015.
O'Loughlin, J; Paradis, G; Meshefedjian, G
1997-01-01
The objective of this study was to evaluate the reach of mass mailings of heart health education print materials in a low-income, urban community. Materials included a monthly newsletter and a self-help behavior change kit, both distributed to all 12,789 households in the study community. Recall, use, and self-reported impact of the materials were measured in a cross-sectional survey of a random sample of 345 adults conducted 2 weeks after distribution of the kit and 18 months after delivery of the first newsletter. Over one-third of the subjects (38.6%) recalled the newsletter and 27.9% had read one or more newsletters; 21.7% recalled the kit and 10.8% had read it. Few subjects had read both materials. Female gender and older age were independent correlates of having seen and read the newsletters. Older age, being widowed/separated/divorced, and infrequent physical activity were correlates of having seen and read the kit. Although the newsletter and kit formats might appeal to different segments of the population, mass mailings of heart health education print materials in a low-income urban community can reach large numbers of individuals. The cost effectiveness of repeated mailings of short, simple newsletters might be higher than a single mailing of a more complex behavior change kit.
Modeling the impact of thermal effects on luminous flux maintenance for SSL luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Mills, Karmann; Lamvik, Michael
Meeting the longevity requirements of solid-state lighting (SSL) devices places extreme demands on the materials and designs that are used in SSL luminaires. Therefore, understanding the aging characteristics of lens, reflectors, and other materials is essential to projecting the long-term performance of LED-based lighting systems. Overlooking these factors at either the design or product specification stage can result in premature failure of the device due to poor luminous flux maintenance and/or excessive chromaticity shifts. This paper describes a methodology for performing accelerated stress testing (AST) on materials intended for use in SSL luminaires. This test methodology, which consists of elevatedmore » temperature and humidity conditions, produces accelerated aging data that can be correlated to expected performance under normal luminaire operating conditions. The correlations can then be leveraged to produce models of the changes in the optical properties of key materials including transmittance versus wavelength of lenses and reflectance versus wavelength for housings and other reflectors. This information has been collected into a lumen maintenance decision support tool (LM-DST) and together with user supplied inputs (e.g., expected operation conditions) can provide guidance on lifetime expectations of SSL luminaires. This approach has been applied to a variety of materials commonly found in SSL luminaires including acrylics, polycarbonates, and silicones used for lenses and paints, coatings, films, and composites used for reflectors.« less
The Theory Behind the Age-Related Positivity Effect
Reed, Andrew E.; Carstensen, Laura L.
2012-01-01
The “positivity effect” refers to an age-related trend that favors positive over negative stimuli in cognitive processing. Relative to their younger counterparts, older people attend to and remember more positive than negative information. Since the effect was initially identified and the conceptual basis articulated (Mather and Carstensen, 2005) scores of independent replications and related findings have appeared in the literature. Over the same period, a number of investigations have failed to observe age differences in the cognitive processing of emotional material. When findings are considered in theoretical context, a reliable pattern of evidence emerges that helps to refine conceptual tenets. In this article we articulate the operational definition and theoretical foundations of the positivity effect and review the empirical evidence based on studies of visual attention, memory, decision making, and neural activation. We conclude with a discussion of future research directions with emphasis on the conditions where a focus on positive information may benefit and/or impair cognitive performance in older people. PMID:23060825
Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?
Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.
2016-01-01
Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727
NASA Technical Reports Server (NTRS)
Hoeppner, David W.; Pettit, Donald E.; Feddersen, Charles E.; Hyler, Walter S.
1968-01-01
The specific experimental investigation undertaken was designed to answer these questions on Ti-6Al-4V in the solution treated and aged condition. The defect growth and fracture characteristics were studied in parent (unwelded) and welded sheet material. The results of the study indicate that cryogenic proof testing will screen smaller size defects than proof testing at ambient conditions. However some unusual crack growth behavior during the proof test simulation suggests that some further study be made of stress and time duration effects.
HPLC for quality control of polyimides
NASA Technical Reports Server (NTRS)
Young, P. R.; Sykes, G. F.
1979-01-01
High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.
Raphel, Tiana J; Weaver, Davis T; Berland, Lincoln L; Herts, Brian R; Megibow, Alec J; Knudsen, Amy B; Pandharipande, Pari V
2018-05-01
Purpose To determine the effects of patient age and comorbidity level on life expectancy (LE) benefits associated with imaging follow-up of Bosniak IIF renal cysts and pancreatic side-branch (SB) intraductal papillary mucinous neoplasms (IPMNs). Materials and Methods A decision-analytic Markov model to evaluate LE benefits was developed. Hypothetical cohorts with varied age (60-80 years) and comorbidities (none, mild, moderate, or severe) were evaluated. For each finding, LE projections from two strategies were compared: imaging follow-up and no imaging follow-up. Under follow-up, it was assumed that cancers associated with the incidental finding were successfully treated before they spread. For patients without follow-up, mortality risks from Bosniak IIF cysts (renal cell carcinoma) and SBIPMNs (pancreatic ductal adenocarcinoma) were incorporated. Model assumptions and parameter uncertainty were evaluated in sensitivity analysis. Results In the youngest, healthiest cohorts (age, 60 years; no comorbidities), projected LE benefits from follow-up were as follows: Bosniak IIF cyst, 6.5 months (women) and 5.8 months (men); SBIPMN, 6.4 months (women) and 5.3 months (men). Follow-up of Bosniak IIF cysts in 60-year-old women with severe comorbidities yielded a LE benefit of 3.9 months; in 80-year-old women with no comorbidities, the benefit was 2.8 months, and with severe comorbidities the benefit was 1.5 months. Similar trends were observed in men and for SBIPMN. Results were sensitive to the performance of follow-up for cancer detection; malignancy risks; and stage at presentation of malignant, unfollowed Bosniak IIF cysts. Conclusion With progression of age and comorbidity level, follow-up of low-risk incidental findings yields increasingly limited benefits for patients. © RSNA, 2018 Online supplemental material is available for this article.
2010-06-04
In some regions of Mars the relative ages of different materials can be determined. In this image, captured by NASA 2001 Mars Odyssey, the younger lava flows of Daedalia Planum are on top of the older Terra Sirenum materials.
A Model of Thermal Aging of Hyper-Elastic Materials with an Application to Natural Rubber
NASA Astrophysics Data System (ADS)
Korba, Ahmed G.
