Microprocessor-Controlled Laser Balancing System
NASA Technical Reports Server (NTRS)
Demuth, R. S.
1985-01-01
Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.
Perry, Stephen D; Radtke, Alison; Goodwin, Chris R
2007-01-01
The purpose of this study was to determine the influence of different midsole hardnesses on dynamic balance control during unexpected gait termination. Twelve healthy young female adults were asked to walk along an 8-m walkway, looking straight ahead. During 25% of the trials, they were signaled (via an audio buzzer) to terminate gait within the next two steps. The four experimental conditions were: (1) soft (A15); (2) standard (A33); (3) hard (A50); (4) barefoot. Center of mass (COM) position relative to the lateral base of support (BOS), center of mass-center of pressure (COM-COP) difference and vertical loading rate were used to evaluate the influence of midsole material on dynamic balance control. The results were a decrease in the medial-lateral range of COM with respect to the lateral BOS, a reduction in the maximum COM-COP difference and an increase in the vertical loading rate due to the presence and hardness level of the midsole material when compared to the barefoot condition. The primary outcomes of this study have illustrated the influence of midsole hardness as an impediment to dynamic balance control during responses to gait termination. In conclusion, the present study suggests that variations in midsole material and even the presence of it, impairs the dynamic balance control system.
78 FR 67225 - Amendments to Material Control and Accounting Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... Amendments to Material Control and Accounting Regulations AGENCY: Nuclear Regulatory Commission. ACTION... for material control and accounting (MC&A) of special nuclear material (SNM). The goal of this... added to designate material balance areas, item control areas, and custodians? N. Why would calendar...
1980-02-01
maneuver conditions, and transmit the net axial thrust force between the turbine and fan sections due to pressure and aero dynamic gas loads . 49 Lm...stiffness composite material shaft. Both~~ balancing demonstration and the composite shaft design ad as their objective the management of small turbofan ...CONFIGURATIONS 99 LIST OF ILLUSTRATIONS Figure Title Page 1 High Speed Balancing Program Schedule 4 2 Teledyne CAE Model 471-11DX Turbofan Engine
Water in the critical zone: soil, water and life from profile to planet
NASA Astrophysics Data System (ADS)
Kirkby, Mike
2015-04-01
Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.
10 CFR 75.10 - Facility information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... features of the facility relating to material accounting, containment, and surveillance; (4) A description of the existing and proposed procedures at the facility for nuclear material accounting and control, with special reference to material balance areas established by the licensee, measurement of flow, and...
Process monitoring in modern safeguards applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehinger, M.H.
1989-11-01
From the safeguards standpoint, regulatory requirements are finally moving into the modern world of communication and information processing. Gone are the days when the accountant with the green eye shade and arm bands made judgments on the material balance a month after the balance was closed. The most recent Nuclear Regulatory Commission (NRC) regulations and U.S. Department of Energy (DOE) orders have very strict standards for timeliness and sensitivity to loss or removal of material. The latest regulations recognize that plant operators have a lot of information on and control over the location and movement of material within their facilities.more » This information goes beyond that traditionally reported under accountability requirements. These new regulations allow facility operators to take credit for many of the more informal process controls.« less
Liquefaction of sub-bituminous coal
Schindler, Harvey D.; Chen, James M.
1986-01-01
Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
40 CFR 63.753 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the control system is calculated to be less than 81%, the initial material balance calculation, and... used, (A) each rolling period when the overall control efficiency of the control system is calculated... the overall control efficiency of the control system is calculated to be less than 81%, the initial...
Cryogenic balances for the US NTF
NASA Technical Reports Server (NTRS)
Ferris, Alice T.
1989-01-01
Force balances were used to obtain aerodynamic data in the National Transonic Facility (NTF) wind tunnel since it became operational in 1983. These balances were designed, fabricated, gaged, and calibrated to Langley Research Center's specifications to operate over the temperature range of -320 F to +140 F without thermal control. Some of the materials and procedures developed to obtain a balance that would perform in this environment are reviewed. The degree of success in using these balances thus far is reported. Some of the problem areas that need additional work are specified and some of the progress addressing these problems is described.
Mathematical model of whole-process calculation for bottom-blowing copper smelting
NASA Astrophysics Data System (ADS)
Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song
2017-11-01
The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.
Relational Database Design of a Shipboard Ammunition Inventory, Requisitioning, and Reporting System
1990-06-01
history of transactions effecting the status or quantity of that NI1N. Information on the current inventory balance is obtained from this section of...Number * Julian Date of Transaction * Activity Classification Code (ACC) * NALC * N1IN * Condition Code * Beginning Balance * Serial Number (if applicable...Ending Balance * Remarks As with the inventory information, ATR format varies with the type of control (Material Condition Code) applicable to that
The Alliance of Advanced Process Control and Accountability – A Future Safeguards-By-Design Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Bresee, James C.; Paviet, Patricia D.
For any chemical separation process producing a valuable product, a material balance is an important process control measurement. That is particularly true for the separation of actinides from irradiated nuclear fuel, not only for their intrinsic value but also because an incomplete material balance may indicate diversion for unauthorized use. The DOE Office of Nuclear Energy is currently carrying out at the Pacific Northwest National Laboratory an experimental measurement of how well and with what precision current technologies can implement near real-time actinide material balances. This measurement effort is called the CoDCon project. It involves the separation of a productmore » with a 70/30 uranium/plutonium mass ratio. Initial tests will use dissolved fuel simulants prepared with pure uranium and plutonium nitrates at the same input ratios as irradiated fuel. Subsequent testing with actual irradiated fuel would be done to verify the results obtained with simulants. The experiments will use advanced on-line instrumentation supported by dynamic process models. Since accountability uncertainties could mask diversions, the aim of the project is not only to measure present-day capabilities but also, through sensitivity analyses, to identify those measurements with the greatest potential for overall material-balance improvements. The latter results will help identify priorities for future fuel cycle R&D programs. Advanced separations process control and material accountability technologies thus have a common goal: to provide the best tools available for safeguards-by-design [defined by the International Atomic Energy Agency (IAEA) as the integration of the design of a new nuclear facility through planning, construction, operation and decommissioning]. Since the potential domestic use of CoDCon results may be later than their possible foreign applications, arrangements may be feasible for possible bilateral or multinational cooperation in the CoDCon project.« less
Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph
2017-01-01
Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE
The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL
The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...
Prediction and Control of Noise and Vibration in Rail Transit Systems
DOT National Transportation Integrated Search
1978-09-01
The purpose of this report is to present a balanced introductory view of noise from rail transportation systems and its control, and to provide references to more specialized material. The emphasis is on urban transit systems. However, data on interc...
Tuning the instrument: sonic properties in the spider's web
Soler, A.; Siviour, C. R.; Zaera, R.; Vollrath, F.
2016-01-01
Spider orb webs are multifunctional, acting to absorb prey impact energy and transmit vibratory information to the spider. This paper explores the links between silk material properties, propagation of vibrations within webs and the ability of the spider to control and balance web function. Combining experimental and modelling approaches, we contrast transverse and longitudinal wave propagation in the web. It emerged that both transverse and longitudinal wave amplitude in the web can be adjusted through changes in web tension and dragline silk stiffness, i.e. properties that can be controlled by the spider. In particular, we propose that dragline silk supercontraction may have evolved as a control mechanism for these multifunctional fibres. The various degrees of active influence on web engineering reveals the extraordinary ability of spiders to shape the physical properties of their self-made materials and architectures to affect biological functionality, balancing trade-offs between structural and sensory functions. PMID:27605164
10 CFR 72.72 - Material balance, inventory, and records requirements for stored materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Material balance, inventory, and records requirements for stored materials. 72.72 Section 72.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING...-RELATED GREATER THAN CLASS C WASTE Records, Reports, Inspections, and Enforcement § 72.72 Material balance...
10 CFR 72.72 - Material balance, inventory, and records requirements for stored materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Material balance, inventory, and records requirements for stored materials. 72.72 Section 72.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING...-RELATED GREATER THAN CLASS C WASTE Records, Reports, Inspections, and Enforcement § 72.72 Material balance...
Doping-assisted defect control in compound semiconductors
Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell
2006-07-11
The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Lee, Myung Mo; Lee, Kyeong Jin; Song, Chang Ho
2018-04-27
BACKGROUND Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. MATERIAL AND METHODS Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. RESULTS At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). CONCLUSIONS Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.
Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test
NASA Astrophysics Data System (ADS)
Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin
2014-07-01
A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
Mapping the coupled role of structure and materials in mechanics of platelet-matrix composites
NASA Astrophysics Data System (ADS)
Farzanian, Shafee; Shahsavari, Rouzbeh
2018-03-01
Despite significant progresses on understanding and mimicking the delicate nano/microstructure of biomaterials such as nacre, decoding the indistinguishable merger of materials and structures in controlling the tradeoff in mechanical properties has been long an engineering pursuit. Herein, we focus on an archetype platelet-matrix composite and perform ∼400 nonlinear finite element simulations to decode the complex interplay between various structural features and material characteristics in conferring the balance of mechanical properties. We study various combinatorial models expressed by four key dimensionless parameters, i.e. characteristic platelet length, matrix plasticity, platelet dissimilarity, and overlap offset, whose effects are all condensed in a new unifying parameter, defined as the multiplication of strength, toughness, and stiffness over composite volume. This parameter, which maximizes at a critical characteristic length, controls the transition from intrinsic toughening (matrix plasticity driven without crack growths) to extrinsic toughening phenomena involving progressive crack propagations. This finding, combined with various abstract volumetric and radar plots, will not only shed light on decoupling the complex role of structure and materials on mechanical performance and their trends, but provides important guidelines for designing lightweight staggered platelet-matrix composites while ensuring the best (balance) of their mechanical properties.
NASA Technical Reports Server (NTRS)
Thompson, Bryan
2000-01-01
This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Federal Acquisition Regulation Supplement; Balance of Payments Program Exemption for Commercial... Balance of Payments Program for construction material that is commercial information technology. DATES..., Balance of Payments Program--Construction Material, and 252.225- 7045, Balance of Payments Program...
Spray automated balancing of rotors: Methods and materials
NASA Technical Reports Server (NTRS)
Smalley, Anthony J.; Baldwin, Richard M.; Schick, Wilbur R.
1988-01-01
The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials.
Emission current control system for multiple hollow cathode devices
NASA Technical Reports Server (NTRS)
Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)
1988-01-01
An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.
40 CFR 63.4161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...
40 CFR 63.4161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...
40 CFR 63.4161 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...
Lee, Myung Mo; Lee, Kyeong Jin
2018-01-01
Background Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. Material/Methods Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. Results At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). Conclusions Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs. PMID:29702630
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
Controlling Emergent Ferromagnetism at Complex Oxide Interfaces
NASA Astrophysics Data System (ADS)
Grutter, Alexander
The emergence of complex magnetic ground states at ABO3 perovskite heterostructure interfaces is among the most promising routes towards highly tunable nanoscale materials for spintronic device applications. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains a highly challenging materials physics problems. In particular, generating and tuning ferromagnetism localized at the interface of two non-ferromagnetic materials is of fundamental and technological interest. An ideal model system in which to study such effects is the CaRuO3/CaMnO3 interface, where the constituent materials are paramagnetic and antiferromagnetic in the bulk, respectively. Due to small fractional charge transfer to the CaMnO3 (0.07 e-/Mn) from the CaRuO3, the interfacial Mn ions are in a canted antiferromagnetic state. The delicate balance between antiferromagnetic superexchange and ferromagnetic double exchange results in a magnetic ground state which is extremely sensitive to perturbations. We exploit this sensitivity to achieve control of the magnetic interface, tipping the balance between ferromagnetic and antiferromagnetic interactions through octahedral connectivity modification. Such connectivity effects are typically tightly confined to interfaces, but by targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state. These results demonstrate the extreme sensitivity of the magnetic state to the magnitude of the charge transfer, suggesting the potential for direct electric field control. We achieve such electric field control through direct back gating of a CaRuO3/CaMnO3 bilayer. Thus, the CaRuO3/CaMnO3 system provides new insight into how charge transfer, interfacial symmetry, and electric fields may be used to control ferromagnetism at the atomic scale.
Wammes, Birgitte; Breedveld, Boudewijn; Kremers, Stef; Brug, Johannes
2006-08-01
To help people prevent weight gain, the Netherlands Nutrition Centre initiated the 'balance intervention', which promotes moderation of food intake and/or increased physical activity in response to occasions of overeating. The aim of this study was to determine whether intervention materials were appreciated, encouraged information seeking and increased motivation and caloric compensatory behaviours. A three-group randomized trial with pre-intervention measures (n = 963, response 86%) and post-intervention measures (n = 857) using electronic questionnaires was conducted among participants aged 25-40 years, recruited from an Internet research panel. The first group received a printed brochure and electronic newsletters (print group), the second group was exposed to radio advertisements (radio group) and the third group was the control group. Multiple regression analyses were used to investigate the impact of the materials on self-reported prevalence of overeating, attitudes, perceived behavioural control, intentions and compensatory behaviours. At follow-up, we found significantly more positive attitudes, intentions and dietary action in the print and radio groups. However, participants who received the radio advertisement had a significantly lower perceived behavioural control. No effects were found on the prevalence of overeating. The results indicate that the intervention materials have potential for increasing people's attitudes, motivation and self-reported behaviour actions, with a possible negative side-effect on perceived behavioural control.
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward
2015-01-01
Background One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Material/Methods Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40–80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Results Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. Conclusions All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise. PMID:26454826
Jeon, Mi Yang; Jeong, HyeonCheol; Petrofsky, Jerrold; Lee, Haneul; Yim, JongEun
2014-01-01
Background Falling can lead to severe health issues in the elderly and importantly contributes to morbidity, death, immobility, hospitalization, and early entry to long-term care facilities. The aim of this study was to devise a recurrent fall prevention program for elderly women in rural areas. Material/Methods This study adopted an assessor-blinded, randomized, controlled trial methodology. Subjects were enrolled in a 12-week recurrent fall prevention program, which comprised strength training, balance training, and patient education. Muscle strength and endurance of the ankles and the lower extremities, static balance, dynamic balance, depression, compliance with preventive behavior related to falls, fear of falling, and fall self-efficacy at baseline and immediately after the program were assessed. Sixty-two subjects (mean age 69.2±4.3 years old) completed the program – 31 subjects in the experimental group and 31 subjects in the control group. Results When the results of the program in the 2 groups were compared, significant differences were found in ankle heel rise test, lower extremity heel rise test, dynamic balance, depression, compliance with fall preventative behavior, fear of falling, and fall self-efficacy (p<0.05), but no significant difference was found in static balance. Conclusions This study shows that the fall prevention program described effectively improves muscle strength and endurance, balance, and psychological aspects in elderly women with a fall history. PMID:25394805
Evaluation of blood oxidant/antioxidant balance in dogs with sarcoptic mange.
Camkerten, Ilker; Sahin, T; Borazan, G; Gokcen, A; Erel, O; Das, A
2009-04-06
The aim of this study was to investigate of oxidant/antioxidant balance in dogs with sarcoptic mange. The study materials consisted of totally 30 cross-breed male dogs; 15 with sarcoptic mange (study group) and 15 healthy as control. Blood samples for analyses were taken from control and study group. In study group, microscopic examination of dermal scrapings of 15 dogs revealed S. scabies. Lipid hydroperoxide level, total oxidant status and oxidative stress index in dogs with sarcoptic mange were higher (P<0.01, P<0.01 and P<0.05, respectively) than the control. Otherwise; sulphydril levels in dogs with sarcoptic mange were lower (P<0.05) than that of control. No significant differences were observed in total antioxidant capacity between groups. Our results suggest a possible relationship between oxidant/antioxidant imbalance and sarcoptic mange infestation in dogs.
78 FR 28540 - Airworthiness Directives; Hawker Beechcraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... airplanes. That NPRM proposed requiring inspections of elevator balance weights and replacement of defective elevator balance weights. That NPRM was prompted by reports of elevator balance weights becoming loose or failing because the balance weight material was under strength and did not meet material specifications...
How protein materials balance strength, robustness, and adaptability
Buehler, Markus J.; Yung, Yu Ching
2010-01-01
Proteins form the basis of a wide range of biological materials such as hair, skin, bone, spider silk, or cells, which play an important role in providing key functions to biological systems. The focus of this article is to discuss how protein materials are capable of balancing multiple, seemingly incompatible properties such as strength, robustness, and adaptability. To illustrate this, we review bottom-up materiomics studies focused on the mechanical behavior of protein materials at multiple scales, from nano to macro. We focus on alpha-helix based intermediate filament proteins as a model system to explain why the utilization of hierarchical structural features is vital to their ability to combine strength, robustness, and adaptability. Experimental studies demonstrating the activation of angiogenesis, the growth of new blood vessels, are presented as an example of how adaptability of structure in biological tissue is achieved through changes in gene expression that result in an altered material structure. We analyze the concepts in light of the universality and diversity of the structural makeup of protein materials and discuss the findings in the context of potential fundamental evolutionary principles that control their nanoscale structure. We conclude with a discussion of multiscale science in biology and de novo materials design. PMID:20676305
48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (JUN 2011) (a...
48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a), use the following clause: Balance of Payments Program...
78 FR 51053 - Airworthiness Directives; Beechcraft Corporation and Hawker Beechcraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... of elevator balance weights becoming loose or failing because the balance weight material was under strength and did not meet material specifications. This AD requires inspections of elevator balance weights and replacement of defective elevator balance weights. We are issuing this AD to correct the unsafe...
48 CFR 252.225-7045 - Balance of Payments Program-Construction Material Under Trade Agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Balance of Payments... SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7045 Balance of Payments... clause: Balance of Payments Program—Construction Material Under Trade Agreements (NOV 2009) (a...
48 CFR 252.225-7044 - Balance of Payments Program-Construction Material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Balance of Payments... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.225-7044 Balance of Payments Program—Construction Material. As prescribed in 225.7503(a)(1), use the following clause: Balance of Payments Program...
Report: Fiscal Years 2016 and 2015 Financial Statements for the Pesticide Registration Fund
Report #17-F-0365, August 14, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the PRIA Fund accurately reflect the agency’s financial activities and balances.
Report: Fiscal Years 2015 and 2014 Financial Statements for the Pesticide Registration Fund
Report #17-F-0315, July 10, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the PRIA Fund accurately reflect the agency’s financial activities and balances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... material balance that includes the pertinent data used to determine the percent reduction of total sulfide... material balance; and (3) complying with the continuous compliance requirements for closed-vent systems. 2... material balance that includes the pertinent data used to determine the percent reduction of toluene...
Code of Federal Regulations, 2010 CFR
2010-07-01
... material balance that includes the pertinent data used to determine the percent reduction of total sulfide... material balance; and (3) complying with the continuous compliance requirements for closed-vent systems. 2... material balance that includes the pertinent data used to determine the percent reduction of toluene...
DYNSYL: a general-purpose dynamic simulator for chemical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, G.K.; Rozsa, R.B.
1978-09-05
Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less
Report #16-F-0322, September 22, 2016. Due to the material weakness in internal controls noted, EPA cannot provide reasonable assurance that financial data provided for the FIFRA Fund accurately reflect the agency’s financial activities and balances.
Report: Fiscal Years 2014 and 2013 Financial Statements for the Pesticide Registration Fund
Report #16-F-0323, Sept 22, 2016. Due to the material weakness in internal controls noted, EPA cannot provide reasonable assurance that financial data provided for the PRIA Fund for FY 2014 accurately reflect the agency’s financial activities and balances.
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
Report #17-F-0314, July 10, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the FIFRA Fund accurately reflect the agency’s financial activities and balances.
Report #17-F-0364, August 14, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the FIFRA Fund accurately reflect the agency’s financial activities and balances.
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dsc-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dsc-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) you prepare a material balance that includes the pertinent data used to determine the percent... uncontrolled total sulfide emissions were reduced by at least 75%; (3) you prepare a material balance that... uncontrolled total sulfide emissions were reduced by at least 35%; (3) you prepare a material balance that...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dscm-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) maintaining a material balance that includes the pertinent data used to determine the percent reduction of... pertinent data from the material balance; and (3) complying with the continuous compliance requirements for... systems (1) maintaining a material balance that includes the pertinent data used to determine the percent...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) you prepare a material balance that includes the pertinent data used to determine the percent... uncontrolled total sulfide emissions were reduced by at least 75%; (3) you prepare a material balance that... uncontrolled total sulfide emissions were reduced by at least 35%; (3) you prepare a material balance that...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) maintaining a material balance that includes the pertinent data used to determine the percent reduction of... pertinent data from the material balance; and (3) complying with the continuous compliance requirements for... systems (1) maintaining a material balance that includes the pertinent data used to determine the percent...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) you prepare a material balance that includes the pertinent data used to determine the percent... uncontrolled total sulfide emissions were reduced by at least 75%; (3) you prepare a material balance that... uncontrolled total sulfide emissions were reduced by at least 35%; (3) you prepare a material balance that...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) maintaining a material balance that includes the pertinent data used to determine the percent reduction of... pertinent data from the material balance; and (3) complying with the continuous compliance requirements for... systems (1) maintaining a material balance that includes the pertinent data used to determine the percent...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dsc-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
40 CFR 60.104a - Performance tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (dry basis); K1 = Material balance and conversion factor, 0.2982 (kg-min)/(hr-dscm-%) [0.0186 (lb-min)/(hr-dscf-%)]; K2 = Material balance and conversion factor, 2.088 (kg-min)/(hr-dscm) [0.1303 (lb-min)/(hr-dscf)]; and K3 = Material balance and conversion factor, 0.0994 (kg-min)/(hr-dscm-%) [0.00624 (lb...
Fighting Proliferation New Concerns for the Nineties,
1996-09-01
assuming this dominates the error in measuring material unaccounted for [ MUFI ) and with a material-balance calculation done once a year, the absolute value...defenses, the Soviet economy, and the Salvadoran land-reform program. Dr Blair, who earned a BA in mathematics from the University of Tennessee and a PhD...California, Berkeley; and UCLA. Dr Weiss is the author of numerous technical papers on various aspects of applied mathematics , especially automatic control
Deformation and annealing study of Nicraly
NASA Technical Reports Server (NTRS)
Trela, D. M.; Ebert, L. J.
1975-01-01
Extensive experiments were carried out on the ODS alloy Nicraly, (an alloy prepared by mechanical alloying and consolidating a powder blend consisting of 16% chromium, 4% aluminum, 2-3% yttria, balance nickel), in efforts to develop methods of controlling the grain size and grain shape of the material. The experiments fell into two general categories: variations in the annealing parameters using the as-extruded material as it was received, and various thermomechanical processing schedules (various combinations of cold work and annealing). Success was achieved in gaining grain size and grain shape control by annealing of the as-extruded material. By proper selection of annealing temperature and cooling rates, the grain size of the as-received material was increased almost two orders of magnitude (from an average grain dimension of 0.023 mm to 1.668 mm) while the aspect ratio was increased by some 50% (from 20:1 to 30:1). No success was achieved in gaining significant control of the grain size and shape of the material by thermo-mechanical processing.
In, Taesung; Lee, Kyeongjin; Song, Changho
2016-10-28
BACKGROUND Virtual reality reflection therapy (VRRT) is a technically enhanced version of the mirror therapy concept. The aim of this study was to investigate whether VRRT could improve the postural balance and gait ability of patients with chronic stroke. MATERIAL AND METHODS Twenty-five patients with chronic stroke were randomly allocated into the VRRT group (n=13) and the control group (n=12). The participants in both groups performed a conventional rehabilitation program for 30 minutes. The VRRT group also performed a VRRT program for 30 minutes, five times a week for 4 weeks. The control group performed conventional rehabilitation program and a placebo VRRT program. Outcome measures included Berg Balance Scale (BBS), the Functional Reaching Test (FRT), and the Timed Up and Go (TUG) test (for dynamic balance ability), postural sway (for static balance ability), and 10 meter walking velocity (10 mWV) for gait ability. RESULTS There were statistically significant improvements in the VRRT group compared with the control group for BBS, FRT, TUG, postural sway (mediolateral sway distance with eyes open and eyes closed, anteroposterior and total sway distance with eyes open but not with eyes closed), and 10 mWV (p<0.05). CONCLUSIONS Applying VRRT (even as a home treatment) along with a conventional rehabilitation program for patients with chronic stroke might be even more beneficial than conventional rehabilitation program alone in improving affected lower limb function. Future studies should investigate the effectiveness of VRRT with optimal patient selection, and duration and intensity of training.
Chatchawan, Uraiwan; Eungpinichpong, Wichai; Plandee, Piyawan; Yamauchi, Junichiro
2015-01-01
Background Peripheral neuropathy is the most common complications of diabetic patients and leads to loss of plantar cutaneous sensation, movement perception, and body balance. Thai foot massage is an alternative therapy to improve balance. Therefore, the purpose of this study was to investigate the effects of Thai foot massage on balance performance in diabetic patients with peripheral neuropathy. Material/Methods Sixty patients with type-2 diabetes were recruited and randomly assigned into either the Thai foot massage or control groups. The Thai foot massage group received a modified Thai traditional foot massage for 30 min, 3 days per week for 2 weeks. We measured timed up and go (TUG), one leg stance: OLS), the range of motion (ROM) of the foot, and foot sensation (SWMT) before treatment, after the first single session, and after the 2-week treatment. Results After the single treatment session, only the Thai foot massage group showed a significant improvement in TUG. After the 2-week treatment, both Thai foot massage and control groups showed a significant improvement of TUG and OLS (P<0.05); however, when comparing between 2 groups, the Thai foot massage group showed better improvement in TUG than the control group (p<0.05). The Thai foot massage group also showed significant improvements in ROM and SWMT after the 2-week treatment. Conclusions The results of this study suggest that Thai foot massage is a viable alternative treatment for balance performance, ROM of the foot, and the foot sensation in diabetic patients with peripheral neuropathy. PMID:25892354
Chatchawan, Uraiwan; Eungpinichpong, Wichai; Plandee, Piyawan; Yamauchi, Junichiro
2015-04-20
BACKGROUND Peripheral neuropathy is the most common complications of diabetic patients and leads to loss of plantar cutaneous sensation, movement perception, and body balance. Thai foot massage is an alternative therapy to improve balance. Therefore, the purpose of this study was to investigate the effects of Thai foot massage on balance performance in diabetic patients with peripheral neuropathy. MATERIAL AND METHODS Sixty patients with type-2 diabetes were recruited and randomly assigned into either the Thai foot massage or control groups. The Thai foot massage group received a modified Thai traditional foot massage for 30 min, 3 days per week for 2 weeks. We measured timed up and go (TUG), one leg stance: OLS), the range of motion (ROM) of the foot, and foot sensation (SWMT) before treatment, after the first single session, and after the 2-week treatment. RESULTS After the single treatment session, only the Thai foot massage group showed a significant improvement in TUG. After the 2-week treatment, both Thai foot massage and control groups showed a significant improvement of TUG and OLS (P<0.05); however, when comparing between 2 groups, the Thai foot massage group showed better improvement in TUG than the control group (p<0.05). The Thai foot massage group also showed significant improvements in ROM and SWMT after the 2-week treatment. CONCLUSIONS The results of this study suggest that Thai foot massage is a viable alternative treatment for balance performance, ROM of the foot, and the foot sensation in diabetic patients with peripheral neuropathy.
In, Taesung; Lee, Kyeongjin; Song, Changho
2016-01-01
Background Virtual reality reflection therapy (VRRT) is a technically enhanced version of the mirror therapy concept. The aim of this study was to investigate whether VRRT could improve the postural balance and gait ability of patients with chronic stroke. Material/Methods Twenty-five patients with chronic stroke were randomly allocated into the VRRT group (n=13) and the control group (n=12). The participants in both groups performed a conventional rehabilitation program for 30 minutes. The VRRT group also performed a VRRT program for 30 minutes, five times a week for 4 weeks. The control group performed conventional rehabilitation program and a placebo VRRT program. Outcome measures included Berg Balance Scale (BBS), the Functional Reaching Test (FRT), and the Timed Up and Go (TUG) test (for dynamic balance ability), postural sway (for static balance ability), and 10 meter walking velocity (10 mWV) for gait ability. Results There were statistically significant improvements in the VRRT group compared with the control group for BBS, FRT, TUG, postural sway (mediolateral sway distance with eyes open and eyes closed, anteroposterior and total sway distance with eyes open but not with eyes closed), and 10 mWV (p<0.05). Conclusions Applying VRRT (even as a home treatment) along with a conventional rehabilitation program for patients with chronic stroke might be even more beneficial than conventional rehabilitation program alone in improving affected lower limb function. Future studies should investigate the effectiveness of VRRT with optimal patient selection, and duration and intensity of training. PMID:27791207
Code of Federal Regulations, 2010 CFR
2010-07-01
... uncontrolled total sulfide emissions were reduced by at least 25%; (3) you prepare a material balance that... reduced by at least 75%; (3) you prepare a material balance that includes the pertinent data used to... emissions were reduced by at least 35%; (3) you prepare a material balance that includes the pertinent data...
Code of Federal Regulations, 2011 CFR
2011-07-01
... uncontrolled total sulfide emissions were reduced by at least 25%; (3) you prepare a material balance that... reduced by at least 75%; (3) you prepare a material balance that includes the pertinent data used to... emissions were reduced by at least 35%; (3) you prepare a material balance that includes the pertinent data...
University Spin-Offs in the Commercialization of Research. A Balancing Act.
ERIC Educational Resources Information Center
Rappert, Brian
1997-01-01
Interviews with more than 40 employees of 25 British university spinoff firms, vehicles for moving research into the marketplace, identified differences among sectors (information technology, scientific instruments, and new materials), including diversity in the extent of university control. Overall, these companies do not resolve problems with…
ERIC Educational Resources Information Center
Jones, Kenneth L.; And Others
This textbook for the college student emphasizes human sexuality as a part of the whole human life experience and contains a balance of biological, psychological, and sociological material. In 16 chapters the following topics are covered: (1) sex and society; (2) historical and cultural perspectives; (3) glandular control of sexual physiology; (4)…
40 CFR 60.744 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... an affected facility controlled by a carbon adsorption system and demonstrating compliance by the... determinations) or § 60.743(a)(4) (short-term liquid material balance) shall carry out the monitoring provisions of paragraph (c)(1) or (2) of this section, as appropriate. (1) For carbon adsorption systems with a...
40 CFR 60.744 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... an affected facility controlled by a carbon adsorption system and demonstrating compliance by the... determinations) or § 60.743(a)(4) (short-term liquid material balance) shall carry out the monitoring provisions of paragraph (c)(1) or (2) of this section, as appropriate. (1) For carbon adsorption systems with a...
40 CFR 60.744 - Monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... an affected facility controlled by a carbon adsorption system and demonstrating compliance by the... determinations) or § 60.743(a)(4) (short-term liquid material balance) shall carry out the monitoring provisions of paragraph (c)(1) or (2) of this section, as appropriate. (1) For carbon adsorption systems with a...
40 CFR 60.744 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... an affected facility controlled by a carbon adsorption system and demonstrating compliance by the... determinations) or § 60.743(a)(4) (short-term liquid material balance) shall carry out the monitoring provisions of paragraph (c)(1) or (2) of this section, as appropriate. (1) For carbon adsorption systems with a...
40 CFR 60.714 - Installation of monitoring devices and recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... by the test method described in § 60.713(b)(1) (liquid material balance) shall maintain records of... equipment controlled by a carbon adsorption system and demonstrating compliance by the procedures described..., as appropriate. (1) For carbon adsorption systems with a common exhaust stack for all the individual...
40 CFR 60.714 - Installation of monitoring devices and recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... by the test method described in § 60.713(b)(1) (liquid material balance) shall maintain records of... equipment controlled by a carbon adsorption system and demonstrating compliance by the procedures described..., as appropriate. (1) For carbon adsorption systems with a common exhaust stack for all the individual...
40 CFR 60.714 - Installation of monitoring devices and recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... by the test method described in § 60.713(b)(1) (liquid material balance) shall maintain records of... equipment controlled by a carbon adsorption system and demonstrating compliance by the procedures described..., as appropriate. (1) For carbon adsorption systems with a common exhaust stack for all the individual...
40 CFR 60.714 - Installation of monitoring devices and recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the test method described in § 60.713(b)(1) (liquid material balance) shall maintain records of... equipment controlled by a carbon adsorption system and demonstrating compliance by the procedures described..., as appropriate. (1) For carbon adsorption systems with a common exhaust stack for all the individual...
40 CFR 60.744 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... an affected facility controlled by a carbon adsorption system and demonstrating compliance by the... determinations) or § 60.743(a)(4) (short-term liquid material balance) shall carry out the monitoring provisions of paragraph (c)(1) or (2) of this section, as appropriate. (1) For carbon adsorption systems with a...
40 CFR 60.714 - Installation of monitoring devices and recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the test method described in § 60.713(b)(1) (liquid material balance) shall maintain records of... equipment controlled by a carbon adsorption system and demonstrating compliance by the procedures described..., as appropriate. (1) For carbon adsorption systems with a common exhaust stack for all the individual...
Code of Federal Regulations, 2014 CFR
2014-07-01
... balance. (2) Open type. One which has a handgrip surface fully exposed and capable of being encircled by... not less than No. 18 U.S. gauge sheet steel or material of equivalent strength or stiffness. The lower... type controller contacts carrying the main motor current shall be copper to carbon or equal, except...
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Workshop on Closed System Ecology
NASA Technical Reports Server (NTRS)
1982-01-01
Self maintaining laboratory scale ecological systems completely isolated from exchanges of matter with external systems were demonstrated. These research tools are discussed in terms of their anticipated value in understanding (1) global ecological material and energy balances, (2) the dynamics of stability and instability in ecosystems, (3) the effects of man-made substances and structures on ecosystems, and (4) the precise requirements for dynamic control of controlled ecology life support systems (CELSS).
2015-01-01
We report on the theoretical analysis of equilibrium distances in real plane-parallel systems under the influence of Casimir and gravity forces at thermal equilibrium. Due to the balance between these forces, thin films of Teflon, silica, or polystyrene in a single-layer configuration and immersed in glycerol stand over a silicon substrate at certain stable or unstable positions depending on the material and the slab thickness. Hybrid systems containing silica and polystyrene, materials which display Casimir forces and equilibrium distances of opposite nature when considered individually, are analyzed in either bilayer arrangements or as composite systems made of a homogeneous matrix with small inclusions inside. For each configuration, equilibrium distances and their stability can be adjusted by fine-tuning of the volume occupied by each material. We find the specific conditions under which nanolevitation of realistic films should be observed. Our results indicate that thin films of real materials in plane-parallel configurations can be used to control suspension or stiction phenomena at the nanoscale. PMID:26405466
Braking system for use with an arbor of a microscope
Norgren, Duane U.
1984-01-01
A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.
Norgren, D.U.
1982-09-23
A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.
NASA Astrophysics Data System (ADS)
Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo
2017-11-01
Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.
10 CFR 75.8 - IAEA inspections.
Code of Federal Regulations, 2011 CFR
2011-01-01
... exports) or § 75.43(c) (pertaining to imports) at any place where nuclear material may be located; (3... nuclear material at key measurement points for material balance accounting are representative; (3) Verify... samples at key measurement points for material balance accounting are taken in accordance with procedures...
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-08-01
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prado, Erick Tadeu; Raso, Vagner; Scharlach, Renata Coelho; Kasse, Cristiane Akemi
2014-01-01
Background: A good body balance requires a proper function of vestibular, visual, and somatosensory systems which can be reach with exercise practice and/or yoga. Aim: To determine the effects of a 5-month hatha yoga training program on body balance in young adults. Materials and Methods: This study used a controlled, nonrandomized design, where the experimental group underwent a 5-month training program and were then compared with the control group that had a sedentary lifestyle. A convenience sample of 34 out of 40 men aged 25-55 years old (34.0 ± 0.9) were deemed eligible for this study. They were randomly divided into two groups: Experimental and control groups. Subjects in the experimental group were engaged in 60 min sessions of hatha yoga three times a week for 5 months. We evaluated postural control by measuring the limit of stability and velocity of oscillation (VOS) in three conditions of the balance rehabilitation unit (BRU) and through field procedures (four position, plane, flamingo, hopscotch, and dynamic test). Results: We observed differences (P < 0.05) in postintervention scores between the groups regardless of BRU parameters and field procedures (except for flamingo) even after adjusting for preintervention scores, suggesting that these changes were induced by hatha yoga training. The partial eta squared on BRU parameters ranged from 0.78 (VOS1)-0.97 (COP2), and from 0.00 (flamingo)-0.94 (four position) for the field procedures. Conclusions: Our results provide substantial evidence that postural control in healthy young adults can be improved through practicing hatha yoga. PMID:25035623
Method and system for formation and withdrawal of a sample from a surface to be analyzed
Van Berkel, Gary J.; Kertesz, Vilmos
2017-10-03
A method and system for formation and withdrawal of a sample from a surface to be analyzed utilizes a collection instrument having a port through which a liquid solution is conducted onto the surface to be analyzed. The port is positioned adjacent the surface to be analyzed, and the liquid solution is conducted onto the surface through the port so that the liquid solution conducted onto the surface interacts with material comprising the surface. An amount of material is thereafter withdrawn from the surface. Pressure control can be utilized to manipulate the solution balance at the surface to thereby control the withdrawal of the amount of material from the surface. Furthermore, such pressure control can be coordinated with the movement of the surface relative to the port of the collection instrument within the X-Y plane.
DiGuiseppi, Carolyn G; Thoreson, Sallie R; Clark, Lauren; Goss, Cynthia W; Marosits, Mark J; Currie, Dustin W; Lezotte, Dennis C
2014-10-01
Determine whether a church-based social marketing program increases older adults' participation in balance classes for fall prevention. In 2009-10, 51 churches (7101 total members aged ≥ 60) in Colorado, U.S.A. were randomized to receive no intervention or a social marketing program. The program highlighted benefits of class participation (staying independent, building relationships), reduced potential barriers (providing convenient, subsidized classes), and communicated marketing messages through church leaders, trained "messengers," printed materials and church-based communication channels. Between-group differences in balance class enrollment and marketing message recall among congregants were compared using Wilcoxon Two-Sample Test and regression models. Compared to 25 control churches, 26 churches receiving the social marketing program had a higher median proportion (9.8% vs. 0.3%; p<0.001) and mean number (7.0 vs. 0.5; IRR=11.2 [95%CI: 7.5, 16.8]) of older adult congregants who joined balance classes. Intervention church members were also more likely to recall information about preventing falls with balance classes (AOR=6.2; 95% CI: 2.6, 14.8) and availability of classes locally (AOR=7.7; 95% CI: 2.6, 22.9). Church-based social marketing effectively disseminated messages about preventing falls through balance classes and, by emphasizing benefits and reducing barriers and costs of participation, successfully motivated older adults to enroll in the classes. Copyright © 2014 Elsevier Inc. All rights reserved.
78 FR 23503 - Hazardous Materials; Temporary Reduction of Registration Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... the annual registration fee to account for any unexpended balance in the Hazardous Materials Emergency Preparedness (HMEP) Fund. Due to an unexpended balance that has accumulated in the Fund, PHMSA is lowering the... and thus draw down the unexpended balance as soon as possible, PHMSA is issuing this final rule...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandborn, R.H.
1976-01-01
M0200, a computer simulation model, was used to investigate the safeguarding of plutonium dioxide. The computer program operating the model was constructed so that replicate runs could provide data for statistical analysis of the distributions of the randomized variables. The plant model was divided into material balance areas associated with definable unit processes. Indicators of plant operations studied were modified end-of-shift material balances, end-of-blend errors formed by closing material balances between blends, and cumulative sums of the differences between actual and expected performances. (auth)
Novel Use of a Remote Laboratory for Active Learning in Class
ERIC Educational Resources Information Center
Ramírez, Darinka; Ramírez, María Soledad; Marrero, Thomas R.
2016-01-01
This study aims to describe a novel teaching mode that allows for direct instructor-student and student-student discussions of material balance concepts by means of active learning. The instructor explains the concepts during class time while using a remotely controlled laboratory system that is projected on a screen with real-time access to the…
HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
1989-06-01
FLUE GAS DESULFURIZATION EVALUATION A-1/A-2 3-1. 3 BOILER STACK EMISSION CONTROL WITH...Appendices A - BACT Flue Gas Desulfurization Evaluation B - BACT Off- Gas Refrigeration Evaluation v LIST OF FIGURES Figure Page 1. Material Balance for...2. Desulfurize the flue gases from the Riley boilers when firing with high sulfur oils or lignite. Options in this category include commercial wet
Controlled Viscosity in Dense Granular Materials
NASA Astrophysics Data System (ADS)
Gnoli, A.; de Arcangelis, L.; Giacco, F.; Lippiello, E.; Ciamarra, M. Pica; Puglisi, A.; Sarracino, A.
2018-03-01
We experimentally investigate the fluidization of a granular material subject to mechanical vibrations by monitoring the angular velocity of a vane suspended in the medium and driven by an external motor. On increasing the frequency, we observe a reentrant transition, as a jammed system first enters a fluidized state, where the vane rotates with high constant velocity, and then returns to a frictional state, where the vane velocity is much lower. While the fluidization frequency is material independent, the viscosity recovery frequency shows a clear dependence on the material that we rationalize by relating this frequency to the balance between dissipative and inertial forces in the system. Molecular dynamics simulations well reproduce the experimental data, confirming the suggested theoretical picture.
10 CFR 75.8 - IAEA inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... inspection at a facility, to: (1) Examine records kept under § 75.21; (2) Observe that the measurements of nuclear material at key measurement points for material balance accounting are representative; (3) Verify... samples at key measurement points for material balance accounting are taken in accordance with procedures...
