40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEM, M.J.
2000-05-11
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.
Design Tools for Assessing Manufacturing Environmental Impact.
1997-11-26
the material report alone. In order to more easily design, update and verify the output report, many of the cells which contained the information...needed for the material balance calculations were named. The cell name was then used in the calculations. Where possible the same names that were used in...Material balance information was used extensively to ensure all the equations were correct and were put into the appropriate cells . A summary of the
2014-03-27
mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
URINE SOURCE SEPARATION AND TREATMENT: NUTRIENT RECOVERY USING LOW-COST MATERIALS
Successful completion of this P3 Project will achieve the following expected outputs: identification of low-cost materials that can effectively recover ammonium, phosphate, and potassium from urine; material balance calculations for different urine separation and treatment scheme...
Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan
The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less
Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis
Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan; ...
2017-08-31
The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less
Mathematical model of whole-process calculation for bottom-blowing copper smelting
NASA Astrophysics Data System (ADS)
Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song
2017-11-01
The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.
Quartz Crystal Microbalance Operation and In Situ Calibration
NASA Technical Reports Server (NTRS)
Albyn, K. C.
2004-01-01
Quartz crystal microbalances (QCMs) are commonly used to measure the rate of deposition of molecular species on a surface. The measurement is often used to select materials with a low outgassing rate for applications where the material has a line of sight to a contamination-sensitive surface. A quantitative, in situ calibration of the balance, or balances, using a pure material for which the enthalpy of sublimation is known, is described in this Technical Memorandum. Supporting calculations for surface dwell times of deposited materials and the effusion cell Clausing factor are presented along with examples of multiple QCM measurements of outgassing from a common source.
NASA Astrophysics Data System (ADS)
Ozcelik, Ongun; White, Claire
Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.
Development of high-speed balancing technology
NASA Technical Reports Server (NTRS)
Demuth, R.; Zorzi, E.
1981-01-01
An investigation into laser material removal showed that laser burns act in a manner typical of mechanical stress raisers causing a reduction in fatigue strength; the fatigue strength is lowered relative to the smooth specimen fatigue strength. Laser-burn zones were studied for four materials: Alloy Steel 4340, Stainless Steel 17-4 PH, Inconel 718, and Aluminum Alloy 6061-T6. Calculations were made of stress concentration factors K, for laser-burn grooves of each material type. A comparison was then made to experimentally determine the fatigue strength reduction factor. These calculations and comparisons indicated that, except for the 17-4 PH material, good agreement (a ratio of close to 1.0) existed between Kt and Kf. The performance of the 17-4 PH material has been attributed to early crack initiation due to the lower fatigue resistance of the soft, unaged laser-affected zone. Also covered in this report is the development, implementation, and testing of an influence coefficient approach to balancing a long, slender shaft under applied-torque conditions. Excellent correlation existed between the analytically predicted results and those data obtained from testing.
Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution
NASA Astrophysics Data System (ADS)
Plekhov, O. A.; Kostina, A. A.
2017-05-01
The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.
Metabolic balance analysis program
NASA Technical Reports Server (NTRS)
Rombach, J.
1971-01-01
Computer program calculates 28 day diet for life support consumables requirements and waste removal. Equations representing food breakdown into carbohydrates, fats, and proteins, modified to account for digestive materials and indigestible crude fibers, formulate total energy consumption. Program applications are listed.
Johnson, Jay S; Taylor, Daniel J; Green, Angela R; Gaskill, Brianna N
2017-05-01
Discrepancies exist between the preferred temperature range for mice (26 to 32 °C) and current recommendations (20 to 26 °C), which may alter metabolism and negatively affect studies using mice. Previous research indicates that nesting material can alleviate cold stress in mice; therefore, we sought to determine the effects of the amount of nesting material provided (0, 6, or 12 g) on heat energy loss and energy balance in 3 mouse strains housed at currently recommended temperatures during the daytime, a period of presumed inactivity. Groups of BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) mice, balanced by strain and sex, were group-housed and provided 0, 6, or 12 g of nesting material. After a 3-d acclimation period, body weight was determined daily at 0800, food intake was determined at 0800 and 2000, and total heat production was evaluated from 0800 to 2000 on 4 consecutive days and used to calculate energy balance and the respiratory quotient. Although the amount of nesting material had no overall effect on food intake or heat production, mice provided 12 g of nesting material had greater weight gain than those given 0 or 6 g. This increase in body weight might have been due to improved energy balance, which was corroborated by an increased respiratory quotient in mice provided 12 g of nesting material. In summary, although heat production did not differ, providing 12 g of nesting material improved energy balance, likely leading to an increase in body weight during the 0800-2000 testing period.
NASA Astrophysics Data System (ADS)
Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain
2017-09-01
DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.
Plöchl, Matthias; Heiermann, Monika; Rodemann, Bernd; Bandte, Martina; Büttner, Carmen
2014-01-15
Knowledge of fate and behavior of plant pathogens in the biogas production chain is limited and hampers the estimation and evaluation of the potential phytosanitary risk if digestate is spread on arable land as a fertilizer. Therefore, simulation is an appropriate tool to demonstrate the effects which influence the steady state of pathogen infected plant material in both digesters and digestate. Simple approaches of kinetics of inactivation and mass balances of infected material were carried out considering single-step as well as two-step digestion. The simulation revealed a very fast to fast reduction of infected material after a singular feeding, reaching a cutback to less than 1% of input within 4 days even for D90-values of 68 h. Steady state mass balances below input rate could be calculated with D90-values of less than 2 h at a continuous hourly feeding. At higher D90-values steady state mass balances exceed the input rate but are still clearly below the sum of input mass. Dilution further decreases mass balances to values 10(-5) to 10(-6) Mg m(-3) for first-step digestion and 10(-8) to 10(-9) for second-step. Copyright © 2013 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Entress, Cole; Wagner, Aimee
2014-01-01
Scientists, science teachers, and serious students recognize that success in science classes requires consistent practice--including study at home. Whether balancing chemical equations, calculating angular momentum, or memorizing the steps of cell division, students must review material repeatedly to fully understand new ideas--and must practice…
Analytical study of sandwich structures using Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.
2017-01-01
This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Prior to 1978, the Wilsonville Advanced Coal Liquefaction facility material balance surrounded only the thermal liquefaction unit and involved analyses of only the slurry stream and individual gas streams. The distillate solvent yield was determined by difference. Subsequently, several modifications and additional process units were introduced to this single unit system. With the inclusion of the deashing unit in 1978 and the catalytic hydrogenation unit in 1981, the process has evolved into a sophisticated two-stage coal liquefaction process and has the potential for various modes of integration. This report presents an elemental balancing procedure and a simplified presentation format thatmore » is sufficiently flexible to meet current and future needs. The development of the elemental balancing technique and the relevant computer programs to handle the calculations have been addressed. This will be useful in modelling individual unit performance as well as determining the impact of each unit on the overall liquefaction system, provided the units are on a steady-state basis. Five different material balance envelopes are defined. Three of these envelopes pertain to the individual units (the thermal liquefaction or TL unit, the Critical Solvent Deashing or CSD unit and the H-Oil Ebullated Bed Hydrotreating or HTR unit). The fourth or single stage material balance envelope combines the TL and CSD units. The fifth envelope is the two-stage configuration combining all three units. 3 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp
2011-03-15
Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less
Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.
ERIC Educational Resources Information Center
Heald, Emerson F.
1978-01-01
Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)
40 CFR 63.74 - Demonstration of early reduction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollutant emissions; (2) A complete list of all emission points of hazardous air pollutants in the source... pollutants from each emission point listed in the source in paragraph (b)(2) of this section; (3) The... subject emissions; and (ii) For calculations based on emission factors, material balance, or engineering...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
Fighting Proliferation New Concerns for the Nineties,
1996-09-01
assuming this dominates the error in measuring material unaccounted for [ MUFI ) and with a material-balance calculation done once a year, the absolute value...defenses, the Soviet economy, and the Salvadoran land-reform program. Dr Blair, who earned a BA in mathematics from the University of Tennessee and a PhD...California, Berkeley; and UCLA. Dr Weiss is the author of numerous technical papers on various aspects of applied mathematics , especially automatic control
A mass-balance model to separate and quantify colloidal and solute redistributions in soil
Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.
2011-01-01
Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.
40 CFR 63.824 - Standards: Publication rotogravure printing.
Code of Federal Regulations, 2012 CFR
2012-07-01
....000 For the purposes of this calculation, the mass fraction of organic HAP present in the recovered volatile matter is assumed to be equal to the mass fraction of organic HAP present in the volatile matter... section: (i) Perform a liquid-liquid material balance for each month as follows: (A) Measure the mass of...
40 CFR 63.824 - Standards: Publication rotogravure printing.
Code of Federal Regulations, 2013 CFR
2013-07-01
....000 For the purposes of this calculation, the mass fraction of organic HAP present in the recovered volatile matter is assumed to be equal to the mass fraction of organic HAP present in the volatile matter... section: (i) Perform a liquid-liquid material balance for each month as follows: (A) Measure the mass of...
NASA Astrophysics Data System (ADS)
Kent, E. R.; Bailey, S.; Stephens, J.; Horwath, W. R.; Paw U, K.
2013-12-01
Managed decomposition of organic materials is increasingly being used as an alternative waste management option and the resulting compost can be used as a fertilizer and soil amendment in home gardens and agriculture. An additional benefit is the avoidance of methane emissions associated with anaerobic decomposition in landfills. Greenhouse gases are still emitted during the composting process, but few studies have measured emissions from a full-scale windrow of composting green-waste. This study uses a micrometeorological mass balance technique (upwind and downwind vertical profile measurements of trace gas concentrations and wind velocity) to calculate emissions of carbon dioxide, methane, and nitrous oxide from a pile of composting green-waste during the dry season in Northern California. The expected source pattern was observed in measured upwind-downwind concentration differences of all three gases averaged over the study period despite substantial noise seen in the half-hourly emission calculations. Sources of uncertainty are investigated and temporal patterns analyzed. An in-situ zero-source test was conducted to examine the mass balance technique when the source of emissions was removed. Results from the micrometeorological mass balance measurements are compared with measurements taken using the more common open chamber technique.
NASA Astrophysics Data System (ADS)
Aliberti, P.; Feng, Y.; Takeda, Y.; Shrestha, S. K.; Green, M. A.; Conibeer, G.
2010-11-01
Theoretical efficiencies of a hot carrier solar cell considering indium nitride as the absorber material have been calculated in this work. In a hot carrier solar cell highly energetic carriers are extracted from the device before thermalisation, allowing higher efficiencies in comparison to conventional solar cells. Previous reports on efficiency calculations approached the problem using two different theoretical frameworks, the particle conservation (PC) model or the impact ionization model, which are only valid in particular extreme conditions. In addition an ideal absorber material with the approximation of parabolic bands has always been considered in the past. Such assumptions give an overestimation of the efficiency limits and results can only be considered indicative. In this report the real properties of wurtzite bulk InN absorber have been taken into account for the calculation, including the actual dispersion relation and absorbance. A new hybrid model that considers particle balance and energy balance at the same time has been implemented. Effects of actual impact ionization (II) and Auger recombination (AR) lifetimes have been included in the calculations for the first time, considering the real InN band structure and thermalisation rates. It has been observed that II-AR mechanisms are useful for cell operation in particular conditions, allowing energy redistribution of hot carriers. A maximum efficiency of 43.6% has been found for 1000 suns, assuming thermalisation constants of 100 ps and ideal blackbody absorption. This value of efficiency is considerably lower than values previously calculated adopting PC or II-AR models.
The Great Lakes Water Balance: Data availability and annotated bibliography of selected references
Neff, Brian P.; Killian, Jason R.
2003-01-01
Water balance calculations for the Great Lakes have been made for several decades and are a key component of Great Lakes water management. Despite the importance of the water balance, little has been done to inventory and describe the data available for use in water balance calculations. This report provides a catalog and brief description of major datasets that are used to calculate the Great Lakes water balance. Several additional datasets are identified that could be used to calculate parts of the water balance but currently are not being used. Individual offices and web pages that are useful for attaining these datasets are included. Four specific data gaps are also identified. An annotated bibliography of important publications dealing with the Great Lakes water balance is included. The findings of this investigation permit resource managers and scientists to access data more easily, assess shortcomings of current datasets, and identify which data are not currently being utilized in water balance calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vurgaftman, I.; Belenky, G., E-mail: gregory.belenky@stonybrook.edu; Lin, Y.
The absorption spectra for the antimonide-based type-II superlattices (SLs) for detection in the long-wave infrared (LWIR) are calculated and compared to the measured data for SLs and bulk materials with the same energy gap (HgCdTe and InAsSb). We include the results for the metamorphic InAsSb{sub x}/InAsSb{sub y} SLs with small periods as well as the more conventional strain-balanced InAs/Ga(In)Sb and InAs/InAsSb SLs on GaSb substrates. The absorption strength in small-period metamorphic SLs is similar to the bulk materials, while the SLs with an average lattice constant matched to GaSb have significantly lower absorption. This is because the electron-hole overlap inmore » the strain-balanced type-II LWIR SLs occurs primarily in the hole well, which constitutes a relatively small fraction of the total thickness.« less
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How do I calculate volume balances for... § 80.599 How do I calculate volume balances for designation purposes? (a) Quarterly compliance periods... June 30, 2013. July 1, 2013 May 31, 2014. (2) [Reserved] (b) Volume balance for motor vehicle diesel...
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How do I calculate volume balances for... § 80.599 How do I calculate volume balances for designation purposes? (a) Quarterly compliance periods... June 30, 2013. July 1, 2013 May 31, 2014. (2) [Reserved] (b) Volume balance for motor vehicle diesel...
Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell
NASA Astrophysics Data System (ADS)
Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad
2018-01-01
Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.
ERIC Educational Resources Information Center
Hatheway, W. H.
These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Specifically, this module develops a method for calculating the exchange of heat between an…
Radiolytic and thermolytic bubble gas hydrogen composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodham, W.
This report describes the development of a mathematical model for the estimation of the hydrogen composition of gas bubbles trapped in radioactive waste. The model described herein uses a material balance approach to accurately incorporate the rates of hydrogen generation by a number of physical phenomena and scale the aforementioned rates in a manner that allows calculation of the final hydrogen composition.
Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model
Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.
2015-01-01
Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.
Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.
2004-01-01
Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.
SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge
Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.
2010-01-01
A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.
Thermal Behaviors and Their Correlations of Mg(BH4)2-Contained Explosives
NASA Astrophysics Data System (ADS)
Yue, Yue; Chen, Liping; Peng, Jinhua
2018-01-01
In order to explore the effect of metal hydride on energetic materials' thermal behaviors and their correlations, we studied the heats of combustion and detonation of RDX, TNT, and Mg(BH4)2-containing explosives both theoretically and experimentally. The results showed that Mg(BH4)2 can significantly improve the energy of explosive. As the mass fraction of Mg(BH4)2 increases, the combustion heat of composite explosives increases gradually, while the combustion efficiency decreases. When its mass fraction is about 30%, the theoretical heats of detonation of RDX/Mg(BH4)2 and TNT/Mg(BH4)2 reach maximum, which are 7418.47 and 7032.46 kJ/kg, respectively. When we compared the errors between calculation and experimental values, we found that L-C method is more accurate in calculating oxygen-enriched and oxygen-balanced explosives, and that minimum free energy method is more suitable for seriously negative oxygen-balanced explosive. For single explosive, there are three kinds of relationships between heat of combustion and detonation according to the oxygen balance. For Mg(BH4)2-containing explosives, the relationship is in accordance with Boltzmann function.
NASA Astrophysics Data System (ADS)
Shchinnikov, P. A.; Safronov, A. V.
2014-12-01
General principles of a procedure for matching energy balances of thermal power plants (TPPs), whose use enhances the accuracy of information-measuring systems (IMSs) during calculations of performance characteristics (PCs), are stated. To do this, there is the possibility for changing values of measured and calculated variables within intervals determined by measurement errors and regulations. An example of matching energy balances of the thermal power plants with a T-180 turbine is made. The proposed procedure allows one to reduce the divergence of balance equations by 3-4 times. It is shown also that the equipment operation mode affects the profit deficiency. Dependences for the divergence of energy balances on the deviation of input parameters and calculated data for the fuel economy before and after matching energy balances are represented.
NASA Astrophysics Data System (ADS)
Teulet, Philippe; Billoux, Tommy; Cressault, Yann; Masquère, Mathieu; Gleizes, Alain; Revel, Ivan; Lepetit, Bruno; Peres, Gilles
2017-03-01
This work is devoted to the calculation of the energy balance associated with the formation of an electric arc between the bolt shank and an inner structural part of the fuselage during a lightning strike. Assessment of the pressure build-up in the confined volume around the bolt fastener has also been performed. This pressure rise comes from the temperature increase and from the mass density increase (melting and vaporisation of materials). Previous electrical measurements performed by Airbus Group during a lightning test campaign have been used to calculate the total available electrical energy. The energies necessary for melting and vaporisation of bolt and rib are derived from thermodynamic properties of aluminium and titanium. A numerical code has been developed to determine the chemical composition (under the local thermodynamic equilibrium [LTE] assumption) and the internal energy of the plasma for air-Al/Ti mixtures. Plasma and material radiation losses and heat conduction losses have also been evaluated. Finally, an analytical model has been implemented to determine the overpressure as a function of the deposited electrical energy, the energy involved in the arc formation, the energy necessary for melting and the plasma composition and mass density. With this approach, maximum pressure values are in the range 200-330 bars.
Balance-Equation Approach to Nonuniform Electron Transport in Nonparabolic Semiconductors
NASA Astrophysics Data System (ADS)
Cao, Juncheng; Lei, Xiaolin
1998-10-01
On the basis of the Lei-Ting balance-equation transport theory recently developed for nonparabolic energy band, we propose a hydrodynamic approach to the spatially inhomogeneous electron transport in semiconductor devices. In the present approach, the momentum and energy collision terms are expressed by two nonlinear functions, the frictional acceleration and energy-loss rate, which give a detailed scattering-process-level description of nonstationary and nonlocal charge transport in the system. This approach allows one to calculate selfconsistently the transport parameters within the model itself based on the primary material data (band structure, deformation potential constant, etc.), thus it minimizes the uncertainty associated with the use of some empirical relations for transport coefficients. As a demonstration of the approach, we have carried out a numerical calculation for a submicrometer Si n^+nn^+ diode by assuming an isotropic Kane-type energy band. The results for electron velocity and energy, obtained at much less computing cost than the Monte-Carlo (MC) method, are in good agreement with MC prediction. The influence of heat-flow term on electron transport behaviour, especially on velocity overshoot, is also investigated. The project supported by National Natural Science Foundation of China, National and Shanghai Municipal Commission of Science and Technology, and the Shanghai Foundation for Research and Development of Applied Materials
Systematic Approach to Calculate the Concentration of Chemical Species in Multi-Equilibrium Problems
ERIC Educational Resources Information Center
Baeza-Baeza, Juan Jose; Garcia-Alvarez-Coque, Maria Celia
2011-01-01
A general systematic approach is proposed for the numerical calculation of multi-equilibrium problems. The approach involves several steps: (i) the establishment of balances involving the chemical species in solution (e.g., mass balances, charge balance, and stoichiometric balance for the reaction products), (ii) the selection of the unknowns (the…
Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.
2013-01-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.
2013-04-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
Nanoscale Charge-Balancing Mechanism in Alkali-Substituted Calcium-Silicate-Hydrate Gels.
Özçelik, V Ongun; White, Claire E
2016-12-15
Alkali-activated materials and related alternative cementitious systems are sustainable technologies that have the potential to substantially lower the CO 2 emissions associated with the construction industry. However, these systems have augmented chemical compositions as compared to ordinary Portland cement (OPC), which may impact the evolution of the hydrate phases. In particular, calcium-silicate-hydrate (C-S-H) gel, the main hydrate phase in OPC, is likely to be altered at the atomic scale due to changes in the bulk chemical composition, specifically via the addition of alkalis (i.e., Na or K) and aluminum. Here, via density functional theory calculations, we reveal the presence of a charge balancing mechanism at the molecular level in C-S-H gel (as modeled using crystalline 14 Å tobermorite) when alkalis and aluminum atoms are introduced into the structure. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these substitutional and charge balancing effects on the structures is assessed by analyzing the formation energies, local bonding environments, diffusion barriers and mechanical properties. The results of this computational study provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental atomic level mechanisms that play a crucial role in these complex disordered materials.
10 CFR 72.72 - Material balance, inventory, and records requirements for stored materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Material balance, inventory, and records requirements for stored materials. 72.72 Section 72.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING...-RELATED GREATER THAN CLASS C WASTE Records, Reports, Inspections, and Enforcement § 72.72 Material balance...
10 CFR 72.72 - Material balance, inventory, and records requirements for stored materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Material balance, inventory, and records requirements for stored materials. 72.72 Section 72.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING...-RELATED GREATER THAN CLASS C WASTE Records, Reports, Inspections, and Enforcement § 72.72 Material balance...
Saito, Masatoshi
2009-08-01
Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the balanced filter method for clinical use.
Effect of Moisture Content on Thermal Properties of Porous Building Materials
NASA Astrophysics Data System (ADS)
Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert
2017-02-01
The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.
The Axial Compressive Strength of High Performance Polymer Fibers
1985-03-01
consists of axially oriented graphitic microfibrils that have the strong and stiff graphite crystal basal plane oriented parallel to the long axis of the... microfibrils [3,4]. The synthetic rigid polymer fibers are represented by only one commercial material: the PPTA fibers produced by E.I. DuPont de...and/or microfibrils is presented. A potential energy balance analysis is used to calculate critical stresses for the onset of compressive buckling
NASA Astrophysics Data System (ADS)
Wimmer, E.
2008-02-01
A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.
Large-scale subduction of continental crust implied by India-Asia mass-balance calculation
NASA Astrophysics Data System (ADS)
Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.
2016-11-01
Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Federal Acquisition Regulation Supplement; Balance of Payments Program Exemption for Commercial... Balance of Payments Program for construction material that is commercial information technology. DATES..., Balance of Payments Program--Construction Material, and 252.225- 7045, Balance of Payments Program...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
40 CFR 98.123 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... mass balance approach to estimate your fluorinated GHG emissions from a process, you must ensure that... relative errors associated with using the mass balance approach on that process using Equations L-1 through... mass-balance approach to estimate emissions from the process if this calculation results in an absolute...
Spray automated balancing of rotors: Methods and materials
NASA Technical Reports Server (NTRS)
Smalley, Anthony J.; Baldwin, Richard M.; Schick, Wilbur R.
1988-01-01
The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials.
