Sample records for material beam elements

  1. A comparison of FE beam and continuum elements for typical nitinol stent geometries

    NASA Astrophysics Data System (ADS)

    Ballew, Wesley; Seelecke, Stefan

    2009-03-01

    With interest in improved efficiency and a more complete description of the SMA material, this paper compares finite element (FE) simulations of typical stent geometries using two different constitutive models and two different element types. Typically, continuum elements are used for the simulation of stents, for example the commercial FE software ANSYS offers a continuum element based on Auricchio's SMA model. Almost every stent geometry, however, is made up of long and slender components and can be modeled more efficiently, in the computational sense, with beam elements. Using the ANSYS user programmable material feature, we implement the free energy based SMA model developed by Mueller and Seelecke into the ANSYS beam element 188. Convergence behavior for both, beam and continuum formulations, is studied in terms of element and layer number, respectively. This is systematically illustrated first for the case of a straight cantilever beam under end loading, and subsequently for a section of a z-bend wire, a typical stent sub-geometry. It is shown that the computation times for the beam element are reduced to only one third of those of the continuum element, while both formulations display a comparable force/displacement response.

  2. The use of a deformable photonic crystal for millimeter-wave beam steering

    NASA Astrophysics Data System (ADS)

    Lin, Shawn-Yu; Yang, Zu-Po; Chen, Mingfeng; Bur, James A.; Levitan, A.; Kosowsky, Lester H.

    2008-01-01

    A deformable photonic band gap (PBG) material is theoretically proposed as a transmissive element for beam steering at 77GHz. The deformation may be achieved by integrating microsprings (as spacers) into a one-dimensional PBG structure. This PBG material can produce a specific phase shift dependent on its spacer thickness. By varying the spacer thickness, we generate a continuous phase gradient across the element. Such a PBG device is experimentally realized, capable of beam deflection of up to ±15° and suitable for beam scanning for smart automobile radar application.

  3. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    NASA Astrophysics Data System (ADS)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  4. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  5. The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory

    PubMed Central

    Bosbach, Wolfram A.

    2015-01-01

    Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603

  6. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  7. Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2010-01-01

    Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.

  8. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    NASA Astrophysics Data System (ADS)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.

  9. Holographic Formation of Diffraction Elements for Transformation of Light Beams in Liquid Crystal - Photopolymer Compositions

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-03-01

    A theoretical model of holographic formation of diffractive optical elements for transformation of light beam field into Bessel-like fields in liquid crystal - photopolymer (LC-PPM) composite materials with a dyesensitizer is developed. Results of numerical modeling of kinetics ofvariation of the refractive index of a material in the process of formation with different relationships between the photopolymerization rates and diffusion processes are presented. Based on the results of numerical simulation, it is demonstrated that when the photopolarization process dominates, the diffractive element being formed is distorted. This leads to a change in the light field distribution at its output and consequently, to ineffective transformation of the reading beam. Thus, the necessity of optimizing of the recording conditions and of the prepolymeric composition to increase the transformation efficiency of light beam fields is demonstrated.

  10. Theoretical model of a polarization diffractive elements for the light beams conversion holographic formation in PDLCs

    NASA Astrophysics Data System (ADS)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2017-12-01

    In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.

  11. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials.

    PubMed

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.

  12. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F [Berkeley, CA

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  13. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  14. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  15. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  16. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE PAGES

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason; ...

    2017-03-14

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  17. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  18. A viscoelastic higher-order beam finite element

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Tressler, Alexander

    1996-01-01

    A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.

  19. Numerical model of glulam beam delamination in dependence on cohesive strength

    NASA Astrophysics Data System (ADS)

    Kawecki, Bartosz; Podgórski, Jerzy

    2018-01-01

    This paper presents an attempt of using a finite element method for predicting delamination of a glue laminated timber beam through a cohesive layer. There were used cohesive finite elements, quadratic stress damage initiation criterion and mixed mode energy release rate failure model. Finite element damage was equal to its complete stiffness degradation. Timber material was considered to be an orthotropic with plastic behaviour after reaching bending limit.

  20. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  1. Dye-impregnated polymer-filled porous glass: a new composite material for solid state dye lasers and laser beam control optical elements (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Koldunov, M. F.; Manenkov, Alexander A.; Sitnikov, N. M.; Dolotov, S. M.

    1994-07-01

    Polymer-filled microporous glass (PFMG) composite materials have been recently proposed as a proper host for dyes to create solid-state dye lasers and laser beam control elements (Q-switchers, etc.) [1,2]. In this paper we report investigation of some laser-related properties of Polymethilmethacrylate (PMAA) - filled porous glass doped with Rhodamine 6G perchiorate (active lasing dye) and 1055 dye (passive bleachable dye): laser induced damage threshold, lasmg efficiency, bleaching efficiency, and microhardness have been measured. All these characteristics have been found to be rather high indicating that PFMG composite materials are perspective hosts for dye impregnation and fabrication highly effective solid-state dye lasers and other laser related elements (Q-switchers, mode-lockers, modeselectors, spatial filters).

  2. Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS

    NASA Astrophysics Data System (ADS)

    Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang

    2014-02-01

    Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.

  3. On the role of CFRP reinforcement for wood beams stiffness

    NASA Astrophysics Data System (ADS)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates and sheets compared to those without CFRP reinforcement. The main conclusion of the tests is that the tensioning forces allow beam taking a maximum load for a while, something that is particularly useful when we consider a real construction, so in case of excess lift beam, we have time to take strengthening measures and when is about a catastrophic request (earthquake) the construction remain partially functional. The experiments have shown that the method of increasing resistance of wood constructions with composite materials is good for it. The solution is easy to implement and has low costs.

  4. Space Construction Automated Fabrication Experiment Definition Study. (SCAFEDS), part 3. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A range of tasks focused on a baseline system concept is discussed. A beam builder concept developed to produce a triangular beam is discussed. Beam elements used laminated graphite and glass composite strip material with external surface coatings are described.

  5. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giunta, G.; Belouettar, S.

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less

  7. Static Analysis of Functionally Graded Composite Beams

    NASA Astrophysics Data System (ADS)

    Das, S.; Sarangi, S. K.

    2016-09-01

    This paper presents a study of functionally graded (FG) composite beam. The FG material for the beam is considered to be composed of different layers of homogeneous material. The fiber volume fraction corresponding to each layer is calculated by considering its variation along the thickness direction (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and a beam composed of this FG material is modelled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG beam. The model developed is validated by comparing the results with those numerical results available in literature. Results are presented for simply supported and fixed boundary conditions for the FG beam. The stress distribution across the thickness of the FG composite beam has also been analyzed.

  8. Development of Design Analysis Methods for C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.

    2006-01-01

    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.

  9. Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2017-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.

  10. Ion beam analysis of diffusion in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Clough, A. S.; Jenneson, P. M.

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.

  11. Liquid Crystal Bragg Gratings: Dynamic Optical Elements for Spatial Light Modulators (Preprint)

    DTIC Science & Technology

    2007-01-01

    of the index of refraction in a material . If the index of refraction can be strongly modulated on a pixel •sutherlandr@saic.com 1 • level, then a...two optical beams .~,incident on a photorefractive material write a grating, due to the generation of a periodic space-charge field inducing an index ...modification of the material’s optical properties proportional to the applied voltage. A "read" beam of light incident on the material is thus spatially

  12. Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Masuda, K.; Ohgaki, H.

    2011-10-01

    A nondestructive inspection method for screening explosive materials that are hidden in passenger vehicles, trucks, and cargo containers with radiation shielding was presented. The method was examined experimentally using linearly polarized two-colored photon beam. A sample object was irradiated with the photon beam, followed by an emission of gamma-rays in nuclear resonance fluorescence. The gamma-rays from oxygen and nitrogen emitted through nuclear resonance fluorescence were measured using high-purity germanium detectors. We were able to evaluate the element concentration ratio.

  13. Diffractive elements for generating microscale laser beam patterns: a Y2K problem

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Krueger, Sven; Wernicke, Guenther K.; Ferstl, Margit

    2000-03-01

    Lasers are widely used in industrial fabrication for engraving, cutting and many other purposes. However, material processing at very small scales is still a matter of concern. Advances in diffractive optics could provide for laser systems that could be used for engraving or cutting of micro-scale patterns at high speeds. In our paper we focus on the design of diffractive elements which can be used for this special application. It is a common desire in material processing to apply 'discrete' as well as 'continuous' beam patterns. Especially, the latter case is difficult to handle as typical micro-scale patterns are characterized by bad band-limitation properties, and as speckles can easily occur in beam patterns. It is shown in this paper that a standard iterative design method usually fails to obtain diffractive elements that generate diffraction patterns with acceptable quality. Insights gained from an analysis of the design problems are used to optimize the iterative design method. We demonstrate applicability and success of our approach by the design of diffractive phase elements that generate a discrete and a continuous 'Y2K' pattern.

  14. A finite element beam propagation method for simulation of liquid crystal devices.

    PubMed

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  15. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  16. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  17. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam

    PubMed Central

    Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M. K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; Uesugi, M.

    2014-01-01

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (106 s−1 for a momentum of 60 MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ− capture. Controlling muon momentum from 32.5 to 57.5 MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples. PMID:24861282

  18. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam.

    PubMed

    Terada, K; Ninomiya, K; Osawa, T; Tachibana, S; Miyake, Y; Kubo, M K; Kawamura, N; Higemoto, W; Tsuchiyama, A; Ebihara, M; Uesugi, M

    2014-05-27

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (10(6) s(-1) for a momentum of 60 MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ(-) capture. Controlling muon momentum from 32.5 to 57.5 MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples.

  19. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    NASA Astrophysics Data System (ADS)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  20. Timoshenko beam model for chiral materials

    NASA Astrophysics Data System (ADS)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2017-12-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  1. Timoshenko beam model for chiral materials

    NASA Astrophysics Data System (ADS)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  2. Optical recording in functional polymer nanocomposites by multi-beam interference holography

    NASA Astrophysics Data System (ADS)

    Zhuk, Dmitrij; Burunkova, Julia; Kalabin, Viacheslav; Csarnovics, Istvan; Kokenyesi, Sandor

    2017-05-01

    Our investigations relate to the development of new polymer nanocomposite materials and technologies for fabrication of photonic elements like gratings, integrated elements, photonic crystals. The goal of the present work was the development and application of the multi-beam interference method for one step, direct formation of 1-, 2- or even 3D photonic structures in functional acrylate nanocomposites, which contain SiO2 and Au nanoparticles and which are sensitized to blue and green laser illumination. The presence of gold nanoparticles and possibility to excite plasmonic effects can essentially influence the polymerization processes and the spatial redistribution of nanoparticles in the nanocomposite during the recording. This way surface and volume phase reliefs can be recorded. It is essential, that no additional treatments of the material after the recording are necessary and the elements possess high transparency, are stable after some relaxation time. New functionalities can be provided to the recorded structures if luminescent materials are added to such materials.

  3. Short pulse laser stretcher-compressor using a single common reflective grating

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  4. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  5. Finite element stress, vibration, and buckling analysis of laminated beams with the use of refined elements

    NASA Astrophysics Data System (ADS)

    Borovkov, Alexei I.; Avdeev, Ilya V.; Artemyev, A.

    1999-05-01

    In present work, the stress, vibration and buckling finite element analysis of laminated beams is performed. Review of the equivalent single-layer (ESL) laminate theories is done. Finite element algorithms and procedures integrated into the original FEA program system and based on the classical laminated plate theory (CLPT), first-order shear deformation theory (FSDT), third-order theory of Reddy (TSDT-R) and third- order theory of Kant (TSDT-K) with the use of the Lanczos method for solving of the eigenproblem are developed. Several numerical tests and examples of bending, free vibration and buckling of multilayered and sandwich beams with various material, geometry properties and boundary conditions are solved. New effective higher-order hierarchical element for the accurate calculation of transverse shear stress is proposed. The comparative analysis of results obtained by the considered models and solutions of 2D problems of the heterogeneous anisotropic elasticity is fulfilled.

  6. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  7. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  8. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  9. Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC.

    PubMed

    Terada, K; Sato, A; Ninomiya, K; Kawashima, Y; Shimomura, K; Yoshida, G; Kawai, Y; Osawa, T; Tachibana, S

    2017-11-13

    Electron- or X-ray-induced characteristic X-ray analysis has been widely used to determine chemical compositions of materials in vast research fields. In recent years, analysis of characteristic X-rays from muonic atoms, in which a muon is captured, has attracted attention because both a muon beam and a muon-induced characteristic X-ray have high transmission abilities. Here we report the first non-destructive elemental analysis of a carbonaceous chondrite using one of the world-leading intense direct current muon beam source (MuSIC; MUon Science Innovative Channel). We successfully detected characteristic muonic X-rays of Mg, Si, Fe, O, S and C from Jbilet Winselwan CM chondrite, of which carbon content is about 2 wt%, and the obtained elemental abundance pattern was consistent with that of CM chondrites. Because of its high sensitivity to carbon, non-destructive elemental analysis with a muon beam can be a novel powerful tool to characterize future retuned samples from carbonaceous asteroids.

  10. High-performance axicon lenses based on high-contrast, multilayer gratings

    NASA Astrophysics Data System (ADS)

    Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.

    2018-01-01

    Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.

  11. Nonlinear thermo-mechanical analysis of stiffened composite laminates by a new finite element

    NASA Astrophysics Data System (ADS)

    Barut, Atila

    A new stiffened shell element combining shallow beam and shallow shell elements is developed for geometrically nonlinear analysis of stiffened composite laminates under thermal and/or mechanical loading. The formulation of this element is based on the principal of virtual displacements in conjunction with the co-rotational form of the total Lagrangian description of motion. In the finite element formulation, both the shell and the beam (stiffener) elements account for transverse shear deformations and material anisotropy. The cross-section of the stiffener (beam) can be arbitrary in geometry and lamination. In order to combine the stiffener with the shell element, constraint conditions are applied to the displacement and rotation fields of the stiffener. These constraint conditions ensure that the cross-section of the stiffener remains co-planar with the shell section after deformation. The resulting expressions for the displacement and rotation fields of the stiffener involve only the nodal unknowns of the shell element, thus reducing the total number of degrees of freedom. Also, the discretization of the entire stiffened shell structure becomes more flexible.

  12. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    NASA Astrophysics Data System (ADS)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  13. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yi., E-mail: zhaoyi091218@163.com; Xu, Li. Hua.

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of themore » ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.« less

  14. Better Finite-Element Analysis of Composite Shell Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Gregory

    2007-01-01

    A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.

  15. Development of geometry materials based on scientific approach for junior high school students

    NASA Astrophysics Data System (ADS)

    Nurafni; Siswanto, R. D.; Azhar, E.

    2018-01-01

    A scientific approach is a learning process designed so that learners can actively construct concepts, encourage learners to find out from various sources through observation, and not just be told. Therefore, learning by scientific approach offers a solution, because the goals, principles, and stages of the scientific approach allow for a good understanding of the students. Because of the absence of teaching materials “polyhedron geometry based on scientific approach” which is widely published in Indonesia, then we need to develop the teaching materials. The results obtained in this study are the tasks presented on teaching materials with a scientific approach both in defining the cube and the beam, identify and solve problems related to the properties and elements of cubes and beams, making cube and beam nets, solving problems related to cube and beam nets, solving problems related to cube and beam surface area. Beginning with the difficulties students face. Then, based on the results of interviews with teachers and analysis of student difficulties on each indicator, researchers revise the teaching materials as needed. Teaching materials that have not found any more student difficulties then the teaching materials are considered valid and ready for use by teachers and students.

  16. Non-isothermal elastoviscoplastic analysis of planar curved beams

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1988-01-01

    The development of a general mathematical model and solution methodologies, to examine the behavior of thin structural elements such as beams, rings, and arches, subjected to large nonisothermal elastoviscoplastic deformations is presented. Thus, geometric as well as material type nonlinearities of higher order are present in the analysis. For this purpose a complete true abinito rate theory of kinematics and kinetics for thin bodies, without any restriction on the magnitude of the transformation is presented. A previously formulated elasto-thermo-viscoplastic material constitutive law is employed in the analysis. The methodology is demonstrated through three different straight and curved beams problems.

  17. Finite element analysis of smart reinforced concrete beam with super elastic shape memory alloy subjected to static loading for seismic mitigation

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ismail, Muhammad Hussain; Ibrahim, Azmi; Adnan, Azlan

    2018-05-01

    Reinforced concrete beam has been among major applications in construction nowadays. However, the application of nickel titanium alloy as a replacement for steel rebar in reinforced concrete beam is a new approach nowadays despite of their ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this paper, the response of simply supported reinforced concrete (RC) beams with smart rebars, control beam subjected to static load has been numerically studied, and highlighted, using finite element method (FEM) where the material employed in this study is the superelastic shape memory alloys (SESMA). The SESMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. The size of the analysed beam is 125 mm × 270 mm × 2800 mm with 2 numbers of 12 mm diameter bars as main reinforcement for compression and 12 numbers of 12 as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars respectively. The concrete was modelled using solid 65 element (in ANSYS) and rebars were modelled using beam 188 elements (in ANSYS). The result for reinforced concrete with nickel titanium alloy rebar is compared with the result obtained for reinforced concrete beam with steel rebar in term of flexural behavior, load displacement relationship, crack behaviour and failure modes for various loading conditions starting from 10kN to 100kN using 3D FE modelling in ANSYS v 15. The response and result obtained from the 3D finite element analysis used in this study is load-displacement curves, residual displacements, Von-Misses, strain and stiffness are suitable for the corresponding result showed a satisfactory performance in the structural analysis. Resultant displacement, Von-Mises stress and maximum strain were influenced by the factors of the material properties, load increments and the mesh size. Nickel titanium alloy was superior to the conventional steel at limiting residual displacements and crack formation in the concrete beams and this ability makes this smart structure special to maintain their serviceability even after a strong earthquake for seismic mitigation.

  18. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  19. The role of damage-softened material behavior in the fracture of composites and adhesives

    NASA Technical Reports Server (NTRS)

    Ungsuwarungsri, T.; Knauss, W. G.

    1986-01-01

    Failure mechanisms of materials under very high strains experienced at and ahead of the crack tip such as formation, growth, and interaction of microvoids in ductile materials, microcracks in brittle solids or crazes in polymers and adhesives are represented by one-dimensional, nonlinear stress-strain relations possessing different ways by which the material loses capacity to carry load up to fracture or total separation. A double cantilever beam (DCB) type specimen is considered. The nonlinear material is confined to a thin strip between the two elastic beams loaded by a wedge. The problem is first modeled as a beam on a nonlinear foundation. The pertinent equation is solved numerically as a two-point boundary value problem for both the stationary and the quasi-stationay propagating crack. A finite element model is then used to model the problem in more detail in order to assess the adequacy of the beam model for the reduction of experimental data to determine in-situ properties of the thin interlayer.

  20. Model Reduction in Biomechanics

    NASA Astrophysics Data System (ADS)

    Feng, Yan

    The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.

  1. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge of such a problem. It was ascertained and proven that the general, non-modified (original) version of classical lamination theory cannot be used for an analytical solution for a simply curved beam or any other structure that would require rotations of laminates out their planes in space. Finite element analysis was used to ascertain stress variations in a simply curved beam. It was verified that these solutions reduce to the flat beam solutions as the radius of curvature of the beams tends to infinity. MATLAB was used to conduct the classical lamination theory numerical analysis. A MATLAB program was written to conduct the finite element analysis for the flat and curved beams, isotropic and composite. It does not require incompatibility techniques used in mechanics of isotropic materials for indeterminate structures that are equivalent to fixed-beam problems. Finally, it has the ability to enable the user to define and create unique elements not accessible in commercial software, and modify finite element procedures to take advantage of new paradigms.

  2. Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.

    1986-01-01

    The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.

  3. Wideband plasmonic beam steering in metal gratings.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; Scalora, Michael

    2012-01-15

    We demonstrate controllable light deflection in thick metal gratings with periodic subwavelength slits filled with an active material. Under specific illumination conditions, the grating becomes nearly transparent and acts as a uniform optical phased-array antenna where the phase of the radiating elements is controlled by modifying the index of refraction of the material that fills each slit. The beam-steering operational regime occurs in a wide wavelength band, and it is relatively insensitive to the input angle.

  4. Evaluation of fiber’s misorientation effect on compliance and load carry capacity of shaped composite beams

    NASA Astrophysics Data System (ADS)

    Polilov, A. N.; Tatus’, N. A.

    2018-04-01

    The goal of this paper is analysis of design methods for composite beams and plates with curvilinear fiber trajectories. The novelty of this approach is determined by the fact that traditional composite materials are typically formed using prepregs with rectilinear fibers only. The results application area is associated with design process for shaped composite structure element by using of biomechanical principles. One of the related problems is the evaluation of fiber’s misorientation effect on stiffness and load carry capacity of shaped composite element with curvilinear fiber trajectories. Equistrong beam with constant cross-section area is considered as example, and it can be produced by unidirectional fiber bunch forming, impregnated with polymer matrix. Effective elastic modulus evaluation methods for structures with curvilinear fiber trajectories are validated. Misorientation angle range (up to 5o) when material with required accuracy can be considered as homogeneous, neglecting fiber misorientation, is determined. It is shown that for the beams with height-to-width ratio small enough it is possible to consider 2D misorientation only.

  5. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  6. Optimum structural sizing of conventional cantilever and joined wing configurations using equivalent beam models

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Chen, J. L.

    1986-01-01

    The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.

  7. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration

    NASA Astrophysics Data System (ADS)

    Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.

    2018-04-01

    Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.

  8. Electro-optic modulator material

    DOEpatents

    Adams, John J.; Ebbers, Chris A.

    2005-02-22

    An electro-optic device for use with a laser beam. A crystal has a first face and a second face. Means are provided for applying a voltage across the crystal to obtain a net phase retardation on the polarization of the laser beam when the laser beam is passed through the crystal. In one embodiment the crystal is composed of a compound having the chemical formula ReAe40(BO3)3 where: RE consists of one or more of the following elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and two other elements Y and Sc; and where Ae is from the list of Ca, Sr, or Ba.

  9. Ultra-Low Threshold Vertical-Cavity Surface-Emitting Lasers for USAF Applications

    DTIC Science & Technology

    2005-01-01

    molecular beam epitaxy , semiconductors, finite element method, modeling and simulation, oxidation furnace 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...Patterson Air Force Base). Device material growth was accomplished by means of molecular beam epitaxy (MBE) using a Varian GENII MBE system owned by the...grown by molecular beam epitaxy on a GaAs substrate. Vertical posts, with square and circular cross sections ranging in size from 5 to 40 microns

  10. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.; Coupeau, C.; Colin, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  11. A new fabrication technique for complex refractive micro-optical systems

    NASA Astrophysics Data System (ADS)

    Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo

    2006-01-01

    We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.

  12. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  13. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  14. Targets for production of the medical radioisotopes with alpha and proton or deuteron beams

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Kowalska, J. A.; Jastrzebski, J.; Choiński, J.; Sitarz, M.; Szkliniarz, K.; Trzcińska, A.; Zipper, W.

    2018-05-01

    The research quantities of some medical radioisotopes were produced in reactions induced by 32 MeV internal alpha beam (211At, Sc isotopes), 16 MeV and 28 MeV proton beams (Sc isotopes) and 8 MeV deuteron beam (Sc isotopes). The frame-less targets used for irradiation with internal alpha beam were prepared from elemental (Bi for 211At) and compound (CaCO3 for Sc radioisotopes) materials. The CaCO3 powder targets were also used for production of Sc radioisotopes with proton or deuteron external beams. Methods developed for preparation of the targets suitable for the irradiating beam type are described in this work.

  15. Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties

    NASA Astrophysics Data System (ADS)

    Becker, T. I.; Zimmermann, K.; Borin, D. Yu.; Stepanov, G. V.; Storozhenko, P. A.

    2018-03-01

    Smart materials like magnetic hybrid elastomers (MHEs) are based on an elastic composite with a complex hybrid filler of magnetically hard and soft particles. Due to their unique magnetic field depending characteristics, these elastomers offer great potential for designing sensor systems with a complex adaptive behaviour and operating sensitivity. The present paper deals with investigations of the material properties and motion behaviour displayed by synthesised MHE beams in the presence of a uniform magnetic field. The distribution and structure formation of the magnetic components inside the elastic matrix depending on the manufacturing conditions are examined. The specific magnetic features of the MHE material during the magnetising process are revealed. Experimental investigations of the in-plane free vibrational behaviour displayed by the MHE beams with the fixed-free end conditions are performed for various magnitudes of an imposed uniform magnetic field. For the samples pre-magnetised along the length axis, it is demonstrated that the deflection of the beam can be identified unambiguously by magnetic field distortion measurements. It is shown that the material properties of the vibrating MHE element can be specifically adjusted by means of an external magnetic field control. The dependence of the first eigenfrequency of free bending vibrations of the MHE beams on the strength of an imposed uniform magnetic field is obtained. The results are aimed to assess the potential of MHEs to design acceleration sensor systems with an adaptive magnetically controllable sensitivity range.

  16. Sensitivity analysis of static resistance of slender beam under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeš, Jan

    2016-06-08

    The paper deals with statical and sensitivity analyses of resistance of simply supported I-beams under bending. The resistance was solved by geometrically nonlinear finite element method in the programme Ansys. The beams are modelled with initial geometrical imperfections following the first eigenmode of buckling. Imperfections were, together with geometrical characteristics of cross section, and material characteristics of steel, considered as random quantities. The method Latin Hypercube Sampling was applied to evaluate statistical and sensitivity resistance analyses.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H.; Yang, B. X.; Collins, J. T.