Understanding the degradation of material properties and stress-strain behavior of rubber-like materials that has been exposed to elevated temperature is essential for rubber among components design and lifetime prediction. The complexity of the relationship between hyper-elastic materials, crosslinking density, and chemical composition present a difficult problem for the accurate prediction of mechanical properties under thermal aging. In the first part of the current research, a new and relatively simple mathematical formulation is presented to expresses the change in material properties of natural rubber subjected to various elevated temperatures and aging times. The aging temperatures ranged from 76.7 °C to 115.0 °C, and the aging times ranged from 0 to 600 hours. Based on the experimental data, the natural rubber mechanical properties under thermal aging showed a similar behavior to the rate of change of the crosslinking density (CLD) with aging time and temperature as determined as of the research. Three mechanical properties have been chosen to be studied: the ultimate tensile strength, the fracture stretch value, and the secant modulus at 11.0% strain. The proposed phenomenological model relates the mechanical properties with the rate of change of the CLD based on a form of Arrhenius equation. The proposed equations showed promising results compared to the experimental data with an acceptable error margin of less than 10% in most of the cases studied. In the second part of the current research, a closed form set of equations that was based on basic continuum mechanics assumptions has been proposed to define the material stress-strain behavior of natural rubber as an application of hyper-elastic materials. The proposed formulas include the influence of aging time and temperature. The newly proposed "Wight Function Based" (WFB) method has been verified against the historic Treloar's test data for uni-axial, bi-axial and pure shear loadings of Treloar's vulcanized rubber material, showing a promising level of confidence compared to the Ogden and the Yeoh methods. Tensile testing was performed on strip specimens that were thermally aged then subjected uni-axial tension and hardness tests. A non-linear least square optimization tool in Matlab (Lscurvefitt) was used for all fitting purposes.
Handbook of photothermal test data on encapsulant materials
NASA Astrophysics Data System (ADS)
Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.
1983-05-01
Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.
Handbook of photothermal test data on encapsulant materials
NASA Technical Reports Server (NTRS)
Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.
1983-01-01
Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.
Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.
1997-01-01
New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This is a consequence of the assumption that interface correction terms are frequently independent. Uncertainty in those corrections terms compromises the value of conventional quantitative attenuation data.
NASA Technical Reports Server (NTRS)
2008-01-01
The NASA Cryogenics Test Laboratory at Kennedy Space Center conducted long-term testing of SOFI materials under actual-use cryogenic conditions with Cryostat-4. The materials included in the testing were NCFI 24-124 (acreage foam), BX-265 (close-out foam, including intertank flange and bipod areas), and a potential alternate material, NCFI 27-68, (acreage foam with the flame retardant removed). Specimens of these materials were placed at two locations: a site that simulated aging (the Vehicle Assembly Building [VAB]) and a site that simulated weathering (the Atmospheric Exposure Test Site [beach site]). After aging/weathering intervals of 3, 6, and 12 months, the samples were retrieved and tested for their thermal performance under cryogenic vacuum conditions with test apparatus Cryostat-4.
Development of the Damage Tolerance Criteria for an Aging Fleet
2014-10-20
show that it is possible to increase the fatigue life of aluminium alloys (2024 T3) repaired with composite materials doped with MWNT. Also, it is...possible to detect corrosion effects due to galvanic effects between MWNT and aluminium alloys . Motivation Currently it’s possible and it’s not...Objectives General Goal To study the fatigue life of aluminium alloys used in aeronautics and to investigate how to increase the fatigue
New validated recipes for double-blind placebo-controlled low-dose food challenges.
Winberg, Anna; Nordström, Lisbeth; Strinnholm, Åsa; Nylander, Annica; Jonsäll, Anette; Rönmark, Eva; West, Christina E
2013-05-01
Double-blind placebo-controlled food challenges are considered the most reliable method to diagnose or rule out food allergy. Despite this, there are few validated challenge recipes available. The present study aimed to validate new recipes for low-dose double-blind placebo-controlled food challenges in school children, by investigating whether there were any sensory differences between the active materials containing cow's milk, hen's egg, soy, wheat or cod, and the placebo materials. The challenge materials contained the same hypoallergenic amino acid-based product, with or without added food allergens. The test panels consisted of 275 school children, aged 8-10 and 14-15 yr, respectively, from five Swedish schools. Each participant tested at least one recipe. Standardized blinded triangle tests were performed to investigate whether any sensory differences could be detected between the active and placebo materials. In our final recipes, no significant differences could be detected between the active and placebo materials for any challenge food (p > 0.05). These results remained after stratification for age and gender. The taste of challenge materials was acceptable, and no unfavourable side effects related to test materials were observed. In summary, these new validated recipes for low-dose double-blinded food challenges contain common allergenic foods in childhood; cow's milk, hen's egg, soy, wheat and cod. All test materials contain the same liquid vehicle, which facilitates preparation and dosing. Our validated recipes increase the range of available recipes, and as they are easily prepared and dosed, they may facilitate the use of double-blind placebo-controlled food challenges in daily clinical practice. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Carmona-Quiroga, P. M.; Martínez-Ramírez, S.; Viles, H. A.
2018-03-01
This study aimed to test the performance under long-term working conditions of a commercial self-cleaning coating, a water-based TiO2 sol, on three building materials important in recent and older European heritage; Portland limestone, Woodkirk sandstone and concrete. First, the compatibility of the coating (effect on petrophysical properties) with the substrates was demonstrated by examining aesthetic properties and water vapour permeability of the building materials and secondly, the self-cleaning ability of the TiO2 nanoparticles in degrading artificial stain (rhodamine B) under UV light was evaluated. Finally, the durability (lasting performance) of photocatalytic activity was assessed during one year of outdoor exposure trial and 2000 h of accelerated ageing in a chamber with UV radiation and condensation cycles. Results showed that photocatalytic activity was unaltered on concrete, whereas on sandstone, particularly after artificial ageing, it was reduced due to the removal of nanoparticles from the surface. On limestone, a decrease of TiO2 content was observed but photodegradation efficiency (ability to perform as self-cleaner) seemed not to be affected.
Simultaneous Thermal and Gamma Radiation Aging of Electrical Cable Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.
The polymers used for insulation in nuclear power plant electrical cables are susceptible to aging during long term operation. Elevated temperature is the primary contributor to changes in polymer structure that result loss of mechanical and electrical properties, but gamma radiation is also a significant source of degradation for polymers used within relevant plant locations. Despite many years of polymer degradation research, the combined effects of simultaneous exposure to thermal and radiation stress are not well understood. As nuclear operators contemplate and prepare for extended operations beyond initial license periods, a predictive understanding of exposure-based cable material degradation is becomingmore » an increasingly important input to safety, licensing, operations and economic decisions. We are focusing on carefully-controlled simultaneous thermal and gamma radiation accelerating aging and characterization of the most common nuclear cable polymers to understand the relative contributions of temperature, time, dose and dose rate to changes in cable polymer material structure and properties. Improved understanding of cable performance in long term operation will help support continued sustainable nuclear power generation.« less
Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Huang, Qian; Childers, Matthew I.
Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed formore » single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.« less
ERIC Educational Resources Information Center
American Association of Retired Persons, Washington, DC. Work Force Programs Dept.
These resource materials are designed to help instructors prepare their business students to work with older employees. The materials can be used in undergraduate and graduate courses in management, organizational behavior, human resource management, business policy, and business and society. The materials include lecture guides, discussion…
Grain-Boundary Engineering for Aging and Slow-Crack-Growth Resistant Zirconia.