An efficient method for hybrid density functional calculation with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
2007-06-01
2.2.4 A QUALITATIVE VIEW OF OC CYCLING 44 2.2.5 COUPLED ISOTOPE MASS BALANCE CALCULATIONS 47 2.3 CONCLUSIONS 56 ACKNOWLEDGEMENTS 57 REFERENCES 58...METHODS 71 3.2 RESULTS & DISCUSSION 73 3.2.1 CHRONOLOGY DEVELOPMENT 73 3.2.2 ELEMENTAL AND ISOTOPIC PROFILES 77 3.2.3 MASS BALANCE CALCULATIONS 80 3.3...2005). Within this framework, isotopic mass balance calculations used to assess the fractional abundance of modem and ancient OC (Blair et al., 2003
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
78 FR 28540 - Airworthiness Directives; Hawker Beechcraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... airplanes. That NPRM proposed requiring inspections of elevator balance weights and replacement of defective elevator balance weights. That NPRM was prompted by reports of elevator balance weights becoming loose or failing because the balance weight material was under strength and did not meet material specifications...
A variable acceleration calibration system
NASA Astrophysics Data System (ADS)
Johnson, Thomas H.
2011-12-01
A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.
An auxiliary-field quantum Monte Carlo study of the chromium dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwanto, Wirawan, E-mail: wirawan0@gmail.com; Zhang, Shiwei; Krakauer, Henry
2015-02-14
The chromium dimer (Cr{sub 2}) presents an outstanding challenge for many-body electronic structure methods. Its complicated nature of binding, with a formal sextuple bond and an unusual potential energy curve (PEC), is emblematic of the competing tendencies and delicate balance found in many strongly correlated materials. We present an accurate calculation of the PEC and ground state properties of Cr{sub 2}, using the auxiliary-field quantum Monte Carlo (AFQMC) method. Unconstrained, exact AFQMC calculations are first carried out for a medium-sized but realistic basis set. Elimination of the remaining finite-basis errors and extrapolation to the complete basis set limit are thenmore » achieved with a combination of phaseless and exact AFQMC calculations. Final results for the PEC and spectroscopic constants are in excellent agreement with experiment.« less
Measurements of thermal infrared spectral reflectance of frost, snow, and ice
NASA Technical Reports Server (NTRS)
Salisbury, John W.; D'Aria, Dana M.; Wald, Andrew
1994-01-01
Because much of Earth's surface is covered by frost, snow, and ice, the spectral emissivities of these materials are a significant input to radiation balance calculations in global atmospheric circulation and climate change models. Until now, however, spectral emissivities of frost and snow have been calculated from the optical constants of ice. We have measured directional hemispherical reflectance spectra of frost, snow, and ice from which emissivities can be predicted using Kirchhoff's law (e = 1-R). These measured spectra show that contrary to conclusions about the emissivity of snow drawn from previously calculated spectra, snow emissivity departs significantly from blackbody behavior in the 8-14 micrometer region of the spectrum; snow emissivity decreases with both increasing particle size and increasing density due to packing or grain welding; while snow emissivity increases due to the presence of meltwater.
48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (JUN 2011) (a...
48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a), use the following clause: Balance of Payments Program...
78 FR 51053 - Airworthiness Directives; Beechcraft Corporation and Hawker Beechcraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... of elevator balance weights becoming loose or failing because the balance weight material was under strength and did not meet material specifications. This AD requires inspections of elevator balance weights and replacement of defective elevator balance weights. We are issuing this AD to correct the unsafe...
48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (NOV 2009) (a...
48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a)(1), use the following clause: Balance of Payments Program...
Code of Federal Regulations, 2011 CFR
2011-07-01
... material balance that includes the pertinent data used to determine the percent reduction of total sulfide... material balance; and (3) complying with the continuous compliance requirements for closed-vent systems. 2... material balance that includes the pertinent data used to determine the percent reduction of toluene...
Code of Federal Regulations, 2010 CFR
2010-07-01
... material balance that includes the pertinent data used to determine the percent reduction of total sulfide... material balance; and (3) complying with the continuous compliance requirements for closed-vent systems. 2... material balance that includes the pertinent data used to determine the percent reduction of toluene...
Implementation of a diffusion convection surface evolution model in WallDYN
NASA Astrophysics Data System (ADS)
Schmid, K.
2013-07-01
In thermonuclear fusion experiments with multiple plasma facing materials the formation of mixed materials is inevitable. The formation of these mixed material layers is a dynamic process driven the tight interaction between transport in the plasma scrape off layer and erosion/(re-) deposition at the surface. To track this global material erosion/deposition balance and the resulting formation of mixed material layers the WallDYN code has been developed which couples surface processes and plasma transport. The current surface model in WallDYN cannot fully handle the growth of layers nor does it include diffusion. However at elevated temperatures diffusion is a key process in the formation of mixed materials. To remedy this shortcoming a new surface model has been developed which, for the first time, describes both layer growth/recession and diffusion in a single continuous diffusion/convection equation. The paper will detail the derivation of the new surface model and compare it to TRIDYN calculations.
NASA Astrophysics Data System (ADS)
Sahin, Mehmet
2018-05-01
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Safieddine, Doha; Chkeir, Aly; Herlem, Cyrille; Bera, Delphine; Collart, Michèle; Novella, Jean-Luc; Dramé, Moustapha; Hewson, David J; Duchêne, Jacques
2017-11-01
Falls are a major cause of death in older people. One method used to predict falls is analysis of Centre of Pressure (CoP) displacement, which provides a measure of balance quality. The Balance Quality Tester (BQT) is a device based on a commercial bathroom scale that calculates instantaneous values of vertical ground reaction force (Fz) as well as the CoP in both anteroposterior (AP) and mediolateral (ML) directions. The entire testing process needs to take no longer than 12 s to ensure subject compliance, making it vital that calculations related to balance are only calculated for the period when the subject is static. In the present study, a method is presented to detect the stabilization period after a subject has stepped onto the BQT. Four different phases of the test are identified (stepping-on, stabilization, balancing, stepping-off), ensuring that subjects are static when parameters from the balancing phase are calculated. The method, based on a simplified cumulative sum (CUSUM) algorithm, could detect the change between unstable and stable stance. The time taken to stabilize significantly affected the static balance variables of surface area and trajectory velocity, and was also related to Timed-up-and-Go performance. Such a finding suggests that the time to stabilize could be a worthwhile parameter to explore as a potential indicator of balance problems and fall risk in older people. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dsc-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dsc-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) you prepare a material balance that includes the pertinent data used to determine the percent... uncontrolled total sulfide emissions were reduced by at least 75%; (3) you prepare a material balance that... uncontrolled total sulfide emissions were reduced by at least 35%; (3) you prepare a material balance that...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dscm-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) maintaining a material balance that includes the pertinent data used to determine the percent reduction of... pertinent data from the material balance; and (3) complying with the continuous compliance requirements for... systems (1) maintaining a material balance that includes the pertinent data used to determine the percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) you prepare a material balance that includes the pertinent data used to determine the percent... uncontrolled total sulfide emissions were reduced by at least 75%; (3) you prepare a material balance that... uncontrolled total sulfide emissions were reduced by at least 35%; (3) you prepare a material balance that...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) maintaining a material balance that includes the pertinent data used to determine the percent reduction of... pertinent data from the material balance; and (3) complying with the continuous compliance requirements for... systems (1) maintaining a material balance that includes the pertinent data used to determine the percent...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) you prepare a material balance that includes the pertinent data used to determine the percent... uncontrolled total sulfide emissions were reduced by at least 75%; (3) you prepare a material balance that... uncontrolled total sulfide emissions were reduced by at least 35%; (3) you prepare a material balance that...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) maintaining a material balance that includes the pertinent data used to determine the percent reduction of... pertinent data from the material balance; and (3) complying with the continuous compliance requirements for... systems (1) maintaining a material balance that includes the pertinent data used to determine the percent...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dsc-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dscm-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
The effect of a non-volatile dust mantle on the energy balance of cometary surface layers
NASA Technical Reports Server (NTRS)
Koemle, Norbert I.; Steiner, Gerhard
1992-01-01
It is likely that large parts of a cometary surface layer consist of porous ices, which are covered by a thin layer of non-volatile debris, whose structure is also fluffy and porous. In this paper the results of model calculations are presented. The calculations show the effect of ice and dust pore sizes and of the dust mantle thickness upon the thermal behavior of such a dust-ice system, when it is irradiated by the sun. In particular, it is found that the average pore size of the ice and the dust material has a large influence both on the dust surface temperature and on the temperature at the dust-ice interface.
Code of Federal Regulations, 2010 CFR
2010-07-01
... uncontrolled total sulfide emissions were reduced by at least 25%; (3) you prepare a material balance that... reduced by at least 75%; (3) you prepare a material balance that includes the pertinent data used to... emissions were reduced by at least 35%; (3) you prepare a material balance that includes the pertinent data...
Code of Federal Regulations, 2011 CFR
2011-07-01
... uncontrolled total sulfide emissions were reduced by at least 25%; (3) you prepare a material balance that... reduced by at least 75%; (3) you prepare a material balance that includes the pertinent data used to... emissions were reduced by at least 35%; (3) you prepare a material balance that includes the pertinent data...
van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C
1994-01-05
Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Qiang; Popov, Valentin L.
2018-03-01
Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments
NASA Astrophysics Data System (ADS)
Walker, Kyle M.
2017-06-01
While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.
Saito, Masatoshi
2010-08-01
This article describes the spectral optimization of dual-energy computed tomography using balanced filters (bf-DECT) to reduce the tube loadings and dose by dedicating to the acquisition of electron density information, which is essential for treatment planning in radiotherapy. For the spectral optimization of bf-DECT, the author calculated the beam-hardening error and air kerma required to achieve a desired noise level in an electron density image of a 50-cm-diameter cylindrical water phantom. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimal combination of tube voltages was 80 kV/140 kV in conjunction with Tb/Hf and Bi/Mo filter pairs; this combination agrees with that obtained in a previous study [M. Saito, "Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method," Med. Phys. 36, 3631-3642 (2009)], although the thicknesses of the filters that yielded a minimum tube output were slightly different from those obtained in the previous study. The resultant tube loading of a low-energy scan of the present bf-DECT significantly decreased from 57.5 to 4.5 times that of a high-energy scan for conventional DECT. Furthermore, the air kerma of bf-DECT could be reduced to less than that of conventional DECT, while obtaining the same figure of merit for the measurement of electron density and effective atomic number. The tube-loading and dose efficiencies of bf-DECT were considerably improved by sacrificing the quality of the noise level in the images of effective atomic number.
Chemical and Physical Weathering of Granites in a Semi-Arid Savanna
NASA Astrophysics Data System (ADS)
Khomo, L.; Hartshorn, A.; Chadwick, O.; Kurtz, A.; Heimsath, A.; Rogers, K.
2005-12-01
The catena concept describes soil properties on hillslopes and implies a hydrological mass redistribution process that has been applied differently in different parts of the Earth. In tectonically active regions, it is mostly used to describe the redistribution of mass by overland flow leading to thickening soil mantles downslope. This application is somewhat different from its initial and still popular usage in tectonically inactive areas of Africa, where it defines long-term soil property differentiation along hillslopes as controlled by internal soil hydrology as opposed to overland flow. Many ecologists have found the "African" catena concept to be useful as an organizing principal for savanna studies, but there has been little recent research on catenas per se in Africa. Elsewhere however, there is a growing body of research that places the concept ever more strongly into a landscape evolution context. Here, we apply these new approaches to catenas in a South African savanna underlain by a heterogeneous suite of Basement granites straddling a gradient in effective precipitation. We constrain the weathering extent of hilly terrains formed on these oldrocks by calculating element losses with solid-phase mass-balance calculations augmented by cosmogenic (26Al/10Be) derived rates of landscape denudation. We test the efficacy of Ti, Zr and Nb as immobile elements to benchmark chemical losses and gains in these semi-arid weathering environments. We also trace and quantify the abundance of the host minerals for these elements (Ti = rutile and ilmenite, Nb = columbite and Zr = zircon and baddleyite) in a variety of rocks in the basement complex. This analysis provides the boundary conditions for assigning immobile elements to parent materials required for the mass balance calculations. We calculate total denudation using the cosmogenic isotopes and then partition it into chemical and physical loss vectors using the mass balance calculations for representative watersheds along the effective precipitation gradient. Preliminary results suggest that these semi-arid landscapes erode at a slow rate and the upper portions of the catenas are highly weathered with a predominance of quartz as existing primary minerals. The catenas appear to be some of the oldest and most highly evolved yet studied.
Pushing the Limits of Oxygen Balance in 1,3,4-Oxadiazoles.
Yu, Qiong; Yin, Ping; Zhang, Jiaheng; He, Chunlin; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M
2017-07-05
Gem-trinitromethyl groups were introduced into a 1,3,4-oxadiazole ring to give the first example of a bifunctionalized single five-membered ring with six nitro groups. 2,5-Bis(trinitromethyl)-1,3,4-oxadiazole (12) has a high calculated crystal density of 2.007 g cm -3 at 150 K (1.941 g cm -3 at 293 K) and a very high positive oxygen balance (39.12%), which makes it a strong candidate as a high energy dense oxidizer. The dihydroxylammonium and dihydrazinium salts of bis(trinitromethyl)-1,3,4-oxadiazole (5 and 6) exhibit excellent calculated detonation properties (5, v D = 9266 m s -1 , P = 38.9 GPa; 6, v D = 8900 m s -1 , P = 36.3 GPa) and acceptable impact sensitivities (5 20 J, 6 19 J), which are superior to those of RDX (7.4 J) and HMX (7.4 J). Such attractive features support the application potential of the gem-polynitromethyl group in the design of advanced energetic materials. Surprisingly, 2,5-bis(trinitromethyl)-1,3,4-oxadiazole (12) is more thermally stable and less sensitive than its bis(dinitromethyl) analogue, 8.
Using the Wii Balance Board in Elevator Physics
NASA Astrophysics Data System (ADS)
Mullenax, Donna
2013-04-01
The Wii Balance Board is a popular accessory to the wireless video system the Wii. In the past few years, the Wii Remote™ and Wii Balance Board accessories to the Wii have made their way into physics labs as sensors to measure force and acceleration. In most introductory physics courses, the forces experienced while on an elevator are discussed and calculated. The Wii Balance Board is a very good tool for having students measure the forces experienced on an elevator and calculating the acceleration of the elevator when it starts to move and then while it is coming to a stop.
The mass balance of the ice plain of Ice Stream B and Crary Ice Rise
NASA Technical Reports Server (NTRS)
Bindschadler, Robert
1993-01-01
The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.
10 CFR 75.8 - IAEA inspections.
Code of Federal Regulations, 2011 CFR
2011-01-01
... exports) or § 75.43(c) (pertaining to imports) at any place where nuclear material may be located; (3... nuclear material at key measurement points for material balance accounting are representative; (3) Verify... samples at key measurement points for material balance accounting are taken in accordance with procedures...
17 CFR 190.07 - Calculation of allowed net equity.
Code of Federal Regulations, 2010 CFR
2010-04-01
... computing, with respect to such account, the sum of: (i) The ledger balance; (ii) The open trade balance... purposes of this paragraph (b)(1), the open trade balance of a customer's account shall be computed by... ledger balance or open trade balance of any customer, exclude any security futures products, any gains or...
17 CFR 190.07 - Calculation of allowed net equity.
Code of Federal Regulations, 2011 CFR
2011-04-01
... computing, with respect to such account, the sum of: (i) The ledger balance; (ii) The open trade balance... purposes of this paragraph (b)(1), the open trade balance of a customer's account shall be computed by... ledger balance or open trade balance of any customer, exclude any security futures products, any gains or...
Sahin, Mehmet
2018-05-23
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-08-01
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detection of Bi-Directionality in Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
2012-01-01
An indicator variable was developed for both visualization and detection of bi-directionality in wind tunnel strain-gage balance calibration data. First, the calculation of the indicator variable is explained in detail. Then, a criterion is discussed that may be used to decide which gage outputs of a balance have bi- directional behavior. The result of this analysis could be used, for example, to justify the selection of certain absolute value or other even function terms in the regression model of gage outputs whenever the Iterative Method is chosen for the balance calibration data analysis. Calibration data of NASA s MK40 Task balance is analyzed to illustrate both the calculation of the indicator variable and the application of the proposed criterion. Finally, bi directionality characteristics of typical multi piece, hybrid, single piece, and semispan balances are determined and discussed.
Liquid electrolyte informatics using an exhaustive search with linear regression.
Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato
2018-06-14
Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.
NASA Technical Reports Server (NTRS)
Simkovich, A.; Baumann, Robert C.
1961-01-01
The Vanguard satellites and component parts were balanced within the specified limits by using a Gisholt Type-S balancer in combination with a portable International Research and Development vibration analyzer and filter, with low-frequency pickups. Equipment and procedures used for balancing are described; and the determination of residual imbalance is accomplished by two methods: calculation, and graphical interpretation. Between-the-bearings balancing is recommended for future balancing of payloads.
78 FR 23503 - Hazardous Materials; Temporary Reduction of Registration Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... the annual registration fee to account for any unexpended balance in the Hazardous Materials Emergency Preparedness (HMEP) Fund. Due to an unexpended balance that has accumulated in the Fund, PHMSA is lowering the... and thus draw down the unexpended balance as soon as possible, PHMSA is issuing this final rule...
NASA Astrophysics Data System (ADS)
Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.
2015-07-01
In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.
Chen, Fanxiu; Zhuang, Qi; Zhang, Huixin
2016-06-20
The mechanical behaviors of granular materials are governed by the grain properties and microstructure of the materials. We conducted experiments to study the force transmission in granular materials using plane strain tests. The large amount of nearly continuous displacement data provided by the advanced noncontact experimental technique of digital image correlation (DIC) has provided a means to quantify local displacements and strains at the particle level. The average strain of each particle could be calculated based on the DIC method, and the average stress could be obtained using Hooke's law. The relationship between the stress and particle force could be obtained based on basic Newtonian mechanics and the balance of linear momentum at the particle level. This methodology is introduced and validated. In the testing procedure, the system is tested in real 2D particle cases, and the contact forces and force chain are obtained and analyzed. The system has great potential for analyzing a real granular system and measuring the contact forces and force chain.
Estimates of fluid and energy balances of Apollo 17
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Leach, C. S.; Rambaut, P. C.
1973-01-01
Fluid and caloric balance has been calculated for the Apollo 17 crew. This included measurement of nitrogen, water, and caloric value of the ingested food and the volume and nitrogen content of the excreted urine and feces. Body composition changes were determined from total body water and extracellular fluid volume differences. The body composition measurements made it possible to divide the weight loss into lean body mass and adipose tissue losses. From this division a caloric equivalent was calculated. These tissue losses indicated that the caloric requirements of the mission were considerably greater than the actual caloric intake. The 3.3 kilo mean loss of body weight represented 1 kilo of lean body mass and 2.3 kilos of adipose tissue. Calculated fluid balance was more positive during the mission than during the control period. These changes are unlike the body composition and fluid balance changes reported in bedrested subjects.
NASA Astrophysics Data System (ADS)
Sriwana, I. K.; Marie, I. A.; Mangala, D.
2017-12-01
Kencana Gemilang, Co. is one electronics industry engaging in the manufacture sector. This company manufactures and assembles household electronic products, such as rice cooker, fan, iron, blender, etc. The company deals with an issue of underachievement of an established production target on MCM products line 1. This study aimed to calculate line efficiencies, delay times, and initial line smoothness indexes. The research was carried out by means of depicting a precedence diagram and gathering time data of each work element followed by examination and calculation of standard time as well as line balancing using methods of Moodie Young and Generics Algorithm. Based on results of calculation, better line balancing than the existing initial conditions, i.e. improvement in the line efficiency by 18.39%, deterioration in balanced delay by 28.39%, and deterioration of a smoothness index by 23.85% was obtained.
SOFIA 2 model telescope wind tunnel test report
NASA Technical Reports Server (NTRS)
Keas, Paul
1995-01-01
This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.
40 CFR 1065.15 - Overview of procedures for laboratory and field testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... nitrogen, NOX. (2) Hydrocarbons, HC, which may be expressed in the following ways: (i) Total hydrocarbons... fuel consumed or calculate it with chemical balances of the fuel, intake air, and exhaust. To calculate fuel consumed by a chemical balance, you must also measure either intake-air flow rate or exhaust flow...
USDA-ARS?s Scientific Manuscript database
The two-source energy balance (TSEB) model has undergone several advances recently that improved its accuracy in calculating evaporation (E), transpiration (T), and evapotranspiration (ET) for row crops. These advances were tested using microlysimeter, sap flow, and large weighing lysimeter measurem...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandborn, R.H.
1976-01-01
M0200, a computer simulation model, was used to investigate the safeguarding of plutonium dioxide. The computer program operating the model was constructed so that replicate runs could provide data for statistical analysis of the distributions of the randomized variables. The plant model was divided into material balance areas associated with definable unit processes. Indicators of plant operations studied were modified end-of-shift material balances, end-of-blend errors formed by closing material balances between blends, and cumulative sums of the differences between actual and expected performances. (auth)
Microprocessor-Controlled Laser Balancing System
NASA Technical Reports Server (NTRS)
Demuth, R. S.
1985-01-01
Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.
10 CFR 75.8 - IAEA inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... inspection at a facility, to: (1) Examine records kept under § 75.21; (2) Observe that the measurements of nuclear material at key measurement points for material balance accounting are representative; (3) Verify... samples at key measurement points for material balance accounting are taken in accordance with procedures...
The Research Process on Converter Steelmaking Process by Using Limestone
NASA Astrophysics Data System (ADS)
Tang, Biao; Li, Xing-yi; Cheng, Han-chi; Wang, Jing; Zhang, Yun-long
2017-08-01
Compared with traditional converter steelmaking process, steelmaking process with limestone uses limestone to replace lime partly. A lot of researchers have studied about the new steelmaking process. There are much related research about material balance calculation, the behaviour of limestone in the slag, limestone powder injection in converter and application of limestone in iron and steel enterprises. The results show that the surplus heat of converter can meet the need of the limestone calcination, and the new process can reduce the steelmaking process energy loss in the whole steelmaking process, reduce carbon dioxide emissions, and improve the quality of the gas.
Evaluating MC&A effectiveness to verify the presence of nuclear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, P. G.; Morzinski, J. A.; Ostenak, Carl A.
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
A one-dimensional water balance model was developed and used to simulate water balance for the Columbia River Basin. he model was run over a 10 km X 10 km grid for the United State's portion of the basin. he regional water balance was calculated using a monthly time-step for a re...
Winter wheat: A model for the simulation of growth and yield in winter wheat
NASA Technical Reports Server (NTRS)
Baker, D. N.; Smika, D. E.; Black, A. L.; Willis, W. O.; Bauer, A. (Principal Investigator)
1981-01-01
The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously.
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-03-10
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.
40 CFR 89.211 - End-of-year and final reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the broker, if applicable. The report shall include a calculation of credit balances to show that the summation of the manufacturer's use of credits results in a credit balance equal to or greater than zero... § 89.203(c)(3)(ii) shall include the NMHC + NOX credit balance and the PM credit balance as of December...