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  18. Development of micro-electromechanical system (MEMS) cochlear biomodel

    NASA Astrophysics Data System (ADS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  19. Development of micro-electromechanical system (MEMS) cochlear biomodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. Inmore » this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.« less

  20. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  1. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade.

    PubMed

    Lee, S H; Yang, B X; Collins, J T; Ramanathan, M

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  2. Nonlinear vibration of viscoelastic beams described using fractional order derivatives

    NASA Astrophysics Data System (ADS)

    Lewandowski, Roman; Wielentejczyk, Przemysław

    2017-07-01

    The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.

  3. Material processing with fiber based ultrafast pulse delivery

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Stockburger, R.; Führa, B.; Zoller, S.; Thum, S.; Moosmann, J.; Maier, D.; Kanal, F.; Russ, S.; Kaiser, E.; Budnicki, A.; Sutter, D. H.; Pricking, S.; Killi, A.

    2018-02-01

    We report on TRUMPF's ultrafast laser systems equipped with industrialized hollow core fiber laser light cables. Beam guidance in general by means of optical fibers, e.g. for multi kilowatt cw laser systems, has become an integral part of laser-based material processing. One advantage of fiber delivery, among others, is the mechanical separation between laser and processing head. An equally important benefit is given by the fact that the fiber end acts as an opto-mechanical fix-point close to successive optical elements in the processing head. Components like lenses, diffractive optical elements etc. can thus be designed towards higher efficiency which results in better material processing. These aspects gain increasing significance when the laser system operates in fundamental mode which is usually the case for ultrafast lasers. Through the last years beam guidance of ultrafast laser pulses by means of hollow core fiber technology established very rapidly. The combination of TRUMPF's long-term stable ultrafast laser sources, passive fiber coupling, connector and packaging forms a flexible and powerful system for laser based material processing well suited for an industrial environment. In this article we demonstrate common material processing applications with ultrafast lasers realized with TRUMPF's hollow core fiber delivery. The experimental results are contrasted and evaluated against conventional free space propagation in order to illustrate the performance of flexible ultrafast beam delivery.

  4. Plasticity - Theory and finite element applications.

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H. S.

    1972-01-01

    A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.

  5. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  6. Strain energy release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  7. Strain-energy-release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1987-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  8. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions

    NASA Astrophysics Data System (ADS)

    Su, Zhu; Jin, Guoyong; Ye, Tiangui

    2016-06-01

    The paper presents a unified solution for free and transient vibration analyses of a functionally graded piezoelectric curved beam with general boundary conditions within the framework of Timoshenko beam theory. The formulation is derived by means of the variational principle in conjunction with a modified Fourier series which consists of standard Fourier cosine series and supplemented functions. The mechanical and electrical properties of functionally graded piezoelectric materials (FGPMs) are assumed to vary continuously in the thickness direction and are estimated by Voigt’s rule of mixture. The convergence, accuracy and reliability of the present formulation are demonstrated by comparing the present solutions with those from the literature and finite element analysis. Numerous results for FGPM beams with different boundary conditions, geometrical parameters as well as material distributions are given. Moreover, forced vibration of the FGPM beams subjected to dynamic loads and general boundary conditions are also investigated.

  9. On the representative volume element of asphalt concrete at low temperature

    NASA Astrophysics Data System (ADS)

    Marasteanu, Mihai; Cannone Falchetto, Augusto; Velasquez, Raul; Le, Jia-Liang

    2016-08-01

    The feasibility of characterizing asphalt mixtures' rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.

  10. Producing carbon stripper foils containing boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, J. O. Jr.

    2012-12-19

    Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.

  11. Direct generation of vector vortex beams with switchable radial and azimuthal polarizations in a monolithic Nd:YAG microchip laser

    NASA Astrophysics Data System (ADS)

    He, Hong-Sen; Chen, Zhen; Dong, Jun

    2017-05-01

    A hollow focus lens (HFL) has been designed to effectively produce a focused annular beam for high-intensity pumping. By applying the central-dark pump beam, a monolithic Nd:YAG microchip laser without any extra optical elements is demonstrated to generate vector vortex beams with switchable radially polarized (RP) and azimuthally polarized (AP) states by easily controlling the pump power. The order and handedness of the output vortex beam remain stable during the switching of the RP and AP states. The monolithic Nd:YAG microchip laser provides a new laser source for applications such as material processing and optical manipulation.

  12. Free body analysis, beam mechanics, and finite element modeling of the mandible of Alligator mississippiensis.

    PubMed

    Porro, Laura B; Holliday, Casey M; Anapol, Fred; Ontiveros, Lupita C; Ontiveros, Lolita T; Ross, Callum F

    2011-08-01

    The mechanical behavior of mammalian mandibles is well-studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three-dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure-function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high-resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid-mandibular contact, suggesting important contributions from, and trade-offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the mechanical behavior of the Alligator mandible, including important performance metrics such as magnitude and orientation of reaction forces, and mediolateral bending and torsional stress distributions. J.Morphol. 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  13. Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr; Stolarski, Adam

    2017-10-01

    Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.

  14. A technique for measurement of material damping in metals. [absorption of structural vibration

    NASA Technical Reports Server (NTRS)

    Heine, J. C.

    1976-01-01

    The paper outlines the theory, design, and application of an apparatus based on the single beam resonant dwell technique to determine the damping capacity of metallic materials by measuring the response of a structural element to excitation at a modal frequency. In this apparatus, a cantilever beam specimen of a test material is clamped to a bar which is connected at one end to an electromagnetic shaker and at the other to a heavy base. The thickness of the bar at the base end is reduced by two saw cuts to provide a pivot around which the remainder of the bar can rotate when excited by the shaker which is connected to the bar by a rod passing through a hole in the base. The response of the supporting system to shaker excitation is measured with an accelerometer mounted on the bar at the root of the specimen. Specimen response is measured optically with a low-power microscope with a reticle. Specimen loss factor is determined in terms of acceleration at the beam root, beam tip displacement, and the beam natural frequency.

  15. Numerical analysis of beam with sinusoidally corrugated webs

    NASA Astrophysics Data System (ADS)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  16. Evaluation of a Nonlinear Finite Element Program - ABAQUS.

    DTIC Science & Technology

    1983-03-15

    anisotropic properties. * MATEXP - Linearly elastic thermal expansions with isotropic, orthotropic and anisotropic properties. * MATELG - Linearly...elastic materials for general sections (options available for beam and shell elements). • MATEXG - Linearly elastic thermal expansions for general...decomposition of a matrix. * Q-R algorithm • Vector normalization, etc. Obviously, by consolidating all the utility subroutines in a library, ABAQUS has

  17. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  18. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.

  19. A case study on the structural assessment of fire damaged building

    NASA Astrophysics Data System (ADS)

    Osman, M. H.; Sarbini, N. N.; Ibrahim, I. S.; Ma, C. K.; Ismail, M.; Mohd, M. F.

    2017-11-01

    This paper presents a case study on the structural assessment of building damaged by fire and discussed on the site investigations and test results prior to determine the existing condition of the building. The building was on fire for about one hour before it was extinguished. In order to ascertain the integrity of the building, a visual inspection was conducted for all elements (truss, beam, column and wall), followed by non-destructive, load and material tests. The load test was conducted to determine the ability of truss to resist service load, while the material test to determine the residual strength of the material. At the end of the investigation, a structural analysis was carried out to determine the new factor of safety by considering the residual strength. The highlighted was on the truss element due to steel behaviour that is hardly been predicted. Meanwhile, reinforced concrete elements (beam, column and wall) were found externally affected and caused its strength to be considered as sufficient for further used of building. The new factor of safety is equal to 2, considered as the minimum calculated value for the truss member. Therefore, this fire damaged building was found safe and can be used for further application.

  20. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    DOE PAGES

    Lee, S. H.; Yang, B. X.; Collins, J. T.; ...

    2017-02-07

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  1. Comparative Evaluation of a Four-Implant-Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design.

    PubMed

    Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol

    The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.

  2. Metaoptics for Spectral and Spatial Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Raghu Srimathi, Indumathi

    Laser beam combining and beam shaping are two important areas with applications in optical communications, high power lasers, and atmospheric propagation studies. In this dissertation, metaoptical elements have been developed for spectral and spatial beam shaping, and multiplexing. Beams carrying orbital angular momentum (OAM), referred to as optical vortices, have unique propagation properties. Optical vortex beams carrying different topological charges are orthogonal to each other and have low inter-modal crosstalk which allows for them to be (de)multiplexed. Efficient spatial (de)multiplexing of these beams have been carried out by using diffractive optical geometrical coordinate transformation elements. The spatial beam combining technique shown here is advantageous because the efficiency of the system is not dependent on the number of OAM states being combined. The system is capable of generating coaxially propagating beams in the far-field and the beams generated can either be incoherently or coherently multiplexed with applications in power scaling and dynamic intensity profile manipulations. Spectral beam combining can also be achieved with the coordinate transformation elements. The different wavelengths emitted by fiber sources can be spatially overlapped in the far-field plane and the generated beams are Bessel-Gauss in nature with enhanced depth of focus properties. Unique system responses and beam shapes in the far-field can be realized by controlling amplitude, phase, and polarization at the micro-scale. This has been achieved by spatially varying the structural parameters at the subwavelength scale and is analogous to local modification of material properties. With advancements in fabrication technology, it is possible to control not just the lithographic process, but also the deposition process. In this work, a unique combination of spatial structure variations in conjunction with the conformal coating properties of an atomic layer deposition tool has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.

  3. The use of a single multielement standard for trace analysis in biological materials by external beam PIXE

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.; Khaliquzzaman, M.; Islam, M. M.; Khan, A. H.

    1984-04-01

    The validity of the use of a single multielement standard for mass calibration in thick-target external beam PIXE analysis of biological materials has been investigated. In this study, the NBS orchard leaf, SRM 1571, was used as the basic standard for trace element analysis in other biological materials. Using the present procedure, the concentrations of K, Ca, Mn, Fe, Ni, Cu, Zn, Br, Rb and Sr were determined in several NBS reference materials such as bovine liver, spinach, rice flour, etc., generally in 20 μC irradiations with 2.0 MeV protons. The analytical results are compared with certified values of the NBS as well as with other measurements and the sources of errors are discussed.

  4. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  5. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  6. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Mayer, H; Tosh, R

    2015-06-15

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPEmore » phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of diagnostic CT beams. The results obtained here are being used to refine both simulations and design of calorimeter core components.« less

  7. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    NASA Astrophysics Data System (ADS)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.

    2018-03-01

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.

  8. Numerical Analysis of Deflections of Multi-Layered Beams

    NASA Astrophysics Data System (ADS)

    Biliński, Tadeusz; Socha, Tomasz

    2015-03-01

    The paper concerns the rheological bending problem of wooden beams reinforced with embedded composite bars. A theoretical model of the behaviour of a multi-layered beam is presented. The component materials of this beam are described with equations for the linear viscoelastic five-parameter rheological model. Two numerical analysis methods for the long-term response of wood structures are presented. The first method has been developed with SCILAB software. The second one has been developed with the finite element calculation software ABAQUS and user subroutine UMAT. Laboratory investigations were conducted on sample beams of natural dimensions in order to validate the proposed theoretical model and verify numerical simulations. Good agreement between experimental measurements and numerical results is observed.

  9. One-dimensional analysis of filamentary composite beam columns with thin-walled open sections

    NASA Technical Reports Server (NTRS)

    Lo, Patrick K.-L.; Johnson, Eric R.

    1986-01-01

    Vlasov's one-dimensional structural theory for thin-walled open section bars was originally developed and used for metallic elements. The theory was recently extended to laminated bars fabricated from advanced composite materials. The purpose of this research is to provide a study and assessment of the extended theory. The focus is on flexural and torsional-flexural buckling of thin-walled, open section, laminated composite columns. Buckling loads are computed from the theory using a linear bifurcation analysis and a geometrically nonlinear beam column analysis by the finite element method. Results from the analyses are compared to available test data.

  10. Target tracking and pointing for arrays of phase-locked lasers

    NASA Astrophysics Data System (ADS)

    Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis

    2016-09-01

    Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.

  11. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  12. Non-material finite element modelling of large vibrations of axially moving strings and beams

    NASA Astrophysics Data System (ADS)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  13. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  14. Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO

    NASA Astrophysics Data System (ADS)

    Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam

    2016-05-01

    The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02572b

  15. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  16. An efficient structural finite element for inextensible flexible risers

    NASA Astrophysics Data System (ADS)

    Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.

    2017-12-01

    A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.

  17. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  18. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less

  19. Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner

    NASA Astrophysics Data System (ADS)

    Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2018-04-01

    The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.

  20. Analyses for Debonding of Stitched Composite Sandwich Structures Using Improved Constitutive Models

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Sleight, D. W.; Krishnamurthy, T.; Raju, I. S.

    2001-01-01

    A fracture mechanics analysis based on strain energy release rates is used to study the effect of stitching in bonded sandwich beam configurations. Finite elements are used to model the configurations. The stitches were modeled as discrete nonlinear spring elements with a compliance determined by experiment. The constitutive models were developed using the results of flatwise tension tests from sandwich material rather than monolithic material. The analyses show that increasing stitch stiffness, stitch density and debond length decrease strain energy release rates for a fixed applied load.

  1. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.

    PubMed

    Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu

    2010-02-01

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

  2. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    NASA Astrophysics Data System (ADS)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.

  3. Evaluation of the radiation hazard for ion-beam analysis with MeV external proton beams (X-IBA)

    NASA Astrophysics Data System (ADS)

    Hofsäss, Hans

    2018-07-01

    MeV ion beams which are extracted into air or He atmosphere are used in many labs for proton-induced X-ray emission (PIXE), proton induced gamma ray emission (PIGE) or Rutherford backscattering (RBS) to analyze samples which are difficult or impossible to handle in vacuum. When MeV proton beams are extracted into air through thin Kapton foils or nowadays thin silicon nitride membranes, the protons will interact with air, as well as elements present in the analyzed samples. Typically the range of MeV protons in air is several cm, in Helium atmosphere several 10 cm and in human skin around 100 μm. Besides the severe radiation hazard in case of a direct exposure of skin with protons, there are a manifold of nuclear reactions or inelastic proton scattering processes which may cause activation of air and target materials but also prompt radiation. The radiation hazard associated with the direct and scattered beam, nuclear reaction products and radionuclide production in air have been discussed in a publication by Doyle et al. in 1991 which was used as a reference in several later publications. I have reevaluated the radiation hazards for external proton beams with up to 4.5 MeV using proton reaction cross sections taken from the JANIS book of proton induced cross sections. The radionuclide production in air is about 3 orders of magnitude lower compared to values given in the 1991 publication. Radionuclide production as well as generation of prompt alpha, gamma and neutron radiation in target materials for elements up to molybdenum is also evaluated.

  4. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  5. Quantitative ion beam analysis of M-C-O systems: application to an oxidized uranium carbide sample

    NASA Astrophysics Data System (ADS)

    Martin, G.; Raveu, G.; Garcia, P.; Carlot, G.; Khodja, H.; Vickridge, I.; Barthe, M. F.; Sauvage, T.

    2014-04-01

    A large variety of materials contain both carbon and oxygen atoms, in particular oxidized carbides, carbon alloys (as ZrC, UC, steels, etc.), and oxycarbide compounds (SiCO glasses, TiCO, etc.). Here a new ion beam analysis methodology is described which enables quantification of elemental composition and oxygen concentration profile over a few microns. It is based on two procedures. The first, relative to the experimental configuration relies on a specific detection setup which is original in that it enables the separation of the carbon and oxygen NRA signals. The second concerns the data analysis procedure i.e. the method for deriving the elemental composition from the particle energy spectrum. It is a generic algorithm and is here successfully applied to characterize an oxidized uranium carbide sample, developed as a potential fuel for generation IV nuclear reactors. Furthermore, a micro-beam was used to simultaneously determine the local elemental composition and oxygen concentration profiles over the first microns below the sample surface. This method is adapted to the determination of the composition of M?C?O? compounds with a sensitivity on elemental atomic concentrations around 1000 ppm.

  6. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    DOE PAGES

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; ...

    2018-03-08

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less

  7. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less

  8. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  9. Extraterrestrial processing and manufacturing of large space systems, volume 2, chapters 7-14 and appendices

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Production and support equipment specifications are described for the space manufacturing facility (SMF). Defined production equipment includes electromagnetic pumps for liquid metal, metal alloying furnaces, die casters, electron beam welders and cutters, glass forming for structural elements, and rolling. A cost analysis is presented which includes the development, the aquisition of all SMF elements, initial operating cost, maintenance and logistics cost, cost of terrestrial materials, and transportation cost for each major element. Computer program listings and outputs are appended.

  10. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  11. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less

  12. Analysis of shear test method for composite laminates

    NASA Technical Reports Server (NTRS)

    Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.

    1977-01-01

    An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.

  13. Element free Galerkin formulation of composite beam with longitudinal slip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad; Badli, Mohd Iqbal

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after beenmore » verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.« less

  14. All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient ( d n / d T ) measurements

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.

    2016-05-01

    This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.

  15. Ion beam texturing of surfaces

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Textured surfaces, typically with conical structures, have been produced previously by simultaneously etching a surface and seeding that surface with another material. A theory based on surface diffusion predicts a variation in cone spacing with surface temperature, as well as a critical temperature below which cones will not form. Substantial agreement with theory has been found for several combinations of seed and surface materials, including one with a high sputter yield seed on a low sputter yield surface (gold on aluminum). Coning with this last combination was predicted by the theory for a sufficiently mobile seed material. The existence of a minimum temperature for the formation of cones should also be important to those interested in ion-beam machining smooth surfaces. Elements contained in the environmental contaminants or in the sputtered alloys or compounds may serve as seed material.

  16. Spark Generated by ChemCam Laser During Tests

    NASA Image and Video Library

    2010-09-21

    The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.

  17. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  18. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    DOEpatents

    Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

  19. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.

  20. Comparative Investigation on Modal analysis of LM25 Aluminium alloy with other Aluminim alloys using Finite element analysis software

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.

    2017-03-01

    The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.

  1. An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices

    NASA Astrophysics Data System (ADS)

    Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar

    2018-07-01

    Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.

  2. Dynamic properties of unbonded, multi-strand beams subjected to flexural loading

    NASA Astrophysics Data System (ADS)

    Asker, Haval K.; Rongong, Jem A.; Lord, Charles E.

    2018-02-01

    Beam-like structures, constructed from many long strands that are constrained rather than bonded together, can provide appreciable levels of structural damping through friction between individual strands. This paper describes experimental and numerical studies, carried out on square-section metal beams, which are aimed at improving understanding of the relationship between construction and performance. A beam is formed from a pack of square-section strands that is held together at various compression loads with pre-calibrated clamps. Flexural deformation of the assembled beam is simulated using standard finite element analysis employing simple Coulomb friction at the interfaces. The validity of the assumptions used in the models is confirmed by comparison with three point bend tests on a regular nine strand construction at several different clamp loads. Dynamic loss factors for this beam are obtained by conducting forced vibration tests, which show that the damping is insensitive to frequency. Subsequent numerical studies are used to investigate the effects of increasing the number of strands whilst maintaining the overall cross-section geometry of the beam. It is found that the system stiffness drops and loss factor increases when more strands are used for a maintained beam cross-section. Interestingly, the energy dissipated by each beam construction is almost the same. These results provide a vital and necessary insight into the physics for stranded structures and materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements.

  3. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    PubMed

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  4. Viewing Spark Generated by ChemCam Laser for Mars Rover

    NASA Image and Video Library

    2010-09-21

    The ChemCam instrument for NASA Mars Science Laboratory mission uses a pulsed laser beam to vaporize a pinhead-size target, producing a flash of light from the ionized material plasma that can be analyzed to identify chemical elements in the target.

  5. Holographic acoustic elements for manipulation of levitated objects.

    PubMed

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-27

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  6. Holographic acoustic elements for manipulation of levitated objects

    NASA Astrophysics Data System (ADS)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  7. Holographic acoustic elements for manipulation of levitated objects

    PubMed Central

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  8. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; hide

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  9. Development of liquid crystal based adaptive optical elements for space applications

    NASA Astrophysics Data System (ADS)

    Geday, M. A.; Quintana, X.; Otón, E.; Cerrolaza, B.; Lopez, D.; Garcia de Quiro, F.; Manolis, I.; Short, A.

    2017-11-01

    In this paper we present the results obtained within the context of the ESA-funded project Programmable Optoelectronic Adaptive Element (AO/1-5476/07/NL/EM). The objective of this project is the development of adaptive (reconfigurable) optical elements for use in space applications and the execution of preliminary qualification tests in the relevant environment. The different designs and materials that have been considered and manufactured for a 2D beam steerer based on passive matrix liquid crystal programmable blaze grating will described and discussed.

  10. Simulation of Shear and Bending Cracking in RC Beam: Material Model and its Application to Impact

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Zuki, S. S. M.; Kamarudin, A. F.; Noh, M. S. Md

    2018-04-01

    This paper presents a simple and reliable non-linear numerical analysis incorporated with fully Lagrangian method namely Smoothed Particle Hydrodynamics (SPH) to predict the impact response of the reinforced concrete (RC) beam under impact loading. The analysis includes the simulation of the effects of high mass low-velocity impact load falling on beam structures. Three basic ideas to present the localized failure of structural elements are: (1) the accurate strength of concrete and steel reinforcement during the short period (dynamic), Dynamic Increase Factor (DIF) has been employed for the effect of strain rate on the compression and tensile strength (2) linear pressure-sensitive yield criteria (Drucker-Prager type) with a new volume dependent Plane-Cap (PC) hardening in the pre-peak regime is assumed for the concrete, meanwhile, shear-strain energy criterion (Von-Mises) is applied to steel reinforcement (3) two kinds of constitutive equation are introduced to simulate the crushing and bending cracking of the beam elements. Then, these numerical analysis results were compared with the experimental test results.

  11. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Abd El Baky, Hussien

    This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond--slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical analysis for 43 strengthened beams involving the five aforementioned variables. The response surface methodology (RSM) technique is employed to optimize the accuracy of the statistical models while minimizing the numbers of finite element runs. In particular, a face-centred design (FCD) is applied to evaluate the influence of the critical variables on the debonding load and debonding strain limits in the FRP laminates. Based on these statistical models, a nonlinear statistical regression analysis is used to propose design guidelines for the FRP flexural strengthening of reinforced concrete beams. (Abstract shortened by UMI.)

  12. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    NASA Astrophysics Data System (ADS)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  13. Finite Element Analysis of Active and Sensory Thermopiezoelectric Composite Materials. Degree awarded by Northwestern Univ., Dec. 2000

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2001-01-01

    Analytical formulations are developed to account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. The coupled response is captured at the material level through the thermopiezoelectric constitutive equations and leads to the inherent capability to model both the sensory and active responses of piezoelectric materials. A layerwise laminate theory is incorporated to provide more accurate analysis of the displacements, strains, stresses, electric fields, and thermal fields through-the-thickness. Thermal effects which arise from coefficient of thermal expansion mismatch, pyroelectric effects, and temperature dependent material properties are explicitly accounted for in the formulation. Corresponding finite element formulations are developed for piezoelectric beam, plate, and shell elements to provide a more generalized capability for the analysis of arbitrary piezoelectric composite structures. The accuracy of the current formulation is verified with comparisons from published experimental data and other analytical models. Additional numerical studies are also conducted to demonstrate additional capabilities of the formulation to represent the sensory and active behaviors. A future plan of experimental studies is provided to characterize the high temperature dynamic response of piezoelectric composite materials.

  14. Viscous Effects in the Elastodynamics of Thick Beams

    NASA Technical Reports Server (NTRS)

    Johnson, A. R.; Tessler, A.

    1997-01-01

    A viscoelastic higher-order thick beam finite element formulation is extended to include elastodynamic deformations. The material constitutive law is a special differential form of the Maxwell solid. In the constitutive model, the elastic strains and the conjugate viscous strains are coupled through a system of first- order ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. The elastodynamic equations of motion are derived from the virtual work principle. Computational examples are carried out for a thick orthotropic cantilevered beam. A quasi-static relaxation problem is employed as a validation test for the elastodynamic algorithm. The elastodynamic code is demonstrated by analyzing the damped vibrations of the beam which is deformed and then released to freely vibrate.

  15. Bright perspectives for nuclear photonics

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.

    2014-05-01

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.

  16. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    PubMed

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  17. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  18. Case study of flexure and shear strengthening of RC beams by CFRP using FEA

    NASA Astrophysics Data System (ADS)

    Jankowiak, Iwona

    2018-01-01

    In the paper the preliminary results of study on strengthening RC beams by means of CFRP materials under mixed shear-flexural work condition are presented. The Finite Element Method analyses were performed using numerical models proposed and verified earlier by the results of laboratory tests [4, 5] for estimation of effectiveness of CFRP strengthening of RC beams under flexure. The currently conducted analyses deal with 3D models of RC beams under mixed shear-flexural loading conditions. The symmetry of analyzed beams was taken into account (in both directions). The application of Concrete Damage Plasticity (CDP) model of RC beam allowed to predict a layout and propagation of cracks leading to failure. Different cases of strengthening were analyzed: with the use of CFRP strip or CFRP closed hoops as well as with the combination of above mentioned. The preliminary study was carried out and the first results were presented.