Zhang, F; Chevalier, J; Olagnon, C; Batuk, M; Hadermann, J; Van Meerbeek, B; Vleugels, J
2017-07-01
Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La 2 O 3 ) and aluminum oxide (Al 2 O 3 ) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La 2 O 3 and Al 2 O 3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.
Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption
Lukovic, Mladena; Ye, Guang
2015-01-01
In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c). This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d), the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning). From reconstructed images, different phases in the repair system (repair material, substrate, voids) can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice. PMID:28787801
Narayanaswamy's 1971 aging theory and material time
NASA Astrophysics Data System (ADS)
Dyre, Jeppe C.
2015-09-01
The Bochkov-Kuzovlev nonlinear fluctuation-dissipation theorem is used to derive Narayanaswamy's phenomenological theory of physical aging, in which this highly nonlinear phenomenon is described by a linear material-time convolution integral. A characteristic property of the Narayanaswamy aging description is material-time translational invariance, which is here taken as the basic assumption of the derivation. It is shown that only one possible definition of the material time obeys this invariance, namely, the square of the distance travelled from a configuration of the system far back in time. The paper concludes with suggestions for computer simulations that test for consequences of material-time translational invariance. One of these is the "unique-triangles property" according to which any three points on the system's path form a triangle such that two side lengths determine the third; this is equivalent to the well-known triangular relation for time-autocorrelation functions of aging spin glasses [L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27, 5749 (1994)]. The unique-triangles property implies a simple geometric interpretation of out-of-equilibrium time-autocorrelation functions, which extends to aging a previously proposed framework for such functions in equilibrium [J. C. Dyre, e-print arXiv:cond-mat/9712222 (1997)].
NASA Astrophysics Data System (ADS)
Domanski, Konrad; Alharbi, Essa A.; Hagfeldt, Anders; Grätzel, Michael; Tress, Wolfgang
2018-01-01
Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy
NASA Technical Reports Server (NTRS)
Moore, T. J.; Titran, R. H.; Grobstein, T. L.
1986-01-01
Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.
Catelan, Anderson; Briso, André Luiz Fraga; Sundfeld, Renato Hermann; Goiato, Marcelo Coelho; dos Santos, Paulo Henrique
2011-04-01
The color alteration of resin-based materials is one of the most common reasons to replace esthetic dental restorations. This study assessed the influence of surface sealant (Biscover) on the color stability of nanofilled (Supreme XT) and microhybrid (Vit-l-escence and Opallis) composite resins after artificial aging. One hundred disc-shaped (6 × 1.5 mm) specimens were made for each composite resin. After 24 hours, all specimens were polished and sealant was applied to 50 specimens of each material. Baseline color was measured according to the CIE L*a*b* system using a reflection spectrophotometer. Ten specimens of each group were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber or immersed for 4 weeks in cola soft drink, orange juice, red wine staining solutions or distilled water as control. Color difference (ΔE) after aging was calculated based on the color coordinates before (baseline) and after aging/staining treatment. Data were analyzed with 2-way ANOVA and Fisher's test (α=.05). The results showed significant changes in color after artificial aging in all the groups (P<.05). Independent of the material studied, red wine resulted in the highest level of discoloration. Intermediate values were found for orange juice, UV accelerated aging, and the cola soft drink. The lowest values of ΔE were found for specimens stored in distilled water. All composite resins showed some color alteration after the aging methods. The surface sealant did not alter the color stability of the tested materials. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Quinn, Gwendolyn P; Thomas, Kamilah B; Hauser, Kimberlea; Rodríguez, Nydia Y; Rodriguez-Snapp, Nazach
2009-10-01
Current data indicate significant disparities in awareness and use of folic acid between Hispanic and non-Hispanic women. Hispanic women are less likely to have heard about folic acid, to know that folic acid can prevent birth defects, to take folic acid daily, and to take folic acid before pregnancy. "Three Sisters/Las Tres Hermanos" is a folic acid social marketing campaign designed for Mexican-American women. To determine the effectiveness of the materials on other Hispanic sub groups, women of childbearing age from Cuba and Puerto Rico were recruited to evaluate the materials. Participants were asked five pre-test questions about folic acid knowledge and were then provided with the folic acid educational materials that included either a photo-novella and a low literacy brochure, or a video-novella in English or Spanish. Once the participants reviewed the materials, they were asked 10 post-test questions about the materials. The results of the evaluation are discussed.
Effects of chemical and biological warfare remediation agents on the materials of museum objects
NASA Astrophysics Data System (ADS)
Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.
In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.
Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Brinson, L. Cate
1999-01-01
The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The fracture toughness for transverse cracks increases with increasing temperature for both systems: transverse cracking was completely absent prior to failure in [+/- 45/903](sub s), and was suppressed for [02/903](sub s). No significant effect of damage on aging or viscoelastic parameters was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.
This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less
Text and graphics: manipulating nutrition brochures to maximize recall.
Clark, K L; AbuSabha, R; von Eye, A; Achterberg, C
1999-08-01
This study examined how altering text and graphics of a nutrition brochure could affect the ability to remember the content of the message. Two theoretical models were used to guide alterations: dual-coding theory and the communications model. Three brochure formats were tested: the original brochure containing abstract text and abstract graphics, a modified brochure with relatively concrete text and abstract graphics, and a relatively concrete text brochure with concrete graphics. Participants (N = 239 women) were divided into four age groups: 20-30, 40-50, 60-70 and over 70 years. Women were randomly assigned into each of the three experimental brochure formats or a control group. Participants completed recalled materials from the assigned brochures (the no treatment control group did not include a brochure) at two different sessions, 30 days apart. Data were content analyzed and results were compared using analysis of covariance to test differences by age and brochure types. Younger women (20-30 and 40-50 years) recalled more information than women over 60 years. More concrete nutrition education print materials enhanced recall of information presented immediately after reading the material; however, this effect was transient and lasted less than 30 days after a one-time reading. The implications of these data for communicating nutrition messages with print materials are discussed.
Measurement of ageing effect on chloride diffusion coefficients in cementitious matrices
NASA Astrophysics Data System (ADS)
Andrade, C.; Castellote, M.; d'Andrea, R.
2011-05-01
Most of the low-level nuclear waste disposal facilities are based in engineered multi barrier systems where reinforced concrete is one of the basic materials. The calculation of the time until steel reinforcement depassivation is a need due to the demand of prediction of the service life of concrete structures in radioactive repositories. In doing that, one of the main steps is the transport of chloride ions towards the reinforcement, as one of the most aggressive agents for the rebars in concrete is chloride ions. Ageing of concrete related to chloride penetration leads to significant decrease of the "apparent diffusion" coefficient with time. If this effect is not considered, considerable bias can be introduced when predicting service life of reinforced concrete of repositories. Several effects have been addressed on their influence on the ageing of concrete, including the evolution with time of the concrete pore refinement, the binding of chlorides to the cement phases and to the changes of chloride "surface concentration". These effects have been studied in specimens made with different mixes trying to represent a wide range of mineral addition proportions. The analysis of their evolution with time has shown that the resistivity alone or the joint consideration of resistivity and binding capacity ( Cb/ Cf), are appropriate parameters to appraise the diffusivity ageing. For practical reasons, an accelerated procedure is proposed in order to calculate ageing for short periods of time.