NASA Astrophysics Data System (ADS)
Neitzel, Angelika Susanne Elisabeth
During the course of tokamak operation, material is routinely eroded from plasma facing components and transported to other regions of the machine. This net-reshaping process will lead to many challenges in a high duty cycle magnetic fusion reactor, and is also highly relevant to the wall conditioning process in current experiments. Proper modeling of this mechanism requires a global treatment of the entire tokamak, and integration of tightly coupled plasma and surface processes. This thesis focuses on extending and applying the WallDYN mixed-material migration code [1] [2], which couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. NSTX-U operated in 2016 with carbon PFCs, periodically conditioned with boron-containing films to suppress oxygen impurities. However, oxygen levels tended to return to a pre-conditioned state following repeated plasma exposure, and this occurred on a faster time scale when conditioning with less boron. This C/B/O migration is interpretively modeled with WallDYN, which successfully reproduces observed trends in oxygen evolution. A new model for spatially inhomogenous mixed material films has been developed for WallDYN, which allows for the differentiation between conditioning films of varying thicknesses. A boron coverage model for the NSTX-U glow discharge boronization process is also developed. These new capabilities improve WallDYN agreement with observed NSTX-U spectroscopic data by at least a factor of 2. As part of the integrated model, plasma backgrounds representing NSTX-U H-modes and L-modes are calculated using OSM-EIRENE, constrained by a combination of NSTX-U data and NSTX SOLPS calculations. The effect of modifying the assumed parallel SOL profile is examined, with the result that inner divertor-directed flows turn the outer divertor from a region of net boron deposition to one of net boron erosion. Plasma impurity transport calculations are carried out with DIVIMP, and mixed-material sputtering calculations are carried out for a range of possible surfaces with SDTRIMSP. WallDYN modeling of C/Li/O migration in NSTX is presented, utilizing OSM-EIRENE calculations of lithiated NSTX plasmas. An adatom model of temperature-enhanced sputtering has been added to WallDYN, and the effect of various surface temperature scenarios is examined. A sensitivity study of surface binding energies used in WallDYN sputtering calculations is carried out, finding that mixed material effects become dominant when the system contains both tightly- and weakly- bound elements (such as C and Li).
77 FR 66566 - Airworthiness Directives; Hawker Beechcraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... elevator balance weights becoming loose or failing because the balance weight material was under strength... balance weights and replacement of defective elevator balance weights. We are proposing this AD to correct.... Discussion We received reports of elevator balance weights becoming loose or failing on Hawker Beechcraft...
Torsion effect of swing frame on the measurement of horizontal two-plane balancing machine
NASA Astrophysics Data System (ADS)
Wang, Qiuxiao; Wang, Dequan; He, Bin; Jiang, Pan; Wu, Zhaofu; Fu, Xiaoyan
2017-03-01
In this paper, the vibration model of swing frame of two-plane balancing machine is established to calculate the vibration center position of swing frame first. The torsional stiffness formula of spring plate twisting around the vibration center is then deduced by using superposition principle. Finally, the dynamic balancing experiments prove the irrationality of A-B-C algorithm which ignores the torsion effect, and show that the torsional stiffness deduced by experiments is consistent with the torsional stiffness calculated by theory. The experimental datas show the influence of the torsion effect of swing frame on the separation ratio of sided balancing machines, which reveals the sources of measurement error and assesses the application scope of A-B-C algorithm.
Code of Federal Regulations, 2010 CFR
2010-07-01
... credits the amount of credits involved plus remaining balances, details regarding the pollutant, duty... include a calculation of credit balances for each family to show that the summation of the manufacturer's or remanufacturer's use of credits results in a credit balance equal to or greater than zero. The...
Andres, Britta; Engström, Ann-Christine; Blomquist, Nicklas; Forsberg, Sven; Dahlström, Christina; Olin, Håkan
2016-01-01
Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC’s specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes— Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)—and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost. PMID:27658253
Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1997-01-01
Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.
Gonzales, Gustavo F; Tello, Jennifer; Zevallos-Concha, Alisson; Baquerizo, Luis; Caballero, Lidia
2018-02-01
Sacha inchi is a seed produced in the Peruvian Amazonian and its oil is recognized by the lowering lipids effect in humans. The remaining material transformed to flour has a higher amount of protein, but, the nitrogen balance once ingested orally has not been studied. The present study was designed to evaluate the nitrogen balance after single consumption of 30 g of sacha inchi flour and compared with that obtained after consumption of 30 g soybean flour in adult men and women. This was a double-blind cohort study in 15 men and 15 women between 18 and 55 years old. Fifteen subjects received soy meal and 15 subjects received sacha inchi meal. Group receiving sacha inchi flour has comparable initial parameters as those receiving soybean flour (p > 0.05). Blood samples at different times were obtained. Urine for 24 h was collected to calculate nitrogen balance, p < 0.05 was considered significant. Plasma insulin levels increased post-prandial with a peak at 30 min. Thereafter, a reduction occurred. The magnitude of changes in insulin levels was similar in sacha inchi and soybean groups (p < 0.05). Lipid profile and inflammatory marker, C-reactive protein (CRP) and interleukin 6 (IL6) was not different at 0 or 24 h after sacha inchi or soy flour administration. The nitrogen balance was negative in the study but similar between both groups (p > 0.05). In conclusion, protein consumption of sacha inchi flour has the same nitrogen balance as soybean flour, shows acceptability for a single consumption and does not present serious adverse effects.
NASA Astrophysics Data System (ADS)
Flint, A. L.; Flint, L. E.
2010-12-01
The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.
30 Years Trend of Competitive Balance in Turkish Football Super League
ERIC Educational Resources Information Center
Inan, Tugbay
2018-01-01
We must point out that the results of football games affect the competitive balance degree. In other words, the calculations we made in the score table at the end of the season give us a degree of competitive balance. The degree on which the concept of competitiveness is based is cited as competitive balance in football. Sports economics can be…
NASA Astrophysics Data System (ADS)
Friebel, Daniel; Viswanathan, Venkat; Larsen, Ask; Miller, Daniel J.; Ogasawara, Hirohito; Anniyev, Toyli; O'Grady, Christopher P.; Nørskov, Jens; Nilsson, Anders
2012-02-01
The mechanism of the electrochemical oxygen reduction reaction (ORR) has been well understood based on DFT calculations, but there has been a lack of supporting experimental data, due to the difficulties of probing the electrocatalyst surface in situ. Our new approach using Pt monolayer model catalysts provides true surface sensitivity for - originally bulk sensitive - x-ray absorption spectroscopy (XAS) and, owing to the high resolution of the Bragg analyzer at SSRL beamline 6-2, allows for in situ detection of chemisorbed O and OH, whose stability can be used as a descriptor in predicting the activity of new ORR catalyst materials. Our ability to control the growth mode in the Pt/Rh(111) model system allows us to generate Pt nanostructures with highly different O affinities from identical starting materials.
Weight and Balance for the Airmass Incorporated Sunburst Model C Ultralight
NASA Technical Reports Server (NTRS)
1983-01-01
The results of the weight and balance determination done for an ultralight aircraft are presented. The weight and balance determination encompassed finding weight and center of gravity of each component, determining the center of gravity of the ultralight in an X, Y, Z reference plane, and calculating the mass moments and products of inertia. The relations were calculated for various pilot weights and fuel loadings. The fuel varied from empty to five gallons (31.05 lbs), and the pilots ranged from 90 to 260 pounds. The weighings of components total 277.48 lbs (no pilot and no fuel).
EVALUATING MC AND A EFFECTIVENESS TO VERIFY THE PRESENCE OF NUCLEAR MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. G. DAWSON; J. A MORZINSKI; ET AL
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi
2018-01-01
The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2010 CFR
2010-07-01
... involved plus remaining balances, details regarding the pollutant, and model year as well as the... information prescribed in § 94.308(b). The report shall include a calculation of credit balances for each family to show that the summation of the manufacturer's use of credits results in a credit balance equal...
Wang, Changguang; Williams, Noelle S
2013-03-05
The aim of this study is to further validate the use of ultrafiltration (UF) as a method for determining plasma protein binding (PPB) by demonstrating that non-specific binding (NSB) is not a limitation, even for highly lipophilic compounds, because NSB sites on the apparatus are passivated in the presence of plasma. Mass balance theory was used to calculate recovery of 20 commercial and seven investigational compounds during ultrafiltration in the presence and absence of plasma. PPB was also measured using this mass balance approach for comparison to PPB determined by rapid equilibrium dialysis (RED) and as found in the literature. Compound recovery during UF was dramatically different in the presence and absence of plasma for compounds with high NSB in PBS only. A comparison of PPB calculated by ultrafiltration with literature values or calculated by RED gave concordant results. Discrepancies could be explained by changes in pH, insufficient time to equilibrium, or compound instability during RED, problems which were circumvented by ultrafiltration. Therefore, NSB, as measured by the traditional incubation of compound in PBS, need not be an issue when choosing UF as a PPB assay method. It is more appropriate to calculate compound recovery from the device in plasma as measured by mass balance to determine the suitability of the method for an individual compound. The speed with which UF can be conducted additionally avoids changes in pH or compound loss that can occur with other methods. The mass balance approach to UF is thus a preferred method for rapid determination of PPB. Copyright © 2012 Elsevier B.V. All rights reserved.
Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites
NASA Astrophysics Data System (ADS)
Begley, Matthew R.; Philips, Noah R.; Compton, Brett G.; Wilbrink, David V.; Ritchie, Robert O.; Utz, Marcel
2012-08-01
This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate the effective properties of the composite, including elastic modulus, strength and work-to-failure. Regime maps are presented which indicate critical stresses for failure of the bricks and mortar as a function of constituent properties and brick architecture. The solution illustrates trade-offs between elastic modulus, strength and dissipated work that are a result of transitions between various failure mechanisms associated with brick rupture and rupture of the interfaces. Detailed scaling relationships are presented with the goal of providing material developers with a straightforward means to identify synthesis targets that balance competing mechanical behaviors and optimize material response. Ashby maps are presented to compare potential brick and mortar composites with existing materials, and identify future directions for material development.
Simulation of the radiation from the hot spot of an X-pinch
NASA Astrophysics Data System (ADS)
Oreshkin, V. I.; Artyomov, A. P.; Chaikovsky, S. A.; Oreshkin, E. V.; Rousskikh, A. G.
2017-01-01
The results of X-pinch experiments performed using a small-sized pulse generator are analyzed. The generator, capable of producing a 200-kA, 180-ns current, was loaded with an X-pinch made of four 35-μm-diameter aluminum wires. The analysis consists of a one-dimensional radiation magnetohydrodynamic simulation of the formation of a hot spot in an X-pinch, taking into account the outflow of material from the neck region. The radiation loss and the ion species composition of the pinch plasma are calculated based on a stationary collisional-radiative model, including balance equations for the populations of individual levels. With this model, good agreement between simulation predictions and experimental data has been achieved: the experimental and the calculated radiation power and pulse duration differ by no more than twofold. It has been shown that the x-ray pulse is formed in the radiative collapse region, near its boundary.
NASA Astrophysics Data System (ADS)
Zemenkova, M. Yu; Zemenkov, Yu D.; Shantarin, V. D.
2016-10-01
The paper reviews the development of methodology for calculation of hydrocarbon emissions during seepage and evaporation to monitor the reliability and safety of hydrocarbon storage and transportation. The authors have analyzed existing methods, models and techniques for assessing the amount of evaporated oil. Models used for predicting the material balance of multicomponent two-phase systems have been discussed. The results of modeling the open-air hydrocarbon evaporation from an oil spill are provided and exemplified by an emergency pit. Dependences and systems of differential equations have been obtained to assess parameters of mass transfer from the open surface of a liquid multicomponent mixture.
Theoretical study of superionic phase transition in Li2S.
Jand, Sara Panahian; Zhang, Qian; Kaghazchi, Payam
2017-07-19
We have studied temperature-induced superionic phase transition in Li 2 S, which is one of the most promising Li-S battery cathode material. Concentration of ionic carriers at low and high temperature was evaluated from thermodynamics of defects (using density functional theory) and detailed balance condition (using ab initio molecular dynamics (AIMD)), respectively. Diffusion coefficients were also obtained using AIMD simulations. Calculated ionic conductivity shows that superionic phase transition occurs at T = 900 K, which is in agreement with reported experimental values. The superionic behavior of Li 2 S is found to be due to thermodynamic reason (i.e. a large concentration of disordered defects).
NASA Astrophysics Data System (ADS)
Minke, Christine; Kunz, Ulrich; Turek, Thomas
2017-02-01
Carbon felt electrodes belong to the key components of redox flow batteries. The purpose of this techno-economic assessment is to uncover the production costs of PAN- and rayon-based carbon felt electrodes. Raw material costs, energy demand and the impact of processability of fiber and felt are considered. This innovative, interdisciplinary approach combines deep insights into technical, ecologic and economic aspects of carbon felt and carbon fiber production. Main results of the calculation model are mass balances, cumulative energy demands (CED) and the production costs of conventional and biogenic carbon felts supplemented by market assessments considering textile and carbon fibers.
Ethylene dynamics in the CELSS biomass production chamber
NASA Technical Reports Server (NTRS)
Rakow, Allen L.
1994-01-01
A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.
NASA Astrophysics Data System (ADS)
Ye, Qian; Lin, Haoze
2017-07-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.
S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures
2011-01-01
With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set. PMID:21836824
NASA Astrophysics Data System (ADS)
Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng
2013-09-01
Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Wang, Jianhui; Liu, Hui
Abstract: In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external system does not need to be linearized but is directly dealt with as a nonlinear system. A transformation is found to balance the controllability and observability covariances in order to determine which states have the greatest contribution to the input-output behavior. The original system model is then reduced by Galerkin projection based on this transformation. The proposed method is tested and validated on a systemmore » comprised of a 16-machine 68-bus system and an IEEE 50-machine 145-bus system. The results show that by using the proposed model reduction the calculation efficiency can be greatly improved; at the same time, the obtained state trajectories are close to those for directly simulating the whole system or partitioning the system while not performing reduction. Compared with the balanced truncation method based on a linearized model, the proposed nonlinear model reduction method can guarantee higher accuracy and similar calculation efficiency. It is shown that the proposed method is not sensitive to the choice of the matrices for calculating the empirical covariances.« less
Power balance and loss mechanism analysis in RF transmit coil arrays.
Kuehne, Andre; Goluch, Sigrun; Waxmann, Patrick; Seifert, Frank; Ittermann, Bernd; Moser, Ewald; Laistler, Elmar
2015-10-01
To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-08-01
Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2016-08-16
Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less
NASA Technical Reports Server (NTRS)
Fontenla, J. M.; Avrett, E. H.; Loeser, R.
1990-01-01
The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.
Nonreciprocal optical properties based on magneto-optical materials: n-InAs, GaAs and HgCdTe
NASA Astrophysics Data System (ADS)
Wang, Han; Wu, Hao; Zhou, Jian-qiu
2018-02-01
Compared with reciprocal optical materials, nonreciprocal materials can break the time reversal and detailed balance due to special nonreciprocal effect, while how its characteristics performing on infrared wavelength have not been paid enough attention. In this paper, the optical properties of three magneto-optical materials was investigated in infrared band, that are n-InAs, GaAs, HgCdTe, based on Finite Difference Time Domain (FDTD) method. The equations of dielectric constant tensor are present and the effect of magnetic field intensity and frequency has been studied in detail. Additionally, the effect of incidence angle at positive and negative directions to the nonreciprocal absorptivity is also investigated. It is found that the nonreciprocal effect is obvious in infrared wavelength, and the nonreciprocal effect could adjust the absorption characteristic, thus be able to tune the absorption for the specific frequency of incident light. In addition to modeling the directional radiative properties at various angles of incidence, the absorption peaks of three materials under different incident angles are also calculated to understand the light absorption and to facilitate the optimal design of high-performance photovoltaic and optical instrument.
10 CFR 72.76 - Material status reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commission a Material Balance Report and a Physical Inventory Listing Report as specified in the instructions... the licensee. Each report must be submitted within 60 days of the beginning of the physical inventory... Balance Reports and Physical Inventory Listing Reports at other times. Each licensee required to report...
Competition-Level Differences on the Lower Quarter Y-Balance Test in Baseball Players
Butler, Robert J.; Bullock, Garrett; Arnold, Todd; Plisky, Phillip; Queen, Robin
2016-01-01
Context: Decreased performance in dynamic balance has previously been associated with a history of ulnar collateral ligament injury in baseball players. Previous research on dynamic balance in soccer players has shown that test performance depends on competition level. However, dynamic balance has yet to be examined in baseball players. Objective: To understand normative values and determine differences in dynamic balance, as measured by the Lower Quarter Y-Balance Test, across competition levels in baseball players. Design: Cross-sectional study. Setting: Preseason physical examinations. Patients or Other Participants: Dynamic balance was measured in 88 high school (HS), 78 collegiate (COL), and 90 professional (PRO) baseball players. Main Outcome Measure(s): All participants completed the Lower Quarter Y-Balance Test using the standard protocol. In unilateral stance, they reached with 1 foot in the anterior, posteromedial, and posterolateral directions. We calculated 1-way analyses of variance to compare performance, composite score, and reach asymmetry for each direction as well as the sum of the asymmetry values (P < .05). Composite score was calculated by averaging the maximum normalized reach scores. Reach asymmetry was determined by calculating bilateral differences in reach ability. Results: In comparison with the HS and COL groups, the PRO players exhibited greater posteromedial (P < .01; effect size index [ESI]HS = 1.06, ESICOL = 0.95) and posterolateral reach (P < .01; ESIHS = 0.82, ESICOL = 0.84) as well as a greater composite score (P < .01; ESIHS = 0.60, ESICOL = 0.87). In contrast, HS baseball players exhibited increased anterior reach (P < .01; ESICOL = 0.60, ESIPRO = 0.39) compared with the COL and PRO cohorts. No significant differences in reach asymmetry were observed among groups. Conclusions: Lower extremity dynamic balance performance differed based on the baseball players' competition level. These baseline data may be helpful in identifying low-performing athletes who might benefit from neuromuscular interventions. PMID:27849388
Competition-Level Differences on the Lower Quarter Y-Balance Test in Baseball Players.
Butler, Robert J; Bullock, Garrett; Arnold, Todd; Plisky, Phillip; Queen, Robin
2016-12-01
Decreased performance in dynamic balance has previously been associated with a history of ulnar collateral ligament injury in baseball players. Previous research on dynamic balance in soccer players has shown that test performance depends on competition level. However, dynamic balance has yet to be examined in baseball players. To understand normative values and determine differences in dynamic balance, as measured by the Lower Quarter Y-Balance Test, across competition levels in baseball players. Cross-sectional study. Preseason physical examinations. Dynamic balance was measured in 88 high school (HS), 78 collegiate (COL), and 90 professional (PRO) baseball players. All participants completed the Lower Quarter Y-Balance Test using the standard protocol. In unilateral stance, they reached with 1 foot in the anterior, posteromedial, and posterolateral directions. We calculated 1-way analyses of variance to compare performance, composite score, and reach asymmetry for each direction as well as the sum of the asymmetry values (P < .05). Composite score was calculated by averaging the maximum normalized reach scores. Reach asymmetry was determined by calculating bilateral differences in reach ability. In comparison with the HS and COL groups, the PRO players exhibited greater posteromedial (P < .01; effect size index [ESI] HS = 1.06, ESI COL = 0.95) and posterolateral reach (P < .01; ESI HS = 0.82, ESI COL = 0.84) as well as a greater composite score (P < .01; ESI HS = 0.60, ESI COL = 0.87). In contrast, HS baseball players exhibited increased anterior reach (P < .01; ESI COL = 0.60, ESI PRO = 0.39) compared with the COL and PRO cohorts. No significant differences in reach asymmetry were observed among groups. Lower extremity dynamic balance performance differed based on the baseball players' competition level. These baseline data may be helpful in identifying low-performing athletes who might benefit from neuromuscular interventions.
Economic Evaluation of the Production Magnesium Oxide Nanoparticles via Liquid-Phase Route
NASA Astrophysics Data System (ADS)
Nandiyanto, A. B. D.; Fariansyah, R.; Ramadhan, M. F.; Abdullah, A. G.; Widiaty, I.
2018-02-01
The purpose of this study was to evaluate the production of magnesium oxide (MgO) nanoparticles. The evaluation was done in two perspectives: engineering and economic evaluation. The engineering perspective concerned about the analysis of the production rate based on the available apparatuses and raw materials, completed with mass balance calculation. The economic analysis was conducted based on several economic parameters: gross profit margin (GPM), internal return rate (IRR), payback period (PBP), cumulative net present value (CNPV), break even point (BEP), and profit to investment (PI). The engineering perspective showed that the production of MgO is feasibly done in small scale industry. This is verified by the potential production using current available apparatuses and raw materials in the market. Economic analysis obtained that the present project is profitable. But, for some cases, further studies must be done to get the present production process is attractive for investor.
Effect analysis of material properties of picosecond laser ablation for ABS/PVC
NASA Astrophysics Data System (ADS)
Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.
2017-06-01
This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.
Covariant balance laws in continua with microstructure
NASA Astrophysics Data System (ADS)
Yavari, Arash; Marsden, Jerrold E.
2009-02-01
The purpose of this paper is to extend the Green-Naghdi-Rivlin balance of energy method to continua with microstructure. The key idea is to replace the group of Galilean transformations with the group of diffeomorphisms of the ambient space. A key advantage is that one obtains in a natural way all the needed balance laws on both the macro and micro levels along with two Doyle-Erickson formulas. We model a structured continuum as a triplet of Riemannian manifolds: a material manifold, the ambient space manifold of material particles and a director field manifold. The Green-Naghdi-Rivlin theorem and its extensions for structured continua are critically reviewed. We show that when the ambient space is Euclidean and when the microstructure manifold is the tangent space of the ambient space manifold, postulating a single balance of energy law and its invariance under time-dependent isometries of the ambient space, one obtains conservation of mass, balances of linear and angular momenta but not a separate balance of linear momentum. We develop a covariant elasticity theory for structured continua by postulating that energy balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which in this case is the product of two Riemannian manifolds. We then introduce two types of constrained continua in which microstructure manifold is linked to the reference and ambient space manifolds. In the case when at every material point, the microstructure manifold is the tangent space of the ambient space manifold at the image of the material point, we show that the assumption of covariance leads to balances of linear and angular momenta with contributions from both forces and micro-forces along with two Doyle-Ericksen formulas. We show that generalized covariance leads to two balances of linear momentum and a single coupled balance of angular momentum. Using this theory, we covariantly obtain the balance laws for two specific examples, namely elastic solids with distributed voids and mixtures. Finally, the Lagrangian field theory of structured elasticity is revisited and a connection is made between covariance and Noether's theorem.