  19. The analysis of composite laminated beams using a 2D interpolating meshless technique

    NASA Astrophysics Data System (ADS)

    Sadek, S. H. M.; Belinha, J.; Parente, M. P. L.; Natal Jorge, R. M.; de Sá, J. M. A. César; Ferreira, A. J. M.

    2018-02-01

    Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method (RPIM). Here, a 2D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.

  20. The Race To X-ray Microbeam and Nanobeam Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, Gene E; Budai, John D; Pang, Judy

    2011-01-01

    X-ray microbeams are an emerging characterization tool with transformational implications for broad areas of science ranging from materials structure and dynamics, geophysics and environmental science to biophysics and protein crystallography. In this review, we discuss the race toward sub-10 nm- x-ray beams with the ability to penetrate tens to hundreds of microns into most materials and with the ability to determine local (crystal) structure. Examples of science enabled by current micro/nanobeam technologies are presented and we provide a perspective on future directions. Applications highlighted are chosen to illustrate the important features of various submicron beam strategies and to highlight themore » directions of current and future research. While it is clear that x-ray microprobes will impact science broadly, the practical limit for hard x-ray beam size, the limit to trace element sensitivity, and the ultimate limitations associated with near-atomic structure determinations are the subject of ongoing research.« less

  1. A low cost ion beam profile monitor

    NASA Astrophysics Data System (ADS)

    Godfrey, L.; Hoyes, G. G.; Pairsuwan, W.

    1990-09-01

    An intercepting multiwire ion beam profile monitor, of thickness 0.9 cm and active area 5 × 5 cm, has been developed for use with the low-intensity deuteron beamline at the Fast Neutron Research Facility (FNRF), Chiang Mai University. It has been used to optimise the transport of a continuous ion beam of current up to 200 μA and kinetic energy up to 140 keV. The monitor enables the determination of the two-dimensional beam profile using closely-spaced samples at 1.5 mm, and the measurement of relative beam current. The design incorporates low material and labour costs, elimination of the need for commercial vacuum feedthroughs, a minimal amount of devoted electronics with no need for preamplifiers, and permits quick insertion of the monitors, wherever needed along the beamline, with minimum disruption to neighbouring elements.

  2. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique. Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.

    2012-11-08

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior ofmore » individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.« less

  3. Material damage modeling and detection in a thin metallic sheet and sandwich panel using passive acoustic transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.

  4. Mechatronic Materials and Systems. Design and Demonstration of High Aughtority Shape Morphing Structures

    DTIC Science & Technology

    2005-09-01

    thermal expansion of these truss elements. One side of the structure is fully clamped, while the other is free to displace. As in prior assessments [6...levels, by using the finite element package ABAQUS . To simulate the complete system, the core and the Kagome face members are modeled using linear...code ABAQUS . To simulate the complete actuation system, the core and Kagome members are modeled using linear Timoshenko-type beams, while the solid

  5. Identification of moving sinusoidal wave loads for sensor structural configuration by finite element inverse method

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yu, S.

    2018-03-01

    In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.

  6. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-ENG-38, and by NASA under Work Orders W-19,895 and W-10,091.

  7. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  8. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.

    PubMed

    Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos

    2009-04-01

    In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface.

  9. Stratified Volume Diffractive Optical Elements as Low-Mass Coherent Lidar Scanners

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.; Kavaya, Michael J.

    1999-01-01

    Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.

  10. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  11. Mixed formulation for seismic analysis of composite steel-concrete frame structures

    NASA Astrophysics Data System (ADS)

    Ayoub, Ashraf Salah Eldin

    This study presents a new finite element model for the nonlinear analysis of structures made up of steel and concrete under monotonic and cyclic loads. The new formulation is based on a two-field mixed formulation. In the formulation, both forces and deformations are simultaneously approximated within the element through independent interpolation functions. The main advantages of the model is the accuracy in global and local response with very few elements while maintaining rapid numerical convergence and robustness even under severe cyclic loading. Overall four elements were developed based on the new formulation: an element that describes the behavior of anchored reinforcing bars, an element that describes the behavior of composite steel-concrete beams with deformable shear connectors, an element that describes the behavior of reinforced concrete beam-columns with bond-slip, and an element that describes the behavior of pretensioned or posttensioned, bonded or unbonded prestressed concrete structures. The models use fiber discretization of beam sections to describe nonlinear material response. The transfer of forces between steel and concrete is described with bond elements. Bond elements are modeled with distributed spring elements. The non-linear behavior of the composite element derives entirely from the constitutive laws of the steel, concrete and bond elements. Two additional elements are used for the prestressed concrete models, a friction element that models the effect of friction between the tendon and the duct during the posttensioning operation, and an anchorage element that describes the behavior of the prestressing tendon anchorage in posttensioned structures. Two algorithms for the numerical implementation of the new proposed model are presented; an algorithm that enforces stress continuity at element boundaries, and an algorithm in which stress continuity is relaxed locally inside the element. Stability of both algorithms is discussed. Comparison with standard displacement based models and earlier flexibility based models is presented through numerical studies. The studies prove the superiority of the mixed model over both displacement and flexibility models. Correlation studies of the proposed model with experimental results of structural specimens are conducted. The studies show the accuracy of the model and its numerical robustness even under severe cyclic loading conditions.

  12. Hydrogels for engineering: normalization of swelling due to arbitrary stimulus

    NASA Astrophysics Data System (ADS)

    Ehrenhofer, Adrian; Wallmersperger, Thomas

    2017-04-01

    In engineering, materials are chosen from databases: Engineers orient on specific parameters such as Young's modulus, yield stress or thermal expansion coefficients for a desired application. For hydrogels, the choice of materials is rather tedious since no generalized material parameters are currently available to quantify the swelling behavior. The normalization of swelling, which we present in the current work, allows an easy comparison of different hydrogel materials. Thus, for a specific application like a sensor or an actuator, an adequate material can be chosen. In the current work, we present the process of normalization and provide a course of action for the data analysis. Special challenges for hydrogels like hysteresis, conditional multi-sensitivity and anisotropic swelling are addressed. Then, the Temperature Expansion Model is shortly described and applied. Using the derived normalized swelling curves, a nonlinear expansion coefficient ß(F) is derived. The derived material behavior is used in an analytical model to predict the bending behavior of a beam made of thermo-responsive hydrogel material under an anisotropic temperature load. A bending behavior of the beam can be observed and the impact of other geometry and material parameters can be investigated. To overcome the limitations of the one-dimensional beam theory, the material behavior and geometry can be implemented in Finite Element analysis tools. Thus, novel applications for hydrogels in various fields can be envisioned, designed and tested. This can lead to a wider use of smart materials in sensor or actuator devices even by engineers without chemical background.

  13. Mathematical model of mass transfer at electron beam treatment

    NASA Astrophysics Data System (ADS)

    Konovalov, Sergey V.; Sarychev, Vladimir D.; Nevskii, Sergey A.; Kobzareva, Tatyana Yu.; Gromov, Victor E.; Semin, Alexander P.

    2017-01-01

    The paper proposes a model of convective mass transfer at electron beam treatment with beams in titanium alloys subjected to electro-explosion alloying by titanium diboride powder. The proposed model is based on the concept that treatment with concentrated flows of energy results in the initiation of vortices in the melted layer. The formation mechanism of these vortices rooted in the idea that the availability of temperature drop leads to the initiation of the thermo-capillary convection. For the melted layer of metal the equations of the convective heat transfer and boundary conditions in terms of the evaporated material are written. The finite element solution of these equations showed that electron-beam treatment results in the formation of multi-vortex structure that in developing captures all new areas of material. It leads to the fact that the strengthening particles are observed at the depth increasing many times the depth of their penetration according to the diffusion mechanism. The distribution of micro-hardness at depth and the thickness of strengthening zone determined from these data supported the view that proposed model of the convective mass transfer describes adequately the processes going on in the treatment with low-energy high-current electron beam.

  14. Characterization of Noble Gas Ion Beam Fabricated Single Molecule Nanopore Detectors

    NASA Astrophysics Data System (ADS)

    Rollings, Ryan; Ledden, Bradley; Shultz, John; Fologea, Daniel; Li, Jiali; Chervinsky, John; Golovchenko, Jene

    2006-03-01

    Nanopores fabricated with low energy noble gas ion beams in a silicon nitride membrane can be employed as the fundamental element of single biomolecule detection and characterization devices [1,2]. With the help of X-ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering (RBS), we demonstrate that the electrical noise properties, and hence ultimate sensitivity of nanopore single molecule detectors depends on ion beam species and nanopore annealing conditions. .1. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169. 2. Li, J., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nature Materials, 2003. 2: p. 611-615.

  15. Vibration control of beams using constrained layer damping with functionally graded viscoelastic cores: theory and experiments

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, A.; Baz, A.

    2006-03-01

    Conventionally, the viscoelastic cores of Constrained Layer Damping (CLD) treatments are made of materials that have uniform shear modulus. Under such conditions, it is well-recognized that these treatments are only effective near their edges where the shear strains attain their highest values. In order to enhance the damping characteristics of the CLD treatments, we propose to manufacture the cores from Functionally Graded ViscoElastic Materials (FGVEM) that have optimally selected gradient of the shear modulus over the length of the treatments. With such optimized distribution of the shear modulus, the shear strain can be enhanced, and the energy dissipation can be maximized. The theory governing the vibration of beams treated with CLD, that has functionally graded viscoelastic cores, is presented using the finite element method (FEM). The predictions of the FEM are validated experimentally for plain beams, beams treated conventional CLD, and beams with CLD/FGVEM of different configurations. The obtained results indicate a close agreement between theory and experiments. Furthermore, the obtained results demonstrate the effectiveness of the new class of CLD with functionally graded cores in enhancing the energy dissipation over the conventional CLD over a broad frequency band. Extension of the proposed one-dimensional beam/CLD/FGVEM system to more complex structures is a natural extension to the present study.

  16. Experimental study on the use of steel-decks for prefabricated reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Priastiwi, Y. A.; Han, A. L.; Maryoto, A.; Noor, E. S.

    2017-11-01

    This paper presents an experimental study on the use of steel-decks for concrete beams. The purpose of this research is to determine the beam’s capacity, and the loaddisplacement relationships due to the use of steel-decks. The failure mechanism was also studied, since the behavior differs significantly from conventional concrete members. For analysis purposes, two beam prototypes with steel-decks (GB1 and GB2), and two conventional concrete beams having the exact same material properties and dimensions (NB1 and NB2) functioning as control elements, were tested. Load was applied by a two-point loading system, creating a pure bending state. To monitor vertical deflections, two LVDTs were used. All precision instruments were connected to a data logger, and a computer. The results showed that the beams GB had a significant ultimate moment capacity increase, which is 2,3 times the control element NB. The main enhancement contribution is originated from the presence of the bottom steel-deck, which due to bonding to the concrete, functioned as additional tensile reinforcement. The deck also increased the member’s ductility performance by 1.3 times. Specimen GB2 underwent bond loss in the transition zone between the deck and the concrete, reducing the initial stiffness of the member.

  17. Displacement potential solution of a guided deep beam of composite materials under symmetric three-point bending

    NASA Astrophysics Data System (ADS)

    Rahman, M. Muzibur; Ahmad, S. Reaz

    2017-12-01

    An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.

  18. Active shape control of composite blades using shape memory actuation

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    2001-10-01

    This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).

  19. Neutron capture and stellar synthesis of heavy elements.

    PubMed

    Gibbons, J H; Macklin, R L

    1967-05-26

    The neutron buildup processes of heavy-element synthesis in stars have left us a number of tantalizing nuclear clues to the early history of solarsystem material. Considerable illumination of our past history has been achieved through studying the correlations between abundance and neutroncapture cross section. Measurement of these cross sections required the development of new techniques for measuring time of flight of pulsed neutron beams. A clear conclusion is that many of our heavy elements were produced inside stars, which can be thought of as giant fast reactors. Extensions of these capture studies have given a clearer picture of additional. violent processes which produced some heavy elements, particularly thorium and uranium. In addition, the correlations have been used for obtaining an independent measure of the time that has elapsed since the solar-system material was synthesized. Finally, data on capture cross section relative to abundance will enable us to determine rather accurately the solar-system abundances of gaseous, volatile, and highly segregated elements.

  20. Ion beam analysis in cultural heritage studies: Milestones and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dran, Jean-Claude; Calligaro, Thomas

    2013-07-18

    For three decades, ion beam analysis (IBA) in external mode was considered as the best choice for the characterisation of cultural heritage materials, as it combines excellent analytical performance and non-invasive character. However, in recent years, other analytical techniques arose as serious competitors, such as those based on synchrotron radiation (X-ray absorption, fluorescence or diffraction) or those using portable instruments (XRF, micro-Raman). It is shown that nevertheless IBA remains unmatched thanks to two unique features, namely the analysis of light elements and the high-resolution 3D chemical imaging.

  1. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  2. Continuation of tailored composite structures of ordered staple thermoplastic material

    NASA Technical Reports Server (NTRS)

    Santare, Michael H.; Pipes, R. Byron

    1992-01-01

    The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses are performed for curved beams of various cross-sections loaded in pure bending and with a uniform distributed load. Preliminary results show that the geometry of the beam dictates the effect of heterogeneity on performance. The role of heterogeneity is larger in beams with a small average radius-to-depth ration, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radii. Results of the anlysis are in the form of stresses and displacements and are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  3. Analysis of SMA Hybrid Composite Structures in MSC.Nastran and ABAQUS

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2005-01-01

    A thermoelastic constitutive model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures was recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilever beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilever beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  4. Undergraduate Research and Training in Ion-Beam Analysis of Environmental Materials

    NASA Astrophysics Data System (ADS)

    Vineyard, Michael F.; Chalise, Sajju; Clark, Morgan L.; LaBrake, Scott M.; McCalmont, Andrew M.; McGuire, Brendan C.; Mendez, Iseinie I.; Watson, Heather C.; Yoskowitz, Joshua T.

    We have an active undergraduate research program at the Union College Ion-Beam Analysis Laboratory (UCIBAL) focused on the study of environmental materials. Accelerator-based ion-beam analysis (IBA) is a powerful tool for the study of environmental pollution because it can provide information on a broad range of elements with high sensitivity and low detection limits, is non-destructive, and requires little or no sample preparation. It also provides excellent training for the next generation of environmental scientists. Beams of protons and alpha particles with energies of a few MeV from the 1.1-MV tandem Pelletron accelerator (NEC Model 3SDH) in the UCIBAL are used to characterize environmental samples using IBA techniques such as proton-induced X-ray emission, Rutherford back-scattering, and proton-induced gamma-ray emission. Recent projects include the characterization of atmospheric aerosols in the Adirondack Mountains of upstate New York, the study of heavy metal pollutants in river sediment, measurements of Pb diffusion in sulfide minerals to help constrain the determination of the age of iron meteorites, and the search for heavy metals and toxins in artificial turf.

  5. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  6. Some Aspects on the Mechanical Analysis of Micro-Shutters

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Lu, Shude

    1999-01-01

    An array of individually addressable micro-shutters is being designed for spectroscopic applications. Details of the design are presented in a companion paper. The mechanical design of a single shutter element has been completed. This design consists of a shutter blade suspended on a torsion beam manufactured out of single crystal silicon membranes. During operation the shutter blade will be rotated by 90 degrees out of the array plane. Thus, the stability and durability of the beams are crucial for the reliability of the devices. Structures were fabricated using focused ion beam milling in a FEI 620 dual beam machine, and subsequent testing was completed using the same platform. This allowed for short turn around times. We performed torsion and bending experiments to determine key characteristics of the membrane material. Results of measurements on prototype shutters were compared with the predictions of the numerical models. The data from these focused studies were used in conjunction with experiments and numerical models of shutter prototypes to optimize the design. In this work, we present the results of the material studies, and assess the mechanical performance of the resulting design.

  7. Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach

    DTIC Science & Technology

    2012-10-10

    IrwIn D. OlIn Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Sotera Defense Solutions, Inc...2012 Formal Report Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Irwin D. Olin* Naval...Manuscript approved June 30, 2012. 1 FLAT-TOP SECTOR BEAMS USING ONLY ARRAY ELEMENT PHASE WEIGHTING: A METAHEURISTIC

  8. Beam-Forming Concentrating Solar Thermal Array Power Systems

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  9. Spectral K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.

    2014-05-01

    We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.

  10. Pulsed—Laser Deposition Of Oxide Thin Films And Laser—Induced Breakdown Spectroscopy Of Multi—Element Materials

    NASA Astrophysics Data System (ADS)

    Pedarnig, Johannes D.

    2010-10-01

    New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.

  11. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2015-10-01

    A scanning electron microscope with a silicon drift detector energy-dispersive X-ray spectrometer (SEM/SDD-EDS) was used to analyze materials containing the low atomic number elements B, C, N, O, and F achieving a high degree of accuracy. Nearly all results fell well within an uncertainty envelope of ±5% relative (where relative uncertainty (%)=[(measured-ideal)/ideal]×100%). Quantification was performed with the standards-based "k-ratio" method with matrix corrections calculated based on the Pouchou and Pichoir expression for the ionization depth distribution function, as implemented in the NIST DTSA-II EDS software platform. The analytical strategy that was followed involved collection of high count (>2.5 million counts from 100 eV to the incident beam energy) spectra measured with a conservative input count rate that restricted the deadtime to ~10% to minimize coincidence effects. Standards employed included pure elements and simple compounds. A 10 keV beam was employed to excite the K- and L-shell X-rays of intermediate and high atomic number elements with excitation energies above 3 keV, e.g., the Fe K-family, while a 5 keV beam was used for analyses of elements with excitation energies below 3 keV, e.g., the Mo L-family.

  12. Protective carrier for microcircuit devices

    DOEpatents

    Robinson, Lyle A.

    1976-10-26

    An improved protective carrier for microcircuit devices having beam leads wherein a compressible member is disposed on the carrier base beneath and overlapping the periphery of an aperture in a flexible circuit element, the element being adapted to receive and make electrical contact with microcircuit device beam leads, the compressible member disposed or arranged to achieve flexing of the circuit element against the microcircuit device beam leads to conform to variations in thicknesses of the device beam leads or circuit element electrical paths and thereby insure electrical connection between the beam leads and the electrical paths.

  13. Verification of Orthogrid Finite Element Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  14. Analysis of castellated steel beam with oval openings

    NASA Astrophysics Data System (ADS)

    Tudjono, S.; Sunarto; Han, A. L.

    2017-11-01

    A castellated steel beam is per definition a wide flange (WF) or I shaped steel profile with openings, to reduce self-weight and improve the effectiveness in terms of material use. Recently, extensive study on these castellated steel beams has been conducted, involving different shapes in web openings. The main goal of these research works was to evaluate and analyze its optimum opening sizes and shapes configuration. More in-depth research work to the behavior and the influence of holes to WF beams need to be conducted. In this paper, an oval shaped web opening is chosen as alternate. The study involves a modification in the variation of oval web openings both in the horizontally and vertically direction. An experimental and numerical study based on the finite element method conducted with the Abaqus/CAE 6.12 software is used to analyze the buckling behavior of the web. The obtained results from the experimental test specimens are in good agreement with the obtained results from the finite element analysis. Furthermore, the numerical model can be expanded to be used as analyzing tool in evaluating and studying the effect and influencing factors of a variation in opening’s parameters.

  15. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  16. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  17. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    PubMed

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.

  18. Measurement of the mass attenuation coefficient from 81 keV to 1333 keV for elemental materials Al, Cu and Pb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gjorgieva, Slavica, E-mail: slavicagjorgieva89@gmail.com; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, POB 162, 1000 Skopje; Barandovski, Lambe, E-mail: lambe@pmf.ukim.mk

    The mass attenuation coefficients (μ/ρ) for 3 high purity elemental materials Al, Cu and Pb were measured in the γ-ray energy range from 81 keV up to 1333 keV using {sup 22}Na, {sup 60}Co {sup 133}Ba and {sup 133}Cs as sources of gamma radiation. Well shielded detector (NaI (Tl) semiconductor detector) was used to measure the intensity of the transmitted beam. The measurements were made under condition of good geometry, assuring that any photon absorbed or deflected appreciably does not reach the detector. The measured values are compared with the theoretical ones obtained by Seltzer (1993).

  19. Experimental Comparison of Different Carbon Fiber Composites in Reinforcement Layouts for Wooden Beams of Historical Buildings

    PubMed Central

    Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino

    2017-01-01

    This paper offers a detailed, quantitative and exhaustive experimental comparison in terms of mechanical properties of three different layouts of carbon composite materials (CFRP) used to strengthen existing old timber beams highly affected by diverse natural defects and biological attacks, testing the use of pultruded laminate attached on the tension side of the element (LR), CFRP fabrics totally U-shape wrapping the timber element (UR), and the combined use of both reinforcement solutions (UR-P). Moreover, unidirectional and bidirectional fabrics were considered and compared. Timber elements used for the experimental program were extracted from a recent rehabilitation of the roof of the current Faculty of Law building, University of Granada (Spain), catalogued as a historical edifice. Experimental results from bending tests show that in all cases reinforcement provides a clear improvement in terms of bending capacity and stiffness as compared with the control specimens (without reinforcement). However, improvements in terms of ductility differ considerably depending on the kind of layout. PMID:28934116

  20. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.

    PubMed

    Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R

    2009-11-09

    Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

  1. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  2. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  3. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.

  4. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  5. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  6. Negative radiation forces on spheres illuminated by acoustic Bessel beams.

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Thiessen, David B.

    2007-11-01

    An analytical solution for the scattering of an acoustic Bessel beam by a sphere centered on the beam has made it possible to explore the way the acoustic radiation force on elastic and fluid spheres depends on beam and material parameters. Situations have been previously noted where, even in the absence of absorption, the radiation force of the beam on the sphere is opposite the direction of beam propagation [1]. In extensions of that work, conditions have been identified for such a force reversal on solid spheres and elastic shells. Negative radiation forces may be useful for manipulation of objects in reduced gravity and of biological cells (with single beam acoustic tweezers). The finite element method (FEM) has been used to evaluate the total acoustic field in the region near the sphere. This makes it possible to evaluate the radiation force from numerical integration of an appropriate projection of the Brillouin radiation stress tensor. FEM and analytical results agree for plane wave and Bessel beam illumination. 1. P. L. Marston, J. Acoust. Soc. Am. 120, 3518-3524 (2006).

  7. Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials

    NASA Astrophysics Data System (ADS)

    Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.

    2018-04-01

    Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

  8. Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors

    PubMed Central

    Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.

    2014-01-01

    Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical ultrasound transducers. AE ultrasound detectors may also be useful for monitoring acoustic exposure during therapy or as receivers for photoacoustic imaging. PMID:24658721

  9. Structural Modeling of a Five-Meter Thin Film Inflatable Antenna/Concentrator

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Tinker, Michael L.; Taylor, W. Scott; Brunty, Joseph A. (Technical Monitor)

    2002-01-01

    Inflatable structures have been the subject of renewed interest in recent years for space applications such as communications antennas, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is their extremely light weight. An obvious second advantage is on-orbit deployability and related space savings in the launch configuration. A recent technology demonstrator flight for inflatable structures was the Inflatable Antenna Experiment (IAE) that was deployed on orbit from the Shuttle Orbiter. Although difficulty was encountered in the inflation/deployment phase, the flight was successful overall and provided valuable experience in the use of such structures. Several papers on static structural analysis of inflated cylinders have been written, describing different techniques such as linear shell theory, and nonlinear and variational methods, but very little work had been done in dynamics of inflatable structures until recent years. In 1988 Leonard indicated that elastic beam bending modes could be utilized in approximating lower-order frequencies of inflatable beams. Main, et al. wrote a very significant 1995 paper describing results of modal tests of inflated cantilever beams and the determination of effective material properties. Changes in material properties for different pressures were also discussed, and the beam model was used in a more complex structure. The paper demonstrated that conventional finite element analysis packages could be very useful in the analysis of complex inflatable structures. The purposes of this paper are to discuss the methodology for dynamically characterizing a large 5-meter thin film inflatable reflector, and to discuss the test arrangement and results. Nonlinear finite element modal results are compared to modal test data. The work is significant and of considerable interest to researchers because of 1) the large size of the structure, making it useful for scaling studies, and 2) application of commercially available finite element software for modeling pressurized thin-film structures.

  10. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  11. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  12. Enhanced identification of trace element fingerprint of prehistoric pigments by PIXE mapping

    NASA Astrophysics Data System (ADS)

    Lebon, M.; Pichon, L.; Beck, L.

    2018-02-01

    The elemental composition of Fe rich rocks used as pigment during prehistoric periods can provide valuable information about the type of material used and their geological origin. However, these materials present several analytical constraints since their patrimonial value involve using non-invasive techniques maintaining a high sensitivity of the detection and the quantification of trace elements. Micro-beam techniques also require to take into account the heterogeneity of these geomaterials from the macroscopic to microscopic scales. Several previous studies have demonstrated that PIXE analysis satisfies these analytical conditions. However, application of micro-PIXE analysis is still complex when thin and discontinuous layer of pigment is deposed on the surface of other materials such as rocks or bones. In such case, PIXE imaging could improve the ability to take into account the high heterogeneity of such archaeological objects. In study, we used PIXE imaging system developed at the NewAGLAE facility in order to visualize distribution of elements associated with iron-rich pigment phase. The results obtained show that PIXE maps can improve the identification of the main trace elements specific to the iron mineral phase. By grouping pixels of iron-rich areas and performing quantitative treatment, it was possible to reveal additional trace elements associated to pigment. This study highlights the contribution of PIXE imaging to the identification of elements associated with mineral phases of interest and to use them as proxies to discriminate different geological materials used in archaeological context.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  14. Analysis of warping deformation modes using higher order ANCF beam element

    NASA Astrophysics Data System (ADS)

    Orzechowski, Grzegorz; Shabana, Ahmed A.