230Th-234U Model-Ages of Some Uranium Standard Reference Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R W; Gaffney, A M; Kristo, M J
The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumptionmore » of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.« less
Hou, Juzhi; Huang, Yongsong; Brodsky, Corynn; Alexandre, Marcelo R; McNichol, Ann P; King, John W; Hu, Feng Sheng; Shen, Ji
2010-09-01
The reliability of chronology is a prerequisite for meaningful paleoclimate reconstructions from sedimentary archives. The conventional approach of radiocarbon dating bulk organic carbon in lake sediments is often hampered by the old carbon effect, i.e., the assimilation of ancient dissolved inorganic carbon (DIC) derived from carbonate bedrocks or other sources. Therefore, radiocarbon dating is ideally performed on organic compounds derived from land plants that use atmospheric CO(2) and rapidly delivered to sediments. We demonstrate that lignin phenols isolated from lake sediments using reversed phase high performance liquid chromatography (HPLC) can serve as effective (14)C dating materials for establishing chronology during the late Quaternary. We developed a procedure to purify lignin phenols, building upon a published method. By isolating lignin from standard wood reference substances, we show that our method yields pure lignin phenols and consistent ages as the consensus ages and that our procedure does not introduce radiocarbon contamination. We further demonstrate that lignin phenol ages are compatible with varve counted and macrofossil dated sediment horizons in Steel Lake and Fayetteville Green Lake. Applying the new method to lake sediment cores from Lake Qinghai demonstrates that lignin phenol ages in Lake Qinghai are consistently younger than bulk total organic carbon (TOC) ages which are contaminated by old carbon effect. We also show that the age offset between lignin and bulk organic carbon differs at different Lake Qinghai sedimentary horizons, suggesting a variable hard water effect at different times and that a uniform age correction throughout the core is inappropriate.
VanMensel, Danielle; Chaganti, Subba Rao; Boudens, Ryan; Reid, Thomas; Ciborowski, Jan; Weisener, Christopher
2017-08-01
Open-pit mining of the Athabasca oil sands has generated large volumes of waste termed fluid fine tailings (FFT), stored in tailings ponds. Accumulation of toxic organic substances in the tailings ponds is one of the biggest concerns. Gamma irradiation (GI) treatment could accelerate the biodegradation of toxic organic substances. Hence, this research investigates the response of the microbial consortia in GI-treated FFT materials with an emphasis on changes in diversity and organism-related stimuli. FFT materials from aged and fresh ponds were used in the study under aerobic and anaerobic conditions. Variations in the microbial diversity in GI-treated FFT materials were monitored for 52 weeks and significant stimuli (p < 0.05) were observed. Chemoorganotrophic organisms dominated in fresh and aged ponds and showed increased relative abundance resulting from GI treatment. GI-treated anaerobic FFT aged reported stimulus of organisms with biodegradation potential (e.g., Pseudomonas, Enterobacter) and methylotrophic capabilities (e.g., Syntrophus, Smithella). In comparison, GI-treated anaerobic FFT fresh stimulated Desulfuromonas as the principle genus at 52 weeks. Under aerobic conditions, GI-treated FFT aged showed stimulation of organisms capable of sulfur and iron cycling (e.g., Geobacter). However, GI-treated aerobic FFT fresh showed no stimulus at 52 weeks. This research provides an enhanced understanding of oil sands tailings biogeochemistry and the impacts of GI treatment on microorganisms as an effect for targeting toxic organics. The outcomes of this study highlight the potential for this approach to accelerate stabilization and reclamation end points. Graphical Abstract.
Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko
2014-01-01
Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sleiman, Mohamad; Chen, Sharon; Gilbert, Haley E.
A laboratory method to simulate natural exposure of roofing materials has been reported in a companion article. Here in the current article, we describe the results of an international, nine-participant interlaboratory study (ILS) conducted in accordance with ASTM Standard E691-09 to establish the precision and reproducibility of this protocol. The accelerated soiling and weathering method was applied four times by each laboratory to replicate coupons of 12 products representing a wide variety of roofing categories (single-ply membrane, factory-applied coating (on metal), bare metal, field-applied coating, asphalt shingle, modified-bitumen cap sheet, clay tile, and concrete tile). Participants reported initial and laboratory-agedmore » values of solar reflectance and thermal emittance. Measured solar reflectances were consistent within and across eight of the nine participating laboratories. Measured thermal emittances reported by six participants exhibited comparable consistency. For solar reflectance, the accelerated aging method is both repeatable and reproducible within an acceptable range of standard deviations: the repeatability standard deviation sr ranged from 0.008 to 0.015 (relative standard deviation of 1.2–2.1%) and the reproducibility standard deviation sR ranged from 0.022 to 0.036 (relative standard deviation of 3.2–5.8%). The ILS confirmed that the accelerated aging method can be reproduced by multiple independent laboratories with acceptable precision. In conclusion, this study supports the adoption of the accelerated aging practice to speed the evaluation and performance rating of new cool roofing materials.« less
Çavuşoğlu, Berrin; Durak, Hatice
2011-01-01
Objective: Relation between patient age and Hounsfield Unit (HU),which is the linear attenuation coefficient, and Standardized Uptake Values (SUV) which is the amount of 18F-fluorodeoxyglucose (F-18 FDG) uptake, measured in the areas of interest drawn to prostate, seminal vesicles and testicles in F-18 FDG Positron Emission Tomography/Computed Tomography (PET/CT) images was investigated. Material and Methods: Mean and maximum SUV and HU values were recorded from the areas of interest (min 12 mm in diameter) which showed FDG uptake in prostate, seminal vesicles and testicles from F-18 FDG PET-CT images of 21 male patients under 40 years without genitourinary cancer. The effect of patient age to SUV and HU values was examined with Pearson correlation test using SPSS program. Results: There was a negative insignificant correlation between patient age and SUV and HU values for prostate. For seminal vesicles, correlation between patient age and SUV values and HUmax were positive but insignificant, while correlation with HUmean was significant (r=0.459, p=0.00). Correlation between patient age and SUVmax and SUVmean values were significant for testicles (r=0.506, p=0.002 and r=0.467, p=0.005, respectively) but the correlation between patient age and HUmax and HUmean values was not significant. Conclusion: F-18 FDG uptake in testicles in males increases with age until 40, suggesting an increase in metabolic rate. The significant correlation between age and mean HU values is probably caused by thickening of the tissue without an increase in glucose metabolism in seminal vesicles. In prostate, the effect of patient age to SUV and HU values was not observed until the age 40. Conflict of interest:None declared. PMID:23486855
Dielectric characterization of high-performance spaceflight materials
NASA Astrophysics Data System (ADS)
Kleppe, Nathan Alan
As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of polymer-based materials may be achieved through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample. Changes in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we established indicative trends that occur in the dielectric spectra during accelerated aging of various high-performance polymeric materials (EVOH, PEEK, PPS, and UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Accelerated thermal aging and ultraviolet/water-spray cyclic aging were performed in order to investigate the degradation of the aforementioned material. The Havriliak-Negami model was used in the analysis of the measured dielectric spectra in order to obtain the characteristic fit parameters from which aging-related trends were identified. With reference to the literature and from measured FTIR spectra, observations were connected to the underlying mechanisms causing the dielectric relaxations.
Effect of various Portland cement paste compositions on early-age strain
NASA Astrophysics Data System (ADS)
Guzzetta, Alana G.
Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.
NASA Astrophysics Data System (ADS)
Sharma, Trivendra Kumar; Parashar, Sandeep Kumar
2018-05-01
In the present age functionally graded piezoelectric materials (FGPM) are increasingly being used as actuators and sensors. In spite of the fact that the piezoelectric coupling coefficient for shear d15 has much higher value in comparison to d31 or d33, it is far less utilized for the applications due to complex nature of the shear induced vibrations. In this work three dimensional free vibration analysis of functionally graded piezoelectric material annular plates with free-free boundary conditions is presented. The annular FGPM plate is polarized along the radial direction while the electric field is applied along the thickness direction inducing flexural vibrations of the plate due to d15 effect of functionally graded piezoelectric materials. The material properties are assumed to have a power law variation along the thickness. COMSOL Multiphysics is used to obtain the natural frequencies and modeshapes. Detailed numerical study is performed to ascertain the effect of variation in power law index and various geometrical parameters. The results presented shall be helpful in optimizing the existing applications and developing the new ones utilizing the FGPM annular plates.
Color Stability of Silicone or Acrylic Denture Liners: An in Vitro Investigation
Ergun, Gulfem; Nagas, Isil Cekic
2007-01-01
Objectives The aim of this study was to compare the color stability of three acrylic based hard liners (Ufi gel hard, Dura-Liner II, Tokuso Rebase) and two silicone based soft liners (Ufi gel permanent, Molloplast B) by using the colorimeter. Methods Sixty disc-shaped samples, with uniform size of 10 mm diameter and 2 mm in thickness were fabricated for each material. Thirty samples were made as control group in distilled water and the remaining thirty samples were weathered in accelerated aging chamber. Color measurements were made before and after distilled water and aging. Data were statistically analyzed using nonparametric Kruskal-Wallis and Mann-Whitney U tests. Results Data showed that there are significant differences among materials in both after distilled water and aging treatments (P<.001). These results indicated that the most discolored liner material was Dura Liner II after aging (ΔE*=16.30) and the least discolored material was Ufi gel permanent after distilled water (ΔE*=0.41). Conclusions Based on the results of this study, silicone based liner materials are considered to be more color stable than acrylic based liner materials. PMID:19212558
Acquisition of the Concept "Biodegradable" Through Written Instruction: Pretest and Age Effects.
ERIC Educational Resources Information Center
Arganian, Mourad P.; And Others
The primary purpose of this study/experiment was to determine whether children in the middle elementary grades would be able to learn the concepts "biodegradable agent,""biodegradable material," and "biodegradable process" from a short written lesson. Secondary purposes were to examine the degree to which a pretest, grade level, and sex of the…
Young Children's Attitudes toward Peers with Intellectual Disabilities: Effect of the Type of School
ERIC Educational Resources Information Center
Georgiadi, Maria; Kalyva, Efrosini; Kourkoutas, Elias; Tsakiris, Vlastaris
2012-01-01
Background: This study explored typically developing children's attitudes towards peers with intellectual disabilities, with special reference to the type of school they attended. Materials and Methods: Two hundred and fifty-six Greek children aged 9-10 (135 in inclusive settings) completed a questionnaire and an adjective list by Gash ("European…
Looking Forward: Increased Attention to LGBTQ Students and Families in Middle Grade Classrooms
ERIC Educational Resources Information Center
Wickens, Corrine M.; Wedwick, Linda
2011-01-01
Looking backwards, discussions around sexual orientation and sexual identity have been noticeably absent at the middle grades. As a result, middle grade teachers may find it difficult to know how to effectively select age-appropriate materials that include LGBTQ issues and content. To move the field forward, the authors specifically highlight four…
Developing Effective Educational Materials Using Best Practices in Health Literacy
ERIC Educational Resources Information Center
Niebaum, Kelly; Cunningham-Sabo, Leslie; Bellows, Laura
2015-01-01
Health literacy is emerging as a leading issue affecting U.S. consumers' health. It has been shown to be a stronger predictor of a person's health than age, income, employment status, education level, or race. To best meet the health literacy needs of consumers, Extension educators can use best practice guidelines for improved health…
Accelerated optical polymer aging studies for LED luminaire applications
NASA Astrophysics Data System (ADS)
Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard
2013-09-01
There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.
NASA Astrophysics Data System (ADS)
Wang, Linqian; Wang, Richu; Feng, Yan; Deng, Min; Wang, Naiguang
2017-12-01
Mg-Al-Pb alloy can serve as a good candidate for the anode material in seawater-activated batteries. The effect of solution and aging treatment on electrochemical properties of Mg-9 wt.%Al-2.5 wt.%Pb alloy in 3.5 wt.% NaCl solution was investigated through scanning electron microscopy and electrochemical tests. The results indicate that the discharge activity of Mg-9 wt.%Al-2.5 wt.%Pb alloy decreases after solution treatment, although its anodic efficiency increases slightly. In contrast, its discharge performance and anodic efficiency, which are crucial for the application of batteries, are both enhanced after aging at 200°C for 12 h.
Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing
2016-01-01
ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375
NASA Technical Reports Server (NTRS)
Iyer, Saiganesh; Lerch, Brad (Technical Monitor)
2001-01-01
The magnitude of yield and flow stresses in aged Inconel 718 are observed to be different in tension and compression. This phenomenon, called the Strength differential (SD), contradicts the metal plasticity axiom that the second deviatoric stress invariant alone is sufficient for representing yield and flow. Apparently, at least one of the other two stress invariants is also significant. A unified viscoplastic model was developed that is able to account for the SD effect in aged Inconel 718. Building this model involved both theory and experiments. First, a general threshold function was proposed that depends on all three stress invariants and then the flow and evolution laws were developed using a potential-based thermodynamic framework. Judiciously chosen shear and axial tests were conducted to characterize the material. Shear tests involved monotonic loading, relaxation, and creep tests with different loading rates and load levels. The axial tests were tension and compression tests that resulted in sufficiently large inelastic strains. All tests were performed at 650 C. The viscoplastic material parameters were determined by optimizing the fit to the shear tests, during which the first and the third stress invariants remained zero. The threshold surface parameters were then fit to the tension and compression test data. An experimental procedure was established to quantify the effect of each stress invariant on inelastic deformation. This requires conducting tests with nonproportional three-dimensional load paths. Validation of the model was done using biaxial tests on tubular specimens of aged Inconel 718 using proportional and nonproportional axial-torsion loading. These biaxial tests also helped to determine the most appropriate form of the threshold function; that is, how to combine the stress invariants. Of the set of trial threshold functions, the ones that incorporated the third stress invariant give the best predictions. However, inclusion of the first stress invariant does not significantly improve the model predictions. The model shows excellent predictive capability for nonproportional load paths. Additionally, it reduces to the well-known models of Mises Drucker and Drucker-Prager. The requisite experiments involve reasonably simple load paths in the axial-shear stress plane and hence can be performed on a variety of different materials: be they metallic, geological. polymeric, ceramic or granular. The general form of the threshold function allows representation of inelastic deformation in a range of materials.
Apollo 12 lunar material - Effects on lipid levels of tobacco tissue cultures.
NASA Technical Reports Server (NTRS)
Weete, J. D.; Walkinshaw, C. H.; Laseter, J. L.
1972-01-01
Tobacco tissue cultures grown in contact with lunar material from Apollo 12, for a 12-week period, resulted in fluctuations of both the relative and absolute concentrations of endogenous sterols and fatty acids. The experimental tissues contained higher concentrations of sterols than the controls did. The ratio of campesterol to stigmasterol was greater than 1 in control tissues, but less than 1 in the experimental tissues after 3 weeks. High relative concentrations (17.1 to 22.2 per cent) of an unidentified compound or compounds were found only in control tissues that were 3 to 9 weeks of age.
Janig, Elke; Haslbeck, Martin; Aigelsreiter, Ariane; Braun, Nathalie; Unterthor, Daniela; Wolf, Peter; Khaskhely, Noor M; Buchner, Johannes; Denk, Helmut; Zatloukal, Kurt
2007-11-01
Clusterin is a secreted glycoprotein with stress-induced expression in various diseased and aged tissues. It shares basic features with small heat shock proteins because it may stabilize proteins in a folding-competent state. Besides its presence in all human body fluids, clusterin associates with altered extracellular matrix proteins, such as beta-amyloid in Alzheimer senile plaques in the brain. Because dermal connective tissue alterations occur because of aging and UV radiation, we explored the occurrence of clusterin in young, aged, and sun-exposed human skin. Immunohistochemical analysis showed that clusterin is constantly associated with altered elastic fibers in aged human skin. Elastotic material of sun-damaged skin (solar elastosis), in particular, revealed a strong staining for clusterin. Because of the striking co-localization of clusterin with abnormal elastic material, we investigated the interaction of clusterin with elastin in vitro. A chaperone assay was established in which elastin was denatured by UV irradiation in the absence or presence of clusterin. This assay demonstrated that clusterin exerted a chaperone-like activity and effectively inhibited UV-induced aggregation of elastin. The interaction of both proteins was further analyzed by electron microscopy, size exclusion chromatography, and mass spectrometry, in which clusterin was found in a stable complex with elastin after UV exposure.
Janig, Elke; Haslbeck, Martin; Aigelsreiter, Ariane; Braun, Nathalie; Unterthor, Daniela; Wolf, Peter; Khaskhely, Noor M.; Buchner, Johannes; Denk, Helmut; Zatloukal, Kurt
2007-01-01
Clusterin is a secreted glycoprotein with stress-induced expression in various diseased and aged tissues. It shares basic features with small heat shock proteins because it may stabilize proteins in a folding-competent state. Besides its presence in all human body fluids, clusterin associates with altered extracellular matrix proteins, such as β-amyloid in Alzheimer senile plaques in the brain. Because dermal connective tissue alterations occur because of aging and UV radiation, we explored the occurrence of clusterin in young, aged, and sun-exposed human skin. Immunohistochemical analysis showed that clusterin is constantly associated with altered elastic fibers in aged human skin. Elastotic material of sun-damaged skin (solar elastosis), in particular, revealed a strong staining for clusterin. Because of the striking co-localization of clusterin with abnormal elastic material, we investigated the interaction of clusterin with elastin in vitro. A chaperone assay was established in which elastin was denatured by UV irradiation in the absence or presence of clusterin. This assay demonstrated that clusterin exerted a chaperone-like activity and effectively inhibited UV-induced aggregation of elastin. The interaction of both proteins was further analyzed by electron microscopy, size exclusion chromatography, and mass spectrometry, in which clusterin was found in a stable complex with elastin after UV exposure. PMID:17872975
Research advance on stable mechanism of endophytic fungi to red wine colour during the aging
NASA Astrophysics Data System (ADS)
Nan, Lijun; Li, Yashan; Cui, Changwei; Ning, Na; Huang, Jing; Xu, Chengdong; Tao, Fang; Zhang, Jinyong
2018-04-01
Based on the fact that persistent mutation of vinous color was not conducive to the stabilization of vinous quality during the aging, research advance on the stable mechanism of endophytic fungi to colour of red wine during the aging, including investigative status and developmental dynamic at home and abroad, endophytes and pigment of materials in wine, including effect of endophyte on vinaceous color, and even the application of tracer method in wine was summarized, respectively. The relationship between diversity of community the endophytic fungi and the main pigment material in wine was existent objectively, also included the response mechanism on colony dynamic of endophytic fungi to the various pigment as well as substance related to color, which laid the foundation for exploring the relationships between endophytic fungi and wine color, and the variational mechanism of the color under endophytic fungi during the aging period of wine. Color as an important reference index of wine quality influenced not only the sensory evaluation of consumer, but also the quality of wine because of the self-aggregation or combination of phenolic composition with other substances under the endophytic fungi during the storage. Only steady wine in the color could guarantee the security of quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
The materials of construction of tritium reservoirs are forged stainless steels. During service, the structural properties of the stainless steel change over time because of the diffusion of tritium into the reservoir wall and its radioactive decay to helium-3. This aging effect can cause cracks to initiate and grow which could result in a tritium leak or delayed failure of a tritium reservoir. Numerous factors affect the tendency for crack formation and propagation and are being investigated in this program. The goal of the research is to provide relevant fracture mechanics data that can be used by the design agenciesmore » in their assessments of tritium reservoir structural integrity. In this status report, new experimental results are presented on the effects of tritium and decay helium on the cracking properties of specimens taken from actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured are more representative of actual reservoir properties because the microstructure of the specimens tested are more like that of the actual tritium reservoirs. The program was designed to measure the effects of material variables on tritium compatibility and includes two stainless steels (Type 304L and 316L stainless steel), multiple yield strengths (360-500 MPa), and multiple forging shapes (Stem, Cup, and Block).« less
Accelerated aging studies of UHMWPE. II. Virgin UHMWPE is not immune to oxidative degradation.
Edidin, A A; Villarraga, M L; Herr, M P; Muth, J; Yau, S S; Kurtz, S M
2002-08-01
In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation. Copyright 2002 Wiley Periodicals, Inc.
Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio
2017-10-01
Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.
The effects of different materials of protective gloves on thermoregulatory responses.