40 CFR 1065.220 - Fuel flow meter.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (a) Application. You may use fuel flow in combination with a chemical balance of carbon (or oxygen... concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake...
40 CFR 1065.220 - Fuel flow meter.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (a) Application. You may use fuel flow in combination with a chemical balance of carbon (or oxygen... concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake...
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-01-01
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650
Validity and Reliability of a Portable Balance Tracking System, BTrackS, in Older Adults.
Levy, Susan S; Thralls, Katie J; Kviatkovsky, Shiloah A
Falls are the leading cause of disability, injury, hospital admission, and injury-related death among older adults. Balance limitations have consistently been identified as predictors of falls and increased fall risk. Field measures of balance are limited by issues of subjectivity, ceiling effects, and low sensitivity to change. The gold standard for measuring balance is the force plate; however, its field use is untenable due to high cost and lack of portability. Thus, a critical need is observed for valid objective field measures of balance to accurately assess balance and identify limitations over time. The purpose of this study was to examine the concurrent validity and 3-day test-retest reliability of Balance Tracking System (BTrackS) in community-dwelling older adults. Minimal detectable change values were also calculated to reflect changes in balance beyond measurement error. Postural sway data were collected from community-dwelling older adults (N = 49, mean [SD] age = 71.3 [7.3] years) with a force plate and BTrackS in multitrial eyes open (EO) and eyes closed (EC) static balance conditions. Force sensors transmitted BTrackS data via a USB to a computer running custom software. Three approaches to concurrent validity were taken including calculation of Pearson product moment correlation coefficients, repeated-measures ANOVAs, and Bland-Altman plots. Three-day test-retest reliability of BTrackS was examined in a second sample of 47 community-dwelling older adults (mean [SD] age = 75.8 [7.7] years) using intraclass correlation coefficients and MDC values at 95% CI (MDC95) were calculated. BTrackS demonstrated good validity using Pearson product moment correlations (r > 0.90). Repeated-measures ANOVA and Bland-Altman plots indicated some BTrackS bias with center of pressure (COP) values higher than FP COP values in the EO (mean [SD] bias = 4.0 [6.8]) and EC (mean [SD] bias = 9.6 [12.3]) conditions. Test-retest reliability using intraclass correlation coefficients (ICC2.1 was excellent (0.83) and calculated MDC95 for EO (9.6 cm) and EC (19.4 cm) and suggested that postural sway changes of these amounts are meaningful. BTrackS showed some bias with values exceeding force plate values in both EO and EC conditions. Excellent test-retest reliability and resulting MDC95 values indicated that BTrackS has the potential to identify meaningful changes in balance that may warrant intervention. BTrackS is an objective measure of balance that can be used to monitor balance in community-dwelling older adults over time. It can reliably identify changes that may require further attention (eg, fall-prevention strategies, declines in physical function) and shows promise for assessing intervention efficacy in this growing segment of the population.
Nakagawa, Yoshiaki; Takemura, Tadamasa; Yoshihara, Hiroyuki; Nakagawa, Yoshinobu
2011-04-01
A hospital director must estimate the revenues and expenses not only in a hospital but also in each clinical division to determine the proper management strategy. A new prospective payment system based on the Diagnosis Procedure Combination (DPC/PPS) introduced in 2003 has made the attribution of revenues and expenses for each clinical department very complicated because of the intricate involvement between the overall or blanket component and a fee-for service (FFS). Few reports have so far presented a programmatic method for the calculation of medical costs and financial balance. A simple method has been devised, based on personnel cost, for calculating medical costs and financial balance. Using this method, one individual was able to complete the calculations for a hospital which contains 535 beds and 16 clinics, without using the central hospital computer system.
Acute effects of rearfoot manipulation on dynamic standing balance in healthy individuals.
Wassinger, Craig A; Rockett, Ariel; Pitman, Lucas; Murphy, Matthew Matt; Peters, Charles
2014-06-01
Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., inertial separators, afterburners, thermal or catalytic incinerators, adsorption devices (such as carbon... and calculation procedures (e.g., mass balance or stoichiometric calculations). (4) Maintenance and...
Progress on single barrier varactors for submillimeter wave power generation
NASA Technical Reports Server (NTRS)
Nilsen, Svein M.; Groenqvist, Hans; Hjelmgren, Hans; Rydberg, Anders; Kollberg, Erik L.
1992-01-01
Theoretical work on Single Barrier Varactor (SBV) diodes, indicate that the efficiency for a multiplier has a maximum for a considerably smaller capacitance variation than previously thought. The theoretical calculations are performed, both with a simple theoretical model and a complete computer simulation using the method of harmonic balance. Modeling of the SBV is carried out in two steps. First, the semiconductor transport equations are solved simultaneously using a finite difference scheme in one dimension. Secondly, the calculated I-V, and C-V characteristics are input to a multiplier simulator which calculates the optimum impedances, and output powers at the frequencies of interest. Multiple barrier varactors can also be modeled in this way. Several examples on how to design the semiconductor layers to obtain certain characteristics are given. The calculated conversion efficiencies of the modeled structures, in a multiplier circuit, are also presented. Computer simulations for a case study of a 750 GHz multiplier show that InAs diodes perform favorably compared to GaAs diodes. InAs and InGaAs SBV diodes have been fabricated and their current vs. voltage characteristics are presented. In the InAs diode, was the large bandgap semiconductor AlSb used as barrier. The InGaAs diode was grown lattice matched to an InP substrate with InAlAs as a barrier material. The current density is greatly reduced for these two material combinations, compared to that of GaAs/AlGaAs SBV diodes. GaAs based diodes can be biased to higher voltages than InAs diodes.
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weigh scales, or the result of computations using a material balance, shall be used to determine the rate (P) of the ammonium sulfate production. If production rate is determined by material balance, the... combined feed stream flow rate to the ammonium crystallizer before the point where any recycle streams...
Reconstruction Era: Resources for a Balanced Approach.
ERIC Educational Resources Information Center
Seiter, David M.
1989-01-01
Lists instructional materials from the ERIC database that focus on the Reconstruction. Includes materials that present a balanced approach to this period of U.S. history. Offers documents concerned with Black education, the Freedmen's Bureau, the Indian Territory, textbook evaluation, Black women's education, and Reverend Moses Drury Hoge. (KO)
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1987-01-01
Temperature, thermal stresses, and residual creep stresses were studied by comparing laboratory values measured on a built-up titanium structure with values calculated from finite-element models. Several such models were used to examine the relationship between computational thermal stresses and thermal stresses measured on a built-up structure. Element suitability, element density, and computational temperature discrepancies were studied to determine their impact on measured and calculated thermal stress. The optimum number of elements is established from a balance between element density and suitable safety margins, such that the answer is acceptably safe yet is economical from a computational viewpoint. It is noted that situations exist where relatively small excursions of calculated temperatures from measured values result in far more than proportional increases in thermal stress values. Measured residual stresses due to creep significantly exceeded the values computed by the piecewise linear elastic strain analogy approach. The most important element in the computation is the correct definition of the creep law. Computational methodology advances in predicting residual stresses due to creep require significantly more viscoelastic material characterization.
1980-02-01
maneuver conditions, and transmit the net axial thrust force between the turbine and fan sections due to pressure and aero dynamic gas loads . 49 Lm...stiffness composite material shaft. Both~~ balancing demonstration and the composite shaft design ad as their objective the management of small turbofan ...CONFIGURATIONS 99 LIST OF ILLUSTRATIONS Figure Title Page 1 High Speed Balancing Program Schedule 4 2 Teledyne CAE Model 471-11DX Turbofan Engine
Optimizing Balanced Incomplete Block Designs for Educational Assessments
ERIC Educational Resources Information Center
van der Linden, Wim J.; Veldkamp, Bernard P.; Carlson, James E.
2004-01-01
A popular design in large-scale educational assessments as well as any other type of survey is the balanced incomplete block design. The design is based on an item pool split into a set of blocks of items that are assigned to sets of "assessment booklets." This article shows how the problem of calculating an optimal balanced incomplete block…
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The following calculation may be used to account for wintertime blending of kerosene and the blending... following calculation may be used to account for wintertime blending of kerosene, the blending of non...
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The following calculation may be used to account for wintertime blending of kerosene and the blending... following calculation may be used to account for wintertime blending of kerosene, the blending of non...
40 CFR 80.599 - How do I calculate volume balances for designation purposes?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The following calculation may be used to account for wintertime blending of kerosene and the blending... following calculation may be used to account for wintertime blending of kerosene, the blending of non...
48 CFR 225.7703-5 - Solicitation provisions and contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
...—Balance of Payments Program Certificate. (5) 252.225-7036, Buy American Act—Free Trade Agreements—Balance...-7045, Balance of Payments Program—Construction Material Under Trade Agreements. (f) Do not use the... 252.225-7024, or the clause at 252.225-7026: (1) 252.225-7000, Buy American Act—Balance of Payments...
48 CFR 225.7703-5 - Solicitation provisions and contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
...—Balance of Payments Program Certificate. (5) 252.225-7036, Buy American Act—Free Trade Agreements—Balance...-7045, Balance of Payments Program—Construction Material Under Trade Agreements. (f) Do not use the... 252.225-7024, or the clause at 252.225-7026: (1) 252.225-7000, Buy American Act—Balance of Payments...
NASA Astrophysics Data System (ADS)
Hausrath, E. M.; Ming, D. W.; Peretyazhko, T. S.; Rampe, E. B.
2018-06-01
On a planet as cold and dry as present-day Mars, evidence of multiple aqueous episodes offers an intriguing view into very different past environments. Fluvial, lacustrine, and eolian depositional environments are being investigated by the Mars Science Laboratory Curiosity in Gale crater, Mars. Geochemical and mineralogical observations of these sedimentary rocks suggest diagenetic processes affected the sediments. Here, we analyze diagenesis of the Stimson formation eolian parent material, which caused loss of olivine and formation of magnetite. Additional, later alteration in fracture zones resulted in preferential dissolution of pyroxene and precipitation of secondary amorphous silica and Ca sulfate. The ability to compare the unaltered parent material with the reacted material allows constraints to be placed on the characteristics of the altering solutions. In this work we use a combination of a mass balance approach calculating the fraction of a mobile element lost or gained, τ, with fundamental geochemical kinetics and thermodynamics in the reactive transport code CrunchFlow to examine the characteristics of multiple stages of aqueous alteration at Gale crater, Mars. Our model results indicate that early diagenesis of the Stimson sedimentary formation is consistent with leaching of an eolian deposit by a near-neutral solution, and that formation of the altered fracture zones is consistent with a very acidic, high sulfate solution containing Ca, P and Si. These results indicate a range of past aqueous conditions occurring at Gale crater, Mars, with important implications for past martian climate and environments.
Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart
2017-11-01
When assessing the environmental and human health impact of a municipal food waste (FW) management system waste managers typically rely on the principles of the waste hierarchy; using metrics such as the mass or rate of waste that is 'prepared for recycling,' 'recovered for energy,' or 'sent to landfill.' These metrics measure the collection and sorting efficiency of a waste system but are incapable of determining the efficiency of a system to turn waste into a valuable resource. In this study a life cycle approach was employed using a system boundary that includes the entire waste service provision from collection to safe end-use or disposal. A life cycle inventory of seven waste management systems was calculated, including the first service wide inventory of FW management through kitchen in-sink disposal (food waste disposer). Results describe the mass, energy and water balance of each system along with key emissions profile. It was demonstrated that the energy balance can differ significantly from its' energy generation, exemplified by mechanical biological treatment, which was the best system for generating energy from waste but only 5 th best for net-energy generation. Furthermore, the energy balance of kitchen in-sink disposal was shown to be reduced because 31% of volatile solids were lost in pre-treatment. The study also confirmed that higher FW landfill diversion rates were critical for reducing many harmful emissions to air and water. Although, mass-balance analysis showed that the alternative end-use of the FW material may still contain high impact pollutants. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Perry, Stephen D; Radtke, Alison; Goodwin, Chris R
2007-01-01
The purpose of this study was to determine the influence of different midsole hardnesses on dynamic balance control during unexpected gait termination. Twelve healthy young female adults were asked to walk along an 8-m walkway, looking straight ahead. During 25% of the trials, they were signaled (via an audio buzzer) to terminate gait within the next two steps. The four experimental conditions were: (1) soft (A15); (2) standard (A33); (3) hard (A50); (4) barefoot. Center of mass (COM) position relative to the lateral base of support (BOS), center of mass-center of pressure (COM-COP) difference and vertical loading rate were used to evaluate the influence of midsole material on dynamic balance control. The results were a decrease in the medial-lateral range of COM with respect to the lateral BOS, a reduction in the maximum COM-COP difference and an increase in the vertical loading rate due to the presence and hardness level of the midsole material when compared to the barefoot condition. The primary outcomes of this study have illustrated the influence of midsole hardness as an impediment to dynamic balance control during responses to gait termination. In conclusion, the present study suggests that variations in midsole material and even the presence of it, impairs the dynamic balance control system.
Liu, Miao; Rong, Ziqin; Malik, Rahul; ...
2014-12-16
In this study, batteries that shuttle multivalent ions such as Mg 2+ and Ca 2+ ions are promising candidates for achieving higher energy density than available with current Li-ion technology. Finding electrode materials that reversibly store and release these multivalent cations is considered a major challenge for enabling such multivalent battery technology. In this paper, we use recent advances in high-throughput first-principles calculations to systematically evaluate the performance of compounds with the spinel structure as multivalent intercalation cathode materials, spanning a matrix of five different intercalating ions and seven transition metal redox active cations. We estimate the insertion voltage, capacity,more » thermodynamic stability of charged and discharged states, as well as the intercalating ion mobility and use these properties to evaluate promising directions. Our calculations indicate that the Mn 2O 4 spinel phase based on Mg and Ca are feasible cathode materials. In general, we find that multivalent cathodes exhibit lower voltages compared to Li cathodes; the voltages of Ca spinels are ~0.2 V higher than those of Mg compounds (versus their corresponding metals), and the voltages of Mg compounds are ~1.4 V higher than Zn compounds; consequently, Ca and Mg spinels exhibit the highest energy densities amongst all the multivalent cation species. The activation barrier for the Al³⁺ ion migration in the Mn₂O₄ spinel is very high (~1400 meV for Al 3+ in the dilute limit); thus, the use of an Al based Mn spinel intercalation cathode is unlikely. Amongst the choice of transition metals, Mn-based spinel structures rank highest when balancing all the considered properties.« less
Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit
NASA Astrophysics Data System (ADS)
Wu, Jufei; Wang, Qian; Han, Yunfei
2017-12-01
In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.
Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites
NASA Astrophysics Data System (ADS)
Lin, Yueguo
2018-05-01
An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.
TOPAZ2D heat transfer code users manual and thermal property data base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less
40 CFR 1065.15 - Overview of procedures for laboratory and field testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... nitrogen, NOX. (2) Hydrocarbons (HC), which may be expressed in the following ways: (i) Total hydrocarbons... chemical balances of the fuel, intake air, and exhaust. To calculate fuel consumed by a chemical balance...
40 CFR 1065.15 - Overview of procedures for laboratory and field testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... nitrogen, NOX. (2) Hydrocarbons (HC), which may be expressed in the following ways: (i) Total hydrocarbons... chemical balances of the fuel, intake air, and exhaust. To calculate fuel consumed by a chemical balance...
40 CFR 1065.15 - Overview of procedures for laboratory and field testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... nitrogen, NOX. (2) Hydrocarbons (HC), which may be expressed in the following ways: (i) Total hydrocarbons... chemical balances of the fuel, intake air, and exhaust. To calculate fuel consumed by a chemical balance...
40 CFR 1065.15 - Overview of procedures for laboratory and field testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... nitrogen, NOX. (2) Hydrocarbons (HC), which may be expressed in the following ways: (i) Total hydrocarbons... chemical balances of the fuel, intake air, and exhaust. To calculate fuel consumed by a chemical balance...
Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Whitlow, Jonathan E.
2000-01-01
This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.
Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S
2016-11-21
Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U L III -edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO 2 ), and constrained the S 0 2 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H + , +1 e - ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien; Bylaska, Eric J.; Massey, Michael S.
2016-11-21
Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking, yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation state (VI, V, and IV) and chargemore » compensation scheme (CCS) were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S02 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to injection of one electron into the solid (–1 H+, + 1 e-). The ability of AIMD to model higher-energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science.« less
Power Balance Analysis of the Prototype-Material Plasma Exposure eXperiment
NASA Astrophysics Data System (ADS)
Showers, M. A.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Lumsdaine, A.; Owen, L.; Rapp, J.; Youchison, D.; Beers, C. J.; Donovan, D. C.; Kafle, N.; Ray, H. B.
2017-10-01
The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a test bed for the plasma source concept for the planned Material Plasma Exposure eXperiment (MPEX), a steady-state linear device studying plasma material interactions for fusion reactors. A power balance of Proto-MPEX attempts to identify machine operating parameters that will improve Proto-MPEX's performance, potentially impacting the MPEX design concept. A power balance has been performed utilizing an extensive diagnostic suite to identify mechanisms and locations of power loss from the main plasma. The diagnostic package includes infrared cameras, double Langmuir probes, fluoroptic probes, Mach probes, a Thomson scattering diagnostic, a McPherson spectrometer and in-vessel thermocouples. Radiation losses are estimated with absolute calibrated spectroscopic signals. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.
Models of convection-driven tectonic plates - A comparison of methods and results
NASA Technical Reports Server (NTRS)
King, Scott D.; Gable, Carl W.; Weinstein, Stuart A.
1992-01-01
Recent numerical studies of convection in the earth's mantle have included various features of plate tectonics. This paper describes three methods of modeling plates: through material properties, through force balance, and through a thin power-law sheet approximation. The results obtained are compared using each method on a series of simple calculations. From these results, scaling relations between the different parameterizations are developed. While each method produces different degrees of deformation within the surface plate, the surface heat flux and average plate velocity agree to within a few percent. The main results are not dependent upon the plate modeling method and herefore are representative of the physical system modeled.
The Role of Graphing Calculators in Mathematics Reform.
ERIC Educational Resources Information Center
Waits, Bert K.; Demana, Franklin
This essay describes the role of graphing calculators in mathematics reform. Among the topics discussed are the history of graphing calculators in mathematics education, recent technological innovations, and professional development opportunities. The case is made for a balanced approach between calculator use and paper-and-pencil techniques.…
Report on Concepts & Approaches for SSBD for eCHEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Chantell Lynne-Marie
The verification of special nuclear material (SNM) in spent fuel pyroprocessing is an important safeguards challenge. The detection of spontaneous fission (SF) neutrons from curium is an accepted, non-destructive technique that has been applied to verify special nuclear material (SNM) content in used fuel and other materials in the fuel cycle. The nuclear material accounting (NMA) technique at the Korea Atomic Energy Research Institute’s Reference Engineering-scale Pyroprocessing Facility (REPF) is based on the Cm balance technique. Several publications have demonstrated the safeguards benefit from using process monitoring (PM) on nuclear facilities as a complementary measure to NMA. More recently, thismore » concept was expanded and preliminarily demonstrated for pyroprocessing. The concept of Signature Based Safeguards (SBS) is part of this expansion, and is built around the interpretation of input from various sensors in a declared facility coupled with complementary NMA methods to increase confidence and lower standard error inventory differences (SEID). The SBS methodology was conceptually developed and relies on near real time analysis of process monitoring data to detect material diversion complemented by robust containment and surveillance (C/S) measures. This work demonstrates one example of how the SBS framework can be used in the electrorefiner. In this SBS application, a combination of cyclic voltammetry (CV) and neutron counting is applied to track and monitor Pu mass balance. The main purpose of this experiment is to determine if meaningful information can be gained from CV measurements with regard to the Mg/Gd ratio. This data will be coupled with ICP-MS to verify Gd concentrations and analyzed for statistical significance. It is expected the CV data will register a significant change under the off-normal operating conditions. Knowing how to identify and interpret those changes may help inform how to target more traditional neutron counting methods, which could support a more efficient safeguards system. The experimental results will be compared with theoretical calculations and the ERAD simulations.« less
USDA-ARS?s Scientific Manuscript database
The objective of the research was to quantify the changes of nitrogen (N) and phosphorus (P) balances in Poland and Mississippi (MS). Nutrient balances were calculated as difference between input and output in the agricultural system according to Organisation for Economic Cooperation and Development...
77 FR 40785 - Single Family Housing Guaranteed Loan Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... to exceed 0.5 percent of the outstanding principal balance of the loan for the life of the loan. The... the loan; and (B) an annual fee not to exceed 0.5 percent of the outstanding balance of the loan for... principal balance of the loan for the life of the loan. The annual fee will be calculated when the loan is...
Olejniczak, Małgorzata; Bast, Radovan; Saue, Trond; Pecul, Magdalena
2012-01-07
We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.
Evaluation of surface energy and radiation balance systems for FIFE
NASA Technical Reports Server (NTRS)
Fritschen, Leo J.; Qian, Ping
1988-01-01
The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.
Racault, Y; Stricker, A-E; Husson, A; Gillot, S
2011-01-01
Oxygen transfer in biological wastewater treatment processes with high sludge concentration, such as membrane bioreactor (MBR), is an important issue. The variation of alpha-factor versus mixed liquor suspended solids (MLSS) concentration was investigated in a full scale MBR plant under process conditions, using mass balances. Exhaustive data from the Supervisory Control And Data Acquisition (SCADA) and from additional online sensors (COD, DO, MLSS) were used to calculate the daily oxygen consumption (OC) using a non-steady state mass balance for COD and total N on a 24-h basis. To close the oxygen balance, OC has to match the total oxygen transfer rate (OTRtot) of the system, which is provided by fine bubble (FB) diffusers in the aeration tank and coarse bubbles (CB) in separate membrane tanks. First assessing OTR(CB) then closing the balance OC = OTRtot allowed to calculate OTR(FB) and to fit an exponential relationship between OTR(FB) and MLSS. A comparison of the alpha-factor obtained by this balance method and by direct measurements with the off-gas method on the same plant is presented and discussed.
Evaluation of the Utility of Recycling Used Products made of Polyvinyl Chloride
NASA Astrophysics Data System (ADS)
Matsuda, Satoshi; Kubota, Hiroshi
This study intends to propose a new approach to evaluate the utility of recycling used products made of Polyvinyl Chloride (PVC) . In order to determine whether or not these used products can be recycled, there must be some indicators that appropriately and quantitatively show the degree that the contribution of recycling these targeted used products has on society. It was indicated that the rights and wrongs of incineration and/or heat recovery using a material such as wallpaper or floor cover made of PVC could be judged by the concept of "Social Energy Consumption" originally proposed by the authors (Chap. 3 in the text) . On the other hand, in the case where the used products such as PVC pipes and joints are dug out from underground and recycled, this research shows the estimation of its utility should be accomplished by extending the concept: Specifically, the manpower converted to the value of the social energy consumption was added, because labor costs for digging out these used products occupy a large portion of the total recycling cost, although manpower is not taken into account in the usual energy balance calculation, which leads to the contradiction of the estimation results from the standpoint of energy balance and economy. In this study, the marginal cost for digging out PVC pipes and joints evaluated by this method was shown as an example of a trial calculation (Chap. 2 in the text) . As a whole, this research quantitatively demonstrated an example trial calculation showing whether or not these used products should be recycled disregarding if the economic efficiency should be evaluated as a result of the analysis based upon the concept of "Social Energy Consumption".