Identifying dominant controls on the water balance of partly sealed surfaces
NASA Astrophysics Data System (ADS)
Schuetz, Tobias; Schübl, Marleen; Siebert, Caroline; Weiler, Markus
2017-04-01
It is the challenge of modern urban development to obtain a near natural state for the urban water balance. For this purpose permeable alternatives to conventional surface sealing have been established during the last decades. A wealth of studies - under laboratory as well as field conditions - has emerged around the globe to examine the hydrological characteristics of different types of pavements. The main results of these studies - measured infiltration and evaporation rates, vary to a great extent between single studies and pavement types due to methodological approaches and local conditions. Within this study we analyze the controls of water balance components of partly sealed urban surfaces derived from an extensive literature review and a series of infiltration experiments conducted on historical and modern pavements within the city of Freiburg, Germany. Measured values published in 48 studies as well as the results of 30 double-ring infiltration experiments were compiled and sorted according to the measured parameter, the pavement type, pavement condition, age of the pavement, porosity of the pavement material and joint filling material as well as joint proportion of joint pavements. The main influencing factors on infiltration / hydraulic conductivity, evaporation rates and groundwater recharge of permeable pavements were identified and quantified using multiple linear regression methods. The analysis showed for both the literature study and our own infiltration experiments that condition and age of the pavement have the major influence on the pavement's infiltration capacity and that maintenance plays an important role for the long-term effectiveness of permeable pavements. For pavements with joints, the porosity of the pavement material seemed to have a stronger influence on infiltration capacity than the proportion of joint surface for which a clear influence could not be observed. Evaporation rates were compared for different surface categories as not enough measured values for different pavement types have been published. The highest evaporation can be expected for joint filling aggregates such as gravel and sand followed by bare soil (as reference), porous pavements and lastly non-porous pavements. The proportion of precipitation lost due to evaporation/evapotranspiration processes was expectedly highest on turf grid pavements, while maximum groundwater recharge rates were identified under non-porous pavements. Our results improve the tools available for urban water management controlling the state of urban water balances from a dominant surface runoff component to either dominant evaporation or groundwater components.
Evaluating MC&A effectiveness to verify the presence of nuclear materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, P. G.; Morzinski, J. A.; Ostenak, Carl A.
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
Schiebener, Johannes; Laier, Christian; Brand, Matthias
2015-03-01
Some individuals consume cybersex contents, such as pornographic material, in an addictive manner, which leads to severe negative consequences in private life or work. One mechanism leading to negative consequences may be reduced executive control over cognition and behavior that may be necessary to realize goal-oriented switching between cybersex use and other tasks and obligations of life. To address this aspect,we investigated 104 male participants with an executive multitasking paradigm with two sets: One set consisted of pictures of persons, the other set consisted of pornographic pictures. In both sets the pictures had to be classified according to certain criteria. The explicit goal was to work on all classification tasks to equal amounts, by switching between the sets and classification tasks in a balanced manner. We found that less balanced performance in this multitasking paradigm was associated with a higher tendency towards cybersex addiction. Persons with this tendency often either overused or neglected working on the pornographic pictures. The results indicate that reduced executive control over multitasking performance, when being confronted with pornographic material, may contribute to dysfunctional behaviors and negative consequences resulting from cybersex addiction. However, individuals with tendencies towards cybersex addiction seem to have either an inclination to avoid or to approach the pornographic material, as discussed in motivational models of addiction.
LAIER, CHRISTIAN; BRAND, MATTHIAS
2015-01-01
Background and aims Some individuals consume cybersex contents, such as pornographic material, in an addictive manner, which leads to severe negative consequences in private life or work. One mechanism leading to negative consequences may be reduced executive control over cognition and behavior that may be necessary to realize goal-oriented switching between cybersex use and other tasks and obligations of life. Methods To address this aspect, we investigated 104 male participants with an executive multitasking paradigm with two sets: One set consisted of pictures of persons, the other set consisted of pornographic pictures. In both sets the pictures had to be classified according to certain criteria. The explicit goal was to work on all classification tasks to equal amounts, by switching between the sets and classification tasks in a balanced manner. Results We found that less balanced performance in this multitasking paradigm was associated with a higher tendency towards cybersex addiction. Persons with this tendency often either overused or neglected working on the pornographic pictures. Discussion The results indicate that reduced executive control over multitasking performance, when being confronted with pornographic material, may contribute to dysfunctional behaviors and negative consequences resulting from cybersex addiction. However, individuals with tendencies towards cybersex addiction seem to have either an inclination to avoid or to approach the pornographic material, as discussed in motivational models of addiction. PMID:25786495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
NASA Astrophysics Data System (ADS)
Bateman, J. B.; Fendorf, S. E.; Vitousek, P.
2017-12-01
Iron (Fe) and Aluminum (Al) are major components of volcanic soils, and strongly influence the stability of soil carbon (C). The stability of Fe and Al phases is dictated by the redox conditions and pH of soils, respectively. The water balance of a soil, defined as annual precipitation minus evapotranspiration, ultimately controls pH and redox conditions. Consequently, we hypothesize that water balance influences Fe/Al solid phase dynamics in volcanic soils when the climatic regime has persisted on timescales of 20 ky. To test this hypothesis, we collected soils from a naturally occurring water balance gradient on the windward side of Mauna Kea Volcano in Hawaii, across which water balance ranges from -1270 mm/y to +2000 mm/y. Sampling included complete soil profiles, and 30 cm surface soil samples. We determined the solid phases of Fe/Al with selective extractions and total C via combustion. Extracted Fe/Al were then partitioned into operational pools: organically bound, amorphous, crystalline, primary mineral, primary glass, and residual. All soils in the study were acidic, with pH between 3.4 and 6.4. Soil C varied considerably across the gradient, from <1% C to >15% C by weight. Across sites, soil pH, Fe in primary minerals and glasses, and residual Al are negatively correlated with water balance, while soil C, organic Fe and Al, and crystalline Fe correlated positively with water balance. Organically bound Al increases linearly with water balance, while organically bound Fe is uncorrelated with water balance in soils where water balance is negative and is positively correlated with water balance in wetter sites. These results show that soils developing from the same parent material, though under different water balance regimes, range from lightly weathered ash deposits with little C accumulation in the driest regions, to heavily weathered soils composed of crystalline Fe, organic matter, and organically bound Fe/Al in the wettest regions. Al appears to be the primary stabilizer for organic matter in many of these soils, though Fe plays a role when both water availability and soil C are high. The pattern of organic Fe/Al indicate that pH is a stronger controller on C storage in these soils when water balance is low or negative, and that redox reactions become increasingly important as water balance becomes more positive.
Choi, Wonjae; Lee, Seungwon
2018-06-10
BACKGROUND Kayaking is an interesting and posturally challenging activity; however, kayaking may be limited by safety issues in older adults. The aim of this study was to determine whether ground kayak paddling (GKP) exercise can improve postural balance, muscle performance, and cognitive function in older adults with mild cognitive impairment. MATERIAL AND METHODS Sixty participants were randomly allocated to a GKP group (n=30; mean age, 74 years) or a control group (n=30; mean age, 74 years). GKP exercise consisted 5 types of exercise protocols, including paddling and multi-directional reaching with repetitive trunk and upper-extremities movements, which was performed for 60 min twice a week for 6 weeks. The outcome measures included the Timed Up and Go Test, the Functional Reach Test, the Berg Balance Scale, the Arm Curl Test, handgrip strength, and the Montreal Cognitive Assessment. RESULTS In this study, adherence to the regimen was 96% in the GKP group. Postural balance, muscle performance, and cognitive function were significantly improved after intervention (p<0.05), and all the values in the GKP group, except for the Berg Balance Scale scores, were significantly decreased or increased compared to the control group. Differences between the 2 groups were Timed Up and Go Test -0.74 s; Functional Reach Test +7.20 cm; Arm Curl Test +5.56 repetitions; right handgrip strength +3.57 kg; left handgrip strength +3.08 kg; and Montreal Cognitive Assessment, +3.46 score (p<0.05). CONCLUSIONS GKP exercise improves the physical and psychological ability of older adults with mild cognitive impairment.
77 FR 66566 - Airworthiness Directives; Hawker Beechcraft Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... elevator balance weights becoming loose or failing because the balance weight material was under strength... balance weights and replacement of defective elevator balance weights. We are proposing this AD to correct.... Discussion We received reports of elevator balance weights becoming loose or failing on Hawker Beechcraft...
The Balance Control of Children with and without Hearing Impairment in Singapore--A Case Study
ERIC Educational Resources Information Center
Jernice, Tan Sing Yee; Nonis, Karen P.; Yi, Chow Jia
2011-01-01
The purpose of this study is to compare the balance control of participants with and without HI and also to investigate the effect of a Balance Programme (BP) on their balance control (HI; n = 2, M age = 7 years old). The BP consisted of six practice sessions of 45 minutes each. The Balance Tasks used to assess balance control were static Balance…
Mansfield, Avril; Mochizuki, George; Inness, Elizabeth L; McIlroy, William E
2012-01-01
Stroke-related sensorimotor impairment potentially contributes to impaired balance. Balance measures that reveal underlying limb-specific control problems, such as a measure of the synchronization of both lower limbs to maintain standing balance, may be uniquely informative about poststroke balance control. This study aimed to determine the relationships between clinical measures of sensorimotor control, functional balance, and fall risk and between-limb synchronization of balance control. The authors conducted a retrospective chart review of 100 individuals with stroke admitted to inpatient rehabilitation. Force plate-based measures were obtained while standing on 2 force plates, including postural sway (root mean square of anteroposterior and mediolateral center of pressure [COP]), stance load asymmetry (percentage of body weight borne on the less-loaded limb), and between-limb synchronization (cross-correlation of the COP recordings under each foot). Clinical measures obtained were motor impairment (Chedoke-McMaster Stroke Assessment), plantar cutaneous sensation, functional balance (Berg Balance Scale), and falls experienced in rehabilitation. Synchronization was significantly related to motor impairment and prospective falls, even when controlling for other force plate-based measures of standing balance control (ie, postural sway and stance load symmetry). Between-limb COP synchronization for standing balance appears to be a uniquely important index of balance control, independent of postural sway and load symmetry during stance.
Downgrade of the Savannah River Sites FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI
2005-07-05
This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updatesmore » to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.« less
Blood Pressure Associates with Standing Balance in Elderly Outpatients
Pasma, Jantsje H.; Bijlsma, Astrid Y.; Klip, Janneke M.; Stijntjes, Marjon; Blauw, Gerard Jan; Muller, Majon; Meskers, Carel G. M.; Maier, Andrea B.
2014-01-01
Objectives Assessment of the association of blood pressure measurements in supine and standing position after a postural change, as a proxy for blood pressure regulation, with standing balance in a clinically relevant cohort of elderly, is of special interest as blood pressure may be important to identify patients at risk of having impaired standing balance in routine geriatric assessment. Materials and Methods In a cross-sectional cohort study, 197 community-dwelling elderly referred to a geriatric outpatient clinic of a middle-sized teaching hospital were included. Blood pressure was measured intermittently (n = 197) and continuously (subsample, n = 58) before and after a controlled postural change from supine to standing position. The ability to maintain standing balance was assessed during ten seconds of side-by-side, semi-tandem and tandem stance, with both eyes open and eyes closed. Self-reported impaired standing balance and history of falls were recorded by questionnaires. Logistic regression analyses were used to examine the association between blood pressure and 1) the ability to maintain standing balance; 2) self-reported impaired standing balance; and 3) history of falls, adjusted for age and sex. Results Blood pressure decrease after postural change, measured continuously, was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed and with increased self-reported impaired standing balance and falls. Presence of orthostatic hypotension was associated with reduced ability to maintain standing balance in semi-tandem stance with eyes closed for both intermittent and continuous measurements and with increased self-reported impaired standing balance for continuous measurements. Conclusion Continuous blood pressure measurements are of additional value to identify patients at risk of having impaired standing balance and may therefore be useful in routine geriatric care. PMID:25222275
Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites.
Zhu, Baolei; Noack, Manuel; Merindol, Remi; Barner-Kowollik, Christopher; Walther, Andreas
2016-08-10
Nature provides design paradigms for adaptive, self-healing, and synergistic high-performance structural materials. Nacre's brick-and-mortar architecture is renowned for combining stiffness, toughness, strength, and lightweightness. Although elaborate approaches exist to mimic its static structure and performance, and to incorporate functionalities for the engineering world, there is a profound gap in addressing adaptable mechanical properties, particularly using remote, quick, and spatiotemporal triggers. Here, we demonstrate a generic approach to control the mechanical properties of nacre-inspired nanocomposites by designing a photothermal energy cascade using colloidal graphene as light-harvesting unit and coupling it to molecularly designed, thermoreversible, supramolecular bonds in the nanoconfined soft phase of polymer/nanoclay nacre-mimetics. The light intensity leads to adaptive steady-states balancing energy uptake and dissipation. It programs the mechanical properties and switches the materials from high stiffness/strength to higher toughness within seconds under spatiotemporal control. We envisage possibilities beyond mechanical materials, for example, light-controlled (re)shaping or actuation in highly reinforced nanocomposites.
Mercury Emission Measurement at a CFB Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Pavlish; Jeffrey Thompson; Lucinda Hamre
2009-02-28
In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.« less
Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study
Saldana, Santiago J; Marsh, Anthony P; Rejeski, W Jack; Haberl, Jack K; Wu, Peggy; Rosenthal, Scott; Ip, Edward H
2017-01-01
Introduction As the population ages, the prevention of falls is an increasingly important public health problem. Balance assessment forms an important component of fall-prevention programs for older adults. The recent development of cost-effective and highly responsive virtual reality (VR) systems means new methods of balance assessment are feasible in a clinical setting. This proof-of-concept study made use of the submillimeter tracking built into modern VR head-mounted displays (VRHMDs) to assess balance through the use of visual–vestibular conflict. The objective of this study was to evaluate the validity, acceptability, and reliability of using a VRHMD to assess balance in older adults. Materials and methods Validity was assessed by comparing measurements from the VRHMD to measurements of postural sway from a force plate. Acceptability was assessed through the use of the Simulator Sickness Questionnaire pre- and postexposure to assess possible side effects of the visual–vestibular conflict. Reliability was assessed by measuring correlations between repeated measurements 1 week apart. Variables of possible importance that were found to be reliable (r≥0.9) between tests separated by a week were then tested for differences compared to a control group. Assessment was performed as a cross-sectional single-site community center-based study in 13 older adults (≥65 years old, 80.2±7.3 years old, 77% female, five at risk of falls, eight controls). The VR balance assessment consisted of four modules: a baseline module, a reaction module, a balance module, and a seated assessment. Results There was a significant difference in the rate at which participants with a risk of falls changed their tilt in the anteroposterior direction compared to the control group. Participants with a risk of falls changed their tilt in the anteroposterior direction at 0.7°/second vs 0.4°/second for those without a history of falls. No significant differences were found between pre/postassessment for oculomotor score or total Simulator Sickness Questionnaire score. Both the force plate and the head-mounted display balance-assessment system were able to detect differences between conditions meant to mask visual and proprioceptive information. Conclusion This VRHMD is both affordable and portable, causes minimal simulator sickness, and produces repeatable results that can be used to assess balance in older adults. PMID:28883717
Neuroimaging of Human Balance Control: A Systematic Review
Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.
2017-01-01
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007
Krimmel, R.M.
1999-01-01
Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979-80, and 1985-97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970-97, the direct method shows a cumulative balance of about -15 m, and the geodetic method shows a cumulative balance of about -22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.
EVALUATING MC AND A EFFECTIVENESS TO VERIFY THE PRESENCE OF NUCLEAR MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. G. DAWSON; J. A MORZINSKI; ET AL
Traditional materials accounting is focused exclusively on the material balance area (MBA), and involves periodically closing a material balance based on accountability measurements conducted during a physical inventory. In contrast, the physical inventory for Los Alamos National Laboratory's near-real-time accounting system is established around processes and looks more like an item inventory. That is, the intent is not to measure material for accounting purposes, since materials have already been measured in the normal course of daily operations. A given unit process operates many times over the course of a material balance period. The product of a given unit process maymore » move for processing within another unit process in the same MBA or may be transferred out of the MBA. Since few materials are unmeasured the physical inventory for a near-real-time process area looks more like an item inventory. Thus, the intent of the physical inventory is to locate the materials on the books and verify information about the materials contained in the books. Closing a materials balance for such an area is a matter of summing all the individual mass balances for the batches processed by all unit processes in the MBA. Additionally, performance parameters are established to measure the program's effectiveness. Program effectiveness for verifying the presence of nuclear material is required to be equal to or greater than a prescribed performance level, process measurements must be within established precision and accuracy values, physical inventory results meet or exceed performance requirements, and inventory differences are less than a target/goal quantity. This approach exceeds DOE established accounting and physical inventory program requirements. Hence, LANL is committed to this approach and to seeking opportunities for further improvement through integrated technologies. This paper will provide a detailed description of this evaluation process.« less
40 CFR 52.420 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 8/11/10, 75 FR 48566 Section 6.0 Ozone 9/11/08 8/11/10, 75 FR 48566 Section 8.0 Nitrogen Dioxide 9... 9/11/08 8/11/10, 75 FR 48566 1112Control of Nitrogen Oxide Emissions Section 1.0 Applicability 9/11... Length of Rolling Period for Liquid/Liquid Material Balance 9/11/08 8/11/10, 75 FR 48566 Appendix K...
40 CFR 52.420 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ozone 9/11/08 8/11/10, 75 FR 48566 Section 8.0 Nitrogen Dioxide 9/11/08 8/11/10, 75 FR 48566 Section 10... 9/11/08 8/11/10, 75 FR 48566 1112Control of Nitrogen Oxide Emissions Section 1.0 Applicability 9/11... Length of Rolling Period for Liquid/Liquid Material Balance 9/11/08 8/11/10, 75 FR 48566 Appendix K...
40 CFR 52.420 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 8.0 Nitrogen Dioxide 9/11/08 8/11/10, 75 FR 48566 Section 10.0 Lead 9/11/08 8/11/10, 75 FR 48566....0 Restrictions on Petroleum Refining Operations 9/11/08 8/11/10, 75 FR 48566 1112Control of Nitrogen.../Liquid Material Balance 9/11/08 8/11/10, 75 FR 48566 Appendix K Emission Estimation Methodologies 9/11/08...
40 CFR 52.420 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 8.0 Nitrogen Dioxide 9/11/08 8/11/10, 75 FR 48566 Section 10.0 Lead 9/11/08 8/11/10, 75 FR 48566....0 Restrictions on Petroleum Refining Operations 9/11/08 8/11/10, 75 FR 48566 1112Control of Nitrogen... to Determine Length of Rolling Period for Liquid/Liquid Material Balance 9/11/08 8/11/10, 75 FR 48566...
Ndeffo Mbah, Martial L.; Gilligan, Christopher A.
2010-01-01
Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources between detection and culling when the budget for disease management is limited. The results are generic but we motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel) and a second host species (coast live oak) that is an epidemiological dead-end in that it does not transmit infection but which is frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight change in the balance between the resources allocated to detection and those allocated to control may lead to drastic inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material into the region of interest. PMID:20856850
Eddy current techniques for super duplex stainless steel characterization
NASA Astrophysics Data System (ADS)
Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.
2015-08-01
Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.
NASA Astrophysics Data System (ADS)
Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng
2013-09-01
Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.
Thermal protection for a self-sensing piezoelectric control system
NASA Astrophysics Data System (ADS)
Simmers, Garnett E., Jr.; Sodano, Henry A.; Park, Gyuhae; Inman, Daniel J.
2007-12-01
Piezoelectric materials exhibit high electromechanical coupling that allows them to both generate an electrical signal when strained and, conversely, to produce a strain under an applied electric field. This coupling has led to the use of these materials for a variety of sensing and actuation purposes. One unique application of these materials is their use as self-sensing actuators where both the sensing and actuation functions are performed by a single patch of material. Since the actuation and sensing voltages both exist simultaneously in the piezoelectric material, a specially designed electric circuit, referred to as a bridge circuit, is required to realize the concept. Configuration of the material in this manner is advantageous for control systems due to the enhanced stability associated when collocated control is applied. While certain advantages result from this type of system, precise equilibrium of the bridge circuit is required to achieve stability. This equilibrium is easy to achieve in theory, but difficult in practice due to the thermal dependence of the piezoelectric material's dielectric constant. This study will investigate a novel method of accounting for these changes through the use of thermal switches to passively adjust the bridge circuit and maintain a balanced state. The proposed concept will be theoretically modeled and simulated in a vibration control application to identify the thermal range for stability with and without the array of switches. It will be shown that, through the use of nine thermal switches, the stable operating range can be increased by 95 °C while maintaining vibration control performance.
Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguardsmore » System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.« less
Natural calcium isotonic composition of urine as a marker of bone mineral balance
Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.
2007-01-01
Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.
Natural calcium isotopic composition of urine as a marker of bone mineral balance.
Skulan, Joseph; Bullen, Thomas; Anbar, Ariel D; Puzas, J Edward; Shackelford, Linda; LeBlanc, Adrian; Smith, Scott M
2007-06-01
We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Calcium isotopic compositions are expressed as delta(44)Ca, or the difference in parts per thousand between the (44)Ca/(40)Ca of a sample and the (44)Ca/(40)Ca of a standard reference material. delta(44)Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Urine delta(44)Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, t-test). Results were consistent with the model and with biochemical and bone mineral density data. Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool.
PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance
Rouhani, Hossein; Same, Michael; Masani, Kei; Li, Ya Qi; Popovic, Milos R.
2017-01-01
Closed-loop controlled functional electrical stimulation (FES) applied to the lower limb muscles can be used as a neuroprosthesis for standing balance in neurologically impaired individuals. The objective of this study was to propose a methodology for designing a proportional-integral-derivative (PID) controller for FES applied to the ankle muscles toward maintaining standing balance for several minutes and in the presence of perturbations. First, a model of the physiological control strategy for standing balance was developed. Second, the parameters of a PID controller that mimicked the physiological balance control strategy were determined to stabilize the human body when modeled as an inverted pendulum. Third, this PID controller was implemented using a custom-made Inverted Pendulum Standing Apparatus that eliminated the effect of visual and vestibular sensory information on voluntary balance control. Using this setup, the individual-specific FES controllers were tested in able-bodied individuals and compared with disrupted voluntary control conditions in four experimental paradigms: (i) quiet-standing; (ii) sudden change of targeted pendulum angle (step response); (iii) balance perturbations that simulate arm movements; and (iv) sudden change of targeted angle of a pendulum with individual-specific body-weight (step response). In paradigms (i) to (iii), a standard 39.5-kg pendulum was used, and 12 subjects were involved. In paradigm (iv) 9 subjects were involved. Across the different experimental paradigms and subjects, the FES-controlled and disrupted voluntarily-controlled pendulum angle showed root mean square errors of <1.2 and 2.3 deg, respectively. The root mean square error (all paradigms), rise time, settle time, and overshoot [paradigms (ii) and (iv)] in FES-controlled balance were significantly smaller or tended to be smaller than those observed with voluntarily-controlled balance, implying improved steady-state and transient responses of FES-controlled balance. At the same time, the FES-controlled balance required similar torque levels (no significant difference) as voluntarily-controlled balance. The implemented PID parameters were to some extent consistent among subjects for standard weight conditions and did not require prolonged individual-specific tuning. The proposed methodology can be used to design FES controllers for closed-loop controlled neuroprostheses for standing balance. Further investigation of the clinical implementation of this approach for neurologically impaired individuals is needed. PMID:28676739
NASA Astrophysics Data System (ADS)
Ozcelik, Ongun; White, Claire
Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.
Johnson, Jay S; Taylor, Daniel J; Green, Angela R; Gaskill, Brianna N
2017-05-01
Discrepancies exist between the preferred temperature range for mice (26 to 32 °C) and current recommendations (20 to 26 °C), which may alter metabolism and negatively affect studies using mice. Previous research indicates that nesting material can alleviate cold stress in mice; therefore, we sought to determine the effects of the amount of nesting material provided (0, 6, or 12 g) on heat energy loss and energy balance in 3 mouse strains housed at currently recommended temperatures during the daytime, a period of presumed inactivity. Groups of BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) mice, balanced by strain and sex, were group-housed and provided 0, 6, or 12 g of nesting material. After a 3-d acclimation period, body weight was determined daily at 0800, food intake was determined at 0800 and 2000, and total heat production was evaluated from 0800 to 2000 on 4 consecutive days and used to calculate energy balance and the respiratory quotient. Although the amount of nesting material had no overall effect on food intake or heat production, mice provided 12 g of nesting material had greater weight gain than those given 0 or 6 g. This increase in body weight might have been due to improved energy balance, which was corroborated by an increased respiratory quotient in mice provided 12 g of nesting material. In summary, although heat production did not differ, providing 12 g of nesting material improved energy balance, likely leading to an increase in body weight during the 0800-2000 testing period.
Lithological control on phytolith carbon sequestration in moso bamboo forests
Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo
2014-01-01
Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg−1) > granite (1.6 g kg−1) > basalt (1.3 g kg−1) > shale (0.7 g kg−1). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO2 ha−1 yr−1, thus a net 4.7 × 106 –310.8 × 106 kg CO2 yr−1 would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants. PMID:24918576
2014-03-27
mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
40 CFR 63.707 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...(c)(1) (material balance calculation) shall include with the notification of compliance status required by § 63.9(h) the results of the initial material balance calculation. (e) The owner or operator... nonregenerative carbon adsorber and demonstrating initial compliance in accordance with § 63.705(c)(6) shall...
10 CFR 72.76 - Material status reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commission a Material Balance Report and a Physical Inventory Listing Report as specified in the instructions... the licensee. Each report must be submitted within 60 days of the beginning of the physical inventory... Balance Reports and Physical Inventory Listing Reports at other times. Each licensee required to report...
Covariant balance laws in continua with microstructure
NASA Astrophysics Data System (ADS)
Yavari, Arash; Marsden, Jerrold E.
2009-02-01
The purpose of this paper is to extend the Green-Naghdi-Rivlin balance of energy method to continua with microstructure. The key idea is to replace the group of Galilean transformations with the group of diffeomorphisms of the ambient space. A key advantage is that one obtains in a natural way all the needed balance laws on both the macro and micro levels along with two Doyle-Erickson formulas. We model a structured continuum as a triplet of Riemannian manifolds: a material manifold, the ambient space manifold of material particles and a director field manifold. The Green-Naghdi-Rivlin theorem and its extensions for structured continua are critically reviewed. We show that when the ambient space is Euclidean and when the microstructure manifold is the tangent space of the ambient space manifold, postulating a single balance of energy law and its invariance under time-dependent isometries of the ambient space, one obtains conservation of mass, balances of linear and angular momenta but not a separate balance of linear momentum. We develop a covariant elasticity theory for structured continua by postulating that energy balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which in this case is the product of two Riemannian manifolds. We then introduce two types of constrained continua in which microstructure manifold is linked to the reference and ambient space manifolds. In the case when at every material point, the microstructure manifold is the tangent space of the ambient space manifold at the image of the material point, we show that the assumption of covariance leads to balances of linear and angular momenta with contributions from both forces and micro-forces along with two Doyle-Ericksen formulas. We show that generalized covariance leads to two balances of linear momentum and a single coupled balance of angular momentum. Using this theory, we covariantly obtain the balance laws for two specific examples, namely elastic solids with distributed voids and mixtures. Finally, the Lagrangian field theory of structured elasticity is revisited and a connection is made between covariance and Noether's theorem.
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weigh scales, or the result of computations using a material balance, shall be used to determine the rate (P) of the ammonium sulfate production. If production rate is determined by material balance, the... combined feed stream flow rate to the ammonium crystallizer before the point where any recycle streams...
Reconstruction Era: Resources for a Balanced Approach.
ERIC Educational Resources Information Center
Seiter, David M.
1989-01-01
Lists instructional materials from the ERIC database that focus on the Reconstruction. Includes materials that present a balanced approach to this period of U.S. history. Offers documents concerned with Black education, the Freedmen's Bureau, the Indian Territory, textbook evaluation, Black women's education, and Reverend Moses Drury Hoge. (KO)
Boonstra, Tjitske A; van Kordelaar, Joost; Engelhart, Denise; van Vugt, Jeroen P P; van der Kooij, Herman
2016-01-01
Many Parkinson's disease (PD) patients show asymmetries in balance control during quiet stance and in response to perturbations (i.e., reactive balance control) in the sagittal plane. In addition, PD patients show a reduced ability to anticipate to self-induced disturbances, but it is not clear whether these anticipatory responses can be asymmetric too. Furthermore, it is not known how reactive balance control and anticipatory balance control are related in PD patients. Therefore, we investigated whether reactive and anticipatory balance control are asymmetric to the same extent in PD patients. 14 PD patients and 10 controls participated. Reactive balance control (RBC) was investigated by applying external platform and force perturbations and relating the response of the left and right ankle torque to the body sway angle at the excited frequencies. Anticipatory postural adjustments (APAs) were investigated by determining the increase in the left and right ankle torque just before the subjects released a force exerted with the hands against a force sensor. The symmetry ratio between the contribution of the left and right ankle was used to express the asymmetry in reactive and anticipatory balance control; the correlation between the two ratio's was investigated with Spearman's rank correlation coefficients. PD patients were more asymmetric in anticipatory (p=0.026) and reactive balance control (p=0.004) compared to controls and the symmetry ratios were significantly related (ρ=0.74; p=0.003) in PD patients. These findings suggest that asymmetric reactive balance control during bipedal stance may share a common pathophysiology with asymmetries in the anticipation of voluntary perturbations during, for instance, gait initiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Il-Woung; Hong, Hee-Do; Choi, Sang Yoon; Hwang, Da-Hye; Her, Youl; Kim, Si-Kwan
2011-01-01
Good manufacturing practice (GMP)-based quality control is an integral component of the common technical document, a formal documentation process for applying a marketing authorization holder to those countries where ginseng is classified as a medicine. In addition, authentication of the physico-chemical properties of ginsenoside reference materials, and qualitative and quantitative batch analytical data based on validated analytical procedures are prerequisites for certifying GMP. Therefore, the aim of this study was to propose an authentication process for isolated ginsenosides Rb1 and Rg1 as reference materials (RM) and for these compounds to be designated as RMs for ginseng preparations throughout the world. Ginsenoside Rb1 and Rg1 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of the isolated ginsenosides was made according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantitation, and mass balance tests. The isolated ginsenosides were proven to be a single compound when analyzed by three different HPLC systems. Also, the water content was found to be 0.940% for Rb1 and 0.485% for Rg1, meaning that the net mass balance for ginsenoside Rb1 and Rg1 were 99.060% and 99.515%, respectively. From these results, we could assess and propose a full spectrum of physicochemical properties for the ginsenosides Rb1 and Rg1 as standard reference materials for GMP-based quality control. PMID:23717096
The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury.
Han, Jia; Anson, Judith; Waddington, Gordon; Adams, Roger; Liu, Yu
2015-01-01
Balance control improvement is one of the most important goals in sports and exercise. Better balance is strongly positively associated with enhanced athletic performance and negatively associated with lower limb sports injuries. Proprioception plays an essential role in balance control, and ankle proprioception is arguably the most important. This paper reviews ankle proprioception and explores synergies with balance control, specifically in a sporting context. Central processing of ankle proprioceptive information, along with other sensory information, enables integration for balance control. When assessing ankle proprioception, the most generalizable findings arise from methods that are ecologically valid, allow proprioceptive signals to be integrated with general vision in the central nervous system, and reflect the signal-in-noise nature of central processing. Ankle proprioceptive intervention concepts driven by such a central processing theory are further proposed and discussed for the improvement of balance control in sport.
The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury
Han, Jia; Waddington, Gordon; Adams, Roger; Liu, Yu
2015-01-01
Balance control improvement is one of the most important goals in sports and exercise. Better balance is strongly positively associated with enhanced athletic performance and negatively associated with lower limb sports injuries. Proprioception plays an essential role in balance control, and ankle proprioception is arguably the most important. This paper reviews ankle proprioception and explores synergies with balance control, specifically in a sporting context. Central processing of ankle proprioceptive information, along with other sensory information, enables integration for balance control. When assessing ankle proprioception, the most generalizable findings arise from methods that are ecologically valid, allow proprioceptive signals to be integrated with general vision in the central nervous system, and reflect the signal-in-noise nature of central processing. Ankle proprioceptive intervention concepts driven by such a central processing theory are further proposed and discussed for the improvement of balance control in sport. PMID:26583139
Lefaivre, Shannon C; Almeida, Quincy J
2015-02-01
Impaired sensory processing in Parkinson's disease (PD) has been argued to contribute to balance deficits. Exercises aimed at improving sensory feedback and body awareness have the potential to ameliorate balance deficits in PD. Recently, PD SAFEx™, a sensory and attention focused rehabilitation program, has been shown to improve motor deficits in PD, although balance control has never been evaluated. The objective of this study was to measure the effects of PD SAFEx™ on balance control in PD. Twenty-one participants with mild to moderate idiopathic PD completed 12 weeks of PD SAFEx™ training (three times/week) in a group setting. Prior to training, participants completed a pre-assessment evaluating balance in accordance with an objective, computerized test of balance (modified clinical test of sensory integration and balance (m-CTSIB) and postural stability testing (PST)) protocols. The m-CTSIB was our primary outcome measure, which allowed assessment of balance in both eyes open and closed conditions, thus enabling evaluation of specific sensory contributions to balance improvement. At post-test, a significant interaction between time of assessment and vision condition (p=.014) demonstrated that all participants significantly improved balance control, specifically when eyes were closed. Balance control did not change from pre to post with eyes open. These results provide evidence that PD SAFEx™ is effective at improving the ability to utilize proprioceptive information, resulting in improved balance control in the absence of vision. Enhancing the ability to utilize proprioception for individuals with PD is an important intermediary to improving balance deficits. Copyright © 2015. Published by Elsevier B.V.
O'Connor, James E.; Mangano, Joseph F.; Anderson, Scott A.; Wallick, J. Rose; Jones, Krista L.; Keith, Mackenzie K.
2014-01-01
The rivers of western Oregon have diverse forms and characteristics, with channel substrates ranging from continuous alluvial gravel to bare bedrock. Analysis of several measurable morphologic attributes of 24 valley reaches on 17 rivers provides a basis for comparing nonalluvial and alluvial channels. Key differences are that alluvial reaches have greater bar area, greater migration rates, and show systematic correlation among variables relating grain size to bed-material transport capacity. We relate these differences between channel types to bed-material transport rates as derived from a coupled regional analysis of empirical sediment yield measurements and physical experiments of clast attrition during transport. This sediment supply analysis shows that overall bed-material transport rates for western Oregon are chiefly controlled by (1) lithology and basin slope, which are the key factors for bed-material supply into the stream network, and (2) lithologic control of bed-material attrition from in-transport abrasion and disintegration. This bed-material comminution strongly affects bed-material transport in the study area, reducing transport rates by 50%–90% along the length of the larger rivers in the study area. A comparison of the bed-material transport estimates with the morphologic analyses shows that alluvial gravel-bed channels have systematic and bounding relations between bed-material transport rate and attributes such as bar area and local transport capacity. By contrast, few such relations are evident for nonalluvial rivers with bedrock or mixed-bed substrates, which are apparently more influenced by local controls on channel geometry and sediment supply. At the scale of western Oregon, the physiographic and lithologic controls on the balance between bed-material supply and transport capacity exert far-reaching influence on the distribution of alluvial and nonalluvial channels and their consequently distinctive morphologies and behaviors—differences germane for understanding river response to tectonics and environmental perturbations, as well as for implementing effective restoration and monitoring strategies.
48 CFR 225.7703-5 - Solicitation provisions and contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
...—Balance of Payments Program Certificate. (5) 252.225-7036, Buy American Act—Free Trade Agreements—Balance...-7045, Balance of Payments Program—Construction Material Under Trade Agreements. (f) Do not use the... 252.225-7024, or the clause at 252.225-7026: (1) 252.225-7000, Buy American Act—Balance of Payments...
48 CFR 225.7703-5 - Solicitation provisions and contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
...—Balance of Payments Program Certificate. (5) 252.225-7036, Buy American Act—Free Trade Agreements—Balance...-7045, Balance of Payments Program—Construction Material Under Trade Agreements. (f) Do not use the... 252.225-7024, or the clause at 252.225-7026: (1) 252.225-7000, Buy American Act—Balance of Payments...
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B
2015-01-01
To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Balance Asymmetry in Parkinson’s Disease and Its Contribution to Freezing of Gait
Boonstra, Tjitske A.; van Vugt, Jeroen P. P.; van der Kooij, Herman; Bloem, Bastiaan R.
2014-01-01
Balance control (the ability to maintain an upright posture) is asymmetrically controlled in a proportion of patients with Parkinson’s disease. Gait asymmetries have been linked to the pathophysiology of freezing of gait. We speculate that asymmetries in balance could contribute to freezing by a) hampering the unloading of the stepping leg and/or b) leading to a preferred stance leg during gait, which then results in asymmetric gait. To investigate this, we examined the relationship between balance control and weight-bearing asymmetries and freezing. We included 20 human patients with Parkinson (tested OFF medication; nine freezers) and nine healthy controls. Balance was perturbed in the sagittal plane, using continuous multi-sine perturbations, applied by a motion platform and by a force at the sacrum. Applying closed-loop system identification techniques, relating the body sway angle to the joint torques of each leg separately, determined the relative contribution of each ankle and hip joint to the total amount of joint torque. We also calculated weight-bearing asymmetries. We determined the 99-percent confidence interval of weight-bearing and balance-control asymmetry using the responses of the healthy controls. Freezers did not have larger asymmetries in weight bearing (p = 0.85) nor more asymmetrical balance control compared to non-freezers (p = 0.25). The healthy linear one-to-one relationship between weight bearing and balance control was significantly different for freezers and non-freezers (p = 0.01). Specifically, non-freezers had a significant relationship between weight bearing and balance control (p = 0.02), whereas this relation was not significant for freezers (p = 0.15). Balance control is asymmetrical in most patients (about 75 percent) with Parkinson’s disease, but this asymmetry is not related to freezing. The relationship between weight bearing and balance control seems to be less pronounced in freezers, compared to healthy controls and non-freezers. However, this relationship should be investigated further in larger groups of patients. PMID:25032994
Rochefort, Coralie; Walters-Stewart, Coren; Aglipay, Mary; Barrowman, Nick; Zemek, Roger; Sveistrup, Heidi
2017-11-01
To determine if self-reported balance symptoms can be used as a proxy for measures of the center of pressure (COP) to identify balance deficits in a group of concussed adolescents. Case-control. Thirteen adolescents 1-month post-concussion who reported ongoing balance problems (Balance+), 20 adolescent 1-month post-concussion who reported no balance problems (Balance-), and 30 non-injured adolescents (control) completed a series of balance tests. Participants completed two 2-min trials standing on a Nintendo Wii Balance Board™ during which the COP under their feet was recorded: i) double-leg stance, eyes open; ii) double-leg stance, eyes closed. Participants also completed a dual-task condition combining a double-leg stance and a Stroop Colour-word test. Participants in both the Balance+ and Balance- group swayed over a larger ellipse area compared to the control group while completing the Eyes Closed (Balance+, p=0.002; Balance-, p=0.002) and Dual-Task (Balance+, p=0.001; Balance-, p=0.004) conditions and performed the Dual-Task condition with faster medio-lateral velocity (Balance+, p=0.003; Balance-, p=0.009). The participants in the Balance- group also swayed over a larger ellipse area compared to the control group while completing the Eyes Open condition (p=0.005). No significant differences were identified between the Balance+ and Balance- groups. At 1-month post-concussion, adolescents demonstrated balance deficits compared to non-injured adolescents regardless of whether they reported balance problems. These results suggest that self-reported balance status might not be an accurate reflection of balance performance following a concussion in adolescents. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Postural control and balance self-efficacy in women with fibromyalgia: are there differences?
Muto, L H A; Sauer, J F; Yuan, S L K; Sousa, A; Mango, P C; Marques, A P
2015-04-01
Fibromyalgia (FM) is a rheumatic disease characterized by chronic widespread pain and symptoms such as fatigue, sleep disturbances, cognitive difficulties, and depression. Postural instability is a debilitating disorder increasingly recognized as part of FM. To assess and compare postural control and balance self-efficacy in women with and without FM and verify the association of these variables with pain, symptom severity, and strength. Case-control study Physiotherapeutic Clinical Research and Electromyography Laboratory Department of Physical Therapy, Speech Therapy, and Occupational Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil. Case-control study of 117 women ranging from age 35 to 60 years. Of these, 67 had FM. Posture control was assessed with the modified clinical test of sensory interaction on balance with patients in forceplates, balance self-efficacy with the Activities-specific Balance Confidence Scale, pain severity with the Visual Analog Scale, tender point pain threshold with digital algometry, symptom severity with the fibromyalgia impact questionnaire, and lower limb strength with a dynamometer. Individuals with FM had impaired postural control showing increased speed of oscillation of the center of gravity (P=0.004) and decreased balance self-efficacy (P<0.001). They had moderate to excellent correlations of balance self-efficacy with pain (r=0.7, P<0.01), muscle strength (r=0.52, P<0.01), and symptom severity (r=0.78, P<0.10) compared with the control group. Correlation of postural control with the same variables was weak. Patients with FM have impaired postural control and low balance self-efficacy that are associated with pain, muscle strength, and symptom severity. Postural control and balance self-efficacy needs to be assessed in patients with FM and the treatment goals should be the improvement of postural control and balance self-efficacy.
Relationship between antigravity control and postural control in young children.
Sellers, J S
1988-04-01
The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.