    2016-02-01

    Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.

  15. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    NASA Astrophysics Data System (ADS)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3--6 were achieved for all concrete elements tested. To study the long-term behavior of DHFRP, the creep-rupture strength of 5-mm bars was tested. This was conducted first on individual bar specimens and is important in the life-cycle design and performance of DHFRP reinforced concrete.

  16. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in the dispersion curve measured from the experiments were deduced to be a result of a combination of measurement noise, the different placement of the accelerometer with finite mass, and the torsional mode.

  17. Electrostatically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.; Davis, J. Kenneth

    2001-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize an electrostatically-tunable beam element having a stress-sensitive coating and means for providing electrostatic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the electrostatically-tunable beam element to the acoustical vibration to which the beam is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  18. Magnetically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Davis, J. Kenneth; Thundat, Thomas G.; Wachter, Eric A.

    2001-01-01

    Methods and apparatus for detecting particular frequencies of vibration utilize a magnetically-tunable beam element having a stress-sensitive coating and means for providing magnetic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the magnetically-tunable beam element to the vibration to which the beam is exposed whether or not a particular frequency or frequencies of vibration are detected.

  19. Simulation of a circular phased array for a portable ultrasonic polar scan

    NASA Astrophysics Data System (ADS)

    Daemen, Jannes; Kersemans, Mathias; Martens, Arvid; Verboven, Erik; Delrue, Steven; Van Paepegem, Wim; Degrieck, Joris; Van Den Abeele, Koen

    2018-04-01

    The development of new composite materials, often anisotropic in nature, requires intricate approaches to characterize these materials and to detect internal defects. The Ultrasonic Polar Scan (UPS) is able to achieve both goals. During an UPS experiment, a material spot is insonified at several angles Ψ(θ,ϕ), after which the reflected or transmitted signal is recorded. While excellent results have been obtained using an in-house developed 5-axis scanner, UPS measurements with the current set-up are too lengthy and cumbersome for in-situ industrial application. Therefore, we propose to replace the complex mechanical steering of the transducers by a hemispherical phased array consisting of small PZT elements. This allows to create a compact and portable setup without compromising the current data quality. By successively activating a specific set of elements of the array and choosing appropriate inter-element time delays, the beam can be electronically steered from any angle to a fixed position on the targeted sample. Consequently, UPS reflection measurements can be performed at this position from a wide range of angles in a timeframe of seconds. Additionally, by using apodization windows, it is possible to efficiently reduce the intensity of unwanted side lobes and to create a phase profile which closely resembles that of a bounded plane wave, leading to an easier interpretation of the recorded data. The appropriate time delays and apodization parameters can be found though a multi-objective inverse problem in which both the phase profile and the side lobe reduction are optimized. This approach enables the creation of an effective beam profile to be used during UPS experiments for the characterization and inspection of composite materials. Our simulation approach is a crucial step towards a next-generation UPS device for industrial applications and in-field measurements.

  20. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  1. Focusing properties of cylindrical vector vortex beams

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, Zhang; Ruishan, Chen; Anting, Wang

    2018-05-01

    In this paper, following Richards and Wolf vectorial diffraction theory, the focusing properties of cylindrical vector vortex beams (CVVB) are investigated, and a diffractive optical element (DOE) is designed to spatially modulate the amplitude of the CVVB. Simulated results show that the CVVB focused by an objective also carry orbital angular momentum (OAM), and the optical fields near the focal region can be modulated by changing the topological charge of the CVVB. We numerically simulate the focus properties of radially and azimuthally polarized beams with topological charge equal to 0, 1, 2 and 10 respectively. As a result, a dark channel with a length about 20 λ can be obtained. These new properties have the potential applications such as particle acceleration, optical trapping and material processing.

  2. Application of the Ta liner technique to produce Ca beams at INFN-Legnaro National Laboratories (INFN-LNL)

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Sattin, M.; Manzolaro, M.; Martini, D.; Facco, A.; Tinschert, K.; Spaedtke, P.; Lang, R.; Kulevoy, T.

    2014-02-01

    The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.

  3. Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure

    NASA Astrophysics Data System (ADS)

    Nazri, N. A.; Sani, M. S. M.

    2017-10-01

    Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.

  4. A survey of the core-congruential formulation for geometrically nonlinear TL finite elements

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Crivelli, Luis A.; Haugen, Bjorn

    1994-01-01

    This article presents a survey of the core-congruential formulation (CCF) for geometrically nonlinear mechanical finite elements based on the total Lagrangian (TL) kinematic description. Although the key ideas behind the CCF can be traced back to Rajasekaran and Murray in 1973, it has not subsequently received serious attention. The CCF is distinguished by a two-phase development of the finite element stiffness equations. The initial phase developed equations for individual particles. These equations are expressed in terms of displacement gradients as degrees of freedom. The second phase involves congruential-type transformations that eventually binds the element particles of an individual element in terms of its node-displacement degrees of freedom. Two versions of the CCF, labeled direct and generalized, are distinguished. The direct CCF (DCCF) is first described in general form and then applied to the derivation of geometrically nonlinear bar, and plane stress elements using the Green-Lagrange strain measure. The more complex generalized CCF (GCCF) is described and applied to the derivation of 2D and 3D Timoshenko beam elements. Several advantages of the CCF, notably the physically clean separation of material and geometric stiffnesses, and its independence with respect to the ultimate choice of shape functions and element degrees of freedom, are noted. Application examples involving very large motions solved with the 3D beam element display the range of applicability of this formulation, which transcends the kinematic limitations commonly attributed to the TL description.

  5. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    NASA Astrophysics Data System (ADS)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  6. Piezoelectrically tunable resonance frequency beam utilizing a stress-sensitive film

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.

    2002-01-01

    Methods and apparatus for detecting particular frequencies of acoustic vibration utilize a piezoelectrically-tunable beam element having a piezoelectric layer and a stress sensitive layer and means for providing an electrical potential across the piezoelectric layer to controllably change the beam's stiffness and thereby change its resonance frequency. It is then determined from the response of the piezoelectrically-tunable beam element to the acoustical vibration to which the beam element is exposed whether or not a particular frequency or frequencies of acoustic vibration are detected.

  7. Optical Signal Processing.

    DTIC Science & Technology

    1986-10-31

    constructed from TeO2 sisting of lenses L6 and L- and a cylindrical lens C- material which is oriented to operate in the slow shear shape the Bragg...to focus the light into a horizontal line for efficient illumination. The Bragg cells are constructed from TeO2 material which is oriented to operate...source is a 10 mW He-Ne laser for which = 632.8 nm. The holographic element was constructed on a SO-120 glass plate with a reference-to-signal beam

  8. Challenges and Plans for Injection and Beam Dump

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  9. Rigorous joining of advanced reduced-dimensional beam models to three-dimensional finite element models

    NASA Astrophysics Data System (ADS)

    Song, Huimin

    In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and the generalized Timoshenko beam are discussed in this chapter. VABS is also used to obtain the beam constitutive properties and warping functions for stress recovery. Several 3D-beam joint examples are presented to show the convergence and accuracy of the analysis. Accuracy is accessed by comparing the joint results with the full 3D analysis. The fourth chapter provides conclusions from present studies and recommendations for future work.

  10. Dynamic Stability of Uncertain Laminated Beams Under Subtangential Loads

    NASA Technical Reports Server (NTRS)

    Goyal, Vijay K.; Kapania, Rakesh K.; Adelman, Howard (Technical Monitor); Horta, Lucas (Technical Monitor)

    2002-01-01

    Because of the inherent complexity of fiber-reinforced laminated composites, it can be challenging to manufacture composite structures according to their exact design specifications, resulting in unwanted material and geometric uncertainties. In this research, we focus on the deterministic and probabilistic stability analysis of laminated structures subject to subtangential loading, a combination of conservative and nonconservative tangential loads, using the dynamic criterion. Thus a shear-deformable laminated beam element, including warping effects, is derived to study the deterministic and probabilistic response of laminated beams. This twenty-one degrees of freedom element can be used for solving both static and dynamic problems. In the first-order shear deformable model used here we have employed a more accurate method to obtain the transverse shear correction factor. The dynamic version of the principle of virtual work for laminated composites is expressed in its nondimensional form and the element tangent stiffness and mass matrices are obtained using analytical integration The stability is studied by giving the structure a small disturbance about an equilibrium configuration, and observing if the resulting response remains small. In order to study the dynamic behavior by including uncertainties into the problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity Based Monte Carlo Simulation, and Probabilistic FEA. These methods were integrated into the developed finite element analysis. Also, perturbation and sensitivity analysis have been used to study nonconservative problems, as well as to study the stability analysis, using the dynamic criterion.

  11. Method for thermal and structural evaluation of shallow intense-beam deposition in matter

    NASA Astrophysics Data System (ADS)

    Pilan Zanoni, André

    2018-05-01

    The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.

  12. Effect of elemental compositions on Monte Carlo dose calculations in proton therapy of eye tumors

    NASA Astrophysics Data System (ADS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Keshazare, Shiva; Jette, David

    2015-12-01

    Recent studies in eye plaque brachytherapy have found considerable differences between the dosimetric results by using a water phantom, and a complete human eye model. Since the eye continues to be simulated as water-equivalent tissue in the proton therapy literature, a similar study for investigating such a difference in treating eye tumors by protons is indispensable. The present study inquires into this effect in proton therapy utilizing Monte Carlo simulations. A three-dimensional eye model with elemental compositions is simulated and used to examine the dose deposition to the phantom. The beam is planned to pass through a designed beam line to moderate the protons to the desired energies for ocular treatments. The results are compared with similar irradiation to a water phantom, as well as to a material with uniform density throughout the whole volume. Spread-out Bragg peaks (SOBPs) are created by adding pristine peaks to cover a typical tumor volume. Moreover, the corresponding beam parameters recommended by the ICRU are calculated, and the isodose curves are computed. The results show that the maximum dose deposited in ocular media is approximately 5-7% more than in the water phantom, and about 1-1.5% less than in the homogenized material of density 1.05 g cm-3. Furthermore, there is about a 0.2 mm shift in the Bragg peak due to the tissue composition difference between the models. It is found that using the weighted dose profiles optimized in a water phantom for the realistic eye model leads to a small disturbance of the SOBP plateau dose. In spite of the plaque brachytherapy results for treatment of eye tumors, it is found that the differences between the simplified models presented in this work, especially the phantom containing the homogenized material, are not clinically significant in proton therapy. Taking into account the intrinsic uncertainty of the patient dose calculation for protons, and practical problems corresponding to applying patient-specific eye modeling, we found that the results of using a generic phantom containing homogenized material for proton therapy of eye tumors can be satisfactory for designing the beam.

  13. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.

  14. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less

  15. A Locally Modal B-Spline Based Full-Vector Finite-Element Method with PML for Nonlinear and Lossy Plasmonic Waveguide

    NASA Astrophysics Data System (ADS)

    Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan

    2016-09-01

    In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.

  16. Modeling interfacial fracture in Sierra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang

    2013-09-01

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conductedmore » with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.« less

  17. Finite element strategies to satisfy clinical and engineering requirements in the field of percutaneous valves.

    PubMed

    Capelli, Claudio; Biglino, Giovanni; Petrini, Lorenza; Migliavacca, Francesco; Cosentino, Daria; Bonhoeffer, Philipp; Taylor, Andrew M; Schievano, Silvia

    2012-12-01

    Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients' suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.

  18. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  19. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  20. Predicting the effectiveness of viscoelastic damping pockets in beams

    NASA Astrophysics Data System (ADS)

    Butler, Nigel D.; Oyadiji, S. O.

    2005-05-01

    This paper looks at the use of viscoelastic damping pockets in the suppression of structural vibration. These are in the form of cavities filled with a viscoelastic material. The benefits and uses of these designed-in damping treatments are highlighted. The vibration responses of viscoelastically-damped beams are predicted using the finite element method. A series of cantilevered beams are considered and the damping performance of several configurations of designed-in dampers are predicted and compared to that of a traditional CLD treatment. It is shown that the effectiveness of the damping pockets and sinks depends on their location and size with respect to the highly stressed regions of the beams. Although there is a practical limit on the sizes of the geometrical features that can be designed-in, it is shown that if located correctly the damping pockets and sinks can be more effective at suppressing structural vibration than traditional CLD treatments.

  1. A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.

    1997-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.

  2. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  3. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  4. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  5. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  7. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  8. Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building

    NASA Astrophysics Data System (ADS)

    Lacki, Piotr; Kasza, Przemysław; Derlatka, Anna

    2017-12-01

    The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab) and truss elements (reinforcement bars). The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.

  9. The effect of high energy ion beam analysis on D trapping in W

    NASA Astrophysics Data System (ADS)

    Finlay, T. J.; Davis, J. W.; Schwarz-Selinger, T.; Haasz, A. A.

    2017-12-01

    High energy ion beam analyses (IBA) are invaluable for measuring concentration depth profiles of light elements in solid materials, and important in the study of fusion fuel retention in tokamaks. Polycrystalline W specimens were implanted at 300 and 500 K, 5-10 × 1023 D m-2 fluence, with deuterium-only and simultaneous D-3%He ion beams. Selected specimens were analysed by elastic recoil detection analysis (ERDA) and/or nuclear reaction analysis (NRA). All specimens were measured by thermal desorption spectroscopy (TDS). The D TDS spectra show an extra peak at 900-1000 K following ERDA and/or NRA measurements. The peak height appears to correlate with the amount of D initially trapped beyond the calculated IBA probe beam peak damage depth. Similar to pre-implantation damage scenarios, the IBA probe beam creates empty high energy traps which later retrap D atoms during TDS heating, which is supported by modelling experimental results using the Tritium Migration Analysis Program.

  10. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  11. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers

    DOE PAGES

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    2017-02-06

    We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam- pro les in water from the radial modes con rm the profile to be a Bessel beam.more » Collimated beam generation from radial modes is investigated using a coupled electromechanical finite-element model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam- profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials.« less

  12. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillara, Vamshi Krishna; Pantea, Cristian; Sinha, Dipen N.

    We present a very simple approach to generate a collimated ultrasonic beam that exploits the natural Bessel-like vibration pattern of the radial modes of a piezoelectric disc with lateral clamping. This eliminates the need for the conventional annular Bessel pattern of the electrodes with individual electrode excitation on the piezo-disc, thus simplifying the transducer design. Numerical and experimental studies are carried out to investigate the Bessel-like vibration patterns of these radial modes showing an excellent agreement between these two studies. Measured ultrasonic beam- pro les in water from the radial modes con rm the profile to be a Bessel beam.more » Collimated beam generation from radial modes is investigated using a coupled electromechanical finite-element model. It is found that clamping the lateral edges of piezoelectric transducers results in a high-degree of collimation with practically no side-lobes similar to a parametric array beam. Ultrasonic beam- profile measurements in water with both free and clamped piezoelectric transducer are presented. The collimated beam generation using the present technique of using the laterally clamped radial modes finds significant applications in low-frequency imaging through highly attenuating materials.« less

  13. Recent advances in nonlinear passive vibration isolators

    NASA Astrophysics Data System (ADS)

    Ibrahim, R. A.

    2008-07-01

    The theory of nonlinear vibration isolation has witnessed significant developments due to pressing demands for the protection of structural installations, nuclear reactors, mechanical components, and sensitive instruments from earthquake ground motion, shocks, and impact loads. In view of these demands, engineers and physicists have developed different types of nonlinear vibration isolators. This article presents a comprehensive assessment of recent developments of nonlinear isolators in the absence of active control means. It does not deal with other means of linear or nonlinear vibration absorbers. It begins with the basic concept and features of nonlinear isolators and inherent nonlinear phenomena. Specific types of nonlinear isolators are then discussed, including ultra-low-frequency isolators. For vertical vibration isolation, the treatment of the Euler spring isolator is based on the post-buckling dynamic characteristics of the column elastica and axial stiffness. Exact and approximate analyses of axial stiffness of the post-buckled Euler beam are outlined. Different techniques of reducing the resonant frequency of the isolator are described. Another group is based on the Gospodnetic-Frisch-Fay beam, which is free to slide on two supports. The restoring force of this beam resembles to a great extent the restoring roll moment of biased ships. The base isolation of buildings, bridges, and liquid storage tanks subjected to earthquake ground motion is then described. Base isolation utilizes friction elements, laminated-rubber bearings, and the friction pendulum. Nonlinear viscoelastic and composite material springs, and smart material elements are described in terms of material mechanical characteristics and the dependence of their transmissibility on temperature and excitation amplitude. The article is closed by conclusions, which highlight resolved and unresolved problems and recommendations for future research directions.

  14. Infrared trace element detection system

    DOEpatents

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  15. Infrared trace element detection system

    DOEpatents

    Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.

    1988-01-01

    An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.

  16. Obtaining 3D Chemical Maps by Energy Filtered Transmission Electron Microscopy Tomography.

    PubMed

    Roiban, Lucian; Sorbier, Loïc; Hirlimann, Charles; Ersen, Ovidiu

    2018-06-09

    Energy filtered transmission electron microscopy tomography (EFTEM tomography) can provide three-dimensional (3D) chemical maps of materials at a nanometric scale. EFTEM tomography can separate chemical elements that are very difficult to distinguish using other imaging techniques. The experimental protocol described here shows how to create 3D chemical maps to understand the chemical distribution and morphology of a material. Sample preparation steps for data segmentation are presented. This protocol permits the 3D distribution analysis of chemical elements in a nanometric sample. However, it should be noted that currently, the 3D chemical maps can only be generated for samples that are not beam sensitive, since the recording of filtered images requires long exposure times to an intense electron beam. The protocol was applied to quantify the chemical distribution of the components of two different heterogeneous catalyst supports. In the first study, the chemical distribution of aluminum and titanium in titania-alumina supports was analyzed. The samples were prepared using the swing-pH method. In the second, the chemical distribution of aluminum and silicon in silica-alumina supports that were prepared using the sol-powder and mechanical mixture methods was examined.

  17. Rapid Harmonic Analysis of Piezoelectric MEMS Resonators.

    PubMed

    Puder, Jonathan M; Pulskamp, Jeffrey S; Rudy, Ryan Q; Cassella, Cristian; Rinaldi, Matteo; Chen, Guofeng; Bhave, Sunil A; Polcawich, Ronald G

    2018-06-01

    This paper reports on a novel simulation method combining the speed of analytical evaluation with the accuracy of finite-element analysis (FEA). This method is known as the rapid analytical-FEA technique (RAFT). The ability of the RAFT to accurately predict frequency response orders of magnitude faster than conventional simulation methods while providing deeper insights into device design not possible with other types of analysis is detailed. Simulation results from the RAFT across wide bandwidths are compared to measured results of resonators fabricated with various materials, frequencies, and topologies with good agreement. These include resonators targeting beam extension, disk flexure, and Lamé beam modes. An example scaling analysis is presented and other applications enabled are discussed as well. The supplemental material includes example code for implementation in ANSYS, although any commonly employed FEA package may be used.

  18. Tools for Designing and Analyzing Structures

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Structural Design and Analysis Toolset is a collection of approximately 26 Microsoft Excel spreadsheet programs, each of which performs calculations within a different subdiscipline of structural design and analysis. These programs present input and output data in user-friendly, menu-driven formats. Although these programs cannot solve complex cases like those treated by larger finite element codes, these programs do yield quick solutions to numerous common problems more rapidly than the finite element codes, thereby making it possible to quickly perform multiple preliminary analyses - e.g., to establish approximate limits prior to detailed analyses by the larger finite element codes. These programs perform different types of calculations, as follows: 1. determination of geometric properties for a variety of standard structural components; 2. analysis of static, vibrational, and thermal- gradient loads and deflections in certain structures (mostly beams and, in the case of thermal-gradients, mirrors); 3. kinetic energies of fans; 4. detailed analysis of stress and buckling in beams, plates, columns, and a variety of shell structures; and 5. temperature dependent properties of materials, including figures of merit that characterize strength, stiffness, and deformation response to thermal gradients

  19. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.

  20. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    NASA Astrophysics Data System (ADS)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  1. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lichter, Matthew (Inventor); Wingert, Andreas (Inventor); Hafez, Moustapha (Inventor); Dubowsky, Steven (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Weiss, Peter (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  2. Coupled electromechanical response of composite beams with embedded piezoelectric sensors and actuators

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Heyliger, P. R.

    1994-01-01

    Unified mechanics are developed with the capability to model both sensory and active composite laminates with embedded piezoelectric layers. A discrete-layer formulation enables analysis of both global and local electromechanical response. The mechanics include the contributions from elastic, piezoelectric, and dielectric components. The incorporation of electric potential into the state variables permits representation of general electromechanical boundary conditions. Approximate finite element solutions for the static and free-vibration analysis of beams are presented. Applications on composite beams demonstrate the capability to represent either sensory or active structures and to model the complicated stress-strain fields, the interactions between passive/active layers, interfacial phenomena between sensors and composite plies, and critical damage modes in the material. The capability to predict the dynamic characteristics under various electrical boundary conditions is also demonstrated.

  3. Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire

    NASA Astrophysics Data System (ADS)

    Sayin, B.

    2014-09-01

    There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.

  4. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    PubMed Central

    Rescalvo, Francisco J.; Valverde-Palacios, Ignacio; Gallego, Antolino

    2018-01-01

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures. PMID:29673155

  5. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    PubMed

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  6. The role of electro-explosion alloying with titanium diboride and treatment with pulsed electron beam in the surface modification of VT6 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, Sergey, E-mail: konovserg@gmail.com; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatyana

    The paper presents the results of the investigation of VT6 titanium alloy subjected to electro-explosion alloying with TiB{sub 2} and irradiation with pulsed electron beam. It was established that electro-explosion alloying resulted in a high level of roughness of the surface layer with high adhesion of the modified layer and matrix. Further irradiation of the material with electron beam resulted in the smoothing of the surface of alloying and formation of a porous structure with various scale levels in the surface layer. It was also established that the energetic exposure causes the formation of a gradient structure with a changingmore » elemental composition along the direction from the surface of alloying.« less

  7. Surface and material analytics based on Dresden-EBIS platform technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; König, J., E-mail: mike.schmidt@dreebit.com; Bischoff, L.

    2015-01-09

    Nowadays widely used mass spectrometry systems utilize energetic ions hitting a sample and sputter material from the surface of a specimen. The generated secondary ions are separated and detected with high mass resolution to determine the target materials constitution. Based on this principle, we present an alternative approach implementing a compact Electron Beam Ion Source (EBIS) in combination with a Liquid Metal Ion Source (LMIS). An LMIS can deliver heavy elements which generate high sputter yields on a target surface. More than 90% of this sputtered material consists of mono- and polyatomic neutrals. These particles are able to penetrate themore » magnetic field of an EBIS and they will be ionized within the electron beam. A broad spectrum of singly up to highly charged ions can be extracted depending on the operation conditions. Polyatomic ions will decay during the charge-up process. A standard bending magnet or a Wien filter is used to separate the different ion species due to their mass-to-charge ratio. Using different charge states of ions as it is common with EBIS it is also possible to resolve interfering charge-to-mass ratios of only singly charged ions. Different setups for the realization of feeding the electron beam with sputtered atoms of solids will be presented and discussed. As an example the analysis of a copper surface is used to show high-resolution spectra with low background noise. Individual copper isotopes and clusters with different isotope compositions can be resolved at equal atomic numbers. These results are a first step for the development of a new compact low-cost and high-resolution mass spectrometry system. In a more general context, the described technique demonstrates an efficient method for feeding an EBIS with atoms of nearly all solid elements from various solid target materials. The new straightforward design of the presented setup should be of high interest for a broad range of applications in materials research as well as for applications connected to analyzing the biosphere, hydrosphere, lithosphere, cosmosphere and technosphere.« less

  8. Granular materials interacting with thin flexible rods

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  9. Concurrent optimization of material spatial distribution and material anisotropy repartition for two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris

    2018-04-01

    An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.

  10. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  11. 3D-Printed Beam Splitter for Polar Neutral Molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  12. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  13. Parametric study of extended end-plate connection using finite element modeling

    NASA Astrophysics Data System (ADS)

    Mureşan, Ioana Cristina; Bâlc, Roxana

    2017-07-01

    End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.

  14. Optimization of shape control of a cantilever beam using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong

    2018-05-01

    Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.

  15. Performance analysis and material dependence of micro holographic optical elements as couplers for fiber optic communication

    NASA Astrophysics Data System (ADS)

    Ambadiyil, Sajan; Prasannan, G.; Sathyan, Jithesh; Ajith Kumar, P. T.

    2005-01-01

    Holographic Optical Elements (HOEs) are gaining much importance and finding newer and better applications in areas of optical fiber communication and optical information processing systems. In contrast to conventional HOEs, optical communication and information systems require smaller and efficient elements of desired characteristics and transfer functions. Such Micro Holographic Optical Elements (MHOEs) can either be an HOE, recorded with two narrow beams of laser light or a segment cut from a larger HOE (SHOEs), and recorded in the conventional manner. In this study, micro holographic couplers, having specific focusing and diffraction characteristics were recorded in different holographic recording media such as silver halide and dichromated gelatin. Wavelength response of the elements was tested at 633 nm and 442 nm. Variation in diffraction efficiency/coupling factor, and insertion loss of the elements were studied. The paper reports in detail about the above results and related design considerations.