Strain Gauge Balance Uncertainty Analysis at NASA Langley: A Technical Review
NASA Technical Reports Server (NTRS)
Tripp, John S.
1999-01-01
This paper describes a method to determine the uncertainties of measured forces and moments from multi-component force balances used in wind tunnel tests. A multivariate regression technique is first employed to estimate the uncertainties of the six balance sensitivities and 156 interaction coefficients derived from established balance calibration procedures. These uncertainties are then employed to calculate the uncertainties of force-moment values computed from observed balance output readings obtained during tests. Confidence and prediction intervals are obtained for each computed force and moment as functions of the actual measurands. Techniques are discussed for separate estimation of balance bias and precision uncertainties.
Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.
2004-01-01
Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.
Validity and reliability of Nintendo Wii Fit balance scores.
Wikstrom, Erik A
2012-01-01
Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown. To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores. Descriptive laboratory study. Sports medicine research laboratory. Forty-five recreationally active participants (age = 27.0 ± 9.8 years, height = 170.9 ± 9.2 cm, mass = 72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury. Participants completed a single-limb-stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week. Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded. All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r < 0.50). Intrasession reliability for Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC] = 0.80) to poor (ICC = 0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC = 0.74) to poor (ICC = 0.29). Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT reach distances. In addition, the included Wii Fit balance activity scores generally had poor intrasession and intersession reliability.
48 CFR 225.7503 - Contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Balance of Payments Program 225.7503 Contract clauses. Unless the entire acquisition is exempt from the Balance of Payments Program— (a)(1) Use the clause at 252.225-7044, Balance of Payments Program—Construction Material, in solicitations and contracts...
48 CFR 225.7503 - Contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Balance of Payments Program 225.7503 Contract clauses. Unless the entire acquisition is exempt from the Balance of Payments Program— (a) Use the clause at 252.225-7044, Balance of Payments Program—Construction Material, in solicitations and contracts...
Skylight energy balance analysis procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, P.S.; Murdoch, J.B.; Pokoski, J.L.
1981-10-01
This paper provides a systematic method for calculating the total, net differential energy balance observed when sections of the roof of a building are replaced with skylights. Among the topics discussed are the effect of solar gains, dome and curb conduction heat transfers, equivalent roof area heat transfers, infiltration heat transfers, artificial lighting energy requirements, and illumination savings from skylights. The paper also provides much of the supplementary information needed to complete these energy calculations. This information appears in the form of appendices, tables, and graphs. 9 refs.
2005-02-01
AApproved for Public Release Distribution Unlimited SANS MENTION DE PROTECTION MATERIALS AND STRUCTURES -1- ONERA BP 72 - 29. avenue de la Division Leclerc...reduction. Finding the best solution in terns balancing structural strength and acoustic properties was the main thrust of this project. Acoustic...material system for noise reduction. Finding the best solution in terms balancing structural strength and acoustic properties was the main thrust of this
Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable Reactive Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. L.; Thoms, R. B.; Johnson, R. O.
2008-07-01
Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical characteristics. Precipitates containing iron and sulfide were present at much higher concentrations in native aquifer materials just upgradient of the PRB than in the PRB itself. Sulfur mass balance on core solids coupled with trends in ground water sulfate concentrations indicates that the average ground water flow after 20 months of PRB operation was approximately twenty fold less than the regional ground water velocity. Transport and reaction modeling of the aquifer PRB interface suggests that, atmore » the calculated velocity, both iron and hydrogen could diffuse upgradient against ground water flow and thereby contribute to precipitation in the native aquifer materials. The initial hydraulic conductivity (K) of the native materials is less than that of the PRB and, given the observed precipitation in the upgradient native materials, it is likely that K reduction occurred upgradient to rather than within the PRB. Although not directly implicated, guar gum used during installation of the PRB is believed to have played a role in the precipitation and flow reduction processes by enhancing microbial activity.« less
Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2001-01-01
Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.
NASA Astrophysics Data System (ADS)
Liu, Ruqin; Huang, Ming; Yao, Xiaolu; Chen, Shuang; Wang, Shucun; Suo, Zhirong
2018-06-01
2,4,6-Triamino-1,3,5-trinitrobenzene is the attractive insensitive high energetic material used extensively in the military and civil fields. Combined with the double-films theory, the global gas-liquid chemical reaction kinetics of 2,4,6-triamino-1,3,5-trinitrobenzene was developed by means of the infinitesimal material balance calculation. The raw material concentration and reactive temperature effects on the crystallization of 2,4,6-triamino-1,3,5-trinitrobenzene were investigated by the batch experiments. The reactive crystallization kinetics associated ammonia feeding rate of 2,4,6-triamino-1,3,5-trinitrobenzene, including nucleation as well as crystal growth, was systematically investigated in the heterogonous semi-batch procedure. The nucleation and crystal growth kinetic exponents were estimated by the linear least-squares method. The crystallization kinetic results indicated that nucleation rate strongly increased but liner growth rate decreased with the increasing of ammonia feeding rate. In terms of manufacturing coarse 2,4,6-triamino-1,3,5-trinitrobenzene, it was found that a slow ammonia feeding rate and a low raw material concentration were feasible under the present experimental conditions.
ERIC Educational Resources Information Center
Liberatore, Matthew
2017-01-01
Textbooks are experiencing a 21st century makeover. The author has created a web-based electronic textbook, Material and Energy Balances zyBook, that records students' interactions. Animations and question sets create interactive and scaffolded content. The interactive format is adopted successfully in other engineering disciplines and is now…
The Degrees of Freedom Concept--Extending the Domain
ERIC Educational Resources Information Center
Biernacki, J. J.
2016-01-01
The degrees of freedom (DOF) concept is a powerful tool that has been taught since at least the '70s in undergraduate curriculum, typically introduced in the context of a first course on material and energy balances. The concept, however, has not been widely applied beyond the material balance domain and in general is not taught as a unified…
Micarta Propellers II : Method of Construction
NASA Technical Reports Server (NTRS)
Caldwell, F W; Clay, N S
1924-01-01
The methods used in manufacturing Micarta propellers differ considerably from those employed with wood propellers on account of the hardness of the materials. The propellers must be formed accurately to size in a mold and afterwards balanced without the customary trimming of the material from the tips. Described here are the pressing and molding processes, filing, boring, balancing, and curing.
Two-photon absorption in conjugated energetic molecule
Bjorgaard, Josiah August; Sifain, Andrew; Nelson, Tammie Renee; ...
2016-06-03
Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities aremore » significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.« less
Assessment of thermal efficiency of heat recovery coke making
NASA Astrophysics Data System (ADS)
Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.
2017-08-01
The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.
Schievano, Andrea; D'Imporzano, Giuliana; Salati, Silvia; Adani, Fabrizio
2011-09-01
The mass balance (input/output mass flows) of full-scale anaerobic digestion (AD) processes should be known for a series of purposes, e.g. to understand carbon and nutrients balances, to evaluate the contribution of AD processes to elemental cycles, especially when digestates are applied to agricultural land and to measure the biodegradation yields and the process efficiency. In this paper, three alternative methods were studied, to determine the mass balance in full-scale processes, discussing their reliability and applicability. Through a 1-year survey on three full-scale AD plants and through 38 laboratory-scale batch digesters, the congruency of the considered methods was demonstrated and a linear equation was provided that allows calculating the wet weight losses (WL) from the methane produced (MP) by the plant (WL=41.949*MP+20.853, R(2)=0.950, p<0.01). Additionally, this new tool was used to calculate carbon, nitrogen, phosphorous and potassium balances of the three observed AD plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mori, Yoshiharu; Okumura, Hisashi
2015-12-05
Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa-Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa-Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa-Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa-Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa-Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa-Todo algorithm when compared with the Metropolis algorithm. © 2015 Wiley Periodicals, Inc.
Application of superconducting coils to the NASA prototype magnetic balance
NASA Technical Reports Server (NTRS)
Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.
1981-01-01
Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.
Energy-technological complex with reactor for torrefaction
NASA Astrophysics Data System (ADS)
Kuzmina, J. S.; Director, L. B.; Zaichenko, V. M.
2016-11-01
To eliminate shortcomings of raw plant materials pelletizing process with thermal treatment (low-temperature pyrolysis or torrefaction) can be applied. This paper presents a mathematical model of energy-technological complex (ETC) for combined production of heat, electricity and solid biofuels torrefied pellets. According to the structure the mathematical model consists of mathematical models of main units of ETC and the relationships between them and equations of energy and material balances. The equations describe exhaust gas straining action through a porous medium formed by pellets. Decomposition rate of biomass was calculated by using the gross-reaction diagram, which is responsible for the disintegration of raw material. A mathematical model has been tested according to bench experiments on one reactor module. From nomographs, designed for a particular configuration of ETC it is possible to determine the basic characteristics of torrefied pellets (rate of weight loss, heating value and heat content) specifying only two parameters (temperature and torrefaction time). It is shown that the addition of reactor for torrefaction to gas piston engine can improve the energy efficiency of power plant.
Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe
2016-06-01
The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4 /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ablative Laser Propulsion Using Multi-Layered Material Systems
NASA Technical Reports Server (NTRS)
Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.
2002-01-01
Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.
Laser balancing system for high material removal rates
NASA Technical Reports Server (NTRS)
Jones, M. G.; Georgalas, G.; Ortiz, A. L.
1984-01-01
A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.
Jason R. Price; Michael A. Velbel; Lina C. Patino
2005-01-01
Rates of clay formation in three watersheds located at the Coweeta Hydrologic Laboratory, western North Carolina, have been determined from solute flux-based mass balance methods. A system of mass balance equations with enough equations and unknowns to allow calculation of secondary mineral formation rates as well as the more commonly determined primary-...
Remote Sensing Estimates of Glacier Mass Balance Changes in the Himalayas of Nepal
NASA Astrophysics Data System (ADS)
Ambinakudige, S.; Joshi, K.
2011-12-01
Mass balance changes of glaciers are important indicators of climate change. There are only 30 'reference' glaciers in the world that have continuous mass balance data with world glacier monitoring service since 1976. Especially, Himalayan glaciers are conspicuously absent from global mass balance records. This shows the urgent need for mass balance data for glaciers throughout the world. In this study, we estimated mass balance of some major glaciers in the Sagarmatha National Park (SNP) in Nepal using remote sensing applications. The SNP is one of the densest glaciated regions in the Himalayan range consisting approximately 296 glacial lakes. The region has experienced several glacial lake outburst floods (GLOFs) in recent years, causing extensive damage to local infrastructure and loss of human life. In general, mass balance is determined at seasonal or yearly intervals. Because of the rugged and difficult terrain of the Himalayan region, there are only a few field based measurements of mass balance available. Moreover, there are only few cases where the applications of remote sensing methods were used to calculate mass balance of the Himalayan glaciers due to the lack of accurate elevation data. Studies have shown that estimations of mass balance using remote sensing applications were within the range of field-based mass balance measurements from the same period. This study used ASTER VNIR, 3N (nadir view) and 3B (backward view) bands to generate Digital Elevation Models (DEMs) for the SNP area. 3N and 3B bands generate an along track stereo pair with a base-to-height (B/H) ratio of about 0.6. Accurate measurement of ground control points (GCPs), their numbers and distribution are important inputs in creating accurate DEMs. Because of the availability of topographic maps for this area, we were able to provide very accurate GCPs, in sufficient numbers and distribution. We created DEMs for the years 2002, 2003, 2004 and 2005 using ENVI DEM extraction tool. Bands 3N and 3B were used as left and right images respectively in the process of creating the DEM. Minimum elevation in these images was 1500m and maximum elevation was 8550m. Coordinates and elevation values from topographic maps in the non-glaciated region were used as GCPs while creating absolute DEMs. Considering the high terrain of the study area, we used large number of GCPs, tie points, higher windows search area, and high terrain parameters to improve DEM accuracy. Since these images were acquired in September, the accumulation area was clearly visible. The Global land ice measurement (GLIMS) database which is maintained at the National Snow and Ice Data Center (NSIDC) was used to delineate glacier boundaries. The differences between the elevations in consecutive years in the accumulation area were calculated using raster calculator. The total elevation differences were then multiplied by the area to estimate the change in volume. Density of ice used in mass balance calculation was 900kg per sq. meters. The result indicated that while there was a decrease in mass balance of some glaciers, some showed an increase in mass balance during the study period. The study helped to develop a data on mass balance change in some major glaciers in the Himalayas.
Phase change energy storage for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Chiaramonte, F. P.; Taylor, J. D.
1992-01-01
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Phase change energy storage for solar dynamic power systems
NASA Astrophysics Data System (ADS)
Chiaramonte, F. P.; Taylor, J. D.
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
van Asseldonk, Edwin H F; Buurke, Jaap H; Bloem, Bastiaan R; Renzenbrink, Gerbert J; Nene, Anand V; van der Helm, Frans C T; van der Kooij, Herman
2006-10-01
During stroke recovery, restoration of the paretic ankle and compensation in the non-paretic ankle may contribute to improved balance maintenance. We examine a new approach to disentangle these recovery mechanisms by objectively quantifying the contribution of each ankle to balance maintenance. Eight chronic hemiparetic patients were included. Balance responses were elicited by continuous random platform movements. We measured body sway and ground reaction forces below each foot to calculate corrective ankle torques in each leg. These measurements yielded the Frequency Response Function (FRF) of the stabilizing mechanisms, which expresses the amount and timing of the generated corrective torque in response to sway at the specified frequencies. The FRFs were used to calculate the relative contribution of the paretic and non-paretic ankle to the total amount of generated corrective torque to correct sway. All patients showed a clear asymmetry in the balance contribution in favor of the non-paretic ankle. Paretic balance contribution was significantly smaller than the contribution of the paretic leg to weight bearing, and did not show a clear relation with the contribution to weight bearing. In contrast, a group of healthy subjects instructed to distribute their weight asymmetrically showed a one-on-one relation between the contribution to weight bearing and to balance. We conclude that the presented approach objectively quantifies the contribution of each ankle to balance maintenance. Application of this method in longitudinal surveys of balance rehabilitation makes it possible to disentangle the different recovery mechanisms. Such insights will be critical for the development and evaluation of rehabilitation strategies.
Surface Mass Balance of the Columbia Glacier, Alaska, 1978 and 2010 Balance Years
O'Neel, Shad
2012-01-01
Although Columbia Glacier is one of the largest sources of glacier mass loss in Alaska, surface mass balance measurements are sparse, with only a single data set available from 1978. The dearth of surface mass-balance data prohibits partitioning of the total mass losses between dynamics and surface forcing; however, the accurate inclusion of calving glaciers into predictive models requires both dynamic and climatic forcing of total mass balance. During 2010, the U.S. Geological Survey collected surface balance data at several locations distributed over the surface of Columbia Glacier to estimate the glacier-wide annual balance for balance year 2010 using the 2007 area-altitude distribution. This report also summarizes data collected in 1978, calculates the 1978 annual surface balance, and uses these observations to constrain the 2010 values, particularly the shape of the balance profile. Both years exhibit balances indicative of near-equilibrium surface mass-balance conditions, and demonstrate the importance of dynamic processes during the rapid retreat.
Performance of biofuel processes utilising separate lignin and carbohydrate processing.
Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku
2015-09-01
Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surface mass balance of Greenland mountain glaciers and ice caps
NASA Astrophysics Data System (ADS)
Benson, R. J.; Box, J. E.; Bromwich, D. H.; Wahr, J. M.
2009-12-01
Mountain glaciers and ice caps contribute roughly half of eustatic sea-level rise. Greenland has thousands of small mountain glaciers and several ice caps > 1000 sq. km that have not been included in previous mass balance calculations. To include small glaciers and ice caps in our study, we use Polar WRF, a next-generation regional climate data assimilation model is run at grid resolution less than 10 km. WRF provides surface mass balance data at sufficiently high resolution to resolve not only the narrow ice sheet ablation zone, but provides information useful in downscaling melt and accumulation rates on mountain glaciers and ice caps. In this study, we refine Polar WRF to simulate a realistic surface energy budget. Surface melting is calculated in-line from surface energy budget closure. Blowing snow sublimation is computed in-line. Melt water re-freeze is calculated using a revised scheme. Our results are compared with NASA's Gravity Recovery and Climate Experiment (GRACE) and associated error is calculated on a regional and local scale with validation from automated weather stations (AWS), snow pits and ice core data from various regions along the Greenland ice sheet.
Cracks in Complex Bodies: Covariance of Tip Balances
NASA Astrophysics Data System (ADS)
Mariano, Paolo Maria
2008-04-01
In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.
Aberg, A C; Thorstensson, A; Tarassova, O; Halvorsen, K
2011-07-01
For older people balance control in standing is critical for performance of activities of daily living without falling. The aims were to investigate reliability of quantification of the usage of the two balance mechanisms M(1) 'moving the centre of pressure' and M(2) 'segment acceleration' and also to compare calculation methods based on a combination of kinetic (K) and kinematic (Km) data, (K-Km), or Km data only concerning M(2). For this purpose nine physically fit persons aged 70-78 years were tested in narrow and single-leg standing. Data were collected by a 7-camera motion capture system and two force plates. Repeated measure ANOVA and Tukey's post hoc tests were used to detect differences between the standing tasks. Reliability was estimated by ICCs, standard error of measurement including its 95% CI, and minimal detectable change, whereas Pearson's correlation coefficient was used to investigate agreement between the two calculation methods. The results indicated that for the tasks investigated, M(1) and M(2) can be measured with acceptable inter- and intrasession reliability, and that both Km and K-Km based calculations may be useful for M(2), although Km data may give slightly lower values. The proportional M(1):M(2) usage was approximately 9:1, in both anterio-posterior (AP) and medio-lateral (ML) directions for narrow standing, and about 2:1 in the AP and of 1:2 in the ML direction in single-leg standing, respectively. In conclusion, the tested measurements and calculations appear to constitute a reliable way of quantifying one important aspect of balance capacity in fit older people. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Liberatore, Matthew W.
2011-01-01
Personalized, online homework was used to supplement textbook homework, quizzes, and exams for one section of a course in material and energy balances. The objective of this study was to test the hypothesis that students using personalized, online homework earned better grades in the course. The online homework system asks the same questions of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com
2011-09-15
Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
NASA Astrophysics Data System (ADS)
Thanh, Mai Duc
2014-06-01
We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Regulations System; Defense Federal Acquisition Regulation Supplement; Balance of Payments Program Exemption... implement the exemption from the Balance of Payments Program for construction material that is commercial... is proposing to amend the DFARS to implement in the clauses at 252.225-7044, Balance of Payments...
Field Balancing of Magnetically Levitated Rotors without Trial Weights
Fang, Jiancheng; Wang, Yingguang; Han, Bangcheng; Zheng, Shiqiang
2013-01-01
Unbalance in magnetically levitated rotor (MLR) can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor's unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR's rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.
NASA Astrophysics Data System (ADS)
Li, R.; Arora, V. K.
2011-06-01
Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary energy fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.
West Antarctic Balance Fluxes: Impact of Smoothing, Algorithm and Topography.
NASA Astrophysics Data System (ADS)
Le Brocq, A.; Payne, A. J.; Siegert, M. J.; Bamber, J. L.
2004-12-01
Grid-based calculations of balance flux and velocity have been widely used to understand the large-scale dynamics of ice masses and as indicators of their state of balance. This research investigates a number of issues relating to their calculation for the West Antarctic Ice Sheet (see below for further details): 1) different topography smoothing techniques; 2) different grid based flow-apportioning algorithms; 3) the source of the flow direction, whether from smoothed topography, or smoothed gravitational driving stress; 4) different flux routing techniques and 5) the impact of different topographic datasets. The different algorithms described below lead to significant differences in both ice stream margins and values of fluxes within them. This encourages caution in the use of grid-based balance flux/velocity distributions and values, especially when considering the state of balance of individual ice streams. 1) Most previous calculations have used the same numerical scheme (Budd and Warner, 1996) applied to a smoothed topography in order to incorporate the longitudinal stresses that smooth ice flow. There are two options to consider when smoothing the topography, the size of the averaging filter and the shape of the averaging function. However, this is not a physically-based approach to incorporating smoothed ice flow and also introduces significant flow artefacts when using a variable weighting function. 2) Different algorithms to apportion flow are investigated; using 4 or 8 neighbours, and apportioning flow to all down-slope cells or only 2 (based on derived flow direction). 3) A theoretically more acceptable approach of incorporating smoothed ice flow is to use the smoothed gravitational driving stress in x and y components to derive a flow direction. The flux can then be apportioned using the flow direction approach used above. 4) The original scheme (Budd and Warner, 1996) uses an elevation sort technique to calculate the balance flux contribution from all cells to each individual cell. However, elevation sort is only successful when ice cannot flow uphill. Other possible techniques include using a recursive call for each neighbour or using a sparse matrix solution. 5) Two digital elevation models are used as input data, which have significant differences in coastal and mountainous areas and therefore lead to different calculations. Of particular interest is the difference in the Rutford Ice Stream/Carlson Inlet and Kamb Ice Stream (Ice Stream C) fluxes.
A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus.
Elyasi, Nahid; Taheri, Kimia Karimi; Narooei, Keivan; Taheri, Ali Karimi
2017-06-01
In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney-Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney-Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the Ogden order 1 represents a stable behavior, although the fitting of experimental data and theoretical model was not satisfactory. However, the Ogden order 6 model was unstable in the simple tension mode and the Ogden order 5 and general exponential models presented accurate and stable results. In order to reduce the material parameters, the invariants model with four material parameters was investigated and this model presented the minimum error and stable behavior in all deformation modes. The ABAQUS Explicit solver was coupled with the VUMAT subroutine code of the invariants model to simulate the mechanical behavior of the central and terminal slips of the extensor apparatus during the passive finger flexion, which is important in the prediction of boutonniere deformity and chronic mallet finger injuries, respectively. Also, to evaluate the adequacy of constitutive models in simulations, the results of the Ogden order 5 were presented. The difference between the predictions was attributed to the better fittings of the invariants model compared with the Ogden model.