Engineering charge transport by heterostructuring solution-processed semiconductors
NASA Astrophysics Data System (ADS)
Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.
2017-06-01
Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.
Gabizon, Hadas; Press, Yan; Volkov, Ilia; Melzer, Itshak
2016-07-01
To evaluate the effect of a group-based Pilates training program on balance control and health status in healthy older adults. A single-blind, randomized, controlled trial. General community. A total of 88 community-dwelling older adults (age 71.15 ± 4.30 years), without evidence of functional balance impairment, were recruited and allocated at random to a Pilates intervention group (n = 44) or a control group (n = 44). The Pilates intervention group received 36 training sessions over three months (3 sessions a week), while the control group did not receive any intervention. Standing upright postural stability, performance-based measures of balance, and self-reported health status was assessed in both groups at baseline and at the end of the intervention period. Compared with the control group, the Pilates intervention did not improve postural stability, baseline functional measures of balance, or health status. The results suggest that because Pilates training is not task specific, it does not improve balance control or balance function in independent older adults.
Design Tools for Assessing Manufacturing Environmental Impact.
1997-11-26
the material report alone. In order to more easily design, update and verify the output report, many of the cells which contained the information...needed for the material balance calculations were named. The cell name was then used in the calculations. Where possible the same names that were used in...Material balance information was used extensively to ensure all the equations were correct and were put into the appropriate cells . A summary of the
Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Whitlow, Jonathan E.
2000-01-01
This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.
Power Balance Analysis of the Prototype-Material Plasma Exposure eXperiment
NASA Astrophysics Data System (ADS)
Showers, M. A.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Lumsdaine, A.; Owen, L.; Rapp, J.; Youchison, D.; Beers, C. J.; Donovan, D. C.; Kafle, N.; Ray, H. B.
2017-10-01
The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a test bed for the plasma source concept for the planned Material Plasma Exposure eXperiment (MPEX), a steady-state linear device studying plasma material interactions for fusion reactors. A power balance of Proto-MPEX attempts to identify machine operating parameters that will improve Proto-MPEX's performance, potentially impacting the MPEX design concept. A power balance has been performed utilizing an extensive diagnostic suite to identify mechanisms and locations of power loss from the main plasma. The diagnostic package includes infrared cameras, double Langmuir probes, fluoroptic probes, Mach probes, a Thomson scattering diagnostic, a McPherson spectrometer and in-vessel thermocouples. Radiation losses are estimated with absolute calibrated spectroscopic signals. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.
The effect of general and spinal anesthesia on balance control in elderly patients.
Suárez, Alejo; Macadar, Omar
2008-01-01
Falls are a major problem in the elderly population, but few communications address the influence of anesthesia on balance control. This study reports how a general balanced anesthesia (GBA) and a spinal anesthesia (SA) affect balance control in the elderly. We divided into three groups, according to electronystagmography findings and type of anesthesia, 21 men older than 65 years (mean age, 72 years) who were scheduled for prostate adenectomy. One group, designated GBN, consisted of normal subjects who underwent surgery under GBA. In another group, designated GBP, were pathological subjects who had clinically compensated central vestibular disorders (CVDs) and underwent surgery under GBA. The third group, designated SP, contained CVD patients who underwent surgery under SA. We assessed balance control via static posturography preoperatively and 48 hours postoperatively. We observed no change in balance control parameters (center of pressure distribution area [COPa] or COP sway velocity [SV]) for those patients in the GBN group or for those in the SP group. We did observe a significant difference for the patients in the GBP group, with higher postoperative values of COPa and SV (Wilcoxon signed rank test). Our results showed that in subjects with clinically compensated underlying CVD prior to a GBA, balance control worsens after the procedure, whereas no change in balance control occurs after an SA. Balance control in subjects with normal vestibuloocular function did not change even after a GBA.
Strain-balanced type-II superlattices for efficient multi-junction solar cells.
Gonzalo, A; Utrilla, A D; Reyes, D F; Braza, V; Llorens, J M; Fuertes Marrón, D; Alén, B; Ben, T; González, D; Guzman, A; Hierro, A; Ulloa, J M
2017-06-21
Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
Analytical balance-based Faraday magnetometer
NASA Astrophysics Data System (ADS)
Riminucci, Alberto; Uhlarz, Marc; De Santis, Roberto; Herrmannsdörfer, Thomas
2017-03-01
We introduce a Faraday magnetometer based on an analytical balance in which we were able to apply magnetic fields up to 0.14 T. We calibrated it with a 1 mm Ni sphere previously characterized in a superconducting quantum interference device (SQUID) magnetometer. The proposed magnetometer reached a theoretical sensitivity of 3 × 10-8 A m2. We demonstrated its operation on magnetic composite scaffolds made of poly(ɛ-caprolactone)/iron-doped hydroxyapatite. To confirm the validity of the method, we measured the same scaffold properties in a SQUID magnetometer. The agreement between the two measurements was within 5% at 0.127 T and 12% at 24 mT. With the addition, for a small cost, of a permanent magnet and computer controlled linear translators, we were thus able to assemble a Faraday magnetometer based on an analytical balance, which is a virtually ubiquitous instrument. This will make simple but effective magnetometry easily accessible to most laboratories, in particular, to life sciences ones, which are increasingly interested in magnetic materials.
Purchasing in a supply chain environment.
Schorr, J E
2000-08-01
Why the interest in purchasing? In the typical company, material costs are 40% to 75% of the cost of goods sold, labor is 5% to 15%, and the balance is burden. The typical company has $4-$5 in purchased cost to $1 in labor. Most companies are implementing material requirements planning (MRP II) and enterprise resource planning systems to control the $1 in labor and have little expectation in the area of purchasing savings. Yet a dollar saved in purchasing goes directly to the bottom line. I ran a survey of 100 Class A users of MRP II; in all 100 of the companies, the biggest payback was in the area of purchasing.
48 CFR 225.7503 - Contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Balance of Payments Program 225.7503 Contract clauses. Unless the entire acquisition is exempt from the Balance of Payments Program— (a)(1) Use the clause at 252.225-7044, Balance of Payments Program—Construction Material, in solicitations and contracts...
48 CFR 225.7503 - Contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Balance of Payments Program 225.7503 Contract clauses. Unless the entire acquisition is exempt from the Balance of Payments Program— (a) Use the clause at 252.225-7044, Balance of Payments Program—Construction Material, in solicitations and contracts...
Contributions to lateral balance control in ambulatory older adults.
Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C
2018-06-01
In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.
Bart, Orit; Bar-Haim, Yair; Weizman, Einat; Levin, Moran; Sadeh, Avi; Mintz, Matti
2009-01-01
Comorbidity between balance and anxiety disorders in adult population is a well-studied clinical entity. Children might be particularly prone to develop balance-anxiety comorbidity, but surprisingly they are practically neglected in this field of research. The consequence is that children are treated for what seems to be the primary disorder without noticing possible effects on the other disorder. In Study 1, children with balance dysfunction were compared to normally balanced controls on anxiety and self-esteem. In study 2, children with balance dysfunction were assigned to either balance training or a waiting-list control. Training consisted of 12 weekly sessions of balance treatment. Anxiety and self-esteem were tested before and after treatment/waiting. Study 1 confirmed significantly higher anxiety and lower self-esteem in the balance dysfunction group compared to the control group. Study 2 showed that treatment improved balance performance, reduced anxiety, and increased self-esteem relative to the control waiting list group. Taken together, the present findings are in accord with the observations of comorbidity between balance and anxiety disorders in adults and confirm their validity in children younger than 7 years of age. This profile of comorbidity between balance dysfunction and anxiety also include lower self-esteem.
2005-02-01
AApproved for Public Release Distribution Unlimited SANS MENTION DE PROTECTION MATERIALS AND STRUCTURES -1- ONERA BP 72 - 29. avenue de la Division Leclerc...reduction. Finding the best solution in terns balancing structural strength and acoustic properties was the main thrust of this project. Acoustic...material system for noise reduction. Finding the best solution in terms balancing structural strength and acoustic properties was the main thrust of this
Material test machine for tension-compression tests at high temperature
Cioletti, Olisse C.
1988-01-01
Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.
NASA Astrophysics Data System (ADS)
Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.
2017-03-01
We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.
Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L
2017-03-03
We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.
Development of new reference material neohesperidin for quality control of dietary supplements.
Gong, Ningbo; Zhang, Baoxi; Yang, Dezhi; Gao, Zhaolin; Du, Guanhua; Lu, Yang
2015-07-01
Neohesperidin is an important natural flavanone glycoside distributed in several citrus species. This compound is widely used as a raw material for food additives in the food industry. The request for certified reference materials (CRMs) in dietary supplements was stipulated by the National Administrative Committee for CRMs and was underpinned by the need to improve the accuracy and comparability of measurement data and to establish metrological traceability of analytical results. This paper reports the sample preparation methodology, homogeneity and stability studies, value assignment and uncertainty estimation of a new certified reference material of neohesperidin (GBW09522). Differential scanning calorimetry, coulometric titration and mass balance methods proved to be sufficiently reliable and accurate for certification purposes. The certified value of neohesperidin CRM is 994 g kg(-1) with an expanded uncertainty of 4 g kg(-1) (k = 2). The reference material described above was homogeneous and stable for 12 months at a storage temperature of 25 °C. The new CRM of neohesperidin can be used to validate analytical methods and improve the accuracy of measurement data as well as quality control of neohesperidin-related dietary supplements, foods, traditional herbs and pharmaceutical formulations. © 2014 Society of Chemical Industry.
The relationship between balance confidence and control in individuals with Parkinson's disease
Lee, Hyo Keun; Altman, Lori J.P.; McFarland, Nikolaus; Hass, Chris J.
2016-01-01
Introduction A broad range of subjective and objective assessments have been used to assess balance confidence and balance control in persons with Parkinson's disease (PD). However, little is known about the relationship between self-perceived balance confidence and actual balance control in PD. The purpose of this investigation was to determine the relationship between self-perceived balance confidence and objectively measured static/dynamic balance control abilities. Methods Forty-four individuals with PD participated in the study. Patients were stratified into 2 groups based on the modified Hoehn and Yahr (H&Y) disability score: early stage, H&Y≤2.0 and moderate stage, H&Y ≥2.5. All participants completed the activities-specific balance confidence (ABC) scale and performed standing balance and gait initiation tasks to assess static and dynamic balance control. The center of pressure (COP) sway (CE95%Sway) during static balance and the peak distance between the projections of the COP and the center of mass (COM) in the transverse plane (COPCOM) during gait initiation were calculated. Pearson correlation analyses were conducted relating the ABC score and CE95%Sway and COPCOM. Results For early stage PD, there was a moderate correlation between ABC score and CE95 %Sway (r=-0.56, R2=0.32, p=0.002), while no significant correlation was found between ABC score and COPCOM (r=-0.24, R2=0.06, p=0.227). For moderate stage PD, there was a moderate correlation between ABC score and COPCOM (r=0.49, R2=0.24, p=0.044), while no correlation was found between ABC score and CE95%Sway (r=-0.19, R2=0.04, p=0.478). Conclusion Individuals with different disease severities showed different relationships between balance confidence and actual static/dynamic balance control. PMID:26949065
Mikó, Ibolya; Szerb, Imre; Szerb, Anna; Poor, Gyula
2017-02-01
To investigate the effect of a 12-month sensomotor balance exercise programme on postural control and the frequency of falling in women with established osteoporosis. Randomized controlled trial where the intervention group was assigned the 12-month Balance Training Programme and the control group did not undertake any intervention beyond regular osteoporosis treatment. A total of 100 osteoporotic women - at least with one osteoporotic fracture - aged 65 years old and above. Balance was assessed in static and dynamic posture both with performance-based measures of balance, such as the Berg Balance Scale and the Timed Up and Go Test, and with a stabilometric computerized platform. Patients in the intervention group completed the 12-month sensomotor Balance Training Programme in an outpatient setting, guided by physical therapists, three times a week, for 30 minutes. The Berg Balance Scale and the Timed Up and Go Test showed a statistically significant improvement of balance in the intervention group ( p = 0.001 and p = 0.005, respectively). Balance tests using the stabilometer also showed a statistically significant improvement in static and dynamic postural balance for osteoporotic women after the completion of the Balance Training Programme. As a consequence, the one-year exercise programme significantly decreased the number of falls in the exercise group compared with the control group. The Balance Training Programme significantly improved the balance parameters and reduced the number of falls in postmenopausal women who have already had at least one fracture in the past.
ERIC Educational Resources Information Center
Liberatore, Matthew
2017-01-01
Textbooks are experiencing a 21st century makeover. The author has created a web-based electronic textbook, Material and Energy Balances zyBook, that records students' interactions. Animations and question sets create interactive and scaffolded content. The interactive format is adopted successfully in other engineering disciplines and is now…
The Degrees of Freedom Concept--Extending the Domain
ERIC Educational Resources Information Center
Biernacki, J. J.
2016-01-01
The degrees of freedom (DOF) concept is a powerful tool that has been taught since at least the '70s in undergraduate curriculum, typically introduced in the context of a first course on material and energy balances. The concept, however, has not been widely applied beyond the material balance domain and in general is not taught as a unified…
Micarta Propellers II : Method of Construction
NASA Technical Reports Server (NTRS)
Caldwell, F W; Clay, N S
1924-01-01
The methods used in manufacturing Micarta propellers differ considerably from those employed with wood propellers on account of the hardness of the materials. The propellers must be formed accurately to size in a mold and afterwards balanced without the customary trimming of the material from the tips. Described here are the pressing and molding processes, filing, boring, balancing, and curing.
Improving Balance in Subacute Stroke Patients: A Randomized Controlled Study
ERIC Educational Resources Information Center
Goljar, Nika; Burger, Helena; Rudolf, Marko; Stanonik, Irena
2010-01-01
The aim of the study was to compare the efficacy of balance training in a balance trainer, a newly developed mechanical device for training balance, with conventional balance training in subacute stroke patients. This was a randomized controlled study. Fifty participants met the inclusion criteria and 39 finished the study. The participants were…
Maki, Brian E; Sibley, Katherine M; Jaglal, Susan B; Bayley, Mark; Brooks, Dina; Fernie, Geoff R; Flint, Alastair J; Gage, William; Liu, Barbara A; McIlroy, William E; Mihailidis, Alex; Perry, Stephen D; Popovic, Milos R; Pratt, Jay; Zettel, John L
2011-12-01
Falling is a leading cause of serious injury, loss of independence, and nursing-home admission in older adults. Impaired balance control is a major contributing factor. Results from our balance-control studies have been applied in the development of new and improved interventions and assessment tools. Initiatives to facilitate knowledge-translation of this work include setting up a new network of balance clinics, a research-user network and a research-user advisory board. Our findings support the efficacy of the developed balance-training methods, balance-enhancing footwear, neuro-prosthesis, walker design, handrail-cueing system, and handrail-design recommendations in improving specific aspects of balance control. IMPACT ON KNOWLEDGE USERS: A new balance-assessment tool has been implemented in the first new balance clinic, a new balance-enhancing insole is available through pharmacies and other commercial outlets, and handrail design recommendations have been incorporated into 10 Canadian and American building codes. Work in progress is expected to have further impact. Copyright © 2011 National Safety Council and Elsevier Ltd. All rights reserved.
El-Shamy, Shamekh Mohamed; Abd El Kafy, Ehab Mohamed
2014-01-01
The purpose of this study was to evaluate the effects of balance training on postural control and fall risk in children with diplegic cerebral palsy. Thirty spastic diplegic cerebral palsied children (10-12 years) were included in this study. Children were randomly assigned into two equal-sized groups: control and study groups. Participants in both groups received a traditional physical therapy exercise program. The study group additionally received balance training on the Biodex balance system. Treatment was provided 30 min/d, 3 d/week for 3 successive months. To evaluate the limit of stability and fall risk, participated children received baseline and post-treatment assessments using the Biodex balance system. Overall directional control, total time to complete the test, overall stability index of the fall risk test and total score of the pediatric balance scale were measured. Children in both groups showed significant improvements in the mean values of all measured variables post-treatment (p < 0.05). The results also showed significantly better improvement in the measured parameters for the study group, as compared to the control group (p < 0.05). Balance training on Biodex system is a useful tool that can be used in improving postural balance control in children with diplegic cerebral palsy.
Ablative Laser Propulsion Using Multi-Layered Material Systems
NASA Technical Reports Server (NTRS)
Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.
2002-01-01
Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.
Laser balancing system for high material removal rates
NASA Technical Reports Server (NTRS)
Jones, M. G.; Georgalas, G.; Ortiz, A. L.
1984-01-01
A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.
The Exact Art and Subtle Science of DC Smelting: Practical Perspectives on the Hot Zone
NASA Astrophysics Data System (ADS)
Geldenhuys, Isabel J.
2017-02-01
Increasingly, sustainable smelting requires technology that can process metallurgically complex, low-grade, ultra-fine and waste materials. It is likely that more applications for direct current (DC) technology will inevitably follow in the future as DC open-arc furnaces have some wonderful features that facilitate processing of a variety of materials in an open-arc open-bath configuration. A DC open-arc furnace allows for optimization and choice of chemistry to benefit the process, rather than being constrained by the electrical or physical properties of the material. In a DC configuration, the power is typically supplied by an open arc, providing relative independence and thus an extra degree of freedom. However, if the inherent features of the technology are misunderstood, much of the potential may never be realised. It is thus important to take cognisance of the freedom an operator will have as a result of the open arc and ensure that operating strategies are implemented. This extra degree of freedom hands an operator a very flexible tool, namely virtually unlimited power. Successful open-arc smelting is about properly managing the balance between power and feed, and practical perspectives on the importance of power and feed balance are presented to highlight this aspect as the foundation of proper open-arc furnace control.
Influence of job demands and job control on work-life balance among Taiwanese nurses.
Ng, Lee-Peng; Chen, I-Chi; Ng, Hui-Fuang; Lin, Bo-Yen; Kuar, Lok-Sin
2017-09-01
This study investigated the extent to which the job demands and job control of nurses were related to their work-life balance. The inability to achieve work-life balance is one of the major reasons for the declining retention rate among nurses. Job demands and job control are two major work domain factors that can have a significant influence on the work-life balance of nurses. The study measured the job demands, job control and work-life balance of 2040 nurses in eight private hospitals in Taiwan in 2013. Job demands and job control significantly predicted all the dimensions of work-life balance. Job demands increased the level of work-life imbalance among nurses. While job control showed positive effects on work/personal life enhancement, it was found to increase both work interference with personal life and personal life interference with work. Reducing the level of job demands (particularly for psychological demands) between family and career development and maintaining a proper level of job control are essential to the work-life balance of nurses. Flexible work practices and team-based management could be considered by nursing management to lessen job demand pressure and to facilitate job engagement and participation among nurses, thus promoting a better balance between work and personal life. © 2017 John Wiley & Sons Ltd.
Effects of Balance Control Training on Functional Outcomes in Subacute Hemiparetic Stroke Patients.
Huh, Jin Seok; Lee, Yang-Soo; Kim, Chul-Hyun; Min, Yu-Sun; Kang, Min-Gu; Jung, Tae-Du
2015-12-01
To investigate the efficacy of balance control training using a newly developed balance control trainer (BalPro) on the balance and gait of patients with subacute hemiparetic stroke. Forty-three subacute stroke patients were assigned to either a balance control training (BCT) group or a control group. The BCT group (n=23) was trained with BalPro for 30 minutes a day, 5 days a week for 2 weeks, and received one daily session of conventional physical therapy. The control group (n=20) received two sessions of conventional physical therapy every day for 2 weeks. The primary outcome was assessment with the Berg Balance Scale (BBS). Secondary outcomes were Functional Ambulation Category (FAC), the 6-minute walking test (6mWT), Timed Up and Go (TUG), the Korean version of Modified Barthel Index (K-MBI), and the manual muscle test (MMT) of the knee extensor. All outcome measures were evaluated before and after 2 weeks of training in both groups. There were statistically significant improvements in all parameters except MMT and FAC after 2 weeks of treatment in both groups. After training, the BCT group showed greater improvements in the BBS and the 6mWT than did the control group. Balance control training using BalPro could be a useful treatment for improving balance and gait in subacute hemiparetic stroke patients.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Effects of Balance Control Training on Functional Outcomes in Subacute Hemiparetic Stroke Patients
Huh, Jin Seok; Lee, Yang-Soo; Kim, Chul-Hyun; Min, Yu-Sun; Kang, Min-Gu
2015-01-01
Objective To investigate the efficacy of balance control training using a newly developed balance control trainer (BalPro) on the balance and gait of patients with subacute hemiparetic stroke. Methods Forty-three subacute stroke patients were assigned to either a balance control training (BCT) group or a control group. The BCT group (n=23) was trained with BalPro for 30 minutes a day, 5 days a week for 2 weeks, and received one daily session of conventional physical therapy. The control group (n=20) received two sessions of conventional physical therapy every day for 2 weeks. The primary outcome was assessment with the Berg Balance Scale (BBS). Secondary outcomes were Functional Ambulation Category (FAC), the 6-minute walking test (6mWT), Timed Up and Go (TUG), the Korean version of Modified Barthel Index (K-MBI), and the manual muscle test (MMT) of the knee extensor. All outcome measures were evaluated before and after 2 weeks of training in both groups. Results There were statistically significant improvements in all parameters except MMT and FAC after 2 weeks of treatment in both groups. After training, the BCT group showed greater improvements in the BBS and the 6mWT than did the control group. Conclusion Balance control training using BalPro could be a useful treatment for improving balance and gait in subacute hemiparetic stroke patients. PMID:26798615
Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
Bauman, Richard F.; Ryan, Daniel F.
1982-01-01
An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.
Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed
2018-04-01
The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.
Zgonnikov, Arkady; Lubashevsky, Ihor
2015-11-01
When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: Instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of such a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In doing so, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes.
Cracks in Complex Bodies: Covariance of Tip Balances
NASA Astrophysics Data System (ADS)
Mariano, Paolo Maria
2008-04-01
In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.
The balance effect of acupuncture therapy among stroke patients.
Huang, Shih-Wei; Wang, Wei-Te; Yang, Tsung-Hsien; Liou, Tsan-Hon; Chen, Guan-Yu; Lin, Li-Fong
2014-08-01
To analyze how acupuncture therapy affects balance in patients experiencing their first stroke and to identify the stroke group with greatest improvement in balance after acupuncture intervention. Retrospective case-control study. Ward of a medical university hospital. A total of 629 stroke patients were enrolled initially; 345 patients met the study criteria and 132 were analyzed (66 each in the study and control groups). The study group received physiotherapy combined with acupuncture and the control group received only physiotherapy. The Postural Assessment Scale for Stroke patients (PASS) was used to evaluate balance. This balance scale system can be subdivided into static balance (PASS-MP, maintain posture) and dynamic balance (PASS-CP, change posture). This study revealed no statistically significant improvement of balance in the study group (t test). When patients with high Brunnstrom stage (Br stage) and low Br stage were analyzed separately, once again no statistical difference was detected between the study and control groups of those with high Br stage. However, among low-Br stage patients, the study group showed significant improvement in static balance (mean PASS-MP score±standard deviation: 4.7±3.7) compared with the control group (PASS-MP score: 2.8±2.7) (p<0.05). In first-ever stroke patients with a low Br stage, acupuncture therapy can improve static balance during rehabilitation. However, the effect on balance was limited among high-Br stage patients. This study provides information valuable to patients with hemiplegic stroke because it suggests that acupuncture can be used to improve balance. A prospective double-blind, randomized, controlled study design is recommended for future studies in patients with hemiplegic stroke.
Supercritical water oxidation of products of human metabolism
NASA Technical Reports Server (NTRS)
Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON
1986-01-01
Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.
ERIC Educational Resources Information Center
Liberatore, Matthew W.
2011-01-01
Personalized, online homework was used to supplement textbook homework, quizzes, and exams for one section of a course in material and energy balances. The objective of this study was to test the hypothesis that students using personalized, online homework earned better grades in the course. The online homework system asks the same questions of…
Effect of acute fatigue of the hip abductors on control of balance in young and older women.
Bellew, James W; Panwitz, Beth L; Peterson, Laura; Brock, Mary C; Olson, Katie E; Staples, William H
2009-07-01
To examine the effects of acute fatigue of the hip abductors on the control of balance in young and older women. Pretest-posttest. University research laboratory. Healthy young women (n=20; age, 23.0+/-1.5y; height, 166.52+/-4.5 cm; mass, 65.33+/-10.5 kg) and community-dwelling older women (n=20; age, 71.65+/-7.2y; height, 162.31+/-3.8 cm; mass, 71.16+/-11.6 kg) without a fall history. Measurements of control of single-limb balance before and after fatiguing the hip abductors of the dominant leg. Performance on 3 clinical assessments of control of balance: the modified Functional Reach Test in the forward, left, and right directions; the Lower-Extremity Reach Test in forward and lateral directions; and the Single-Limb Stance Time Test (SLSTT). Although the younger subjects showed a significantly greater control of balance than the older women in most tests, control of balance after acute fatigue failed to show a significant decline in either age group. The only exception to this was the SLSTT in the younger women in whom a significant 26% decline was noted (P<.05). Acute fatigue of the hip abductors did not result in a decreased control of balance in healthy young or older women without fall history. Despite considerable changes in movement strategies used to complete the postfatigue tests of balance, quantitative measures of balance did not decrease.
Cortical processes associated with continuous balance control as revealed by EEG spectral power.
Hülsdünker, T; Mierau, A; Neeb, C; Kleinöder, H; Strüder, H K
2015-04-10
Balance is a crucial component in numerous every day activities such as locomotion. Previous research has reported distinct changes in cortical theta activity during transient balance instability. However, there remains little understanding of the neural mechanisms underlying continuous balance control. This study aimed to investigate cortical theta activity during varying difficulties of continuous balance tasks, as well as examining the relationship between theta activity and balance performance. 37 subjects completed nine balance tasks with different levels of surface stability and base of support. Throughout the balancing task, electroencephalogram (EEG) was recorded from 32 scalp locations. ICA-based artifact rejection was applied and spectral power was analyzed in the theta frequency band. Theta power increased in the frontal, central, and parietal regions of the cortex when balance tasks became more challenging. In addition, fronto-central and centro-parietal theta power correlated with balance performance. This study demonstrates the involvement of the cerebral cortex in maintaining upright posture during continuous balance tasks. Specifically, the results emphasize the important role of frontal and parietal theta oscillations in balance control. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics
NASA Technical Reports Server (NTRS)
Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.
1994-01-01
Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.
Hole-transport material variation in fully vacuum deposited perovskite solar cells
NASA Astrophysics Data System (ADS)
Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl
2014-08-01
This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx-3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Regulations System; Defense Federal Acquisition Regulation Supplement; Balance of Payments Program Exemption... implement the exemption from the Balance of Payments Program for construction material that is commercial... is proposing to amend the DFARS to implement in the clauses at 252.225-7044, Balance of Payments...
Biocide Runoff from Building Facades: Degradation Kinetics in Soil.
Bollmann, Ulla E; Fernández-Calviño, David; Brandt, Kristian K; Storgaard, Morten S; Sanderson, Hans; Bester, Kai
2017-04-04
Biocides are common additives in building materials. In-can and film preservatives in polymer-resin render and paint, as well as wood preservatives are used to protect facade materials from microbial spoilage. Biocides leach from the facade material with driving rain, leading to highly polluted runoff water (up to several mg L -1 biocides) being infiltrated into the soil surrounding houses. In the present study the degradation rates in soil of 11 biocides used for the protection of building materials were determined in laboratory microcosms. The results show that some biocides are degraded rapidly in soil (e.g., isothiazolinones: T 1/2 < 10 days) while others displayed higher persistence (e.g., terbutryn, triazoles: T 1/2 ≫ 120 days). In addition, mass balances of terbutryn and octylisothiazolinone were determined, including nine (terbutryn) and seven (octylisothiazolinone) degradation products, respectively. The terbutryn mass balance could be closed over the entire study period of 120 days and showed that relative persistent metabolites were formed, while the mass balances for octylisothiazolinone could not be closed. Octylisothiazolinone degradation products did not accumulate over time suggesting that the missing fraction was mineralized. Microtox-tests revealed that degradation products were less toxic toward the bacterium Aliivibrio fischeri than their parent compounds. Rain is mobilizing these biocides from the facades and transports them to the surrounding soils; thus, rainfall events control how often new input to the soil occurs. Time intervals between rainfall events in Northern Europe are shorter than degradation half-lives even for many rapidly degraded biocides. Consequently, residues of some biocides are likely to be continuously present due to repeated input and most biocides can be considered as "pseudo-persistent"-contaminants in this context. This was verified by (sub)urban soil screening, where concentrations of up to 0.1 μg g -1 were detected for parent compounds as well as terbutryn degradation products in soils below biocide treated facades.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-02-01
Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.
Paton, Joanne; Hatton, Anna L; Rome, Keith; Kent, Bridie
2016-12-01
Foot and ankle devices are being developed as a method of preventing people with sensory perception loss sustaining a fall. Such devices are believed to work by reducing the likelihood of a fall by improving the balance and gait of the user. The objective of the review was to evaluate the effectiveness of foot and ankle devices for the prevention of falls and the improvement of balance and gait in adults with sensory perception loss. Participants were community-dwelling adults with bilateral pathological sensory perception loss. The current review evaluated any foot or ankle device, including but not restricted to, all types of footwear (therapeutic and retail), insoles (customized and prefabricated) and ankle-foot orthoses (AFOs). In the absence of randomized controlled trials (RCT), the review considered experimental and epidemiological study designs, except case series, individual case reports and descriptive cross-sectional studies. The primary outcome was number of falls. Secondary outcome measures were clinical or laboratory measures of balance or gait. A search for published and unpublished literature from inception to March 2015 written in the English language was conducted across a number of major electronic databases. A three-step search strategy was developed using MeSH terminology and keywords to ensure all that relevant materials are captured. Methodological quality of included studies was assessed by two reviewers, who appraised each study independently, using standardized Joanna Briggs Institute (JBI) critical appraisal tools. Quantitative data were extracted from the studies that were identified as meeting the criteria for methodological quality using the standardized JBI data extraction tools. Due to the heterogeneity of populations, interventions and outcome measures, meta-analyses were not possible and results are presented in narrative form. Nine trials (from 10 papers) involving 238 participants, (14 with multiple sclerosis and 16 with idiopathic peripheral neuropathy, 150 with diabetic neuropathy) and 58 controls were included in the review. No study reported falls as an outcome measure. The results of the included studies found that in people with sensory perception loss, postural sway improved with vibrating insoles and AFO, altering the softness and texture of the top cover had no effect on postural sway, wearing footwear over long distances or AFOs improved step-to-step consistency, and no foot and ankle device was reported to have a negative effect on the balance or gait of people with sensory perception loss. The methodological quality of the included studies was poor. No study used a randomized controlled trial (RCT) methodology. No study incorporated a follow-up period or tested the intervention within the context of the intended clinical environment. There is limited evidence to suggest that footwear and insole devices can artificially alter postural stability and may reduce the step-to-step variability in adults with sensory perception loss. Varying the material properties of an insole does not notably affect static balance or gait.
30 CFR 817.45 - Hydrologic balance: Sediment control measures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate sediment...
30 CFR 816.45 - Hydrologic balance: Sediment control measures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate sediment...
30 CFR 816.45 - Hydrologic balance: Sediment control measures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate sediment...
30 CFR 817.45 - Hydrologic balance: Sediment control measures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate sediment...
Uhm, Yo-Han; Yang, Dae-Jung
2017-11-01
[Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.
Do kinematic metrics of walking balance adapt to perturbed optical flow?
Thompson, Jessica D; Franz, Jason R
2017-08-01
Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
Fibromyalgia is Associated with Impaired Balance and Falls
Jones, Kim D.; Horak, Fay B.; Winters, Kerri Stone; Morea, Jessica M.; Bennett, Robert M.
2010-01-01
Background/Objective The purpose of this study was to determine whether FM patients differ from matched healthy controls in clinical tests of balance ability and fall frequency. Methods 34 FM patients and 32 age matched controls were administered the Balance Evaluation-Systems Test (BESTest), rated their balance confidence with the Activities-Specific Balance Confidence Scale (ABC) and reported the number of falls in the last 6 months. The Fibromyalgia Impact Questionnaire (FIQ) was used to assess FM severity. Results FM patients had significantly impaired balance in all components of the BESTest compared to controls. They also scored more poorly on balance confidence. Overall fibromyalgia severity (FIQ) correlated significantly with the BESTest, and the ABC scale. The BESTest and ABC correlated significantly with 6 commonly reported FM symptoms (excluding pain). FM patients reported a total of 37 falls over the last six-months compared to 6 falls in healthy controls. Conclusion Fibromyalgia is associated with balance problems and increased fall frequency. Patients were aware of their balance problems. These results suggest that FM may affect peripheral and/or central mechanisms of postural control. Further objective study is needed to identify the relative contributions of neural and musculoskeletal impairments to postural stability in FM, thus providing clinicians with exercise prescriptions that maximize postural stability. PMID:19125137
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trunk repositioning errors are increased in balance-impaired older adults.
Goldberg, Allon; Hernandez, Manuel Enrique; Alexander, Neil B
2005-10-01
Controlling the flexing trunk is critical in recovering from a loss of balance and avoiding a fall. To investigate the relationship between trunk control and balance in older adults, we measured trunk repositioning accuracy in young and balance-impaired and unimpaired older adults. Young adults (N = 8, mean age 24.3 years) and two groups of community-dwelling older adults defined by unipedal stance time (UST)-a balance-unimpaired group (UST > 30 seconds, N = 7, mean age 73.9 years) and a balance-impaired group (UST < 5 seconds, N = 8, mean age 79.6 years)-were tested in standing trunk control ability by reproducing a approximately 30 degrees trunk flexion angle under three visual-surface conditions: eyes opened and closed on the floor, and eyes opened on foam. Errors in reproducing the angle were defined as trunk repositioning errors (TREs). Clinical measures related to balance, trunk extensor strength, and self-reported disability were obtained. TREs were significantly greater in the balance-impaired group than in the other groups, even when controlling for trunk extensor strength and body mass. In older adults, there were significant correlations between TREs and three clinical measures of balance and fall risk, UST and maximum step length (-0.65 to -0.75), and Timed Up & Go score (0.55), and between TREs and age (0.63-0.76). In each group TREs were similar under the three visual-surface conditions. Test-retest reliability for TREs was good to excellent (intraclass correlation coefficients > or =0.74). Older balance-impaired adults have larger TREs, and thus poorer trunk control, than do balance-unimpaired older individuals. TREs are reliable and valid measures of underlying balance impairment in older adults, and may eventually prove to be useful in predicting the ability to recover from losses of balance and to avoid falls.
Immediate effects of cryotherapy on static and dynamic balance.
Douglas, Matthew; Bivens, Serena; Pesterfield, Jennifer; Clemson, Nathan; Castle, Whitney; Sole, Gisela; Wassinger, Craig A
2013-02-01
Cryotherapy is commonly used in physical therapy with many known benefits; however several investigations have reported decreased functional performance following therapeutic application thereof. The purpose of this study was to determine the effect of cryotherapy applied to the ankle on static and dynamic standing balance. It was hypothesized that balance would be decreased after cryotherapy application. Twenty individuals (aged 18 to 40 years) participated in this research project. Each participant was tested under two conditions: an experimental condition where subjects received ice water immersion of the foot and ankle for 15 minutes immediately before balance testing and a control condition completed at room temperature. A Biodex® Balance System was used to quantify balance using anterior/posterior (AP), medial/lateral (ML), and overall balance indices. Paired t-tests were used to compare the balance indices for the two conditions with alpha set at 0.05 a priori. Effect size was also calculated to account for the multiple comparisons made. The static balance indices did not display statistically significant differences between the post-cryotherapy and the control conditions with low effect sizes. Dynamic ML indices significantly increased following the cryotherapy application compared to the control exhibiting a moderate effect size indicating decreased balance following cryotherapy application. No differences were noted between experimental and control conditions for the dynamic AP or overall balance indices while a small effect size was noted for both. The results suggest that cryotherapy to the ankle has a negative effect on the ML component of dynamic balance following ice water immersion. Immediate return to play following cryotherapy application is cautioned given the decreased dynamic ML balance and potential for increased injury risk. 3b Case-control study.
The relationship between balance confidence and control in individuals with Parkinson's disease.
Lee, Hyo Keun; Altmann, Lori J P; McFarland, Nikolaus; Hass, Chris J
2016-05-01
A broad range of subjective and objective assessments have been used to assess balance confidence and balance control in persons with Parkinson's disease (PD). However, little is known about the relationship between self-perceived balance confidence and actual balance control in PD. The purpose of this investigation was to determine the relationship between self-perceived balance confidence and objectively measured static/dynamic balance control abilities. Forty-four individuals with PD participated in the study. Patients were stratified into 2 groups based on the modified Hoehn and Yahr (H&Y) disability score: early stage, H&Y ≤ 2.0 and moderate stage, H&Y ≥ 2.5. All participants completed the activities-specific balance confidence (ABC) scale and performed standing balance and gait initiation tasks to assess static and dynamic balance control. The center of pressure (COP) sway (CE95%Sway) during static balance and the peak distance between the projections of the COP and the center of mass (COM) in the transverse plane (COPCOM) during gait initiation were calculated. Pearson correlation analyses were conducted relating the ABC score and CE95%Sway and COPCOM. For early stage PD, there was a moderate correlation between ABC score and CE95%Sway (r = -0.56, R(2) = 0.32, p = 0.002), while no significant correlation was found between ABC score and COPCOM (r = -0.24, R(2) = 0.06, p = 0.227). For moderate stage PD, there was a moderate correlation between ABC score and COPCOM (r = 0.49, R(2) = 0.24, p = 0.044), while no correlation was found between ABC score and CE95%Sway (r = -0.19, R(2) = 0.04, p = 0.478). Individuals with different disease severities showed different relationships between balance confidence and actual static/dynamic balance control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation of nanoporous Si upon self-organized growth of Al and Si nanostructures.
Thøgersen, Annett; Jensen, Ingvild J T; Stange, Marit; Kjeldstad, Torunn; Martinez-Martinez, Diego; Løvvik, Ole Martin; Ulyashin, Alexander G; Diplas, Spyros
2018-08-03
Nanostructured materials offer unique electronic and optical properties compared to their bulk counterparts. The challenging part of the synthesis is to create a balance between the control of design, size limitations, up-scalability and contamination. In this work we show that self-organized Al nanowires in amorphous Si can be produced at room temperature by magnetron co-sputtering using two individual targets. Nanoporous Si, containing nanotunnels with dimensions within the quantum confinement regime, were then made by selective etching of Al. The material properties, film growth, and composition of the films were investigated for different compositions. In addition, the reflectance of the etched film has been measured.
On firework blasts and qualitative parameter dependency.
Zohdi, T I
2016-01-01
In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given.
On firework blasts and qualitative parameter dependency
Zohdi, T. I.
2016-01-01
In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given. PMID:26997903
NASA Astrophysics Data System (ADS)
Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.
2012-11-01
Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.
Active Learning and Just-in-Time Teaching in a Material and Energy Balances Course
ERIC Educational Resources Information Center
Liberatore, Matthew W.
2013-01-01
The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…
Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review.
Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Paterson, Marie; Wittmeier, Kristy D
2017-10-01
To identify measures of standing balance validated in pediatric populations, and to determine the components of postural control captured in each tool. Electronic searches of MEDLINE, Embase, and CINAHL databases using key word combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests, and child/pediatrics; gray literature; and hand searches. Inclusion criteria were measures with a stated objective to assess balance, with pediatric (≤18y) populations, with at least 1 psychometric evaluation, with at least 1 standing task, with a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. There were 21 measures included. Two reviewers extracted descriptive characteristics, and 2 investigators independently coded components of balance in each measure using a systems perspective for postural control, an established framework for balance in pediatric populations. Components of balance evaluated in measures were underlying motor systems (100% of measures), anticipatory postural control (72%), static stability (62%), sensory integration (52%), dynamic stability (48%), functional stability limits (24%), cognitive influences (24%), verticality (9%), and reactive postural control (0%). Assessing children's balance with valid and comprehensive measures is important for ensuring development of safe mobility and independence with functional tasks. Balance measures validated in pediatric populations to date do not comprehensively assess standing postural control and omit some key components for safe mobility and independence. Existing balance measures, that have been validated in adult populations and address some of the existing gaps in pediatric measures, warrant consideration for validation in children. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Kung-fu versus swimming training and the effects on balance abilities in young adolescents.