  16. Method and apparatus for removing unwanted reflections from an interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)

    1994-01-01

    A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.

  17. Matching experimental and three dimensional numerical models for structural vibration problems with uncertainties

    NASA Astrophysics Data System (ADS)

    Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.

    2018-03-01

    The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.

  18. Analysis of Graphite Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, Robert E.; Gilbert, John A.; Spanyer, Karen (Technical Monitor)

    2001-01-01

    This paper describes analytical methods that can be used to determine the deflections and stresses in highly compliant graphite-reinforced cementitious composites. It is demonstrated that the standard transform section fails to provide accurate results when the elastic modulus ratio exceeds 20. So an alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach; and, when the effective material properties are used to characterize the deflections of composite beams subject to pure bending, an excellent agreement is obtained. Laminated composite plate theory is also investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed by incorporating material properties established from tensile tests. Finite element modeling is used to verity the results and, considering the complexity of the samples, a very good agreement is obtained.

  19. Progress in ion figuring large optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, L.N.

    1995-12-31

    Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less

  20. Generic simulation of multi-element ladar scanner kinematics in USU LadarSIM

    NASA Astrophysics Data System (ADS)

    Omer, David; Call, Benjamin; Pack, Robert; Fullmer, Rees

    2006-05-01

    This paper presents a generic simulation model for a ladar scanner with up to three scan elements, each having a steering, stabilization and/or pattern-scanning role. Of interest is the development of algorithms that automatically generate commands to the scan elements given beam-steering objectives out of the ladar aperture, and the base motion of the sensor platform. First, a straight-forward single-element body-fixed beam-steering methodology is presented. Then a unique multi-element redirective and reflective space-fixed beam-steering methodology is explained. It is shown that standard direction cosine matrix decomposition methods fail when using two orthogonal, space-fixed rotations, thus demanding the development of a new algorithm for beam steering. Finally, a related steering control methodology is presented that uses two separate optical elements mathematically combined to determine the necessary scan element commands. Limits, restrictions, and results on this methodology are presented.

  1. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    PubMed

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (<0.2%) between water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  2. Smectic A Filled Birefringent Elements and Fast Switching Twisted Dual Frequency Nematic Cells Used for Digital Light Deflection

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Golovin, Andrii; Kreminskia, Liubov; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.; Lavrentovich, Oleg D.

    2006-01-01

    We describe the application of smectic A (SmA) liquid crystals for beam deflection. SmA materials can be used in digital beam deflectors (DBDs) as fillers for passive birefringent prisms. SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Fast rotation of the incident light polarization in DBDs is achieved by an electrically switched 90 twisted nematic (TN) cell.

  3. Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Xin; Tian, Hao; Zhao, Yang

    2017-10-01

    The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.

  4. All-dielectric metasurface for wavefront control at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Hock Ng, Soon; Bhattacharya, Shanti; Juodkazis, Saulius

    2018-01-01

    Recently, metasurfaces have gained popularity due to their ability to offer a spatially varying phase response, low intrinsic losses and high transmittance. Here, we demonstrate numerically and experimentally a silicon meta-surface at THz frequencies that converts a Gaussian beam into a Vortex beam independent of the polarization of the incident beam. The metasurface consists of an array of sub-wavelength silicon cross resonators made of a high refractive index material on substrates such as sapphire and CaF2 that are transparent at IR-THz spectral range. With these substrates, it is possible to create phase elements for a specific spectral range including at the molecular finger printing around 10 μm as well as at longer THz wavelengths where secondary molecular structures can be revealed. This device offers high transmittance and a phase coverage of 0 to 2π. The transmittance phase is tuned by varying the dimensions of the meta-atoms. To demonstrate wavefront engineering, we used a discretized spiraling phase profile to convert the incident Gaussian beam to vortex beam. To realize this, we divided the metasurface surface into eight angular sectors and chose eight different dimensions for the crosses providing successive phase shifts spaced by π/4 radians for each of these sectors. Photolithography and reactive ion etching (RIE) were used to fabricate these silicon crosses as the dimensions of these cylinders range up to few hundreds of micrometers. Large 1-cm-diameter optical elements were successfully fabricated and characterised by optical profilometry.

  5. Holographic rugate structures for x-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.; Savant, G.

    1990-03-19

    Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less

  6. Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.

    PubMed

    Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal

    2014-01-01

    The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered.

  7. Behavior of Double-Web Angles Beam to column connections

    NASA Astrophysics Data System (ADS)

    Fakih, K. Al; Chin, S. C.; Doh, S. I.

    2018-04-01

    This paper contains the study performed on the behavior of double-web angles by using finite element analysis computer package known as “Abaqus”. The aim of this present study was simulating the behavior of double-web angles (DWA) steel connections. The purpose of this article is to provide the basis for the fastest and most economical design and analysis and to ensure the required steel connection strength. This study, started used review method of behavior of steel beam-to-column bolted connections. Two models of different cross-section were examined under the effect of concentrated load and different boundary conditions. In all the studied case, material nonlinearity was accounted. A sample study on DWA connections was carried out using both material and geometric nonlinearities. This object will be of great value to anyone who wants to better understand the behavior of the steel beam to column connection. The results of the study have a field of reference for future research for members of the development of the steel connection approach with simulation model design.

  8. Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite

    NASA Astrophysics Data System (ADS)

    Shinde, Dattaji K.

    High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens. Experimental results were validated by developing a detailed three dimensional finite element model. Results of the progressive deformation and damage mechanics from the finite element model agreed well with the experimental results. Overall, nanoengineered beams showed improvement in the short beam strength and 30 % improvement in energy absorption as compared to a fiberglass beam without the presence of nanofibers.

  9. A Novel Method for Characterizing Beam Hardening Artifacts in Cone-beam Computed Tomographic Images.

    PubMed

    Fox, Aaron; Basrani, Bettina; Kishen, Anil; Lam, Ernest W N

    2018-05-01

    The beam hardening (BH) artifact produced by root filling materials in cone-beam computed tomographic (CBCT) images is influenced by their radiologic K absorption edge values. The purpose of this study was to describe a novel technique to characterize BH artifacts in CBCT images produced by 3 root canal filling materials and to evaluate the effects of a zirconium (Zr)-based root filling material with a lower K edge (17.99 keV) on the production of BH artifacts. The palatal root canals of 3 phantom model teeth were prepared and root filled with gutta-percha (GP), a Zr root filling material, and calcium hydroxide paste. Each phantom tooth was individually imaged using the CS 9000 CBCT unit (Carestream, Atlanta, GA). The "light" and "dark" components of the BH artifacts were quantified separately using ImageJ software (National Institutes of Health, Bethesda, MD) in 3 regions of the root. Mixed-design analysis of variance was used to evaluate differences in the artifact area for the light and dark elements of the BH artifacts. A statistically significant difference in the area of the dark portion of the BH artifact was found between all fill materials and in all regions of the phantom tooth root (P < .05). GP generated a significantly greater dark but not light artifact area compared with Zr (P < .05). Moreover, statistically significant differences between the areas of both the light and dark artifacts were observed within all regions of the tooth root, with the greatest artifact being generated in the coronal third of the root (P < .001). Root canal filling materials with lower K edge material properties reduce BH artifacts along the entire length of the root canal and reduce the contribution of the dark artifact. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  11. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  12. Pseudomorphic InGaAs Materials

    DTIC Science & Technology

    1990-07-31

    tive mass Schrodinger equation can be cast using a finite element technique (Galerkin residual method) into a symmetric tridiagonal matrix formulation...lnr’Gal-.’As composition. All of the structures were fabricated by molecular beam epitaxy (MBE). The effects of different growth conditions were evaluated... different growth conditions were evaluated with a combination of characterization techniques. Key results to emerge from this work relate to the

  13. Polydimethylsiloxane-based Self healing Composite and Coating Materials

    DTIC Science & Technology

    2006-01-01

    TGA thermogravimetric analysis TDCB tapered double cantilever beam RH relative humidity DMDN-Sn dimethyldineodacanoate tin DBBE-Sn di-n-butyl bis(2...properties of micro-capsules by thermogravimetric analysis (TGA). As shown in figure 2.17, no weight change occurred up to the boiling point of...Elemental analysis of separated prepolymer phase and control samples. ..............24 Table 2.4: The size values of phase separated PDMS droplets

  14. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  15. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE PAGES

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...

    2017-01-31

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  16. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  17. Analytical modeling, finite-difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing.

    PubMed

    Sanabria, Sergio J; Furrer, Roman; Neuenschwander, Jürg; Niemz, Peter; Schütz, Philipp

    2015-12-01

    Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for material property and defect inversion in anisotropic materials was demonstrated. A portable SFI demonstrator was implemented with a multi-sensor MEMs receiver array that captures and compensates for variable wave propagation paths in glued laminated timber, and improves the imaging of lamination defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Behavior of Industrial Steel Rack Connections

    NASA Astrophysics Data System (ADS)

    Shah, S. N. R.; Ramli Sulong, N. H.; Khan, R.; Jumaat, M. Z.; Shariati, M.

    2016-03-01

    Beam-to-column connections (BCCs) used in steel pallet racks (SPRs) play a significant role to maintain the stability of rack structures in the down-aisle direction. The variety in the geometry of commercially available beam end connectors hampers the development of a generalized analytic design approach for SPR BCCs. The experimental prediction of flexibility in SPR BCCs is prohibitively expensive and difficult for all types of commercially available beam end connectors. A suitable solution to derive a particular uniform M-θ relationship for each connection type in terms of geometric parameters may be achieved through finite element (FE) modeling. This study first presents a comprehensive description of the experimental investigations that were performed and used as the calibration bases for the numerical study that constituted its main contribution. A three dimensioned (3D) non-linear finite element (FE) model was developed and calibrated against the experimental results. The FE model took into account material nonlinearities, geometrical properties and large displacements. Comparisons between numerical and experimental data for observed failure modes and M-θ relationship showed close agreement. The validated FE model was further extended to perform parametric analysis to identify the effects of various parameters which may affect the overall performance of the connection.

  19. Free vibration of functionally graded beams and frameworks using the dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Banerjee, J. R.; Ananthapuvirajah, A.

    2018-05-01

    The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.

  20. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can provide benefits covering eye safety, precise alignment and beam diagnostics.

  1. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  2. ORNL actinide materials and a new detection system for superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof P.; Roberto, James B.; Brewer, Nathan T.; Utyonkov, Vladimir K.

    2016-12-01

    The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL) are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS) with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK) are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.

  3. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  4. Device for providing high-intensity ion or electron beam

    DOEpatents

    McClanahan, Edwin D.; Moss, Ronald W.

    1977-01-01

    A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

  5. Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, F.

    This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.

  6. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2016-03-01

    The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.

  7. Towards a programme of testing and qualification for structural and plasma-facing materials in ‘fusion neutron’ environments

    NASA Astrophysics Data System (ADS)

    Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.

    2017-09-01

    Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.

  8. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  9. Model of convection mass transfer in titanium alloy at low energy high current electron beam action

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.

    2017-01-01

    The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.

  10. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite

    PubMed Central

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-01-01

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research. PMID:28773703

  11. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite.

    PubMed

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-07-15

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research.

  12. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams.

    PubMed

    Yücel, H; Çubukçu, Ş; Uyar, E; Engin, Y

    2014-11-21

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  13. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  14. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOEpatents

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  15. Manufacturing and characterization of PIM-W materials as plasma facing materials

    NASA Astrophysics Data System (ADS)

    Pintsuk, G.; Antusch, S.; Rieth, M.; Wirtz, M.

    2016-02-01

    Powder injection molding (PIM) was used to produce pure and particle reinforced W materials to be qualified for the use as plasma facing material. As alloying elements La2O3, Y2O3, TiC, and TaC were chosen with a particle size between 50 nm and 2.5 μm, depending on the alloying element. The fabrication of alloyed materials was done for different compositions using powder mixtures. Final sintering was performed in H2 atmosphere at 2400 °C resulting in plates of 55 × 22 × 4 mm3 with ˜98% theoretical density. The qualification of the materials was done via high heat flux testing in the electron beam facility JUDITH-1. Thereby, ELM-like 1000 thermal shock loads of 0.38 GW m-2 for 1 ms and 100 disruption like loads of 1.13 GW m-2 for 1 ms at a base temperature of 1000 °C were applied. The obtained damage characteristics, i.e. surface roughening and crack formation, were qualified versus an industrially manufactured pure reference tungsten material and linked to the material’s microstructure and mechanical properties.

  16. An Apparatus For Student Projects Using External-Beam PIXE And PIGE

    NASA Astrophysics Data System (ADS)

    Correll, Francis D.; Edsall, Douglas W.; DePooter, Katherine A.; Maskell, Nicholas D.; Vanhoy, Jeffrey R.

    2011-06-01

    We recently installed a simple endstation at the Naval Academy Tandem Accelerator Laboratory to support student projects using external-beam PIXE and PIGE. It consists of a short, graphite-lined beamline extension with a thin window, an interlocked box that surrounds the target, detectors for x- and gamma rays, provision for flooding the target with helium gas, easily changed x-ray absorbers, and a compact video camera for monitoring the position of the beam spot. We used this system to measure the elemental composition of colonial-era architectural materials, principally bricks and mortar, from James Madison's Montpelier, the reconstructed Virginia estate of the fourth President of the United States. We describe the design and construction of the system, relate some of our experiences using it, and present some preliminary data from our investigations.

  17. Ion Beam Analyses Of Bark And Wood In Environmental Studies

    NASA Astrophysics Data System (ADS)

    Lill, J.-O.; Saarela, K.-E.; Harju, L.; Rajander, J.; Lindroos, A.; Heselius, S.-J.

    2011-06-01

    A large number of wood and bark samples have been analysed utilizing particle-induced X-ray emission (PIXE) and particle-induced gamma-ray emission (PIGE) techniques. Samples of common tree species like Scots Pine, Norway Spruce and birch were collected from a large number of sites in Southern and Southwestern Finland. Some of the samples were from a heavily polluted area in the vicinity of a copper-nickel smelter. The samples were dry ashed at 550 °C for the removal of the organic matrix in order to increase the analytical sensitivity of the method. The sensitivity was enhanced by a factor of 50 for wood and slightly less for bark. The ashed samples were pressed into pellets and irradiated as thick targets with a millimetre-sized proton beam. By including the ashing procedure in the method, the statistical dispersion due to elemental heterogeneities in wood material could be reduced. As a by-product, information about the elemental composition of ashes was obtained. By comparing the concentration of an element in bark ash to the concentration in wood ash of the same tree useful information from environmental point of view was obtained. The obtained ratio of the ashes was used to distinguish between elemental contributions from anthropogenic atmospheric sources and natural geochemical sources, like soil and bedrock.

  18. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  19. Sodern development of a high LIDT laser beam expander for ATLID

    NASA Astrophysics Data System (ADS)

    Battarel, Denis C.; Barnasson, Elodie

    2017-11-01

    Sodern has been contracted for the development of the laser beam expander used on the lidar of the ATLID instrument developed by Airbus Defence & Space France and Germany (Formerly ASTRIUM) embarked on the EathCARE satellite, element of the ESA (European Space Agency) Living Planet Programme. The ATLID emission beam expander (E-BEX) has two functions: one is to reduce the divergence of the laser in order to achieve a high spatial resolution and the other is to enlarge the laser beam to reduce the power density and thus reduce Laser Induced Contamination (LIC) and Laser Induced Damage Threshold (LIDT) effects on the outer surface exposed to vacuum. This paper exposes the design drivers of the beam expander which are: having optical components withstanding very high laser fluence at a wavelength of 355nm and exhibiting a very low depolarization ratio., hermetically sealing the cavity with metallic gaskets in order to keep the pressure constant so that beam collimation is not affected, choosing housing material compatible with both hermiticity requirements and thermal control. To obtain a high spatial resolution on Earth, ATLID requires a means for controlling beam collimation. This is ensured by an active thermal control on the beam expander in order to change its Wavefront Error (WFE) by a few tens of nanometers.

  20. Experimental investigation of complex circular Airy beam characteristics

    NASA Astrophysics Data System (ADS)

    Porfirev, A. P.; Fomchenkov, S. A.; Khonina, S. N.

    2018-04-01

    We demonstrate a new type of circular Airy beams, the so-called azimuthally modulated circular Airy beams, generated by utilizing a diffraction element, whose transmission function is the sum of the transmission function of the element generating a "petal" pattern and the transmission function of the element generating a circular Airy beam. We experimentally investigate the propagation dynamics of such beams and demonstrate that their autofocusing and selfhealing properties are strongly dependent on the number of generated petals. These beams are a combination of a conventional circular Airy beam and vortex laser beams (or their superpositions). Using a spatial light modulator, we demonstrate that these beams have unique properties such as autofocusing, "nondiffractive" propagation and self-healing after passing through an obstacle. The experimental results are in good agreement with the simulation. We believe that these results can be very useful for lensless laser fabrication and laser manipulation techniques, as well as for development of new filament plasma multi-channel formation methods.

  1. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  2. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Almeida, Euclides; Shalem, Guy; Prior, Yehiam

    2016-01-01

    Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.

  3. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  4. Pseudo-beam method for compressive buckling characteristics analysis of space inflatable load-carrying structures

    NASA Astrophysics Data System (ADS)

    Wang, Changguo; Tan, Huifeng; Du, Xingwen

    2009-10-01

    This paper extends Le van’s work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko’s beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.

  5. HPHT growth and x-ray characterization of high-quality type IIa diamond.

    PubMed

    Burns, R C; Chumakov, A I; Connell, S H; Dube, D; Godfried, H P; Hansen, J O; Härtwig, J; Hoszowska, J; Masiello, F; Mkhonza, L; Rebak, M; Rommevaux, A; Setshedi, R; Van Vaerenbergh, P

    2009-09-09

    The trend in synchrotron radiation (x-rays) is towards higher brilliance. This may lead to a very high power density, of the order of hundreds of watts per square millimetre at the x-ray optical elements. These elements are, typically, windows, polarizers, filters and monochromators. The preferred material for Bragg diffracting optical elements at present is silicon, which can be grown to a very high crystal perfection and workable size as well as rather easily processed to the required surface quality. This allows x-ray optical elements to be built with a sufficient degree of lattice perfection and crystal processing that they may preserve transversal coherence in the x-ray beam. This is important for the new techniques which include phase-sensitive imaging experiments like holo-tomography, x-ray photon correlation spectroscopy, coherent diffraction imaging and nanofocusing. Diamond has a lower absorption coefficient than silicon, a better thermal conductivity and lower thermal expansion coefficient which would make it the preferred material if the crystal perfection (bulk and surface) could be improved. Synthetic HPHT-grown (high pressure, high temperature) type Ib material can readily be produced in the necessary sizes of 4-8 mm square and with a nitrogen content of typically a few hundred parts per million. This material has applications in the less demanding roles such as phase plates: however, in a coherence-preserving beamline, where all elements must be of the same high quality, its quality is far from sufficient. Advances in HPHT synthesis methods have allowed the growth of type IIa diamond crystals of the same size as type Ib, but with substantially lower nitrogen content. Characterization of this high purity type IIa material has been carried out with the result that the crystalline (bulk) perfection of some of the HPHT-grown materials is approaching the quality required for the more demanding applications such as imaging applications and imaging applications with coherence preservation. The targets for further development of the type IIa diamond are size, crystal perfection, as measured by the techniques of white beam and monochromatic x-ray diffraction imaging (historically called x-ray topography), and also surface quality. Diamond plates extracted from the cubic growth sector furthest from the seed of the new low strain material produces no measurable broadening of the x-ray rocking curve width. One measures essentially the crystal reflectivity as defined by the intrinsic reflectivity curve (Darwin curve) width of a perfect crystal. In these cases the more sensitive technique of plane wave topography has been used to establish a local upper limit of the strain at the level of an 'effective misorientation' of 10(-7) rad.

  6. Comprehensive finite element modeling of Ti-6Al-4V cellular solids fabricated by electron beam melting

    NASA Astrophysics Data System (ADS)

    Arrieta, Edel

    Additive manufacturing permits the fabrication of cellular metals which are materials that can be highly customizable and possess multiple and extraordinary properties such as damage tolerance, metamorphic and auxetic behaviors, and high specific stiffness. This makes them the subject of interest for innovative applications. With interest in these materials for energy absorption applications, this work presents the development of nonlinear finite element models in commercial software platforms (MSC Patran/Nastran) that permit the analysis of the deformation mechanisms of these materials under compressive loads. In the development of these models, a detailed multiscale study on the different factors affecting the response of cellular metals was conducted with the objective to understanding the physics with the objective of selecting the most appropriate experiments. In that manner, a series of experiments were conducted on Ti-6Al-4V specimens fabricated by electron beam melting at different manufacturing orientations. Digital image correlation was presented as a vital tool for the measurement of strains in specimens with complex shapes; the experiments contemplated compression and tension tests of Ti-6Al-4V solid components, as well as compression tests on cellular lattices of the same alloy. FEMs were developed from the same CAD file utilized for the fabrication of the lattices; in addition, different meshing approaches and mesh convergence analysis were discussed. The mesh density showed convergence in models with over 70,000 elements, permitting the evaluation of the stress/strain-distribution mechanisms in the lattices. However, because of the considerable variability of the experimental material properties, some numerical results showed significant errors in predicting the compressive force applied to the lattices during the experiments; thus suggesting the need to improve the quality control in the manufacturing process and develop better technologies in computational mechanics for the modeling of cellular metals.

  7. Microanalysis study on ancient Wiangkalong Pottery

    NASA Astrophysics Data System (ADS)

    Won-in, K.; Tancharakorn, S.; Dararutana, P.

    2017-09-01

    Wiangkalong is one of major ceramic production cities in northern of Thailand, once colonized by the ancient Lanna Kingdom (1290 A.D.). Ancient Wiangkalong potteries were produced with shapes and designs as similar as those of the Chinese Yuan and Ming Dynasties. Due to the complex nature of materials and objects, extremely sensitive, spatially resolved, multi-elemental and versatile analytical instruments using non-destructive and non-sampling methods to analyze theirs composition are need. In this work, micro-beam X-ray fluorescence spectroscopy based on synchrotron radiation was firstly used to characterize the elemental composition of the ancient Wiangkalong pottery. The results showed the variations in elemental composition of the body matrix, the glaze and the underglaze painting, such as K, Ca, Ti, V, Cr, Mn and Fe.

  8. Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Triveni; Walsh, Josh; Gangone, Elizabeth

    2015-12-29

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsulemore » is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.« less

  9. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    DOEpatents

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  10. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For conveniencemore » of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.« less

  11. Gaussian beam profile shaping apparatus, method therefor and evaluation thereof

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.; Romero, Louis A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system.

  12. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    DOEpatents

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-26

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs.

  13. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    PubMed

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.

  14. Progress on MEVVA source VARIS at GSI

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Hollinger, R.

    2018-05-01

    For the last few years, the development of the VARIS (vacuum arc ion source) was concentrated on several aspects. One of them was the production of high current ion beams of heavy metals such as Au, Pb, and Bi. The requested ion charge state for these ion species is 4+. This is quite challenging to produce in vacuum arc driven sources for reasonable beam pulse length (>120 µs) due to the physical properties of these elements. However, the situation can be dramatically improved by using the composite materials or alloys with enhanced physical properties of the cathodes. Another aspect is an increase of the beam brilliance for intense U4+ beams by the optimization of the geometry of the extraction system. A new 7-hole triode extraction system allows an increase of the extraction voltage from 30 kV to 40 kV and also reduces the outer aperture of the extracted ion beam. Thus, a record beam brilliance for the U4+ beam in front of the RFQ (Radio-Frequency Quadrupole) has been achieved, exceeding the RFQ space charge limit for an ion current of 15 mA. Several new projectiles in the middle-heavy region have been successfully developed from VARIS to fulfill the requirements of the future FAIR (Facility for Antiproton and Ion Research) programs. An influence of an auxiliary gas on the production performance of certain ion charge states as well as on operation stability has been investigated. The optimization of the ion source parameters for a maximum production efficiency and highest particle current in front of the RFQ has been performed. The next important aspect of the development will be the increase of the operation repetition rate of VARIS for all elements especially for uranium to 2.7 Hz in order to provide the maximum availability of high current ion beams for future FAIR experiments.

  15. 2.5 dimension structures in deep proton lithography

    NASA Astrophysics Data System (ADS)

    Kasztelanic, Rafal

    2006-04-01

    There are several technologies for cheap mass fabrication of microelements. One of them is deep proton lithography, used for the fabrication of elements of high structural depth. In this technology, accelerated protons are usually focused or formed by a mask to light a target. The energy of the proton beam is enough for all the protons to get through the target, losing only a part of their kinesthetic energy. Protons leaving the target are counted in various ways, thanks to which it is possible to estimate the energy deposed inside the target. In the next step chemical development is used to get rid of the radiated part of the target. With the use of this method, various 2D microelements can be obtained and the proton beam plays the role of a knife, cutting out the required shapes from the material. However, in order to make elements of modified surface (2.5D surface) it is necessary to change the energy of the proton beam or to change the dose deposed inside the material. The current article presents a proposal of creating simple 2.5D structures with the use of the method modifying the deposed does. This entails the modification of the deep proton lithography setup, which results moving the part for measuring the deposed dose of energy before the target. Additionally, the new deep proton lithography setup operates in the air. This article presents the results of simulations, as well as experimental results for such a setup built for the tandem accelerator in Erlangen, Germany.