Schmidt; Marx; de Graaf AA; Wiechert; Sahm; Nielsen; Villadsen
1998-04-05
Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject to controversial debate. Transhydrogenation reactions that transfer reduction equivalents from NADH to NADPH or vice versa can usually not be included in the stoichiometric model, because they result in singularities in the stoichiometric matrix. However, it is the NADPH balance that, to a large extent, determines the calculated flux through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using 13C tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well established stoichiometric equations and measurements of the labeling state of intracellular metabolites. Neither NADH/NADPH balancing nor assumptions on energy yields need to be included to determine the intracellular fluxes. Because metabolite balancing methods and the use of 13C labeling measurements are two different approaches to the determination of intracellular fluxes, both methods can be used to verify each other or to discuss the origin and significance of deviations in the results. Flux analysis based entirely on metabolite balancing and flux analysis, including labeling information, have been performed independently for a wild-type strain of Aspergillus oryzae producing alpha-amylase. Two different nitrogen sources, NH4+ and NO3-, have been used to investigate the influence of the NADPH requirements on the intracellular flux distribution. The two different approaches to the calculation of fluxes are compared and deviations in the results are discussed. Copyright 1998 John Wiley & Sons, Inc.
Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.
Chen, Hao Min; Maohua, Chen; Adams, Stefan
2015-07-07
In the search for fast lithium-ion conducting solids for the development of safe rechargeable all-solid-state batteries with high energy density, thiophosphates and related compounds have been demonstrated to be particularly promising both because of their record ionic conductivities and their typically low charge transfer resistances. In this work we explore a wide range of known and predicted thiophosphates with a particular focus on the cubic argyrodite phase with a robust three-dimensional network of ion migration pathways. Structural and hydrolysis stability are calculated employing density functional method in combination with a generally applicable method of predicting the relevant critical reaction. The activation energy for ion migration in these argyrodites is then calculated using the empirical bond valence pathway method developed in our group, while bandgaps of selected argyrodites are calculated as a basis for assessing the electrochemical window. Findings for the lithium compounds are also compared to those of previously known copper argyrodites and hypothetical sodium argyrodites. Therefrom, guidelines for experimental work are derived to yield phases with the optimum balance between chemical stability and ionic conductivity in the search for practical lithium and sodium solid electrolyte materials.
NASA Astrophysics Data System (ADS)
Cullen, N. J.; Anderson, B.; Sirguey, P. J.; Stumm, D.; Mackintosh, A.; Conway, J. P.; Horgan, H. J.; Dadic, R.; Fitzsimons, S.; Lorrey, A.
2016-12-01
Recognizing the scarcity of glacier mass balance data in the Southern Hemisphere, a mass balance measurement program was started at Brewster Glacier in 2004. Evolution of the measurement regime over the 11 years of data recorded means there are differences in the spatial density of data obtained. To ensure the temporal integrity of the dataset a new, geostatistical approach has been developed to calculate mass balance. Spatial co-variance between elevation and snow depth has enabled a digital elevation model to be used in a co-kriging approach to develop a snow depth index (SDI). By capturing the observed spatial variability in snow depth, the SDI is a more reliable predictor than elevation and is used to adjust each year of measurements consistently despite variability in sampling spatial density. The SDI also resolves the spatial structure of summer balance better than elevation. Co-kriging is used again to spatially interpolate a derived mean summer balance index using SDI as a co-variate, which yields a spatial predictor for summer balance. A similar approach is also used to create a predictor for annual balance, which allows us to revisit years where summer balance was not obtained. The average glacier-wide surface winter, summer and annual mass balances over the period 2005-2015 are 2484, -2586, and -102 mm w.e., respectively, with changes in summer balance explaining most of the variability in annual balance. On the whole, there is good agreement between our ELA and AAR values and those derived from the end-of-summer snowline (EOSS) program, though discrepancies in some years cannot be fully accounted for. A mass balance map of Brewster Glacier in an equilibrium state, which by definition has a glacier-wide mass balance equal to zero (a balanced-budget), is used to calculate values of ELA (1923 ±25 m) and AAR (0.40) representative of the observational period. The relationships between mass balance and ELA/AAR are explored, demonstrating they are mostly linear. On average, the mass balance gradients are found to be equal to 14.5 and 7.4 mm we m-1 in the ablation and accumulation zones, respectively. However, there is considerable variability in the gradients from year to year, as well as variability between different elevation bands. The largest variability in the mass balance gradient is observed in the ablation zone.
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions
NASA Astrophysics Data System (ADS)
Herrmann, Christoph; Schoof, Ephraim; Schneider, Daniel; Schwab, Felix; Reiter, Andreas; Selzer, Michael; Nestler, Britta
2018-04-01
We introduce a small strain elasto-plastic multiphase-field model according to the mechanical jump conditions. A rate-independent J_2 -plasticity model with linear isotropic hardening and without kinematic hardening is applied exemplary. Generally, any physically nonlinear mechanical model is compatible with the subsequently presented procedure. In contrast to models with interpolated material parameters, the proposed model is able to apply different nonlinear mechanical constitutive equations for each phase separately. The Hadamard compatibility condition and the static force balance are employed as homogenization approaches to calculate the phase-inherent stresses and strains. Several verification cases are discussed. The applicability of the proposed model is demonstrated by simulations of the martensitic transformation and quantitative parameters.
Active Learning and Just-in-Time Teaching in a Material and Energy Balances Course
ERIC Educational Resources Information Center
Liberatore, Matthew W.
2013-01-01
The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…
Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; ...
2016-10-18
In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie
In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe 2
Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; ...
2016-02-29
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe 2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe 2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spinmore » and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe 2 is not strictly two dimensional.« less
Generating a Multiphase Equation of State with Swarm Intelligence
NASA Astrophysics Data System (ADS)
Cox, Geoffrey
2017-06-01
Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.
Accelerated search for materials with targeted properties by adaptive design
Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab
2016-01-01
Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901
REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)
The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...
Modeling runoff generation in a small snow-dominated mountainous catchment
USDA-ARS?s Scientific Manuscript database
Snowmelt in mountainous areas is an important contributor to river water flows in the western United States. We developed a distributed model that calculates solar radiation, canopy energy balance, surface energy balance, snow pack dynamics, soil water flow, snow–soil–bedrock heat exchange, soil wat...
ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY
Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...
Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H
2014-01-01
Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460
Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A
2011-01-30
The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.
The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance
Liu, Kun; Wang, Hongrui; Xiao, Jinzhuang
2015-01-01
The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric of the human body's standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers. Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent was calculated. Finally, the results of the proposed approach were analysed and compared with the traditional method, for which the largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions can be obtained. The multivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-closed conditions. The MLLE value reflects the overall coordination between multisegment movements. Individuals of different ages can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age. PMID:26064182
Germany's Persistent Balance-of-Payments Disequilibrium Revisited. German Studies Notes.
ERIC Educational Resources Information Center
Kindleberger, Charles P.
This essay compares Germany's persistent financial disequilibrium with the balance of payments situation in the United States. Delivered at a Symposium on German Economic Growth and Stability, the author concentrates on Germany's balance of payments surplus and presents U.S. figures mainly as a point of comparison. The material on Germany has been…
Heat flux estimates of power balance on Proto-MPEX with IR imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Showers, M., E-mail: mshower1@vols.utk.edu; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Biewer, T. M.
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.
Fischer, Michael; Bell, Robert G
2014-10-21
The influence of the nature of the cation on the interaction of the silicoaluminophosphate SAPO-34 with small hydrocarbons (ethane, ethylene, acetylene, propane, propylene) is investigated using periodic density-functional theory calculations including a semi-empirical dispersion correction (DFT-D). Initial calculations are used to evaluate which of the guest-accessible cation sites in the chabazite-type structure is energetically preferred for a set of ten cations, which comprises four alkali metals (Li(+), Na(+), K(+), Rb(+)), three alkaline earth metals (Mg(2+), Ca(2+), Sr(2+)), and three transition metals (Cu(+), Ag(+), Fe(2+)). All eight cations that are likely to be found at the SII site (centre of a six-ring) are then included in the following investigation, which studies the interaction with the hydrocarbon guest molecules. In addition to the interaction energies, some trends and peculiarities regarding the adsorption geometries are analysed, and electron density difference plots obtained from the calculations are used to gain insights into the dominant interaction types. In addition to dispersion interactions, electrostatic and polarisation effects dominate for the main group cations, whereas significant orbital interactions are observed for unsaturated hydrocarbons interacting with transition metal (TM) cations. The differences between the interaction energies obtained for pairs of hydrocarbons of interest (such as ethylene-ethane and propylene-propane) deliver some qualitative insights: if this energy difference is large, it can be expected that the material will exhibit a high selectivity in the adsorption-based separation of alkene-alkane mixtures, which constitutes a problem of considerable industrial relevance. While the calculations show that TM-exchanged SAPO-34 materials are likely to exhibit a very high preference for alkenes over alkanes, the strong interaction may render an application in industrial processes impractical due to the large amount of energy required for regeneration. In this respect, SAPOs exchanged with alkaline earth cations could provide a better balance between selectivity and energy cost of regeneration.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
Fujita, Takaaki; Sato, Atsushi; Ohashi, Yuji; Nishiyama, Kazutaka; Ohashi, Takuro; Yamane, Kazuhiro; Yamamoto, Yuichi; Tsuchiya, Kenji; Otsuki, Koji; Tozato, Fusae
2018-05-01
The purpose of this study was to clarify the amount of balance necessary for the independence of transfer and stair-climbing in stroke patients. This study included 111 stroke inpatients. Simple and multiple regression analyses were conducted to establish the association between the FIM ® instrument scores for transfer or stair-climbing and Berg Balance Scale. Furthermore, receiver operating characteristic curves were used to elucidate the amount of balance necessary for the independence of transfer and stair-climbing. Simple and multiple regression analyses showed that the FIM ® instrument scores for transfer and stair-climbing were strongly associated with Berg Balance Scale. On comparison of the independent and supervision-dependent groups, Berg Balance Scale cut-off values for transfer and stair-climbing were 41/40 and 54/53 points, respectively. On comparison of the independent-supervision and dependent groups, the cut-off values for transfer and stair-climbing were 30/29 and 41/40 points, respectively. The calculated cut-off values indicated the amount of balance necessary for the independence of transfer and stair-climbing, with and without supervision, in stroke patients. Berg Balance Scale has a good discriminatory ability and cut-off values are clinically useful to determine the appropriate independence levels of transfer and stair-climbing in hospital wards. Implications for rehabilitation The Berg Balance Scale's (BBS) strong association with transfer and stair-climbing independence and performance indicates that establishing cut-off values is vitally important for the established use of the BBS clinically. The cut-off values calculated herein accurately demonstrate the level of balance necessary for transfer and stair-climbing independence, with and without supervision, in stroke patients. These criteria should be employed clinically for determining the level of independence for transfer and stair-climbing as well as for setting balance training goals aimed at improving transfer and stair-climbing.
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 98.246 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... values are not to be used in the mass balance calculation. (11) If you determine carbon content or... use the mass balance methodology in § 98.243(c), you must report the information specified in... of petrochemical produced, names of other products, and names of carbon-containing feedstocks. (3...
40 CFR 98.246 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values are not to be used in the mass balance calculation. (11) If you determine carbon content or... use the mass balance methodology in § 98.243(c), you must report the information specified in... of petrochemical produced, names of other products, and names of carbon-containing feedstocks. (3...
40 CFR 98.246 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... values are not to be used in the mass balance calculation. (11) If you determine carbon content or... use the mass balance methodology in § 98.243(c), you must report the information specified in... of petrochemical produced, names of other products, and names of carbon-containing feedstocks. (3...
D-3He Spherical Torus Fusion Reactor System Study
1992-04-01
assumed as a reasonable range. A.6 Steady-State Particle Balance The steady-state densities of the various species present in a burning plasma are...determined by a detailed particle balance calculation. In addition to the con- sumption and production of various species in a burning plasma , a
75 FR 4134 - Pipeline Safety: Leak Detection on Hazardous Liquid Pipelines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... http://dms.dot.gov . General information about the PHMSA Office of Pipeline Safety (OPS) can be... of leak detection by tracking product movement is essential to an understanding of line balance... pipelines, the line balance technique for leak detection can often be performed with manual calculations...
12 CFR 204.136 - Treatment of trust overdrafts for reserve requirement reporting purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... requirements of that section. Section 19(b) establishes general reserve requirements on transaction accounts... is adopted under these authorities. (b) Netting of trust account balances. (1) Not all depository... when calculating the balance in a commingled transaction account in the depository institution for the...
Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
NASA Astrophysics Data System (ADS)
Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.
2018-02-01
The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.
Michel Benaire
1976-01-01
Episodical long-range transport is the quasi-instantaneous peak event. It does not express the total dosage of pollutant carried over from the source area to some distant place. The purpose of the present paper is to obtain an average material balance of a pollutant leaving a given area. Available information from the OECD "Long Range Transport of Air Pollutants...
2012-05-31
or events. Unsupported journal vouchers increase the risk of materially misstated balances reported on the AGF financial statements. DFAS...with U.S. generally accepted accounting principles and that the Army automated systems did not support material amounts on the financial statements...files, abnormal balance detection , journal vouchers, and reconciliations between Army and OMB SF 133s and the Statements of Budgetary Resources
Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances
NASA Technical Reports Server (NTRS)
Ferris, A. T.; Moore, T. C.
1981-01-01
Materials and techniques for a transducer capable of obtaining accurate force measurements at cryogenic temperatures (down to 77 K) and high pressures (up to 9 atm) have been determined. Areas of high stress concentration are minimized by balance design, and model and sting attachment methods able to withstand cryogenic temperatures are used. Maraging 200 is the material used for the balances, due to its high impact strength and simple heat treatment procedure. Test results verify that the balances produce reliable, repeatable, and predictable data from 300 K to 110 K under steady state conditions. Techniques have been developed to reduce the temperature-induced bridge output, such as the use of bridges with two gages mounted transverse to the principal stress direction. Under these conditions, the results given by the balances should be equally good during transient temperatures on five of the six components. The work will be used at the National Transonic Facility (NTF) at NASA Langley.
Surface energy and radiation balance systems - General description and improvements
NASA Technical Reports Server (NTRS)
Fritschen, Leo J.; Simpson, James R.
1989-01-01
Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.
Scalable load balancing for massively parallel distributed Monte Carlo particle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, M. J.; Brantley, P. S.; Joy, K. I.
2013-07-01
In order to run computer simulations efficiently on massively parallel computers with hundreds of thousands or millions of processors, care must be taken that the calculation is load balanced across the processors. Examining the workload of every processor leads to an unscalable algorithm, with run time at least as large as O(N), where N is the number of processors. We present a scalable load balancing algorithm, with run time 0(log(N)), that involves iterated processor-pair-wise balancing steps, ultimately leading to a globally balanced workload. We demonstrate scalability of the algorithm up to 2 million processors on the Sequoia supercomputer at Lawrencemore » Livermore National Laboratory. (authors)« less
Carbon Footprint Calculations: An Application of Chemical Principles
ERIC Educational Resources Information Center
Treptow, Richard S.
2010-01-01
Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…
Method of Calibrating a Force Balance
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)
2015-01-01
A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
NASA Astrophysics Data System (ADS)
Li, R.; Arora, V. K.
2012-01-01
Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.
Geochemical cycling, mass balance, and Earth’s dynamic structure (Invited)
NASA Astrophysics Data System (ADS)
Allegre, C. J.
2009-12-01
The use of radiogenic tracers is now established as one of the standard methods (together with seismic tomography) to constrain Earth models. One of the advantages of radiogenic tracers is that they constrain not only present day structures, but also their historical evolution since the earliest time. A mandatory condition is to use not only one but all of the available isotopic systems, with their diverse cycling properties and different radioactive half-lives. Mass balances calculations are the basic tool which allows one to use quantitatively the various tracers. However, the inverse method approach, when applied to mass balance, is strongly non-linear, particularly for tracers with intermediate to short half lives. 142Nd, 82W, and 129Xe allows one to define a consistent model for the Present and past evolutions. Results point to a 3-layer model for the present mantle: an upper mantle with two layers separated by the 450 km discontinuity, and a lower mantle below the 670 km discontinuity. These layers all convect independently though none of them is fully isolated. They exchange matter and energy, not necessarily through the same process. For instance, most hotspots (though not all of them!) are boundary layer instabilities generated at the 670 km discontinuity, but there is important heat transfer from the lower mantle through megablobs. Recent results on the Hadean period are in agreement with core-mantle- atmosphere differentiation at 4444 My. The early crust was mostly anorthositic but has been recycled into the upper mantle within the first billion years. Formation of granitic continents started at 4300 My. 80% of their material was already present on the surface as acidic rocks by 2500 My. The reworking process involved in continental development increased continuously with time and today is the dominant process. Continents are now in a stage of steady state, with general addition of mantle and subducted continental material.
Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinsuo
Pyroprocessing is an electrochemical method based on the molten salt electrolyte, mainly the LiCl-KCl eutectic molten salt, to recycle the used nuclear fuel. For a conceptual design of commercial pyroprocessing facility, tons of special nuclear materials, namely U and Pu, may be involved, which could be used for non-peaceful purposes if they are diverted. Effective safeguards approaches have to be developed prior to the development and construction of a pyroprocessing facility. Present research focused on two main objectives, namely calculating the properties of nuclear species in LiCl-KCl molten salt and developing integrated model to safeguard a pyroprocessing facility. Understanding themore » characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important to understand their behaviors in an electrorefiner. The model development for the separation processes in the pyroprocessing, including electrorefining, actinide drawdown, and rare earth drawdown benefits the understanding of material transport and separation performance of these processes under various conditions. The output signals, such as potential, current, and species concentration contribute to the material balance closure and provide safeguards signatures to detect the scenarios of diversion. U and Pu are the two main elements concerned in this study due to our interest in safeguards.« less
Thermoelectric properties of low-dimensional clathrates from first principles
NASA Astrophysics Data System (ADS)
Kasinathan, Deepa; Rosner, Helge
2011-03-01
Type-I inorganic clathrates are host-guest structures with the guest atoms trapped in the framework of the host structure. From a thermoelectric point of view, they are interesting because they are semiconductors with adjustable bandgaps. Investigations in the past decade have shown that type-I clathrates X8 Ga 16 Ge 30 (X = Ba, Sr, Eu) may have the unusual property of ``phonon glass-electron crystal'' for good thermoelectric materials. Among the known clathrates, Ba 8 Ga 16 Ge 30 has the highest figure of merit (ZT~1). To enable a more widespread usage of thermoelectric technology power generation and heating/cooling applications, ZT of at least 2-3 is required. Two different research approaches have been proposed for developing next generation thermoelectric materials: one investigating new families of advanced bulk materials, and the other studying low-dimensional materials. In our work, we concentrate on understanding the thermoelectric properties of the nanostructured Ba-based clathrates. We use semi-classical Boltzmann transport equations to calculate the various thermoelectric properties as a function of reduced dimensions. We observe that there exists a delicate balance between the electrical conductivity and the electronic part of the thermal conductivity in reduced dimensions. Insights from these results can directly be used to control particle size in nanostructuring experiments.
Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Jezek, Kenneth C.
2001-01-01
An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.
Leak detection by mass balance effective for Norman Wells line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, J.C.P.
Mass-balance calculations for leak detection have been shown as effective as a leading software system, in a comparison based on a major Canadian crude-oil pipeline. The calculations and NovaCorp`s Leakstop software each detected 4% (approximately) or greater leaks on Interprovincial Pipe Line (IPL) Inc.`s Norman Wells pipeline. Insufficient data exist to assess performances of the two methods for leaks smaller than 4%. Pipeline leak detection using such software-based systems are common. Their effectiveness is measured by how small and how quickly a leak can be detected. Algorithms used and measurement uncertainties determine leak detectability.
Saito, Masatoshi
2007-11-01
Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.
ERIC Educational Resources Information Center
Johnson, Christopher
1982-01-01
Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)
78 FR 67225 - Amendments to Material Control and Accounting Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... added to designate material balance areas, item control areas, and custodians? N. Why would calendar...
Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances
NASA Technical Reports Server (NTRS)
Ferris, A. T.
1980-01-01
The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions.
1982-03-01
system. Regenerator flue gas composi- tion, spent catalyst carbon content and regenerated cata- lyst content are monitored for material balance purposes...and good material balance closures obtained. During each run pro- duct gas samples, regenerator flue gas samples, spent and -85- regenerated...TEMPERATURE DEPENDENCE OF DENITROGENATION AT 2 LHSV ON CO/MO ......................... 26 111-2 TEMPERATURE DEPENDENCE OF DESULFURIZATION AT 2 LHSV ON
2011-12-01
significant deficiencies, that results in more than a remote likelihood that a material misstatement of the financial statements will not be prevented or...reconciliations of FBWT collection and disbursement activity, the amount of funds available for expenditure may contain material misstatements ; related...10 GAO-12-132 Fund Balance Reconciliations misstated , and the Department of the Navy is at increased risk of Antideficiency Act violations.31 • The
A two-phase micromorphic model for compressible granular materials
NASA Astrophysics Data System (ADS)
Paolucci, Samuel; Li, Weiming; Powers, Joseph
2009-11-01
We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.
Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca
2011-01-01
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nanoparticles in ionic liquids: interactions and organization.
He, Zhiqi; Alexandridis, Paschalis
2015-07-28
Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.
Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources
NASA Astrophysics Data System (ADS)
Wang, Yao
2018-01-01
The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.
Beibei, Zhou; Quanjiu, Wang; Shuai, Tan
2014-01-01
A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664
Technetium incorporation into goethite (α-FeOOH): An atomic-scale investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Frances N.; Taylor, Christopher D.; Um, Wooyong
2015-11-17
During the processing of low-activity radioactive waste to generate solid waste forms (e.g., glass), technetium-99 (Tc) is of concern because of its volatility. A variety of materials are under consideration to capture Tc from waste streams, including the iron oxyhydroxide, goethite (α-FeOOH), which was experimentally shown to sequester Tc(IV). This material could ultimately be incorporated into glass or other low-temperature waste form matrices. However, questions remain regarding the incorporation mechanism for Tc(IV) in goethite, which has implications for predicting the long-term stability of Tc in waste forms under changing conditions. Here, quantum-mechanical calculations were used to evaluate the energy ofmore » five different charge-compensated Tc(IV) incorporation scenarios in goethite. The two most stable incorporation mechanisms involve direct substitution of Tc(IV) onto Fe(III) lattice sites and charge balancing either by removing one nearby H+ (i.e., within 5 Å), or by creating an Fe(III) vacancy when substituting 3 Tc(IV) for 4 Fe(III), with the former being preferred over the latter relative to gas-phase ions. When corrections for hydrated references phases are applied, the Fe(III)-vacancy mechanism becomes more energetically competitive. Calculated incorporation energies and optimized bond-lengths are presented. Proton movement is observed to satisfy under-coordinated bonds surrounding vacancies in the goethite structure.« less
A coupled problem of finite deformation and flow in porous media
NASA Astrophysics Data System (ADS)
Moussa, A. B.