Baccouch, Rym; Rebai, Haithem; Sahli, Sonia
2015-11-01
Our purpose is to investigate the static balance control of young adolescents practicing kung-fu and swimming in order to find out which of these physical activities is the most effective in developing specific balance abilities in young adolescents. Comparative experimental study. University laboratory research. Three groups of 11-13-year-old boys (12 practicing Kung-Fu, 12 practicing swimming and 12 controls). Center of pressure (CoP) excursions were registered in upright bipedal and unipedal stances on a stabilometric force platform in eyes open (EO) and eyes closed (EC) conditions. Kung-fu practitioners control their balance (P < .05) better than controls and swimmers in the unipedal posture when visual inputs are available. Kung-fu training improved (P < .05) the bipedal balance control in the EO condition. However, swimming training developed (P < .05) bipedal balance control in both EO and EC conditions. The swimmers showed a lower reliance on vision (P < .05) compared to kung-fu practitioners. Both of these physical activities could be recommended for young adolescents as recreational or rehabilitation programs as they develop specific balance abilities that could be important for improving and maintaining optimal health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Myunghee; Collins, Steven H
2015-05-01
Individuals with below-knee amputation have more difficulty balancing during walking, yet few studies have explored balance enhancement through active prosthesis control. We previously used a dynamical model to show that prosthetic ankle push-off work affects both sagittal and frontal plane dynamics, and that appropriate step-by-step control of push-off work can improve stability. We hypothesized that this approach could be applied to a robotic prosthesis to partially fulfill the active balance requirements of human walking, thereby reducing balance-related activity and associated effort for the person using the device. We conducted experiments on human participants (N = 10) with simulated amputation. Prosthetic ankle push-off work was varied on each step in ways expected to either stabilize, destabilize or have no effect on balance. Average ankle push-off work, known to affect effort, was kept constant across conditions. Stabilizing controllers commanded more push-off work on steps when the mediolateral velocity of the center of mass was lower than usual at the moment of contralateral heel strike. Destabilizing controllers enforced the opposite relationship, while a neutral controller maintained constant push-off work regardless of body state. A random disturbance to landing foot angle and a cognitive distraction task were applied, further challenging participants' balance. We measured metabolic rate, foot placement kinematics, center of pressure kinematics, distraction task performance, and user preference in each condition. We expected the stabilizing controller to reduce active control of balance and balance-related effort for the user, improving user preference. The best stabilizing controller lowered metabolic rate by 5.5% (p = 0.003) and 8.5% (p = 0.02), and step width variability by 10.0% (p = 0.009) and 10.7% (p = 0.03) compared to conditions with no control and destabilizing control, respectively. Participants tended to prefer stabilizing controllers. These effects were not due to differences in average push-off work, which was unchanged across conditions, or to average gait mechanics, which were also unchanged. Instead, benefits were derived from step-by-step adjustments to prosthesis behavior in response to variations in mediolateral velocity at heel strike. Once-per-step control of prosthetic ankle push-off work can reduce both active control of foot placement and balance-related metabolic energy use during walking.
Mansfield, A; Wong, J S; McIlroy, W E; Biasin, L; Brunton, K; Bayley, M; Inness, E L
2015-12-01
To determine if reactive balance control measures predict falls after discharge from stroke rehabilitation. Prospective cohort study. Rehabilitation hospital and community. Independently ambulatory individuals with stroke who were discharged home after inpatient rehabilitation (n=95). Balance and gait measures were obtained from a clinical assessment at discharge from inpatient stroke rehabilitation. Measures of reactive balance control were obtained: (1) during quiet standing; (2) when walking; and (3) in response to large postural perturbations. Participants reported falls and activity levels up to 6 months post-discharge. Logistic and Poisson regressions were used to identify measures of reactive balance control that were related to falls post-discharge. Decreased paretic limb contribution to standing balance control [rate ratio 0.8, 95% confidence interval (CI) 0.7 to 1.0; P=0.011], reduced between-limb synchronisation of quiet standing balance control (rate ratio 0.9, 95% CI 0.8 to 0.9; P<0.0001), increased step length variability (rate ratio 1.4, 95% CI 1.2 to 1.7; P=0.0011) and inability to step with the blocked limb (rate ratio 1.2, 95% CI 1.0 to 1.3; P=0.013) were significantly associated with increased fall rates when controlling for age, stroke severity, functional balance and daily walking activity. Impaired reactive balance control in standing and walking predicted increased risk of falls post-discharge from stroke rehabilitation. Specifically, measures that revealed the capacity of both limbs to respond to instability were related to increased risk of falls. These results suggest that post-stroke rehabilitation strategies for falls prevention should train responses to instability, and focus on remediating dyscontrol in the more-affected limb. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Control Chart on Semi Analytical Weighting
NASA Astrophysics Data System (ADS)
Miranda, G. S.; Oliveira, C. C.; Silva, T. B. S. C.; Stellato, T. B.; Monteiro, L. R.; Marques, J. R.; Faustino, M. G.; Soares, S. M. V.; Ulrich, J. C.; Pires, M. A. F.; Cotrim, M. E. B.
2018-03-01
Semi-analytical balance verification intends to assess the balance performance using graphs that illustrate measurement dispersion, trough time, and to demonstrate measurements were performed in a reliable manner. This study presents internal quality control of a semi-analytical balance (GEHAKA BG400) using control charts. From 2013 to 2016, 2 weight standards were monitored before any balance operation. This work intended to evaluate if any significant difference or bias were presented on weighting procedure over time, to check the generated data reliability. This work also exemplifies how control intervals are established.
NASA Astrophysics Data System (ADS)
Chao, Zhang; Shijie, Su; Yilin, Yang; Guofu, Wang; Chao, Wang
2017-11-01
Aiming at the static balance of the controllable pitch propeller (CPP), a high efficiency static balance method based on the double-layer structure of the measuring table and gantry robot is adopted to realize the integration of torque measurement and corrected polish for controllable pitch propeller blade. The control system was developed by Microsoft Visual Studio 2015, and a composite platform prototype was developed. Through this prototype, conduct an experiment on the complete process of torque measurement and corrected polish based on a 300kg class controllable pitch propeller blade. The results show that the composite platform can correct the static balance of blade with a correct, efficient and labor-saving operation, and can replace the traditional method on static balance of the blade.
Germany's Persistent Balance-of-Payments Disequilibrium Revisited. German Studies Notes.
ERIC Educational Resources Information Center
Kindleberger, Charles P.
This essay compares Germany's persistent financial disequilibrium with the balance of payments situation in the United States. Delivered at a Symposium on German Economic Growth and Stability, the author concentrates on Germany's balance of payments surplus and presents U.S. figures mainly as a point of comparison. The material on Germany has been…
Heat flux estimates of power balance on Proto-MPEX with IR imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Showers, M., E-mail: mshower1@vols.utk.edu; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Biewer, T. M.
The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.
Quartz Crystal Microbalance Operation and In Situ Calibration
NASA Technical Reports Server (NTRS)
Albyn, K. C.
2004-01-01
Quartz crystal microbalances (QCMs) are commonly used to measure the rate of deposition of molecular species on a surface. The measurement is often used to select materials with a low outgassing rate for applications where the material has a line of sight to a contamination-sensitive surface. A quantitative, in situ calibration of the balance, or balances, using a pure material for which the enthalpy of sublimation is known, is described in this Technical Memorandum. Supporting calculations for surface dwell times of deposited materials and the effusion cell Clausing factor are presented along with examples of multiple QCM measurements of outgassing from a common source.
1993-05-17
Star Wars." Arms Control Today, May 1992, 29-30. Saucier, Aldric. "Lost in Space." New York Times, 9 March 1992, A17. Savelyev , Alexander . "Toward U.S...legislature will be unable to retain the secrecy of such material. In recent years, the 22 Alexander Hamilton, James Madison and John Jay, The Federalist...The Struggle for Democracy in America. Cambridge, Massachusetts: The Riverside Press, 1925. Boyd, Julian P. Number 7: Alexander Hamilton’s Secret
[Balance trainability using the Nintendo Wii balance board in sportive people].
Paukowits, S; Stöggl, T
2014-03-01
A multivariable training has a positive impact on balance skills and risk of injury. To date the effect of this training using the Nintendo Wii balance board in sportive people has not yet been investigated. The aim of this study was to investigate whether training with the Nintendo Wii balance board can improve balance skills. 20 people were randomized into a control and an intervention group each with 10 people who performed a unilateral stance test with eyes open and closed as well as the star excursion balance test before and after the intervention. The control group completed their usual sports and the intervention group an adjunct training with the Nintendo Wii balance board for 4 weeks. Adjunct Training using the Nintendo Wii Balance Board did not improve sportive people's balance skills significantly. The intervention group, however, attained better results in the star excursion balance test, whereas the control group did not show any changes. The unilateral stance tests did not provide significant differences before and after training within both groups. The use of the Nintendo Wii balance board should be further investigated by employing individual difficulty levels. © Georg Thieme Verlag KG Stuttgart · New York.
Lee, Kyeongjin; Lee, Yong Woo
2017-09-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.
Lee, Kyeongjin; Lee, Yong Woo
2017-01-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults. PMID:28931994
Visual Biofeedback Balance Training Using Wii Fit after Stroke: A Randomized Controlled Trial
Barcala, Luciana; Grecco, Luanda André Collange; Colella, Fernanda; Lucareli, Paulo Roberto Garcia; Salgado, Afonso Shiguemi Inoue; Oliveira, Claudia Santos
2013-01-01
[Purpose] The aim of the present study was to investigate the effect of balance training with visual biofeedback on balance, body symmetry, and function among individuals with hemiplegia following a stroke. [Subjects and Methods] The present study was performed using a randomized controlled clinical trial with a blinded evaluator. The subjects were twenty adults with hemiplegia following a stroke. The experimental group performed balance training with visual biofeedback using Wii Fit® together with conventional physical therapy. The control group underwent conventional physical therapy alone. The intervention lasted five weeks, with two sessions per week. Body symmetry (baropodometry), static balance (stabilometry), functional balance (Berg Balance Scale), functional mobility (Timed Up and Go test), and independence in activities of daily living (Functional Independence Measure) were assessed before and after the intervention. [Results] No statistically significant differences were found between the experimental and control groups. In the intragroup analysis, both groups demonstrated a significant improvement in all variables studied. [Conclusion] The physical therapy program combined with balance training involving visual biofeedback (Wii Fit®) led to an improvement in body symmetry, balance, and function among stroke victims. However, the improvement was similar to that achieved with conventional physical therapy alone. PMID:24259909
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
Vestibulospinal adaptation to microgravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1998-01-01
Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.
The Influence of Task Difficulty and Participant Age on Balance Control in ASD
ERIC Educational Resources Information Center
Graham, Sarah A.; Abbott, Angela E.; Nair, Aarti; Lincoln, Alan J.; Müller, Ralph-Axel; Goble, Daniel J.
2015-01-01
Impairments in sensorimotor integration are reported in Autism Spectrum Disorder (ASD). Poor control of balance in challenging balance tasks is one suggested manifestation of these impairments, and is potentially related to ASD symptom severity. Reported balance and symptom severity relationships disregard age as a potential covariate, however,…
Prangley, Alyssa; Aggerholm, Mathew; Cinelli, Michael
2017-10-01
Concussed individuals have been found to experience balance deficits in the anterior-posterior (AP) direction as indicated by greater Center of Pressure (COP) displacement and velocity. One possible reason for this change in balance control could be due to damage to the lateral vestibulospinal tract which sends signals to control posterior muscles, specifically ankle extensors leading to compensatory torques about the ankle. The purpose of the study was to quantify balance assessments in individuals experiencing persistent post-concussion symptoms (PCS) to determine balance control changes following a vestibular training intervention. Participants (N=6,>26days symptomatic), were tested during their first appointment with a registered physiotherapist (PT) and during each follow up appointment. Participants were prescribed balance, visual, and neck strengthening exercises by the PT that were to be completed daily between bi-weekly appointments. Balance assessments were quantified using a Nintendo Wii board to record ground reaction forces. Participants completed 4 balance assessments: 1) Romberg stance eyes open (REO); 2) Romberg stance eyes closed (REC); 3) single leg stance eyes open (SEO); and 4) single leg stance eyes closed (SEC). The balance assessments were conducted on both a firm and compliant surfaces. Significant improvements in balance control were noted in ML/AP displacement and velocity of COP for both SEC and Foam REC conditions, with additional improvements in AP velocity of COP for Foam REC and in ML displacement of COP during Foam SEC. Overall, findings indicate that objectively quantifying balance changes for individuals experiencing persistent PCS allows for a more sensitive measure of balance and detects changes unrecognizable to the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Wii-intervention on balance of children with poor motor performance.
Mombarg, Remo; Jelsma, Dorothee; Hartman, Esther
2013-09-01
The purpose of this study was to investigate the effects of training with the Wii-balance board on balance and balance-related skills of children with poor motor performance. Twenty-nine children (23 boys, 6 girls; aged 7-12 years) participated in this study and were randomly assigned to an experimental and control group. All children scored below the 16th percentile on a standardized test of motor ability and balance skills (Movement Assessment Battery for children (M-ABC-2)). Before and after a six-week Wii-intervention (M=8h, 22 min, SD=53 min), the balance skills of the experimental group and control group were measured with the M-ABC-2 and the Bruininks-Oseretsky test of motor proficiency (BOT-2). Both groups improved on all tests. The M-ABC-2 and the BOT-2 total balance-scores of the experimental group improved significantly from pre to post intervention, whereas those of the control group showed no significant progress. This resulted in significant interaction-effects, favoring the experimental children. No transfer-effects of the intervention on balance-related skills were demonstrated. Our findings showed that the Wii-balance board is an effective intervention for children with poor balance control. Further development and investigation of the intervention could be directed toward the implementation of the newly acquired balance-skills in daily life. Copyright © 2013 Elsevier Ltd. All rights reserved.
Population control in symbiotic corals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falkowski, P.G.; Dubinsky, Z.; Muscatine, L.
1993-10-01
Stability in symbiotic association requires control of population growth between symbionts. The population density of zooxanthellae per unit surface area of most symbiotic corals is remarkably consistant. How is the population density of zooxanthellae maintained and what happens to the symbiotic association if the balance between algae and host is perturbed. The answers to these question, examined in this paper, provide a framework for understanding how the size of the component populations is controlled in symbiotic associations. The topic areas covered include the following: carbon economy in a symbiotic coral; effects of nutrient enrichment; the chemostat model of population control;more » the effects of exposure to ammonium levels. Ammonium ions and organic materials are the factors which maintain the density of zooxanthellae. 32 refs., 5 figs.« less
Wang, Yongjiang; Pang, Li; Liu, Xinyu; Wang, Yuansheng; Zhou, Kexun; Luo, Fei
2016-04-01
A comprehensive model of thermal balance and degradation kinetics was developed to determine the optimal reactor volume and insulation material. Biological heat production and five channels of heat loss were considered in the thermal balance model for a representative reactor. Degradation kinetics was developed to make the model applicable to different types of substrates. Simulation of the model showed that the internal energy accumulation of compost was the significant heat loss channel, following by heat loss through reactor wall, and latent heat of water evaporation. Lower proportion of heat loss occurred through the reactor wall when the reactor volume was larger. Insulating materials with low densities and low conductive coefficients were more desirable for building small reactor systems. Model developed could be used to determine the optimal reactor volume and insulation material needed before the fabrication of a lab-scale composting system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of digital controllers used in magnetic suspension and balance systems
NASA Technical Reports Server (NTRS)
Kilgore, William A.
1990-01-01
Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.
Valcour, Monique
2007-11-01
This study reports an investigation of the relationships of work hours, job complexity, and control over work time to satisfaction with work-family balance. Based on data from a sample of 570 telephone call center representatives, a moderated hierarchical regression analysis revealed that work hours were negatively related to satisfaction with work-family balance, consistent with the resource drain perspective. Job complexity and control over work time were positively associated with satisfaction with work-family balance. Control over work time moderated the relationship such that as work hours rose, workers with low control experienced a decline in work-family balance satisfaction, while workers with high control did not. Results encourage greater research attention to work characteristics, such as job complexity and control over work time, and skills that represent resources useful to the successful integration of work and family demands. (c) 2007 APA
Deliberative Assessment of Surrogate Consent in Dementia Research
Kim, Scott Y. H.; Uhlmann, Rebecca A.; Appelbaum, Paul S.; Knopman, David S.; Kim, H. Myra; Damschroder, Laura; Beattie, Elizabeth; Struble, Laura; De Vries, Raymond
2009-01-01
Background Research involving incapacitated persons with dementia involves complex scientific, legal, and ethical issues, making traditional surveys of layperson views regarding the ethics of such research challenging. We therefore assessed the impact of democratic deliberation (DD)—involving balanced, detailed education and peer deliberation—on the views of those responsible for persons with dementia. Methods 178 community-recruited caregivers or primary decision-makers for persons with dementia were randomly assigned to either an all-day DD session group or a control group. Educational materials used for the DD session were vetted for balance and accuracy by an interdisciplinary advisory panel. We assessed the acceptability of family surrogate consent for dementia research (‘surrogate-based research’ or SBR) from a societal policy perspective as well as from the more personal perspectives of deciding for a loved one or for oneself (surrogate and self perspectives), assessed at baseline, immediately post-DD session, and a month after DD date, for 4 research scenarios of varying risk-benefit profiles. Results At baseline, a majority in both DD and control groups supported a policy of family consent for dementia research for all research scenarios. The support for a policy of family consent for SBR increased for the DD group, but not for the control group; the change in the DD group was maintained one month later. In the DD group, there were transient changes in attitudes from surrogate or self perspectives; in the control group, there were no changes from baseline in attitude toward surrogate consent from any perspective. Conclusions Intensive, balanced, and accurate education along with peer deliberation provided by democratic deliberation leads to a sustained increase in support for a societal policy of family consent for dementia research among those responsible for dementia patients. PMID:20188635
Deliberative assessment of surrogate consent in dementia research.
Kim, Scott Y H; Uhlmann, Rebecca A; Appelbaum, Paul S; Knopman, David S; Kim, H Myra; Damschroder, Laura; Beattie, Elizabeth; Struble, Laura; De Vries, Raymond
2010-07-01
Research involving incapacitated persons with dementia entails complex scientific, legal, and ethical issues, making traditional surveys of layperson views on the ethics of such research challenging. We therefore assessed the impact of democratic deliberation (DD), involving balanced, detailed education and peer deliberation, on the views of those responsible for persons with dementia. One hundred and seventy-eight community-recruited caregivers or primary decision-makers for persons with dementia were randomly assigned to either an all-day DD session group or a control group. Educational materials used for the DD session were vetted for balance and accuracy by an interdisciplinary advisory panel. We assessed the acceptability of family-surrogate consent for dementia research ("surrogate-based research") from a societal policy perspective as well as from the more personal perspectives of deciding for a loved one or for oneself (surrogate and self-perspectives), assessed at baseline, immediately post-DD session, and 1 month after DD date, for four research scenarios of varying risk-benefit profiles. At baseline, a majority in both the DD and control groups supported a policy of family consent for dementia research in all research scenarios. The support for a policy of family consent for surrogate-based research increased in the DD group, but not in the control group. The change in the DD group was maintained 1 month later. In the DD group, there were transient changes in attitudes from surrogate or self-perspectives. In the control group, there were no changes from baseline in attitude toward surrogate consent from any perspective. Intensive, balanced, and accurate education, along with peer deliberation provided by democratic deliberation, led to a sustained increase in support for a societal policy of family consent in dementia research among those responsible for dementia patients. Copyright 2010 The Alzheimer
Lelard, Thierry; Doutrellot, Pierre-Louis; David, Pascal; Ahmaidi, Said
2010-01-01
Lelard T, Doutrellot P-L, David P, Ahmaidi S. Effects of a 12-week Tai Chi Chuan program versus a balance training program on postural control and walking ability in older people. To compare the respective effects of 2 balance training programs: a Tai Chi (TC) program and a balance training program on static postural control and walking ability. Randomized controlled trial. General community. Older subjects (N=28) participated in the study. The TC group (n=14; mean age +/- SD, 76.8+/-5.1y) and the balance training group (n=14; 77.0+/-4.5y) were both trained for 12 weeks. Static postural control was assessed via measurement of center of pressure sway under eyes open (EO) and eyes closed (EC) conditions. Walking speed over a 10-meter course was also assessed. After the 12-week training period, there were no significant differences in walking speed or postural parameters in either the EO or EC conditions for the TC and balance training groups. Performance in the EC condition was lower than in the EO condition in pretest and posttest for the balance training and TC groups. The Romberg quotient (EO/EC ratio) was significantly higher after the balance training program than the TC program (P<.05). We cannot conclude that the balance training program has better effects than the TC program on postural control or walking ability. None of the outcome measures showed significant change posttraining in either the TC or the balance training groups. However, the differences described in the Romberg quotient after the training period between the TC and the balance training groups suggest that TC should be helpful to limit the deleterious effects of eye closure on postural balance. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Chen, Tzurei; Chou, Li-Shan
2017-12-01
To examine the association of muscle strength and balance control with the amount of time taken to perform sit-to-walk (STW) or turning components of the Timed Up and Go (TUG) test in older adults. Correlations; multiple regression models. General community. Older adults (N=60) age >70 years recruited from the community. Not applicable. Muscle strength, balance control, and TUG test performance time. Muscle strength was quantified by peak joint moments during the isometric maximal voluntary contraction test for bilateral hip abductors, knee extensors, and ankle plantar flexors. Balance control was assessed with the Berg Balance Scale, Fullerton Advanced Balance Scale, and center of mass and ankle inclination angle derived during the TUG test performance. We found that balance control measures were significantly associated with both STW and turning durations even after controlling for muscle strength and other confounders (STW duration: P<.001, turning duration: P=.001). Adding strength to the regression model was found to significantly improve its prediction of STW duration (F change =5.945, P=.018), but not turning duration (F change =1.03, P=.14). Our findings suggest that poor balance control is an important factor that contributes to longer STW and turning durations on the TUG test. Furthermore, strength has a higher association with STW than turning duration. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Adaptive Vibration Reduction Controls for a Cryocooler With a Passive Balancer
NASA Technical Reports Server (NTRS)
Kopasakis, George; Cairelli, James E.; Traylor, Ryan M.
2001-01-01
In this paper an adaptive vibration reduction control (AVRC) design is described for a Stirling cryocooler combined with a passive balancer. The AVRC design was based on a mass-spring model of the cooler and balancer, and the AVRC algorithm described in this paper was based on an adaptive binary search. Results are shown comparing the baseline uncontrolled cooler with no balancer, the cooler with the balancer, and, finally, the cooler with the balancer and the AVRC. The comparison shows that it may be possible to meet stringent vibration reduction requirements without an active balancer.
Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy.
Tarakci, Devrim; Ersoz Huseyinsinoglu, Burcu; Tarakci, Ela; Razak Ozdincler, Arzu
2016-10-01
This study compared the effects of Nintendo Wii-Fit ® balance-based video games and conventional balance training in children with mild cerebral palsy (CP). This randomized controlled trial involved 30 ambulatory pediatric patients (aged 5-18 years) with CP. Participants were randomized to either conventional balance training (control group) or to Wii-Fit balance-based video games training (Wii group). Both group received neuro-developmental treatment (NDT) during 24 sessions. In addition, while the control group received conventional balance training in each session, the Wii group played Nintendo Wii Fit games such as ski slalom, tightrope walk and soccer heading on balance board. Primary outcomes were Functional Reach Test (forward and sideways), Sit-to-Stand Test and Timed Get up and Go Test. Nintendo Wii Fit balance, age and game scores, 10 m walk test, 10-step climbing test and Wee-Functional Independence Measure (Wee FIM) were secondary outcomes. After the treatment, changes in balance scores and independence level in activities of daily living were significant (P < 0.05) in both groups. Statistically significant improvements were found in the Wii-based game group compared with the control group in all balance tests and total Wee FIM score (P < 0.05). Wii-fit balance-based video games are better at improving both static and performance-related balance parameters when combined with NDT treatment in children with mild CP. © 2016 Japan Pediatric Society.
Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José
2013-01-01
The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results.
Plöchl, Matthias; Heiermann, Monika; Rodemann, Bernd; Bandte, Martina; Büttner, Carmen
2014-01-15
Knowledge of fate and behavior of plant pathogens in the biogas production chain is limited and hampers the estimation and evaluation of the potential phytosanitary risk if digestate is spread on arable land as a fertilizer. Therefore, simulation is an appropriate tool to demonstrate the effects which influence the steady state of pathogen infected plant material in both digesters and digestate. Simple approaches of kinetics of inactivation and mass balances of infected material were carried out considering single-step as well as two-step digestion. The simulation revealed a very fast to fast reduction of infected material after a singular feeding, reaching a cutback to less than 1% of input within 4 days even for D90-values of 68 h. Steady state mass balances below input rate could be calculated with D90-values of less than 2 h at a continuous hourly feeding. At higher D90-values steady state mass balances exceed the input rate but are still clearly below the sum of input mass. Dilution further decreases mass balances to values 10(-5) to 10(-6) Mg m(-3) for first-step digestion and 10(-8) to 10(-9) for second-step. Copyright © 2013 Elsevier Ltd. All rights reserved.
Michel Benaire
1976-01-01
Episodical long-range transport is the quasi-instantaneous peak event. It does not express the total dosage of pollutant carried over from the source area to some distant place. The purpose of the present paper is to obtain an average material balance of a pollutant leaving a given area. Available information from the OECD "Long Range Transport of Air Pollutants...
2012-05-31
or events. Unsupported journal vouchers increase the risk of materially misstated balances reported on the AGF financial statements. DFAS...with U.S. generally accepted accounting principles and that the Army automated systems did not support material amounts on the financial statements...files, abnormal balance detection , journal vouchers, and reconciliations between Army and OMB SF 133s and the Statements of Budgetary Resources
Water as an essential nutrient: the physiological basis of hydration.
Jéquier, E; Constant, F
2010-02-01
How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.
Differences between Subjective Balanced Occlusion and Measurements Reported With T-Scan III
Lila-Krasniqi, Zana; Shala, Kujtim; Krasniqi, Teuta Pustina; Bicaj, Teuta; Ahmedi, Enis; Dula, Linda; Dragusha, Arlinda Tmava; Guguvcevski, Ljuben
2017-01-01
BACKGROUND: The aetiology of Temporomandibular disorder is multifactorial, and numerous studies have addressed that occlusion may be of great importance in the pathogenesis of Temporomandibular disorder. AIM: The aim of this study is to determine if any direct relationship exists between balanced occlusion and Temporomandibular disorder and to evaluate the differences between subjective balanced occlusion and measurements reported with T-scan III electronic system. MATERIAL AND METHODS: A total of 54 subjects were divided into three groups, selection based on anamnesis-responded to a Fonseca questionnaire and clinical measurements analysed with electronic system T-scan III. In the I study group were participants with fixed dentures with prosthetic ceramic restorations. In the II study group were symptomatic participants with TMD. In the third control group were healthy participants with full arch dentition that completed a subjective questionnaire that documented the absence of jaw pain, joint noise, locking and subjects without a history of TMD. The occlusal balance was reported subjectively through Fonseca questionnaire and compared with occlusion analysed with electronic system T-scan III. RESULTS: For attributive data were used percentage of the structure. Differences in P < 0.05 were considered significant. After distributing attributive data of occlusal balance subjectively reported and compared with measurements analysed with electronic system T-scan III were found significant difference P < 0.001 in all three groups. CONCLUSION: In our study, it was concluded that there were statistically significant differences of balanced occlusion in all three groups. Also it was concluded that subjective data are not exact with measurements reported with electronic device T-scan III. PMID:28932311
Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances
NASA Technical Reports Server (NTRS)
Ferris, A. T.; Moore, T. C.
1981-01-01
Materials and techniques for a transducer capable of obtaining accurate force measurements at cryogenic temperatures (down to 77 K) and high pressures (up to 9 atm) have been determined. Areas of high stress concentration are minimized by balance design, and model and sting attachment methods able to withstand cryogenic temperatures are used. Maraging 200 is the material used for the balances, due to its high impact strength and simple heat treatment procedure. Test results verify that the balances produce reliable, repeatable, and predictable data from 300 K to 110 K under steady state conditions. Techniques have been developed to reduce the temperature-induced bridge output, such as the use of bridges with two gages mounted transverse to the principal stress direction. Under these conditions, the results given by the balances should be equally good during transient temperatures on five of the six components. The work will be used at the National Transonic Facility (NTF) at NASA Langley.
Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik
2016-01-01
Context: Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective: To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design: Randomized controlled trial. Setting: Research laboratory. Patients or Other Participants: A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s): All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s): Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results: Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions: A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257
Balancing with Vibration: A Prelude for “Drift and Act” Balance Control
Milton, John G.; Ohira, Toru; Cabrera, Juan Luis; Fraiser, Ryan M.; Gyorffy, Janelle B.; Ruiz, Ferrin K.; Strauss, Meredith A.; Balch, Elizabeth C.; Marin, Pedro J.; Alexander, Jeffrey L.
2009-01-01
Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical vibrations at the fingertip (0.001 m, 15–50 Hz). High speed motion capture measurements in three dimensions demonstrate that vibration does not shorten the neural latency for stick balancing or change the distribution of the changes in speed made by the fingertip during stick balancing, but does decrease the amplitude of the fluctuations in the relative positions of the fingertip and the tip of the stick in the horizontal plane, A(x,y). The findings are interpreted in terms of a time-delayed “drift and act” control mechanism in which controlling movements are made only when controlled variables exceed a threshold, i.e. the stick survival time measures the time to cross a threshold. The amplitude of the oscillations produced by this mechanism can be decreased by parametric excitation. It is shown that a plot of the logarithm of the vibration-induced increase in stick balancing skill, a measure of the mean first passage time, versus the standard deviation of the A(x,y) fluctuations, a measure of the distance to the threshold, is linear as expected for the times to cross a threshold in a stochastic dynamical system. These observations suggest that the balanced state represents a complex time–dependent state which is situated in a basin of attraction that is of the same order of size. The fact that vibration amplitude can benefit balance control raises the possibility of minimizing risk of falling through appropriate changes in the design of footwear and roughness of the walking surfaces. PMID:19841741
Fling, Brett W.; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H.; Horak, Fay B.
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system. PMID:25368564
Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
Santos, Suhaila M; da Silva, Rubens A; Terra, Marcelle B; Almeida, Isabela A; de Melo, Lúcio B; Ferraz, Henrique B
2017-04-01
Evidences have shown that physiotherapy programs may improve the balance of individuals with Parkinson's disease (PD), although it is not clear which specific exercise program is better. The aim of this study was to compare the effectiveness of balance versus resistance training on postural control measures in PD patients. Randomized controlled trial. The study was conducted in a physiotherapy outpatient clinic of a university hospital. A total of 40 PD participants were randomly divided into two groups: balance training (BT) and resistance training (RT). The BT group focused on balance training, functional independence and gait while the RT group performed resistance exercises emphasizing the lower limbs and trunk, both supervised by trained physiotherapists. Therapy sessions were held twice a week (at 60 minutes), totaling 24 sessions. The primary outcome was evaluated by force platform with center of pressure sway measures in different balance conditions and the secondary outcome was evaluated by Balance Evaluation Systems Test (BESTest) scale to determine the effects of the intervention on postural control. Significant improvement of postural control (pre vs. post 15.1 vs. 9.6 cm2) was only reported in favor of BT group (d=1.17) for one-legged stand condition on force platform. The standardized mean difference between groups was significantly (P<0.02), with 36% of improvement for BT vs. 0.07% for RT on this condition. Significant improvement (P<0.05) was also observed in favor of BT (in mean 3.2%) for balance gains in some BESTest scores, when compared to RT group (-0.98%). Postural control in Parkinson's disease is improved when training by a directional and specific balance program than a resistance training program. Balance training is superior to resistance training in regard to improving postural control of individuals with PD. Gold standard instruments (high in cost and difficult to access) were used to assess balance, as well as scales with clinical applicability (low cost, easily acceptable, applicable and valid), which can guide the management of physiotherapists both in their decision-making and in clinical practice.
The effects of moderate fatigue on dynamic balance control and attentional demands.
Simoneau, Martin; Bégin, François; Teasdale, Normand
2006-09-28
During daily activities, the active control of balance often is a task per se (for example, when standing in a moving bus). Other constraints like fatigue can add to the complexity of this balance task. In the present experiment, we examined how moderate fatigue induced by fast walking on a treadmill challenged dynamic balance control. We also examined if the attentional demands for performing the balance task varied with fatigue. Subjects (n = 10) performed simultaneously a dynamic balance control task and a probe reaction time task (RT) (serving as an indicator of attentional demands) before and after three periods of moderate fatigue (fast walking on a treadmill). For the balance control task, the real-time displacement of the centre of pressure (CP) was provided on a monitor placed in front of the subject, at eye level. Subjects were asked to keep their CP within a target (moving box) moving upward and downward on the monitor. The tracking performance was measured (time spent outside the moving box) and the CP behavior analyzed (mean CP speed and mean frequency of the CP velocity). Moderate fatigue led to an immediate decrement of the performance on the balance control task; increase of the percentage of time spent outside the box and increase of the mean CP speed. Across the three fatigue periods, subjects improved their tracking performance and reduced their mean CP speed. This was achieved by increasing their frequency of actions; mean frequency of the CP velocity were higher for the fatigue periods than for the no fatigue periods. Fatigue also induced an increase in the attentional demands suggesting that more cognitive resources had to be allocated to the balance task with than without fatigue. Fatigue induced by fast walking had an initial negative impact on the control of balance. Nonetheless, subjects were able to compensate the effect of the moderate fatigue by increasing the frequency of actions. This adaptation, however, required that a greater proportion of the cognitive resources be allocated to the active control of the balance task.
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Control of standing balance while using constructions stilts: comparison of expert and novice users.
Noble, Jeremy W; Singer, Jonathan C; Prentice, Stephen D
2016-01-01
This study examined the control of standing balance while wearing construction stilts. Motion capture data were collected from nine expert stilt users and nine novices. Three standing conditions were analysed: ground, 60 cm stilts and an elevated platform. Each task was also performed with the head extended as a vestibular perturbation. Both expert and novice groups exhibited lower displacement of the whole body centre of mass and centre of pressure on construction stilts. Differences between the groups were only noted in the elevated condition with no stilts, where the expert group had lower levels of medial-lateral displacement of the centre of pressure. The postural manipulation revealed that the expert group had superior balance to the novice group. Conditions where stilts were worn showed lower levels of correspondence to the inverted pendulum model. Under normal conditions, both expert and novice groups were able to control their balance while wearing construction stilts. This work investigated the effects of experience on the control of balance while using construction stilts. Under normal conditions, expert and novice stilt users were able to control their balance while wearing construction stilts. Differences between the expert and novice users were revealed when the balance task was made more difficult, with the experts showing superior balance in these situations.
Scheltinga, Alja; Honegger, Flurin; Timmermans, Dionne P H; Allum, John H J
2016-01-01
An acute unilateral peripheral vestibular loss (aUVL) initially causes severe gaze and balance control problems. However, vestibulo-ocular reflexes (VOR) and balance control are nearly normal 3 months later as a result of peripheral recovery and/or central compensation. As pre-existing vestibular sensory loss is assumed to be greater in the healthy elderly, this study investigated whether improvements in VOR and balance function over time after aUVL are different for the elderly than for the young. Thirty aUVL patients divided into three age-groups were studied (8 age range 23-35, 10 with range 43-58, and 12 with range 60-74 years). To measure VOR function eye movements were recorded during caloric irrigation, rotating chair (ROT), and head impulse tests. Balance control during stance and gait was recorded as lower trunk angular velocity in the pitch and roll planes. Measurements were taken at deficit onset, and 3, 6, and 13 weeks later. There was one difference in VOR improvements over time between the age-groups: Low acceleration ROT responses were less at onset in the elderly group. Deficit side VOR responses and asymmetries in each group improved to within ranges of healthy controls at 13 weeks. Trunk sway of the elderly was greater for stance and gait at onset when compared to healthy age-matched controls and the young and greater than that of the young and controls during gait tasks at 13 weeks. The sway of the young was not different from controls at either time point. Balance control for the elderly improved slower than for the young. These results indicate that VOR improvement after an aUVL does not differ with age, except for low accelerations. Recovery rates are different between age-groups for balance control tests. Balance control in the elderly is more abnormal at aUVL onset for stance and gait tasks with the gait abnormalities remaining after 13 weeks. Thus, we conclude that balance control in the elderly is more affected by the UVL than for the young, and the young overcome balance deficits more rapidly. These differences with age should be taken into account when planning rehabilitation.
Wang, Hongzhao; Huo, Ming; Guan, Peipei; Onoda, Ko; Chen, Di; Huang, Qiuchen; Maruyama, Hitoshi
2015-11-01
[Purpose] The aim of this study was to investigate the change in dynamic balance performance of junior soccer players after progressive resistance treatment with neuromuscular joint facilitation (NJF). [Subjects] The subjects were 14 healthy males who were divided into two groups, namely the NJF and control groups. The NJF group consisted of 8 subjects, and the control group consisted of 6 subjects. [Methods] The participants in the NJF group received NJF progressive resistance treatment. Dynamic balance performance was measured before and after 3 weeks of exercise. [Results] Significant improvement in dynamic balance performance was observed both in the NJF and control groups. In the NJF group, dynamic balance performance was significantly increased compared with that in the control group. [Conclusion] The NJF intervention shortened movement time, which implies that NJF is effective for dynamic balance performance.
Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Torres-Sánchez, Irene; Casilda-López, Jesús; López-López, Laura; Valenza, Marie Carmen
2017-11-22
Fatigue and balance impairment leads to a loss of independence and are important to adequately manage. The objective of this study was to examine the effects of a resistance training program on dynamic balance and fatigue in patients with Parkinson's disease (PD). Randomized controlled trial. Forty-six patients with PD were randomly allocated to an intervention group receiving a 8-week resistance training program focused on lower limbs or to a control group. Balance was assessed using the Mini-BESTest and fatigue was assessed by the Piper Fatigue Scale. Patients in the intervention group improved significantly (p<0.05) on dynamic balance (reactive postural control and total values) and perceived fatigue. An 8-week resistance training program was found to be effective at improving dynamic balance and fatigue in patients with PD. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Hale, Sheri A; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly
2014-01-01
Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Cohort study. University clinical research laboratory. A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Balance training twice weekly for 4 weeks. Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation.
O'Keefe, Joan A; Robertson-Dick, Erin; Dunn, Emily J; Li, Yan; Deng, Youping; Fiutko, Amber N; Berry-Kravis, Elizabeth; Hall, Deborah A
2015-12-01
Fragile X-associated tremor/ataxia syndrome (FXTAS) results from a "premutation" size 55-200 CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Core motor features include cerebellar gait ataxia and kinetic tremor, resulting in progressive mobility disability. There are no published studies characterizing balance deficits in FMR1 premutation carriers with and without FXTAS using a battery of quantitative measures to test the sensory integration underlying postural control, automatic postural reflexes, and dynamic postural stability limits. Computerized dynamic posturography (CDP) and two performance-based balance measures were administered in 44 premutation carriers, 21 with FXTAS and 23 without FXTAS, and 42 healthy controls to compare balance and functional mobility between these groups. Relationships between FMR1 molecular variables, age, and sex and CDP scores were explored. FXTAS subjects demonstrated significantly lower scores on the sensory organization test (with greatest reductions in the vestibular control of balance), longer response latencies to balance perturbations, and reduced stability limits compared to controls. Premutation carriers without FXTAS also demonstrated significantly delayed response latencies and disrupted sensory weighting for balance control. Advancing age, male sex, increased CGG repeat size, and reduced X activation of the normal allele in premutation carrier women predicted balance dysfunction. These postural control deficits in carriers with and without FXTAS implicate dysfunctional cerebellar neural networks and may provide valuable outcome markers for tailored rehabilitative interventions. Our findings suggest that CDP may provide sensitive measures for early detection of postural control impairments in at-risk carriers and better characterize balance dysfunction and progression in FXTAS.
Assessment of thermal efficiency of heat recovery coke making
NASA Astrophysics Data System (ADS)
Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.
2017-08-01
The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KLEM, M.J.
2000-05-11
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.
Røn, Troels; Jacobsen, Kristina Pilgaard; Lee, Seunghwan
2018-04-24
In this study, we introduce a new experimental approach to characterize the forces emerging from simulated catherization. This setup allows for a linear translation of urinary catheters in vertical direction as controlled by an actuator. By employing silicone-based elastomer with a duct of comparable diameter with catheters as urethra model, sliding contacts during the translation of catheters along the duct is generated. A most unique design and operation feature of this setup is that a digital balance was employed as the sensor to detect emerging forces from simulated catherization. Moreover, the possibility to give a variation in environment (ambient air vs. water), clearance, elasticity, and curvature of silicone-based urethra model allows for the detection of forces arising from diverse simulated catherization conditions. Two types of commercially available catheters varying in tubing materials and surface coatings were tested together with their respective uncoated catheter tubing. The first set of testing on the catheter samples showed that this setup can probe the combined effect from flexural strain of bulk tubing materials and slipperiness of surface coatings, both of which are expected to affect the comfort and smooth gliding in clinical catherization. We argue that this new experimental setup can provide unique and valuable information in preclinical friction testing of urinary catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qu, Xingda; Nussbaum, Maury A
2009-01-01
The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.
NASA Astrophysics Data System (ADS)
Latré, S.; Desplentere, F.; De Pooter, S.; Seveno, D.
2017-10-01
Nanoscale materials showing superior thermal properties have raised the interest of the building industry. By adding these materials to conventional construction materials, it is possible to decrease the total thermal conductivity by almost one order of magnitude. This conductivity is mainly influenced by the dispersion quality within the matrix material. At the industrial scale, the main challenge is to control this dispersion to reduce or even eliminate thermal bridges. This allows to reach an industrially relevant process to balance out the high material cost and their superior thermal insulation properties. Therefore, a methodology is required to measure and describe these nanoscale distributions within the inorganic matrix material. These distributions are either random or normally distributed through thickness within the matrix material. We show that the influence of these distributions is meaningful and modifies the thermal conductivity of the building material. Hence, this strategy will generate a thermal model allowing to predict the thermal behavior of the nanoscale particles and their distributions. This thermal model will be validated by the hot wire technique. For the moment, a good correlation is found between the numerical results and experimental data for a randomly distributed form of nanoparticles in all directions.
Dilute Acid and Autohydrolysis Pretreatment
NASA Astrophysics Data System (ADS)
Yang, Bin; Wyman, Charles E.