  16. Space Spider - A concept for fabrication of large structures

    NASA Technical Reports Server (NTRS)

    Britton, W. R.; Johnston, J. D.

    1978-01-01

    The Space Spider concept for the automated fabrication of large space structures involves a specialized machine which roll-forms thin gauge material such as aluminum and develops continuous spiral structures with radial struts to sizes of 600-1,000 feet in diameter by 15 feet deep. This concept allows the machine and raw material to be integrated using the Orbiter capabilities, then boosting the rigid system to geosynchronous equatorial orbit (GEO) without high sensitivity to acceleration forces. As a teleoperator controlled device having repetitive operations, the fabrication process can be monitored and verified from a ground-based station without astronaut involvement in GEO. The resultant structure will be useful as an intermediate size platform or as a structural element to be used with other elements such as the space-fabricated beams or composite nested tubes.

  17. Application of X-ray synchrotron microscopy instrumentation in biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazilmore » working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)« less

  18. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yun

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  19. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  20. Investigation of fatigue assessments accuracy for beam weldments considering material data input and FE-mode type

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; Comlekci, Tugrul; MacKenzie, Donald

    2017-05-01

    This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.

  1. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  2. Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control

    NASA Astrophysics Data System (ADS)

    Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej

    2017-08-01

    In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.

  3. A Perspective on the Prowaste Concept: Efficient Utilization of Plastic Waste through Product Design and Process Innovation

    PubMed Central

    Greco, Antonio; Frigione, Mariaenrica; Maffezzoli, Alfonso; Marseglia, Alessandro; Passaro, Alessandra

    2014-01-01

    This work is aimed to present an innovative technology for the reinforcement of beams for urban furniture, produced by in-mold extrusion of plastics from solid urban waste. This material, which is usually referred to as “recycled plastic lumber”, is characterized by very poor mechanical properties, which results in high deflections under flexural loads, particularly under creep conditions. The Prowaste project, founded by the EACI (European Agency for Competitiveness and Innovation) in the framework of the Eco-Innovation measure, was finalized to develop an innovative technology for selective reinforcement of recycled plastic lumber. Selective reinforcement was carried out by the addition of pultruded glass rods in specific positions with respect to the cross section of the beam, which allowed optimizing the reinforcing efficiency. The reinforcement of the plastic lumber beams with pultruded rods was tested at industrial scale plant, at Solteco SL (Alfaro, Spain). The beams obtained, characterized by low cost and weight, were commercialized by the Spanish company. The present paper presents the most relevant results of the Prowaste project. Initially, an evaluation of the different materials candidates for the reinforcement of recycled plastic lumber is presented. Plastic lumber beams produced in the industrial plant were characterized in terms of flexural properties. The results obtained are interpreted by means of beam theory, which allows for extrapolation of the characteristic features of beams produced by different reinforcing elements. Finally, a theoretical comparison with other approaches which can be used for the reinforcement of plastic lumber is presented, highlighting that, among others, the Prowaste concept maximizes the stiffening efficiency, allowing to significantly reduce the weight of the components. PMID:28788134

  4. A Perspective on the Prowaste Concept: Efficient Utilization of Plastic Waste through Product Design and Process Innovation.

    PubMed

    Greco, Antonio; Frigione, Mariaenrica; Maffezzoli, Alfonso; Marseglia, Alessandro; Passaro, Alessandra

    2014-07-23

    This work is aimed to present an innovative technology for the reinforcement of beams for urban furniture, produced by in-mold extrusion of plastics from solid urban waste. This material, which is usually referred to as "recycled plastic lumber", is characterized by very poor mechanical properties, which results in high deflections under flexural loads, particularly under creep conditions. The Prowaste project, founded by the EACI (European Agency for Competitiveness and Innovation) in the framework of the Eco-Innovation measure, was finalized to develop an innovative technology for selective reinforcement of recycled plastic lumber. Selective reinforcement was carried out by the addition of pultruded glass rods in specific positions with respect to the cross section of the beam, which allowed optimizing the reinforcing efficiency. The reinforcement of the plastic lumber beams with pultruded rods was tested at industrial scale plant, at Solteco SL (Alfaro, Spain). The beams obtained, characterized by low cost and weight, were commercialized by the Spanish company. The present paper presents the most relevant results of the Prowaste project. Initially, an evaluation of the different materials candidates for the reinforcement of recycled plastic lumber is presented. Plastic lumber beams produced in the industrial plant were characterized in terms of flexural properties. The results obtained are interpreted by means of beam theory, which allows for extrapolation of the characteristic features of beams produced by different reinforcing elements. Finally, a theoretical comparison with other approaches which can be used for the reinforcement of plastic lumber is presented, highlighting that, among others, the Prowaste concept maximizes the stiffening efficiency, allowing to significantly reduce the weight of the components.

  5. Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.

    PubMed

    Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-10-26

    Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.

  6. Electron beam additive manufacturing with wire - Analysis of the process

    NASA Astrophysics Data System (ADS)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  7. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  8. Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6

    NASA Astrophysics Data System (ADS)

    Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael

    2017-10-01

    Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.

  9. [Finite element stress analysis of all-ceramic continuous crowns of the lower anterior teeth in differential shoulder thickness].

    PubMed

    Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui

    2014-04-01

    To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).

  10. Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.

    1991-01-01

    The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.

  11. RF beam center location method and apparatus for power transmission system

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    The receiving element in wireless power transmission systems intercepts the greatest possible portion of the transmitted energy beam. Summing the output energy of all receivers in a planar array makes it possible to determine the location of the center of energy of the incident beam on a receiving array of antenna elements so that the incident beam is in the microwave region.

  12. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation.

    PubMed

    Dong, Mengge; Xue, Xiangxin; Kumar, Ashok; Yang, He; Sayyed, M I; Liu, Shan; Bu, Erjun

    2018-02-15

    A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Finite-element 3D simulation tools for high-current relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley; Ekdahl, Carl

    2002-08-01

    The DARHT second-axis injector is a challenge for computer simulations. Electrons are subject to strong beam-generated forces. The fields are fully three-dimensional and accurate calculations at surfaces are critical. We describe methods applied in OmniTrak, a 3D finite-element code suite that can address DARHT and the full range of charged-particle devices. The system handles mesh generation, electrostatics, magnetostatics and self-consistent particle orbits. The MetaMesh program generates meshes of conformal hexahedrons to fit any user geometry. The code has the unique ability to create structured conformal meshes with cubic logic. Organized meshes offer advantages in speed and memory utilization in the orbit and field solutions. OmniTrak is a versatile charged-particle code that handles 3D electric and magnetic field solutions on independent meshes. The program can update both 3D field solutions from the calculated beam space-charge and current-density. We shall describe numerical methods for orbit tracking on a hexahedron mesh. Topics include: 1) identification of elements along the particle trajectory, 2) fast searches and adaptive field calculations, 3) interpolation methods to terminate orbits on material surfaces, 4) automatic particle generation on multiple emission surfaces to model space-charge-limited emission and field emission, 5) flexible Child law algorithms, 6) implementation of the dual potential model for 3D magnetostatics, and 7) assignment of charge and current from model particle orbits for self-consistent fields.

  14. Delivering pump light to a laser gain element while maintaining access to the laser beam

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.

    2001-01-01

    A lens duct is used for pump delivery and the laser beam is accessed through an additional component called the intermediate beam extractor which can be implemented as part of the gain element, part of the lens duct or a separate component entirely.

  15. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  16. Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling

    DOE PAGES

    Zhang, Yan; Godaliyadda, G. M. Dilshan; Ferrier, Nicola; ...

    2017-10-23

    Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure and chemistry. Here, in this work, we present a novel machine learning based method for dynamic sparse sampling of EDS data using a scanning electron microscope. Our method, based on the supervised learning approach for dynamic sampling algorithm and neuralmore » networks based classification of EDS data, allows a dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed elemental maps and spectroscopic data. In conclusion, we believe this approach will enable imaging and elemental mapping of materials that would otherwise be inaccessible to these analysis techniques.« less

  17. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  18. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  19. In-field tests of the EURITRACK tagged neutron inspection system

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Perot, B.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Roll, Th.; Valkovic, V.; Sudac, D.; Viesti, G.; Lunardon, M.; Bottosso, C.; Fabris, D.; Nebbia, G.; Pesente, S.; Moretto, S.; Zenoni, A.; Donzella, A.; Moszynski, M.; Gierlik, M.; Batsch, T.; Wolski, D.; Klamra, W.; Le Tourneur, P.; Lhuissier, M.; Colonna, A.; Tintori, C.; Peerani, P.; Sequeira, V.; Salvato, M.

    2008-04-01

    The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system has been designed to complement X-ray scanners in the detection of explosives and other illicit materials hidden in cargo containers. The containers are interrogated by a 14-MeV tagged neutron beam at any suspect position in the X-ray image. Interrogation of a specific volume element with tagged neutrons yields information about the chemical composition of the material. Implementation and performance tests of the EURITRACK system in the Port of Rijeka in Croatia are described. Cargo container inspection results are reported and discussed.

  20. Dynamic responses of graphite/epoxy laminated beam to impact of elastic spheres

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Wang, T.

    1982-01-01

    Wave propagation in 90/45/90/-45/902s and 0/45/0/-45/02s laminates of a graphite/epoxy composite due to impact of a steel ball was investigated experimentally and also by using a high order beam finite element. Dynamic strain responses at several locations were obtained using strain gages. The finite element program which incorporated statically determined contact laws was employed to calculate the contact force history as well as the target beam dynamic deformation. The comparison of the finite element solutions with the experimental data indicated that the static contact laws for loading and unloading (developed under this grant) are adequate for the dynamic impact analysis. It was found that for the 0/45/0/-45/02s laminate which has a much larger longitudinal bending rigidity, the use of beam finite elements is not suitable and plate finite element should be used instead.

  1. Solar Pumped Solid State Lasers for Space Solar Power: Experimental Path

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Carrington, Connie K.; Walker, Wesley W.; Cole, Spencer T.; Green, Jason J. A.; Laycock, Rustin L.

    2003-01-01

    We outline an experimentally based strategy designed to lead to solar pumped solid state laser oscillators useful for space solar power. Our method involves solar pumping a novel solid state gain element specifically designed to provide efficient conversion of sunlight in space to coherent laser light. Kilowatt and higher average power is sought from each gain element. Multiple such modular gain elements can be used to accumulate total average power of interest for power beaming in space, e.g., 100 kilowatts and more. Where desirable the high average power can also be produced as a train of pulses having high peak power (e.g., greater than 10(exp 10 watts). The modular nature of the basic gain element supports an experimental strategy in which the core technology can be validated by experiments on a single gain element. We propose to do this experimental validation both in terrestrial locations and also on a smaller scale in space. We describe a terrestrial experiment that includes diagnostics and the option of locating the laser beam path in vacuum environment. We describe a space based experiment designed to be compatible with the Japanese Experimental Module (JEM) on the International Space Station (ISS). We anticipate the gain elements will be based on low temperature (approx. 100 degrees Kelvin) operation of high thermal conductivity (k approx. 100 W/cm-K) diamond and sapphire (k approx. 4 W/cm-K). The basic gain element will be formed by sequences of thin alternating layers of diamond and Ti:sapphire with special attention given to the material interfaces. We anticipate this strategy will lead to a particularly simple, robust, and easily maintained low mass modelocked multi-element laser oscillator useful for space solar power.

  2. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  3. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phongikaroon, Supathorn

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantagesmore » of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.« less

  4. Spent nuclear fuel assembly inspection using neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Pope, Chad Lee

    The research presented here focuses on spent nuclear fuel assembly inspection using neutron computed tomography. Experimental measurements involving neutron beam transmission through a spent nuclear fuel assembly serve as benchmark measurements for an MCNP simulation model. Comparison of measured results to simulation results shows good agreement. Generation of tomography images from MCNP tally results was accomplished using adapted versions of built in MATLAB algorithms. Multiple fuel assembly models were examined to provide a broad set of conclusions. Tomography images revealing assembly geometric information including the fuel element lattice structure and missing elements can be obtained using high energy neutrons. A projection difference technique was developed which reveals the substitution of unirradiated fuel elements for irradiated fuel elements, using high energy neutrons. More subtle material differences such as altering the burnup of individual elements can be identified with lower energy neutrons provided the scattered neutron contribution to the image is limited. The research results show that neutron computed tomography can be used to inspect spent nuclear fuel assemblies for the purpose of identifying anomalies such as missing elements or substituted elements. The ability to identify anomalies in spent fuel assemblies can be used to deter diversion of material by increasing the risk of early detection as well as improve reprocessing facility operations by confirming the spent fuel configuration is as expected or allowing segregation if anomalies are detected.

  5. Focused electron beam induced deposition of pure SIO II

    NASA Astrophysics Data System (ADS)

    Perentes, Alexandre; Hoffmann, Patrik; Munnik, Frans

    2007-02-01

    Focused electron beam induced processing (FEBID) equipments are the "all in one" tools for high resolution investigation, and modification of nano-devices. Focused electron beam induced deposition from a gaseous precursor usually results in a nano-composite sub-structured material, in which the interesting material is embedded in an amorphous carbonaceous matrix. Using the Hydrogen free tetraisocyanatosilane Si(NCO) 4 molecule as Si source, we show how a controlled oxygen flux, simultaneously injected with the precursor vapors, causes contaminants to vanish from the FEB deposits obtained and leads to the deposition of pure SiO II. The chemical composition of the FEBID material could be controlled from SiC IINO 3 to SiO II, the latter containing undetectable foreign element contamination. The [O II] / [TICS] ratio needed to obtain SiO II in our FEB deposition equipment is larger than 300. The evolution of the FEBID material chemical composition is presented as function of the [O II] / [TICS] molecular flux ratios. A hypothetical decomposition pathway of this silane under these conditions is discussed based on the different species formed under electron bombardment of TICS. Transmission electron microscopy investigations demonstrated that the deposited oxide is smooth (roughness sub 2nm) and amorphous. Infrared spectroscopy confirmed the low concentration of hydroxyl groups. The Hydrogen content of the deposited oxide, measured by elastic recoil detection analysis, is as low as 1 at%. 193nm wavelength AIMS investigations of 125nm thick SiO II pads (obtained with [O II] / [TICS] = 325) showed an undetectable light absorption.

  6. An embeddable optical strain gauge based on a buckled beam.

    PubMed

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  7. An embeddable optical strain gauge based on a buckled beam

    NASA Astrophysics Data System (ADS)

    Du, Yang; Chen, Yizheng; Zhu, Chen; Zhuang, Yiyang; Huang, Jie

    2017-11-01

    We report, for the first time, a low cost, compact, and novel mechanically designed extrinsic Fabry-Perot interferometer (EFPI)-based optical fiber sensor with a strain amplification mechanism for strain measurement. The fundamental design principle includes a buckled beam with a coated gold layer, mounted on two grips. A Fabry-Perot cavity is produced between the buckled beam and the endface of a single mode fiber (SMF). A ceramic ferrule is applied for supporting and orienting the SMF. The principal sensor elements are packaged and protected by two designed metal shells. The midpoint of the buckled beam will experience a deflection vertically when the beam is subjected to a horizontally/axially compressive displacement. It has been found that the vertical deflection of the beam at midpoint can be 6-17 times larger than the horizontal/axial displacement, which forms the basis of a strain amplification mechanism. The user-configurable buckling beam geometry-based strain amplification mechanism enables the strain sensor to achieve a wide range of strain measurement sensitivities. The designed EFPI was used to monitor shrinkage of a square brick of mortar. The strain was measured during the drying/curing stage. We envision that it could be a good strain sensor to be embedded in civil materials/structures under a harsh environment for a prolonged period of time.

  8. Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls

    NASA Astrophysics Data System (ADS)

    Sivaneshan, P.; Harishankar, S.

    2017-07-01

    The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.

  9. Flexural-torsional vibration of a tapered C-section beam

    NASA Astrophysics Data System (ADS)

    Dennis, Scott T.; Jones, Keith W.

    2017-04-01

    Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.

  10. Different approaches to modeling the LANSCE H{sup −} ion source filament performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draganic, I. N., E-mail: draganic@lanl.gov; O’Hara, J. F.; Rybarcyk, L. J.

    2016-02-15

    An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H{sup −} surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K–2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model,more » a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz–120 Hz.« less

  11. Different approaches to modeling the LANSCE H- ion source filament performance

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.

    2016-02-01

    An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz.

  12. Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam

    NASA Astrophysics Data System (ADS)

    Hadi, Bambang K.; Nuril, Yogie S.

    2018-04-01

    The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.

  13. Energy-absorption capability of composite tubes and beams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Jones, Robert M.

    1989-01-01

    In this study the objective was to develop a method of predicting the energy-absorption capability of composite subfloor beam structures. Before it is possible to develop such an analysis capability, an in-depth understanding of the crushing process of composite materials must be achieved. Many variables affect the crushing process of composite structures, such as the constituent materials' mechanical properties, specimen geometry, and crushing speed. A comprehensive experimental evaluation of tube specimens was conducted to develop insight into how composite structural elements crush and what are the controlling mechanisms. In this study the four characteristic crushing modes, transverse shearing, brittle fracturing, lamina bending, and local buckling were identified and the mechanisms that control the crushing process defined. An in-depth understanding was developed of how material properties affect energy-absorption capability. For example, an increase in fiber and matrix stiffness and failure strain can, depending upon the configuration of the tube, increase energy-absorption capability. An analysis to predict the energy-absorption capability of composite tube specimens was developed and verified. Good agreement between experiment and prediction was obtained.

  14. Lamb wave propagation in monocrystalline silicon wafers.

    PubMed

    Fromme, Paul; Pizzolato, Marco; Robyr, Jean-Luc; Masserey, Bernard

    2018-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. Guided ultrasonic waves offer the potential to efficiently detect micro-cracks in the thin wafers. Previous studies of ultrasonic wave propagation in silicon focused on effects of material anisotropy on bulk ultrasonic waves, but the dependence of the wave propagation characteristics on the material anisotropy is not well understood for Lamb waves. The phase slowness and beam skewing of the two fundamental Lamb wave modes A 0 and S 0 were investigated. Experimental measurements using contact wedge transducer excitation and laser measurement were conducted. Good agreement was found between the theoretically calculated angular dependency of the phase slowness and measurements for different propagation directions relative to the crystal orientation. Significant wave skew and beam widening was observed experimentally due to the anisotropy, especially for the S 0 mode. Explicit finite element simulations were conducted to visualize and quantify the guided wave beam skew. Good agreement was found for the A 0 mode, but a systematic discrepancy was observed for the S 0 mode. These effects need to be considered for the non-destructive testing of wafers using guided waves.

  15. Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar

    2018-03-01

    CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.

  16. Small scale mechanical characterization of thin foil materials via pin load microtesting

    DOE PAGES

    Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...

    2015-05-06

    In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less

  17. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    NASA Astrophysics Data System (ADS)

    Al Saadi, Hamza Salim Mohammed; Mohandas, Hoby P.; Namasivayam, Aravind

    2017-01-01

    One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC) beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP). For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  18. Design and Optimization of AlN based RF MEMS Switches

    NASA Astrophysics Data System (ADS)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  19. Coupling between shear and bending in the analysis of beam problems: Planar case

    NASA Astrophysics Data System (ADS)

    Shabana, Ahmed A.; Patel, Mohil

    2018-04-01

    The interpretation of invariants, such as curvatures which uniquely define the bending and twist of space curves and surfaces, is fundamental in the formulation of the beam and plate elastic forces. Accurate representations of curve and surface invariants, which enter into the definition of the strain energy equations, is particularly important in the case of large displacement analysis. This paper discusses this important subject in view of the fact that shear and bending are independent modes of deformation and do not have kinematic coupling; this is despite the fact that kinetic coupling may exist. The paper shows, using simple examples, that shear without bending and bending without shear at an arbitrary point and along a certain direction are scenarios that higher-order finite elements (FE) can represent with a degree of accuracy that depends on the order of interpolation and/or mesh size. The FE representation of these two kinematically uncoupled modes of deformation is evaluated in order to examine the effect of the order of the polynomial interpolation on the accuracy of representing these two independent modes. It is also shown in this paper that not all the curvature vectors contribute to bending deformation. In view of the conclusions drawn from the analysis of simple beam problems, the material curvature used in several previous investigations is evaluated both analytically and numerically. The problems associated with the material curvature matrix, obtained using the rotation of the beam cross-section, and the fundamental differences between this material curvature matrix and the Serret-Frenet curvature matrix are discussed.

  20. On the dynamics of viscous masonry beams

    NASA Astrophysics Data System (ADS)

    Lucchesi, M.; Pintucchi, B.; Šilhavý, M.; Zani, N.

    2015-05-01

    In this paper, we consider the longitudinal and transversal vibrations of the masonry beams and arches. The basic motivation is the seismic vulnerability analysis of masonry structures that can be modeled as monodimensional elements. The Euler-Bernoulli hypothesis is employed for the system of forces in the beam. The axial force and the bending moment are assumed to consist of the elastic and viscous parts. The elastic part is described by the no-tension material, i.e., the material with no resistance to tension and which accounts for the cases of limitless, as well as bounded compressive strength. The adaptation of this material to beams has been developed in Orlandi (Analisi non lineare di strutture ad arco in muratura. Thesis, 1999) and Zani (Eur J Mech A/Solids 23:467-484, 2004). The viscous part amounts to the Kelvin-Voigt damping depending linearly on the time derivatives of the linearized strain and curvature. The dynamical equations are formulated, and a mathematical analysis of them is presented. Specifically, following Gajewski et al. (Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974), the theorems of existence, uniqueness and regularity of the solution of the dynamical equations are recapitulated and specialized for our purposes, to support the numerical analysis applied previously in Lucchesi and Pintucchi (Eur J Mech A/Solids 26:88-105, 2007 ). As usual, for that the Galerkin method has been used. As an illustration, two numerical examples (slender masonry tower and masonry arch) are presented in this paper with the applied forces corresponding to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.

  1. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  2. Production of Solar Cells in Space from Non Specific Ores by Utilization of Electronically Enhanced Sputtering

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2009-01-01

    An ideal method of construction in space would utilize some form of the Universal Differentiator and Universal Constructor as described by Von Neumann (1). The Universal Differentiator is an idealized non ore specific extractive device which is capable of breaking any ore into its constituent elements, and the Universal Constructor can utilize these elements to build any device with controllability to the nanometer scale. During the Human Exploration Initiative program in the early 1990s a conceptual study was done (2) to understand whether such devices were feasible with near term technology for the utilization of space resources and energy. A candidate system was proposed which would utilize electronically enhanced sputtering as the differentiator. Highly ionized ions would be accelerated to a kinetic energy at which the interaction between them and the lattice elections in the ore would be at a maximum. Experiments have shown that the maximum disintegration of raw material occurs at an ion kinetic energy of about 5 MeV, regardless of the composition and structure of the raw material. Devices that could produce charged ion beams in this energy range in space were being tested in the early 1990s. At this energy, for example an ion in a beam of fluorine ions yields about 8 uranium ions from uranium fluoride, 1,400 hydrogen and oxygen atoms from ice, or 7,000 atoms from sulfur dioxide ice. The ions from the disintegrated ore would then be driven by an electrical field into a discriminator in the form of a mass spectrometer, where the magnetic field would divert the ions into collectors for future use or used directly in molecular beam construction techniques. The process would require 10-7 Torr vacuum which would be available in space or on the moon. If the process were used to make thin film silicon solar cells (ignoring any energy inefficiency for beam production), then energy break even for solar cells in space would occur after 14 days.

  3. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of understanding the properties of the thin film sensor and how it may be advanced toward structural sensing applications.

  4. Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prinja, Anil K.

    The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset aremore » amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite element schemes, one linear and the other nonlinear.« less

  5. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.

    PubMed

    George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y

    2014-09-22

    In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.

  6. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  7. Delamination Fracture in Graphite/Epoxy Materials.

    DTIC Science & Technology

    1986-06-01

    stress fields for the two loading conditions. Figures 7-10 indicate the results of a finite element analysis % for the test coupons loaded in mode I and...results somewhat approximate, the difference in the shape of the Srespective stress fields and the different rates of decay of the _ stress fields...Shear deformation is dominant feature .: observed. 1000x (all). 7. ay stress contour plot of split laminate beam tested under . mode I conditions. 8

  8. Behavior Of Aircraft Components Under Crash-Type Loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1993-01-01

    Report presents overview of research involving use of concepts of aircraft elements and substructures not necessarily designed or optimized with respect to energy-absorption or crash-loading considerations. Experimental and analytical data presented in report indicate some general trends in failure behaviors of class of composite-material structures including individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to frame/stringer arrangement.

  9. Bend-Twist Coupled Carbon-Fiber Laminate Beams: Fundamental Behavior and Applications

    NASA Astrophysics Data System (ADS)

    Babuska, Pavel

    Material-induced bend-twist coupling in laminated composite beams has seen applications in engineered structures for decades, ranging from airplane wings to turbine blades. Symmetric, unbalanced, carbon fiber laminates which exhibit bend-twist coupling can be difficult to characterize and exhibit unintuitive deformation states which may pose challenges to the engineer. In this thesis, bend-twist coupled beams are investigated comprehensively, by experimentation, numerical modeling, and analytical methods. Beams of varying fiber angle and amount of coupling were manufactured and physically tested in both linear and nonlinear static and dynamic settings. Analytical mass and stiffness matrices were derived for the development of a beam element to use in the stiffness matrix analysis method. Additionally, an ABAQUS finite element model was used in conjunction with the analytical methods to predict and further characterize the behavior of the beams. The three regimes, experimental, analytical, and numerical, represent a full-field characterization of bend-twist coupling in composite beams. A notable application of bend-twist coupled composites is for passively adaptive turbine blades whereby the deformation coupling can be built into the blade structure to simultaneously bend and twist, thus pitching the blade into or away from the fluid flow, changing the blade angle of attack. Passive pitch adaptation has been implemented successfully in wind turbine blades, however, for marine turbine blades, the technology is still in the development phase. Bend-twist coupling has been shown numerically to be beneficial to the tidal turbine performance, however little validation has been conducted in the experimental regime. In this thesis, passively adaptive experiment scale tidal turbine blades were designed, analyzed, manufactured, and physically tested, validating the foundational numerical work. It was shown that blade forces and root moments as well as turbine thrust and power coefficients can be manipulated by inclusion of passive pitch adaption by bend-twist coupling.