1980-06-01
A theory for deformation and two phase flow in porous media was developed. Equations of balance of mass, momentum, moment of momentum and energy for each constituent were postulated. These led to equivalent balance equations for the mixture as a whole to which an entropy production inequality was also postulated. The formulation was then applied to the silage material. A constitutive theory was developed for the mixture. General appropriate constitutive assumptions were suggested and made to satisfy the axiom of material objectivity and entropy production inequality. Material incompressibility was defined and introduced into the general form of constitutive relations.
40 CFR 91.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of nitrogen credit status for an engine family, whether generating positive credits or negative... with model year 2000, a manufacturer having a negative credit balance during one period of up to four... regulation under this part of 1000 or less; and (2) The manufacturer has not had a negative credit balance...
40 CFR 1065.140 - Dilution for gaseous and PM constituents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... nitrogen. For gaseous emission measurement the diluent must be at least 15 °C. Note that the composition of... chemical balance equations in § 1065.655 to calculate the mole fraction of water in the dilute exhaust... condensation (either measured or from the chemical balance), and set any negative values to zero. This...
40 CFR 1065.140 - Dilution for gaseous and PM constituents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... nitrogen. For gaseous emission measurement the diluent must be at least 15 °C. Note that the composition of... chemical balance equations in § 1065.655 to calculate the mole fraction of water in the dilute exhaust... condensation (either measured or from the chemical balance), and set any negative values to zero. This...
40 CFR 91.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of nitrogen credit status for an engine family, whether generating positive credits or negative... with model year 2000, a manufacturer having a negative credit balance during one period of up to four... regulation under this part of 1000 or less; and (2) The manufacturer has not had a negative credit balance...
40 CFR 91.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of nitrogen credit status for an engine family, whether generating positive credits or negative... with model year 2000, a manufacturer having a negative credit balance during one period of up to four... regulation under this part of 1000 or less; and (2) The manufacturer has not had a negative credit balance...
40 CFR 91.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of nitrogen credit status for an engine family, whether generating positive credits or negative... with model year 2000, a manufacturer having a negative credit balance during one period of up to four... regulation under this part of 1000 or less; and (2) The manufacturer has not had a negative credit balance...
40 CFR 1065.140 - Dilution for gaseous and PM constituents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... nitrogen. For gaseous emission measurement the diluent must be at least 15 °C. Note that the composition of... chemical balance equations in § 1065.655 to calculate the mole fraction of water in the dilute exhaust... condensation (either measured or from the chemical balance), and set any negative values to zero. This...
40 CFR 1065.140 - Dilution for gaseous and PM constituents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... nitrogen. For gaseous emission measurement the diluent must be at least 15 °C. Note that the composition of... chemical balance equations in § 1065.655 to calculate the mole fraction of water in the dilute exhaust... condensation (either measured or from the chemical balance), and set any negative values to zero. This...
40 CFR 91.207 - Credit calculation and manufacturer compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of nitrogen credit status for an engine family, whether generating positive credits or negative... with model year 2000, a manufacturer having a negative credit balance during one period of up to four... regulation under this part of 1000 or less; and (2) The manufacturer has not had a negative credit balance...
ERIC Educational Resources Information Center
O'Dell, Robin S.
2012-01-01
There are two primary interpretations of the mean: as a leveler of data (Uccellini 1996, pp. 113-114) and as a balance point of a data set. Typically, both interpretations of the mean are ignored in elementary school and middle school curricula. They are replaced with a rote emphasis on calculation using the standard algorithm. When students are…
USDA-ARS?s Scientific Manuscript database
Recent developments in wireless sensor technology and remote sensing algorithms, coupled with increased use of center pivot irrigation systems, have removed several long-standing barriers to adoption of remote sensing for real-time irrigation management. One remote sensing-based algorithm is a two s...
Enhanced method of fast re-routing with load balancing in software-defined networks
NASA Astrophysics Data System (ADS)
Lemeshko, Oleksandr; Yeremenko, Oleksandra
2017-11-01
A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.
An attempt to perform water balance in a Brazilian municipal solid waste landfill.
São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia
2012-03-01
This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fong, B.; Adviento-Borbe, A.; Reba, M. L.; Runkle, B.; Suvocarev, K.
2017-12-01
Biomass burning or field burning is a crop management practice that removes rice straw, reduces tillage, controls pests and releases nutrients for the next cropping season. Current field burning emissions are not included in agricultural field annual emissions largely because of the lack of studies, especially on the field scale. Field burning measurements are important for greenhouse gas emission inventories and quantifying the annual carbon footprint of rice. Paired eddy covariance systems were used to measure energy balance, CO2 fluxes, and H2O fluxes in mid-South US rice fields (total area of 25 ha) before, during and after biomass burning for 20 days after harvest. During the biomass burning, air temperatures increased 29°C, while ambient CO2 concentration increased from 402 to 16,567 ppm and H2O concentrations increased from 18.73 to 25.62 ppt. For the burning period, 67-86 kg CO2 ha-1 period-1 was emitted calculated by integrating fluxes over the biomass burning event. However, the estimated emission using aboveground biomass and combustion factors was calculated as 11,733 kg CO2 ha-1 period-1. Part of the difference could be attributed to sensor sensitivity decreasing 80% during burning for two minutes due to smoke. Net ecosystem exchange (NEE) increased by a factor of two, 1.14 before burning to 2.44 μmol m-2 s-1 possibly due to greater reduction of plant material and photosynthesis following burning. This study highlights the contribution of rice straw burning to total CO2 emissions from rice production.
NASA Astrophysics Data System (ADS)
Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric
2018-06-01
Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.
NASA Astrophysics Data System (ADS)
Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric
2018-03-01
Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.
Review of Potential Wind Tunnel Balance Technologies
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.
2016-01-01
This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.
Schroeder, Sven; Meyer-Hamme, Gesa; Zhang, Jianwei; Epplée, Susanne; Friedemann, Thomas; Hu, Weiguo
2013-01-01
While balancing yin and yang is one basic principle of Chinese medicine, balancing methods for combination of meridians and acupoints had been described throughout the history of Chinese medicine. We have identified six historical systems for combinations of acupuncture points in historical writings. All of them represent symmetrical combinations which are defined by the steps in the Chinese Clock. Taking the historical systems as a basis, we calculated the possible combinations that fit into these systems they revealed, leading to a total of 19 systems offering new balancing combinations. Merging the data of these 19 systems, there are 7 combinatorial options for every meridian. On the basis of this data, we calculated 4-meridian combinations with an ideal balance pattern, which is given when all meridians balance each other. We identified 5 of these patterns for every meridian, so we end up with 60 patterns for all the 12 meridians but we find multiple overlapping. Finally, 15 distinct patterns remain. By combining this theoretical concept with the Image and Mirror Concept, we developed an acupuncture research protocol. This protocol potentially solves some problems of acupuncture trials because it represents a rational reproducible procedure independent of examiner experience, but the resulting treatment is individualized. PMID:23431334
NASA Astrophysics Data System (ADS)
Debele, B.; Bawazir, S. A.
2006-12-01
Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.
McParland, S; Banos, G; McCarthy, B; Lewis, E; Coffey, M P; O'Neill, B; O'Donovan, M; Wall, E; Berry, D P
2012-12-01
Cow energy balance is known to be associated with cow health and fertility; therefore, routine access to data on energy balance can be useful in both management and breeding decisions to improve cow performance. The objective of this study was to determine if individual cow milk mid-infrared spectra (MIR) could be useful to predict cow energy balance across contrasting production systems. Direct energy balance was calculated as the differential between energy intake and energy output in milk and maintenance (maintenance was predicted using body weight). Body energy content was calculated from (change in) body weight and body condition score. Following editing, 2,992 morning, 2,742 midday, and 2,989 evening milk MIR records from 564 lactations on 337 Scottish cows, managed in a confinement system on 1 of 2 diets, were available. An additional 844 morning and 820 evening milk spectral records from 338 lactations on 244 Irish cows offered a predominantly grazed grass diet were also available. Equations were developed to predict body energy status using the milk spectral data and milk yield as predictor variables. Several different approaches were used to test the robustness of the equations calibrated in one data set and validated in another. The analyses clearly showed that the variation in the validation data set must be represented in the calibration data set. The accuracy (i.e., square root of the coefficient of multiple determinations) of predicting, from MIR, direct energy balance, body energy content, and energy intake was 0.47 to 0.69, 0.51 to 0.56, and 0.76 to 0.80, respectively. This highlights the ability of milk MIR to predict body energy balance, energy content, and energy intake with reasonable accuracy. Very high accuracy, however, was not expected, given the likely random errors in the calculation of these energy status traits using field data. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard
NASA Astrophysics Data System (ADS)
Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack
2007-10-01
Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).
Thermal Balance Analysis of a Micro-Thermoelectric Gas Sensor Using Catalytic Combustion of Hydrogen
Nagai, Daisuke; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck
2014-01-01
A thermoelectric gas sensor (TGS) with a combustion catalyst is a calorimetric sensor that changes the small heat of catalytic combustion into a signal voltage. We analyzed the thermal balance of a TGS to quantitatively estimate the sensor parameters. The voltage signal of a TGS was simulated, and the heat balance was calculated at two sections across the thermoelectric film of a TGS. The thermal resistances in the two sections were estimated from the thermal time constants of the experimental signal curves of the TGS. The catalytic combustion heat Qcatalyst required for 1 mV of ΔVgas was calculated to be 46.1 μW. Using these parameters, we find from simulations for the device performance that the expected Qcatalyst for 200 and 1,000 ppm H2 was 3.69 μW and 11.7 μW, respectively. PMID:24451468
Radiation Pressure Measurements on Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.
Radiation Pressure Measurements on Micron-Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.
2003-01-01
Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.
Analysis, calculation and utilization of the k-balance attribute in interdependent networks
NASA Astrophysics Data System (ADS)
Liu, Zheng; Li, Qing; Wang, Dan; Xu, Mingwei
2018-05-01
Interdependent networks, where two networks depend on each other, are becoming more and more significant in modern systems. From previous work, it can be concluded that interdependent networks are more vulnerable than a single network. The robustness in interdependent networks deserves special attention. In this paper, we propose a metric of robustness from a new perspective-the balance. First, we define the balance-coefficient of the interdependent system. Based on precise analysis and derivation, we prove some significant theories and provide an efficient algorithm to compute the balance-coefficient. Finally, we propose an optimal solution to reduce the balance-coefficient to enhance the robustness of the given system. Comprehensive experiments confirm the efficiency of our algorithms.
Analysis of an algae-based CELSS. I - Model development
NASA Technical Reports Server (NTRS)
Holtzapple, Mark T.; Little, Frank E.; Makela, Merry E.; Patterson, C. O.
1989-01-01
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food, O2, the recycle of human waste and trash, H2O, N2, and food production/supply. A simple noniterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.
Analysis of an algae-based CELSS. Part 1: model development
NASA Technical Reports Server (NTRS)
Holtzapple, M. T.; Little, F. E.; Makela, M. E.; Patterson, C. O.
1989-01-01
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.
Comparison of Fission Product Yields and Their Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Harrison
2006-02-01
This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiologicalmore » transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.« less
Dynamical effects in x-ray absorption spectra of graphene and monolayered h -BN on Ni(111)
NASA Astrophysics Data System (ADS)
Rusz, J.; Preobrajenski, A. B.; Ng, May Ling; Vinogradov, N. A.; Mårtensson, N.; Wessely, O.; Sanyal, B.; Eriksson, O.
2010-02-01
We present first-principles calculations of x-ray absorption spectra of graphene and hexagonal BN monolayer on the Ni(111) substrate. Including dynamical core-hole screening effects according to the theory of Mahan-Nozières-de Dominics (MND) results in an overall good agreement with previously published experimental data and our new observations. This approach provides a unified first-principles description of the electronic structure and core excitations in the sp2 -bonded materials on metal surfaces and a better insight into the dynamics of screening effects. We demonstrate in particular that the observed spectral features of graphene and hexagonal BN can be well reproduced with the MND theory, and that they are determined by a delicate balance between initial and final-state effects.
NASA Astrophysics Data System (ADS)
Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.
2017-09-01
Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).
The potential role of aerobic biological waste treatment in regenerative life support systems
NASA Technical Reports Server (NTRS)
Shuler, M. L.; Nafis, D.; Sze, E.
1981-01-01
The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.
Validity and Reliability of Nintendo Wii Fit Balance Scores
Wikstrom, Erik A.
2012-01-01
Context: Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown. Objective: To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores. Design: Descriptive laboratory study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty-five recreationally active participants (age = 27.0 ± 9.8 years, height = 170.9 ± 9.2 cm, mass = 72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury. Intervention(s): Participants completed a single-limb–stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week. Main Outcome Measure(s): Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded. Results: All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r < 0.50). Intrasession reliability for Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC] = 0.80) to poor (ICC = 0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC = 0.74) to poor (ICC = 0.29). Conclusions: Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT reach distances. In addition, the included Wii Fit balance activity scores generally had poor intrasession and intersession reliability. PMID:22892412
Cryogenic balances for the US NTF
NASA Technical Reports Server (NTRS)
Ferris, Alice T.
1989-01-01
Force balances were used to obtain aerodynamic data in the National Transonic Facility (NTF) wind tunnel since it became operational in 1983. These balances were designed, fabricated, gaged, and calibrated to Langley Research Center's specifications to operate over the temperature range of -320 F to +140 F without thermal control. Some of the materials and procedures developed to obtain a balance that would perform in this environment are reviewed. The degree of success in using these balances thus far is reported. Some of the problem areas that need additional work are specified and some of the progress addressing these problems is described.
Balance and Gait Impairment: Sensor-Based Assessment for Patients With Peripheral Neuropathy.
Campbell, Grace; Skubic, Marjorie A
2018-06-01
Individuals with peripheral neuropathy (PN) frequently experience balance and gait impairments that can lead to poor physical function, falls, and injury. Nurses are aware that patients with cancer experience balance and gait impairments but are unsure of optimal assessment and management strategies. This article reviews options for balance and gait assessment for patients diagnosed with cancer experiencing PN, describes advantages and limitations of the various options, and highlights innovative, clinically feasible technologies to improve clinical assessment and management. The literature was reviewed to identify and assess the gold standard quantitative measures for assessing balance and gait. Gold standard quantitative measures are burdensome for patients and not often used in clinical practice. Sensor-based technologies improve balance and gait assessment options by calculating precise impairment measures during performance of simple clinical tests at the point of care.
NASA Astrophysics Data System (ADS)
Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.
The influence of Oort clouds on the mass and chemical balance of the interstellar medium
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Shull, J. Michael
1990-01-01
The contribution of stellar encounters and interstellar erosion to comet cloud mass injection to the ISM is calculated. It is shown that evaporative mass loss from passing stars and SNe results in an average Galactic mass injection rate of up to 10 to the -5th solar mass/yr if such clouds are frequent around solar-type stars. Cometary erosion by interstellar grains produces an injection rate of 10 to the -5th to 10 to the -4th solar mass/yr. An injection rate of 2 x 10 to the -5th solar mass/yr is calculated. Each of these rates could be increased by a factor of about 15 if the comet clouds contain a significant amount of smaller debris. It is concluded that the total mass injection rate of material to the ISM by comet clouds is small compared to other ISM mass injection sources. Comet cloud mass loss to the ISM could be responsible for a sizeable fraction of the metal and dust abundances of the ISM if Oort clouds are common.
Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
40 CFR 91.210 - End-of-year and final reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... must include a calculation of credit balances to show that the credit summation is equal to or greater... point of first retail sale (for example, retail customer or dealer) also called the final product... negative credit balances may be adjusted by EPA. (h) If within 270 days of the end of the model year, EPA...
ERIC Educational Resources Information Center
Carnegie, John W.
This module describes the process used to determine solids mass and location throughout a waste water treatment plant, explains how these values are used to determine the solids mass balance around single treatment units and the entire system, and presents calculations of solids in pounds and sludge units. The instructor's manual contains a…
Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Cano-Plasencia, Ricardo; Gusi, Narcis
2015-01-01
The analysis of brain activity during balance is an important topic in different fields of science. Given that all measurements involve an error that is caused by different agents, like the instrument, the researcher, or the natural human variability, a test-retest reliability evaluation of the electroencephalographic assessment is a needed starting point. However, there is a lack of information about the reliability of electroencephalographic measurements, especially in a new wireless device with dry electrodes. The current study aims to analyze the reliability of electroencephalographic measurements from a wireless device using dry electrodes during two different balance tests. Seventeen healthy male volunteers performed two different static balance tasks on a Biodex Balance Platform: (a) with two feet on the platform and (b) with one foot on the platform. Electroencephalographic data was recorded using Enobio (Neuroelectrics). The mean power spectrum of the alpha band of the central and frontal channels was calculated. Relative and absolute indices of reliability were also calculated. In general terms, the intraclass correlation coefficient (ICC) values of all the assessed channels can be classified as excellent (>0.90). The percentage standard error of measurement oscillated from 0.54% to 1.02% and the percentage smallest real difference ranged from 1.50% to 2.82%. Electroencephalographic assessment through an Enobio device during balance tasks has an excellent reliability. However, its utility was not demonstrated because responsiveness was not assessed.
Energy Balance Bowen Ratio (EBBR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors frommore » instrument offset drift.« less
Energy Balance Bowen Ratio Station (EBBR) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-02-23
The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors frommore » instrument offset drift.« less
Schrödinger and Dirac solutions to few-body problems
NASA Astrophysics Data System (ADS)
Muolo, Andrea; Reiher, Markus
We elaborate on the variational solution of the Schrödinger and Dirac equations for small atomic and molecular systems without relying on the Born-Oppenheimer approximation. The all-particle equations of motion are solved in a numerical procedure that relies on the variational principle, Cartesian coordinates and parametrized explicitly correlated Gaussians functions. A stochastic optimization of the variational parameters allows the calculation of accurate wave functions for ground and excited states. Expectation values such as the radial and angular distribution functions or the dipole moment can be calculated. We developed a simple strategy for the elimination of the global translation that allows to generally adopt laboratory-fixed cartesian coordinates. Simple expressions for the coordinates and operators are then preserved throughout the formalism. For relativistic calculations we devised a kinetic-balance condition for explicitly correlated basis functions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation between all components of the spinor of an N-fermion system. ETH Zürich, Laboratorium für Physikalische Chemie, CH-8093 Zürich, Switzerland.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Coatings on reflective mask substrates
Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.
2002-01-01
A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
The Copper Balance of Cities: Exploratory Insights into a European and an Asian City.
Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-Wen; Brunner, Paul H
2014-05-01
Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available.
Three dimensional calculation of thermonuclear ignition conditions for magnetized targets
NASA Astrophysics Data System (ADS)
Cortez, Ross; Cassibry, Jason; Lapointe, Michael; Adams, Robert
2017-10-01
Fusion power balance calculations, often performed using analytic methods, are used to estimate the design space for ignition conditions. In this paper, fusion power balance is calculated utilizing a 3-D smoothed particle hydrodynamics code (SPFMax) incorporating recent stopping power routines. Effects of thermal conduction, multigroup radiation emission and nonlocal absorption, ion/electron thermal equilibration, and compressional work are studied as a function of target and liner parameters and geometry for D-T, D-D, and 6LI-D fuels to identify the potential ignition design space. Here, ignition is defined as the condition when fusion particle deposition equals or exceeds the losses from heat conduction and radiation. The simulations are in support of ongoing research with NASA to develop advanced propulsion systems for rapid interplanetary space travel. Supported by NASA Innovative Advanced Concepts and NASA Marshall Space Flight Center.
A beat-to-beat calculator for the diastolic pressure time index and the tension time index.
Nose, Y; Tajimi, T; Watanabe, Y; Yokota, M; Akazawa, K; Nakamura, M
1987-01-01
We have developed a beat-to-beat calculator which can calculate in real-time the ratio of the diastolic pressure time index (DPTI), and the tension time index (TTI) as an index of the myocardial oxygen supply/demand balance. Physicians set up presumed value for the left ventricular endodiastolic pressure, a search area for the dicrotic notch, a threshold for the onset of the up-slope and the corresponding value of the calibration signal on the digital switches of the calculator. Next, the arterial pressure analog signal is input into the calculator. The calculator searches automatically for both the onset of the up-slope and the dicrotic notch. The arterial pressure curve is displayed beat-to-beat with the recognized onset and the dicrotic notch on the CRT to be confirmed by physicians. When physicians do not agree with the automatic recognition they can fit the automatic recognition to the observation. If the recognition of the onset is inadequate, the threshold can be re-adjusted to trigger the onset. If recognition of the dicrotic notch is inadequate, the physician can adjust the search-area. Therefore, physicians who operate the calculator can rely on the calculated DPTI/TTI. This calculator can continuously monitor the myocardial oxygen supply/demand balance in patients with acute myocardial infarction or just after open-heart surgery.
Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.
Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos
2014-01-01
Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.
Is muscular strength balance influenced by menstrual cycle in female soccer players?
Dos Santos Andrade, Marília; Mascarin, Naryana C; Foster, Roberta; de Jármy di Bella, Zsuzsanna I; Vancini, Rodrigo L; Barbosa de Lira, Claudio A
2017-06-01
Muscular strength imbalance is an important risk factor for ACL injury, but it is not clear the impact of menstrual cycle on muscular strength balance. Our aims were to compare muscular balance (hamstring-to-quadriceps peak torque strength balance ratio) between luteal and follicular phases and compare gender differences relative to strength balance to observe possible fluctuations in strength balance ratio. Thirty-eight soccer athletes (26 women and 12 men) took part in this study. Athletes participated in two identical isokinetic strength evaluations for both knee (non-dominant [ND] and dominant [D]). Peak torque for quadriceps and hamstring muscles were measured in concentric mode and hamstring-to-quadriceps peak torque strength balance ratio calculated. Women had significantly lower hamstring-to-quadriceps peak torque strength balance ratio during the follicular compared to luteal phase, for the ND limb (P=0.011). However, no differences, between luteal and follicular phases, were observed in the D limb. In men, no difference in strength balance ratios was found between the ND and D limbs. These data may be useful in prevention programs for knee (ACL) injuries among soccer female athletes.
Flutter calculations in three degrees of freedom
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore; Garrick, I E
1942-01-01
The present paper is a continuation of the general study of flutter published in NACA reports nos. 496 and 685. The paper is mainly devoted to flutter in three degrees of freedom (bending, torsion, and aileron) for which a number of selected cases have been calculated and presented in graphical form. The results are analyzed and discussed with regard to the effects of structural damping, of fractional-span ailerons, and of mass-balancing. The analysis shows that more emphasis should be put on the effect of structural damping and less on mass-balancing. The conclusion is drawn that a definite minimum amount of structural damping, which is usually found to be present, is essential in the calculations for an adequate description of the flutter case. Theoretical flutter predictions are thus brought into closer agreement with the facts of experience. A brief discussion is included of a particular biplane that had experienced flutter at about 200 miles per hour. Some simplifications have been achieved in the method of calculation. (author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.E.; Tschanz, J.; Monarch, M.