Exposure of cellulosic biomass to temperatures of about 120-210°C can remove most of the hemicellulose and produce cellulose-rich solids from which high glucose yields are possible with cellulase enzymes. Furthermore, the use of dilute sulfuric acid in this pretreatment operation can increase recovery of hemicellulose sugars substantially to about 85-95% of the maximum possible versus only about 65% if no acid is employed. The use of small-diameter tubes makes it possible to employ high solids concentrations similar to those preferred for commercial operations, with rapid heat-up, good temperature control, and accurate closure of material balances. Mixed reactors can be employed to pretreat larger amounts of biomass than possible in such small-diameter tubes, but solids concentrations are limited to about 15% or less to provide uniform temperatures. Pretreatment of large amounts of biomass at high solids concentrations is best carried out using direct steam injection and rapid pressure release, but closure of material balances in such “steam gun” devices is more difficult. Although flow of water alone or containing dilute acid is not practical commercially, such flow-through configurations provide valuable insight into biomass deconstruction kinetics not possible in the batch tubes, mixed reactors, or steam gun systems.
Gandolfi, Marialuisa; Munari, Daniele; Geroin, Christian; Gajofatto, Alberto; Benedetti, Maria Donata; Midiri, Alessandro; Carla, Fontana; Picelli, Alessandro; Waldner, Andreas; Smania, Nicola
2015-10-01
Impaired sensory integration contributes to balance disorders in patients with multiple sclerosis (MS). The objective of this paper is to compare the effects of sensory integration balance training against conventional rehabilitation on balance disorders, the level of balance confidence perceived, quality of life, fatigue, frequency of falls, and sensory integration processing on a large sample of patients with MS. This single-blind, randomized, controlled trial involved 80 outpatients with MS (EDSS: 1.5-6.0) and subjective symptoms of balance disorders. The experimental group (n = 39) received specific training to improve central integration of afferent sensory inputs; the control group (n = 41) received conventional rehabilitation (15 treatment sessions of 50 minutes each). Before, after treatment, and at one month post-treatment, patients were evaluated by a blinded rater using the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), Multiple Sclerosis Quality of Life-54, Fatigue Severity Scale (FSS), number of falls and the Sensory Organization Balance Test (SOT). The experimental training program produced greater improvements than the control group training on the BBS (p < 0.001), the FSS (p < 0.002), number of falls (p = 0.002) and SOT (p < 0.05). Specific training to improve central integration of afferent sensory inputs may ameliorate balance disorders in patients with MS. Clinical Trial Registration (NCT01040117). © The Author(s), 2015.
Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari
2015-01-01
[Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038
ERIC Educational Resources Information Center
Johnson, Christopher
1982-01-01
Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)
Frevel, D; Mäurer, M
2015-02-01
Balance disorders are common in multiple sclerosis. Aim of the study is to investigate the effectiveness of an Internet-based home training program (e-Training) to improve balance in patients with multiple sclerosis. A randomized, controlled study. Academic teaching hospital in cooperation with the therapeutic riding center Gut Üttingshof, Bad Mergentheim. Eighteen multiple sclerosis patients (mean EDSS 3,5) took part in the trial. Outcome of patients using e-Training (N.=9) was compared to the outcome of patients receiving hippotherapy (N.=9), which can be considered as an advanced concept for the improvement of balance and postural control in multiple sclerosis. After simple random allocation patients received hippotherapy or Internet-based home training (balance, postural control and strength training) twice a week for 12 weeks. Assessments were done before and after the intervention and included static and dynamic balance (primary outcome). Isometric muscle strength of the knee and trunk extension/flexion (dynamometer), walking capacity, fatigue and quality of life served as secondary outcome parameters. Both intervention groups showed comparable and highly significant improvement in static and dynamic balance capacity, no difference was seen between the both intervention groups. However looking at fatigue and quality of life only the group receiving hippotherapy improved significantly. Since e-Training shows even comparable effects to hippotherapy to improve balance, we believe that the established Internet-based home training program, specialized on balance and postural control training, is feasible for a balance and strength training in persons with multiple sclerosis. We demonstrated that Internet-based home training is possible in patients with multiple sclerosis.
The energy cost for balance control during upright standing.
Houdijk, Han; Fickert, Richard; van Velzen, Judith; van Bennekom, Coen
2009-08-01
The aim of this study was to investigate whether balance control during a static upright standing task with and without balance perturbations elicits a significant and meaningful metabolic energy demand and to test whether this energy demand correlates with conventional posturography measures for balance control. Ten healthy subjects were assessed in four 4-min upright standing conditions on a force platform while energy consumption was measured using open circuit respirometry. In the reference condition subjects stood upright in parallel stance without balance perturbation (PS). In the other conditions balance was perturbed by placing the subjects in tandem stance (TS), in tandem stance blind folded (TSBF) and in tandem stance on a balance board (TSBB). Gross and net energy consumption was assessed and various conventional posturography measures were derived from the excursion of the center of pressure (CoP) of the ground reaction force. Energy consumption was substantially affected by all balance perturbations, compared to the reference condition. The highest increase in energy consumption was found for the TSBF condition (increase of 0.86 J kg(-1)s(-1) or 60% of PS). Significant correlations were found between energy consumption and posturography measures. The strongest correlation was found between gross energy consumption and the CoP path and normalized CoP path along the anterior-posterior axis (resp. r=0.57 and r=0.66, p<0.001). It was concluded that the effort for balance control can elicit a meaningful metabolic energy demand. Conventional posturography provided significant, though moderate, predictors of this metabolic effort for balance control.
Ribeiro, Karyna Myrelly Oliveira Bezerra de Figueiredo; Freitas, Raysa Vanessa de Medeiros; Ferreira, Lidiane Maria de Brito Macedo; Deshpande, Nandini; Guerra, Ricardo Oliveira
2017-06-01
To evaluate short-term effects of balance Vestibular Rehabilitation Therapy (VRT) on balance, dizziness symptoms and quality of life of the elderly with chronic Benign Paroxysmal Positional Vertigo (BPPV). In this randomized, single-blind and controlled trial, older adults with chronic BPPV were randomized into two groups, the experimental group (n = 7, age: 69 (65-78) years) and the control group (n = 7, age: 73 (65-76) years). Patients in the experimental group underwent balance VRT (50 min per session, two times a week) and Canalith Repositioning Maneuver (CRM) as required, for 13 weeks. The control group was treated using only CRM as required. Standing and dynamic balance, dizziness symptoms and quality of life were measured at the baseline, and at one, five, nine and thirteen weeks. There were no between-group differences in dizziness, quality of life and standing balance over the 13 weeks. Significant differences were observed in dynamic balance measures between groups (p < 0.05 for most tests) through assessments. In intragroup analysis, both groups showed improvements in all measurements except no improvement was found in majority of the dynamic balance tests in the control group. The patients who received additional balance VRT demonstrated better results in dynamic balance than those who received only CRM. Implications for Rehabilitation The findings that balance VRT in addition to CRM improves dynamic balance in elderly people with BPPV should be useful in guiding rehabilitation professionals' clinical decision making to design interventions for seniors suffering from BPPV; Improvements in tests of dynamic balance suggest that the risk of adverse consequences of BPPV in the elderly such as falls and fractures can be potentially reduced through implementation of CRM in conjunction with balance VRT; Lack of additional improvement in Visual Analogue Scale of dizziness and Dizziness Handicap Index suggests that addition of balance VRT does not influence dizziness symptomatology, per se, and CRM alone is effective to ameliorate vertiginous symptoms and potentially improve quality of life.
Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances
NASA Technical Reports Server (NTRS)
Ferris, A. T.
1980-01-01
The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions.
Human stick balancing: Tuning Lèvy flights to improve balance control
NASA Astrophysics Data System (ADS)
Cabrera, Juan Luis; Milton, John G.
2004-09-01
State-dependent, or parametric, noise is an essential component of the neural control mechanism for stick balancing at the fingertip. High-speed motion analysis in three dimensions demonstrates that the controlling movements made by the fingertip during stick balancing can be described by a Lévy flight. The Lévy index, α, is approximately 0.9; a value close to optimal for a random search. With increased skill, the index α does not change. However, the tails of the Lévy distribution become broader. These observations suggest a Lévy flight that is truncated by the properties of the nervous and musculoskeletal system; the truncation decreasing as skill level increases. Measurements of the cross-correlation between the position of the tip of the stick and the fingertip demonstrate that the role of closed-loop feedback changes with increased skill. Moreover, estimation of the neural latencies for stick balancing show that for a given stick length, the latency increases with skill level. It is suggested that the neural control for stick balancing involves a mechanism in which brief intervals of consciously generated, corrective movements alternate with longer intervals of prediction-free control. With learning the truncation of the Lévy flight becomes better optimized for balance control and hence the time between successive conscious corrections increases. These observations provide the first evidence that changes in a Lévy flight may have functional significance for the nervous system. This work has implications for the control of balancing problems ranging from falling in the elderly to the design of two-legged robots and earthquake proof buildings.
Relationship between asymmetry of quiet standing balance control and walking post-stroke.
Hendrickson, Janna; Patterson, Kara K; Inness, Elizabeth L; McIlroy, William E; Mansfield, Avril
2014-01-01
Spatial and temporal gait asymmetry is common after stroke. Such asymmetric gait is inefficient, can contribute to instability and may lead to musculoskeletal injury. However, understanding of the determinants of such gait asymmetry remains incomplete. The current study is focused on revealing if there is a link between asymmetry during the control of standing balance and asymmetry during walking. This study involved review of data from 94 individuals with stroke referred to a gait and balance clinic. Participants completed three tests: (1) walking at their usual pace; (2) quiet standing; and (3) standing with maximal loading of the paretic side. A pressure sensitive mat recorded placement and timing of each footfall during walking. Standing tests were completed on two force plates to evaluate symmetry of weight bearing and contribution of each limb to balance control. Multiple regression was conducted to determine the relationships between symmetry during standing and swing time, stance time, and step length symmetry during walking. Symmetry of antero-posterior balance control and weight bearing were related to swing time and step length symmetry during walking. Weight-bearing symmetry, weight-bearing capacity, and symmetry of antero-posterior balance control were related to stance time symmetry. These associations were independent of underlying lower limb impairment. The results support the hypothesis that impaired ability of the paretic limb to control balance may contribute to gait asymmetry post-stroke. Such work suggests that rehabilitation strategies that increase the contribution of the paretic limb to standing balance control may increase symmetry of walking post-stroke. Copyright © 2013 Elsevier B.V. All rights reserved.
1982-03-01
system. Regenerator flue gas composi- tion, spent catalyst carbon content and regenerated cata- lyst content are monitored for material balance purposes...and good material balance closures obtained. During each run pro- duct gas samples, regenerator flue gas samples, spent and -85- regenerated...TEMPERATURE DEPENDENCE OF DENITROGENATION AT 2 LHSV ON CO/MO ......................... 26 111-2 TEMPERATURE DEPENDENCE OF DESULFURIZATION AT 2 LHSV ON
2011-12-01
significant deficiencies, that results in more than a remote likelihood that a material misstatement of the financial statements will not be prevented or...reconciliations of FBWT collection and disbursement activity, the amount of funds available for expenditure may contain material misstatements ; related...10 GAO-12-132 Fund Balance Reconciliations misstated , and the Department of the Navy is at increased risk of Antideficiency Act violations.31 • The
A two-phase micromorphic model for compressible granular materials
NASA Astrophysics Data System (ADS)
Paolucci, Samuel; Li, Weiming; Powers, Joseph
2009-11-01
We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.
Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca
2011-01-01
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
The time-delayed inverted pendulum: Implications for human balance control
NASA Astrophysics Data System (ADS)
Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann
2009-06-01
The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.
Adaptive control of dynamic balance in human gait on a split-belt treadmill.
Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob
2018-05-17
Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.
A coupled problem of finite deformation and flow in porous media
NASA Astrophysics Data System (ADS)
Moussa, A. B.
1980-06-01
A theory for deformation and two phase flow in porous media was developed. Equations of balance of mass, momentum, moment of momentum and energy for each constituent were postulated. These led to equivalent balance equations for the mixture as a whole to which an entropy production inequality was also postulated. The formulation was then applied to the silage material. A constitutive theory was developed for the mixture. General appropriate constitutive assumptions were suggested and made to satisfy the axiom of material objectivity and entropy production inequality. Material incompressibility was defined and introduced into the general form of constitutive relations.
Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.
Stribling, Kate; Christy, Jennifer
2017-10-01
To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana
2013-02-15
The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panelmore » on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koech, Phillip K.; Polikarpov, Evgueni; Rainbolt, James E.
2010-11-05
Pyridine-based host materials were synthesized via Grignard metathesis of bromopyridines to provide the required organometallic reagent. The isomeric hosts (4-(9H-carbazol-9-yl)phenyl)(phenyl)(pyridin-3-yl)phosphine oxide (HM-A4), (5-(9H-carbazol-9-yl)pyridin-2-yl)diphenylphosphine oxide (HM-A5), and (5-(diphenylamino)pyridin-2-yl)diphenylphosphine oxide (HM-A6), (4-(diphenylamino)phenyl)(phenyl)(pyridin-3-yl)phosphine oxide (HM-A8) have similar frontier orbital energies. Organic light emitting devices (OLEDs) fabricated using the series of the host materials demonstrate that small structural modification of the host results in significant change in charge transporting ability.
Homnick, Tamara D; Henning, Kim M; Swain, Charlene V; Homnick, Douglas N
2015-02-01
Equine assisted activities (hippotherapy and therapeutic riding) improve balance in patients with disabilities such as cerebral palsy, but have not been systematically studied in older adults, at risk of falls due to balance deficits. We conducted a 10-week, single blind, controlled trial of the effect of a therapeutic horseback riding course on measures of balance in community-dwelling adults 65 years and older. Nine riders and six controls completed the trial. Controls were age matched to riders and all participants were recruited from the local community. Both groups showed improvements in balance during the trial, but did not reach statistical significance. Sample size was small, participants had relatively high initial balance scores, and controls tended to increase their physical activities, likely influencing outcomes. No adverse events occurred and the supervised therapeutic riding program appeared to be a safe and effective form of exercise to improve balance in older adults. A power analysis was performed to estimate numbers of participants needed for a larger study. © The Author(s) 2012.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Almaya, Ahmad; De Belder, Lawrence; Meyer, Robert; Nagapudi, Karthik; Lin, Hung-Ren Homer; Leavesley, Ian; Jayanth, Jayanthy; Bajwa, Gurjit; DiNunzio, James; Tantuccio, Anthony; Blackwood, Dan; Abebe, Admassu
2017-04-01
Continuous manufacturing (CM) has emerged in the pharmaceutical industry as a paradigm shift with significant advantages related to cost, efficiency, flexibility, and higher assurance of quality. The inherent differences from batch processes justify examining the CM control strategy more holistically. This article describes the current thinking for the control and implementation of CM, using the example of a direct compression process and taking into consideration the ICH Q10 definition of "state of control" and process validation requirements. Statistical process control using control charts, sources of variation, process capability, and process performance is explained as a useful concept that can help assess the impact of variation within a batch and indicates if a process is in state of control. The potential for time-variant nature of startup and shutdown with CM is discussed to assure product quality while minimizing waste as well as different options for detection and isolation of non-conforming materials due to process upsets. While different levels of control are possible with CM, an appropriate balance between process control and end product testing is needed depending on the level of process understanding at the different stages of development from the production of clinical supplies through commercialization. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.
2013-01-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
NASA Astrophysics Data System (ADS)
Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.
2013-04-01
When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.
Review of Potential Wind Tunnel Balance Technologies
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.
2016-01-01
This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.
ERIC Educational Resources Information Center
Kuhnle, Claudia; Hofer, Manfred; Kilian, Britta
2010-01-01
The aim of this self-report study is to analyze proposed interrelations between value orientations, self-control, frequency of school-leisure conflicts, and life-balance in adolescence. Life-balance is defined as satisfying time investment in different life areas. The tested model posits that self-control is negatively related to conflict…
Gera, G; Freeman, D L; Blackinton, M T; Horak, F B; King, L
2016-02-01
Balance deficits in people with Parkinson's disease can affect any of the multiple systems encompassing balance control. Thus, identification of the specific deficit is crucial in customizing balance rehabilitation. The sensory organization test, a test of sensory integration for balance control, is sometimes used in isolation to identify balance deficits in people with Parkinson's disease. More recently, the Mini-Balance Evaluations Systems Test, a clinical scale that tests multiple domains of balance control, has begun to be used to assess balance in patients with Parkinson's disease. The purpose of our study was to compare the use of Sensory Organization Test and Mini-Balance Evaluations Systems Test in identifying balance deficits in people with Parkinson's disease. 45 participants (27M, 18F; 65.2 ± 8.2 years) with idiopathic Parkinson's disease participated in the cross-sectional study. Balance assessment was performed using the Sensory Organization Test and the Mini-Balance Evaluations Systems Test. People were classified into normal and abnormal balance based on the established cutoff scores (normal balance: Sensory Organization Test >69; Mini-Balance Evaluations Systems Test >73). More subjects were classified as having abnormal balance with the Mini-Balance Evaluations Systems Test (71% abnormal) than with the Sensory Organization Test (24% abnormal) in our cohort of people with Parkinson's disease. There were no subjects with a normal Mini-Balance Evaluations Systems Test score but abnormal Sensory Organization Test score. In contrast, there were 21 subjects who had an abnormal Mini-Balance Evaluations Systems Test score but normal Sensory Organization Test scores. Findings from this study suggest that investigation of sensory integration deficits, alone, may not be able to identify all types of balance deficits found in patients with Parkinson's disease. Thus, a comprehensive approach should be used to test of multiple balance systems to provide customized rehabilitation.
NASA Astrophysics Data System (ADS)
Denomme, Luke T.
Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the straight walking portion of the task in addition to a smaller DSM range (i.e., COM remained close to lateral BOS) during the entire steering task. These results suggest that IwMS adopt postural and dynamic control strategies (i.e., increased COP velocity, smaller self-selected maximal sway comfort zones and reduced walking speed) in order to maintain stability and complete the tasks. Results further revealed that IwMS display similar levels of postural and dynamic stability to OA despite differences in the type of sensory impairment possessed by each group. The findings also provide insights into the comparison of IwMS to two populations who represent the two extreme ends of the balance control continuum: HAMI and OA. Our data indicates that the level of postural and dynamic balance control in IwMS appears to express similar characteristics and may be located closer to the OA population on this continuum. Future research should evaluate the level of somatosensory impairment (i.e., monofilament testing and tuning fork tendon tap testing) between IwMS and OA in order to better differentiate levels of postural and dynamic balance control between groups and to gain a better understanding of where each group may be specifically located on the age-related balance control continuum.
Virtual Balancing for Studying and Training Postural Control.
Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K; Maurer, Christoph
2017-01-01
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.
Virtual Balancing for Studying and Training Postural Control
Buettner, Daniela; Dalin, Daniela; Wiesmeier, Isabella K.; Maurer, Christoph
2017-01-01
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training. PMID:29018320
The gait and balance of patients with diabetes can be improved: a randomised controlled trial.
Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; Staal, J B; de Bruin, E D
2010-03-01
Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (p<0.001) compared with the control group. Patients in the intervention group also significantly improved their balance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. ClinicalTrials.gov NCT00637546 This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/
Microchip dual-frequency laser with well-balanced intensity utilizing temperature control.
Hu, Miao; Zhang, Yu; Wei, Mian; Zeng, Ran; Li, Qiliang; Lu, Yang; Wei, Yizhen
2016-10-03
A continuous-wave microchip dual-frequency laser (DFL) with well balanced intensity was presented. In order to obtain such a balanced intensity distribution of the two frequency components, the DFL wavelengths were precisely tuned and spectrally matched with the emission cross section (ECS) spectrum of the gain medium by employing a temperature controller. Finally, when the heat sink temperature was controlled at -5.6°C, a 264 mW DFL signal was achieved with frequency separation at 67.52 GHz and intensity balance ratio (IBR) at 0.991.
Paton, Joanne; Hatton, Anna L.; Rome, Keith; Kent, Bridie
2016-01-01
EXECUTIVE SUMMARY Background Foot and ankle devices are being developed as a method of preventing people with sensory perception loss sustaining a fall. Such devices are believed to work by reducing the likelihood of a fall by improving the balance and gait of the user. Objectives The objective of the review was to evaluate the effectiveness of foot and ankle devices for the prevention of falls and the improvement of balance and gait in adults with sensory perception loss. Inclusion criteria Types of participants Participants were community-dwelling adults with bilateral pathological sensory perception loss. Types of intervention(s)/phenomena of interest The current review evaluated any foot or ankle device, including but not restricted to, all types of footwear (therapeutic and retail), insoles (customized and prefabricated) and ankle-foot orthoses (AFOs). Types of studies In the absence of randomized controlled trials (RCT), the review considered experimental and epidemiological study designs, except case series, individual case reports and descriptive cross-sectional studies. Outcomes The primary outcome was number of falls. Secondary outcome measures were clinical or laboratory measures of balance or gait. Search strategy A search for published and unpublished literature from inception to March 2015 written in the English language was conducted across a number of major electronic databases. A three-step search strategy was developed using MeSH terminology and keywords to ensure all that relevant materials are captured. Methodological quality Methodological quality of included studies was assessed by two reviewers, who appraised each study independently, using standardized Joanna Briggs Institute (JBI) critical appraisal tools. Data extraction Quantitative data were extracted from the studies that were identified as meeting the criteria for methodological quality using the standardized JBI data extraction tools. Data synthesis Due to the heterogeneity of populations, interventions and outcome measures, meta-analyses were not possible and results are presented in narrative form. Results Nine trials (from 10 papers) involving 238 participants, (14 with multiple sclerosis and 16 with idiopathic peripheral neuropathy, 150 with diabetic neuropathy) and 58 controls were included in the review. No study reported falls as an outcome measure. The results of the included studies found that in people with sensory perception loss, postural sway improved with vibrating insoles and AFO, altering the softness and texture of the top cover had no effect on postural sway, wearing footwear over long distances or AFOs improved step-to-step consistency, and no foot and ankle device was reported to have a negative effect on the balance or gait of people with sensory perception loss. The methodological quality of the included studies was poor. No study used a randomized controlled trial (RCT) methodology. No study incorporated a follow-up period or tested the intervention within the context of the intended clinical environment. Conclusion There is limited evidence to suggest that footwear and insole devices can artificially alter postural stability and may reduce the step-to-step variability in adults with sensory perception loss. Varying the material properties of an insole does not notably affect static balance or gait. PMID:28009675
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Prior to 1978, the Wilsonville Advanced Coal Liquefaction facility material balance surrounded only the thermal liquefaction unit and involved analyses of only the slurry stream and individual gas streams. The distillate solvent yield was determined by difference. Subsequently, several modifications and additional process units were introduced to this single unit system. With the inclusion of the deashing unit in 1978 and the catalytic hydrogenation unit in 1981, the process has evolved into a sophisticated two-stage coal liquefaction process and has the potential for various modes of integration. This report presents an elemental balancing procedure and a simplified presentation format thatmore » is sufficiently flexible to meet current and future needs. The development of the elemental balancing technique and the relevant computer programs to handle the calculations have been addressed. This will be useful in modelling individual unit performance as well as determining the impact of each unit on the overall liquefaction system, provided the units are on a steady-state basis. Five different material balance envelopes are defined. Three of these envelopes pertain to the individual units (the thermal liquefaction or TL unit, the Critical Solvent Deashing or CSD unit and the H-Oil Ebullated Bed Hydrotreating or HTR unit). The fourth or single stage material balance envelope combines the TL and CSD units. The fifth envelope is the two-stage configuration combining all three units. 3 references.« less
Material rhetoric: spreading stones and showing bones in the study of prehistory.
Van Reybrouck, David; de Bont, Raf; Rock, Jan
2009-06-01
Since the linguistic turn, the role of rhetoric in the circulation and the popular representation of knowledge has been widely accepted in science studies. This article aims to analyze not a textual form of scientific rhetoric, but the crucial role of materiality in scientific debates. It introduces the concept of material rhetoric to understand the promotional regimes in which material objects play an essential argumentative role. It analyzes the phenomenon by looking at two students of prehistory from nineteenth-century Belgium. In the study of human prehistory and evolution, material data are either fairly abundant stone tools or very scarce fossil bones. These two types of material data stand for two different strategies in material rhetoric. In this article, the first strategy is exemplified by Aimé Rutot, who gathered great masses of eoliths (crudely chipped stones which he believed to be prehistoric tools). The second strategy is typified by the example of Julien Fraipont, who based his scientific career on only two Neanderthal skeletons. Rutot sent his "artifacts" to a very wide audience, while Fraipont showed his skeletons to only a few selected scholars. Unlike Rutot, however, Fraipont was able to monitor his audience's interpretation of the finds by means of personal contacts. What an archaeologist gains in reach, he or she apparently loses in control. In this article we argue that only those scholars who find the right balance between the extremes of reach and control will prove to be successful.
A balance of activity in brain control and reward systems predicts self-regulatory outcomes
Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.
2017-01-01
Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants’ food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters’ control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. PMID:28158874
A balance of activity in brain control and reward systems predicts self-regulatory outcomes.
Lopez, Richard B; Chen, Pin-Hao A; Huckins, Jeremy F; Hofmann, Wilhelm; Kelley, William M; Heatherton, Todd F
2017-05-01
Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants' food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters' control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. © The Author (2017). Published by Oxford University Press.
Cattaneo, Davide; Rasova, Kamila; Gervasoni, Elisa; Dobrovodská, Gabriela; Montesano, Angelo; Jonsdottir, Johanna
2018-03-01
People with Multiple Sclerosis (PwMS) have a high incidence of accidental falls that have a potentially detrimental effect on their daily life participation. The effect of balance specific rehabilitation on clinical balance measures and frequency of falls in PwMS was studied. A bi-centre randomised rater-blinded controlled trial. Participants in both groups received 20 treatment sessions. Participants in the intervention group received treatment aimed at improving balance and mobility. Participants in the control group received treatments to reduce limitations at activity and body function level. Primary measures were frequency of fallers (>1 fall in two months) and responders (>3 points improvement) at the Berg Balance Scale (BBS). Data was analysed according to an intention to treat approach. One hundred and nineteen participants were randomised. Following treatment frequency of fallers was 22% in the intervention group and 23% in the control group, odds ratio (OR) and (confidence limits): 1.05 (0.41 to 2.77). Responders on the BBS were 28% in the intervention group and 33% in the control group, OR = 0.75 (0.30 to 1.91). At follow up ORs for fallers and responders at BBS were 0.98 (0.48 to 2.01) and 0.79 (0.26 to 2.42), respectively. Twenty sessions 2-3 times/week of balance specific rehabilitation did not reduce fall frequency nor improve balance suggesting the need for more frequent and challenging interventions. Implications for Rehabilitation Programs for balance rehabilitation can improve balance but their effects in fall prevention are unclear. Twenty treatments sessions 2/3 times per week did not reduced frequency of falls in MS. The comparison with similar studies suggests that higher intensity of practice of highly challenging balance activities appears to be critical to maximizing effectiveness.
Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.
Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav
2017-11-01
Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, P<.03, η p 2 = 0.725) and increased the activation of trunk and proximal hip muscles in specific motor modules during perturbed cutting. Balance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, P<.01, η p 2 = 0.532). Conclusion Balance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.
Piterina, Anna V.; Cloonan, Aidan J.; Meaney, Claire L.; Davis, Laura M.; Callanan, Anthony; Walsh, Michael T.; McGloughlin, Tim M.
2009-01-01
The in vivo healing process of vascular grafts involves the interaction of many contributing factors. The ability of vascular grafts to provide an environment which allows successful accomplishment of this process is extremely difficult. Poor endothelisation, inflammation, infection, occlusion, thrombosis, hyperplasia and pseudoaneurysms are common issues with synthetic grafts in vivo. Advanced materials composed of decellularised extracellular matrices (ECM) have been shown to promote the healing process via modulation of the host immune response, resistance to bacterial infections, allowing re-innervation and reestablishing homeostasis in the healing region. The physiological balance within the newly developed vascular tissue is maintained via the recreation of correct biorheology and mechanotransduction factors including host immune response, infection control, homing and the attraction of progenitor cells and infiltration by host tissue. Here, we review the progress in this tissue engineering approach, the enhancement potential of ECM materials and future prospects to reach the clinical environment. PMID:20057951
Feasibility of Wii Fit training to improve clinical measures of balance in older adults.
Bieryla, Kathleen A; Dold, Neil M
2013-01-01
Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo's Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo's Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Balance training with Nintendo's Wii Fit may be a novel way for older adults to improve balance as measured by the BBS.
Chow, Gary C C; Fong, Shirley S M; Chung, Joanne W Y; Chung, Louisa M Y; Ma, Ada W W; Macfarlane, Duncan J
2016-11-01
Postural control strategy and balance performance of rugby players are important yet under-examined issues. This study aimed to examine the differences in balance strategy and balance performance between amateur rugby players and non-players, and to explore training- and injury-related factors that may affect rugby players' balance outcomes. Cross-sectional and exploratory study. Forty-five amateur rugby players and 41 healthy active individuals participated in the study. Balance performance and balance strategies were assessed using the sensory organization test (SOT) of the Smart Equitest computerized dynamic posturography machine. Rugby training history and injury history were solicited from the participants. The SOT strategy scores were 1.99-54.90% lower in the rugby group than in the control group (p<0.05), and the equilibrium scores were 1.06-14.29% lower in the rugby group than in the control group (p<0.05). After accounting for age, sex and body mass index, only length of rugby training (in years) was independently associated with the SOT condition 6 strategy score, explaining 15.7% of its variance (p=0.006). There was no association between SOT condition 6 strategy/equilibrium scores and injury history among the rugby players (p>0.05). Amateur rugby players demonstrated inferior balance strategy and balance performance compared to their non-training counterparts. Their suboptimal balance strategy was associated with insufficient training experience but not with history of injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Peirone, Eliana; Goria, Paolo Filiberto; Anselmino, Arianna
2014-04-01
To evaluate the safety, feasibility and effectiveness of a dual-task home-based rehabilitation programme on balance impairments among adult patients with acquired brain injury. Single-blind, randomized controlled pilot study. Single rehabilitation centre. Sixteen participants between 12 and 18 months post-acquired brain injury with balance impairments and a score <10 seconds on the One-Leg Stance Test (eyes open). All participants received 50-minutes individualised traditional physiotherapy sessions three times a week for seven weeks. In addition, the intervention group (N = 8) performed an individualised dual-task home-based programme six days a week for seven weeks. The primary outcome measure was the Balance Evaluation System Test; secondary measures were the Activities-specific Balance Confidence Scale and Goal Attainment Scaling. At the end of the pilot study, the intervention group showed significantly greater improvement in Balance Evaluation System Test scores (17.87, SD 6.05) vs. the control group (5.5, SD 3.53; P = 0.008, r = 0.63). There was no significant difference in improvement in Activities-specific Balance Confidence Scale scores between the intervention group (25.25, SD 25.51) and the control group (7.00, SD 14.73; P = 0.11, r = 0.63). There was no significant improvement in Goal Attainment Scaling scores in the intervention (19.37, SD 9.03) vs. the control group (16.28, SD 6.58; P = 0.093, r = 0.63). This pilot study shows the safety, feasibility and short-term benefit of a dual-task home-based rehabilitation programme to improve balance control in patients with acquired brain injury. A sample size of 26 participants is required for a definitive study.
Human stick balancing: tuning Lèvy flights to improve balance control.
Cabrera, Juan Luis; Milton, John G
2004-09-01
State-dependent, or parametric, noise is an essential component of the neural control mechanism for stick balancing at the fingertip. High-speed motion analysis in three dimensions demonstrates that the controlling movements made by the fingertip during stick balancing can be described by a Lèvy flight. The Lèvy index, alpha, is approximately 0.9; a value close to optimal for a random search. With increased skill, the index alpha does not change. However, the tails of the Lèvy distribution become broader. These observations suggest a Lèvy flight that is truncated by the properties of the nervous and musculoskeletal system; the truncation decreasing as skill level increases. Measurements of the cross-correlation between the position of the tip of the stick and the fingertip demonstrate that the role of closed-loop feedback changes with increased skill. Moreover, estimation of the neural latencies for stick balancing show that for a given stick length, the latency increases with skill level. It is suggested that the neural control for stick balancing involves a mechanism in which brief intervals of consciously generated, corrective movements alternate with longer intervals of prediction-free control. With learning the truncation of the Lèvy flight becomes better optimized for balance control and hence the time between successive conscious corrections increases. These observations provide the first evidence that changes in a Lèvy flight may have functional significance for the nervous system. This work has implications for the control of balancing problems ranging from falling in the elderly to the design of two-legged robots and earthquake proof buildings. Copyright 2004 American Institute of Physics
Walowska, Jagoda; Bolach, Bartosz; Bolach, Eugeniusz
2017-11-13
Hearing impairment may affect the body posture maintenance. The aim of the study was to evaluate the effect of modified Pilates exercise program on the body posture maintenance in hearing impaired people. Eighty students (aged 13-24) were enrolled and randomly allocated into two groups: test group (n = 41) which attended an original program based on modified Pilates exercises and control group (n = 39) which attended standard physical education classes. Stabilographic tests were conducted at baseline and after 6-week training program. Both groups showed improved control of body balance in a standing position manifested in reductions of the length of path, surface area, and speed of deflection. Modified Pilates program was significantly more effective in improving body balance control in relaxed posture and with feet together than standard physical education classes. The greater efficiency of the modified Pilates program was expressed in a significant improvement in balance control parameters, i.e., path length, surface area, and speed of deflection. The modified Pilates program was more effective in improving body balance control in the hearing impaired people than standard physical education classes. Modification of physical activity recommendations for hearing impaired students may be considered; however, further research is required. Implications for Rehabilitation Hearing impairment impacts the mental, social and, physical spheres of life as well as deteriorates equivalent reactions and the way body posture is maintained. In hearing impaired people, control of body balance and muscle coordination is often disturbed, thus more attention should be paid to exercises associated with balance which may improve the ability to learn and develop motor skills. Modified Pilates program was significantly more effective in improving body balance control than standard physical education classes in hearing impaired people.
Physical load handling and listening comprehension effects on balance control.
Qu, Xingda
2010-12-01
The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.
Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation
Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin
2012-01-01
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors. PMID:22844401
Control of mobility in molecular organic semiconductors by dendrimer generation
NASA Astrophysics Data System (ADS)
Lupton, J. M.; Samuel, I. D.; Beavington, R.; Frampton, M. J.; Burn, P. L.; Bässler, H.
2001-04-01
Conjugated dendrimers are of interest as novel materials for light-emitting diodes. They consist of a luminescent chromophore at the core with highly branched conjugated dendron sidegroups. In these materials, light emission occurs from the core and is independent of generation. The dendron branching controls the separation between the chromophores. We present here a family of conjugated dendrimers and investigate the effect of dendron branching on light emission and charge transport. We apply a number of transport measurement techniques to thin films of a conjugated dendrimer in a light-emitting diode configuration to determine the effect of chromophore spacing on charge transport. We find that the mobility is reduced by two orders of magnitude as the size of the molecule doubles with increased branching or dendrimer generation. The degree of branching allows a unique control of mobility by molecular structure. An increase in chromophore separation also results in a reduction of intermolecular interactions, which reduces the red emission tail in film photoluminescence. We find that the steady-state charge transport is well described by a simple device model incorporating the effect of generation, and use the materials to shed light on the interpretation of transient electroluminescence data. We demonstrate the significance of the ability to tune the mobility in bilayer devices, where a more balanced charge transport can be achieved.
Polymer-xerogel composites for controlled release wound dressings.
Costache, Marius C; Qu, Haibo; Ducheyne, Paul; Devore, David I
2010-08-01
Many polymers and composites have been used to prepare active wound dressings. These materials have typically exhibited potentially toxic burst release of the drugs within the first few hours followed by a much slower, potentially ineffective drug release rate thereafter. Many of these materials also degraded to produce inflammatory and cytotoxic products. To overcome these limitations, composite active wound dressings were prepared here from two fully biodegradable and tissue compatible components, silicon oxide sol-gel (xerogel) microparticles that were embedded in tyrosine-poly(ethylene glycol)-derived poly(ether carbonate) copolymer matrices. Sustained, controlled release of drugs from these composites was demonstrated in vitro using bupivacaine and mepivacaine, two water-soluble local anesthetics commonly used in clinical applications. By systematically varying independent compositional parameters of the composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived monomers and poly(ethylene glycol) in the copolymers and the porosity, weight ratio and drug content of the xerogels, drug release kinetics approaching zero-order were obtained. Composites with xerogel mass fractions up to 75% and drug payloads as high as 13% by weight in the final material were fabricated without compromising the physical integrity or the controlled release kinetics. The copolymer-xerogel composites thus provided a unique solution for the sustained delivery of therapeutic agents from tissue compatible wound dressings. 2010 Elsevier Ltd. All rights reserved.
Burke, Thomaz Nogueira; França, Fábio Jorge Renovato; Ferreira de Meneses, Sarah Rúbia; Cardoso, Viviam Inhasz; Marques, Amélia Pasqual
2010-07-01
To assess the efficacy of an exercise program aiming to improve balance and muscular strength, for postural control and muscular strength of women with osteoporosis. Sample consisted of 33 women with osteoporosis, randomized into one of two groups: intervention group, in which exercises for balance and improvement of muscular strength of the inferior members were performed for 8 wks (n = 17, age 72.8 +/- 3.6 yrs); control group, which was women not practicing exercises (n = 16, age 74.4 +/- 3.7 yrs). At baseline and after 8 wks of treatment, postural control was assessed using a force plate (Balance Master, Neurocom), and muscular strength during ankle dorsiflexion, knee extension, and flexion was assessed by dynamometry. Adherence to the program was 82%. When compared with the control group, individuals in the intervention group significantly improved the center of pressure velocity (P = 0.02) in the modified clinical test of sensory interaction for balance test, center of pressure velocity (P < 0.01), and directional control (P < 0.01) in limits of stability test, isometric force during ankle dorsiflexion (P = 0.01), knee extension (P < 0.01), and knee flexion (P < 0.01). Balance and strength exercises are effective in improving postural control and lower-limb strength in elderly women with osteoporosis.
Campbell, Karen J; Hesketh, Kylie D; McNaughton, Sarah A; Ball, Kylie; McCallum, Zoë; Lynch, John; Crawford, David A
2016-02-18
Understanding how we can prevent childhood obesity in scalable and sustainable ways is imperative. Early RCT interventions focused on the first two years of life have shown promise however, differences in Body Mass Index between intervention and control groups diminish once the interventions cease. Innovative and cost-effective strategies seeking to continue to support parents to engender appropriate energy balance behaviours in young children need to be explored. The Infant Feeding Activity and Nutrition Trial (InFANT) Extend Program builds on the early outcomes of the Melbourne InFANT Program. This cluster randomized controlled trial will test the efficacy of an extended (33 versus 15 month) and enhanced (use of web-based materials, and Facebook® engagement), version of the original Melbourne InFANT Program intervention in a new cohort. Outcomes at 36 months of age will be compared against the control group. This trial will provide important information regarding capacity and opportunities to maximize early childhood intervention effectiveness over the first three years of life. This study continues to build the evidence base regarding the design of cost-effective, scalable interventions to promote protective energy balance behaviors in early childhood, and in turn, promote improved child weight and health across the life course. ACTRN12611000386932. Registered 13 April 2011.
ERIC Educational Resources Information Center
Schlee, Gunther; Neubert, Tom; Worenz, Andreas; Milani, Thomas L.
2012-01-01
The goal of this study was to investigate plantar foot sensitivity and balance control of ADHD (n = 21) impaired children compared to age-matched healthy controls (n = 25). Thresholds were measured at 200 Hz at three anatomical locations of the plantar foot area of both feet (hallux, first metatarsal head (METI) and heel). Body balance was…
Ellmers, Toby J; Paraskevopoulos, Ioannis Th; Williams, A Mark; Young, William R
2018-03-22
Published reports suggest a disparity between perceived and actual balance abilities, a trait associated with increased fall-risk in older adults. We investigate whether it is possible to 'recalibrate' these disparities using a novel gaming intervention. We recruited 26 older adults for a 4-week intervention in which they participated in 8-sessions using a novel gaming intervention designed to provide explicit, augmented feedback related to postural control. Measures of perceived balance abilities (Falls Efficacy Scale-International) and actual postural control (limits of stability) were assessed pre- and post-intervention. We used focus groups to elicit the opinions of participants about how the game may have influenced balance abilities and confidence. A stronger alignment was observed between postural control and perceived balance capabilities post-intervention (i.e., significant correlations between Falls Efficacy Scale-International scores and limits of stability which were not present pre-intervention). Also, significant improvements in measures of postural control were observed, with these improvements confined to the aspects of postural control for which the exergame provided explicit, augmented feedback. Qualitative data revealed that the intervention made participants more "aware" of their balance abilities. Our results demonstrate that it is possible to recalibrate the perceptions of older adults relating to their balance abilities through a targeted, short-term intervention. We propose that the post-intervention improvements in postural control may have been, in part, the result of this recalibration; with altered perceptions leading to changes in balance performance. Findings support the application of novel interventions aimed at addressing the psychological factors associated with elderly falls.
Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Dordevic, Milos; Hökelmann, Anita; Müller, Patrick; Rehfeld, Kathrin; Müller, Notger G
2017-01-01
Background: Slackline-training has been shown to improve mainly task-specific balancing skills. Non-task specific effects were assessed for tandem stance and preferred one-leg stance on stable and perturbed force platforms with open eyes. It is unclear whether transfer effects exist for other balancing conditions and which component of the balancing ability is affected. Also, it is not known whether slackline-training can improve non-visual-dependent spatial orientation abilities, a function mainly supported by the hippocampus. Objective: To assess the effect of one-month of slackline-training on different components of balancing ability and its transfer effects on non-visual-dependent spatial orientation abilities. Materials and Methods: Fifty subjects aged 18-30 were randomly assigned to the training group (T) ( n = 25, 23.2 ± 2.5 years; 12 females) and the control group (C) ( n = 25, 24.4 ± 2.8 years; 11 females). Professional instructors taught the intervention group to slackline over four consecutive weeks with three 60-min-trainings in each week. Data acquisition was performed (within 2 days) by blinded investigators at the baseline and after the training. Main outcomes Improvement in the score of a 30-item clinical balance test (CBT) developed at our institute (max. score = 90 points) and in the average error distance (in centimeters) in an orientation test (OT), a triangle completion task with walking and wheelchair conditions for 60°, 90°, and 120°. Results: Training group performed significantly better on the closed-eyes conditions of the CBT (1.6 points, 95% CI: 0.6 to 2.6 points vs. 0.1 points, 95% CI: -1 to 1.1 points; p = 0.011, [Formula: see text] = 0.128) and in the wheelchair (vestibular) condition of the OT (21 cm, 95% CI: 8-34 cm vs. 1 cm, 95% CI: -14-16 cm; p = 0.049, [Formula: see text] = 0.013). Conclusion: Our results indicate that one month of intensive slackline training is a novel approach for enhancing clinically relevant balancing abilities in conditions with closed eyes as well as for improving the vestibular-dependent spatial orientation capability; both of the benefits are likely caused by positive influence of slackline-training on the vestibular system function.
Dordevic, Milos; Hökelmann, Anita; Müller, Patrick; Rehfeld, Kathrin; Müller, Notger G.
2017-01-01
Background: Slackline-training has been shown to improve mainly task-specific balancing skills. Non-task specific effects were assessed for tandem stance and preferred one-leg stance on stable and perturbed force platforms with open eyes. It is unclear whether transfer effects exist for other balancing conditions and which component of the balancing ability is affected. Also, it is not known whether slackline-training can improve non-visual-dependent spatial orientation abilities, a function mainly supported by the hippocampus. Objective: To assess the effect of one-month of slackline-training on different components of balancing ability and its transfer effects on non-visual-dependent spatial orientation abilities. Materials and Methods: Fifty subjects aged 18–30 were randomly assigned to the training group (T) (n = 25, 23.2 ± 2.5 years; 12 females) and the control group (C) (n = 25, 24.4 ± 2.8 years; 11 females). Professional instructors taught the intervention group to slackline over four consecutive weeks with three 60-min-trainings in each week. Data acquisition was performed (within 2 days) by blinded investigators at the baseline and after the training. Main outcomes Improvement in the score of a 30-item clinical balance test (CBT) developed at our institute (max. score = 90 points) and in the average error distance (in centimeters) in an orientation test (OT), a triangle completion task with walking and wheelchair conditions for 60°, 90°, and 120°. Results: Training group performed significantly better on the closed-eyes conditions of the CBT (1.6 points, 95% CI: 0.6 to 2.6 points vs. 0.1 points, 95% CI: –1 to 1.1 points; p = 0.011, ηp2 = 0.128) and in the wheelchair (vestibular) condition of the OT (21 cm, 95% CI: 8–34 cm vs. 1 cm, 95% CI: –14–16 cm; p = 0.049, ηp2 = 0.013). Conclusion: Our results indicate that one month of intensive slackline training is a novel approach for enhancing clinically relevant balancing abilities in conditions with closed eyes as well as for improving the vestibular-dependent spatial orientation capability; both of the benefits are likely caused by positive influence of slackline-training on the vestibular system function. PMID:28239345
Hale, Sheri A.; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly
2014-01-01
Context: Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. Objective: To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Design: Cohort study. Setting: University clinical research laboratory. Patients or Other Participants: A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Intervention(s): Balance training twice weekly for 4 weeks. Main Outcome Measure(s): Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. Results: The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Conclusions: Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation. PMID:24568231
Coatings on reflective mask substrates
Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.
2002-01-01
A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.
Design, development and applications of novel techniques for studying surface mechanical properties
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langner, D.; Canada, T.; Ensslin, N.
1980-08-01
We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the /sup 235/U content of various solids while a uranium solution assay system (USAS) measures the /sup 235/U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described.
de Castro, Larissa A; Ribeiro, Laís Rg; Mesquita, Rafael; de Carvalho, Débora R; Felcar, Josiane M; Merli, Myriam F; Fernandes, Karen Bp; da Silva, Rubens A; Teixeira, Denilson C; Spruit, Martijn A; Pitta, Fabio; Probst, Vanessa S
2016-11-01
Studies have shown that individuals with COPD have impaired body balance, probably caused by the disease's multisystemic manifestations plus age-related decline in balance, potentially increasing the risk of falling and its consequences. However, little is known about the profile of individuals with COPD who present balance impairments, especially related to sex and disease severity stages. The aim of this work was to compare static and functional balance between subjects with COPD and healthy controls and to check possible differences according to sex and degrees of disease severity. Forty-seven subjects with COPD and 25 healthy controls were included in this study. Their static balance was assessed in one-legged stance using a force platform and functional balance with the Timed Up and Go test. Additionally, participants performed spirometry, the 6-min walk test and isometric quadriceps maximal voluntary contraction assessment. Disease severity was classified according to the Global Initiative for Obstructive Lung Disease stages and BODE (body mass index, air-flow obstruction, dyspnea, and exercise capacity) scores. In comparison with healthy controls, subjects with COPD had worse static (center of pressure displacement area: 9.3 ± 1.9 cm 2 vs 11.6 ± 4.0 cm 2 , respectively, P = .01) and functional balance (Timed Up and Go test: 8.5 ± 1.3 s vs 10.3 ± 1.8 s, respectively, P < .001). In the COPD group, men performed better in the Timed Up and Go test than women (9.8 ± 1.2 s vs 10.9 ± 2.2 s, respectively, P = .03), whereas women presented a better static balance in comparison with men for all parameters related to center of pressure (P < .005 for all). Disease severity did not affect any balance results. Individuals with COPD had worse static and functional balance in comparison with healthy controls. Sex can mediate these results, depending on the type of balance evaluation (force platform or functional test). Balance performance was similar among the groups classified according to disease severity. Copyright © 2016 by Daedalus Enterprises.
Roig-Casasús, Sergio; María Blasco, José; López-Bueno, Laura; Blasco-Igual, María Clara
2017-03-01
Sensorimotor training has proven to be an efficient approach for recovering balance control following total knee replacement (TKR). The purpose of this trial was to evaluate the influence of specific balance-targeted training using a dynamometric platform on the overall state of balance in older adults undergoing TKR. This was a randomized controlled clinical trial conducted at a university hospital rehabilitation unit. Patients meeting the inclusion criteria were randomly assigned to a control group or an experimental group. Both groups participated in the same 4-week postoperative rehabilitation training protocol. Participants in the experimental group performed additional balance training with a dynamometric platform consisting of tests related to stability challenges, weight-shifting, and moving to the limits of stability. The primary outcome measure was the overall state of balance rated according to the Berg Balance Scale. Secondary outcomes in terms of balance were the Timed Up and Go Test, Functional Reach Test, and Romberg open and closed-eyes tests. Data processing included between-group analysis of covariance, minimal detectable change assessment for the primary outcome measure, and effect size estimation. Confidence intervals (CIs) were set at 95%. Forty-three participants meeting the inclusion criteria and having signed the informed consent were randomly assigned to 2 groups. Thirty-seven completed the training (86.1%). Significant between-group differences in balance performance were found as measured with the Berg Balance Scale (P = .03) and Functional Reach Test (P = .04) with a CI = 95%. Significant differences were not recorded for the Timed Up and Go Test or Romberg open and closed-eyes tests (P > .05). Furthermore, Cohen's effect size resulted in a value of d = 0.97, suggesting a high practical significance of the trial. According to the Berg Balance Scale and Functional Reach Test, participants with TKR who have followed a 4-week training program using a dynamometric platform improved balance performance to a higher extent than a control group training without such a device. The inclusion of this instrument in the functional training protocol may be beneficial for recovering balance following TKR.
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
Application of digital control to a magnetic model suspension and balance model
NASA Technical Reports Server (NTRS)
Luh, P. B.; Covert, E. E.; Whitaker, H. P.; Haldeman, C. W.
1978-01-01
The feasibility of using a digital computer for performing the automatic control functions for a magnetic suspension and balance system (MSBS) for use with wind tunnel models was investigated. Modeling was done using both a prototype MSBS and a one dimensional magnetic balance. A microcomputer using the Intel 8080 microprocessor is described and results are given using this microprocessor to control the one dimensional balance. Hybrid simulations for one degree of freedom of the MSBS were also performed and are reported. It is concluded that use of a digital computer to control the MSBS is eminently feasible and should extend both the accuracy and utility of the system.
Active video gaming to improve balance in the elderly.
Lamoth, Claudine J C; Caljouw, Simone R; Postema, Klaas
2011-01-01
The combination of active video gaming and exercise (exergaming) is suggested to improve elderly people's balance, thereby decreasing fall risk. Exergaming has been shown to increase motivation during exercise therapy, due to the enjoyable and challenging nature, which could support long-term adherence for exercising balance. However, scarce evidence is available of the direct effects of exergaming on postural control. Therefore, the aim of the study was to assess the effect of a six-week videogame-based exercise program aimed at improving balance in elderly people. Task performance and postural control were examined using an interrupted time series design. Results of multilevel analyses showed that performance on the dot task improved within the first two weeks of training. Postural control improved during the intervention. After the intervention period task performance and balance were better than before the intervention. Results of this study show that healthy elderly can benefit from a videogame-based exercise program to improve balance and that all subjects were highly motivated to exercise balance because they found gaming challenging and enjoyable.
The effects of pilates on balance, mobility and strength in patients with multiple sclerosis.
Guclu-Gunduz, Arzu; Citaker, Seyit; Irkec, Ceyla; Nazliel, Bijen; Batur-Caglayan, Hale Zeynep
2014-01-01
Although there are evidences as to Pilates developing dynamic balance, muscle strength and flexibility in healthy people, evidences related to its effects on Multiple Sclerosis patients are insufficient. The aims of this study were to investigate the effects of Pilates on balance, mobility, and strength in ambulatory patients with Multiple Sclerosis. Twenty six patients were divided into two groups as experimental (n = 18) and control (n = 8) groups for an 8-week treatment program. The experimental group underwent Pilates and the control group did abdominal breathing and active extremity exercises at home. Balance and mobility were measured with Berg Balance Scale and Timed up and go test, upper and lower muscle strength with hand-held dynamometer. Confidence in balance skills while performing daily activities was evaluated with Activities Specific Balance Confidence Scale. Improvements were observed in balance, mobility, and upper and lower extremity muscle strength in the Pilates group (p < 0.05). No significant differences in any outcome measures were observed in the control group (p > 0.05). Due to its structure which is made up of balance and strengthening exercises, Pilates training may develop balance, mobility and muscle strength of MS patients. For this reason, we think that, Pilates exercises which are appropriate for the disability level of the patient may be suggested.
The impact of time of day on the gait and balance control of Alzheimer's patients.
Paillard, Thierry; Noé, Frederic; Bru, Noëlle; Couderc, Martine; Debove, Lola
2016-01-01
Alzheimer's patients suffer from circadian dysregulation. The aim of this study was to examine the evolution of balance control and gait at different times of the day (11:00, 14:00, 18:00) in order to identify whether Alzheimer's patients were more likely to fall at certain periods of the day. Spatio-temporal parameters of centre of foot pressure displacements were measured with a force platform and spatio-temporal parameters of walking were evaluated with a gait analysis device. The results highlighted that balance control was worse in the evening and the afternoon than in the morning. Furthermore, the walking speed was faster and support duration, swing duration and cycle duration were shorter in the evening than in the morning and afternoon. The combined analysis of balance control and gait parameters revealed that balance control and walking are concomitantly altered in the evening which increases the fall risk in the evening, in comparison with the morning, for Alzheimer's patients.
Bermejo, José Luis; García-Massó, Xavier; Paillard, Thierry; Noé, Frédéric
2018-02-01
This study investigated the effects of fatigue on balance control and cognitive performance in a standing shooting position. Nineteen soldiers were asked to stand while holding a rifle (single task - ST). They also had to perform this postural task while simultaneously completing a cognitive task (dual task - DT). Both the ST and DT were performed in pre- and post-fatigue conditions. In pre-fatigue, participants achieved better balance control in the DT than in the ST, thus suggesting that the increased cognitive activity associated with the DT improves balance control by shifting the attentional focus away from a highly automatised activity. In post-fatigue, balance control was degraded in both the ST and DT, while reaction time was enhanced in the first minutes following the fatiguing exercise without affecting the accuracy of response in the cognitive task, which highlights the relative independent effects of fatigue on balance control and cognitive performance.
Kaufman, K R; Levine, J A; Brey, R H; Iverson, B K; McCrady, S K; Padgett, D J; Joyner, M J
2007-10-01
Microprocessor-controlled knee joints appeared on the market a decade ago. These joints are more sophisticated and more expensive than mechanical ones. The literature is contradictory regarding changes in gait and balance when using these sophisticated devices. This study employed a crossover design to assess the comparative performance of a passive mechanical knee prosthesis compared to a microprocessor-controlled knee joint in 15 subjects with an above-knee amputation. Objective measurements of gait and balance were obtained. Subjects demonstrated significantly improved gait characteristics after receiving the microprocessor-controlled prosthetic knee joint (p<0.01). Improvements in gait were a transition from a hyperextended knee to a flexed knee during loading response which resulted in a change from an internal knee flexor moment to a knee extensor moment. The participants' balance also improved (p<0.01). All conditions of the Sensory Organization Test (SOT) demonstrated improvements in equilibrium score. The composite score also increased. Transfemoral amputees using a microprocessor-controlled knee have significant improvements in gait and balance.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.
Research on virtual network load balancing based on OpenFlow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.
Jirikowic, Tracy; Westcott McCoy, Sarah; Price, Robert; Ciol, Marcia A; Hsu, Lin-Ya; Kartin, Deborah
2016-01-01
To examine the effects of Sensorimotor Training to Affect Balance, Engagement, and Learning (STABEL), a virtual reality system to train sensory adaptation for balance control, for children with fetal alcohol spectrum disorders (FASDs). Twenty-three children with FASDs received STABEL training in a university laboratory, or home, or were controls. The Movement Assessment Battery for Children-2nd edition (MABC-2) and Pediatric Clinical Test of Sensory Interaction for Balance-2 (P-CTSIB-2) were analyzed by group (lab, home, and control), session (pre-STABEL, 1 week post-STABEL, and 1 month post-STABEL), and group-by-session interaction. Significant effects were group and session for MABC-2 Balance and interaction for MABC-2 Total Motor and P-CTSIB-2. Preliminary results support improved sensory adaptation, balance, and motor performance post-STABEL, which warrant further study with a larger, randomized sample.
Strzalkowski, Nicholas D J; Lowrey, Catherine R; Perry, Stephen D; Williams, David R; Wood, Scott J; Bent, Leah R
2015-04-10
The present study investigated the perception of low frequency (3 Hz) vibration on the foot sole and its relationship to standing balance following short duration space flight in nine astronauts. Both 3 Hz vibration perception threshold (VPT) and standing balance measures increased on landing day compared to pre-flight. Contrary to our hypothesis, a positive linear relationship between these measures was not observed; however astronauts with the most sensitive skin (lowest 3 Hz VPT) were found to have the largest sway on landing day. While the change in foot sole sensitivity does not appear to directly relate to standing balance control, an exploratory strategy may be employed by astronauts whose threshold to pressure information is lower. Understanding sensory adaptations and balance control has implications to improve balance control strategies following space flight and in sensory impaired populations on earth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mukherjee, B; Nivedita, M; Mukherjee, D
2014-05-01
Modelling system dynamics in a hyper-eutrophic lake is quite complex especially with a constant influx of detergents and sewage material which continually changes the state variables and interferes with the assessment of the chemical rhythm occurring in polluted conditions as compared to unpolluted systems. In this paper, a carbon and nutrient mass balance model for predicting system dynamics in a complex environment was studied. Studies were conducted at Ranchi lake to understand the altered environmental dynamics in hyper-eutrophic conditions, and its impact on the plankton community. The lake was monitored regularly for five years (2007 - 2011) and the data collected on the carbon flux, nitrates, phosphates and silicates was used to design a mass balance model for evaluating and predicting the system. The model was then used to correlate the chemical rhythm with that of the phytoplankton dynamics and diversity. Nitrates and phosphates were not limiting (mean nitrate and phosphate concentrations were 1.74 and 0.83 mgl⁻¹ respectively). Free carbon dioxide was found to control the system and, interacting with other parameters determined the diversity and dynamics of the plankton community. N/P ratio determined which group of phytoplankton dominated the community, above 5 it favoured the growth of chlorophyceae while below 5 cyanobacteria dominates. TOC/TIC ratio determined the abundance. The overall system was controlled by the availability of free carbon dioxide which served as a limiting factor.
Silk Self-Assembly Mechanisms and Control-From Thermodynamics to Kinetics
Lu, Qiang; Zhu, Hesun; Zhang, Cencen; Zhang, Feng; Zhang, Bing; Kaplan, David L.
2012-01-01
Silkworms and spiders generate fibres that exhibit high strength and extensibility. The underlying mechanisms involved in processing silk proteins into fiber form remain incompletely understood, resulting in the failure to fully recapitulate the remarkable properties of native fibers in vitro from regenerated silk solutions. In the present study, the extensibility and high strength of regenerated silks were achieved by mimicking the natural spinning process. Conformational transitions inside micelles, followed by aggregation of micelles and their stabilization as they relate to the metastable structure of silk are described. Subsequently, the mechanisms to control the formation of nanofibrous structures were elucidated. The results clarify that the self-assembly of silk in aqueous solution is a thermodynamically driven process where kinetics also play a key role. Four key factors, molecular mobility, charge, hydrophilic interactions and concentration underlie the process. Adjusting these factors can balance nanostructure and conformational composition, and be used to achieve silk-based materials with properties comparable to native fibers. These mechanisms suggest new directions to design silk-based multifunctional materials. PMID:22320432
Jiang, Hao; Ehlers, Martin; Hu, Xiao-Yu; Zellermann, Elio; Schmuck, Carsten
2018-05-22
Peptide amphiphiles capable of assembling into multidimensional nanostructures have attracted much attention over the past decade due to their potential applications in materials science. Herein, a novel diacetylene-derived peptide gemini amphiphile with a fluorenylmethyloxycarbonyl (Fmoc) group at the N-terminus is reported to hierarchically assemble into spherical micelles, one-dimensional nanorods, two-dimensional foamlike networks and lamellae. Solvent polarity shows a remarkable effect on the self-assembled structures by changing the balance of four weak noncovalent interactions (hydrogen-bonding, π-π stacking, hydrophobic interaction, and electrostatic repulsion). We also show the time-evolution not only from spherical micelles to helical nanofibers in aqueous solution, but also from branched wormlike micelles to foamlike networks in methanol solution. In this work, the presence of the Fmoc group plays a key role in the self-assembly process. This work provides an efficient strategy for precise morphological control, aiding the future development in materials science.
Investigation of phase-change coatings for variable thermal control of spacecraft
NASA Technical Reports Server (NTRS)
Kelliher, W. C.; Young, P. R.
1972-01-01
An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.
Parus, K; Lisiński, P; Huber, J
2015-11-01
Proprioception makes a critical contribution to body balance. The objective of this study was to evaluate static postural control after anterior cruciate ligament (ACL) reconstruction combined with medial meniscus (MM) suture, comparatively to healthy controls. Body balance is adversely affected 2 months after ACL reconstruction combined with MM suture. Fifteen patients (12 males and 3 females) aged 20 to 35 years (mean, 26.4 ± 6.0 years) who underwent ACL reconstruction with MM suture were compared to 20 healthy, physically active controls (16 females and 4 males) aged 19 to 23 years (mean, 21.1 ± 1.8 years), most of whom were physiotherapy students. Mean age was not significantly different between the patients and controls. A balance platform was used to estimate static postural control parameters. Each participant performed four tests, two in normal bipedal stance and two in tandem stance; in each stance, one test was done with the eyes open and the other with the eyes closed. We analysed global scores on a standardised 100-point scale and mean centre of pressure (COP) displacement velocity in the sagittal and frontal planes. Body balance was impaired 2 months after ACL reconstruction with MM suture. Thus, the patients had lower global scores and higher mean COP velocities in both the coronal and sagittal planes. Proprioception is impaired after ACL reconstruction with MM suture. Lack of visual control significantly decreases the ability to maintain balance. A balance platform is a useful diagnostic tool for patients with ACL reconstruction and MM suture. Level II. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Comprehensive, blinded assessment of balance in orthostatic tremor.
Bhatti, Danish; Thompson, Rebecca; Xia, Yiwen; Hellman, Amy; Schmaderer, Lorene; Suing, Katie; McKune, Jennifer; Penke, Cynthia; Iske, Regan; Roeder, Bobbi Jo; Siu, Ka-Chun; Bertoni, John M; Torres-Russotto, Diego
2018-02-01
Orthostatic Tremor (OT) is a movement disorder characterized by a sensation of unsteadiness and tremors in the 13-18 Hz range present upon standing. The pathophysiology of OT is not well understood but there is a relationship between the sensation of instability and leg tremors. Despite the sensation of unsteadiness, OT patients do not fall often and balance in OT has not been formally assessed. We present a prospective blinded study comparing balance assessment in patients with OT versus healthy controls. We prospectively enrolled 34 surface Electromyography (EMG)-confirmed primary OT subjects and 21 healthy controls. Participants underwent evaluations of balance by blinded physical therapists (PT) with standardized, validated, commonly used balance scales and tasks. OT subjects were mostly female (30/34, 88%) and controls were majority males (13/20, 65%). The average age of OT subjects was 68.5 years (range 54-87) and for controls was 69.4 (range 32-86). The average duration of OT symptoms was 18 years. OT subjects did significantly worse on all the balance scales and on most balance tasks including Berg Balance Scale, Functional Gait Assessment, Dynamic Gait Index, Unipedal Stance Test, Functional Reach Test and pull test. Gait speed and five times sit to stand were normal in OT. Common validated balance scales are significantly abnormal in primary OT. Despite the objective finding of impaired balance, OT patients do not commonly have falls. The reported sensation of unsteadiness in this patient population seems to be out of proportion to the number of actual falls. Further studies are needed to determine which components of commonly used balance scales are affected by a sensation of unsteadiness and fear of falling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Frost, Lydia R; Brown, Stephen H M
2016-02-01
Patients with chronic low back pain and associated radiculopathy present with neuromuscular symptoms both in their lower back and down their leg; however, investigations of muscle activation have so far been isolated to the lower back. During balance perturbations, it is necessary that lower limb muscles activate with proper timing and sequencing along with the lower back musculature to efficiently regain balance control. Patients with chronic low back pain and radiculopathy and matched controls completed a series of balance perturbations (rapid bilateral arm raise, unanticipated and anticipated sudden loading, and rapid rise to toe). Muscle activation timing and sequencing as well as kinetic response to the perturbations were analyzed. Patients had significantly delayed lower limb muscle activation in rapid arm raise trials as compared to controls. In sudden loading trials, muscle activation timing was not delayed in patients; however, some differences in posterior chain muscle activation sequencing were present. Patients demonstrated less anterior-posterior movement in unanticipated sudden loading trials, and greater medial-lateral movement in rise to toe trials. Patients with low back pain and radiculopathy demonstrated some significant differences from control participants in terms of muscle activation timing, sequencing, and overall balance control. The presence of differences between patients and controls, specifically in the lower limb, indicates that radiculopathy may play a role in altering balance control in these patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Safy, M; de Hair, M J H; Jacobs, J W G; Buttgereit, F; Kraan, M C; van Laar, J M
2017-01-01
Long-term treatment with glucocorticoids (GCs) plays an important role in the management of arthritis patients, although the efficacy/safety balance is unfavorable. Alternatives with less (severe) adverse effects but with good efficacy are needed. Selective GC receptor modulators (SGRMs) are designed to engage the GC receptor with dissociative characteristics: transactivation of genes, which is mainly responsible for unwanted effects, is less strong while trans-repression of genes, reducing inflammation, is maintained. It is expected that SGRMs thus have a better efficacy/safety balance than GCs. A systematic review providing an overview of the evidence in arthritis is lacking. To systematically review the current literature on efficacy and safety of oral SGRMs in comparison to GCs in arthritis. A search was performed in Medline, Embase and the Cochrane Library, from inception dates of databases until May 2017. Experimental studies involving animal arthritis models or human material of arthritis patients, as well as clinical studies in arthritis patients were included, provided they reported original data. All types of arthritis were included. Data was extracted on the SGRM studied and on the GC used as reference standard; the design or setting of the study was extracted as well as the efficacy and safety results. A total of 207 articles was retrieved of which 17 articles were eligible for our analysis. Two studies concerned randomized controlled trials (RCT), five studies were pre-clinical studies using human material, and 10 studies involved pre-clinical animal models (acute and/or chronic arthritis induced in mice or rats). PF-04171327, the only compound investigated in a clinical trial setting, had a better efficacy/safety balance compared to GCs: better clinical anti-inflammatory efficacy and similar safety. Studies assessing both efficacy and safety of SGRMs are scarce. There is limited evidence for dissociation of anti-inflammatory and metabolic effects of the SGRMs studied. Development of many SGRMs is haltered in a preclinical phase. One SGRM showed a better clinical efficacy/safety balance.
Step-to-Step Ankle Inversion/Eversion Torque Modulation Can Reduce Effort Associated with Balance.
Kim, Myunghee; Collins, Steven H
2017-01-01
Below-knee amputation is associated with higher energy expenditure during walking, partially due to difficulty maintaining balance. We previously found that once-per-step push-off work control can reduce balance-related effort, both in simulation and in experiments with human participants. Simulations also suggested that changing ankle inversion/eversion torque on each step, in response to changes in body state, could assist with balance. In this study, we investigated the effects of ankle inversion/eversion torque modulation on balance-related effort among amputees ( N = 5) using a multi-actuated ankle-foot prosthesis emulator. In stabilizing conditions, changes in ankle inversion/eversion torque were applied so as to counteract deviations in side-to-side center-of-mass acceleration at the moment of intact-limb toe off; higher acceleration toward the prosthetic limb resulted in a corrective ankle inversion torque during the ensuing stance phase. Destabilizing controllers had the opposite effect, and a zero gain controller made no changes to the nominal inversion/eversion torque. To separate the balance-related effects of step-to-step control from the potential effects of changes in average mechanics, average ankle inversion/eversion torque and prosthesis work were held constant across conditions. High-gain stabilizing control lowered metabolic cost by 13% compared to the zero gain controller ( p = 0.05). We then investigated individual responses to subject-specific stabilizing controllers following an enforced exploration period. Four of five participants experienced reduced metabolic rate compared to the zero gain controller (-15, -14, -11, -6, and +4%) an average reduction of 9% ( p = 0.05). Average prosthesis mechanics were unchanged across all conditions, suggesting that improvements in energy economy might have come from changes in step-to-step corrections related to balance. Step-to-step modulation of inversion/eversion torque could be used in new, active ankle-foot prostheses to reduce walking effort associated with maintaining balance.
Feasibility of Wii Fit training to improve clinical measures of balance in older adults
Bieryla, Kathleen A; Dold, Neil M
2013-01-01
Background and purpose Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo’s Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Methods Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo’s Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Results Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Conclusion Balance training with Nintendo’s Wii Fit may be a novel way for older adults to improve balance as measured by the BBS. PMID:23836967
Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing
2015-03-10
Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.
Fernandes, Corina Aparecida; Coelho, Daniel Boari; Martinelli, Alessandra Rezende; Teixeira, Luis Augusto
2018-02-01
Our aim in this investigation was to assess the relative importance of each cerebral hemisphere in quiet and perturbed balance, based on uni-hemispheric lesions by stroke. We tested the hypothesis of right cerebral hemisphere specialization for balance control. Groups of damage either to the right (RHD, n=9) or the left (LHD, n=7) cerebral hemisphere were compared across tasks requiring quiet balance or body balance recovery following a mechanical perturbation, comparing them to age-matched nondisabled individuals (controls, n=24). They were evaluated in conditions of full and occluded vision. In Experiment 1, the groups were compared in the task of quiet standing on (A) rigid and (B) malleable surfaces, having as outcome measures center of pressure (CoP) amplitude and velocity sway. In Experiment 2, we evaluated the recovery of body balance following a perturbation inducing forward body oscillation, having as outcome measures CoP displacement, peak hip and ankle rotations and muscular activation of both legs. Results from Experiment 1 showed higher values of CoP sway velocity for RHD in comparison to LHD and controls in the anteroposterior (rigid surface) and mediolateral (malleable surface) directions, while LHD had lower balance stability than the controls only in the mediolateral direction when supported on the rigid surface. In Experiment 2 results showed that RHD led to increased values in comparison to LHD and controls for anteroposterior CoP displacement and velocity, time to CoP direction reversion, hip rotation, and magnitude of muscular activation in the paretic leg, while LHD was found to differ in comparison to controls in magnitude of muscular activation of the paretic leg and amplitude of mediolateral sway only. These results suggest that damage to the right as compared to the left cerebral hemisphere by stroke leads to poorer postural responses both in quiet and perturbed balance. That effect was not altered by manipulation of sensory information. Our findings suggest that the right cerebral hemisphere plays a more prominent role in efferent processes responsible for balance control. Copyright © 2017 Elsevier B.V. All rights reserved.
Sadra, Saba; Fleischer, Adam; Klein, Erin; Grewal, Gurtej S; Knight, Jessica; Weil, Lowell Scott; Weil, Lowell; Najafi, Bijan
2013-01-01
Hallux valgus (HV) is associated with poorer performance during gait and balance tasks and is an independent risk factor for falls in older adults. We sought to assess whether corrective HV surgery improves gait and balance. Using a cross-sectional study design, gait and static balance data were obtained from 40 adults: 19 patients with HV only (preoperative group), 10 patients who recently underwent successful HV surgery (postoperative group), and 11 control participants. Assessments were made in the clinic using body-worn sensors. Patients in the preoperative group generally demonstrated poorer static balance control compared with the other two groups. Despite similar age and body mass index, postoperative patients exhibited 29% and 63% less center of mass sway than preoperative patients during double-and single-support balance assessments, respectively (analysis of variance P =.17 and P =.14, respectively [both eyes open condition]). Overall, gait performance was similar among the groups, except for speed during gait initiation, where lower speeds were encountered in the postoperative group compared with the preoperative group (Scheffe P = .049). This study provides supportive evidence regarding the benefits of corrective lower-extremity surgery on certain aspects of balance control. Patients seem to demonstrate early improvements in static balance after corrective HV surgery, whereas gait improvements may require a longer recovery time. Further research using a longitudinal study design and a larger sample size capable of assessing the long-term effects of HV surgical correction on balance and gait is probably warranted.
Gait and Balance in Essential Tremor: Variable Effects of Bilateral Thalamic Stimulation
Earhart, Gammon M.; Clark, B. Ruth; Tabbal, Samer D.; Perlmutter, Joel S.
2010-01-01
Essential tremor (ET) is a multi-faceted condition best known for postural and action tremor but also may include disordered gait and postural instability. Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of the thalamus provides substantial tremor reduction yet some patients with bilateral VIM DBS have gait and balance impairment. This study examines gait and balance performance in 13 participants with ET who have bilateral VIM DBS compared to a matched control group. Participants with ET were tested with their stimulators off (DBS OFF) and on (DBS ON). For both standard and tandem walking, participants with ET walked significantly more slowly than controls, with significantly lower cadence, spending a lower percentage of the gait cycle in single limb support and a higher percentage in double support compared to controls. Participants with ET also had significantly lower tandem and one leg stance times, Berg balance scores, balance confidence, and required significantly greater time to perform the Timed Up-and-Go relative to controls. There were no significant differences in any gait or balance measures in the DBS OFF versus DBS ON conditions, but the effects of DBS on gait and balance were highly variable among individuals. Future studies are needed to determine why some individuals experience gait and balance difficulties after bilateral thalamic DBS and others do not. A better understanding of the mechanisms underlying gait and balance impairments in those with bilateral DBS is critical in order to reduce falls and fractures in this group. PMID:19006189
Balanced mechanical resonator for powder handling device
NASA Technical Reports Server (NTRS)
Sarrazin, Philippe C. (Inventor); Brunner, Will M. (Inventor)
2012-01-01
A system incorporating a balanced mechanical resonator and a method for vibration of a sample composed of granular material to generate motion of a powder sample inside the sample holder for obtaining improved analysis statistics, without imparting vibration to the sample holder support.
Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard
2017-11-01
Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.
2013-01-01
Background Impaired balance and mobility are common among rehabilitation inpatients. Poor balance and mobility lead to an increased risk of falling. Specific balance exercise has been shown to improve balance and reduce falls within the community setting. However few studies have measured the effects of balance exercises on balance within the inpatient setting. The aim of this randomised controlled trial is to investigate whether the addition of circuit classes targeting balance to usual therapy lead to greater improvements in balance among rehabilitation inpatients than usual therapy alone. Methods/Design A single centre, randomised controlled trial with concealed allocation, assessor blinding and intention-to-treat analysis. One hundred and sixty two patients admitted to the general rehabilitation ward at Bankstown-Lidcombe Hospital will be recruited. Eligible participants will have no medical contraindications to exercise and will be able to: fully weight bear; stand unaided independently for at least 30 seconds; and participate in group therapy sessions with minimal supervision. Participants will be randomly allocated to an intervention group or usual-care control group. Both groups will receive standard rehabilitation intervention that includes physiotherapy mobility training and exercise for at least two hours on each week day. The intervention group will also receive six 1-hour circuit classes of supervised balance exercises designed to maximise the ability to make postural adjustments in standing, stepping and walking. The primary outcome is balance. Balance will be assessed by measuring the total time the participant can stand unsupported in five different positions; feet apart, feet together, semi-tandem, tandem and single-leg-stance. Secondary outcomes include mobility, self reported physical functioning, falls and hospital readmissions. Performance on the outcome measures will be assessed before randomisation and at two-weeks and three-months after randomisation by physiotherapists unaware of intervention group allocation. Discussion This study will determine the impact of additional balance circuit classes on balance among rehabilitation inpatients. The results will provide essential information to guide evidence-based physiotherapy at the study site as well as across other rehabilitation inpatient settings. Trial registration The protocol for this study is registered with the Australian New Zealand, Clinical Trials Registry: ACTRN=12611000412932 PMID:23870654
Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho
2012-09-01
Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.
The internal representation of head orientation differs for conscious perception and balance control
Dalton, Brian H.; Rasman, Brandon G.; Inglis, J. Timothy
2017-01-01
Key points We tested perceived head‐on‐feet orientation and the direction of vestibular‐evoked balance responses in passively and actively held head‐turned postures.The direction of vestibular‐evoked balance responses was not aligned with perceived head‐on‐feet orientation while maintaining prolonged passively held head‐turned postures. Furthermore, static visual cues of head‐on‐feet orientation did not update the estimate of head posture for the balance controller.A prolonged actively held head‐turned posture did not elicit a rotation in the direction of the vestibular‐evoked balance response despite a significant rotation in perceived angular head posture.It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Abstract Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head‐on‐feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head‐turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole‐body balance responses. Visual recalibration of head‐on‐feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular‐evoked balance response was not orthogonal to perceived head‐on‐feet orientation, regardless of the visual information provided. For prolonged head‐turned postures, balance responses consistent with actual head‐on‐feet posture occurred only during the active condition. Our results indicate that conscious perception of head‐on‐feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head‐on‐feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head‐on‐feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. PMID:28035656
Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan
The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less
Selection Metric for Photovoltaic Materials Screening Based on Detailed-Balance Analysis
Blank, Beatrix; Kirchartz, Thomas; Lany, Stephan; ...
2017-08-31
The success of recently discovered absorber materials for photovoltaic applications has been generating increasing interest in systematic materials screening over the last years. However, the key for a successful materials screening is a suitable selection metric that goes beyond the Shockley-Queisser theory that determines the thermodynamic efficiency limit of an absorber material solely by its band-gap energy. Here, we develop a selection metric to quantify the potential photovoltaic efficiency of a material. Our approach is compatible with detailed balance and applicable in computational and experimental materials screening. We use the complex refractive index to calculate radiative and nonradiative efficiency limitsmore » and the respective optimal thickness in the high mobility limit. We also compare our model to the widely applied selection metric by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] with respect to their dependence on thickness, internal luminescence quantum efficiency, and refractive index. Finally, the model is applied to complex refractive indices calculated via electronic structure theory.« less
Andysz, Aleksandra; Najder, Anna; Merecz-Kot, Dorota
2014-01-01
Appropriate distribution of time and energy between work and personal life poses a challenge to many working people. Unfortunately, many professionally active people experience work-family conflict. In order to minimize it, employees are offered various solutions aimed at reconciling professional and private spheres (work-life balance (WLB) initiatives). The authors attempt to answer what makes employees use WLB initiatives and what influences the decision to reject the available options. The review is based on the articles published after 2000, searched by Google Scholar and Web of Knowledge with use of the key words: work-life balance, work-family conflict, work-life balance initiatives, work-life balance initiatives use, use of WLB solutions. We focused on organizational and individual determinants of WLB initiatives use, such as organizational culture, stereotypes and values prevailing in the work environment that may result in stigmatization of workers - flexibility stigma. We discuss the reasons why supervisors and co-workers stigmatize their colleagues, and what are the consequences of experiencing such stigmatization. Among the individual determinants of WLB initiatives use, we have inter alia focused on the preference for integration vs. separation of the spheres of life. The presented material shows that social factors - cultural norms prevailing in a society, relationships in the workplace and individual factors, such as the level of self-control - are of equal importance for decisions of using WLB initiatives as their existence. Our conclusion is that little attention has been paid to the research on determinants of WLB initiatives use, especially to individual ones.
Tailoring Spin Textures in Complex Oxide Micromagnets
Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...
2016-09-12
Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less
URINE SOURCE SEPARATION AND TREATMENT: NUTRIENT RECOVERY USING LOW-COST MATERIALS
Successful completion of this P3 Project will achieve the following expected outputs: identification of low-cost materials that can effectively recover ammonium, phosphate, and potassium from urine; material balance calculations for different urine separation and treatment scheme...
Gait Balance Disorder by Thalamic Infarction with the Disorder of Interstitial Nucleus of Cajal
Kurosu, A.; Hayashi, Y.; Wada, K.; Nagaoka, M.
2011-01-01
The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients. PMID:21769260
Pasma, Jantsje H.; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C.
2018-01-01
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control. PMID:29615886
Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C
2018-01-01
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.
Development of closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.
1982-01-01
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.
Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.
Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P
2018-04-04
Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
Optimal case-control matching in practice.
Cologne, J B; Shibata, Y
1995-05-01
We illustrate modern matching techniques and discuss practical issues in defining the closeness of matching for retrospective case-control designs (in which the pool of subjects already exists when the study commences). We empirically compare matching on a balancing score, analogous to the propensity score for treated/control matching, with matching on a weighted distance measure. Although both methods in principle produce balance between cases and controls in the marginal distributions of the matching covariates, the weighted distance measure provides better balance in practice because the balancing score can be poorly estimated. We emphasize the use of optimal matching based on efficient network algorithms. An illustration is based on the design of a case-control study of hepatitis B virus infection as a possible confounder and/or effect modifier of radiation-related primary liver cancer in atomic bomb survivors.
Ten years of preanalytical monitoring and control: Synthetic Balanced Score Card Indicator
López-Garrigós, Maite; Flores, Emilio; Santo-Quiles, Ana; Gutierrez, Mercedes; Lugo, Javier; Lillo, Rosa; Leiva-Salinas, Carlos
2015-01-01
Introduction Preanalytical control and monitoring continue to be an important issue for clinical laboratory professionals. The aim of the study was to evaluate a monitoring system of preanalytical errors regarding not suitable samples for analysis, based on different indicators; to compare such indicators in different phlebotomy centres; and finally to evaluate a single synthetic preanalytical indicator that may be included in the balanced scorecard management system (BSC). Materials and methods We collected individual and global preanalytical errors in haematology, coagulation, chemistry, and urine samples analysis. We also analyzed a synthetic indicator that represents the sum of all types of preanalytical errors, expressed in a sigma level. We studied the evolution of those indicators over time and compared indicator results by way of the comparison of proportions and Chi-square. Results There was a decrease in the number of errors along the years (P < 0.001). This pattern was confirmed in primary care patients, inpatients and outpatients. In blood samples, fewer errors occurred in outpatients, followed by inpatients. Conclusion We present a practical and effective methodology to monitor unsuitable sample preanalytical errors. The synthetic indicator results summarize overall preanalytical sample errors, and can be used as part of BSC management system. PMID:25672466
NASA Astrophysics Data System (ADS)
Mulla, Yuval; Aufderhorst-Roberts, Anders; Koenderink, Gijsje H.
2018-07-01
How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.