  10. PIXE Analysis of Ceramic Artifacts

    NASA Astrophysics Data System (ADS)

    High, Elizabeth; Lamm, Larry; Schurr, Mark; Stech, Edward; Wiescher, Michael

    2009-10-01

    Particle Induced X-ray Emissions, or PIXE, is a nuclear physics technique used as a non-destructive material analysis method which gives a detailed and comprehensive profile of the elemental composition of a target. Using the University of Notre Dame KN and FN accelerators in the ISNAP laboratory a beam of particles, here protons, is accelerated and used to knock out electrons from lower orbitals within the target resulting in characteristic X-rays. Under optimum operating conditions data from PIXE can not only give information about which elements are present in a sample but also their relative abundances in parts per million. In a previous run done in collaboration with the Anthropology Department at the University of Notre Dame pottery shards from the Collier Lodge, located in northwest Indiana, were analyzed and only relative abundances were able to be compared between samples. We are now implementing a new setup into the beam-line which will incorporate the ability to take Rutherford Back Scattering, or RBS, measurements of the beam during the PIXE runs, which will allow for a standard normalization for the runs and give the facility the ability to acquire a more absolute and quantitative analysis of the data. Initial results using the same pottery shards as a comparative data set will be presented.

  11. Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source

    NASA Astrophysics Data System (ADS)

    Kuksenko, V.; Ammigan, K.; Hartsell, B.; Densham, C.; Hurh, P.; Roberts, S.

    2017-07-01

    A beryllium primary vacuum-to-air beam 'window' of the "Neutrinos at the Main Injector" (NuMI) beamline at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA, has been irradiated by 120 GeV protons over 7 years, with a maximum integrated fluence at the window centre of 2.06 1022 p/cm2 corresponding to a radiation damage level of 0.48 dpa. The proton beam is pulsed at 0.5 Hz leading to an instantaneous temperature rise of 40 °C per pulse. The window is cooled by natural convection and is estimated to operate at an average of around 50 °C. The microstructure of this irradiated material was investigated by SEM/EBSD and Atom Probe Tomography, and compared to that of unirradiated regions of the beam window and that of stock material of the same PF-60 grade. Microstructural investigations revealed a highly inhomogeneous distribution of impurity elements in both unirradiated and irradiated conditions. Impurities were mainly localised in precipitates, and as segregations at grain boundary and dislocation lines. Low levels of Fe, Cu, Ni, C and O were also found to be homogeneously distributed in the beryllium matrix. In the irradiated materials, up to 440 appm of Li, derived from transmutation of beryllium was homogeneously distributed in solution in the beryllium matrix.

  12. Long discontinuous fiber composite structure: Forming and structural mechanics

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Santare, M. H.; Otoole, B. J.; Beaussart, A. J.; Deheer, D. C.; Okine, R. K.

    1991-01-01

    Cost effective composite structure has motivated the investigation of several new approaches to develop composite structure from innovative material forms. Among the promising new approaches is the conversion of planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. In the present study, the authors have established a framework which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. The initial study focuses upon the establishment of micromechanics models for prediction of the effective anisotropic viscosities of the oriented fiber assembly in a viscous matrix. Next, the developed constitutive relation is employed through an analogy with incompressible elasticity to exercise the finite element technique for determination of local fiber orientation and laminate thickness after forming. Results are presented for the stretch bending of a curved beam from an arbitrary composite laminate and the bulging of a clamped sheet. Structural analyses are conducted to determine the effect of microstructure on the performance of curved beams manufactured from long discontinuous fiber composites. For the purposes of this study, several curved beams with ideal and non-ideal microstructures are compared for response under pure bending. Material parameters are determined from a separate microstructural analysis.

  13. Confinement Effect on Material Properties of RC Beams Under Flexure

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sumant; Shiyekar, Mukund Ramchandra; Shiyekar, Sandip Mukund

    2017-12-01

    In structural analysis, especially in indeterminate structures, it becomes essential to know the material and geometrical properties of members. The codal provisions recommend elastic properties of concrete and steel and these are fairly accurate enough. The stress-strain curve for concrete cylinder or a cube specimen is plotted. The slope of this curve is modulus of elasticity of plain concrete. Another method of determining modulus of elasticity of concrete is by flexural test of a beam specimen. The modulus of elasticity most commonly used for concrete is secant modulus. The modulus of elasticity of steel is obtained by performing a tension test of steel bar. While performing analysis by any software for high rise building, cross area of plain concrete is taken into consideration whereas effects of reinforcement bars and concrete confined by stirrups are neglected. Present aim of study is to determine elastic properties of reinforced cement concrete beam. Two important stiffness properties such as AE and EI play important role in analysis of high rise RCC building idealized as plane frame. The experimental program consists of testing of beams (model size 150 × 150 × 700 mm) with percentage of reinforcement varying from 0.54 to 1.63% which commensurate with existing Codal provisions of IS:456-2000 for flexural member. The effect of confinement is considered in this study. The experimental results are verified by using 3D finite element techniques.

  14. Quantitative elemental analysis of an industrial mineral talc, using accelerator-based analytical technique

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Ige, A. O.; Mazzoli, C.; Ceccato, D.; Ajayi, E. O. B.; De Poli, M.; Moschini, G.

    2005-10-01

    Accelerator-based technique of PIXE was employed for the determination of the elemental concentration of an industrial mineral, talc. Talc is a very versatile mineral in industries with several applications. Due to this, there is a need to know its constituents to ensure that the workers are not exposed to health risks. Besides, microscopic tests on some talc samples in Nigeria confirm that they fall within the BP British Pharmacopoeia standard for tablet formation. However, for these samples to become a local source of raw material for pharmaceutical grade talc, the precise elemental compositions should be established which is the focus of this work. Proton beam produced by the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy was used for the PIXE measurements. The results which show the concentration of different elements in the talc samples, their health implications and metabolic roles are presented and discussed.

  15. Determination of orthotropic material properties by modal analysis

    NASA Astrophysics Data System (ADS)

    Lai, Junpeng

    The methodology for determination of orthotropic material properties in plane stress condition will be presented. It is applied to orthotropic laminated plates like printed wiring boards. The first part of the thesis will focus on theories and methodologies. The static beam model and vibratory plate model is presented. The methods are validated by operating a series of test on aluminum. In the static tests, deflection and two directions of strain are measured, thus four of the properties will be identified: Ex, Ey, nuxy, nuyx. Moving on to dynamic test, the first ten modes' resonance frequencies are obtained. The technique of modal analysis is adopted. The measured data is processed by FFT and analyzed by curve fitting to extract natural frequencies and mode shapes. With the last material property to be determined, a finite element method using ANSYS is applied. Along with the identified material properties in static tests, and proper initial guess of the unknown shear modulus, an iterative process creates finite element model and conducts modal analysis with the updating model. When the modal analysis result produced by ANSYS matches the natural frequencies acquired by dynamic test, the process will halt. Then we obtained the last material property in plane stress condition.

  16. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  17. A Comparative Study of the Traditional Houses Kaili and Bugis-Makassar in Indonesia

    NASA Astrophysics Data System (ADS)

    Suharto, M. F.; Kawet, R. S. S. I.; Tumanduk, M. S. S. S.

    2018-02-01

    In this study, I compared the physical elements of two Indonesian traditional houses between a Kaili tribe (Central Sulawesi) and a Bugis-Makassar tribe (South Sulawesi). If we viewed of the name, meaning and function from both traditional houses have similarities, namely the Souraja/Saoraja house (House of the King), however, observed more detail the physical elements of architecture also show the differences. The spatial, physical and stylistic systems (N. John Habraken’s theory) were applied to analyze their differences and the similarities of the physical elements of architecture on those two traditional houses. The results of the analysis identified that the physical elements of architecture such as the orientation, the function and distribution of rooms (the spatial system), the constructions and materials of floor, wall and roof (the physical system) and the opening types of the door and window as well as ornaments used showed similarities. Meanwhile the physical elements of architecture such as the arrangement of columns, form and spatial pattern as well as the placement of the stairs (the spatial system), the constructions and materials of foundation, column and beam (the physical system) as well as the form of the roof and façade found differences of both traditional houses.

  18. Analysis of role of bone compliance on mechanics of a lumbar motion segment.

    PubMed

    Shirazi-Adl, A

    1994-11-01

    A large deformation elasto-static finite element formulation is developed and used for the determination of the role of bone compliance in mechanics of a lumbar motion segment. This is done by simulating each vertebra as a deformable body with realistic material properties, as a deformable body with stiffer or softer mechanical properties, as a single rigid body, or finally as two rigid bodies attached by deformable beams. The single loadings of axial compression, flexion moment, extension moment, and axial torque are considered. The results indicate the marked effect of alteration in bone material properties on biomechanics of lumbar segments specially under larger loads. The biomechanical studies of the lumbar spine should, therefore, be performed and evaluated in the light of such dependency. A model for bony vertebrae is finally proposed that preserves both the accuracy and the cost-efficiency in nonlinear finite element analyses of spinal multi-motion segment systems.

  19. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  20. Numerical modeling of guided ultrasonic waves generated and received by piezoelectric wafer in a Delaminated composite beam

    NASA Astrophysics Data System (ADS)

    Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.

    2017-05-01

    A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.

  1. Modeling and design optimization of adhesion between surfaces at the microscale.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylves, Kevin T.

    2008-08-01

    This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.

  2. Studying the Issues in Laser Joining of Lightweight Materials in a Coach-Peel Joint Configuration

    NASA Astrophysics Data System (ADS)

    Yang, Guang

    In the automotive industry, aluminum alloys have been widely used and partially replaced the conventional steel structures in order to decrease the weight of a car and improve its fuel efficiency. This Thesis focuses on the development of laser joining of light-weight materials, such as aluminum alloys and high-strength galvanized steels. Among different joint types, the coach-peel configuration is of a specific design that requires a heat source capable of heating up a large surface area of the joint. Coach-peel joints applied on the visible exterior of a car require a smooth transition from the weld surface to the panel surface and low surface roughness without any need for post-processing. Although these joints are used as non-load-bearing components, a desirable strength of the weld is also needed. A fusion-brazing process using a dual-beam laser allows the automotive components such as the roof and side member panels to be joined in a coach-peel configuration with a high surface quality as well as an acceptable strength of the weld. To improve the weld surface quality, processing parameters such as laser beam configuration, laser-wire position, and shielding gas parameters were optimized for joining of aluminum alloy to aluminum alloy. Laser power was optimized for dual-beam laser joining of aluminum alloy to galvanized steel at high speed. The feasibility of joining as-received panels with lubricant was also explored. The identification of strain hardening models of aluminum alloys was conducted for the mechanical finite element analysis of the joint. Control of the molten pool solidification through the selection of laser beam configuration is one approach to improve joint quality. Laser joining of aluminum alloy AA 6111-T4 coach peel panels with the addition of AA 4047 filler wire was investigated using three configurations of laser beam: a single beam, dual beams in-line with the weld bead, and dual beams aligned perpendicular to the weld bead (herein referred to as cross-beam). To compare the three joining processes, the transient heat distribution, cooling rates, and solidification rates were analyzed by three-dimensional finite element models using ANSYS. Microstructure evolution, tensile strength, fracture mechanisms, and surface roughness of joints were investigated accordingly. To improve the weld surface quality of aluminum joints, the laser-wire position and the gas parameters were optimized. Visualization of the gas flow by a CCD camera revealed the effects of nozzle shape, flow rate, inclination angle of the gas tube, nozzle position, and gas compositions (argon and helium) on the weld surface quality. The suppression of plasma plume and the effects of oxidation on the molten pool were illustrated in detail. With an optimized set of processing parameters, the weld surface roughness (Ra) of approximately 1 microm can be achieved. The feasibility of fabricating the aluminum alloy panel joint in the as-received condition, i.e., with stamping lubricant, by using the cross-beam laser was investigated. Two commercial mineral oils, Bonderite L-FM MP-404 and Ferrocote 61 MAL HCL, were applied onto clean panels prior to joining in order to simulate the conditions of the production environment. The formation and growth of hydrogen bubbles inside the molten pool, the stability of welding process, and the possible energy absorption capability of the porous weld were explained. Besides joining of similar materials, cross-beam laser was applied to join aluminum alloy 6111 to hot-dip galvanized steel in the coach-peel configuration. The filler material was not only brazed onto the galvanized steel but also partially fusion-welded with the aluminum panel. Through adjusting the laser power to 3.4 kW, a desirable wetting and spreading of filler wire on both panel surfaces could be achieved, and the thickness of intermetallic layer in the middle section of the interface between the weld bead and steel was less than 2 microm. To better understand the solid/liquid interfacial reaction at the brazing interface, two rotary Gaussian heat source models were introduced to simulate the temperature distribution in the molten pool by using the finite element method. Joint properties were examined in terms of microstructure and mechanical properties. Simulation of the mechanical response of a coach-peel joint is instructive for improvement of the joining process. The effective true stress-strain curve of fusion-brazed AA 4047 was difficult to obtain experimentally. Therefore, the von Mises isotropic flow function of the weld bead was inversely derived by image-based finite element analysis. Through iterative correction, the predicted tensile response of the coach-peel joint matched well with the experiment. The von Mises fracture stresses at the fusion zone boundary and the brazing interface were identified, respectively.

  3. Electron Microprobe Measurements of Nitrogen in SiC

    NASA Astrophysics Data System (ADS)

    Ross, K.

    2007-12-01

    Methods have been developed for the measurement of low abundances of nitrogen in SiC films. These techniques were developed for measurements of synthetic thin-film samples prepared by materials scientists but the technique can also be applied to natural SiC grains in meteorites. One problem associated with measuring nitrogen at low abundance levels is the low count rates due to strong absorption of the nitrogen signal in the matrix material. In thin film samples, (SiC deposited on elemental Si) it is preferable to limit x-ray production and emission to the overlayer. This eliminates the need for data reduction using thin-film methods. Thin film data reduction is inevitably less accurate than bulk material data reduction methods. In order to limit x-ray emission to the film layer, data has been collected at 5 kV and 3.5 kV accelerating voltage (depending on film thickness estimates provided by scientists who prepared these samples). These low beam energies also promote production of x-rays in the shallow region of the samples, and this minimizes strong absorption, leading to more abundant nitrogen x-ray detection, which improves counting statistics and overall precision. The CASINO monte carlo modeling program was used to model electron penetration and x-ray production as a function of beam energy and depth in the sample in order to ensure that the excited volume is limited to the film. The beam was set to 200 nA beam current. This high beam current also improves counting statistics by providing more abundant count rates. One drawback of these beam conditions is the limited spatial resolution provided. In our Cameca probe, a 5 kV, 200 nA beam is approximately 10 microns in diameter. SiC samples and standard were not carbon coated (they are conducting). AlN was used as the nitrogen standard. These films contained 0.3 to 0.7 wt. per cent nitrogen, with analytical uncertainties in the range of 10-20 per cent relative errors. The Si:C ratios were very near 1:1 indicating that little if any Si signal originated in the substrate of the film.

  4. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  5. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  6. Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit

    NASA Astrophysics Data System (ADS)

    Wu, Jufei; Wang, Qian; Han, Yunfei

    2017-12-01

    In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.

  7. Diffractive variable beam splitter: optimal design.

    PubMed

    Borghi, R; Cincotti, G; Santarsiero, M

    2000-01-01

    The analytical expression of the phase profile of the optimum diffractive beam splitter with an arbitrary power ratio between the two output beams is derived. The phase function is obtained by an analytical optimization procedure such that the diffraction efficiency of the resulting optical element is the highest for an actual device. Comparisons are presented with the efficiency of a diffractive beam splitter specified by a sawtooth phase function and with the pertinent theoretical upper bound for this type of element.

  8. Analytical Approach to Large Deformation Problems of Frame Structures

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Atsumi; Ellyin, Fernand

    In elements used as flexible linking devices and structures, the main characteristic is a fairly large deformation without exceeding the elastic limit of the material. This property is of both analytical and technological interests. Previous studies of large deformation have been generally concerned with a single member (e.g. a cantilever beam, a simply supported beam, etc.). However, there are very few large deformation studies of assembled members such as frames. This paper deals with a square frame with rigid joints, loaded diagonally in either tension or compression by a pair of opposite forces. Analytical solutions for large deformation are obtained in terms of elliptic integrals, and are compared with the experimental data. The agreement is found to be fairly close.

  9. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  10. Complementary use of ion beam elastic backscattering and recoil detection analysis for the precise determination of the composition of thin films made of light elements

    NASA Astrophysics Data System (ADS)

    Climent-Font, A.; Cervera, M.; Hernández, M. J.; Muñoz-Martín, A.; Piqueras, J.

    2008-04-01

    Rutherford backscattering spectrometry (RBS) is a well known powerful technique to obtain depth profiles of the constituent elements in a thin film deposited on a substrate made of lighter elements. In its standard use the probing beam is typically 2 MeV He. Its capabilities to obtain precise composition profiles are severely diminished when the overlaying film is made of elements lighter than the substrate. In this situation the analysis of the energy of the recoiled element from the sample in the elastic scattering event, the ERDA technique may be advantageous. For the detection of light elements it is also possible to use beams at specific energies producing elastic resonances with these light elements to be analyzed, with a much higher scattering cross sections than the Rutherford values. This technique may be called non-RBS. In this work we report on the complementary use of ERDA with a 30 MeV Cl beam and non-RBS with 1756 keV H ions to characterize thin films made of boron, carbon and nitrogen (BCN) deposited on Si substrates.

  11. Stratified Diffractive Optic Approach for Creating High Efficiency Gratings

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.; Nordin, Gregory P.

    1998-01-01

    Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.

  12. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  13. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, Igor; Sebald, James

    2017-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.

  14. Concrete Open-Wall Systems Wrapped with FRP under Torsional Loads

    PubMed Central

    Mancusi, Geminiano; Feo, Luciano; Berardi, Valentino P.

    2012-01-01

    The static behavior of reinforced concrete (RC) beams plated with layers of fiber-reinforced composite material (FRP) is widely investigated in current literature, which deals with both its numerical modeling as well as experiments. Scientific interest in this topic is explained by the increasing widespread use of composite materials in retrofitting techniques, as well as the consolidation and upgrading of existing reinforced concrete elements to new service conditions. The effectiveness of these techniques is typically influenced by the debonding of the FRP at the interface with concrete, where the transfer of stresses occurs from one element (RC member) to the other (FRP strengthening). In fact, the activation of the well-known premature failure modes can be regarded as a consequence of high peak values of the interfacial interactions. Until now, typical applications of FRP structural plating have included cases of flexural or shear-flexural strengthening. Within this context, the present study aims at extending the investigation to the case of wall-systems with open cross-section under torsional loads. It includes the results of some numerical analyses carried out by means of a finite element approximation.

  15. Assessment of Carrying Capacity of Timber Element Using SBRA Method

    NASA Astrophysics Data System (ADS)

    Kraus, Michal

    2017-10-01

    Wood as a building material has a significant perspective in the context of nonrenewable energy sources and production of greenhouse gas emissions. The subject of this paper is to verify the carrying capacity of the timber element using the probabilistic method Simulation Based Reliability Assessment (SBRA). The simulation is performed for one million cycles. Key factors decreasing the strength of wooden material at the time include the duration of the loads, and combinations thereof. Inconsiderable factor affecting the strength of wood is also the humidity. Continuous beam with three fields (length 15 m, glued laminated timber, and strength class GL 36 according to the DIN EN 1194) is placed in an environment with a thermal-humidity regime of the 2nd class according to the EC 5. Average life of carrying timber structure is estimated to be 50 years. The simulation results show that there is no risk of failure of wood during the first year. The probability of failure is common in the 10 years of its life. Then, wooden element already meets only a reduced level of reliability.

  16. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  17. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  18. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  19. Method and Apparatus for Accurately Calibrating a Spectrometer

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Simmons, Stephen M. (Inventor)

    2013-01-01

    A calibration assembly for a spectrometer is provided. The assembly includes a spectrometer having n detector elements, where each detector element is assigned a predetermined wavelength value. A first source emitting first radiation is used to calibrate the spectrometer. A device is placed in the path of the first radiation to split the first radiation into a first beam and a second beam. The assembly is configured so that one of the first and second beams travels a path-difference distance longer than the other of the first and second beams. An output signal is generated by the spectrometer when the first and second beams enter the spectrometer. The assembly includes a controller operable for processing the output signal and adapted to calculate correction factors for the respective predetermined wavelength values assigned to each detector element.

  20. Influence of foundation mass and surface roughness on dynamic response of beam on dynamic foundation subjected to the moving load

    NASA Astrophysics Data System (ADS)

    Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai

    2018-04-01

    In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.

  1. X-ray μ-Laue diffraction analysis of Cu through-silicon vias: A two-dimensional and three-dimensional study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Dario Ferreira; Weleguela, Monica Larissa Djomeni; Audoit, Guillaume

    2014-10-28

    Here, white X-ray μ-beam Laue diffraction is developed and applied to investigate elastic strain distributions in three-dimensional (3D) materials, more specifically, for the study of strain in Cu 10 μm diameter–80 μm deep through-silicon vias (TSVs). Two different approaches have been applied: (i) two-dimensional μ-Laue scanning and (ii) μ-beam Laue tomography. 2D μ-Laue scans provided the maps of the deviatoric strain tensor integrated along the via length over an array of TSVs in a 100 μm thick sample prepared by Focused Ion Beam. The μ-beam Laue tomography analysis enabled to obtain the 3D grain and elemental distribution of both Cu and Si. Themore » position, size (about 3 μm), shape, and orientation of Cu grains were obtained. Radial profiles of the equivalent deviatoric strain around the TSVs have been derived through both approaches. The results from both methods are compared and discussed.« less

  2. The Researches on I-beam of different web’s shapes

    NASA Astrophysics Data System (ADS)

    Shuang, Chao; Zhou, Dong Hua

    2018-05-01

    When the ratio of height to thickness of girder web is relatively high, generally the local stability of web is enhanced by setting up stiffeners. But setting up stiffeners not only increase the use of material, but also increases the welding work. Therefore, the web can be processed into trapezoid, curve, triangles and rectangle to improve its stability. In order to study the mechanical behavior of the web with different shapes and its local stable bearing capacity, the finite element analysis software ANSYS was used to analyze the six I-beam, and the stress characteristics under different web forms were obtained. The results show that the local stability bearing capacity of the I-beam is improved, especially the shape of the trapezoidal web and the shape of the curved web have a significant effect on the local stability of the I-beam. Finally, based on the study of the local stability of the trapezoidal web and the curved web, the influence of their geometrical dimensions on the local stable bearing capacity is also studied.

  3. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces

    PubMed Central

    Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona

    2016-01-01

    Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471

  4. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloum, D., E-mail: david.laloum@cea.fr; CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  5. Progress in holographic applications; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Ebbeni, Jean (Editor)

    1986-01-01

    Papers are presented on a holographic recording material containing poly-n-vinylcarbozole, photoelectrochemical etching of holographic gratings in semiconductors, the analysis and construction of powered reflection holographic optical elements, achromatic display holograms in dichromated gelatin, and image blurring in display holograms and in holographic optical elements. Topics discussed include two-dimensional optical beam switching techniques using dynamnic holography, a new holographic interferometer with monomode fibers for integrated optics applications, computer controlled holography, and the copying of holograms using incoherent light. Consideration is given to holography of very far objects, rainbow holography with a multimode laser source, and the use of an endoscope for optical fiber holography.

  6. Optical computing, optical memory, and SBIRs at Foster-Miller

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  7. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  8. Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2018-01-01

    Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.

  9. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  10. Design and verification of a novel hollow vibrating module for laser machining.

    PubMed

    Wang, Zhaozhao; Jang, Seungbong; Kim, EunHee; Jeon, Yongho; Lee, Soo-Hun; Lee, Moon G

    2015-04-01

    If a vibration module is added on laser machining system, the quality of surface finish and aspect ratio on metals can be significantly enhanced. In this study, a single mobility model of vibrating laser along the path of laser beam was put forward. In order to realize the desired unidirectional motion, a resonance type vibration module with optical lens was designed and manufactured. This cylindrical module was composed of curved-beam flexure elements. The cylindrical coordinate system was established to describe the relationship of a curved-beam flexure element's motion and deformation. In addition, the stiffness matrix of the curved-beam element was obtained. Finite element method and dynamical modeling were provided to analyze the resonance frequency and the displacement of the motion. The feasibility of the design was demonstrated with the help of experiments on frequency response. Experimental results show good agreement with theoretical analysis and simulation predictions.

  11. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-opticmore » effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test.« less

  12. Finite Element Modeling and Analysis of Mars Entry Aeroshell Baseline Concept

    NASA Technical Reports Server (NTRS)

    Ahmed, Samee W.; Lane, Brittney M.

    2017-01-01

    The structure that is developed and analyzed in this project must be able to survive all the various load conditions that it will encounter along its course to Mars with the minimal amount of weight and material. At this stage, the goal is to study the capability of the structure using a finite element model (FEM). This FEM is created using a python script, and is numerically solved in Nastran. The purpose of the model is to achieve an optimization of mass given specific constraints on launch and entry. The generation and analysis of the baseline Rigid Mid-Range Lift to Drag Ratio Aeroshell model is a continuation and an improvement on previous work done for the FEM. The model is generated using Python programming with the axisymmetric placement of nodes for beam and shell elements. The shells are assigned a honeycomb sandwich material with an aluminum honeycomb core and composite face sheets, and the beams are assigned the same material as the shell face sheets. There are two load cases assigned to the model: Earth launch and Mars entry. The Earth launch case consists of pressure, gravity, and vibration loads, and the Mars entry case consists of just pressure and gravity loads. The Earth launch case was determined to be the driving case, though the analyses are performed for both cases to ensure the constraints are satisfied. The types of analysis performed with the model are design optimization, statics, buckling, normal modes, and frequency response, the last of which is only for the Earth launch load case. The final results indicated that all of the requirements are satisfied except the thermal limits, which could not yet be tested, and the normal modes for the Mars entry. However, the frequency limits during Mars entry are expected to be much higher than the lower frequency limits set for the analysis. In addition, there are still improvements that can be made in order to reduce the weight while still meeting all requirements.

  13. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    PubMed

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test.

  14. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  15. Frequency shift measurement in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  16. Precision glass molding of high-resolution diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  17. Method of and apparatus for collecting solar radiation utilizing variable curvature cylindrical reflectors

    DOEpatents

    Treytl, William J.; Slemmons, Arthur J.; Andeen, Gerry B.

    1979-01-01

    A heliostat apparatus includes a frame which is rotatable about an axis which is parallel to the aperture plane of an elongate receiver. A plurality of flat flexible mirror elements are mounted to the frame between several parallel, uniformly spaced resilient beams which are pivotally connected at their ends to the frame. Channels are mounted to the sides of the beams for supporting the edges of the mirror elements. Each of the beams has a longitudinally varying configuration designed to bow into predetermined, generally circular curvatures of varying radii when the center of the beam is deflected relative to the pivotally connected ends of the beams. All of the parallel resilient beams are simultaneously deflected by a cam shaft assembly extending through openings in the centers of the beams, whereby the mirror elements together form an upwardly concave, cylindrical reflecting surface. The heliostat is rotated about its axis to track the apparent diurnal movement of the sun, while the reflecting surface is substantially simultaneously bowed into a cylindrical trough having a radius adapted to focus incident light at the plane of the receiver aperture.

  18. Doping of epitaxial III-V semiconductors for optoelectronic and magnetoelectronic applications

    NASA Astrophysics Data System (ADS)

    Overberg, Mark Eddy

    Doped III-V semiconducting materials were studied in this dissertation for use in optoelectronic and magnetoelectronic applications. The specific areas of use are emitters for fiber optic communication and room temperature ferromagnetic layers for spintronic devices. The general requirement for both application areas is the ability to heavily dope (or alloy) the III-Vs with the intended active element, while still maintaining good crystallinity and semiconducting properties. Four dopant/semiconductor systems were investigated: erbium in gallium nitride (GaN:Er), europium in gallium nitride (GaN:Eu), manganese in gallium nitride (GaMnN), and manganese in gallium phosphide (GaMnP). These materials were fabricated using variants of the molecular beam epitaxy (MBE) technique, where beams of the constituent elements are produced in a high vacuum environment. The technique allows for a wide variety of parameters to be adjusted during the material preparation. The materials were deposited on sapphire, gallium nitride, and gallium phosphide surfaces; with particular emphasis on the correlation between growth conditions and the final chemical, structural, morphological, electronic, optical, and magnetic properties. The materials were characterized using a variety of techniques. Results with the GaN:Er material indicated that several percent of Er could be successfully incorporated into the material, and that the optical emission could be increased by incorporating C impurities into the film. These impurities were found to increase the overall emission and decrease the quenching of the emission with temperature. Optical emission results for GaN:Eu indicated that this material produced a visible red emission that was brighter under optical excitation than the AlGaAs used in commercial red emitting devices. The dilute magnetic semiconductors n-GaMnN and p-GaMnP were produced for the first time by the MBE technique. The SQUID magnetometry and magnetotransport results for n-GaMnN indicated the presence of ferromagnetic ordering with a Curie temperature between 20 K and 25 K. Magnetic measurements of the p-GaMnP indicated the presence of ferromagnetic ordering to 250 K, far above the theoretically predicted value of 100 K. Similar results were also produced by the direct implantation of Mn into GaP.

  19. Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.

    2000-03-01

    The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.

  20. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    NASA Astrophysics Data System (ADS)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the analysis of soil samples detecting 31 elements. The results have been discussed with reference to elemental concentrations and Ca/Si ratio. The latter was a valid indicator of soil pollution by the cement dust. (Abstract shortened by UMI.).

  1. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  2. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  3. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    PubMed

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  4. Craft Stick Beams

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1996-01-01

    The objective of this exercise is to provide a phenomenological 'hands-on' experience that shows how geometry can affect the load carrying capacity of a material used in construction, how different materials have different failure characteristics, and how construction affects the performance of a composite material. This will be accomplished by building beams of a single material and composite beams of a mixture of materials (popsicle sticks, fiberboard sheets, and tongue depressors); testing these layered beams to determine how and where they fail; and based on the failure analysis, designing a layered beam that will fail in a predicted manner. The students will learn the effects of lamination, adhesion, and geometry in layered beam construction on beam strength and failure location.

  5. Direct laser writing of topographic features in semiconductor-doped glass

    NASA Astrophysics Data System (ADS)

    Smuk, Andrei Y.

    2000-11-01

    Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing beam. By controlling the translation speed and the position of the sample, predefined extended structures, such as diffractive optical elements (blazed gratings, Dammann generators, Fresnel zone plates) can be produced with resolution of ~1μm. Below-the-surface patterning is achieved due to a selective etching of laser-written structures in hydrofluoric acid. Similar selective etching technique was developed for undoped borosilicate glasses by exposure to intense visible and UV radiation.

  6. Numerical simulation on behaviour of timber-concrete composite beams in fire

    NASA Astrophysics Data System (ADS)

    Du, Hao; Hu, Xiamin; Zhang, Bing; Minli, Yao

    2017-08-01

    This paper established sequentially coupled thermal-mechanical models of timber--concrete composite (TCC) beams by finite element software ANSYS to investigate the fire resistance of TCC beam. Existing experimental results were used to verify the coupled thermal-mechanical model. The influencing parameters consisted of the width of timber beam, the thickness of the concrete slab and the timber board. Based on the numerical results, the effects of these parameters on fire resistance of TCC beams were investigated in detail. The results showed that modeling results agreed well with test results, and verified the reliability of the finite element model. The width of the timber beam had a significant influence on the fire resistance of TCC beams. The fire resistance of TCC beams would be enhanced by increasing the width of timber beam, the thickness of concrete slab and the timber board.

  7. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    NASA Technical Reports Server (NTRS)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  8. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  9. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  10. Sputter deposition for multi-component thin films

    DOEpatents

    Krauss, Alan R.; Auciello, Orlando

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  11. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.

  12. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    NASA Astrophysics Data System (ADS)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  13. Gaussian Beam Intensity Flattener

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.

    1998-01-01

    The goal of this investigation was to use commercial elements and extend the correction to a 1/e(sup 2) diameter of 3 mm over long propagation distances. Shafer discussed the use of spherical elements to generate a uniform beam to the 1/e diameter.

  14. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    NASA Technical Reports Server (NTRS)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  15. Guided ultrasonic wave beam skew in silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  16. Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer

    NASA Astrophysics Data System (ADS)

    Bonek, Mirosław; Śliwa, Agata; Mikuła, Jarosław

    2016-12-01

    Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the penetration depth of remelted surface. Simulated penetration depth and molten pool profile have a good match with the experimental results. The depth values obtained in simulation are very close to experimental data. Regarding the shape of molten pool, the little differences have been noted. The heat flux input considered in simulation is only part of the mechanism for heating; thus, the final shape of solidified molten pool will depend on more variables.

  17. Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas

    NASA Astrophysics Data System (ADS)

    Sanada, Atsushi

    2008-08-01

    A two-dimensional beam steering array composed of an eight-element antenna array using composite right/left-handed leaky-wave antennas fed by an 8 × 8 Butler matrix network is designed at X-band. An eight-way beam switching in one direction by input port switching and a continuous beam steering in the other direction by frequency sweep are achieved. A wide range beam steering operation covering from -55 to +53 degrees by port switching and from -37 to +27 degrees by frequency sweep is demonstrated with the maximum gain of 9.2 dBi.

  18. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  19. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  20. Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng

    2013-11-11

    Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.

  1. NDE of polymeric composite material bridge components

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Horne, Michael R.

    1998-03-01

    Rapid advancements with respect to utilization of polymeric composite materials for bridge components is occurring. This situation is driven primarily by the potential improvements offered by these materials with respect to long term durability. However, because of the developmental nature of these materials much of the materials characterization has involved short term testing without the synergistic effects of environmental exposure. Efforts to develop nondestructive evaluation procedures, essential for any wide spread use in critical structural applications, have been consequently limited. This paper discuses the effort to develop NDE methods for field inspection of hybrid glass and carbon fiber reinforced vinyl ester pultruded 'double box' I beams that are installed in a small bridge over Tom's Creek, in Blacksburg, Virginia. Integrated structural element sensors, dormant infrared devices, as well as acousto-ultrasonic methods are under development for detecting and monitoring the occurrence and progression of life limiting deterioration mechanisms.

  2. Method for Balancing Detector Output to a Desired Level of Balance at a Frequency

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor)

    2003-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  3. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  4. On the numerical modeling of sliding beams: A comparison of different approaches

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Ivo; Humer, Alexander; Vu-Quoc, Loc

    2017-11-01

    The transient analysis of sliding beams represents a challenging problem of structural mechanics. Typically, the sliding motion superimposed by large flexible deformation requires numerical methods as, e.g., finite elements, to obtain approximate solutions. By means of the classical sliding spaghetti problem, the present paper provides a guideline to the numerical modeling with conventional finite element codes. For this purpose, two approaches, one using solid elements and one using beam elements, respectively, are employed in the analysis, and the characteristics of each approach are addressed. The contact formulation realizing the interaction of the beam with its support demands particular attention in the context of sliding structures. Additionally, the paper employs the sliding-beam formulation as a third approach, which avoids the numerical difficulties caused by the large sliding motion through a suitable coordinate transformation. The present paper briefly outlines the theoretical fundamentals of the respective approaches for the modeling of sliding structures and gives a detailed comparison by means of the sliding spaghetti serving as a representative example. The specific advantages and limitations of the different approaches with regard to accuracy and computational efficiency are discussed in detail. Through the comparison, the sliding-beam formulation, which proves as an effective approach for the modeling, can be validated for the general problem of a sliding structure subjected to large deformation.

  5. Feasibility and Practical Limits for the Use of Lightweight Prestressed Concrete (LWPC) as a Shipbuilding Material.

    DTIC Science & Technology

    1982-10-01

    centerline by stanchions. A concrete beam is provided at the ship centerline to transfer unbalanced stanchion loads longitudinally along the shell . The 01...Place Cast-in-Place Concrete Connections -- Connections betw. an precast shell elements are made using cast-in-place concrete closure pours. See Figure...buckling using the column provi sions of the ACI code. For shells , the critical radius to thickness ratio is about 200 for cylindrical shells loaded in

  6. Method for measuring the density of lightweight materials

    DOEpatents

    Snow, Samuel G.; Giacomelli, Edward J.

    1980-01-01

    This invention relates to a nondestructive method for measuring the density of articles composed of elements having a low atomic number such as plastic and carbon composites. The measurement is accomplished by striking the article with a collimated beam of X radiation, simultaneously monitoring the radiation scattered and the radiation transmitted by the article, then relating the ratio of the radiation scattered to the radiation transmitted with the density of the article. The above method is insensitive to all variables except density.

  7. Dynamic Response of Layered TiB/Ti Functionally Graded Material Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, Larry; Beberniss, Tim; Chapman, Ben

    2008-02-15

    This paper covers the dynamic response of rectangular (25.4x101.6x3.175 mm) specimens manufactured from layers of TiB/Ti. The layers contained volume fractions of TiB that varied from 0 to 85% and thus formed a functionally graded material. Witness samples of the 85% TiB material were also tested to provide a baseline for the statistical variability of the test techniques. Static and dynamic tests were performed to determine the in situ material properties and fundamental frequencies. Damping in the material/ fixture was also found from the dynamic response. These tests were simulated using composite beam theory which gave an analytical solution, andmore » using finite element analysis. The response of the 85% TiB specimens was found to be much more uniform than the functionally graded material and the dynamic response more uniform than the static response. A least squares analysis of the data using the analytical solutions were used to determine the elastic modulus and Poisson's ratio of each layer. These results were used to model the response in the finite element analysis. The results indicate that current analytical and numerical methods for modeling the material give similar and adequate predictions for natural frequencies if the measured property values were used. The models did not agree as well if the properties from the manufacturer or those of Hill and Linn were used.« less

  8. Three-dimensional scanning confocal laser microscope

    DOEpatents

    Anderson, R. Rox; Webb, Robert H.; Rajadhyaksha, Milind

    1999-01-01

    A confocal microscope for generating an image of a sample includes a first scanning element for scanning a light beam along a first axis, and a second scanning element for scanning the light beam at a predetermined amplitude along a second axis perpendicular to the first axis. A third scanning element scans the light beam at a predetermined amplitude along a third axis perpendicular to an imaging plane defined by the first and second axes. The second and third scanning element are synchronized to scan at the same frequency. The second and third predetermined amplitudes are percentages of their maximum amplitudes. A selector determines the second and third predetermined amplitudes such that the sum of the percentages is equal to one-hundred percent.

  9. 3D-printed phase waveplates for THz beam shaping

    NASA Astrophysics Data System (ADS)

    Gospodaric, J.; Kuzmenko, A.; Pimenov, Anna; Huber, C.; Suess, D.; Rotter, S.; Pimenov, A.

    2018-05-01

    The advancement of 3D-printing opens up a new way of constructing affordable custom terahertz (THz) components due to suitable printing resolution and THz transparency of polymer materials. We present a way of calculating, designing, and fabricating a THz waveplate that phase-modulates an incident THz beam (λ0 = 2.14 mm) in order to create a predefined intensity profile of the optical wavefront on a distant image plane. Our calculations were performed for two distinct target intensities with the use of a modified Gerchberg-Saxton algorithm. The resulting phase-modulating profiles were used to model the polylactide elements, which were printed out with a commercially available 3D-printer. The results were tested in a THz experimental setup equipped with a scanning option, and they showed good agreement with theoretical predictions.

  10. Techniques for writing and reading data on an optical disk which include formation of holographic optical gratings in plural locations on the optical disk

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi (Inventor); Psaltis, Demetri (Inventor); Mok, Fai H. (Inventor); Zhou, Gan (Inventor)

    2005-01-01

    An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.

  11. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo.

    PubMed

    Xu, Tao; Liu, Nian; Yu, Zhenglei; Xu, Tianshuang; Zou, Meng

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body.

  12. Crashworthiness Design for Bionic Bumper Structures Inspired by Cattail and Bamboo

    PubMed Central

    Xu, Tao; Liu, Nian

    2017-01-01

    Many materials in nature exhibit excellent mechanical properties. In this study, we evaluated the bionic bumper structure models by using nonlinear finite element (FE) simulations for their crashworthiness under full-size impact loading. The structure contained the structural characteristics of cattail and bamboo. The results indicated that the bionic design enhances the specific energy absorption (SEA) of the bumper. The numerical results showed that the bionic cross-beam and bionic box of the bionic bumper have a significant effect on the crashworthiness of the structure. The crush deformation of bionic cross-beam and box bumper model was reduced by 33.33%, and the total weight was reduced by 44.44%. As the energy absorption capacity under lateral impact, the bionic design can be used in the future bumper body. PMID:29118571

  13. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H.

    2015-05-01

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  14. A Compact Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Kumar, A.; Thompson, K. E.

    1993-01-01

    A new type of image detector will simultaneously analyze the polarization of light at all picture elements in a scene. The integrated Dual Imaging Detector (IDID) consists of a polarizing beam splitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. The polarizing beam splitter can be either a Ronchi ruling, or an array of cylindrical lenslets, bonded to a birefringent wafer. The wafer, in turn, is bonded to the CCD so that light in the two orthogonal planes of polarization falls on adjacent pairs of pixels. The use of a high-index birefringent material, e.g., rutile, allows the IDID to operate at f-numbers as high as f/3.5. Other aspects of the detector are discussed.

  15. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  16. A Refined Zigzag Beam Theory for Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sciuva, Marco Di; Gherlone, Marco

    2009-01-01

    A new refined theory for laminated composite and sandwich beams that contains the kinematics of the Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent theory is derived from the virtual work principle and employs a novel piecewise linear zigzag function that provides a more realistic representation of the deformation states of transverse-shear flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the transverse shear stress across the beam s cross-section, yet is robust. Two major shortcomings that are inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating clamped boundary conditions, and that have greatly limited the utility of these previous theories are discussed in detail. An approach that has successfully resolved these shortcomings is presented herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are derived and the improved modelling capability of the new zigzag beam theory is demonstrated. In particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed and compared with corresponding results obtained from elasticity solutions, two other zigzag theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined zigzag theory presented herein over similar existing theories. This new theory can be readily extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate estimates of structural response needed to design an important class of high-performance aerospace structures.

  17. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires almost no adjustment.

  18. Methods and apparatus for altering material using ion beams

    DOEpatents

    Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.

    1996-01-01

    A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.

  19. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    Austenitic stainless steel materials are widely used in a variety of industry sectors. In particular, the material is qualified to meet the design criteria of high quality in safety related applications. For example, the primary loop of the most of the nuclear power plants in the world, due to high durability and corrosion resistance, is made of this material. Certain operating conditions may cause a range of changes in the integrity of the component, and therefore require nondestructive testing at reasonable intervals. These in-service inspections are often performed using ultrasonic techniques, in particular when cracking is of specific concern. However, the coarse, dendritic grain structure of the weld material, formed during the welding process, is extreme and unpredictably anisotropic. Such structure is no longer direction-independent to the ultrasonic wave propagation; therefore, the ultrasonic beam deflects and redirects and the wave front becomes distorted. Thus, the use of conventional ultrasonic testing techniques using fixed beam angles is very limited and the application of ultrasonic Phased Array techniques becomes desirable. The "Sampling Phased Array" technique, invented and developed by Fraunhofer IZFP, allows the acquisition of time signals (A-scans) for each individual transducer element of the array along with fast image reconstruction techniques based on synthetic focusing algorithms. The reconstruction considers the sound propagation from each image pixel to the individual sensor element. For anisotropic media, where the sound beam is deflected and the sound path is not known a-priori, a novel phase adjustment technique called "Reverse Phase Matching" is implemented. By taking into account the anisotropy and inhomogeneity of the weld structure, a ray tracing algorithm for modeling the acoustic wave propagation and calculating the sound propagation time is applied. This technique can be utilized for 2D and 3D real time image reconstruction. The "Gradient Constant Descent Method" (GECDM), an iterative algorithm, is implemented, which is essential for examination of inhomogeneous anisotropic media having unknown properties (elastic constants). The Sampling Phased Array technique with Reverse Phase Matching extended by GECDM-technique determines unknown elastic constants and provides reliable and efficient quantitative flaw detection in the austenitic welds. The validation of ray-tracing algorithm and GECDM-method is performed by number of experiments on test specimens with artificial as well as natural material flaws. A mechanized system for ultrasonic testing of stainless steel and dissimilar welds is developed. The system works on both conventional and Sampling Phased Array techniques. The new frontend ultrasonic unit with optical data link allows the 3D visualization of the inspection results in real time.

  20. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  1. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  2. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  3. Diffraction-Based Optical Switch

    NASA Technical Reports Server (NTRS)

    Sperno, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for controllably redirecting a light beam, having a central wavelength lambda, from a first light-receiving site to a second light-receiving site. A diffraction grating is attached to or part of a piezoelectric substrate, which is connected to one or two controllable voltage difference sources. When a substrate voltage difference is changed and the diffraction grating length in each of one or two directions is thereby changed, at least one of the diffraction angle, the diffraction order and the central wavelength is controllably changed. A diffracted light beam component, having a given wavelength, diffraction angle and diffraction order, that is initially received at a first light receiving site (e.g., a detector or optical fiber) is thereby controllably shifted or altered and can be received at a second light receiving site. A polynomially stepped, chirped grating is used in one embodiment. In another embodiment, an incident light beam, having at least one of first and second wavelengths, lambda1 and lambda2, is received and diffracted at a first diffraction grating to provide a first diffracted beam. The first diffracted beam is received and diffracted at a second diffraction grating to produce a second diffracted beam. The second diffracted beam is received at a light-sensitive transducer, having at least first and second spaced apart light detector elements that are positioned so that, when the incident light beam has wavelength lambda1 or lambda2 (lambda1 not equal to lambda2), the second diffracted beam is received at the first element or at the second element, respectively; change in a selected physical parameter at the second grating can also be sensed or measured. A sequence of spaced apart light detector elements can be positioned along a linear or curvilinear segment with equal or unequal spacing.

  4. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  5. Application of variational and Galerkin equations to linear and nonlinear finite element analysis

    NASA Technical Reports Server (NTRS)

    Yu, Y.-Y.

    1974-01-01

    The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.

  6. Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Xia, Shuman

    2017-01-01

    A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.

  7. Identification of cracks in thick beams with a cracked beam element model

    NASA Astrophysics Data System (ADS)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  8. Piezoelectric energy harvester having planform-tapered interdigitated beams

    DOEpatents

    Kellogg, Rick A [Tijeras, NM; Sumali, Hartono [Albuquerque, NM

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  9. Failure of wooden sandwich beam reinforced with glass/epoxy faces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papakaliatakis, G. E.; Zacharopoulos, D. A.

    2015-12-31

    The mechanical properties and the failure of wooden beam strengthened with two faces from glass/epoxy composite and a wooden beam without strengthening was studied. Stresses and deflections on both beams, which are imposed in three point bending loading. On the idealized geometry of the specimens with detailed nonlinear orthotropic analysis was performed with a finite elements program. The failure study of the wooden beams was performed, applying the criterion of Tsai-Hill. The shear strength of the adhesive was taken into account. All the specimens were tested with three point bending loading and the experimental results were compared to those ofmore » the theoretical approach with the finite elements analysis. Comparing the results, the advantage of strengthened wooden beam against the simple wooden beam becomes obvious. Theoretical predictions were in good agreement with experimental results.« less

  10. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  11. Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Decha-Umphai, Kamolphan

    1987-01-01

    Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.

  12. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  13. Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics

    PubMed Central

    Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco

    2017-01-01

    The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040

  14. Benchmark studies of induced radioactivity produced in LHC materials, Part II: Remanent dose rates.

    PubMed

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    A new method to estimate remanent dose rates, to be used with the Monte Carlo code FLUKA, was benchmarked against measurements from an experiment that was performed at the CERN-EU high-energy reference field facility. An extensive collection of samples of different materials were placed downstream of, and laterally to, a copper target, intercepting a positively charged mixed hadron beam with a momentum of 120 GeV c(-1). Emphasis was put on the reduction of uncertainties by taking measures such as careful monitoring of the irradiation parameters, using different instruments to measure dose rates, adopting detailed elemental analyses of the irradiated materials and making detailed simulations of the irradiation experiment. The measured and calculated dose rates are in good agreement.

  15. DYNA3D: A computer code for crashworthiness engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallquist, J.O.; Benson, D.J.

    1986-09-01

    A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are brieflymore » presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.« less

  16. A boundary element alternating method for two-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Krishnamurthy, T.

    1992-01-01

    A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.

  17. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    NASA Astrophysics Data System (ADS)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  18. Lateral Torsional Buckling of Anisotropic Laminated Composite Beams Subjected to Various Loading and Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ahmadi, Habiburrahman

    Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.

  19. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  20. Survey of elemental specificity in positron annihilation peak shapes

    NASA Astrophysics Data System (ADS)

    Myler, U.; Simpson, P. J.

    1997-12-01

    Recently the detailed interpretation of positron-annihilation γ-ray peak shapes has proven to be of interest with respect to their chemical specificity. In this contribution, we show highly resolved spectra for a number of different elements. To this purpose, annihilation spectra with strongly reduced background intensities were recorded in the two detector geometry, using a variable-energy positron beam. Division of the subsequently normalized spectra by a standard spectrum (in our case the spectrum of pure silicon) yields quotient spectra, which display features characteristic of the sample material. First we ascertain that the specific spectrum of an element is conserved in different chemical compounds, demonstrated here by identical oxygen spectra obtained from both SiO2/Si and MgO/Mg. Second, we show highly resolved spectra for a number of different elements (Fe...Zn, Ag, Ir...Au). We show that the characteristic features in these spectra vary in a systematic fashion with the atomic number of the element and can be tentatively identified with particular orbitals. Finally, for 26 different elements we compare the maximum intensity in the quotient spectra with the relative atomic density in the corresponding element. To our knowledge, this is the most comprehensive survey of such data made to date.

Top