Hayashi, C; Tokura, H
1999-01-01
The effects of two kinds of protecting gloves for pesticide spraying made of different materials on thermoregulatory responses during exercise were studied at ambient temperature of 28 degrees C and relative humidity of 60% in six healthy females, aged 19. One kind of gloves was made of polyurethane (A) and the other of Goretex (B) with cotton lining in each glove. Both kinds of gloves had almost the same volume. Main results of the experiment were summarised as follows: (1) during the exercise an increase of rectal temperature was inhibited more effectively in B than in A; (2) skin temperature of hand was significantly lower in B than in A; (3) absolute humidity and temperature inside the gloves were significantly lower during the period from the gripping bar exercise to the end of the experiment; (4) the number of contractions by the handgrip exercise performed immediately after the second turning of the screw was significantly smaller in A than in B. The findings presented suggest that the gloves made of Goretex material could reduce thermal strain during intermittent work in warm environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilas, Faith; Hendrix, Amanda R., E-mail: fvilas@psi.edu
Evidence for the manifestation of space weathering in S-complex asteroids as a bluing of the UV/blue reflectance spectrum is extended using high resolution CCD reflectance spectra of 21 main-belt, 1 Mars-crossing, and 3 near-Earth asteroids covering a wavelength range of 320–620 nm. Demonstration of the transition of iron-bearing materials from volume scattering to surface (Fresnel) scattering is apparent as an abrupt downturn at wavelengths just short of 400 nm in reflectance spectra of fresh asteroid surfaces. The weathering away of this downturn is demonstrated by its absence in reflectance spectra of mature S-complex asteroids, consistent with an increase in npFe{supmore » 0} on the material's surface. Modeling of the effects of the addition of small amounts of npFe{sup 0} to particles from both a hypothetical mineral and a terrestrial basalt shows that evidence of the addition of 0.0001% npFe{sup 0} affects the reflectance at UV/blue wavelengths, while the addition of 0.01% is required to see the visible/near-infrared reddening and diminution of absorption features. Thus, the UV/blue reflectance characteristics allow earlier detection of the onset of space weathering effects. Combining UV/blue spectral characteristics of asteroids and ordinary chondrite meteorites with estimated ages of the young Datura family, we establish a method of dating asteroid surface ages during the early stages of space weathering. We demonstrate by dating the surface of NEA 163249 2002 GT to be 109 (±18) to 128 (±10) Kyr.« less
You, Shu-Han; Chen, Szu-Chieh; Liao, Chung-Min
2018-01-01
Background It has been found that health-seeking behavior has a certain impact on influenza infection. However, behaviors with/without risk perception on the control of influenza transmission among age groups have not been well quantified. Objectives The purpose of this study was to assess to what extent, under scenarios of with/without control and preventive/protective behaviors, the age-specific network-driven risk perception influences influenza infection. Materials and methods A behavior-influenza model was used to estimate the spread rate of age-specific risk perception in response to an influenza outbreak. A network-based information model was used to assess the effect of network-driven risk perception information transmission on influenza infection. A probabilistic risk model was used to assess the infection risk effect of risk perception with a health behavior change. Results The age-specific overlapping percentage was estimated to be 40%–43%, 55%–60%, and 19%–35% for child, teenage and adult, and elderly age groups, respectively. Individuals perceive the preventive behavior to improve risk perception information transmission among teenage and adult and elderly age groups, but not in the child age group. The population with perceived health behaviors could not effectively decrease the percentage of infection risk in the child age group, whereas for the elderly age group, the percentage of decrease in infection risk was more significant, with a 97.5th percentile estimate of 97%. Conclusion The present integrated behavior-infection model can help health authorities in communicating health messages for an intertwined belief network in which health-seeking behavior plays a key role in controlling influenza infection. PMID:29563814
Passive absolute age and temperature history sensor
Robinson, Alex; Vianco, Paul T.
2015-11-10
A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.
Jia, Yu; Maurice, Christian; Öhlander, Björn
2016-01-01
Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1% sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field.
Simulated Aging of Spacecraft External Materials on Orbit
NASA Astrophysics Data System (ADS)
Khatipov, S.
Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.
Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan
2017-06-11
In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions.
Amin, Muhammad Nasir; Khan, Kaffayatullah; Saleem, Muhammad Umair; Khurram, Nauman; Niazi, Muhammad Umar Khan
2017-01-01
In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD) and granite sludge (GS), respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days) containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD), fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures) and curing moisture (continuously moist and partially moist followed by air curing). Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM) and mortar containing fly ash (FA). The test results indicated that under normal curing (20 °C, moist cured), the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations) remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more) incorporating local environmental conditions. PMID:28772999
NASA Astrophysics Data System (ADS)
Plaček, Vít; Kohout, Tomáš
2010-03-01
Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.
NASA Technical Reports Server (NTRS)
Kerr, James R.; Haskins, James F.
1987-01-01
Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.
Narayanaswamy’s 1971 aging theory and material time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyre, Jeppe C., E-mail: dyre@ruc.dk
2015-09-21
The Bochkov-Kuzovlev nonlinear fluctuation-dissipation theorem is used to derive Narayanaswamy’s phenomenological theory of physical aging, in which this highly nonlinear phenomenon is described by a linear material-time convolution integral. A characteristic property of the Narayanaswamy aging description is material-time translational invariance, which is here taken as the basic assumption of the derivation. It is shown that only one possible definition of the material time obeys this invariance, namely, the square of the distance travelled from a configuration of the system far back in time. The paper concludes with suggestions for computer simulations that test for consequences of material-time translational invariance.more » One of these is the “unique-triangles property” according to which any three points on the system’s path form a triangle such that two side lengths determine the third; this is equivalent to the well-known triangular relation for time-autocorrelation functions of aging spin glasses [L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27, 5749 (1994)]. The unique-triangles property implies a simple geometric interpretation of out-of-equilibrium time-autocorrelation functions, which extends to aging a previously proposed framework for such functions in equilibrium [J. C. Dyre, e-print arXiv:cond-mat/9712222 (1997)].« less
Summary Report of Cable Aging and Performance Data for Fiscal Year 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Celina, Mathias C.; Redline, Erica Marie
2014-09-01
As part of the Light Water Reactor Sustainability Program, science - based engineering approaches were employed to address cable degradation behavior under a range of exposure environments. Experiments were conducted with the goal to provide best guidance for aged material states, remaining life and expected performance under specific conditions for a range of cable materials. Generic engineering tests , which focus on rapid accelerated aging and tensile elongation , were combined with complementar y methods from polymer degradation science. Sandia's approach, building on previous years' efforts, enabled the generation of some of the necessary data supporting the development of improvedmore » lifetime predictions models, which incorporate known material b ehaviors and feedback from field - returned 'aged' cable materials. Oxidation rate measurements have provided access to material behavior under low dose rate thermal conditions, where slow degradation is not apparent in mechanical property changes. Such da ta have shown aging kinetics consistent with established radiati on - thermal degradation models. ACKNOWLEDGEMENTS We gratefully acknowledge ongoing technical support at the LICA facility and extensive sample handling provided by Maryla Wasiolek and Don Hans on. Sam Durbin and Patrick Mattie are recognized for valuable guidance throughout the year and assistance in the preparation of the final report. Doug Brunson is appreciated for sample analysis, compilation and plotting of experimental data.« less
Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature
NASA Astrophysics Data System (ADS)
Crochon, Thibaut
Use of Polymer Matrix Composite Materials (PMCMs) in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behavior dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical aging. These various parameters need to be taken into consideration for the designer to be able to predict the material behavior over the service life of the components. The main objective of this thesis was to study the viscoelastic behavior of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behavior for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS. Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent fit of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples masses, volume and tensile properties were recorded after 1, 4, 9 and 17 months. The results of those tests showed that after 17 months, the matrix lost about 5% of its mass and volume and as much as 19%, 30% and 10% of its Young's modulus, stress and strain at break, respectively. The second step consisted in studying the viscoelastic behavior of the matrix under various conditions and develop a constitutive theory to model its mechanical behavior. That theory was developed using the framework laid out by Schapery in 1964, using the Thermodynamics of Irreversible Processes. The main advantage of Schapery-type constitutive theories is that the effects of various parameters such as stresses, temperature and physical ageing can be taken into account by using user-defined explicit nonlinearizing functions. Tensile samples of the material were tested at service temperature using strain gages rosettes in order to study the matrix 3D behavior. It was found that the Poisson's ratio was time-independent, meaning that its retardation times spectrum was the same as the compliance function. Furthermore, at this temperature, it was found that the viscoelastic behavior was independent of the stress level. Those two observations led to the conclusion that the material was linearly viscoelastic and could be represented with a 1D constitutive theory. From this conclusion, and also due to the scarcity of material available, it was decided to use 3-point bending tests for studying the impact of temperature and physical ageing. Following Struik's methodology, the material was heated at ageing temperature and then series of creep tests at increasing intervals were performed. It was found that the material became stiffer as the ageing time increased, but it also became softer for increasing temperatures. A model was developed in which Schapery's nonlinearizing functions were obtained from experimental data. The model was validated with complex thermo-mechanical histories comprising several creep tests as well as temperature up- and down-jumps. The experimental data were predicted with excellent accuracy. Finally, the last step consisted in implementing the constitutive theory into a finite-element software. To that end, a new procedure was developed. Instead of the classical methods which deal with Schapery's hereditary integral, the method went back to the evolution equations which are the basis of the integral. The evolution equations were solved with well-known finite-difference schemes such as Backward-Euler, Crank-Nicholson or Runge-Kutta. The numerical model thus obtained could then easily be implemented into finite-element software. In this thesis, a thorough examination of the mechanical properties of a polyimide matrix was conducted. It was found that for such materials, the service temperature is so elevated that chemical ageing has a defining importance on components life. Furthermore, it was found that viscoelastic behavior was only dependent on temperature and physical ageing, but not on the stress levels. (Abstract shortened by ProQuest.).
Ariel, Robert; Price, Jodi; Hertzog, Christopher
2015-01-01
Value-based remembering in free recall tasks may be spared from the typical age-related cognitive decline observed for episodic memory. However, it is unclear whether value-based remembering for associative information is also spared from age-related cognitive decline. The current experiments evaluated the contribution of agenda-based based regulation and strategy use during study to age differences and similarities in value-based remembering of associative information. Participants studied word pairs (Experiments 1-2) or single words (Experiment 2) slated with different point values by moving a mouse controlled cursor to different spatial locations to reveal either items for study or the point value associated with remembering each item. Some participants also provided strategy reports for each item. Younger and older adults allocated greater time to studying high than low valued information, reported using normatively effective encoding strategies to learn high-valued pairs, and avoided study of low-valued pairs. As a consequence, both age groups selectively remembered more high than low-valued items. Despite nearly identical regulatory behavior, an associative memory deficit for older adults was present for high valued pairs. Age differences in value-based remembering did not occur when the materials were word lists. Fluid intelligence also moderated the effectiveness of older adults’ strategy use for high valued pairs (Experiment 2). These results suggest that age differences in associative value-based remembering may be due to some older adults’ gleaning less benefit from using normatively effective encoding strategies rather than age differences in metacognitive self-regulation per se. PMID:26523692
NASA Astrophysics Data System (ADS)
Argiris, A.; Ondho, Y. S.; Santoso, S. I.; Kurnianto, E.
2018-02-01
Artificial Insemination is a compatible method of reproduction in an effort to increase dairy productivity. Artificial Insemination Center as a producer of frozen semen was required to maximize bulls in producing high quality frozen semen optimally. The purpose of this research was to determine effect of age and bulls on fresh semen quality and frozen semen production of Holstein bulls in Indonesia. The research was conducted at Lembang and Singosari AI Centers. The material used were 24.634 data of qualified fresh semen and frozen semen production from 81 Holstein Bulls aged 1-9 years that used as frozen semen producer in period of 2008 to 2016. The variables observed in this research were data of age of bulls, fresh semen volume (mL); sperm motility (%); mass movement; concentrations (million/mL) and frozen semen doses at each production at age of bulls. Nested design was applied to obtain and analyze data. Results showed that Age and bulls have significant effect (P<0,01) to volume, mass, motility, concentration and frozen semen production. Increasing the age of bulls resulted in increase semen volume until 7-year-old, while semen concentration decreased from 3 years old with increasing age. Frozen semen production, mass movement and motility shown the same relative value on 3-9 years old except on 1 to 2 years old had increase. Bulls would produce frozen semen optimally on 3-9 years old. Indeed, with knowledge of this factor, AI Centre might adapt management of AI bulls to improve semen production.
Measurement of Mechanical Properties of Cantilever Shaped Materials
Finot, Eric; Passian, Ali; Thundat, Thomas
2008-01-01
Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties. PMID:27879891
Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.
Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer
2008-01-01
To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P < .05. The mean Vickers hardness of Transbond Lingual Retainer was 62.8 +/- 3.5 and 79.6 +/- 4.9 before and after aging, respectively. The mean Vickers hardness of Light Cure Retainer was 40.3 +/- 2.6 and 58.3 +/- 4.3 before and after aging, respectively. Differences in both groups were statistically significant (P < .001). Following aging, mean surface roughness was changed from 0.039 microm to 0.121 microm and from 0.021 microm to 0.031 microm for Transbond Lingual Retainer and Light Cure Retainer, respectively. The roughening of Transbond Lingual Retainer with aging was statistically significant (P < .05), while the change in the surface roughness of Light Cure Retainer was not (P > .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.
Piezoelectric and Electrostrictive Materials for Transducer Applications. Volume 1
1990-01-31
by non-stoichiometry or by doping with aleovalent ions. For doped materials the aging is very similar to that in PLZT, again affecting the dispersive...during aging looks similar to that in MnO doped PMNPT.? Figure 8 shows the Cole-Cole plot for different aging time in the quenched sample. CL~ m ~ m rmt... parameters show that the angle of tilt of the arc from the real axis a and the average time constant r decrease during aging . The Cole-Cole plot become