Standridge, J. S.; Bhattacharya, Amit; Succop, Paul; Cox, Cyndy; Haynes, Erin
2009-01-01
OBJECTIVE The objective of this study was to determine the effect of non-occupational exposure to manganese on postural balance. METHODS Residents living near a ferromanganese refinery provided hair and blood samples after postural balance testing. The relationship between hair manganese and postural balance was analyzed with logistic regression. Following covariate adjustment, postural balance was compared with control data by analysis of covariance. RESULTS Mean hair manganese was 4.4 µg/g. A significantly positive association was found between hair manganese and sway area (EO, p=0.05; EC, p=0.04) and sway length (EO, p=0.05; EC, p=0.04). Postural balance of residents was significantly larger than controls in 5 out of 8 postural balance outcomes. CONCLUSION Preliminary findings suggest subclinical impairment in postural balance among residents chronically exposed to ambient Mn. A prospective study with a larger sample size is warranted. PMID:19092498
Ramari, Cintia; Moraes, Andréa G; Tauil, Carlos B; von Glehn, Felipe; Motl, Robert; de David, Ana C
2018-02-01
Physiological factors such as muscle weakness and balance could explain declines in walking distance by multiple sclerosis (MS) patients. The purpose of this study was to characterize levels and examine associations among decline in walking distance, balance and muscular strength in women with mild MS. Participants included 28 women with mild relapsing-remitting MS and 21 women without MS. We executed the 6-min walk test (6MWT) to verify declines in walking distance. Isokinetic knee flexion (KF) and extension (KE) muscle strength was measured using a dynamometer. Balance was quantified using a force platform, with eyes open and closed, on a rigid and foam surface. The MS patients presented declines in walking, lower KF muscle strength, and worse balance than controls. KF strength and balance correlated with walking in the MS group. The KF strength explained differences between groups in walking. The KF strength and balance presented as predictors of walking slowing down in the 6MWT, in mild MS. Women with mild MS have strength impairment of knee flexor muscles and balance control impairment that may explain walking related motor fatigability during prolonged walking. Copyright © 2018 Elsevier B.V. All rights reserved.
Madureira, M. M.; Takayama, L.; Gallinaro, A. L.; Caparbo, V. F.; Costa, R. A.
2006-01-01
Introduction The purpose of this study was to investigate the effect of a 12-month Balance Training Program on balance, mobility and falling frequency in women with osteoporosis. Methods Sixty-six consecutive elderly women were selected from the Osteometabolic Disease Outpatient Clinic and randomized into 2 groups: the ‘Intervention’, submitted for balance training; and the ‘Control’, without intervention. Balance, mobility and falling frequency were evaluated before and at the end of the trial, using the Berg Balance Scale (BBS), the Clinical Test Sensory Interaction Balance (CTSIB) and the Timed “Up & Go” Test (TUGT). Intervention used techniques to improve balance consisting of a 1-hour session each week and a home-based exercise program. Results Sixty women completed the study and were analyzed. The BBS difference was significant higher in the Intervention group compared to Control (5.5 ± 5.67 vs −0.5 ± 4.88 score, p < 0.001). Similarly, the number of patients in the Intervention group presented improvement in two conditions of CTSIB compared to Control (eyes closed and unstable surface condition: 13 vs one patient, p < 0.001 and eyes open, visual conflict and unstable surface condition: 12 vs one patient, p < 0.001). Additionally, the differences between the TUGT were reduced in the Intervention group compared to Control (−3.65 ± 3.61 vs 2.27 ± 7.18 seconds, p< 0.001). Notably, this improvement was paralleled by a reduction in the number of falls/patient in the Intervention group compared to Control (−0.77 ± 1.76 vs 0.33 ± 0.96, p = 0.018). Conclusion This longitudinal prospective study demonstrated that an intervention using balance training is effective in improving functional and static balance, mobility and falling frequency in elderly women with osteoporosis. PMID:17089080
Control of movement initiation underlies the development of balance
Ehrlich, David E.; Schoppik, David
2017-01-01
Summary Balance arises from the interplay of external forces acting on the body and internally generated movements. Many animal bodies are inherently unstable, necessitating corrective locomotion to maintain stability. Understanding how developing animals come to balance remains a challenge. Here we study the interplay between environment, sensation, and action as balance develops in larval zebrafish. We first model the physical forces that challenge underwater balance and experimentally confirm that larvae are subject to constant destabilization. Larvae propel in swim bouts that, we find, tend to stabilize the body. We confirm the relationship between locomotion and balance by changing larval body composition, exacerbating instability and eliciting more frequent swimming. Intriguingly, developing zebrafish come to control the initiation of locomotion, swimming preferentially when unstable, thus restoring preferred postures. To test the sufficiency of locomotor-driven stabilization and the developing control of movement timing, we incorporate both into a generative model of swimming. Simulated larvae recapitulate observed postures and movement timing across early development, but only when locomotor-driven stabilization and control of movement initiation are both utilized. We conclude the ability to move when unstable is the key developmental improvement to balance in larval zebrafish. Our work informs how emerging sensorimotor ability comes to impact how and why animals move when they do. PMID:28111151
The effect of modified trampoline training on balance, gait, and falls efficacy of stroke patients
Hahn, Joohee; Shin, Seonhae; Lee, Wanhee
2015-01-01
[Purpose] This research was conducted to investigate the effects of modified trampoline training on the balance, gait, and falls efficacy of stroke patients. [Subjects] Twenty-four stroke patients participated in this study. The subjects were randomly allocated to one of two groups: the trampoline group (n=12) or the control group (n=12). [Methods] Both groups participated in conventional physical therapy for thirty minutes per day, three times a week for six weeks. The trampoline group also took part in trampoline training for thirty minutes per day, three times a week for six weeks. We evaluated balance (Berg balance scale, timed up and go test), gait (dynamic gait index), and falls efficacy (falls efficacy scale-K) to confirm the effects of the intervention. [Results] Both the trampoline and the control group showed significant improvements in balance, gait, and falls efficacy compared to before the intervention, and the improvements were significantly greater in the trampoline group than in the control group. [Conclusion] Modified trampoline training resulted in significantly improved balance, dynamic gait, and falls efficacy of stroke patients compared to the control group. These results suggest that modified trampoline training is feasible and effective at improving balance, dynamic gait, and falls efficacy after stroke. PMID:26696696
The effect of modified trampoline training on balance, gait, and falls efficacy of stroke patients.
Hahn, Joohee; Shin, Seonhae; Lee, Wanhee
2015-11-01
[Purpose] This research was conducted to investigate the effects of modified trampoline training on the balance, gait, and falls efficacy of stroke patients. [Subjects] Twenty-four stroke patients participated in this study. The subjects were randomly allocated to one of two groups: the trampoline group (n=12) or the control group (n=12). [Methods] Both groups participated in conventional physical therapy for thirty minutes per day, three times a week for six weeks. The trampoline group also took part in trampoline training for thirty minutes per day, three times a week for six weeks. We evaluated balance (Berg balance scale, timed up and go test), gait (dynamic gait index), and falls efficacy (falls efficacy scale-K) to confirm the effects of the intervention. [Results] Both the trampoline and the control group showed significant improvements in balance, gait, and falls efficacy compared to before the intervention, and the improvements were significantly greater in the trampoline group than in the control group. [Conclusion] Modified trampoline training resulted in significantly improved balance, dynamic gait, and falls efficacy of stroke patients compared to the control group. These results suggest that modified trampoline training is feasible and effective at improving balance, dynamic gait, and falls efficacy after stroke.
Acute Effects of Capsaicin on Energy Expenditure and Fat Oxidation in Negative Energy Balance
Janssens, Pilou L. H. R.; Hursel, Rick; Martens, Eveline A. P.; Westerterp-Plantenga, Margriet S.
2013-01-01
Background Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. Aim We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Methods Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions ‘100%CAPS’, ‘100%Control’, ‘75%CAPS’ and ‘75%Control’. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. Results An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. Conclusion In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Trial Registration Nederlands Trial Register; registration number NTR2944 PMID:23844093
Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon
2014-02-01
Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p < 0.05) in both groups. Significant group by time interactions were found for the BESS score (p < 0.001). The intervention group showed greater improvements (69.3 ± 10.3%) after 10 weeks in comparison to controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.
Locomotor skills and balance strategies in adolescents idiopathic scoliosis.
Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine
2007-01-01
Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees < Cobb angle > 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.
Balance control during gait initiation: State-of-the-art and research perspectives.
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-11-18
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
Balance control during gait initiation: State-of-the-art and research perspectives
Yiou, Eric; Caderby, Teddy; Delafontaine, Arnaud; Fourcade, Paul; Honeine, Jean-Louis
2017-01-01
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices. PMID:29184756
Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa
2016-09-01
Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.
Longitudinal Study Evaluating Postural Balance of Young Athletes.
Steinberg, Nili; Nemet, Dan; Pantanowitz, Michal; Zeev, Aviva; Hallumi, Monder; Sindiani, Mahmood; Meckel, Yoav; Eliakim, Alon
2016-02-01
Repeated anaerobic conditions during athletic performance may cause general and local fatigue that result in postural balance deficit. Evidence suggests that improved postural balance during athletic training may decrease the risk for fallings and traumatic injuries among athletes. Twenty athletes (12 girls, 8 boys) and 20 controls (12 girls, 8 boys) ages 10-15 years participated in the current study. All athletes were active in an 8-month physical activity program, 3 times per week for 90 min., specific to basketball, soccer, or athletic training. The control children participated in physical education at school only, with no involvement in organized extracurricular sports. All participants were evaluated for postural balance in three assessments over one year (at 4-mo intervals); the Interactive Balance System machine (Tetrax device) was used to assess balance at three test times (pre-, post-, and 10 min) after a session of a repeated sprint anaerobic test, consisting of 12 × 20 m run starting every 20 sec. The athletes had better postural balance than controls. There were different group patterns of change over the sessions; a significant interaction of session and group indicated that postural balance of the groups differed. The contribution of low sway frequencies (F1) and high sway frequencies (F6) differed between the controls and the athletes group. Results suggested that although athletes had better postural balance, improvement should be encouraged during training over the sessions and seasons, with special awareness of the balance deficit that occurs immediately after anaerobic stress and at the end of the season, to decrease the risk of injuries. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz
An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle ofmore » individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.« less
Bao, Tian; Carender, Wendy J; Kinnaird, Catherine; Barone, Vincent J; Peethambaran, Geeta; Whitney, Susan L; Kabeto, Mohammed; Seidler, Rachael D; Sienko, Kathleen H
2018-01-18
Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory Organization Test and Mini Balance Evaluation Systems Test scores than the control group. Significant improvement was also observed for Five Times Sit to Stand Test duration within the experimental group, but not in the control group. No significant improvements between the two groups were observed in the remaining clinical outcome measures. The findings of this study support the use of sensory augmentation devices by community-dwelling healthy older adults as balance rehabilitation tools, and indicate feasibility of telerehabilitation therapy with reduced input from clinicians.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
Audio-video decision support for patients: the documentary genré as a basis for decision aids.
Volandes, Angelo E; Barry, Michael J; Wood, Fiona; Elwyn, Glyn
2013-09-01
Decision support tools are increasingly using audio-visual materials. However, disagreement exists about the use of audio-visual materials as they may be subjective and biased. This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio-visual materials. Three concerns arising from documentary film studies as they apply to the use of audio-visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio-visual materials (selection bias) and how to ensure objectivity (editorial bias). Decision science needs to start a debate about how audio-visual materials are to be used in decision support tools. Simply because audio-visual materials may be subjective and open to bias does not mean that we should not use them. Methods need to be found to ensure consensus around balance and editorial control, such that audio-visual materials can be used. © 2011 John Wiley & Sons Ltd.
Audio‐video decision support for patients: the documentary genré as a basis for decision aids
Volandes, Angelo E.; Barry, Michael J.; Wood, Fiona; Elwyn, Glyn
2011-01-01
Abstract Objective Decision support tools are increasingly using audio‐visual materials. However, disagreement exists about the use of audio‐visual materials as they may be subjective and biased. Methods This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. Results The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio‐visual materials. Three concerns arising from documentary film studies as they apply to the use of audio‐visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio‐visual materials (selection bias) and how to ensure objectivity (editorial bias). Discussion Decision science needs to start a debate about how audio‐visual materials are to be used in decision support tools. Simply because audio‐visual materials may be subjective and open to bias does not mean that we should not use them. Conclusion Methods need to be found to ensure consensus around balance and editorial control, such that audio‐visual materials can be used. PMID:22032516
Lee, Kyoungjin; Lee, Seungwon; Song, Changho
2013-12-01
Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy. Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 × 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training. The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed the postural sway and one leg stance (OLS) for static balance; Berg balance scale (BBS), timed up-and-go (TUG) test, and functional reach test (FRT) for dynamic balance; five-times-sit-to-stand (FTSTS) test for muscle strength; and HbA1c for predicting the progression of diabetes. Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05). Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.
Brichetto, Giampaolo; Spallarossa, Patricio; de Carvalho, Maria L Lopes; Battaglia, Mario A
2013-08-01
Improvement of sensory strategies is a relevant part of balance rehabilitation in multiple sclerosis (MS). This study aimed to Assess the effectiveness of visual-feedback exercises in improving balance in MS. We divided 36 patients into Wii and control-treated groups that underwent balance rehabilitation. Outcomes were obtained for Berg Balance Scale (BBS), Modified Fatigue Impact Scale, and sway area under conditions of opened and closed eyes. BBS showed a statistically significant improvement (from 49.6 to 54.6 points, p < 0.05) in the Wii group. Interactive visual-feedback exercises such as Wii could be more effective than the current standard protocol in improving balance disorders in MS.
The Effects of Slackline Balance Training on Postural Control in Older Adults.
Thomas, Monika; Kalicinski, Michael
2016-07-01
The present study investigated whether slackline training enhances postural control in older adults. Twenty-four participants were randomized into an intervention and a control group. The intervention group received 6 weeks of slackline training, two times per week. Pre-post measurement included the time of different standing positions on a balance platform with and without an external disturbance and the acceleration of the balance platform. Results showed significantly improved standing times during one-leg stance without external disturbance and a significantly reduced acceleration of the balance platform for the intervention group after the training period during tandem stance with and without an external disturbance. We conclude that slackline training in older adults has a positive impact on postural control and thus on the reduction of fall risk.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Patek, Stephen D.
1988-01-01
Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.
Gouveia, Bruna Raquel; Gonçalves Jardim, Helena; Martins, Maria Manuela; Gouveia, Élvio Rúbio; de Freitas, Duarte Luís; Maia, José António; Rose, Debra J
2016-04-01
This study aims to assess the effect of a nurse-led rehabilitation programme (the ProBalance Programme) on balance and fall risk of community-dwelling older people from Madeira Island, Portugal. Single-blind, randomised controlled trial. University laboratory. Community-dwelling older people, aged 65-85, with balance impairments. Participants were randomly allocated to an intervention group (IG; n=27) or a wait-list control group (CG; n=25). A rehabilitation nursing programme included gait, balance, functional training, strengthening, flexibility, and 3D training. One trained rehabilitation nurse administered the group-based intervention over a period of 12 weeks (90min sessions, 2 days per week). A wait-list control group was instructed to maintain their usual activities during the same time period. Balance was assessed using the Fullerton Advanced Balance (FAB) scale. The time points for assessment were at zero (pre-test), 12 (post-test), and 24 weeks (follow up). Changes in the mean (SD) FAB scale scores immediately following the 12-week intervention were 5.15 (2.81) for the IG and -1.45 (2.80) for the CG. At follow-up, the mean (SD) change scores were -1.88 (1.84) and 0.75 (2.99) for the IG and CG, respectively. The results of a mixed between-within subjects analysis of variance, controlling for physical activity levels at baseline, revealed a significant interaction between group and time (F (2, 42)=27.89, p<0.001, Partial Eta Squared=0.57) and a main effect for time (F (2, 43)=3.76, p=0.03, Partial Eta Squared=0.15), with both groups showing changes in the mean FAB scale scores across the three time periods. A significant main effect comparing the two groups (F (1, 43)=21.90, p<0.001, Partial Eta Squared=0.34) confirmed a clear positive effect of the intervention when compared to the control. This study demonstrated that the rehabilitation nursing programme was effective in improving balance and reducing fall risk in a group of older people with balance impairment, immediately after the intervention. A decline in balance was observed for the IG after a period of no intervention. ACTRN12612000301864. Copyright © 2015 Elsevier Ltd. All rights reserved.
Daily Bicycling in Older Adults May Be Effective to Reduce Fall Risks - A Case Control Study.
Batcir, Shani; Melzer, Itshak
2018-01-18
Older adults gain many health benefits from riding bicycles regularly. We aimed to explore whether older persons who ride bicycles regularly have better balance than controls. Balance control and voluntary stepping were assessed in 20 older adults aged 65 to 85 who live in an agricultural community village who regularly ride bicycles (BR), and 30 age- and gender-matched non-bicycle riders (NBR). Self-reported function and fear of fall were also assessed. Bicycle riders showed significantly better balance, faster voluntary stepping, and better self-reported advanced lower extremity function compared with NBR. The results might suggest that bicycling regularly preserves balance control and speed of voluntary stepping in older adults because bicycling might maintain specific balance coordination patterns. The results should be treated with caution since BR were older adults who selected an active life style (i.e., bicycling as well as living in an agricultural village) that may bias the results.
Control at stability's edge minimizes energetic costs: expert stick balancing
Meyer, Ryan; Zhvanetsky, Max; Ridge, Sarah; Insperger, Tamás
2016-01-01
Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a ° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum–cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures. PMID:27278361
Evaluation of residual oil saturation after waterflood in a carbonate reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, M.K.; Boucherit, M.; Bouvier, L.
Four different approaches, including special core analysis (SCAL), log-inject-log, thermal-decay-time (TDT) logs, and material balance, were used to narrow the range of residual oil saturation (ROS) after waterflood, S[sub orw], in a carbonate reservoir in Qatar to between 23% and 27%. An equation was developed that relates S[sub orw] with connate-water saturation, S[sub wi], and porosity. This paper presents the results of S[sub orw] determinations with four different techniques: core waterflood followed by centrifuging, log-inject-log, TDT logging, and material balance.
2014-01-01
Background Ankle sprains continue to pose a significant burden to the individual athlete, as well as to society as a whole. However, despite ankle sprains being the single most common sports injury and despite an active approach by various Dutch organisations in implementing preventive measures, large-scale community uptake of these preventive measures, and thus actual prevention of ankle sprains, is lagging well behind. In an attempt to bridge this implementation gap, the Dutch Consumer Safety Institute VeiligheidNL developed a freely available interactive App (‘Strenghten your ankle’ translated in Dutch as: ‘Versterk je enkel; available for iOS and Android) that contains - next to general advice on bracing and taping - a proven cost-effective neuromuscular program. The ‘Strengthen your ankle’ App has not been evaluated against the ‘regular’ prevention approach in which the neuromuscular program is advocated through written material. The aim of the current project is to evaluate the implementation value of the ‘Strengthen your ankle’ App as compared to the usual practice of providing injured athletes with written materials. In addition, as a secondary outcome measure, the cost-effectiveness will be assessed against usual practice. Methods/Design The proposed study will be a randomised controlled trial. After stratification for medical caregiver, athletes will be randomised to two study groups. One group will receive a standardized eight-week proprioceptive training program that has proven to be cost-effective to prevent recurrent ankle injuries, consisting of a balance board (machU/ MSG Europe BVBA), and a traditional instructional booklet. The other group will receive the same exercise program and balance board. However, for this group the instructional booklet is exchanged by the interactive ‘Strengthen your ankle’ App. Discussion This trial is the first randomized controlled trial to study the implementation effectiveness of an App for proprioceptive balance board training program in comparison to a traditional printed instruction booklet, with the recurrence of ankle sprains among athletes as study outcome. Results of this study could possibly lead to changes in practical guidelines on the treatment of ankle sprains and in the use of mobile applications for injury prevention. Results will become available in 2014. Trial registration The Netherlands National Trial Register NTR4027. The NTR is part of the WHO Primary Registries. PMID:24393146
Van Reijen, Miriam; Vriend, Ingrid I; Zuidema, Victor; van Mechelen, Willem; Verhagen, Evert A
2014-01-07
Ankle sprains continue to pose a significant burden to the individual athlete, as well as to society as a whole. However, despite ankle sprains being the single most common sports injury and despite an active approach by various Dutch organisations in implementing preventive measures, large-scale community uptake of these preventive measures, and thus actual prevention of ankle sprains, is lagging well behind. In an attempt to bridge this implementation gap, the Dutch Consumer Safety Institute VeiligheidNL developed a freely available interactive App ('Strenghten your ankle' translated in Dutch as: 'Versterk je enkel; available for iOS and Android) that contains - next to general advice on bracing and taping - a proven cost-effective neuromuscular program. The 'Strengthen your ankle' App has not been evaluated against the 'regular' prevention approach in which the neuromuscular program is advocated through written material. The aim of the current project is to evaluate the implementation value of the 'Strengthen your ankle' App as compared to the usual practice of providing injured athletes with written materials. In addition, as a secondary outcome measure, the cost-effectiveness will be assessed against usual practice. The proposed study will be a randomised controlled trial. After stratification for medical caregiver, athletes will be randomised to two study groups. One group will receive a standardized eight-week proprioceptive training program that has proven to be cost-effective to prevent recurrent ankle injuries, consisting of a balance board (machU/ MSG Europe BVBA), and a traditional instructional booklet. The other group will receive the same exercise program and balance board. However, for this group the instructional booklet is exchanged by the interactive 'Strengthen your ankle' App. This trial is the first randomized controlled trial to study the implementation effectiveness of an App for proprioceptive balance board training program in comparison to a traditional printed instruction booklet, with the recurrence of ankle sprains among athletes as study outcome. Results of this study could possibly lead to changes in practical guidelines on the treatment of ankle sprains and in the use of mobile applications for injury prevention. Results will become available in 2014. The Netherlands National Trial Register NTR4027. The NTR is part of the WHO Primary Registries.
Regularity in an environment produces an internal torque pattern for biped balance control.
Ito, Satoshi; Kawasaki, Haruhisa
2005-04-01
In this paper, we present a control method for achieving biped static balance under unknown periodic external forces whose periods are only known. In order to maintain static balance adaptively in an uncertain environment, it is essential to have information on the ground reaction forces. However, when the biped is exposed to a steady environment that provides an external force periodically, uncertain factors on the regularity with respect to a steady environment are gradually clarified using learning process, and finally a torque pattern for balancing motion is acquired. Consequently, static balance is maintained without feedback from ground reaction forces and achieved in a feedforward manner.
Experiments in balance with a 2D one-legged hopping machine
NASA Astrophysics Data System (ADS)
Raibert, M. H.; Brown, H. B., Jr.
1984-03-01
The ability to balance is important to the mobility obtained by legged creatures found in nature, and may someday lead to versatile legged vehicles. In order to study the role of balance in legged locomotion and to develop appropriate control strategies, a 2D hopping machine was constructed for experimentation. The machine has one leg on which it hops and runs, making balance a prime consideration. Control of the machine's locomotion was decomposed into three separate parts: a vertical height control part, a horizontal velocity part, and an angular attitude control part. Experiments showed that the three part control scheme, while very simple to implement, was powerful enough to permit the machine to hop in place, to run at a desired rate, to translate from place to place, and to leap over obstacles. Results from modeling and computer simulation of a similar one-legged device are described by Raibert (1983).
NASA LaRC Strain Gage Balance Design Concepts
NASA Technical Reports Server (NTRS)
Rhew, Ray D.
1999-01-01
The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.
An applicational process for dynamic balancing of turbomachinery shafting
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1990-01-01
The NASA Lewis Research Center has developed and implemented a time-efficient methodology for dynamically balancing turbomachinery shafting. This methodology minimizes costly facility downtime by using a balancing arbor (mandrel) that simulates the turbomachinery (rig) shafting. The need for precision dynamic balancing of turbomachinery shafting and for a dynamic balancing methodology is discussed in detail. Additionally, the inherent problems (and their causes and effects) associated with unbalanced turbomachinery shafting as a function of increasing shaft rotational speeds are discussed. Included are the design criteria concerning rotor weight differentials for rotors made of different materials that have similar parameters and shafting. The balancing methodology for applications where rotor replaceability is a requirement is also covered. This report is intended for use as a reference when designing, fabricating, and troubleshooting turbomachinery shafting.
Dalton, Brian H; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien
2017-04-15
We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M
2016-03-01
Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling
2010-01-01
The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board…
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Domeika, Aurelijus; Aleknaite-Dambrauskiene, Ieva; Poskaitis, Vytautas; Zaveckas, Vidmantas; Grigas, Vytautas; Zvironiene, Ausra
2018-05-16
The main position of the working population is becoming sitting. Immobile prolonged sedentary time may cause negative effects including reduced intervertebral discs nutrition. Main ways of mitigating them are regular position changes and exercising. To evaluate influence of the short term training on unstable training machine on balance control and trunk muscles activity in patients with lower back pain. Participants (n=16) experiencing lower back pain were trained on an unstable sculling machine "Rehabili". Their balance tested by (Biodex Balance System) and rectus abdominis, externus oblique, transverse abdominis, multifidus and erector spine muscles activity (measured by surface electromyography) while sitting and standing with usual and aligned body postures both before and after six weeks of training (three 15 minutes sessions per week) were compared in between. Balance control improved after the training program. Besides, more symmetrical activation of both sides rectus and transversus abdominis muscles, as well as increased transversus abdominis muscle activation of 19% (p< 0.05), were observed. Six weeks short sessions training on unstable training machine improved balance control and increased trunk muscles activity especially in aligned body posture when standing or sitting on unstable surface.
An ecologically-controlled exoskeleton can improve balance recovery after slippage
NASA Astrophysics Data System (ADS)
Monaco, V.; Tropea, P.; Aprigliano, F.; Martelli, D.; Parri, A.; Cortese, M.; Molino-Lova, R.; Vitiello, N.; Micera, S.
2017-05-01
The evolution to bipedalism forced humans to develop suitable strategies for dynamically controlling their balance, ensuring stability, and preventing falling. The natural aging process and traumatic events such as lower-limb loss can alter the human ability to control stability significantly increasing the risk of fall and reducing the overall autonomy. Accordingly, there is an urgent need, from both end-users and society, for novel solutions that can counteract the lack of balance, thus preventing falls among older and fragile citizens. In this study, we show a novel ecological approach relying on a wearable robotic device (the Active Pelvis Orthosis, APO) aimed at facilitating balance recovery after unexpected slippages. Specifically, if the APO detects signs of balance loss, then it supplies counteracting torques at the hips to assist balance recovery. Experimental tests conducted on eight elderly persons and two transfemoral amputees revealed that stability against falls improved due to the “assisting when needed” behavior of the APO. Interestingly, our approach required a very limited personalization for each subject, and this makes it promising for real-life applications. Our findings demonstrate the potential of closed-loop controlled wearable robots to assist elderly and disabled subjects and to improve their quality of life.
Lee, So Hyun; Byun, Seung Deuk; Kim, Chul Hyun; Go, Jin Young; Nam, Hyeon Uk; Huh, Jin Seok; Jung, Tae Du
2012-08-01
To investigate the feasibility and effects of balance training with a newly developed Balance Control Trainer (BCT) that applied the concept of vertical movement for the improvements of mobility and balance in chronic stroke patients. Forty chronic stroke patients were randomly assigned to an experimental or a control group. The experimental group (n=20) underwent training with a BCT for 20 minutes a day, 5 days a week for 4 weeks, in addition to concurrent conventional physical therapy. The control group (n=20) underwent only conventional therapy for 4 weeks. All participants were assessed by: the Functional Ambulation Categories (FAC), 10-meter Walking Test (10mWT), Timed Up and Go test (TUG), Berg Balance Scale (BBS), Korean Modified Barthel Index (MBI), and Manual Muscle Test (MMT) before training, and at 2 and 4 weeks of training. There were statistically significant improvements in all parameters except knee extensor power at 2 weeks of treatment, and in all parameters except MBI which showed further statistically significant progress in the experimental group over the next two weeks (p<0.05). Statistically significant improvements on all measurements were observed in the experimental group after 4 weeks total. Comparing the two groups at 2 and 4 weeks of training respectively, 10mWT, TUG, and BBS showed statistically more significant improvements in the experimental group (p<0.05). Balance training with a newly developed BCT is feasible and may be an effective tool to improve balance and gait in ambulatory chronic stroke patients. Furthermore, it may provide additional benefits when used in conjunction with conventional therapies.
Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania
2017-04-11
Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.
Mansfield, Avril; Aqui, Anthony; Centen, Andrew; Danells, Cynthia J; DePaul, Vincent G; Knorr, Svetlana; Schinkel-Ivy, Alison; Brooks, Dina; Inness, Elizabeth L; McIlroy, William E; Mochizuki, George
2015-06-06
Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility. Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training. Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising intervention: perturbation training. If effective, this training has the potential to not only prevent falls, but to also improve safe independent mobility and engagement in daily activities for those with stroke. Current Controlled Trials: ISRCTN05434601 .
2013-01-01
Background In therapeutic settings, patients with shoulder pain often exhibit deficient coordinative abilities in their trunk and lower extremities. The aim of the study was to investigate 1) if there is a connection between shoulder pain and deficits in balance ability and postural stability, 2) if pain intensity is related to balance ability and postural stability, and 3) if there is a connection between body mass index (BMI) and balance ability and postural stability. Methods In this case–control study, patients (n = 40) with pathological shoulder pain (> 4 months) were matched with a healthy controls (n = 40) and were compared with regard to their balance ability and postural stability. Outcome parameters were postural stability, balance ability and symmetry index which were measured using the S3-Check system. In addition, the influence of shoulder pain intensity and BMI on the outcome parameters was analysed. Results Patients with shoulder pain showed significantly worse results in measurements of postural stability right/left (p < 0.01) and front/back (p < 0.01) as well as balance ability right/left (p = 0.01) and front/back (p < 0.01) compared to healthy controls. There were no significant group differences with regard to symmetry index. However, there was a significant (p < 0.01) symmetry shift towards the affected side within the shoulder pain group. There was no correlation between pain intensity and measurements of balance ability or postural stability. Likewise, no correlation between BMI and deficiencies in balance ability and postural stability was established. Conclusions Patients with pathological shoulder pain (> 4 months) have deficiencies in balance ability and postural stability; however the underlying mechanisms for this remain unclear. Neither pain intensity nor BMI influenced the outcome parameters. Patients with shoulder pain shift their weight to the affected side. Further research is needed to determine if balance training can improve rehabilitation results in patients with shoulder pathologies. PMID:24088342
Using Motor Imagery to Study the Neural Substrates of Dynamic Balance
Ferraye, Murielle Ursulla; Debû, Bettina; Heil, Lieke; Carpenter, Mark; Bloem, Bastiaan Roelof; Toni, Ivan
2014-01-01
This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large). We used a matched visual imagery (VI) control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012), in a pattern consistent with existing somatotopic maps of the trunk (for balance) and legs (for gait). These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008), and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders. PMID:24663383
Using motor imagery to study the neural substrates of dynamic balance.
Ferraye, Murielle Ursulla; Debû, Bettina; Heil, Lieke; Carpenter, Mark; Bloem, Bastiaan Roelof; Toni, Ivan
2014-01-01
This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large). We used a matched visual imagery (VI) control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012), in a pattern consistent with existing somatotopic maps of the trunk (for balance) and legs (for gait). These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008), and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders.
Upper limb contributions to frontal plane balance control in rollator-assisted walking.
Tung, James Y; Gage, William H; Poupart, Pascal; McIlroy, William E
2014-01-01
While assisting with balance is a primary reason for rollator use, few studies have examined how the upper limbs are used for balance. This study examines upper limb contributions to balance control during rollator-assisted walking. We hypothesized that there would be an increased upper limb contribution, measured by mean vertical loading (Fz) and variation in frontal plane center-of-pressure (COPhigh), when walking balance is challenged/impaired. Experiment 1 compared straight-line and beam-walking in young adults (n = 11). As hypothesized, Fz and COPhighincreased in beam-walking compared to baseline (mean Fz: 13.7 vs. 9.1% body weight (BW), p < 0.001, RMS COPhigh: 1.35 vs. 1.07 cm, p < 0.001). Experiment 2 compared older adults who regularly use rollators (RU, n = 10) to older adult controls (CTL, n = 10). The predicted higher upper limb contribution in the RU group was not supported. However, when individuals were grouped by balance impairment, those with the lowest Berg Balance scores (< 45) demonstrated greater speed-adjusted COPhigh than those with higher scores (p = 0.013). Furthermore, greater COPhigh and Fz were correlated to greater reduction in step width, supporting the role of upper limb contributions to frontal plane balance. This work will guide studies assessing reliance on rollators by providing a basis for measurement of upper limb balance contributions.
NASA Astrophysics Data System (ADS)
Volokh, K. Y.
2017-12-01
Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)
1996-01-01
Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in growth similar to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.
Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B
2006-03-01
Top-dressing is a method of broiler litter management in which a thin layer of new, clean litter material is spread over the top of previously used litter prior to placement of a new flock. This fresh layer of bedding material increases the absorptive capacity of the litter and decreases litter caking. Although this practice has been widely used in the poultry industry for many years, no research has been conducted to quantify the effects the practice has on broiler performance, litter production rates, and nutrient content, or the ability of broiler litter to retain manure N and prevent volatilization. An experiment was conducted to quantify these parameters under simulated commercial conditions in a research facility. Nine consecutive flocks of broilers were reared on recycled broiler litter that had previously been used for 9 flocks. Control pens received no litter treatment whereas top-dressed pens received a thin layer of new rice hulls (1 to 2 cm) before the placement of each flock. Nitrogen loss was calculated using the mass balance method. Average broiler performance was not different between the top-dressed and control pens. Top-dressing of litter significantly (P < 0.05) reduced caked litter production compared with control pens in 6 of 9 flocks. However, average total litter production over all 9 flocks was not different between the 2 litter management strategies. In all flocks, litter N content was significantly reduced in top-dressed pens compared with control pens. As a result, litter C:N ratios were significantly higher for pens with top-dressed litter. Differences in N loss between the treatments were not consistent. Average N loss for all flocks was 10.61 and 11.92 g of N/kg of marketed broiler for control and top-dressed pens, respectively, or 20.1 and 22.5% of N inputs, respectively. Based on this experiment, top-dressing of recycled broiler litter would not be recommended as a strategy to reduce the volatilization of N from broiler rearing facilities and, in fact, may actually increase N loss.
Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.
Kim, Myunghee; Collins, Steven H
2013-06-01
Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.
Balance and Self-Efficacy of Balance in Children with CHARGE Syndrome
ERIC Educational Resources Information Center
Haibach, Pamela S.; Lieberman, Lauren J.
2013-01-01
Introduction: Balance is a critical component of daily living, because it affects all movements and the ability to function independently. Children with CHARGE syndrome have sensory and motor impairments that could negatively affect their balance and postural control. The purpose of the study presented in this article was to assess the balance and…
Azarpaikan, Atefeh; Taheri Torbati, Hamidreza
2017-10-23
The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.
Inline skating for balance and strength promotion in children during physical education.
Muehlbauer, Thomas; Kuehnen, Matthias; Granacher, Urs
2013-12-01
Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48%, Cohen's d = 0.00-1.49) and jump height (8%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength.
The effect of virtual reality gaming on dynamic balance in older adults.
Rendon, Abel Angel; Lohman, Everett B; Thorpe, Donna; Johnson, Eric G; Medina, Ernie; Bradley, Bruce
2012-07-01
physical therapy interventions that increase functional strength and balance have been shown to reduce falls in older adults. this study compared a virtual reality group (VRG) and a control group (CG). randomised controlled 6-week intervention with pre- and post-test evaluations. outpatient geriatric orthopaedic and balance physical therapy clinic. forty participants were randomised into two groups. the VRG received three different Nintendo® Wii FIT balance interventions three times per week for 6 weeks and the CG received no intervention. compared with the CG, post-intervention measurements showed significant improvements for the VRG in the 8-foot Up & Go test [median decrease of 1.0 versus -0.2 s, (P=0.038) and the Activities-specific Balance Confidence Scale (6.9 versus 1.3%) (P=0.038)]. virtual reality gaming provides clinicians with a useful tool for improving dynamic balance and balance confidence in older adults.
Sensory organisation and reactive balance control of amateur rugby players: A cross-sectional study.
Chow, Gary C C; Chung, Joanne W Y; Ma, Ada W W; Macfarlane, Duncan J; Fong, Shirley S M
2017-05-01
This study compared the sensory organisation and reactive balance control of amateur rugby players and a control group. Forty-one amateur rugby players (22 males: 19 females; mean height ± SD = 168.8 ± 8.8 cm; mean weight ± SD = 63.9 ± 12.5 kg) and 31 control participants (22 males: 9 females; mean height ± SD = 171.5 ± 10.3 cm; mean weight ± SD = 63.8 ± 10.3 kg) completed the study. Their sensory organisation and standing balance performance were evaluated using a sensory organisation test (SOT), and their reactive balance performance was quantified using a motor control test (MCT). The SOT equilibrium scores (ES) and sensory ratios and the MCT motor response latencies were the major outcome measures. The results revealed that compared to the controls, amateur rugby players had lower SOT ESs under different sensory environments (P < .001, [Formula: see text] = 0.142-0.254) and prolonged reactive motor response times in the MCT (P < .001, d = 0.890). The vestibular and visual ratios were also lower in the rugby group (P = .005, [Formula: see text] = 0.107 and 0.108, respectively). No significant difference was found in the somatosensory ratio (P = .853, [Formula: see text] < 0.001) between the two groups. Amateur rugby players demonstrated inferior standing balance performance compared to their non-trained counterparts. They relied less heavily on vestibular and visual inputs to maintain standing balance under different sensory environments. In addition, they reacted more slowly to postural disturbance, reflecting their suboptimal reactive balance ability in standing.
Morrison, S; Rynders, C A; Sosnoff, J J
2016-09-01
A major health concern faced by individuals with Multiple Sclerosis (MS) is the heightened risk of falling. Reasons for this increased risk can often be traced back to declines in neurophysiological mechanisms underlying balance control and/or muscular strength. The aim of this study was to assess differences between persons with MS and age-matched healthy adults in regards to their falls risk, strength, reactions and directional control of balance. Twenty-two persons with multiple sclerosis (mean age 56.3±8.9 years) and 22 age-matched healthy adults (mean age 59.1±7.1 years) participated in the study. Assessments of falls risk, balance, fear of falling, lower limb strength, and reaction time were performed. Balance control was assessed under four conditions where the combined effects of vision (eyes open/closed) and standing surface (firm/pliable surface) were evaluated. Results demonstrated that, in comparison to healthy older adults, persons with MS had a significantly higher falls risk, slower reaction times, and weaker lower- limb strength. For balance, persons with MS exhibited greater overall COP motion in both the medio-lateral (ML) and anterior-posterior (AP) directions compared to older adults. Additionally, during more challenging balance conditions, persons from the MS group exhibited greater ML motion compared to sway in the AP direction. Overall, the results confirm that persons with MS are often at a heightened risk of falling, due to the multitude of neuromuscular changes brought about by this disease process. However, the increased ML sway for the MS group could reflect a decreased ability to control side-to-side motion in comparison to controlling AP sway. Copyright © 2016 Elsevier B.V. All rights reserved.
Brenner, Ira
2018-01-01
In this article, I will describe the way in which I work with enactment-prone dissociative patients in the transference. This approach requires an appreciation of the phenomena of hypnosis and the auto-hypnotic aspects of some forms of dissociation. Essentially, I learn from the patient and my interactions with the patient how hypnotic phenomena and auto-hypnotic defenses manifest themselves in the therapeutic relationship in order both to understand them and ultimately to bring them under conscious control. Because of the fluidity and turbulence of these states, I use the analogy of catching a wave, in which timing and balance are essential, albeit elusive factors in effecting a successful treatment. The importance of having experience with many patients, attending conferences, seeking supervision, and undergoing one's own therapy will be also discussed as important prerequisites for the clinician endeavoring to utilize this type of approach. This preparation, this quest for such a "balance," is modeled after the so-called tripartite model of training employed in psychoanalytic training institutes. I will offer clinical material to illustrate this approach, which I have described as "psychoactive psychotherapy." In such treatments, the clinician may be taken by surprise and is likely to be thrown "off balance" from time to time. The mutually shared understanding of such moments is essential to regaining clinical balance in the therapeutic setting, and can lead to if not create important turning points in the treatment process.
Mo-Si-B alloys for ultrahigh-temperature structural applications.
Lemberg, J A; Ritchie, R O
2012-07-10
A continuing quest in science is the development of materials capable of operating structurally at ever-increasing temperatures. Indeed, the development of gas-turbine engines for aircraft/aerospace, which has had a seminal impact on our ability to travel, has been controlled by the availability of materials capable of withstanding the higher-temperature hostile environments encountered in these engines. Nickel-base superalloys, particularly as single crystals, represent a crowning achievement here as they can operate in the combustors at ~1100 °C, with hot spots of ~1200 °C. As this represents ~90% of their melting temperature, if higher-temperature engines are ever to be a reality, alternative materials must be utilized. One such class of materials is Mo-Si-B alloys; they have higher density but could operate several hundred degrees hotter. Here we describe the processing and structure versus mechanical properties of Mo-Si-B alloys and further document ways to optimize their nano/microstructures to achieve an appropriate balance of properties to realistically compete with Ni-alloys for elevated-temperature structural applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Richardson, J K; Sandman, D; Vela, S
2001-02-01
To determine the effect of a specific exercise regimen on clinical measures of postural stability and confidence in a population with peripheral neuropathy (PN). Prospective, controlled, single blind study. Outpatient clinic of a university hospital. Twenty subjects with diabetes mellitus and electrodiagnostically confirmed PN. Ten subjects underwent a 3-week intervention exercise regimen designed to increase rapidly available distal strength and balance. The other 10 subjects performed a control exercise regimen. Unipedal stance time, functional reach, tandem stance time, and score on the activities-specific balance and confidence (ABC) scale. The intervention subjects, but not the control subjects, showed significant improvement in all 3 clinical measures of balance and nonsignificant improvement on the ABC scale. A brief, specific exercise regimen improved clinical measures of balance in patients with diabetic PN. Further studies are needed to determine if this result translates into a lower fall frequency in this high-risk population.
Metrics of Balance Control for Use in Screening Tests of Vestibular Function
NASA Technical Reports Server (NTRS)
Fiedler, Matthew; Cohen, Helen; Mulavara, Ajitkumar; Peters, Brian; Miller, Chris; Bloomberg, Jacob
2011-01-01
Decrements in balance control have been documented in astronauts after space flight. Reliable measures of balance control are needed for use in postflight field tests at remote landing sites. Diffusion analysis (DA) is a statistical mechanical tool that shows the average difference of the dependent variable on varying time scales. These techniques have been shown to measure differences in open-loop and closed-loop postural control in astronauts and elderly subjects. The goal of this study was to investigate the reliability of these measures of balance control. Eleven subjects were tested using the Clinical Test of Sensory Interaction on Balance: the subject stood with feet together and arms crossed on a stable or compliant surface, with eyes open or closed and with or without head movements in the pitch or yaw plane. Subjects were instrumented with inertial motion sensors attached to their trunk segment. The DA curves for linear acceleration measures were characterized by linear fits measuring open- (Ds) and closed-loop (Dl) control, and their intersection point (X-int, Y-int). Ds and Y-int showed significant differences between the test conditions. Additionally, Ds was correlated with the root mean square (RMS) of the signal, indicating that RMS was dominated by open-loop events (< 0.5 seconds). The Y-int was found to be correlated with the average linear velocity of trunk movements. Thus DA measures could be applied to derive reliable metrics of balance stability during field tests.
Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali
2013-06-01
It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.
Okonkwo, Uchenna Prosper; Ibeneme, Sam Chidi; Ihegihu, Ebere Yvonne; Egwuonwu, Afamefuna Victor; Ezema, Charles Ikechukwu; Maruf, Fatai Adesina
2018-05-02
Stroke results in varying levels of physical disabilities that may adversely impact balance with increased tendency to falls. This may intensify with cognitive impairments (CI), and impede functional recovery. Therefore, task-specific balance training (TSBT), which presents versatile task-specific training options that matches varied individual needs, was explored as a beneficial rehabilitation regime for stroke survivors with and without CI. It was hypothesized that there will be no significant difference in the balance control measures in stroke survivors with and without CI after a 12-month TSBT. To determine if TSBT will have comparable beneficial effects on the balance control status of sub-acute ischemic stroke survivors with CI and without CI. One hundred of 143 available sub-acute first ever ischemic stroke survivors were recruited using convenience sampling technique in a quasi-experimental study. They were later assigned into the cognitive impaired group (CIG) and non-cognitive impaired group (NCIG), respectively, based on the baseline presence or absence of CI, after screening with the mini-mental examination (MMSE) tool. With the help of four trained research assistants, TSBT was applied to each group, thrice times a week, 60 mins per session, for 12 months. Their balance was measured as Bergs Balance scores (BBS) at baseline, 4th, 8th, and 12th month intervals. Data were analyzed statistically using Kruskal Wallis test, and repeated measure ANOVA, at p < 0.05. There was significant improvement across time points in the balance control of CIG with large effect size of 0.69 after 12 months of TSBT. There was also significant improvement across time points in the balance control of NCIG with large effect size of 0.544 after 12 months of TSBT. There was no significant difference between the improvement in CIG and NCIG after 8th and 12th months of TSBT. Within the groups, a 12-month TSBT intervention significantly improved balance control, respectively, but with broader effects in the CIG than NCIG. Importantly, though between-group comparison at baseline revealed significantly impaired balance control in the CIG than NCIG, these differences were not significant at the 8th month and non-existent at the 12th month of TSBT intervention. These results underscore the robustness of TSBT to evenly address specific balance deficits of stroke survivors with and without CI within a long-term rehabilitation plan as was hypothesized.
Simpson, Lisa A; Miller, William C; Eng, Janice J
2011-04-29
The literature suggests that stroke is a major risk factor for falls, but there is a lack of prospective, controlled studies which quantify fall-risk after stroke. The purpose of this study was to compare the rates, location and predictors among individuals recently discharged home from stroke rehabilitation to age and sex matched controls. A sample of 80 people with stroke and 90 controls received baseline assessments of balance, mobility and balance confidence. Falls were recorded prospectively over 13 months for both groups. Group differences in fall rates and contribution of clinical measures to falls were determined using negative binomial regression. Fall location was compared between groups using χ(2) statistics. The rate of falls for individuals with stroke was 1.77 times the rate for the control group. People with stroke were more likely to fall at home. Poorer balance (Berg Balance Scale) was associated with greater falls for both stroke and control groups (incidence rate ratio [IRR]: 0.908 and IRR: 0.877 respectively). A faster Timed Up and Go Test was associated with greater falls for the stroke group (IRR: 0.955) while better walking endurance (Six Minute Walk Test) was associated with greater falls for the controls (IRR: 1.004). Balance confidence was not an independent predictor in either group. Individuals recently discharged home are at greater risk of falling than individuals without stroke. Attention to home environment is warranted. Balance function can predict falls for both people with stroke and age and sex matched controls. Increased mobility may increase exposure to fall opportunities.
Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M
2015-01-01
Objective Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Design Retrospective, case-control study Setting Institutional research laboratory Participants Normal controls (n=94) and concussed participants (n=27) Interventions All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours post-injury) and tested in the lab between 7-10 days post-injury. ROC curves were performed in order to establish the VR module’s sensitivity and specificity for detecting lingering balance deficits. Main Outcome Measures Final balance score Results For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. Conclusions The VR balance module has high sensitivity and specificity for detecting sub-acute balance deficits after concussive injury. PMID:26505696
Anderson, David F.; Kross, Brian J.
1994-01-01
An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.
Anderson, David F.; Kross, Brian J.
1992-01-01
An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.
Yang, Chengdong; Fang, Renren; Yang, Xiongfa; Chen, Ru; Gao, Jianhua; Fan, Hanghong; Li, Hongxiang; Hu, Wenping
2018-04-04
It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole- and electron-transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron-withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm 2 V -1 s -1 , which suggested that these copolymers are promising ambipolar semiconductor materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pluchino, Alessandra; Lee, Sae Yong; Asfour, Shihab; Roos, Bernard A; Signorile, Joseph F
2012-07-01
To compare the impacts of Tai Chi, a standard balance exercise program, and a video game balance board program on postural control and perceived falls risk. Randomized controlled trial. Research laboratory. Independent seniors (N=40; 72.5±8.40) began the training, 27 completed. Tai Chi, a standard balance exercise program, and a video game balance board program. The following were used as measures: Timed Up & Go, One-Leg Stance, functional reach, Tinetti Performance Oriented Mobility Assessment, force plate center of pressure (COP) and time to boundary, dynamic posturography (DP), Falls Risk for Older People-Community Setting, and Falls Efficacy Scale. No significant differences were seen between groups for any outcome measures at baseline, nor were significant time or group × time differences for any field test or questionnaire. No group × time differences were seen for any COP measures; however, significant time differences were seen for total COP, 3 of 4 anterior/posterior displacement and both velocity, and 1 displacement and 1 velocity medial/lateral measure across time for the entire sample. For DP, significant improvements in the overall score (dynamic movement analysis score), and in 2 of the 3 linear and angular measures were seen for the sample. The video game balance board program, which can be performed at home, was as effective as Tai Chi and the standard balance exercise program in improving postural control and balance dictated by the force plate postural sway and DP measures. This finding may have implications for exercise adherence because the at-home nature of the intervention eliminates many obstacles to exercise training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta
2015-04-01
To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.
Conradsson, David; Löfgren, Niklas; Nero, Håkan; Hagströmer, Maria; Ståhle, Agneta; Lökk, Johan; Franzén, Erika
2015-10-01
Highly challenging exercises have been suggested to induce neuroplasticity in individuals with Parkinson's disease (PD); however, its effect on clinical outcomes remains largely unknown. To evaluate the short-term effects of the HiBalance program, a highly challenging balance-training regimen that incorporates both dual-tasking and PD-specific balance components, compared with usual care in elderly with mild to moderate PD. Participants with PD (n = 100) were randomized, either to the 10-week HiBalance program (n = 51) or to the control group (n = 49). Participants were evaluated before and after the intervention. The main outcomes were balance performance (Mini-BESTest), gait velocity (during normal and dual-task gait), and concerns about falling (Falls Efficacy Scale-International). Performance of a cognitive task while walking, physical activity level (average steps per day), and activities of daily living were secondary outcomes. A total of 91 participants completed the study. After the intervention, the between group comparison showed significantly improved balance and gait performance in the training group. Moreover, although no significant between group difference was observed regarding gait performance during dual-tasking; the participants in the training group improved their performance of the cognitive task while walking, as compared with the control group. Regarding physical activity levels and activities of daily living, in comparison to the control group, favorable results were found for the training group. No group differences were found for concerns about falling. The HiBalance program significantly benefited balance and gait abilities when compared with usual care and showed promising transfer effects to everyday living. Long-term follow-up assessments will further explore these effects. © The Author(s) 2015.
Regenerative life support system research
NASA Technical Reports Server (NTRS)
1988-01-01
Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.
Emilio, Emilio J. Martínez-López; Hita-Contreras, Fidel; Jiménez-Lara, Pilar M.; Latorre-Román, Pedro; Martínez-Amat, Antonio
2014-01-01
The purpose of the present study was to determine the effects of a proprioceptive training program on older adults, as well as to analyze the association between flexibility, balance and lumbar strength (physical fitness test) with balance ability and fall risk (functional balance tests). This study was a controlled, longitudinal trial with a 12-week follow-up period. Subjects from a population of older adults were allocated to the intervention group (n = 28) or to the usual care (control) group (n = 26). Subjects performed proprioceptive training twice weekly (6 specific exercises with Swiss ball and BOSU). Each session included 50 minutes (10 minutes of warm-up with slow walk, 10 minutes of mobility and stretching exercises, 30 minutes of proprioceptive exercises). The outcome variables were physical fitness (lower-body flexibility, hip-joint mobility, dynamic balance, static balance, and lumbar strength) and functional balance (Berg scale and Tinetti test). The experimental group obtained significantly higher values than the control group in lower-body flexibility, dynamic balance, and lumbar strength (p = 0.019, p < 0.001, and p = 0.034 respectively). Hip-joint mobility, dynamic balance, and lumbar strength were positively associated with balance ability (p < 0.001, p < 0.001, and p = 0.014, respectively) and the prevention of falls (p = 0.001, p < 0.001, and p = 0.017 respectively). These findings suggest that a 12-week proprioception program intervention (twice a week) significantly improves flexibility, balance, and lumbar strength in older adults. Hip-joint mobility, dynamic balance and lumbar strength are positively associated to balance ability and the risk of falls in older adults. This proprioceptive training does not show a significant improvement in hip-joint mobility or static balance. Key points A 12-week proprioceptive intervention program (two times per week) significantly improves flexibility, balance, and lumbar strength in older adults. The risk of falls and balance ability are significantly improved after a training program with Bosu and Swiss ball in older adults. An improvement in joint mobility, dynamic balance and lumbar strength is positively associated with balance ability and improved fall risk in older adults. A 12-week proprioceptive intervention program (two times per week) does not show a significant improvement in hip-joint mobility and static balance. PMID:24790489
Savita, A. M.; Sarun, E.; Arora, Shivli; Krishnan, Swathi
2015-01-01
Context: Periodontitis is predominantly due to exaggerated host response to pathogenic microorganisms and their products which causes an imbalance between the reactive oxygen species-antioxidant in gingival crevicular fluid (GCF). Glutathione is an important redox regulator in GCF and maintenance of stable reduced glutathione (GSH):oxidized glutathione (GSSG) ratio is essential for periodontal health. Aims: The present study was undertaken to evaluate and compare the level of glutathione and redox balance (GSH: GSSG ratio) in GCF of chronic periodontitis patients, periodontally healthy controls and also to evaluate the effect of nonsurgical periodontal therapy on the level of glutathione and redox balance during 3 months postoperative visit. Study Design: Baseline GCF samples were collected from 20 chronic periodontitis patients and 20 periodontally healthy subjects for GSH and GSSG levels estimation. Periodontitis patients were recalled 3 months postnonsurgical periodontal therapy to re-sample GCF. Materials and Methods: GSH and GSSG levels were measured by high-performance liquid chromatography. The values were statistically analyzed by Paired t-test. Results: The mean GSH and GSSG values in GCF were found to be significantly lower in periodontitis patients pre- and 3 months post-nonsurgical periodontal therapy, compared with those in the control group subjects. In addition, the successful nonsurgical therapy even though leading to a significant improvement in the GSH and GSSG levels, does not restore glutathione concentration to the levels seen in healthy subjects. Conclusion: Successful nonsurgical periodontal therapy leads to significant improvement in the redox balance (GSH: GSSG ratio) in chronic periodontitis patients. PMID:26097356
Schlenstedt, Christian; Paschen, Steffen; Kruse, Annika; Raethjen, Jan; Weisser, Burkhard; Deuschl, Günther
2015-01-01
Background Reduced muscle strength is an independent risk factor for falls and related to postural instability in individuals with Parkinson’s disease. The ability of resistance training to improve postural control still remains unclear. Objective To compare resistance training with balance training to improve postural control in people with Parkinson’s disease. Methods 40 patients with idiopathic Parkinson’s disease (Hoehn&Yahr: 2.5–3.0) were randomly assigned into resistance or balance training (2x/week for 7 weeks). Assessments were performed at baseline, 8- and 12-weeks follow-up: primary outcome: Fullerton Advanced Balance (FAB) scale; secondary outcomes: center of mass analysis during surface perturbations, Timed-up-and-go-test, Unified Parkinson’s Disease Rating Scale, Clinical Global Impression, gait analysis, maximal isometric leg strength, PDQ-39, Beck Depression Inventory. Clinical tests were videotaped and analysed by a second rater, blind to group allocation and assessment time. Results 32 participants (resistance training: n = 17, balance training: n = 15; 8 drop-outs) were analyzed at 8-weeks follow-up. No significant difference was found in the FAB scale when comparing the effects of the two training types (p = 0.14; effect size (Cohen’s d) = -0.59). Participants from the resistance training group, but not from the balance training group significantly improved on the FAB scale (resistance training: +2.4 points, Cohen’s d = -0.46; balance training: +0.3 points, Cohen’s d = -0.08). Within the resistance training group, improvements of the FAB scale were significantly correlated with improvements of rate of force development and stride time variability. No significant differences were found in the secondary outcome measures when comparing the training effects of both training types. Conclusions The difference between resistance and balance training to improve postural control in people with Parkinson’s disease was small and not significant with this sample size. There was weak evidence that freely coordinated resistance training might be more effective than balance training. Our results indicate a relationship between the enhancement of rate of force development and the improvement of postural control. Trial Registration ClinicalTrials.gov ID: NCT02253563 PMID:26501562
NASA Astrophysics Data System (ADS)
Friebel, Daniel; Viswanathan, Venkat; Larsen, Ask; Miller, Daniel J.; Ogasawara, Hirohito; Anniyev, Toyli; O'Grady, Christopher P.; Nørskov, Jens; Nilsson, Anders
2012-02-01
The mechanism of the electrochemical oxygen reduction reaction (ORR) has been well understood based on DFT calculations, but there has been a lack of supporting experimental data, due to the difficulties of probing the electrocatalyst surface in situ. Our new approach using Pt monolayer model catalysts provides true surface sensitivity for - originally bulk sensitive - x-ray absorption spectroscopy (XAS) and, owing to the high resolution of the Bragg analyzer at SSRL beamline 6-2, allows for in situ detection of chemisorbed O and OH, whose stability can be used as a descriptor in predicting the activity of new ORR catalyst materials. Our ability to control the growth mode in the Pt/Rh(111) model system allows us to generate Pt nanostructures with highly different O affinities from identical starting materials.
Geometry and surface controlled formation of nanoparticle helical ribbons
NASA Astrophysics Data System (ADS)
Pham, Jonathan; Lawrence, Jimmy; Lee, Dong; Grason, Gregory; Emrick, Todd; Crosby, Alfred
2013-03-01
Helical structures are interesting because of their space efficiency, mechanical tunability and everyday uses in both the synthetic and natural world. In general, the mechanisms governing helix formation are limited to bilayer material systems and chiral molecular structures. However, in a special range of dimensions where surface energy dominates (i.e. high surface to volume ratio), geometry rather than specific materials can drive helical formation of thin asymmetric ribbons. In an evaporative assembly technique called flow coating, based from the commonly observed coffee ring effect, we create nanoparticle ribbons possessing non-rectangular nanoscale cross-sections. When released into a liquid medium of water, interfacial tension between the asymmetric ribbon and water balances with the elastic cost of bending to form helices with a preferred radius of curvature and a minimum pitch. We demonstrate that this is a universal mechanism that can be used with a wide range of materials, such as quantum dots, metallic nanoparticles, or polymers. Nanoparticle helical ribbons display excellent structural integrity with spring-like characteristics and can be extended high strains.
High-sensitivity strain visualization using electroluminescence technologies
NASA Astrophysics Data System (ADS)
Xu, Jian; Jo, Hongki
2016-04-01
Visualizing mechanical strain/stress changes is an emerging area in structural health monitoring. Several ways are available for strain change visualization through the color/brightness change of the materials subjected to the mechanical stresses, for example, using mechanoluminescence (ML) materials and mechanoresponsive polymers (MRP). However, these approaches were not effectively applicable for civil engineering system yet, due to insufficient sensitivity to low-level strain of typical civil structures and limitation in measuring both static and dynamic strain. In this study, design and validation for high-sensitivity strain visualization using electroluminescence technologies are presented. A high-sensitivity Wheatstone bridge, of which bridge balance is precisely controllable circuits, is used with a gain-adjustable amplifier. The monochrome electroluminescence (EL) technology is employed to convert both static and dynamic strain change into brightness/color change of the EL materials, through either brightness change mode (BCM) or color alternation mode (CAM). A prototype has been made and calibrated in lab, the linearity between strain and brightness change has been investigated.
Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak
2016-03-04
Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .
Toosizadeh, Nima; Mohler, Jane; Armstrong, David G; Talal, Talal K; Najafi, Bijan
2015-01-01
Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, P<0.01), which suggests a compromised local-control balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, P<0.02), which suggests an adaptation mechanism to reduce the overall body sway in DPN patients. Interestingly, significant negative correlations were observed between central-control rate of sway with neuropathy severity (rPearson = 0.65-085, P<0.05) and the history of diabetes (rPearson = 0.58-071, P<0.05). Results suggest that in the lack of sensory feedback cueing, DPN participants were highly unstable compared to controls. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.
Bunn, Lisa M; Marsden, Jonathan F; Giunti, Paola; Day, Brian L
2015-02-01
To investigate the feasibility of a randomized controlled trial of a home-based balance intervention for people with cerebellar ataxia. A randomized controlled trial design. Intervention and assessment took place in the home environment. A total of 12 people with spinocerebellar ataxia type 6 were randomized into a therapy or control group. Both groups received identical assessments at baseline, four and eight weeks. Therapy group participants undertook balance exercises in front of optokinetic stimuli during weeks 4-8, while control group participants received no intervention. Test-retest reliability was analysed from outcome measures collected twice at baseline and four weeks later. Feasibility issues were evaluated using daily diaries and end trial exit interviews. The home-based training intervention with opto-kinetic stimuli was feasible for people with pure ataxia, with one drop-out. Test-retest reliability is strong (intraclass correlation coefficient >0.7) for selected outcome measures evaluating balance at impairment and activity levels. Some measures reveal trends towards improvement for those in the therapy group. Sample size estimations indicate that Bal-SARA scores could detect a clinically significant change of 0.8 points in this functional balance score if 80 people per group were analysed in future trials. Home-based targeted training of functional balance for people with pure cerebellar ataxia is feasible and the outcome measures employed are reliable. © The Author(s) 2014.
Harris, Dale M; Rantalainen, Timo; Muthalib, Makii; Johnson, Liam; Teo, Wei-Peng
2015-01-01
The use of virtual reality games (known as "exergaming") as a neurorehabilitation tool is gaining interest. Therefore, we aim to collate evidence for the effects of exergaming on the balance and postural control of older adults and people with idiopathic Parkinson's disease (IPD). Six electronic databases were searched, from inception to April 2015, to identify relevant studies. Standardized mean differences (SMDs) and 95% confidence intervals (CI) were used to calculate effect sizes between experimental and control groups. I (2) statistics were used to determine levels of heterogeneity. 325 older adults and 56 people with IPD who were assessed across 11 -studies. The results showed that exergaming improved static balance (SMD 1.069, 95% CI 0.563-1.576), postural control (SMD 0.826, 95% CI 0.481-1.170), and dynamic balance (SMD -0.808, 95% CI -1.192 to -0.424) in healthy older adults. Two IPD studies showed an improvement in static balance (SMD 0.124, 95% CI -0.581 to 0.828) and postural control (SMD 2.576, 95% CI 1.534-3.599). Our findings suggest that exergaming might be an appropriate therapeutic tool for improving balance and postural control in older adults, but more -large-scale trials are needed to determine if the same is true for people with IPD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp
2011-03-15
Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less
A spatial-temporal method for assessing the energy balance dynamics of partially sealed surfaces.
NASA Astrophysics Data System (ADS)
Pipkins, Kyle; Kleinschmit, Birgit; Wessolek, Gerd
2017-04-01
The effects of different types of sealed surfaces on the surface energy balance have been well-studied in the past. However, these field studies typically aggregate these surfaces into continuous units. The proposed method seeks to disaggregate such surfaces into paving and seam areas using spatial methods, and to consider the temperature dynamics under wet and dry conditions between these two components. This experimental work is undertaken using a thermal camera to record a time series of images over two lysimeters with differing levels of surface sealing. The images are subsequently decomposed into component materials using object-based image analysis and compared on the basis of both the surface materials as well as the spatial configuration of materials. Finally, a surface energy balance method is used to estimate evaporation rates from the surfaces, both separately for the different surface components as well as using the total surface mean. Results are validated using the output of the weighing lysimeter. Our findings will determine whether the explicitly spatial method is an improvement over the mean aggregate method.
Thirumalai, Mohanraj; Kirkland, William B; Misko, Samuel R; Padalabalanarayanan, Sangeetha; Malone, Laurie A
2018-03-06
Active video game (AVG) playing, also known as "exergaming," is increasingly employed to promote physical activity across all age groups. The Wii Fit Balance Board is a popular gaming controller for AVGs and is used in a variety of settings. However, the commercial off-the-shelf (OTS) design poses several limitations. It is inaccessible to wheelchair users, does not support the use of stabilization assistive devices, and requires the ability to shift the center of balance (COB) in all directions to fully engage in game play. The aim of this study was to design an adapted version of the Wii Fit Balance Board to overcome the identified limitations and to evaluate the usability of the newly designed adapted Wii Fit Balance Board in persons with mobility impairments. In a previous study, 16 participants tried the OTS version of the Wii Fit Balance Board. On the basis of observed limitations, a team of engineers developed and adapted the design of the Wii Fit Balance Board, which was then subjected to multiple iterations of user feedback and design tweaks. On design completion, we recruited a new pool of participants with mobility impairments for a larger study. During their first visit, we assessed lower-extremity function using selected mobility tasks from the International Classification of Functioning, Disability and Health. During a subsequent session, participants played 2 sets of games on both the OTS and adapted versions of the Wii Fit Balance Board. Order of controller version played first was randomized. After participants played each version, we administered the System Usability Scale (SUS) to examine the participants' perceived usability. The adapted version of the Wii Fit Balance Board resulting from the user-centered design approach met the needs of a variety of users. The adapted controller (1) allowed manual wheelchair users to engage in game play, which was previously not possible; (2) included Americans with Disabilities Act-compliant handrails as part of the controller, enabling stable and safe game play; and (3) included a sensitivity control feature, allowing users to fine-tune the controller to match the users' range of COB motion. More than half the sample could not use the OTS version of the Wii Fit Balance Board, while all participants were able to use the adapted version. All participants rated the adapted Wii Fit Balance Board at a minimum as "good," while those who could not use the OTS Wii Fit Balance Board rated the adapted Wii Fit Balance Board as "excellent." We found a significant negative correlation between lower-extremity function and differences between OTS and adapted SUS scores, indicating that as lower-extremity function decreased, participants perceived the adapted Wii Fit Balance Board as more usable. This study demonstrated a successful adaptation of a widely used AVG controller. The adapted controller's potential to increase physical activity levels among people with mobility impairments will be evaluated in a subsequent trial. ClinicalTrials.gov NCT02994199; https://clinicaltrials.gov/ct2/show/NCT02994199 (Archived by WebCite at http://www.webcitation.org/6xWTyiJWf). ©Mohanraj Thirumalai, William B Kirkland, Samuel R Misko, Sangeetha Padalabalanarayanan, Laurie A Malone. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 06.03.2018.
Motor learning benefits of self-controlled practice in persons with Parkinson's disease.
Chiviacowsky, Suzete; Wulf, Gabriele; Lewthwaite, Rebecca; Campos, Tiago
2012-04-01
The present study examined the effectiveness of a training method to enhance balance in people with PD, which could potentially reduce their risk for falls. Specifically, we investigated whether the benefits of the self-controlled use of a physical assistance device for the learning of a balance task, found previously in healthy adults, would generalize to adults with PD. Twenty-eight individuals with PD were randomly assigned to one of two groups, a self-control and a yoked (control) group. The task required participants to stand on a balance platform (stabilometer), trying to keep the platform as close to horizontal as possible during each 30-s trial. In the self-control group, participants had a choice, on each of 10 practice trials, to use or not to use a balance pole. Participants in the yoked group received the same balance pole on the schedule used by their counterparts in the self-control group, but did not have a choice. Learning was assessed one day later by a retention test. The self-control group demonstrated more effective learning of the task than the yoked group. Questionnaire results indicated that self-control participants were more motivated to learn the task, were less nervous, and less concerned about their body movements relative to yoked participants. Possible reasons for the learning benefits of self-controlled practice, including a basic psychological need for autonomy, are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Drijkoningen, David; Caeyenberghs, Karen; Leunissen, Inge; Vander Linden, Catharine; Leemans, Alexander; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P
2015-01-01
We investigated whether balance control in young TBI patients can be promoted by an 8-week balance training program and whether this is associated with neuroplastic alterations in brain structure. The cerebellum and cerebellar peduncles were selected as regions of interest because of their importance in postural control as well as their vulnerability to brain injury. Young patients with moderate to severe TBI and typically developing (TD) subjects participated in balance training using PC-based portable balancers with storage of training data and real-time visual feedback. An additional control group of TD subjects did not attend balance training. Mean diffusivity and fractional anisotropy were determined with diffusion MRI scans and were acquired before, during (4 weeks) and at completion of training (8 weeks) together with balance assessments on the EquiTest® System (NeuroCom) which included the Sensory Organization Test, Rhythmic Weight Shift and Limits of Stability protocols. Following training, TBI patients showed significant improvements on all EquiTest protocols, as well as a significant increase in mean diffusivity in the inferior cerebellar peduncle. Moreover, in both training groups, diffusion metrics in the cerebellum and/or cerebellar peduncles at baseline were predictive of the amount of performance increase after training. Finally, amount of training-induced improvement on the Rhythmic Weight Shift test in TBI patients was positively correlated with amount of change in fractional anisotropy in the inferior cerebellar peduncle. This suggests that training-induced plastic changes in balance control are associated with alterations in the cerebellar white matter microstructure in TBI patients.
Rhine, Tara D; Byczkowski, Terri L; Clark, Ross A; Babcock, Lynn
2016-05-01
To examine postural instability in children acutely after concussion, using the Wii Balance Board (WBB). We hypothesized that children with traumatic brain injury would have significantly worse balance relative to children without brain injury. Prospective case-control pilot study. Emergency department of a tertiary urban pediatric hospital. Cases were a convenience sample 11-16 years old who presented within 6 hours of sustaining concussion. Two controls, matched on gender, height, and age, were enrolled for each case that completed study procedures. Controls were children who presented for a minor complaint that was unlikely to affect balance. Not applicable. The participant's postural sway expressed as the displacement in centimeters of the center of pressure during a timed balance task. Balance testing was performed using 4 stances (single or double limb, eyes open or closed). Three of the 17 (17.6%) cases were too dizzy to complete testing. One stance, double limbs eyes open, was significantly higher in cases versus controls (85.6 vs 64.3 cm, P = 0.04). A simple test on the WBB consisting of a 2-legged standing balance task with eyes open discriminated children with concussion from non-head-injured controls. The low cost and feasibility of this device make it a potentially viable tool for assessing postural stability in children with concussion for both longitudinal research studies and clinical care. These pilot data suggest that the WBB is an inexpensive tool that can be used on the sideline or in the outpatient setting to objectively identify and quantify postural instability.
Drijkoningen, David; Caeyenberghs, Karen; Leunissen, Inge; Vander Linden, Catharine; Leemans, Alexander; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P.
2014-01-01
We investigated whether balance control in young TBI patients can be promoted by an 8-week balance training program and whether this is associated with neuroplastic alterations in brain structure. The cerebellum and cerebellar peduncles were selected as regions of interest because of their importance in postural control as well as their vulnerability to brain injury. Young patients with moderate to severe TBI and typically developing (TD) subjects participated in balance training using PC-based portable balancers with storage of training data and real-time visual feedback. An additional control group of TD subjects did not attend balance training. Mean diffusivity and fractional anisotropy were determined with diffusion MRI scans and were acquired before, during (4 weeks) and at completion of training (8 weeks) together with balance assessments on the EquiTest® System (NeuroCom) which included the Sensory Organization Test, Rhythmic Weight Shift and Limits of Stability protocols. Following training, TBI patients showed significant improvements on all EquiTest protocols, as well as a significant increase in mean diffusivity in the inferior cerebellar peduncle. Moreover, in both training groups, diffusion metrics in the cerebellum and/or cerebellar peduncles at baseline were predictive of the amount of performance increase after training. Finally, amount of training-induced improvement on the Rhythmic Weight Shift test in TBI patients was positively correlated with amount of change in fractional anisotropy in the inferior cerebellar peduncle. This suggests that training-induced plastic changes in balance control are associated with alterations in the cerebellar white matter microstructure in TBI patients. PMID:25610786
Louis, Elan D; Rao, Ashwini K
2015-01-01
An understanding of the functional aspects of gait and balance has wide ramifications. Individuals with balance disorders often restrict physical activity, travel, and social commitments to avoid falling, and loss of balance confidence, itself, is a source of disability. We studied the functional aspects of gait in patients with essential tremor (ET), placing their findings within the context of two other neurological disorders (Parkinson's disease [PD] and dystonia) and comparing them with age-matched controls. We administered the six-item Activities of Balance Confidence (ABC-6) Scale and collected data on number of falls and near-falls, and use of walking aids in 422 participants (126 ET, 77 PD, 46 dystonia, 173 controls). Balance confidence was lowest in PD, intermediate in ET, and relatively preserved in dystonia compared with controls. This ordering reoccurred for each of the six ABC-6 items. The number of near-falls and falls followed a similar ordering. Use of canes, walkers, and wheelchairs was elevated in ET and even greater in PD. Several measures of balance confidence (ABC-6 items 1, 4, 5, and 6) were lower in torticollis cases than in those with blepharospasm, although the two groups did not differ with respect to falls or use of walking aids. Lower balance confidence, increased falls, and greater need for walking aids are variably features of a range of movement disorder patients compared to age-matched controls. While most marked among PD patients, these issues affected ET patients as well and, to a small degree, some patients with dystonia.
Zhu, Zhizhong; Cui, Liling; Yin, Miaomiao; Yu, Yang; Zhou, Xiaona; Wang, Hongtu; Yan, Hua
2016-06-01
To investigate the effects of hydrotherapy on walking ability and balance in patients with chronic stroke. Single-blind, randomized controlled pilot trial. Outpatient rehabilitation clinic at a tertiary neurological hospital in China. A total of 28 participants with impairments in walking and controlling balance more than six months post-stroke. After baseline evaluations, participants were randomly assigned to a land-based therapy (control group, n = 14) or hydrotherapy (study group, n = 14). Participants underwent individual sessions for four weeks, five days a week, for 45 minutes per session. After four weeks of rehabilitation, all participants were evaluated by a blinded assessor. Functional assessments included the Functional Reach Test, Berg Balance Scale, 2-minute walk test, and Timed Up and Go Test. After four weeks of treatment, the Berg Balance Scale, functional reach test, 2-minute walk test, and the Timed Up and Go Test scores had improved significantly in each group (P < 0.05). The mean improvement of the functional reach test and 2-minute walk test were significantly higher in the aquatic group than in the control group (P < 0.01). The differences in the mean values of the improvements in the Berg Balance Scale and the Timed Up and Go Test were not statistically significant. The results of this study suggest that a relatively short programme (four weeks) of hydrotherapy exercise resulted in a large improvement in a small group (n = 14) of individuals with relatively high balance and walking function following a stroke. © The Author(s) 2015.
A Thermodynamics Course Package in Onenote
ERIC Educational Resources Information Center
Falconer, John L.; Nicodemus, Garret D.; Medlin, J. Will; deGrazia, Janet; McDanel, Katherine P.
2014-01-01
A ready-to-use package of active-learning materials for a semester-long chemical engineering thermodynamics course was prepared for instructors, and similar materials are being prepared for a material and energy balance course. The course package includes ConcepTests, explanations of the ConcepTests for instructors, links to screencasts, chapter…
Higher Balance Task Demands are Associated with an Increase in Individual Alpha Peak Frequency
Hülsdünker, Thorben; Mierau, Andreas; Strüder, Heiko K.
2016-01-01
Balance control is fundamental for most daily motor activities, and its impairment is associated with an increased risk of falling. Growing evidence suggests the human cortex is essentially contributing to the control of standing balance. However, the exact mechanisms remain unclear and need further investigation. In a previous study, we introduced a new protocol to identify electrocortical activity associated with performance of different continuous balance tasks with the eyes opened. The aim of this study was to extend our previous results by investigating the individual alpha peak frequency (iAPF), a neurophysiological marker of thalamo-cortical information transmission, which remained unconsidered so far in balance research. Thirty-seven subjects completed nine balance tasks varying in surface stability and base of support. Electroencephalography (EEG) was recorded from 32 scalp locations throughout balancing with the eyes closed to ensure reliable identification of the iAPF. Balance performance was quantified as the sum of anterior-posterior and medio-lateral movements of the supporting platform. The iAPF, as well as power in the theta, lower alpha and upper alpha frequency bands were determined for each balance task after applying an ICA-based artifact rejection procedure. Higher demands on balance control were associated with a global increase in iAPF and a decrease in lower alpha power. These results may indicate increased thalamo-cortical information transfer and general cortical activation, respectively. In addition, a significant increase in upper alpha activity was observed in the fronto-central region whereas it decreased in the centro-parietal region. Furthermore, midline theta increased with higher task demands probably indicating activation of error detection/processing mechanisms. IAPF as well as theta and alpha power were correlated with platform movements. The results provide new insights into spectral and spatial characteristics of cortical oscillations subserving balance control. This information may be particularly useful in a clinical context as it could be used to reveal cortical contributions to balance dysfunction in specific populations such as Parkinson’s or vestibular loss. However, this should be addressed in future studies. PMID:26779005
Higher Balance Task Demands are Associated with an Increase in Individual Alpha Peak Frequency.
Hülsdünker, Thorben; Mierau, Andreas; Strüder, Heiko K
2015-01-01
Balance control is fundamental for most daily motor activities, and its impairment is associated with an increased risk of falling. Growing evidence suggests the human cortex is essentially contributing to the control of standing balance. However, the exact mechanisms remain unclear and need further investigation. In a previous study, we introduced a new protocol to identify electrocortical activity associated with performance of different continuous balance tasks with the eyes opened. The aim of this study was to extend our previous results by investigating the individual alpha peak frequency (iAPF), a neurophysiological marker of thalamo-cortical information transmission, which remained unconsidered so far in balance research. Thirty-seven subjects completed nine balance tasks varying in surface stability and base of support. Electroencephalography (EEG) was recorded from 32 scalp locations throughout balancing with the eyes closed to ensure reliable identification of the iAPF. Balance performance was quantified as the sum of anterior-posterior and medio-lateral movements of the supporting platform. The iAPF, as well as power in the theta, lower alpha and upper alpha frequency bands were determined for each balance task after applying an ICA-based artifact rejection procedure. Higher demands on balance control were associated with a global increase in iAPF and a decrease in lower alpha power. These results may indicate increased thalamo-cortical information transfer and general cortical activation, respectively. In addition, a significant increase in upper alpha activity was observed in the fronto-central region whereas it decreased in the centro-parietal region. Furthermore, midline theta increased with higher task demands probably indicating activation of error detection/processing mechanisms. IAPF as well as theta and alpha power were correlated with platform movements. The results provide new insights into spectral and spatial characteristics of cortical oscillations subserving balance control. This information may be particularly useful in a clinical context as it could be used to reveal cortical contributions to balance dysfunction in specific populations such as Parkinson's or vestibular loss. However, this should be addressed in future studies.
Yasuda, Kazuhiro; Kaibuki, Naomi; Harashima, Hiroaki; Iwata, Hiroyasu
2017-06-01
Impaired balance in patients with hemiparesis caused by stroke is frequently related to deficits in the central integration of afferent inputs, and traditional rehabilitation reinforces excessive visual reliance by focusing on visual compensation. The present study investigated whether a balance task involving a haptic biofeedback (BF) system, which provided supplementary vibrotactile sensory cues associated with center-of-foot-pressure displacement, improved postural control in patients with stroke. Seventeen stroke patients were assigned to two groups: the Vibrotactile BF and Control groups. During the balance task (i.e., standing on a foam mat), participants in the Vibrotactile BF group tried to stabilize their postural sway while wearing the BF system around the pelvic girdle. In the Control group, participants performed an identical postural task without the BF system. Pre- and post-test measurements of postural control using a force plate revealed that the stability of bipedal posture in the Vibrotactile BF group was markedly improved compared with that in the Control group. A balance task involving a vibrotactile BF system improved postural stability in patients with stroke immediately. This confirms the potential of a haptic-based BF system for balance training, both in routine clinical practice and in everyday life.
People with chronic low back pain have poorer balance than controls in challenging tasks.
da Silva, Rubens A; Vieira, Edgar R; Fernandes, Karen B P; Andraus, Rodrigo A; Oliveira, Marcio R; Sturion, Leandro A; Calderon, Mariane G
2018-06-01
To compare the balance of individuals with and without chronic low back pain during five tasks. The participants were 20 volunteers, 10 with and 10 without nonspecific chronic low back pain, mean age 34 years, 50% females. The participants completed the following balance tasks on a force platform in random order: (1) two-legged stance with eyes open, (2) two-legged stance with eyes closed, (3) semi-tandem with eyes open, (4) semi-tandem with eyes closed and (5) one-legged stance with eyes open. The participants completed three 60-s trials of tasks 1-4, and three 30-s trials of task 5 with 30-s rests between trials. The center of pressure area, velocity and frequency in the antero-posterior and medio-lateral directions were computed during each task, and compared between groups and tasks. Participants with chronic low back pain presented significantly larger center of pressure area and higher velocity than the healthy controls (p < 0.001). There were significant differences among tasks for all center of pressure variables (p < 0.001). Semi-tandem (tasks 3 and 4) and one-leg stance (task 5) were more sensitive to identify balance impairments in the chronic low back pain group than two-legged stance tasks 1 and 2 (effect size >1.37 vs. effect size <0.64). There were no significant interactions between groups and tasks. Individuals with chronic low back pain presented poorer postural control using center of pressure measurements than the healthy controls, mainly during more challenging balance tasks such as semi-tandem and one-legged stance conditions. Implications for Rehabilitation People with chronic low back had poorer balance than those without it. Balance tasks need to be sensitive to capture impairments. Balance assessments during semi-tandem and one-legged stance were the most sensitive tasks to determine postural control deficit in people with chronic low back. Balance assessment should be included during rehabilitation programs for individuals with chronic low back pain for better clinical decision making related to balance re-training as necessary.
Liu, Tai-Wa; Ng, Gabriel Y F; Ng, Shamay S M
2018-03-07
The consequences of falls are devastating for patients with stroke. Balance problems and fear of falling are two major challenges, and recent systematic reviews have revealed that habitual physical exercise training alone cannot reduce the occurrence of falls in stroke survivors. However, recent trials with community-dwelling healthy older adults yielded the promising result that interventions with a cognitive behavioral therapy (CBT) component can simultaneously promote balance and reduce the fear of falling. Therefore, the aim of the proposed clinical trial is to evaluate the effectiveness of a combination of CBT and task-oriented balance training (TOBT) in promoting subjective balance confidence, and thereby reducing fear-avoidance behavior, improving balance ability, reducing fall risk, and promoting independent living, community reintegration, and health-related quality of life of patients with stroke. The study will constitute a placebo-controlled single-blind parallel-group randomized controlled trial in which patients are assessed immediately, at 3 months, and at 12 months. The selected participants will be randomly allocated into one of two parallel groups (the experimental group and the control group) with a 1:1 ratio. Both groups will receive 45 min of TOBT twice per week for 8 weeks. In addition, the experimental group will receive a 45-min CBT-based group intervention, and the control group will receive 45 min of general health education (GHE) twice per week for 8 weeks. The primary outcome measure is subjective balance confidence. The secondary outcome measures are fear-avoidance behavior, balance ability, fall risk, level of activities of daily living, community reintegration, and health-related quality of life. The proposed clinical trial will compare the effectiveness of CBT combined with TOBT and GHE combined with TOBT in promoting subjective balance confidence among chronic stroke patients. We hope our results will provide evidence of a safe, cost-effective, and readily transferrable therapeutic approach to clinical practice that reduces fear-avoidance behavior, improves balance ability, reduces fall risk, promotes independence and community reintegration, and enhances health-related quality of life. ClinicalTrials.gov, NCT02937532 . Registered on 17 October 2016.