1996-05-01
The Air Quality Utility Information System (AQUIS) is a database management system that operates under dBASE IV. It runs on an IBM-compatible personal computer (PC) with MS DOS 5.0 or later, 4 megabytes of memory, and 30 megabytes of disk space. AQUIS calculates emissions for both traditional and toxic pollutants and reports emissions in user-defined formats. The system was originally designed for use at 7 facilities of the Air Force Materiel Command, and now more than 50 facilities use it. Within the last two years, the system has been used in support of Title V permit applications at Department ofmore » Defense facilities. Growth in the user community, changes and additions to reference emission factor data, and changing regulatory requirements have demanded additions and enhancements to the system. These changes have ranged from adding or updating an emission factor to restructuring databases and adding new capabilities. Quality assurance (QA) procedures have been developed to ensure that emission calculations are correct even when databases are reconfigured and major changes in calculation procedures are implemented. This paper describes these QA and updating procedures. Some user facilities include light industrial operations associated with aircraft maintenance. These facilities have operations such as fiberglass and composite layup and plating operations for which standard emission factors are not available or are inadequate. In addition, generally applied procedures such as material balances may need special treatment to work in an automated environment, for example, in the use of oils and greases and when materials such as polyurethane paints react chemically during application. Some techniques used in these situations are highlighted here. To provide a framework for the main discussions, this paper begins with a description of AQUIS.« less
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.
Theoretical analysis for the design of the French watt balance experiment force comparator
NASA Astrophysics Data System (ADS)
Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François
2007-09-01
This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.
Theoretical analysis for the design of the French watt balance experiment force comparator.
Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François
2007-09-01
This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.
Quantifying catchment water balances and their uncertainties by expert elicitation
NASA Astrophysics Data System (ADS)
Sebok, Eva; Refsgaard, Jens Christian; Warmink, Jord J.; Stisen, Simon; Høgh Jensen, Karsten
2017-04-01
The increasing demand on water resources necessitates a more responsible and sustainable water management requiring a thorough understanding of hydrological processes both on small scale and on catchment scale. On catchment scale, the characterization of hydrological processes is often carried out by calculating a water balance based on the principle of mass conservation in hydrological fluxes. Assuming a perfect water balance closure and estimating one of these fluxes as a residual of the water balance is a common practice although this estimate will contain uncertainties related to uncertainties in the other components. Water balance closure on the catchment scale is also an issue in Denmark, thus, it was one of the research objectives of the HOBE hydrological observatory, that has been collecting data in the Skjern river catchment since 2008. Water balance components in the 1050 km2 Ahlergaarde catchment and the nested 120 km2 Holtum catchment, located in the glacial outwash plan of the Skjern catchment, were estimated using a multitude of methods. As the collected data enables the complex assessment of uncertainty of both the individual water balance components and catchment-scale water balances, the expert elicitation approach was chosen to integrate the results of the hydrological observatory. This approach relies on the subjective opinion of experts whose available knowledge and experience about the subject allows to integrate complex information from multiple sources. In this study 35 experts were involved in a multi-step elicitation process with the aim of (1) eliciting average annual values of water balance components for two nested catchments and quantifying the contribution of different sources of uncertainties to the total uncertainty in these average annual estimates; (2) calculating water balances for two catchments by reaching consensus among experts interacting in form of group discussions. To address the complex problem of water balance closure, the water balance was separated into five components: precipitation, evapotranspiration, surface runoff, recharge and subsurface outflow. During the study, experts first participated in individual interviews where they gave their opinion on the probability distribution of their water balance component of interest. The average annual values and uncertainty of water balance components and catchment-scale water balances were obtained at a later stage by reaching consensus during group discussions. The obtained water balance errors for the Ahlergaarde catchment and the Holtum catchment were -5 and -62 mm/yr, respectively, with an uncertainty of 66 and 86 mm/yr, respectively. As an advantage of the expert elicitation, drawing on the intuitive experience and capabilities of experts to assess complex, site-specific problems, not only the uncertainty of the water balance error was quantified, but the uncertainty of individual water balance components as well.
Nuclear Weak Rates and Detailed Balance in Stellar Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com
Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect onmore » the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.« less
Key comparison study on peptide purity—synthetic human C-peptide
NASA Astrophysics Data System (ADS)
Josephs, R. D.; Li, M.; Song, D.; Westwood, S.; Stoppacher, N.; Daireaux, A.; Choteau, T.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Flatschart, R.; Borges Oliveira, R.; Melanson, J. E.; Ohlendorf, R.; Henrion, A.; Kinumi, T.; Wong, L.; Liu, Q.; Oztug Senal, M.; Vatansever, B.; Ün, I.; Gören, A. C.; Akgöz, M.; Quaglia, M.; Warren, J.
2017-01-01
Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. More detailed studies on the identification/quantification of peptide related impurities and the hydrolysis efficiency revealed that the integrity of the impurity profile of the related peptide impurities obtained by the participant is crucial for the impact on accuracy of the hCP mass fraction assignment. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the KCRVPepImp. The KCRVPepImp for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The approach to obtain a KCRVhCP for the mass fraction of hCP is based on a mass balance calculation that takes into account the most exhaustive and elaborate set of results for the peptide related impurities KCRVPepImp, the TFA mass fraction value, water and other minor counter ions obtained by the coordinating laboratories. Differences in the quality of the results obtained for both peptides related impurity mass fractions and hCP mass fractions are better weighted and reflected in smaller uncertainties. The KCRVhCP for CCQM-K115 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. In general, mass balance approaches show smaller uncertainties than PICAA approaches and the majority of results obtained by the PICAA approach are in agreement because of larger corresponding uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
SSME alternate turbopump (pump section) axial load analysis
NASA Technical Reports Server (NTRS)
Crease, G. A.; Rosello, A., Jr.; Fetfatsidis, A. K.
1989-01-01
A flow balancing computer program constructed to calculate the axial loads on the Space Shuttle Main Engine (SSME) alternate turbopumps (ATs) pump sections are described. The loads are used in turn to determine load balancing piston design requirements. The application of the program to the inlet section, inducer/impeller/stage, bearings, seals, labyrinth, damper, piston, face and corner, and stationary/rotating surfaces is indicated. Design analysis results are reported which show that the balancing piston's designs are adequate and that performance and life will not be degraded by the turbopump's axial load characteristics.
Butler, Robert J; Lehr, Michael E; Fink, Michael L; Kiesel, Kyle B; Plisky, Phillip J
2013-09-01
Field expedient screening tools that can identify individuals at an elevated risk for injury are needed to minimize time loss in American football players. Previous research has suggested that poor dynamic balance may be associated with an elevated risk for injury in athletes; however, this has yet to be examined in college football players. To determine if dynamic balance deficits are associated with an elevated risk of injury in collegiate football players. It was hypothesized that football players with lower performance and increased asymmetry in dynamic balance would be at an elevated risk for sustaining a noncontact lower extremity injury. Prospective cohort study. Fifty-nine collegiate American football players volunteered for this study. Demographic information, injury history, and dynamic balance testing performance were collected, and noncontact lower extremity injuries were recorded over the course of the season. Receiver operator characteristic curves were calculated based on performance on the Star Excursion Balance Test (SEBT), including composite score and asymmetry, to determine the population-specific risk cut-off point. Relative risk was then calculated based on these variables, as well as previous injury. A cut-off point of 89.6% composite score on the SEBT optimized the sensitivity (100%) and specificity (71.7%). A college football player who scored below 89.6% was 3.5 times more likely to get injured. Poor performance on the SEBT may be related to an increased risk for sustaining a noncontact lower extremity injury over the course of a competitive American football season. College football players should be screened preseason using the SEBT to identify those at an elevated risk for injury based upon dynamic balance performance to implement injury mitigation strategies to this specific subgroup of athletes.
Application of Temperature Sensitivities During Iterative Strain-Gage Balance Calibration Analysis
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2011-01-01
A new method is discussed that may be used to correct wind tunnel strain-gage balance load predictions for the influence of residual temperature effects at the location of the strain-gages. The method was designed for the iterative analysis technique that is used in the aerospace testing community to predict balance loads from strain-gage outputs during a wind tunnel test. The new method implicitly applies temperature corrections to the gage outputs during the load iteration process. Therefore, it can use uncorrected gage outputs directly as input for the load calculations. The new method is applied in several steps. First, balance calibration data is analyzed in the usual manner assuming that the balance temperature was kept constant during the calibration. Then, the temperature difference relative to the calibration temperature is introduced as a new independent variable for each strain--gage output. Therefore, sensors must exist near the strain--gages so that the required temperature differences can be measured during the wind tunnel test. In addition, the format of the regression coefficient matrix needs to be extended so that it can support the new independent variables. In the next step, the extended regression coefficient matrix of the original calibration data is modified by using the manufacturer specified temperature sensitivity of each strain--gage as the regression coefficient of the corresponding temperature difference variable. Finally, the modified regression coefficient matrix is converted to a data reduction matrix that the iterative analysis technique needs for the calculation of balance loads. Original calibration data and modified check load data of NASA's MC60D balance are used to illustrate the new method.
Balanced mechanical resonator for powder handling device
NASA Technical Reports Server (NTRS)
Sarrazin, Philippe C. (Inventor); Brunner, Will M. (Inventor)
2012-01-01
A system incorporating a balanced mechanical resonator and a method for vibration of a sample composed of granular material to generate motion of a powder sample inside the sample holder for obtaining improved analysis statistics, without imparting vibration to the sample holder support.
Computer Series, 37: Bits and Pieces, 14.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1983-01-01
Thirteen computer/calculator programs (available from authors) are described. These include: representation of molecules as 3-D models; animated 3-D graphical display of line drawings of molecules; principles of Fourier-transform nuclear magnetic resonance; tutorial program for pH calculation; balancing chemical reactions using a hand-held…
Can quantum coherent solar cells break detailed balance?
NASA Astrophysics Data System (ADS)
Kirk, Alexander P.
2015-07-01
Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and the participant's benefits are based solely on the account balance. No set benefit is promised in..., expenses, gains and losses attributable thereto, the balance in such an account represents the amount... benefit is $40,000 minus $16,000 or $24,000—too low to fall within the exemption. (ii) Defined benefit...
NASA Technical Reports Server (NTRS)
Johnson, W.
1976-01-01
A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40 by 80 ft wind tunnel. A model for ground resonance calculations is also described.
NASA Astrophysics Data System (ADS)
Jarosch, Klaus; Oberson, Astrid; Emmanuel, Frossard; Gunst, Lucie; Dubois, David; Mäder, Paul; Mayer, Jochen
2017-04-01
Background: The adequate supply with phosphorus (P) is crucial to maintain constant yields in all cropping systems. It remains yet unclear whether P in organic farming systems may become a limiting factor for plant nutrition in the long term. Material and Methods: The DOK long-term field trial was established in 1978 to compare different farming systems. The trial consists of two organic (biodynamic (DYN), bioorganic (ORG)) and two conventional treatments (using farmyard manure plus mineral fertilizer (KON) and mineral fertilizer only (MIN, established in 1985)). In a control treatment (NON) no fertilizer is applied. The fertilization for the organic treatments DYN and ORG is defined on manure production of 1.4 livestock units (since 1992), while before that 1.2 livestock units were used as reference. Fertilization on the conventional treatments KON and MIN is defined by Swiss fertilization guidelines. Treatments DYN, ORG and KON are maintained at full fertilization level (2) as well as halved fertilization level (1) while treatment MIN is only maintained at fertilization level 2. All treatments are maintained with the same crop rotation with a period of 7 years. An annual P-balance was calculated, based on the input factors 1) fertilization, 2) seeds and 3) deposition and the output factors 4) removal with crop yields and 5) leaching. The factors fertilization and removal with crop yields were based on documentation since trial establishment. Factor seeds was estimated based on documented quantity of used seeds per treatment and factors deposition and leaching were estimated by values available in literature. Additionally, P availability was determined via isotopic exchange kinetics (IEK) experiments after each crop rotation period (7 years). The IEK experiments allow to estimate the rate of P exchange from soil into soil solution and thus to estimate plant P availability over a cropping period. Results and Conclusions: Main influencing parameters of the P-balance were the factors fertilization and the removal with cropping products. Other inputs (deposition, seeds) and outputs (leaching) were of minor importance for the outcome of the balance for all treatments. For the treatments KON2 and M we observed a slightly positive P-balance of 3 and 6 kg ha-1 year-1, respectively. All other treatments showed a negative P-balance, even in the systems with high fertilization levels (DYN2 and ORG2). The deficit in the P-balance was even more pronounced in the farming systems with reduced fertilizer application rates DYN1, ORG1 and KON1 (-11 to -13 kg ha-1 year-1). The unfertilized control (NON) showed the highest deficit with -19 kg ha-1 year-1. The calculated P-balance suggests that the full fertilization level in treatments DYN2 and ORG2 is not sufficient to mitigate the entire P removal. This deficit is even more pronounced on treatments with less fertilization. In the long term, this fertilization practice may lead to P limitation, especially in the organic treatments. Phosphorus availability determined by IEK in the top soil (0-20 cm) declined with time in all treatments. This decline may currently already limit crop yield in some farming systems, yet, a redistribution of P from deeper soil layers seems to mitigate this limitation. Additionally, the relatively high P-status in the soil prior to initiation of the DOK trial may currently still buffer against P-limitation for plants. The results of this study will be discussed in regard to sustainable P use in different farming systems.
Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test
NASA Astrophysics Data System (ADS)
Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin
2014-07-01
A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.
NASA Astrophysics Data System (ADS)
McCulley, Jonathan M.
This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel grain. Multiple fuel grains with various ABS-to-Paraffin mass ratios were fabricated and burned with nitrous oxide. Analytical predictions for end-to-end motor performance and fuel regression are compared against static test results. Baseline fuel grain regression calculations use an enthalpy balance energy analysis with the material and thermodynamic properties based on the mean paraffin/ABS mass fractions within the fuel grain. In support of these analytical comparisons, a novel method for propagating the fuel port burn surface was developed. In this modeling approach the fuel cross section grid is modeled as an image with white pixels representing the fuel and black pixels representing empty or burned grid cells.
NASA Astrophysics Data System (ADS)
Tsurumi, Makoto; Takahashi, Akira; Ichikuni, Masami
An iterative least-squares method with a receptor model was applied to the analytical data of the precipitation samples collected at 23 points in the suburban area of Tokyo, and the number and composition of the source materials were determined. Thirty-nine monthly bulk precipitation samples were collected in the spring and summer of 1987 from the hilly and mountainous area of Tokyo and analyzed for Na +, K +, NH 4+, Mg 2+, Ca 2+, F -, Cl -, Br -, NO 3- and SO 42- by atomic absorption spectrometry and ion chromatography. The pH of the samples was also measured. A multivariate ion balance approach (Tsurumi, 1982, Anal. Chim. Acta138, 177-182) showed that the solutes in the precipitation were derived from just three major sources; sea salt, acid substance (a mixture of 53% HNO 3, 39% H 2SO 4 and 8% HCl in equivalent) and CaSO 4. The contributions of each source to the precipitation were calculated for every sampling site. Variations of the contributions with the distance from the coast were also discussed.
AFM-porosimetry: density and pore volume measurements of particulate materials.
Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C
2008-06-01
We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.
Li, Li; Lei, Yalin; Xu, Qun; Wu, Sanmang; Yan, Dan; Chen, Jiabin
2017-10-01
The rapid development of coal industry in Shanxi province in China has important effects on its economic development. A large amount of money has been invested into the coal industry and other related industries during the recent years. However, research on the investment effect of Shanxi's coal industry was rare. In order to analyze the investment effect of coal industry, based on the crowding-out effect model, cointegration test, and the data available in Shanxi Statistical Yearbooks, this paper calculates the effect between coal industry investment and other 17 industry investment. The results show that the investment of coal industry produces crowding-out effect on food industry, building materials industry, and machinery industry. Increasing 1% of the coal industry investment can reduce 0.25% of the food industry investment, or 0.6% of building materials industry investment, or 0.52% of the machinery industry investment, which implies that Shanxi province should adjust coal industrial structure, promote the balance development of coal industry and other industries, so as to promote its economic growth.
Functional materials discovery using energy-structure-function maps
NASA Astrophysics Data System (ADS)
Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A.; Chong, Samantha Y.; Slater, Benjamin J.; McMahon, David P.; Bonillo, Baltasar; Stackhouse, Chloe J.; Stephenson, Andrew; Kane, Christopher M.; Clowes, Rob; Hasell, Tom; Cooper, Andrew I.; Day, Graeme M.
2017-03-01
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Functional materials discovery using energy-structure-function maps.
Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M
2017-03-30
Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.
Thermal balance of the atmospheres of Jupiter and Uranus
NASA Technical Reports Server (NTRS)
Friedson, A. J.; Ingersoll, A. P.
1986-01-01
Two-dimensional, radiative-convective-dynamical models of the visible atmospheres of Jupiter and Uranus are presented. Zonally-averaged temperatures and heat fluxes are calculated numerically as functions of pressure and latitude. In addition to radiative heat fluxes, the dynamical heat flux due to large-scale baroclinic eddies is included and is parametrized using a mixing length theory which gives heat fluxes similar to those of Stone. The results for Jupiter indicate that the internal heat flow is non-uniform in latitude and nearly balances the net radiative flux leaving the atmosphere. The thermal emission is found to be uniform in latitude in agreement with Pioneer and Voyager observations. Baroclinic eddies are calculated to transport only a small amount of the meridional heat flow necessary to account for the uniformity of thermal emission with latitude. The bulk of the meridional heat transfer is found to occur very deep in the stable interior of Jupiter as originally proposed by Ingersoll and Porco. The relative importance of baroclinic eddies vs. internal heat flow in the thermal balance of Uranus depends on the ratio of emitted thermal power to absorbed solar power. The thermal balance of Uranus is compared to that of Jupiter for different values of this ratio.
The energy balance and pressure in the solar transition zone for network and active region features
NASA Technical Reports Server (NTRS)
Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.
1979-01-01
The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).
Hannon, Joseph; Garrison, J Craig; Conway, John
2014-05-01
/ Lower extremity balance deficits have been shown to lead to altered kinematics and increased injury risk in lower extremity athletes. The purpose of this study was to compare lower extremity balance in baseball players with an ulnar collateral ligament (UCL) tear pre-operatively and post-operatively at the beginning of the pre-return to throwing program stage of rehabilitation (3 months). Thirty-three competitive high school and collegiate male baseball players (18.5 ± 3.2) with a diagnosed UCL tear volunteered for the study. Of the 33 baseball players 29 were pitchers, 1 was a catcher, and 3 were infielders. Participants were seen pre-operatively and at 3 months post operatively. This 3 month point was associated with a follow-up visit to the orthopedic surgeon and subsequent release to begin the pre-return to throwing mark for baseball players following their surgery. Following surgery, each participant followed a standard UCL protocol which included focused lower extremity balance and neuromuscular control exercises. Participants were tested for single leg balance using the Y-Balance Test™ - Lower Quadrant (YBT-LQ) on both their lead and stance limbs. YBT-LQ composite scores were calculated for the stance and lead limbs pre- and post-operatively and compared over time. Paired t-tests were used to calculate differences between time 1 and time 2 (p < 0.05). Baseball players with diagnosed UCL tears demonstrated significant balance deficits on their stance (p < .001) and lead (p = .009) limbs prior to surgery compared to balance measures at the 3-month follow up (Stance Pre-Op = 89.4 ± 7.5%; Stance 3 Month = 94.9 ± 9.5%) (Lead Pre-Op = 90.2 ± 6.7%; Lead 3 Month = 93.6 ± 7.2%). Based on the results of this study, lower extremity balance is altered in baseball players with UCL tears prior to surgery. Statistically significant improvements were seen and balance measures improved at the time of return to throwing. Level 2b.
NASA Astrophysics Data System (ADS)
Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.
2009-04-01
Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to model performance. The development and testing of methods to reduce regionally variable biases in entire fields of RCM output should be a focus of pursuing studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Vincent K., E-mail: vincent.shen@nist.gov; Siderius, Daniel W.
2014-06-28
Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phasemore » transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.« less
NASA Astrophysics Data System (ADS)
Shen, Vincent K.; Siderius, Daniel W.
2014-06-01
Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called "breathing" of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.
Materials Data on TiNi (SG:157) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CdAu (SG:157) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-03-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KP (SG:19) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PdC (SG:216) by Materials Project
Kristin Persson
2016-09-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PdC (SG:225) by Materials Project
Kristin Persson
2016-09-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PuSe (SG:225) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiRe (SG:221) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-23
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca (SG:139) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca (SG:229) by Materials Project
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiC (SG:225) by Materials Project
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PuB (SG:225) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoP (SG:225) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoP (SG:221) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-07-26
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YSb2 (SG:21) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-04-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaN (SG:216) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-09-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaN (SG:221) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-09-25
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KWO3 (SG:221) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-07-17
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaAs (SG:189) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on InN (SG:186) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SnPd (SG:62) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrO (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyTh (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on In (SG:194) by Materials Project
Kristin Persson
2016-02-11
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdGe (SG:63) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CrO (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgPt (SG:198) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USnPt (SG:216) by Materials Project
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Be (SG:136) by Materials Project
Kristin Persson
2016-09-17
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd (SG:229) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyNi (SG:62) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SbIr (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaSe (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaSe (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BPS4 (SG:23) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GaN (SG:216) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GaN (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GaN (SG:194) by Materials Project
Kristin Persson
2016-09-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GaN (SG:186) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TlBr (SG:225) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TlBr (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TlBr (SG:63) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:12) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuP (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:64) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoPSe (SG:61) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:225) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:0) by Materials Project
Kristin Persson
2016-02-11
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:13) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuPPt (SG:187) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NpP (SG:225) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:74) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:2) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:221) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on FeP (SG:62) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:166) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaPAu (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:59) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:166) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:1) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:15) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:227) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:63) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:139) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:10) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:166) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-23
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:12) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:74) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:10) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-04
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:2) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:194) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:62) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:136) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:11) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:160) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:87) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2014-09-30
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:1) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U (SG:136) by Materials Project
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U (SG:63) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U (SG:229) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U (SG:102) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U (SG:225) by Materials Project
Kristin Persson
2016-09-18
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuS (SG:63) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuS (SG:194) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuS (SG:225) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-04-25
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BiO (SG:160) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:14) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2017-04-14
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaSi (SG:15) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VS2 (SG:2) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-04
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoMo (SG:221) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SiS (SG:53) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:53) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:1) by Materials Project
Kristin Persson
2016-02-11
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:134) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:166) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BNCl2 (SG:146) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:134) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BAs (SG:216) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiB (SG:216) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:166) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoW (SG:221) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-09-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg (SG:229) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations